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Abstract
Let Gr◦(k, n) ⊂ Gr(k, n) denote the open positroid stratum in the Grassmannian. We
define an action of the extended affine d-strand braid group on Gr◦(k, n) by regular
automorphisms, for d the greatest common divisor of k and n. The action is by quasi-
automorphisms of the cluster structure on Gr◦(k, n), determining a homomorphism
from the extended affine braid group to the cluster modular group for Gr(k, n). We
also define a quasi-isomorphism between the Grassmannian Gr(k, rk) and the Fock–
Goncharov configuration space of 2r -tuples of affine flags for SLk . This identifies the
cluster variables, clusters, and cluster modular groups, in these two cluster structures.
Fomin and Pylyavskyy proposed a description of the cluster combinatorics forGr(3, n)

in terms of Kuperberg’s basis of non-elliptic webs. As our main application, we prove
many of their conjectures for Gr(3, 9) and give a presentation for its cluster modular
group. We establish similar results for Gr(4, 8). These results rely on the fact that both
of these Grassmannians have finite mutation type.

Keywords Cluster algebra · Grassmannian · Braid group · Quasi-homomorphism ·
Web

Mathematics Subject Classification 13F60

Introduction

In its most combinatorial formulation, the theory of cluster algebras concerns itself
with identifying which elements of a cluster algebra are cluster variables, and how
these elements are grouped into clusters. Some of the most central examples of cluster
algebras occur as (homogeneous) coordinate rings of important algebraic varieties
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in Lie theory or geometry—Grassmannians and other partial flag varieties, double
Bruhat and positroid cells, and (complexifications of) decorated Teichmüller spaces.
Amotivation for computing all of the clusters in these important examples is that each
cluster variable, moreover eachmonomial in any cluster, is expected to lie in a version
of a canonical basis for the coordinate ring.

The definition of cluster variables is recursive and somewhat technical. It begins
with an initial choice of a cluster—adistinguished collection of elements in the cluster
algebra—and produces new cluster variables one at a time, by exchanging a current
cluster variable for a neighboring one. The new cluster variable is defined algebraically
in terms of the current cluster, in what is known as an exchange relation. An extra layer
of subtlety is provided by designating certain initial variables as frozen: these variables
are never themselves exchanged, but they appear in the exchange relations defining
new cluster variables. In any given cluster, the list of exchange relations defining the
neighboring cluster variables is encoded by a quiver. Each time a cluster is exchanged
for a new one, this list updates according to its own dynamical rules (in a process
called quiver mutation).

This paper presents a non-recursive way of calculating cluster variables and clusters
for Grassmannians, by an action of an appropriate group of symmetries. Let ˜Gr(k, n)

denote (the affine cone over) the Grassmannian of k-dimensional subspaces in C
n

and ˜Gr
◦
(k, n) ⊂ ˜Gr(k, n) the Zariski-open subset cut out by the non-vanishing of the

frozen variables. Let d = gcd(k, n) and Bd denote the braid group on d strands. We
define (cf Definition 5.2) regular automorphisms σi : ˜Gr

◦
(k, n) → ˜Gr

◦
(k, n) which

satisfy the braid relations.
The pullback σ ∗

i to the coordinate ringC[˜Gr(k, n)] is a quasi-automorphism [21] of
the cluster structure, hence σ ∗

i induces a permutation of the cluster variables, clusters,
and cluster monomials, in C[˜Gr(k, n)]. The resulting Bd action preserves (the non-
frozen part of) each quiver, defining a homomorphism from Bd to the cluster modular
group G = G(Gr(k, n)), a certain symmetry group of a cluster algebra introduced by
Fock andGoncharov. Together with thewell-known twisted cyclic shift automorphism
ρ of Gr(k, n), this homomorphism can be enriched to a homomorphism B̂Âd−1

→ G,
where B̂Âd−1

is the d-strand extended affine braid group [25]. We note two extreme
cases: when k divides n, the extended affine braid group action reduces to an action
by the ordinary braid group Bk (cf. Lemma 5.4). On the other hand, when k and n are
coprime, the braid group Bd = B1 is trivial and our constructions do not give rise to
new symmetries.

The homomorphism B̂Âd−1
→ G is not faithful: B̂Âd−1

has no elements of finite

order, but the element ρ ∈ B̂Âd−1
that maps to the cyclic shift automorphism has finite

order n inside G. The element ρn is central in B̂Âd−1
, and we expect that our action

(cf. Conjecture 8.2) is faithful modulo the center for n >> k.
Another important family of cluster algebras were introduced by Fock and Gon-

charov [17] in a pioneering series of papers on higher Teichmüller theory. For a simple
Lie groupG, they considered spaces of (twisted, decorated)G-local systems on a (bor-
dered, marked, oriented) surface S. These spaces have cluster structures [17,36]. This
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paper focuses on the space FG(k, r) arising when G = SLk and S is a disk with r
points on its boundary.

As a second main result, we show that the space FG(k, 2r) is quasi-isomorphic
to a Grassmannian ˜Gr(k, rk). That is, the cluster variables and clusters in these two
spaces can be identified by a pair of rational maps. The maps are not inverse, but each
composite is the identity up to monomials in the frozen variables. In particular, the
cluster structure on FG(k, 2r) inherits a braid group action. Note that ˜Gr(k, rk) and
FG(k, 2r) are not birationally isomorphic—they have different dimensions—but they
become isomorphic after taking products with complex tori of appropriate size (this
follows from our quasi-isomorphism and [35, Proposition 5.11]).

When k = 2, the cluster combinatorics for Gr(2, n)—more generally, for the
space of twisted decorated SL2-local systems on any surface [20]— has an elegant
description (cf. Example 3.1). Fomin and Pylyavskyy have conjectured a combina-
torial description of the cluster combinatorics for Gr(3, n) in terms of Kuperberg’s
non-elliptic web basis [34]. The combinatorics involved is much more complicated
than in the SL2 case. When n ≤ 8, there are only finitely many cluster variables
for Gr(3, n), and verifying the Fomin–Pylyavskyy description is a finite check. The
first nontrivial case is n = 9, which is of infinite type, but finite mutation type: it has
infinitely many cluster variables, but only finitely many quivers.

As a third main result, we prove (most of) the Fomin–Pylyavskyy conjectures in the
case of Gr(3, 9), and give a presentation for the cluster modular group. The key point
is that the braid group action preserves all relevant notions from web combinatorics,
after which we verify the conjecture with a SAGE program [39,44] available as an
ancillary file [22]. We obtain similar results for Gr(4, 8) (the other Gr(k, n) of finite
mutation type).

Organization: The following sections contain standard background material. Sec-
tion 1 introduces cluster algebras; Sect. 2 reviews quasi-homomorphisms and the clus-
termodular group; Sect. 3 reviewsGrassmannian cluster algebras; Sect. 4 reviews some
braid group facts and definitions; Sect. 6 reviews the cluster structure on FG(k, r).

The following sections contain results: Sect. 5 defines the maps σi and states and
proves our main theorem (Theorem 5.3). Section 7 describes a quasi-isomorphism
of Gr(k, rk) with FG(k, 2r). Section 8 summarizes what is known about the cluster
modular group of Gr(k, n) and makes a conjecture describing them. Section 9 narrows
our focus to Gr(3, 9) and Gr(4, 8). We reviewweb combinatorics and state the Fomin–
Pylyavskyy conjectures for Gr(3, n). Theorem 9.10 proves most of these conjectures
for Gr(3, 9), and 9.13 proves an analogue for Gr(4, 8). Theorems 9.11 and 9.14 give
a presentation of their cluster modular groups. The proofs for Sect. 9 are in Sect. 10.

Prior work

A connection between braid groups and cluster modular groups is inspired by [16,17].
ForanyG, and for S apunctured diskwith 2r markedpoints on its boundary, they stated
the existence [17] of a homomorphism from the G-braid group to the cluster modular
group, but the details have not been published. This is similar to our Theorem 5.3, but
concerns a different class of cluster algebras because our disk is unpunctured.
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Our results in Gr(3, 9) and Gr(4, 8) also have antecedents. Barot, Geiss, and Jasso
[4], as well as Felikson, Shapiro, Thomas, and Tumarkin [12], gave Ping-Pong lemma
arguments for a relation between these cluster modular groups and PSL2(Z). We
also mention that a certain map (� ◦ P ◦ �) : Gr(3, 9) → Gr(3, 9) is a generator
in our description of the cluster modular group. This map was also discovered by
Morier-Genoud, Ovsienko, and Tabachnikov [38, Section 4.6], who thought of it as a
symmetry of the space of convex 9-gons in RP

2.

1 Cluster algebras

Definition 1.1 A quiver is a finite directed graph Q on the vertex set [1, n], without
loops or directed 2-cyles. An extended quiver is a finite directed graph on the vertex set
[1, n+m]without loops or 2-cycles. The lastm vertices are called frozen vertices, and
the first n vertices are mutable vertices. We disallow arrows between frozen vertices.
The integer n is called the rank of the extended quiver.

We denote extended quivers by Q̃ and denote by Q their underlying mutable sub-
quivers obtained by restricting to the mutable vertices.

Definition 1.2 Let Q̃ be an extended quiver and k ∈ [1, n] a mutable vertex. The
operation of quiver mutation in direction k replaces Q̃ by a new extended quiver
Q̃′ = μk(Q̃). The quiver μk(Q̃) is obtained from Q̃ in three steps:

(1) For each directed path i → k → j of length two through k in Q̃, add an arrow
i → j (do not perform this step if both of i and j are frozen).

(2) Reverse the direction of all arrows incident to vertex k.
(3) Remove any oriented 2-cycles created in performing steps 1 and 2.

Mutation commutes with the operation of restricting to mutable subquivers. Fur-
thermore, μ2

k(Q̃) = Q̃ for any mutable vertex k.

Definition 1.3 (Seed) Let F be a field isomorphic to a field of rational functions in
n +m variables. A seed in F is a pair (Q̃, x) where Q̃ is an extended quiver on n +m
variables, and x = (x1, . . . , xn; xn+1, . . . , xn+m) is a transcendence basis for F . The
elements xn+1, . . . , xn+m are called frozen variables. The set {x1, . . . , xn} is a cluster,
and the set {x1, . . . , xn+m} is an extended cluster.

Definition 1.4 (Seed mutation, exchange ratio) Let � = (Q̃, x) be a seed and k be a
mutable vertex. The operation of seed mutation in direction k replaces � by a seed
�′ = μk(�) = (μk(Q̃), x′). The new extended cluster x′ satisfies x′ = x\{xk}∪{x ′

k}.
The new cluster variable x ′

k is defined by an exchange relation:

x ′
k xk =

∏

i∈[1,n+m]
xnumber of edges i→k
i +

∏

i∈[1,n+m]
xnumber of edges k→i
i , (1)
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where the numbers in the right hand side of (1) refer to edges in Q̃. We define also
the exchange ratio to be the Laurent monomial

ŷ�(xk) =
∏

i∈[1,n+m] x
number of edges i→k
i

∏

i∈[1,n+m] x
number of edges k→i
i

, (2)

i.e. the ratio of the terms in the right hand side of the exchange relation (1).

Definition 1.5 (Cluster algebra) Let � be a seed inF . The seed pattern E determined
by � is the collection of seeds which can be obtained from � by performing an
arbitrary sequence of mutations from �. The cluster algebra associated to E is the
C-algebra generated by the frozen variables, the inverses of the frozen variables, and
all of the cluster variables arising in the seeds of E .

Sometimes, rather than making Definition 1.5, one instead defines the cluster alge-
bra as the algebra generated by the frozen and cluster variables only (i.e., inverses
of frozen variables are not taken as generators). For combinatorial purposes, either
of these conventions is equally good. A cluster monomial is an element that can be
expressed as a monomial in any extended cluster (sometimes one allows frozen vari-
ables in the denominator, but we do not take this convention).

Seed mutation μk is an involution. As such, the seed pattern E is determined by
any of its seeds, and thus by a choice of an extended quiver Q̃. By a deep result [9],
the combinatorics of the seed pattern is in fact determined by any mutable subquiver
Q ⊂ Q̃. Precisely, if Q ⊂ Q̃ and Q ⊂ Q̃′ are two different extensions of a mutable
quiver to an extended quiver, determining seeds �(Q̃) and �(Q̃′), then a sequence
of mutations ¯ satisfies ¯(�(Q̃)) = �(Q̃) if and only if ¯(�(Q̃′)) = �(Q̃′). A seed
pattern (and its cluster algebra) is finite type if the seed pattern consists of only finitely
many seeds. Less restrictively,it is of finite mutation type if the seed pattern contains
only finitely many (isomorphism classes of) mutable subquivers.

2 Symmetries of cluster algebras

A quasi-homomorphism is a notion of map between cluster algebras, introduced and
systematically studied in [21]. We give a streamlined account of the definition here.

For a cluster algebra A we denote by P the group of Laurent monomials in the
frozen variables for A. For elements x, y ∈ A, we say that x is proportional to y,
writing x ∝ y, if x = My for some Laurent monomial M ∈ P. Likewise, let A and
A be a pair of cluster algebras with respective groups P and P. If f1 : A → A and
f2 : A → A are algebra homomorphisms satisfying f1(P) ⊂ P and f2(P) ⊂ P, then
we say that f1 is proportional to f2, and write f1 ∝ f2, if f1(x) ∝ f2(x) for every
cluster variable x ∈ A.

Definition 2.1 (Quasi-homomorphism) Consider a pair of cluster algebras A and A,
both of the same rank n, and with respective groups P and P. Then an algebra map
f : A → A that satisfies f (P) ⊂ P is a quasi-homomorphism from A to A if there

are seeds � = (Q̃, x) forA and � = (Q̃, x) forA, and a sign ε ∈ {1,−1}, for which
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f (xi ) ∝ xi and f (ŷ�(xi )) = ŷ�(xi )
ε, for i = 1, . . . , n. (3)

If the conditions in this definition hold for some pair of seeds�,�, then it holds for
all seeds in the respective seed patterns [21]. That is, for every seed � in A, one can
define a seed � inA satisfying (3), so that the map � �→ � commutes with mutation.

A quasi-isomorphism of two cluster algebras A and A is a pair of quasi-
homomorphisms f : A → A and g : A → A such that the composite g ◦ f is
proportional to the identity map onA. A quasi-automorphism is a quasi-isomorphism
of a cluster algebra with itself.

In general, a quasi-homomorphism f does not necessarily have a “quasi-inverse”
g. Furthermore, if such a g does exist, it is not uniquely defined. Rather, there is a
family of possible g, all proportional to each other, and related to each other by certain
“rescalings” [21, Remark 4.7] of the cluster variables in A by elements of P. On the
other hand, a quasi-homomorphism from a cluster algebra to itself always has a quasi-
inverse [21, Lemma 6.4] (and in fact, a family of quasi-inverses related to each other
by rescalings). Thus, we typically suppress the choice of quasi-inverse when thinking
about quasi-automorphisms.

Quasi-automorphisms are closely related to other notions of symmetry in cluster
theory (cf. [1,2,4,15]). Of these, we will focus on the cluster modular group. To define
it, we use a result [26, Theorem 4] of Gekhtman, Shapiro, and Vainshtein: in any
cluster algebra, the mutable subquiver Q(�) in a seed � is determined by its cluster
x. Thus, we can write Q = Q(x). For a quiver Q, we let Qopp denote the opposite
quiver in which the orientations of edges is reversed.

Definition 2.2 (Cluster modular group) Let A be a cluster algebra. Let π be a per-
mutation of the cluster variables in A that preserves clusters and commutes with
mutation. The cluster modular group G = G(A) consists of such permutations π

for which one of the following holds: for every cluster x in A, the induced map on
mutable subquivers Q(x) → Q(π(x)) is a quiver isomorphism, or; this is true for the
induced map Q(x)opp → Q(π(x)). The element π is called orientation-preserving
or orientation-reversing respectively. We denote by G+ the subgroup of orientation-
preserving elements.

The group G only depends on the mutation pattern of mutable subquivers Q (not on
the pattern of extended quivers Q̃). Every quasi-automorphism determines an element
of the cluster modular group via its underlying map on cluster variables x �→ x ; this
element is in G+ or in G \ G+ according to whether ε = 1 or = −1 in Definition 2.1.
Provided a technical “row span” condition is satisfied [21, Corollary 4.5], every ele-
ment g ∈ G comes from some quasi-automorphism, and in fact each g corresponds to a
family of quasi-automorphisms, all of which are proportional to each other. This tech-
nical condition is satisfied for the cluster structures onGr(k, n) and FG(k, r). Thus, we
can identify G with the group of proportionality classes of quasi-automorphisms. We
summarize cluster algebras for which G has been computed in Remarks 8.3 and 9.15.

The groups G+ and G are related as follows [2, Theorem 2.11]. One has G+ = G
provided for some (equivalently, any) mutable subquiver Q in the seed pattern, there is
a sequence of quiver mutations Q → Qopp. Otherwise, G+ is an index two subgroup
of G. For the cluster algebras Gr(k, n) and FG(k, r) that we consider in this paper,
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Q is mutation equivalent to Qopp (this follows from the theory of weak separation,
cf. Sect. 3), and therefore G+ has index two in G.

Finally we record here a criterion for verifying that a map between cluster algebras
is a quasi-isomorphism. By a nerveN forAwewill mean a finite subset of the clusters
inA, such that the clusters inN are pairwise connected to each other by sequences of
mutations that stay inN , and such that the intersection over all clusters inN is empty.
The empty intersection hypothesis is the same as requiring that every cluster variable
that shows up in a cluster in N is mutated at least once on the nerve. The simplest
example of a nerve (but not the one we will use in the sequel) is a cluster together with
its n neighboring clusters.

Lemma 2.3 (Constructing a quasi-isomorphism [21, Lemma 3.7 and Proposition 5.2])
Let N be a nerve for A. Let f : A → A be an algebra map satisfying f (P) ⊂ P.
Suppose for each cluster variable x on N , there is a cluster variable x ∈ A such
that f (x) ∝ x. Suppose this map sends clusters on N to clusters in A in a way that
is compatible with mutation. Then f is a quasi-homomorphism. If an algebra map
g : A → A satisfies g(P) ⊂ P and g( f (x)) ∝ x for all cluster variables x ∈ N , then
g is a quasi-inverse quasi-homomorphism to f .

3 Grassmannian cluster algebras

We introduce four spaces (V n)◦, ˜Gr(k, n), ˜Gr
◦
(k, n), and ˜Gr

◦
(k, n)/(C∗)n , each of

which is a frequently encountered variant of the Grassmannian Gr(k, n) of k-planes
in C

n . We assume throughout that k ≥ 2.
Throughout this paper, we fix a k-dimensional complex vector space V , and a

volume form ω∗ : ∧k
(V ) → C with dual volume form ω ∈ ∧k

(V ). We denote by
∧

(V ) the exterior algebra for V , and we always denote the exterior product map
∧a

(V ) ⊗ ∧b
(V ) → ∧a+b

(V ) by multiplication, writing v1 · · · va rather than v1 ∧
· · · ∧ va . Every simple tensor v = v1 · · · va ∈ ∧a

(V ) defines an a-dimensional
subspace

v = {w ∈ V : wv = 0}, (4)

and the subspace v characterizes the tensor v up to a scalar multiple. Geometrically,
the tensor v is the data of the subspace v together with a choice of volume form on v.

We denote by ˜Gr(k, n) ⊂ C(nk) the affine cone over Gr(k, n) ⊂ P(nk)−1 in its Plücker
embedding. Thus ˜Gr(k, n) is the affine subvariety of C(nk) consisting of points whose
coordinates satisfy the Plücker relations.

A configuration of n vectors in V is a point in the space SL(V )\V n , i.e. an n-
tuple of vectors in V , with these vectors considered up to simultaneous SL(V ) action.
Such a configuration is weakly generic if v1, . . . , vn span V . The space of weakly
generic configurations can be identified with ˜Gr(k, n)\{0} ⊂ C(nk). The coordinate
ring C[˜Gr(k, n)] is generated by Plücker coordinates 
I , as I ranges over subsets
{i1 < i2 < · · · < ik} ⊂ {1, . . . , n}. The function 
I evaluates on a configuration
(v1, . . . , vn) by


I ((v1, . . . , vn)) = ω∗(vi1 · · · vik ) = det(vi1 | · · · |vik ). (5)
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An n-tuple of vectors (v1, . . . , vn) is consecutively generic if every cyclically con-
secutive k-tuple of vectors is linearly independent, i.e. ω∗(vi+1 · · · vi+k) �= 0 for
i = 1, . . . , n where we treat indices modulo n. We denote by (V n)◦ ⊂ V n the quasi-
affine variety consisting of consecutively generic n-tuples.

We also consider the quasi-affine variety ˜Gr(k, n)◦ ⊂ ˜Gr(k, n) defined by the non-
vanishing of the cyclically consecutive Plücker coordinates
i+1,,̇i+k . This space is the
affine cone over the open positroid stratum Gr(k, n)◦ ⊂ Gr(k, n). Points in ˜Gr(k, n)◦
are identified with points in SL(V )\(V n)◦. The coordinate ring C[˜Gr◦(k, n)] is the
localization of C[˜Gr(k, n)] at the cyclically consecutive Plücker coordinates.

The space of n-tuples V n is endowed with a right action by an algebraic torus
T = (C∗)n rescaling each of the vectors. This action commutes with the SL(V ) action
and preserves consecutive genericity, yielding a T-action on (V n)◦, ˜Gr(k, n), and
˜Gr

◦
(k, n). The space ˜Gr

◦
(k, n)/T bears a “cluster-X structure” (without any frozen

variables).
J. Scott introduced a cluster algebra structure on C[˜Gr(k, n)] [43]. The frozen vari-

ables are the cyclically solid Plücker coordinates. Thus, Scott’s recipe can also be
thought of as a cluster algebra structure on C[˜Gr◦(k, n)] in which the frozen vari-
ables are inverted. From a combinatorial perspective, the distinction between these
two cluster algebras is unimportant, and we freely translate between them. We intro-
duce certain seeds in the cluster structure on ˜Gr(k, n) in the next two sections. The
combinatorial details of these seeds are used in our proof that the braid group acts by
mutations.

The torus action Gr(k, n) � T induces a Z
n-grading on the algebras C[˜Gr(k, n)]

and C[˜Gr◦(k, n)]. Our proofs make use of the well-known fact that every cluster
variable x ∈ C[˜Gr(k, n)] is homogeneous with respect to this grading, and the closely
related fact that every exchange ratio ŷ�(x) is invariant under the T action.

Example 3.1 When k = 2, the cluster algebra C[˜Gr(2, n)] has only finitely many
clusters and cluster variables. The cluster variables are exactly the (non-frozen) Plücker
coordinates. Let D be an n-gonwith its vertices numbered 1, . . . , n in clockwise order.
We can index the Plücker coordinate 
i j by the straight line (i j) connecting vertices i
and j in D. The frozen variables are the sides of D. A pair of Plücker coordinates are
in a cluster if any only if the corresponding arcs (i j) are pairwise noncrossing. The
clusters are in bijection with triangulations of the n-gon D.

For k ≥ 3, the combinatorial description of clusters and cluster variables in
C[˜Gr(k, n)] is much more complicated. Besides a few small examples, these clus-
ter algebras have infinitely many clusters and cluster variables. We record here the
Grassmannians of finite type, and of finite mutation type:

• C[˜Gr(2, n + 3)] has finite Dynkin type An .
• C[˜Gr(3, 6)], C[˜Gr(3, 7)] and C[˜Gr(3, 8)] have finite Dynkin types D4, E6, E8
respectively.

• C[˜Gr(3, 9)] and C[˜Gr(4, 8)] are of infinite type but finite mutation type.
• The cluster algebras C[˜Gr(k, n)] and C[˜Gr(n − k, n)] can be identified with each
other by the complementation map on Plücker coordinates. Thus,C[˜Gr(n+1, n+
3)] has cluster type An and so on.
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When k = 3, Fomin and Pylyavskyy [18] have proposed a description of the
cluster combinatorics in terms of Kuperberg’s basis of non-elliptic webs. We review
this description in Sect. 9, and give strong evidence for its correctness for C[˜Gr(3, 9)]
in Theorem 9.10.

3.1 Seeds fromweakly separated collections

We let
([n]
k

)

denote the set of subsets of {1, . . . , n} of size k. We review now the
construction of certain combinatorially defined seeds for ˜Gr(k, n). A pair of subsets
I , J ∈ ([n]

k

)

is weakly separated if the sets I \ J and J \ I are cyclically disjoint.
In other words, there is no cyclic interval a < b < c < d where a, c ∈ I \ J and
b, d ∈ J \ I . A weakly separated collection C ⊂ ([n]

k

)

is a collection whose members
are pairwiseweakly separated. Such a collection ismaximal if there is no larger weakly
separated collection containing it; it is known [40] that all maximal weakly separated
collections have dim ˜Gr

◦
(k, n) = k(n − k) + 1 elements.

By a recipe initially due to Postnikov [42], every maximal weakly separated col-
lection C determines a seed �(C) = (Q̃(C), x(C)) in the cluster structure on ˜Gr(k, n).
Its extended cluster x(C) is the set of Plücker coordinates {
I : I ∈ C}. The cyclically
solid Plücker coordinates are the frozen variables. We describe Q̃ after the following
definition.

Definition 3.2 Given S ∈ ( [n]
k+1

)

, the clique determined by S is the collectionW(S) =
{I ∈ C : I ⊂ S}. This clique is nontrivial if its cardinality is at least three.

Clearly, if k-subsets I and J are in the same clique, then |I ∩ J | = k − 1.
Now we describe the extended quiver Q̃(C) [40]. First, Q̃(C) has not multiple

arrows. Second, if S is a nontrivial clique, and if I is inW(S), then S \ I is a singleton,
and we can use these singleton sets to cyclically order the elements ofW(S). Then if
I , J ∈ C are two subsets not both of which are frozen, then there is an arrow
I → 
J

in Q(C) exactly when the cliqueW(I ∪ J ) is nontrivial and furthermore I and J are
cyclically adjacent inW(I ∪ J ) (and with I preceding J ).

For a maximal weakly separated collection C, let I ∈ C be any mutable Plücker
coordinate that has exactly 4 neighbors in Q̃(C). Then mutation at 
I produces a
seed �(C′) where C′ is again a maximal weakly separated collection. The resulting
operation onweakly separated collections is known as a squaremove. By [42], any two
maximal weakly separated collections are connected by a sequence of square moves.
Thus the seeds �(C) we have just described lie in a common seed pattern.

3.2 Convenient choice of initial seed

One has the following standard choice of maximal weakly separated collection:

C L= {[1, a]∪[b+1, b+k−a] : 0 ≤ a ≤ k, a+1 ≤ b ≤ n−k+a} ⊂
([n]

k

)

. (6)

The collection C Lis the “ Ldiagram” cluster for the top positroid cell.
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Δ2345 Δ3456 Δ4567 Δ5678

Δ1345 Δ1456 Δ1567 Δ1678

Δ1245 Δ1256 Δ1267 Δ1278

Δ1235 Δ1236 Δ1237 Δ1238

Δ1234

Fig. 1 The Ldiagram seed for C[˜Gr(4, 8)]. Boxed variables are frozen

We refer to the frozen variable [1, k] as the “extra frozen variable,” occurring when
a = k in (6). Besides the extra frozen variable, we associate the Plücker coordinate
indexed by a and b in (6) with the lattice point (b − a, k − a) ∈ Z

2. This identifies
C L\ {[1, k]} with the entries in a k × n − k rectangular array, cf. Fig. 1. We place
the extra frozen variable at the origin in Z

2. The extended quiver Q̃(C L) consists of
all eastward, northward, and southwest arrows in the rectangular array, as well as a
northeast arrow from the extra frozen variable, cf. Fig. 1.

4 Braid groups

Definition 4.1 The braid group on k strands is the group Bk with generators
σ1, . . . , σk−1, subject to the relations

σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , k − 1, σiσ j = σ jσi for |i − j | ≥ 2.

(7)

Imagine connecting thepoints (1, 0), . . . , (k, 0) inR
2 to thepoints (1, 1), . . . , (k, 1)

by straight lines known as strands. The Artin generator σi acts on such a picture by
crossing the i th strand over the i + 1th strand (we indicate the under-crossing using
dashed lines). A braid diagram is a picture that can be obtained from the initial straight
lines picture by a finite sequence of applications of the Artin generators. Such a dia-
gram should be thought of as a two-dimensional projection of k strands in R

3. Two
braid diagrams are identified if the corresponding braids are related by an ambient
isotopy of R

3.
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We recall the following well known algebraic properties of braid groups [6,32].

• The element 
 = σ1(σ2σ1)(σ3σ2σ1) · · · (σk−1 · · · σ1) ∈ Bk is known as the half-
twist. There is also an element δ = σk−1 · · · σ1 which we call the 1

k -twist. These
elements are related by 
2 = δk .

• The center Z(Bk) is infinite cyclic, and is generated by a full-twist 
2 = δk .
• Conjugation by δ has order k in Aut(Bk). Furthermore, we have δ−1σiδ = σi+1 for
1 ≤ i ≤ k−2. Setting σk = δ−1σk−1δ ∈ Bk , we obtain elements σ1, . . . , σk ∈ Bk

that are cyclically permuted under conjugation by δ.

The group B1 is the trivial group, and B2 = Z. The special case of B3 will be
especially important to us. It is classically known that B3 modulo its center is a free
product of cyclic groups:

B3/Z(B3) ∼= Z/2Z ∗ Z/3Z ∼= PSL2(Z). (8)

The elements 
, δ ∈ B3/Z(B3) generate the two factors of this free product.

4.1 Extended affine braid groups

Our reference is [25].

Definition 4.2 The extended affine braid group on d strands is the group B̂Âd−1
with

generators σ1, . . . , σd−1, ρ, presented by the relations

σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , d − 1, and σiσ j = σ jσi for |i − j | ≥ 2
(9)

ρ−1σiρ = σi+1 for i = 1, . . . , d − 2, and ρ−1σd−1ρ = ρσ1ρ
−1. (10)

It also goes by the name of circular braid group or annular braid group. As in the
ordinary braid group, one can define an element σd = ρ−1σd−1ρ = ρσ1ρ

−1, to obtain
elements σ1, . . . , σd ∈ B̂Âd−1

that are cyclically permuted under conjugation by ρ.

The center of B̂Âd−1
is infinite cyclic, generated by ρd . When d = 1, we interpret

B̂Âd−1
= 〈ρ〉 ∼= Z.

The following centralizer interpretation of the extended affine braid group is very
natural from our point of view. Let d be a divisor of a positive integer k. One can
define a group homomorphism ιd,k : B̂Âd−1

→ Bk on the generators by

σi ∈ B̂Âd−1
�→

k
d −1
∏

j=0

σi+ jd ∈ Bk for i = 1, . . . , d − 1 (11)

ρ ∈ B̂Âd−1
�→ δ ∈ Bk, (12)

where we have used the same symbols σi for the generators in both B̂Âd−1
and Bk .

Using the braid relations in Bk , and the properties of δ mentioned above, one checks
that this is a well-defined homomorphism.
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When d < k thismap is injective, and in fact, ιd,k(B̂Âd−1
) is the centralizer subgroup

Z(δd) ⊂ Bk [5, Theorem 0.2]. On the other hand, when d = k, the homomorphism
ιk,k : B̂Âk−1

� Bk is the quotient map imposing the relation ρ = σk−1 · · · σ1 ∈ Bk ,
which does not hold in the extended affine braid group. This qualitatively different
behavior is also reflected in the centralizer point of view, because Z(δk) = Bk is a
braid group (not an extended affine braid group).

5 The braid group action

We introduce the braid group action on ˜Gr
◦
(k, n) and then state and prove our main

theorem.
Let ρ : V n → V n denote the twisted cyclic shift

(v1, . . . , vn)
ρ�→ (v2, . . . , vn, (−1)k−1v1). (13)

We denote also by ρ the induced twisted cyclic shift maps on (V ◦)n , ˜Gr(k, n), and
˜Gr

◦
(k, n). Notice that ρn is the identity map on configurations because each vector is

multiplied by (−Id)k−1.
Though less important to our story, the cyclic group action on configurations can

be enriched to a dihedral group action via the twisted reflection θ : V n → V n , defined

as (v1, . . . , vn) �→ (−1)(
k
2)(vn, . . . , v1).

The signs (−1)k−1 and (−1)(
k
2) above are necessary to ensure that the pullbacks ρ∗

and θ∗ send Plücker coordinates to Plücker coordinates. For example in C[˜Gr(4, 8)]
we have ρ∗(
1238) = −
2341 = 
1234. The reader is welcome to ignore these signs
henceforth.

A consequence of the combinatorial recipes from Sect. 3 is that both the twisted
cyclic shift and the twisted reflection are cluster automorphisms of the cluster structure
on C[˜Gr(k, n)] [1,2]—i.e. both of these maps permute the frozen variables, the cluster
variables, and the clusters, respectively, inC[˜Gr(k, n)]. Furthermore, ρ∗ is orientation-
preserving whereas θ∗ is orientation-reversing.

Now let d be a divisor of n. A function f : V n → V n is d-periodic if it satisfies f ◦
ρd = ρd ◦ f . We can understand a d-periodic map f by breaking it up into n

d windows,
each of which is a list of d of the coordinate functions of f written in terms of the input
vectors (v1, . . . , vn). By d-periodicity, the map f is determined in any such window.
We therefore specify d-periodic maps by writing down the coordinate functions for
the first window, referring to this as the window notation for the map f . For example,
the twisted cyclic shift map has d-periodic window notation [v2, . . . , vd+1].

The following suggests why the concept of d-periodicity is a relevant one. It follows
from results in [27,37], as we explain in Sect. 8.

Proposition 5.1 Let f : C[˜Gr(k, n)] → C[˜Gr(k, n)] be an orientation-preserving
quasi-automorphism and d = gcd(k, n). Then f ◦ ρd ∝ ρd ◦ f .

The notion of d-periodicity is stronger than that of satisfying f ◦ ρd ∝ ρd ◦ f .
In principle there can be quasi-automorphisms of C[˜Gr◦(k, rk)] that commute with
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ρd up to proportionality, but that do not come from a d-periodic map V n → V n on
vectors.

Recall the space (V n)◦ of consecutively generic n-tuples in V . We now make our
main definition.

Definition 5.2 (Artin generator) Let d = gcd(k, n) > 1. For i = 1, . . . , d − 1, define
a map d-periodic map σi : (V n)◦ → (V n)◦ as follows. The first window of σi is
[v1, . . . , vi−1, vi+1, w1, vi+2, . . . , vd ], with the vector w1 defined uniquely by the
conditions

vivi+1 = vi+1w1 ∈
2

∧

(V ) and w1 ∈ span{vi+2, . . . , vi+k}. (14)

The �th window is defined by the same recipe by d-periodically augmenting indices
vi �→ v(�−1)d+i and defining the new vector w� with respect to these augmented
indices.

Define also a d-periodic map σ−1
i : (V n)◦ → (V n)◦, whose first window is

[v1, . . . , vi−1, u1, vi , vi+2, . . . vd ], with u1 defined uniquely by the conditions

vivi+1 = u1vi ∈
2

∧

(V ) and u1 ∈ span{vn−k+i+1, . . . , vn, v1, . . . , vi−1} (15)

and with the other windows defined by augmenting indices d-periodically.

Let us clarify why (14) indeed defines w1 uniquely. From the equality of subspaces
vivi+1 = vi+1w1 (cf. (4)) it follows that w1 ∈ span{vi , vi+1} ∩ span{vi+2, . . . , vi+k},
which is a line by consecutive genericity. This defines w1 up to a scalar, and the scalar
is fixed by the normalization vivi+1 = vi+1w1.

The maps (14) satisfy ρ−1 ◦σi ◦ρ = σi+1, where ρ is the twisted cyclic shift. This
matches the corresponding relation in the extended affine braid group. The maps σi
and σ−1

i are related by θ ◦ σi ◦ θ = σ−1
d−i .

Each map σi commutes with the (C∗)n action up to a permutation of the factors.
For example, if v ∈ (V n)◦ and t = (t1, . . . , tn) ∈ (C∗)n , then σ1(v · t) equals
σ1(v)·(t2, t1, t3, . . . , td , td+2, . . . , tn). Thus,σi descends to amap on ˜Gr

◦
(k, n)/(C∗)n .

The following is our main theorem.

Theorem 5.3 Let d = gcd(k, n) > 1 and σ1, . . . , σd−1 : (V n)◦ → (V n)◦ be the
d-periodic maps just defined.

(1) The maps σi and (σ−1
i ) are inverse regular automorphisms of (V n)◦. They

commute with the SL(V ) action, determining inverse regular automorphisms of
˜Gr

◦
(k, n).

(2) Together with the twisted cyclic shift ρ, the σi satisfy the extended affine braid
relations (9), determining group homomorphisms B̂Âd−1

→ Aut((V n)◦) and

B̂Âd−1
→ Aut(˜Gr

◦
(k, n)).

(3) Each pullback σ ∗
i is an orientation-preserving quasi-automorphism of

C[˜Gr◦(k, n)], determining an (anti)homomorphism B̂Âd−1
→ G+(˜Gr

◦
(k, n)) into

the cluster modular group.
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The proof of Theorem 5.3 occupies the end of this section. Before getting there,
we state and prove an important lemma, followed by some remarks. Recall that two
maps are proportional if they agree on cluster variables up to Laurent monomials in
frozens.

Lemma 5.4 If k divides n, then the pullback (σk−1 · · · σ1)∗ is proportional to the cyclic
shift ρ∗ ∈ C[˜Gr◦(k, rk)].

Thus, in the special case that k divides n, the extended affine braid group action
on clusters reduces to an ordinary Bk action. We do not expect that the cyclic shift is
proportional to a composition of Artin generators when d < k.

Proof To simplify notation, we write out the proof in the case k = 5. When we apply
σ1 to an n-tuples of vectors (v1, . . . , vn), we create a new vector in each window, let
us call this vector a� (rather than w� as in (14)). We then apply σ2 to σ1(v1, . . . , vn),
creating a vector b� in the �th window. Then we create a vector c� after applying σ3,
and d� after applying σ4. In window notation we have [v1, . . . , v4, v5]

σ1�→ [v2, a1, v3, v4, v5] σ2�→ [v2, v3, b1, v4, v5] σ3�→ [v2, v3, v4, c1, v5] σ4�→ [v2, v3, v4, v5, d1].
(16)

The defining conditions for these vectors are the span conditions

a1 ∈ span{v3, v4, v5, v6}
b1 ∈ span{v4, v5, v7, a2, } = span{v4, v5, v6, v7}
c1 ∈ span{v5, v7, v8, b2} = span{v5, v7, a2, v8} = span{v5, v6, v7, v8}
d1 ∈ span{v7, v8, v9, c2} = · · · = span{v6, v7, v8, v9},

as well as the normalization conditions v1v2 = v2a1, a1v3 = v3b1, b1v4 =
v4c1, and c1v5 = v5d1. In performing the simplifications above, we used the
equality span{v7, a2} = span{v6, v7}, and other analogous equalities. Since a1 ∈
span{v3, v4, v5, v6} and b1 ∈ span{a1, v3} ∩ {v4, v5, v6, v7} we conclude that b1 ∈
span{v4, v5, v6}. In a similar fashion, we conclude that c1 ∈ span{v5, v6} and then that
d1 ∈ span{v6}. So d1 and v6 are related by a scalar multiple. To compute this scalar
multiple, we use the normalization conditions

v2v3v4v5d1 = v2v3v4c1v5 = v2v3b1v4v5 = v2a1v3v4v5 = v1v2v3v4v5. (17)

Thus d1 = ω∗(v1···v5)
ω∗(v2···v6) v6. This scalar multiple is a Laurent monomial in the frozen

variables for ˜Gr(k, n). Thus the maps σk−1 · · · σ1 and ρ agree as maps on (V n)◦, up
to rescaling certain vectors by Laurent monomials in the frozens. By the homogeneity
of cluster variables with respect to the (C∗)n rescaling the vectors, it follows that the
two maps are proportional. ��
Remark 5.5 In some sense, the extendedbraid group actionwhend < k canbededuced
from the ordinary braid group action when d = k. Recall the inclusion ιd,k : B̂Âd−1

→
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Bk , identifying B̂Âd−1
with the centralizer Z(δd). Set r = n

d so that lcm(k, n) = rk.

We think of Vrk as the space of k × rk matrices, and “diagonally” embed V n ⊂ Vrk

as the subspace of matrices whose columns are n-periodic. A composition of the Artin
generators σ1, . . . , σk−1 : Vrk → V rk preserves the subspace V n precisely when it
is n-periodic. Since each Artin generator is k-periodic, a composition of them is n-
periodic precisely when it is d-periodic. From Lemma 5.4, the maps δd and ρd differ
only by rescaling certain vectors by frozen variables, so commuting with ρd is closely

related to commuting with δd . By construction the braid
∏

k
d −1
j=0 σi+ jd ∈ Bk from (11))

determines a d-periodic map on Vrk , so descends to V n . This is exactly the definition

of the d-periodic Artin generator for (V n)◦. Conversely, the braids
∏

k
d −1
j=0 σi+ jd ∈ Bk

generate the centralizer Z(δd), so one expects that these are the only compositions of
Artin generators for V rk that might give rise to quasi-automorphisms of ˜Gr(k, n).

Remark 5.6 (Renormalized Artin generators) There is a more explicit description of
the vector w1 in Definition 5.2, namely

w1 = ω∗(vi , vi+2, . . . , vi+k)

ω∗(vi+1, vi+2, . . . , vi+k)
vi+1 − vi (18)

Clearly this vector satisfies vivi+1 = vi+1w1, and it is in span{vi+2, . . . , vi+k}
because its exterior product with vi+2 · · · vi+k vanishes. It is occasionally convenient
to clear denominators in (18), replacing w1 by w̃1 = ω∗(vi , vi+2, . . . , vi+k)vi+1 −
ω∗(vi+1, vi+2, . . . , vi+k)vi , and replacing w� by its corresponding w̃�. This recipe
is defined on V n , not just on (V n)◦. The resulting renormalized Artin generators
σ̃i : ˜Gr(k, n) → ˜Gr(k, n) only satisfy the braid relations up to monomials in the
frozen variables. The pullbacks σ̃i

∗ ∝ σ ∗
i are proportional.

Remark 5.7 (Cluster variables and webs) The renormalized Artin generator can be
understood “diagrammatically” in terms of SLk webs (cf. [8] for the definition of
SLk webs). The Artin generator σi can be thought of as a map V⊗n → V⊗n that
can be encoded as a web, because the renormalized map (vi , . . . , vi+k) �→ w̃1 from
Remark 5.6 has a pictorial interpretation in terms of SLk tensor diagrams. In this
way, one can convert any braid diagram to an SLk tensor diagram that computes the
corresponding quasi-automorphism. This tensor diagramwill not be planar, but it turns
out that it can be “planarized” using the SLk crossing removal relation (also known
as the braiding skein relation cf [8, Corollary 6.2.3]). We illustrate these ideas in the
case of SL3 webs and SL4 webs in Sect. 10. Since each Plücker coordinate is an SLk

web, Theorem 5.3 can be used to construct (conjecturally infinitely many) new cluster
variables in C[˜Gr(k, n)] that are proportional to SLk webs, provided gcd(k, n) > 1.

We close this section by giving a proof of Theorem 5.3 in steps, starting with claim
1), then claim 2), then claim 3). The proof of claim 3) is the most involved. The details
of these proofs are not used in subsequent sections.

Proof Theorem 5.3 claim 1) Since ρ−1◦σi ◦ρ = σi+1 and σ−1
i = τ ◦σd−i ◦τ , it suffices

to prove our claims for σ1. First we argue that the pullback of any frozen variable along
the map σ1 : (V n)◦ → (V n)◦ is a Laurent monomial in frozen variables. Explicitly:
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σ ∗
1 (
i,...,i+k−1) =

{


i,...,i+k−1 if i �≡ 2 mod d

i−1,...,i+k
i+1,...,i+k


i,...,i+k−1
otherwise.

(19)

To prove this formula, we need to calculate the exterior product of the vectors in
locations i, . . . , i + k − 1 of σ1(v1, . . . , vn). We can group the terms in this exterior
product window by window. Since v(�−1)d+1v(�−1)d+2 = v(�−1)d+2w� in the �th
window, for any window in which the numbers (� − 1)d + 1 and (� − 1)d + 2 are
both in our interval [i,i+k-1], the exterior product of the vectors in this window of
σ1(v1, . . . , vn) agrees with the exterior product of the vectors (v1, . . . , vn). By this
reasoning, one concludes that 
i,...,i+k−1(σ1(v1, . . . , vn)) = 
i,...,i+k−1(v1, . . . , vn)

whenever i �≡ 2 mod d. For the other cases, we can focus on i = 2. Then


2,...,k+1(σ1(v1, . . . , vn)) = ω∗(w1v3 · · · vdvd+2w2vd+3 · · · v2d · · · vkvk+2)

= ω∗(w1v3 · · · vkvk+2).

By definition, w1 ∈ span{v3, . . . , vk+1}. So the tensors w1v3 · · · vkvk+2 and
v3 · · · vk+2 agree up to a scalar multiple (namely, the coefficient of vk+1 when w1 is
expanded in terms of {v3, . . . , vk+1}). To compute this scalar multiple, we note that it
is the same as the scalar multiple relating the tensors v2w1v3 · · · vk and v2v3 · · · vk+1.
From the normalization condition on w1, one has v2w1v3 · · · vk = v1 · · · vk . This
establishes 
2,...,k+1(σ1(v1, . . . , vn)) = 
1,...,k
3,...,k+2


2,...,k+1
|(v1,...,vn) as claimed.

Second, the regularity of σ1 follows from the manifestly polynomial formula (18).
Third, the map on (V n)◦ descends to a regular map on the open positroid stratum
˜Gr

◦
(k, n) because the conditions in (14) are SL(V )-equivariant. Fourth and finally,

we compute the composite [v1, . . . , vd ] σ1�→ [v2, w1, v3, . . . , vd ]
σ−1
1�→ [u1, v2, . . . , vd ].

The definitions of w1 and u1 imply that u1 ∈ span{w n
d
, vn−k+3, . . . , vn} ∩

span{v2, w1} = span{w n
d
, vn−k+3, . . . , vn} ∩ span{v1, v2}, and also that w n

d
∈

span{vn−k+3, . . . , vn, v1}. Hence u1 ∈ span{vn−k+3, . . . , v1} ∩ span{v1, v2} =
span{v1}. So u1 and v1 are related by a scalar multiple, and this scalar multiple equals
one using u1v2 = v2w1 = v1v2. The other composite is similar. ��
Proof By the reasoning in Remark 5.5, the i th Artin generator when d < k are

constructed as
∏

k
d −1
j=0 σi+ jd where σi ’s are Artin generators for ˜Gr(k, n

d k), and we

diagonally embed ˜Gr(k, n) ⊂ ˜Gr(k, n
d k). These braids

∏

k
d −1
j=0 σi+ jd clearly satisfy the

braid relations provided the σi do.
Thus we henceforth assume that k divides n, i.e. d = k. Let us check that σi ◦σ j =

σ j ◦ σi when |i − j | ≥ 2. As in the proof of Lemma 5.4, we can define a vector w�

to be the new vector in the �th window when we apply σi to (v1, . . . , vn), and u� to
be the new vector in the �th window when we apply σ j to σi (v1, . . . , vn). The vectors
w1 and u1 in the first window are defined by conditions

w1 ∈ span{vi+2, . . . , vi+k}
u1 ∈ span{v j+2, . . . , vk, vk+2, w2, vk+ j } = span{v j+2, . . . , vk+ j },
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together with the normalizations vivi+1 = vi+1w1 and v jv j+1 = v j+1u1. After
performing the above simplification, these conditions are manifestly symmetric in i
and j , proving the claim.

Next, we check that σ1 ◦ σ2 ◦ σ1 = σ2 ◦ σ1 ◦ σ2. The general result holds after
conjugating by the twisted cyclic shift. As before, we define vectors w�, u�, and z� to
be the new vectors created by applying σ1, then σ2, and then σ1. In the first window:

[v1, . . . , vk ] σ1�→ [v2, w1, v3, . . . , vk ] σ2�→ [v2, v3, u1, v4 . . . , vk ] σ1�→ [v3, z1, u1, v4 . . . , vk ].
(20)

The conditions defining the vectors w1, u1, z1 are the following:

w1 ∈ span{v3, . . . , vk+1},
u1 ∈ span{v4, . . . , vk , vk+2, w2} = span{v4, . . . , vk+2}
z1 ∈ span{u1, v4, . . . , vk , vk+2} = span{w2, v4, . . . , vk , vk+2} = span{v4, . . . , vk+2},

together with the normalizations v1v2 = v2w1, w1v3 = v3u1, and v2v3 = v3z1.
For the other composition, we define vectors z′�, x ′

�, and u
′
� created when applying

σ2, then σ1, then σ1. In the first window:

[v1, . . . , vk ] σ2�→ [v1, v3, z′1, . . . , vk ]
σ1�→ [v3, x ′

1, z
′
1, v4 . . . , vk ] σ2�→ [v3, z′1, u′

1, v4 . . . , vk ].
(21)

By comparing the conditions, we see immediately that z′� = z�. The vectors x ′
1 and

u′
1 are defined by

x ′
1 ∈ span{z1, v4, . . . , vk+1} = span{v4, . . . , vk+2}

u′
1 ∈ span{v4, . . . , vk, vk+3, x

′
2} = span{v4, . . . , vk, vk+1, vk+3},

together with the normalizations v1v3 = v3x ′
1 and x ′

1z1 = z1u′
1.

We need to establish that u1 = u′
1. First, we explain that both vectors are in

span{v1, v2, v3} ∩ span{v4, . . . , vk+1}, which is a line by consecutive genericity.
Indeed, from the conditions defining x ′

1 and z1 we conclude that u
′
1 ∈ span{v1, v2, v3},

and also that u′
1 ∈ span{v4, . . . , vk+2}. But then u′

1 ∈ span{v4, . . . , vk+2} ∩
span{v4, . . . , vk, vk+1, vk+3} = span{v4, . . . , vk+1}, as claimed. On the other
hand, u1 ∈ span{v1, v2, v3} since this is true of w1, and furthermore u1 ∈
span{v3, . . . , vk+1} ∩ span{v4, . . . , vk+2} = span{v4, . . . , vk+1}. Thus, u1 and u′

1
differ by a scalar multiple. This scalar multiple equals one by the normalization con-
ditions:

v2v3u1 = v2w1v3 = v1v2v3 = v1v3z1 = v3x
′
1z1 = v3z1u

′
1 = v2v3u

′
1.

��
The proof of claim 3) in Theorem 5.3 is more involved, because one has to show

explicitly that the Artin generators can be implemented by mutations. Let us begin
proving this.
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5.1 The Artin generators are quasi-automorphisms

Since ρ−1σiρ = σi+1 and σ−1
i = τσd−iτ , we can deduce that each Artin generator

is a quasi-automorphism once we prove this is true of σ ∗
1 . Our first step is to describe

a cluster on which the action of σ ∗
1 is especially convenient. As usual, we let d =

gcd(k, n) and assume d ≥ 2.
For a k-subset I = [1, a]}∪{[b+1, b+k−a] ∈ C L, we define its modified version

Imod as follows:

Imod =

⎧

⎪

⎨

⎪

⎩

I , if 
I is frozen

I , if b + 1 �≡ 2 mod d

[1, a − 1] ∪ {b} ∪ [b + 2, b + k − a + 1] if b + 1 ≡ 2 mod d.

(22)

We let Cmod = {Imod : I ∈ C L} be the modified version of the Lcluster. In the
Gr(4, 8) example (cf. Fig. 1), the modified version of 
1236 is 
1257, the modified
version of 
1267 is 
1578, and no other Plücker coordinates are modified.

By construction, the cluster Cmod has the following key property: if I ∈ Cmod is a
non-frozen Plücker coordinate, and if i ∈ I satisfies i ≡ 2 mod d, then i − 1 ∈ I .
We make frequent use of this property in our subsequent lemmas.

Let Sn denote the symmetric group on n symbols. Define π ∈ Sn as the product

of commuting transpositions π = ∏

n
d −1
j=0 ( jd + 1, jd + 2). This permutation acts by

switching adjacent numbers that are equivalent to 1 and 2 mod d.

Lemma 5.8 If Imod ∈ Cmod is a non-frozen k-subset, then σ ∗
1 (
Imod) = 
π(Imod).

Proof This follows from the key property of the collection Cmod alluded to above, and
the normalization condition v(�−1)d+1v(�−1)d+2 = v(�−1)d+2w� in the �th window.

��
That is, on our convenient choice of weakly separated collection Cmod, the Artin

generator σ1 acts on the non-frozen Plücker coordinates by permuting indices accord-
ing to π .

We let π(Cmod) denote the collection of Plücker coordinates obtained from Cmod
by applying π to each of the non-frozen Plücker coordinates, and doing nothing to the
frozen coordinates.

To show that σ ∗
1 is a quasi-automorphism, we must show that both collections Cmod

and π(Cmod) are weakly separated (hence are clusters in ˜Gr(k, n)), and furthermore
check that σ ∗

1 maps exchange ratios in the seed �(Cmod) to those in �(π(Cmod)).
This is the content of the next several lemmas, each of which is an exercise in weak
separation combinatorics, and may be skipped without affecting the later sections.

Lemma 5.9 The collection Cmod is a maximal weakly separated collection.

Proof We give an explicit sequence of square moves C L→ Cmod. Recall that elements
of C L\ {1, . . . , k} are identified with points in a rectangular array. We decompose this
rectangular array into n − 1 diagonals, each of which starts in either the first column
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or last row of the array, and moves northeast. The first diagonal is the entry in the first
row and column, and the last diagonal is the entry in the last row and column.

Then the Plücker coordinates 
I ∈ C Lthat are affected by performing the modifi-
cation I �→ Imod (22) are exactly those sitting on the diagonals d, 2d, 3d, . . . , n − d.
Since d ≥ 2, if two Plücker coordinates
I and
J are in different affected diagonals,
then they are not adjacent to each other in the quiver Q̃(C L).

Then the promised sequence of square moves C → Cmod is the one in which we
mutate once along each of these affected diagonals, starting with southwest entry in
this diagonal, continuing to the penultimate entry (because the final entry is frozen).
It is straightforward to see that in a given diagonal, when we mutate a given Plücker
coordinate I , it is replaced by its modified version Imod (the corresponding exchange
relation is a three-term Plücker relation). Since affected diagonals are not connected
by arrows in Q(C L), the mutations in the various diagonals commute. ��
Lemma 5.10 The collection π(Cmod) is a maximal weakly separated collection.

Proof Let I , J ∈ C Lbe a pair of non-frozen k-subsets; we need to show that π(Imod)

and π(Jmod) are weakly separated. Let us suppose the contrary, so there are cyclically
ordered elements a < b < c < d ∈ [n], with a, c ∈ π(Imod) \ π(Jmod) and b, d ∈
π(Jmod)\π(Imod). Then we claim that the elements π(a), . . . , π(d) remain cyclically
sorted: indeed, the only concern would be that a pair of entries are swapped by π , e.g.
b = a + 1 and b ≡ 2 mod d. But by the key property of Cmod, the assumption
a ∈ π(Imod) would imply that a + 1 ∈ π(Imod) also, a contradiction. Furthermore,
it is clear that one still has π(a), π(c) ∈ Imod \ Jmod and π(b), π(d) ∈ Jmod \ Imod
(because π is an involution). Thus, the elements π(a), . . . , π(d) are a witness to the
fact that the sets Imod and Jmod are not weakly separated, contradicting Lemma 5.9.
So our initial assumption on the existence of a, b, c, d was incorrect. ��
Lemma 5.11 Themap σ ∗

1 sends exchange ratios in�(Cmod) to the corresponding ones
in �(π(Cmod)), i.e. σ ∗

1 (ŷ�(Cmod)(Imod)) = ŷ�(π(Cmod))(π(Imod)) for each non-frozen
Imod ∈ Cmod.

Proof We use the description of the extended quiver Q̃(Cmod) in terms of nontrivial
cliques. Let W(S) be a nontrivial clique in Cmod. Let us enumerate the non-frozen
subsets in W(S) as I1, . . . , It so that the singletons S \ I1, . . . , S \ It are sorted in
increasing order. Since any pair of elements in a clique intersect in k − 1 elements,
W(S) has either zero, one, or two frozen variables. Likewise, we have that t ≥ 1.

First, we observe that the singletons π(S) \π(I1), . . . , π(S) \π(It ) remain sorted.
Indeed, since π is a product of transpositions, it could only swap the relative positions
of adjacent singletons, which were congruent to 1 and 2 mod d respectively. But the
key property of the cluster Cmod disallows this.

Second, we observe that a cliqueW(S) contains zero frozen variables if and only if
W(π(S)) contains zero frozen variables. Indeed, suppose [b+ 1, . . . , b+ k] ⊂ π(S).
Then [b + 1, . . . , b + k] ⊂ S follows unless b ≡ 1 mod d and b + 1 /∈ S. But if
b ≡ 1 mod d, then b+ k ≡ 1 mod d, so b+ k /∈ π(S) unless b+ k+1 ∈ π(S). But
then [b + 2, . . . , b + k + 1] ⊂ S contradicting the zero frozen variable assumption.
The reverse argument is similar.
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For any nontrivial cliqueW(S) ⊂ Cmod with t ≥ 2, the second observation implies
that W(π(S)) is also a nontrivial clique with t ≥ 2, and vice versa. Since mutable
arrows in Q̃(Cmod) only come from cliques in which t ≥ 2, the first and second
observations together imply that mutable arrows in Q̃(Cmod) exactly correspond to
mutable arrows in Q̃(π(Cmod)). That is, we have so far verified that π induces an
isomorphism Q(Cmod) ∼= Q(π(Cmod)).

It remains to address the frozen variables. We let fi = [i, . . . , i + k − 1] denote
the i th frozen subset. We recall that σ ∗

1 fixes the frozen variable 
 fi , unless i ≡ 2
mod d, cf. (19).

By the key property of Cmod, if i ≡ 1 mod d, then a nontrivial clique for Cmod
cannot contain the subset fi+1 unless it also contains the frozen subset fi . Furthermore,
if a nontrivial clique does not contain a frozen variable fi+1 where i ≡ 1 mod d, then
one verifies that any frozen variables that are in W(S) are also in W(π(S)). Dually,
if a nontrivial clique in π(Cmod) contains the subset fi+1 where i ≡ 1 mod d, then it
must contain the frozen subset fi+2. And if it does not contain such an fi+1, then any
frozen variables in W(π(S)) are also inW(S).

By the explicit description (22), we see that if i ≡ 1 mod d and S = [i, . . . , i+k],
then the clique W(S) ⊂ Cmod is nontrivial, and consists of three elements W(S) =
{ fi , fi+1, Imod} where Imod = {i, i + 2, . . . , i + k} is the modified version of I =
{1, i + 1, . . . , i + k − 1} ∈ C L. We have π(Imod) = [i + 1, . . . , i + k − 1, i + k + 1],
so the clique { fi+1, fi+2, π(Imod)} = W([i + 1, . . . , i + k + 1]) is a nontrivial clique
in π(Cmod). This is compatible with (19): the frozen part of ŷ(Imod) is

fi
fi+1

, and we

have σ ∗
1 (

fi
fi+1

) = fi fi+1
fi fi+2

, which agrees with the frozen part of ŷ(π(Imod)).
On the other hand, for nontrivial cliques that do not contain fi+1 where i ≡ 1

mod d, the frozen part of each ŷ(Imod) becomes the the frozen part of ŷ(π(Imod)),
which matches what happens when we apply σ ∗

1 . ��
Proof of Theorem 5.3 claim 3) Since the various σ ∗

i are related to each other by clus-
ter automorphisms, and we already know they satisfy the braid relations, we only
need to explain why σ ∗

1 is a quasi-automorphism. First, one has that σ ∗
1 (P) ⊂ P

from the argument at the start of the proof of claim 1) of Theorem 5.3. Second, by
Lemma 5.9 and Lemma 5.10, the collections Cmod and π(Cmod) are maximal weakly
separated collections, thus they determine seeds in the cluster structure on ˜Gr(k, n).
And by Lemma 5.8 and 5.11, σ ∗

1 takes the cluster Cmod to the cluster π(Cmod) while
preserving the exchange ratios. Then by definition, σ ∗

1 is an orientation-preserving
quasi-automorphism. ��

6 Fock–Goncharov cluster algebras

We retain all the conventions and notation concerning the exterior algebra
∧

(V ) from
the previous sections. If v ∈ ∧a

(V ) and w ∈ ∧a+1
(V ) are simple tensors, we say

that v divides w if w = vv′ for some vector v′ ∈ V .

Definition 6.1 An affine flag in V is a sequence

F• = F(1), F(2), . . . , F(k) (23)
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Fig. 2 A triangular array of
Fock–Goncharov coordinates for
FG(4, 3). The three “corners” of
the triangle are not considered
part of the array

Δ301 Δ310

Δ202 Δ211 Δ220

Δ103 Δ112 Δ121 Δ130

Δ013 Δ022 Δ031

of simple anti-symmetric tensors F(a) ∈ ∧a
(V ), each one dividing the next, whose

top flag F(k) is the volume form ω. We let Aff(V ) denote the space of affine flags in V .
A pair of affine flags F•,G• meet generically if each their tensors of complementary
size meet generically, i.e. ω∗(F(a)G(k−a)) �= 0 for a = 1, . . . , k − 1. We denote by
(Aff(V )r )◦ ⊂ Aff(V )r the space of consecutively generic r -tuples, i.e. those in which
adjacent affine flags meet generically. We let FG(k, r) = SL(V )\Aff(V )r denote the
space of configurations of r affine flags, and FG◦(k, r) the subset of consecutively
generic configurations.

Geometrically, an affine flag is an ordinary flag together with a choice of volume
form at each step of the flag. The action of SL(V ) on affine flags is transitive, and the
stabilizer of any particular affine flag is a maximal unipotent subgroup U . Thus we
can identify Aff(V ) with SL(V )/U .

Fock and Goncharov described a cluster algebra structure in the field of rational
functions C(FG(k, r)). [17, Section 9]. We will summarize this construction. One
begins with the space FG(k, 3), i.e. configurations of three affine flags in V . Consider
a configuration, represented by affine flags (F1,•, F2,•, F3,•). Let (a, b, c) be a triple
of nonnegative integers satisfying a + b + c = k, at least two of which are positive.
We define the Fock–Goncharov coordinate by


a,b,c(p) = ω∗(F1,(a)F2,(b)F3,(c)), (24)

noting that the right-hand side of (24) does not depend on the choice affine flags Fi,•
representing the configuration.

The Fock–Goncharov cluster structure on FG(k, 3) is obtained from an initial seed
whose initial extended cluster consists of all such Fock–Goncharov coordinates (24).
The frozen variables in this extended cluster are the 
a,b,c in which one of a,b, or c is
0. To describe the extended quiver in this initial seed, we arrange the Fock–Goncharov
coordinates in a triangular array, drawing directed arrows between adjacent entries so
that every small triangle in the diagram is oriented counterclockwise, cf. Fig. 2.

Now we return to the general case of r affine flags.

Definition 6.2 Let D be a disk with marked points 1, . . . , r in clockwise order on the
boundary. For each triangulation T of D, we define a seed �(T ) = (x̃(T ), Q̃k(t)) in
C(FG(k, r)) as follows. The extended cluster x̃(T ) is the union of the Fock–Goncharov
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Fig. 3 A Fock–Goncharov seed
�(T ) for C(FG(3, 6), i.e. for
configurations of 6 affine flags in
3-space. T is the triangulation of
the hexagon indicated in dashed
lines. The extended quiver
Q̃3(T ) is drawn in solid lines.
There are 10 cluster variables,
and 12 frozen variables sitting
on the boundary of the hexagon

1

4

26

35

•

•

•

•

••

•

•

••

coordinates coming from the various triangles in T . Notice that if e is an internal edge
of T then it lies on two triangles, but the Fock–Goncharov coordinates associated
to the edge e in either triangle agree as functions on FG(k, r). The Fock–Goncharov
coordinates sitting on the boundary edges of D serve as frozen variables. The extended
quiver Q̃k(T ) for this seed is obtained by gluing together the quiver fragments from
each triangle in T , using the directed edges indicated Fig. 2. See Fig. 3 for an example.

Fock and Goncharov proved that each extended cluster ˜x(T ) coming from a trian-
gulation provides a rational coordinate system on FG(k, r). Furthermore, the seeds
�(T ), as T varies over all triangulations of the r -gon, are related to each other by
sequences of mutations. Consequently, the seeds in Definition 6.2 give rise to a well-
define cluster structure in C(FG(k, r)). We let P : FG(k, r) → FG(k, r) denote the
twisted cyclic shift (F1,•, . . . , Fr ,•) �→ (F2,•, . . . , Fr ,•, (−Id)k−1(F1,•)) of affine
flags.

Remark 6.3 The spaces we have called FG(k, r) are part of a more general family of
spaces AG,S defined in [17] in the context of Higher Teichmüller theory. The space
AG,S is the moduli space of decorated twisted G-local systems on S, for a semisimple
Lie groupG and aborderedmarked surface S. By the latterwemeanmeananorientable
Riemann surface S, possibly with boundary and punctures, and with marked points on
each boundary component. The space FG(k, r) is the space ASLk ,S when S is a disk
with r marked points on its boundary.

7 Quasi-isomorphism of configuration spaces

We define a quasi-isomorphism between the cluster structures on ˜Gr(k, rk) and
FG(k, 2r).

Recall the twisted cyclic shifts ρ on the Grassmannian and P on the configuration
space of affine flags. We say a map � : Vrk → (Aff(V ))2r is k-periodic if it satisfies
� ◦ ρk = P2 ◦ �. This descends to a notion of k-periodicity for SL(V )-equivariant
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maps ˜Gr(k, rk) → FG(k, 2r), and for maps ˜Gr
◦
(k, rk) → FG◦(k, 2r) preserving the

consecutive generic loci. Similarly a map � : (Aff(V ))2r → Vrk is k-periodic if it
satisfies � ◦ P2 = ρk ◦ �.

Now let (v1, . . . , vn) ∈ (V n)◦ be a consecutively generic n-tuple in V . Define a
k-periodic map as follows. From the first k vectors, produce a pair of “opposite” affine
flags

F1,• =v1, v1v2, . . . , v1v2 · · · vk−1, ω (25)

F2,• =vk, vk−1vk, . . . , v2v3 · · · vk, ω, (26)

and extend by k-periodicity. This procedure is SL(V )-equivariant, and determines a
rational map

� : ˜Gr
◦
(k, rk) ��� FG◦(k, 2r). (27)

The implicit claim that this map lands in FG◦ is part of Theorem 7.2.

Definition 7.1 If v1, . . . , vk+1 are vectors such that both {v1, . . . , vk} and {v2,
. . . , vk+1} are bases for V , we define the vector v1 · · · vi ∩ vi+1 · · · vk+1 ∈ V to
be the unique vector satisfying

v1 · · · vi−1(v1 · · · vi ∩ vi+1 · · · vk+1) =ω∗(v1 · · · vi−1vi+1 · · · vk+1)v1 · · · vi ∈
i

∧

(V ) and

(28)

(v1 · · · vi ∩ vi+1 · · · vk+1)vi+1 · · · vk =ω∗(v1 · · · vk)vi+1 · · · vk+1 ∈
k+1−i
∧

(V ). (29)

This vector is unique, because it lies in the line span{v1, . . . , vi }∩span{vi+1, . . . , vk+1}
and is determined by (either of) the normalizations above. If F• and G• are affine
flags that meet generically, we define the vector F(i) ∩ G(k−i+1) ∈ V as v1 · · · vi ∩
vi+1 · · · vk+1 where F(i) = v1 · · · vi and G(k−i+1) = vi+1 · · · vk+1.

One can give an explicit formula for the vector v1 · · · vi ∩ vi+1 · · · vk+1 as a linear
combination of {v1, . . . , vi }, and also as a linear combination of {vi+1, . . . , vk+1}
(cf. [45, Equation 3.3.6 and Theorem 3.3.2a]). The renormalized vector w̃1 in
Remark 5.6 is a special instance of this formula.

We now use the operation ∩ to define a quasi-inverse to �. For (F1,•, . . . , F2r ,•) ∈
(Aff(V )2r )◦, from the first two flags, produce the k-tuple of vectors

F1,(1), F1,(2) ∩ F2,(k−1), F1,(3) ∩ F2,(k−2), · · · , F1,(k−1) ∩ F2,(2), F2,(1). (30)

Extending k-periodically and quotienting by SL(V ), we obtain a map

� : FG◦(k, 2r) → ˜Gr
◦
(k, rk), (31)

with the same implicit claim about consecutive genericity.



17 Page 24 of 51 C. Fraser

Theorem 7.2 The pullbacks �∗ : C(FG◦(k, 2r)) → C[˜Gr◦(k, rk)] and �∗ :
C[˜Gr(k, rk)] → C(FG(k, 2r)) define a quasi-isomorphism of C(FG◦(k, 2r)) and
C[˜Gr◦(k, rk)].

It follows that there is a sequence of mutations Qk(T ) → Q(C L) where Qk(T ) is
(the mutable subquiver of) a Fock–Goncharov quiver for a triangulation T , and Q(C L)

is the mutable subquiver of the rectangular grid in Fig. 1. Our proof of Theorem 7.2
is algebraic, i.e. we do not exhibit any such sequence of mutations.

Before proving Theorem 7.2, we will identify a convenient nerve in the Fock–
Goncharov cluster structure. First, we extend the definition of Fock–Goncharov
coordinate (24) in the obvious way to quadruples of flags, giving rise to functions

a,b,c,d(w, x, y, z) ∈ C(FG(k, r)) for any choices of a + b + c + d = k and
{w < x < y < z} ⊂ [1, r ]. We use the same name (Fock–Goncharov coordinate) for
these more general functions on C(FG(k, r)).

Lemma 7.3 Suppose r ≥ 4. There is a nerveN forC(FG(k, r)) onwhich every cluster
variable on N is a Fock–Goncharov coordinate (involving four or fewer flags).

Proof Let T be a triangulation of the r -gon. Fock and Goncharov described some
Plücker-like relations amongst quadruple invariants [17, Equation 10.3]. Letting a =
(a, b, c, d) denote a nonnegative integer solution to a + b + c + d = k − 2, these
relations are


a+(1,0,1,0)
a+(0,1,0,1) = 
a+(1,1,0,0)
a+(0,0,1,1) + 
a+(1,0,0,1)
a+(0,1,1,0), (32)

If a Fock–Goncharov coordinate X ∈ x(T ) lies on a shared edge between two
triangles in T , then its corresponding vertex in Qk(T ) has valence four. The exchange
relation mutating X out of x(T ) is of the form (32).

If a Fock–Goncharov coordinate X ∈ x(T ) lies in a triangle of T , pick a quadri-
lateral Q containing this coordinate, so that X is in the interior of the quadrilateral.
This is possible because r ≥ 4. The quadrilateral Q has two triangulations, one which
is used in T . Let T ′ be the triangulation obtained from T by flipping the diagonal
in the quadrilateral Q. Fock and Goncharov described an explicit sequence of muta-
tions between the seeds �(T ) and �(T ′) [17, Section 10]. Each exchange relation in
this sequence is of the form (32)—thus every cluster variable that arises during this
mutation sequence is a quadruple invariant—and every Fock–Goncharov coordinate
that is in the interior of the quadrilateral is exchanged at least once. In particular, X is
mutated during this quadrilateral flip. Starting with an initial triangulation T0, one can
perform a finite sequence of quadrilateral flips so that every triangulation of the r -gon
is visited at least once. We take as our nerve N all intermediate clusters that arise
while performing the mutations necessary to carry out this sequence of quadrilateral
flips. ��
Proof We follow the blueprint in Lemma 2.3. First we show that �∗ and �∗ pull back
frozen variables to monomials in frozen variables. This also establishes the implicit
claim that these maps preserve the consecutively generic loci.
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The map � pulls back Fock–Goncharov coordinates to Plücker coordinates. By
inspection, the�∗ pullback of a frozen Fock–Goncharov coordinate is a frozen Plücker
coordinate. For example,�∗(
3,k−3(F1,•, F2,•)) is equal to
1,...,k .On the other hand,
by the defining property (28) of the vectors Fi,(a) ∩ Fi+1,(k−a+1), one sees that �∗
pulls back each Grassmannian frozen variable to a product of k − 1 Fock–Goncharov
frozen variables. For example, when r = 2, k = 4 we have that

�∗(
1234) = 
1,3(1, 2)
2,2(1, 2)
3,1(1, 2) (33)

�∗(
2345) = 
2,2(1, 2)
3,1(1, 2)
3,1(2, 3) (34)

�∗(
3456) = 
3,1(1, 2)
2,2(2, 3)
1,3(3, 4) (35)

�∗(
4567) = 
1,3(2, 3)
1,3(3, 4)
2,2(3, 4), (36)

and so on.
Next, we show that �∗ sends cluster variables to cluster variables on the nerve N

from Lemma 7.3. To begin, let T0 be an initial triangulation of the 2r -gon and x(T )

the cluster in C(FG(k, 2r)). Then �∗(x(T )) is a collection of Plücker coordinates in
C[˜Gr◦(k, rk)]. We claim this collection is weakly separated, hence forms a cluster.
Indeed, for any Fock–Goncharov coordinate X in a given triangle, the subset labeling
the Plücker coordinate �∗(X) consists of at most three disjoint cyclic intervals. If Y
is another coordinate in this triangle, then the cyclic intervals in �∗(X) and �∗(Y )

are nested (meaning each cyclic interval in �∗(X) either contains or is contained in a
cyclic interval for �∗(Y )). This nestedness prevents the existence of a < b < c < d
as in the definition of weak separation. Notice that this would be false if we were
considering 4 disjoint cyclic intervals. For Fock–Goncharov coordinates X and Y
lying in different triangles, weak separation is even more clear: the three disjoint
cyclic intervals will be “far away” from each other and can’t lead to a witness.

The nerve N is constructed by performing a sequence of quadrilateral flips from
T0. During each step in this sequence, every cluster variable is a Fock–Goncharov
coordinate which is mapped to a Plücker coordinate by�∗. Applying�∗ to the Fock–
Goncharov exchange relation (32) produces the corresponding 3-termPlücker relation;
thus clusters in N are sent to clusters in C[˜Gr◦(k, rk)] in a way that is compatible
with mutation. The conditions of Lemma 2.3 are satisfied (in fact: �∗(x) is equal to
a cluster variable on the nerve, not merely proportional to a cluster variable), so �∗ is
a quasi-homomorphism.

To complete the proof we need to check that �∗ ◦ �∗ = (� ◦ �)∗ is proportional
to the identity map on C(FG(k, 2r)). Indeed, let F ′

1,•, F ′
2,• be the first two affine flags

created when evaluating � ◦� on (F1,•, . . . , F2r ,•). Using the defining property (28)
repeatedly, one sees that the tensor F ′

1,(a) is a scalar multiple of the tensor F1,(a), and
furthermore this scalar multiple is a product of frozen variables. The same relationship
holds for F ′

2,(a) and F2,(a).
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Continuing with the example r = 2, k = 4, the affine flags F ′
1 and F ′

2 are given by
the following sequence of simple tensors

F ′
1 = F1,(1), ω

∗(F1,(1)F2,(3))F1,(2), ω∗(F1,(1)F2,(3))ω∗(F1,(2)F2,(2))F1,(3) (37)

F ′
2 = F2,(1), ω

∗(F1,(3)F2,(1))F2,(2), ω∗(F1,(3)F2,(2))ω∗(F1,(2)F2,(2)) · F2,(3). (38)

Since the corresponding tensors only differ by scalar multiples in the frozen vari-
ables, the corresponding quadruple invariants only differ by a monomial in the frozen
variables, i.e. �∗ ◦ �∗(x) ∝ x on the nerve. ��

8 Group theory results and conjectures

We summarize what we know about the cluster modular groups for Gr(k, n) and
FG(k, r) and state some conjectures.

After identifying the cluster structures on ˜Gr(k, rk) and FG(k, 2r) by a quasi-
isomorphism, we get an identification of their cluster modular groups G(Gr(k, rk) ∼=
G(FG(k, 2r)). It is fruitful to study the group G from either side of this identification.

The well known symmetries of the Grassmannian cluster structure are the twisted
cyclic shift ρ, the reflection symmetry θ , and finally the twist map τ defined by
Marsh and Scott [37]. Both ρ and θ are cluster automorphisms, while τ is a quasi-
automorphism but not a cluster automorphism [37, Proposition 8.10]. As will be very
relevant to us, the square of the twist is proportional to a power of the cyclic shift
τ 2 ∝ ρ−k [37, Corollary 4.2].

The well-known symmetries of the cluster structure on FG(k, r) are the twisted
cyclic shift P of affine flags, the reflection symmetry � of affine flags, and the Hodge
star map (or duality map) ∗ (cf. [27,29,36] for different treatments of ∗). All three of
these are cluster automorphisms of FG(k, r).

8.1 Cluster DT transformations and the center

We recall a general method for constructing central elements of G+(k, n), and thereby
motivate the concept of d-periodicity.

For any cluster algebra, Goncharov and Shen introduced the concept of a
Donaldson-Thomas transformation of the cluster structure [27, Definition 3.5]. When
the Donaldson-Thomas transformation can be realized by mutations, it determines
an element of the cluster modular group. Furthermore, this DT element is always
in the center Z(G+) of the group of orientation-preserving elements [27, Corollary
3.7]. In the case of the cluster structure on the space AG,S of decorated G-local
systems (cf Remark 6.3), Goncharov-Shen gave an explicit construction of a DT-
transformation and explained that it can be realized by mutations. For FG(k, r), their
DT-transformation is the composition ∗ ◦ P−1 = P−1 ◦ ∗ [27, Theorem 1.3].

Marsh and Scott [37, Theorem 11.17] showed that the twist map could be imple-
mented by particular type of mutation sequence known as a maximal green sequence,
which implies that the Marsh-Scott twist map is a DT-transformation of Gr(k, n).
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In particular, the Marsh-Scott twist map is always central in G+(Gr(k, n)). Since
τ 2 = ρ−k , it follows that every orientation-preserving quasi-automorphism com-
mutes with ρk , and hence, with ρd . This motivates the notion of d-periodicity in
Sect. 5. Notice also that when gcd(k, n) = 1, it follows that any quasi-automorphism
of ˜Gr(k, n) commutes with ρ up to proportionality. This is a very restrictive require-
ment, and we view it as a suggestion that these particular Grassmannians should have
a small cluster modular group.

Intertwining with the maps (27) and (31), symmetries of Fock–Goncharov spaces
become interesting symmetries of Grassmannians.

Proposition 8.1 Let f
 be the quasi-automorphism of ˜Gr(k, rk) corresponding to the
half-twist braid 
. Then f
 ∝ (� ◦ P ◦ �)∗. That is, the twisted cyclic shift of affine
flags in FG(k, 2r) intertwines to the half-twist braid on the Grassmannian.

The Donaldson-Thomas transformation on FG(k, 2r) intertwines to the Marsh-
Scott twist map τ on ˜Gr(k, rk). In fact, τ = � ◦ (P−1 ◦ ∗) ◦ �, not merely τ ∝
� ◦ (P−1 ◦ ∗) ◦ �.

Note that the relation 
2 = ρk ∈ Bk reflects the k-periodicity of the maps (27) and
(31).

Our proof of the formula τ = � ◦ (P−1 ◦ ∗) ◦ � uses a well-known relationship
between the Hodge star map ∗: ∧a

(V ) → ∧k−a
(V ) and the ∩ operation from

Definition 7.1. First, we extend ∩ bilinearly to a map
∧a

(V ) ⊗ ∧k−a+1
(V ) → V .

Then ∗ interchanges the exterior product for the∩ operation, i.e. ∗(vw) = ∗(v)∩∗(w)

for tensors v ∈ ∧a
(V ), w ∈ ∧k−a−1

(V ) (cf., for example, [3, Theorem 6.3]).

Proof The window notation for the map � ◦ P ◦ � is

[vk , vk−1vk∩vk+1 · · · v2k−1, vk−2vk−1vk∩vk+1 · · · v2k−2, · · · , v2 · · · vk∩vk+1vk+2, vk+1].
(39)

To evaluate the half-twist braid f
, we break the computation into steps, by first
evaluating σk−1 · · · σ1, then evaluating σk−2 · · · σ1, and so on, ending with σ1. In
the proof of Lemma 5.4, we we wrote down (16) the window notation for each of
these compositions σi · · · σ1 (in the case k = 5). Continuing with the case k = 5
for concreteness, the arguments in the proof of Lemma 5.4 established that a1 ∈
span{v1, v2} ∩ span{v3, v4, v5, v6}, b1 ∈ span{v1, v2, v3} ∩ span{v4, v5, v6}, and c1 ∈
span{v1, v2, v3, v4} ∩ span{v5, v6}, where a1, b1, c1 are the vectors from (16). Thus
a1 differs from the vector v1v2 ∩ v3v4v5v6 by a scalar multiple, and we claim that
this scalar multiple is a ratio of two frozen variables. Indeed, from the definition of
∩ one has v2(v1v2 ∩ v3v4v5v6)v3v4v5 = ω∗(v1 · · · v5)v2 · · · v6. On the other hand,
v2a1v3v4v5 = v1 · · · v5. So a1 = 1

ω∗(v2···v6) v1v2 ∩ v3 · · · v6 as claimed. By a similar
style of argument, one see that b1 agrees with v1v2v3 ∩ v4v5v6 up to a frozen Laurent
monomial, and likewise for c1 and v1v2v3v4 ∩ v5v6. Now we plug each of these
simplifications into the corresponding window notation from (16), while dropping
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frozen monomial factors, to see that f
 is proportional to a map with window notation

[v1, . . . , v5] σ4σ3σ2σ1�→ [v2, v3, v4, v5, v6] σ3σ2σ1�→ [v3, v4, v5, v2v3v4v5 ∩ v6v7, v6]
σ2σ1�→ [v4, v5, v3v4v5 ∩ v6v7v8, v2v3v4v5 ∩ v6v7, v6]
σ1�→ [v5, v4v5 ∩ v6v7v7v9, v3v4v5 ∩ v6v7v8, v2v3v4v5 ∩ v6v7, v6].

Comparing with (39) establishes the claim when k = 5. The general argument is
similar.

As for the statement about the twist: the composition � ◦ P−1 ◦ ∗ ◦ � has window
notation

[∗(vn−k+2 · · · vn), ∗
(

vn−k+3 · · · vn
) ∩ ∗(v1), . . . , ∗(vn) ∩ ∗(v1 · · · vk−2), ∗(v1 · · · vk−1)]

(40)
Recalling that ∗ interchanges the exterior product and ∩, one simplifies
∗(vn−k+3 · · · vn)∩∗(v1) = ∗(vn−k+3 · · · vnv1), and so on. The i th term in the window
notation becomes ∗(vi−k+1 · · · vi−1), which agrees with the definition [37, Definition
2.1] of the (left) Marsh-Scott twist. ��

8.2 Conjectures

To treat the cases d = k and d < k uniformly, we set G ′ = B̂Âd−1
when d < k

and G ′ = Bk when d = k. In either case, we have a group homomorphism G ′ →
G+(Gr(k, n)). In the latter case d = k, we use the symbol ρ for the braid σk−1 · · · σ1 ∈
Bk , remembering that this braid acts by the cyclic shift in G+.

Conjecture 8.2 The orientation-preserving cluster modular group G+(˜Gr(k, n)) is
generated by the twist map, the cyclic shift, and the Artin generators σ1, . . . , σd−1.
For fixed k and n >> k, the kernel of the map G ′ → G+(Gr(k, n)) is generated by
ρn.

The hypothesis n >> k is necessary, because we are aware of extra elements in the
kernel of the map G ′ → G+(Gr(k, 2k)) (see the next section). The conjecture is fairly
optimistic, because our only evidence is that it is compatible with what is known for
the finite type Grassmannians (cf. Remark 8.3), and with what we prove for the other
finite mutation type Grassmannians Gr(3, 9) and Gr(4, 8) in Sect. 9. In the case that
d = gcd(k, n) = 1, then no Artin generators are defined, and the conjecture says that
G+(Gr(k, n)) is a finite cyclic group generated by the twist. The conjecture could be
disproved in these cases by finding an element of the cluster modular group that is not
a power of the twist.

When k = 2, one has τ = ρ−1. When k > 2, we expect that the twist is not
proportional to any element of the extended affine braid group.

Remark 8.3 (Groups for finite type Grassmannians) In [2], the authors computed the
cluster modular groups for acyclic cluster algebras, and in particular for all finite or
affine Dynkin types. The Grassmannians Gr(2, n), which have cluster type An−3,
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satisfy G+(Gr(2, n)) ∼= Z/nZ. The cluster structures on Gr(3, 7),FG(3, 5), and
Gr(3, 8) have finite Dynkin types E6, E7, E8. One has G+(Gr(3, 7)) ∼= Z/14Z,
G+(FG(3, 5)) ∼= Z/10Z, and G(Gr(3, 8)) ∼= Z/16Z, with generator the Donaldson-
Thomas transformation in each case. The only other finite type Grassmannian or
Fock–Goncharov space is C[Gr(3, 6)] ∼ C[FG(3, 4)] which has Dynkin type D4. In
this case G+(3, 6) ∼= S3 × Z/4Z is larger than the group 〈ρ, τ 〉 ∼= Z3 × Z4, with the
extra elements coming from braids.

8.3 The case n = 2k

We explain why we the hypothesis n >> k is needed in Conjecture 8.2.

Proposition 8.4 The pullback of the composition σ1 · · · σ 2
k−1 · · · σ1 is proportional to

the identity map on C[˜Gr◦(k, 2k)].
Remark 8.5 The quotient Bk/〈σ1 · · · σ 2

k−1 · · · σ1〉 is the spherical braid group, defined
as the fundamental group π1(Conf(S2, k)) of the configuration space of k unlabeled
points on the 2-sphere. Its center Z(π1(Conf(S2, k))) is generated by the image of
the full-twist 
2 ∈ Bk . This element 
 has order 4 in π1(Conf(S2, k)), so that
Z(π1(Conf(S2, k))) ∼= Z/2Z. The quotient of the spherical braid group by this center
is the mapping class group MCG(S2, k) of a sphere with k punctures. We add to Con-
jecture 8.2 by conjecturing that G+(Gr(k, 2k))/Z(G+(Gr(k, 2k))) ∼= MCG(S2, k),
i.e. that the relation σ1 · · · σ 2

k−1 · · · σ1 is the only surprising relation in the cluster
modular group. We speculate that the assumption n >> k in Conjecture 8.2 can be
replaced by n ≥ 3k.

Remark 8.6 The relation σ1 · · · σ 2
k−1 · · · σ1 ∝ id ∈ C[˜Gr(k, 2k)] is exotic in a sense

we explain now. Recall the (right) torus action (V n)◦ � (C∗)n by rescaling the vi ’s.
Suppose that f and g are a pair of regular maps on (V n)◦. Then the typical explanation
for the statement that f ∗ ∝ g∗ as maps on ˜Gr

◦
(k, n) is to observe that each of the

coordinate functions of f and g agree up tomultiplication by a scalar function, and this
scalar function is a Laurent monomial in the frozens. This was how we observed the
proportionality statements in Lemma 5.4 and Proposition 8.1. This is simply not true
for the present relation: σ1 · · · σ 2

k−1 · · · σ1 is not the identitymap on (V 2k)◦/(C∗)2k , but
it becomes the identity map after quotienting by the left SL(V ) action. For an explicit

calculation, take the 4 × 8 matrix M =

⎛

⎜

⎜

⎜

⎝

1 0 0 0 −1 −3 − 19
2 − 151

8

0 1 0 0 1 2 5 19
2

0 0 1 0 −2 −2 −2 −3

0 0 0 1 3 2 1 1,

⎞

⎟

⎟

⎟

⎠

for whom

σ1σ2σ
2
3 σ2σ1(M) =

⎛

⎜

⎜

⎜

⎜

⎝

−1 − 11
4 −3 − 7

4 −1 0 0 0

1 7
4 3 7

4 0 −2 −5 − 19
2

−2 − 11
2 −7 − 7

2 0 2 2 3

3 33
4 9 17

4 0 −2 −1 −1.

⎞

⎟

⎟

⎟

⎟

⎠

(we omit the calculation).

All frozen Plücker coordinates of M , and hence of σ1σ2σ
2
3 σ2σ1(M), equal one. All
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Plücker coordinates of these two matrices agree (in agreement with Proposition 8.4).
On the other hand, these matrices clearly are different elements of (V ◦)8/(C∗)8. We
expect that relations between Artin generators of this sort can only happen for small
n.

Proof of Proposition 8.4 To show that σ1 · · · σ 2
k−1 · · · σ1 acts trivially up to frozens, by

Lemma 5.4 we can equivalently show that σ1 ◦ · · · ◦ σk−1 is proportional to ρ−1.
By similar calculations as in Lemma 5.4 and Proposition 8.1, one sees that σ1 ◦

· · · ◦ σk−1 has window notation

∝ [vk, v1vk ∩ vk+1 · · · v2k−1, v2vk ∩ vk+1 · · · v2k−1, . . . , vk−1vk ∩ vk+1 · · · v2k−1].
(41)

These two windows do not resemble the windows for ρ−1. To show these two maps
are proportional when acting on ˜Gr(k, 2k), we evaluate both on the Ldiagram cluster
C L(6). For each non-frozen Plücker coordinate 
S ∈ C L, we explicitly verify (σ1 ◦
· · · ◦ σk−1)

∗(
S) ∝ ρ−1(
S) using the window notation (41). This establishes the
claim because a quasi-automorphism is determined by where it sends a cluster. The
reader may wish to check our calculations in Gr(4, 8) (cf. Fig. 1).

Let S = [1, a] ∪ [b + 1, b + k − a)] be given. We want to prove that if we
take the wedge of the first a vectors in (41), and then take the wedge of the vec-
tors in locations b + 1, . . . , b + k − a, we obtain an element of P times the tensor
v1 · · · va−1vb · · · vb+k−a−1v2k . Since 1 ∈ S, the vector vk is certainly in our outcome.
In the presence of this vector, the defining property of ∩ (28) allows us to simplify
vk(vivk∩vk+1 · · · v2k−1) as vivk times a frozen variable, andwe ignore this frozen vari-
able. Thus, we can summarize the exterior product of the vectors in columns S∩[1, k]
of (41) as follows: 1 ∈ S becomes k ∈ (σ1 ◦ · · · ◦ σk−1)

∗(
S), and i ∈ S ∩ [2, k]
becomes i−1 ∈ (σ1◦· · ·◦σk−1)

∗(
S). Since
S is non-frozen, S\[1, k] is nonempty.
There are two cases, either b ≤ k (thus k + 1 ∈ S) or b > k (thus k + 1 /∈ S). The
first case is easier: applying the defining property of ∩ again on this second window,
k + 1 ∈ S becomes 2k ∈ (σ1 ◦ · · · ◦ σk−1)

∗(
S) and i ∈ S ∩ [k + 2, 2k] becomes
i − 1 ∈ (σ1 ◦ · · · ◦ σk−1)

∗(
S). Altogether, the union of the calculations in the two
windows shows that (σ1 ◦ · · · ◦ σk−1)

∗(
S) ∝ ρ−1(
S) in this first case.
The second case is quite subtle. The wedge of the a vectors in the first window

produces the tensor v = vkv1 · · · va−1. We denote by w ∈ ∧k−a
(V ) the wedge of the

vectors in locations b + 1, . . . , b + k − a of (the second window of) (41). We denote
by ui = viv2k ∩ v1 · · · vk−1 the vector in the i + 1th column.

Each such ui can be expressed as a linear combination of the vectors v1, . . . , vk−1,
and consequently we can simplify

vw = ( coefficient of va · · · vk−1 in w) · v1 · · · vk ∈
k

∧

(V )

= ( coefficient of v2kv1 · · · vk−1 in v2kv1 · · · va−1w) · v1 · · · vk
Both of the tensors v2kv1 · · · vk−1 and v2kv1 · · · va−1w are in the top exterior power
∧k

(V ), so the coefficient in the second line above is just the scalar multiple relating
them. Using the defining property of∩, we can simplify v2kui = ω∗(v2kv1 · · · vk−1)vi
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which is a frozen variable times vi . Ignoring this frozen variable factor and repeat-
ing this simplification, we can replace each ui in the tensor by its corresponding
vi , which has the effect of performing ρ−1 on the corresponding column. When
the dust clears, the tensor vw above factors as a product of frozen variables times
ω∗(ρ−1(v1, . . . , v2k)) times the tensor v1 · · · vk . Applying ω∗ to this equality, the
latter tensor becomes a frozen variable, and the result follows. ��
Remark 8.7 The Grassmannians Gr(k, 2k) bear a cluster automorphism induced by
the complementation map on Plücker coordinates. By Conjecture 8.2, this element
should be expressible as a composition of our conjectural generators. We calculated
that the complementation map is proportional to the composition θ ◦ τ ◦ σ1 ◦ρ−2. We
omit the details.

9 Webs and the Fomin–Pylyavskyy conjectures

Fomin and Pylyavskyy [18,19] proposed a description of the cluster combinatorics for
C[˜Gr(3, n)] (and in fact, for a wider class of cluster algebras associated with algebras
of SL3 invariants) in terms of Kuperberg’s basis of non-elliptic webs. We review
this combinatorics, and related versions for FG(3, r) and Gr(4, n), in the following
sections.

9.1 Fomin–Pylyavskyy conjectures

Definition 9.1 Let D be a disk with n marked points 1, . . . , n labeled clockwise on
its boundary. A tensor diagram is a finite bipartite graph drawn in D, with a fixed
bipartition of its vertex set into black and white color sets, subject to the following
additional requirements:

• the boundary vertices are in the vertex set and are colored black,
• the remaining interior vertices are in the interior of the disk and are trivalent.

Such a tensor diagram is considered up to isotopy of the disk fixing the boundary.
The edges in a tensor diagram are allowed to intersect transversely. We emphasize that
the boundary vertices can have arbitrary valence, including valence zero (Fig. 4).

Every tensor diagram T with n boundary vertices defines an invariant [T ] ∈
C[˜Gr(3, n)]. We will define this invariant in a somewhat indirect way via the
Gr(3, n) skein algebra, and then explain how the skein algebra can be identified with
C[˜Gr(3, n)]. The validity of our description is based on [18,34].

Definition 9.2 (Skein algebra) Consider the space of C-linear combinations of tensor
diagrams for ˜Gr(3, n). The Gr(3, n) skein algebra is the quotient of this algebra by
the skein relations in Fig. 5. If T is a tensor diagram with n boundary vertices, the
invariant [T ] associated to T is its image in the Gr(3, n) skein algebra. If T and T ′ are
tensor diagrams, then their product [T ][T ′] in the skein algebra is the tensor diagram
obtained by superimposing the two tensor diagrams (one on top of the other).

Each skein relation is a local diagrammatic rule: if one locates a local fragment in
a tensor diagram that looks like the left hand side of a skein relation, one can replace
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Fig. 4 A tensor diagram for
Gr(3, 9) 1

2

3

4

5

6
7

8

9

crossing removal
= +

square removal
= +

bigon removal
= −2 ×

loop removal
= 3

degeneracy

= 0

Fig. 5 Skein relations amongst SL3 web invariants. The degeneracy relation only applies at boundary
vertices

it with the corresponding fragment on the right hand side. If the right hand side is a
sum of two fragments, then applying the skein relation produces two tensor diagrams,
one in which the first fragment is used and another in which the second fragment is
used. We illustrate the use of skein relations in Example 9.4.

There will often be several (inisotopic) ways of superimposing two tensor diagrams
as in Definition 9.2, but it is a fact that the resulting element of the skein algebra is
well-defined (this is a consequence of Kuperberg’s theorem below, but there are more
intrinsic explanations).

We define a map from the skein algebra to C[Gr(3, n)] by mapping the tripod
joining boundary vertices i, j, k to the Plücker coordinate 
i jk ∈ C[Gr(3, n)]. One
can deduce the skein relations from the Plücker relations in C[Gr(3, n)], and vice
versa, so this map identifies the skein algebra with the coordinate ring (note the map
is surjective since Plücker coordinates generate the coordinate ring).
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= +

1
2

3

4
5

v1

v2

v3

v4

v5

1
2

3

4
5

Fig. 6 An application of the crossing removal skein relation

Definition 9.3 (Web invariants) Aweb is a planar tensor diagram.Aweb is non-elliptic
if it contains no 2-cycles based at a boundary vertex, and if all of its faces formed by
interior vertices are bounded by at least six sides. A web invariant is an element
[W ] ∈ C[˜Gr(3, n)] for a non-elliptic web W . Two web invariants are compatible if
their product is again a web invariant. A web invariant is indecomposable if it does
not factor as a product of web invariants.

By repeatedly applying the skein relations, it is easy to see that web invariants span
the skein algebra. Kuperberg [34] established that in fact, the web invariants are a
basis for C[˜Gr(3, n)]. In particular, any web invariant is equal to [W ] for a unique
non-elliptic web, so we often identify non-elliptic webs with their invariants.

Example 9.4 Consider the Plücker coordinates 
124,
135 ∈ C[˜Gr(3, 5)]. We rep-
resent their product 
124
135 as a tensor diagram by superimposing two tripods.
Figure 6 expands this product as a sum of non-elliptic webs via the crossing removal
relation.

Remark 9.5 The invariant [T ] associated to a tensor diagram T has an intrinsic def-
inition as a repeated contraction of certain basic SL3-invariant tensors, namely the
volume form V⊗3 → C, the dual form (V ∗)⊗3 → C, and the pairing V ⊗ V ∗ → C

(cf. [18, Section 4]). These correspond to an internal white vertex, an internal black
vertex, and an edge connecting a black vertex to a white vertex, respectively. One
can also give an explicit expression [18, Equation (4.1)] for the invariant [T ] as an
SL(V )-invariant polynomial in the coordinates on V n .

Fomin and Pylyavskyy conjectured that every cluster variable in C[˜Gr(3, n)] is a
web invariant. They also proposed the following combinatorial procedure for deter-
mining which web invariants are cluster variables.

Definition 9.6 (Arborization) The arborization algorithm T �→ Arb(T ) transforms
a tensor diagram T by repeatedly applying arborization steps, each of which is a a
diagrammatic move given in Fig. 7, until such steps are no longer possible. To perform
such a step, locate two rooted binary trees T ′ and T ′′ in T , which are isomorphic rooted
binary trees connecting to the same set of boundary vertices, andwhose roots are joined
by a path of length 4 (cf. Fig. 7). The arborization step removes this path as indicated
by Fig. 7. As a degenerate case of this, we allow the case that T ′ and T ′′ are the same
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Fig. 7 An arborization step indicated schematically. The tensor diagram T has two copies, T ′ and T ′′, of the
same binary tree, connecting to the boundary in the same way. These trees are joined by a path of length 4.
The dashed lines indicate how T ′ and T ′′ are connected to the rest of T . The arborization step removes the
path of length 4 and connects T ′ and T ′′ to the rest of the diagram as indicated on the right-hand side. A
similar arborization step holds with all of the colors reversed

boundary vertex, in which case the path of length 4 is a 4-cycle based at a boundary
vertex. A web invariant [W ] is arborizable if Arb(W ) has no interior cycles.

The process of applying several arborization steps is confluent [18, Theorem 10.5],
meaning the resulting tensor diagram Arb(T ) does not depend on the choice of
arborization steps that are used. Each arborization step does not change the value
of the invariant defined by T , and consequently [Arb(T )] = [T ]. This follows by
applying the crossing removal skein relation to the right hand side of Fig. 7—one of
the two resulting terms vanishes by the degeneracy skein relation.

Example 9.7 For a planar tensor diagram, the arborization algorithm can only start if
there is a four-cycle based at a boundary vertex. Since the webW in Fig. 4 has no such
4-cycles, it is equal to its own arborization (the same is true for any Plücker coordinate).
This web is indecomposable, but it is not arborizable since it has an interior cycle.
On the other hand, every Plücker coordinate is an example of an indecomposable
arborizable web.

The third web in Fig. 6 is not indecomposable. By applying an arborization step to
the 4-cycle at the boundary, one sees that its arborized form is a union of two tripods.
Thus, Fig. 6 expresses the three-term Plücker relation 
124
135 = 
123
145 +

134
125 in the language of tensor diagrams.

The following conjecture summarizes the (predicted) cluster combinatorics of
C[˜Gr(3, n)] (cf. [18, Sections 9 and 10]):

Conjecture 9.8 (Fomin–Pylyavskyy) In the cluster algebra C[˜Gr(3, n)]:
(1) The set of cluster (and frozen) variables coincides with the set of indecomposable

arborizable web invariants.
(2) Two cluster variables lie in the same cluster if and only if they are compatible web

invariants.
(3) If n ≥ 9, there are infinitely many indecomposable non-arborizable web invari-

ants.

Conjecture 9.8 has been verified in the finite type examples, i.e. for n < 9.

Remark 9.9 The third part of Conjecture 9.8 is relevant in light of the expected link
between cluster algebras and canonical bases. It has long been expected that there is a
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naturally defined linear basis for any cluster algebra that contains the cluster monomi-
als, cf. recent breakthroughs in [9,28,31]. The non-arborizable webs in Conjecture 9.8
are not expected to be cluster monomials. These webs should play a distinguished role
in comparing the different versions of canonical bases for C[˜Gr(3, n)].

The following theorem is one of our main applications of the braid group action.

Theorem 9.10 In the cluster algebra C[˜Gr(3, 9)]:
(1) Every cluster variable is an indecomposable arborizable web invariant.
(2) Every cluster monomial is a web invariant (thus, cluster variables in any cluster

are pairwise compatible).
(3) There are infinitely many indecomposable non-arborizable web invariants.

Weemphasize thatwe do not prove the reverse implications of Fomin–Pylyavskyy’s
conjectures, namely that every indecomposable arborizable non-elliptic web invariant
is a cluster variable, and also, that two cluster variables are in a cluster whenever they
are compatible web invariants.

Our proof of part (3) in Theorem 9.10 establishes that the “single cycle web” in
Fig. 4 has an infinite orbit with respect to the dot action of B3, and every web in this
orbit is indecomposable and non-arborizable. We conjecture that these are the only
indecomposable non-arborizable webs.

Our second main theorem is a presentation for the cluster modular group. The four
generators are the cyclic shiftρ, the cyclic shift P on FG(3, 6) brought over toGr(3, 9),
the twist map τ , and the reflection θ .

Theorem 9.11 The cluster modular group G(Gr(3, 9)) has the presentation

G = 〈ρ, P, τ, θ : ρ3 = P2 = ι−2, ρ9 = 1, τρ = ρτ, τ P = Pτ

θ2 = 1, θρθ = ρ−1, θ Pθ = P−1, θτθ = τ−1〉. (42)

We obtain an isomorphism G+/Z(G+) ∼= PSL2(Z).

That is, besides the order of the cyclic shift, the statement that τ is central, and
the description of how conjugation by θ permutes the generators, the only interesting
relation is that ρ3 = P2 = τ−2. The proofs of Theorems 9.10 and 9.11 are in Sect. 10.

9.2 Webs for FG(3, r)

To prove Theorems 9.10 and 9.11, we will move back and forth between the spaces
Gr(3, 9) and FG(3, 6). Following [19, Section 12], it is convenient to have a notion
of tensor diagrams, webs, and arborization, for the Fock–Goncharov cluster algebras.
Our proof of Theorem 9.10 establishes an analogous statement for FG(3, 6).

A bivariant tensor diagram is a tensor diagram drawn in the disk with r “colorless”
boundary vertices, subject to the same constraints as before (interior trivalent and
bipartite). Each half-edge connecting to a boundary vertex is decorated either black
or white, and the colorless boundary vertex is considered black or white accordingly
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boundary 3-cycles =

degeneracy
= 0

Fig. 8 Additional skein relations for bivariant tensor diagrams. Both take place at a black and white vertex
pair.

in the definition of bipartiteness when it is being used in such a half-edge. In pictures,
we draw the colorless boundary vertices as a black and white vertex pair glued to each
other, but the cyclic orientation of the black and white part of a colorless boundary
vertex is not relevant. The FG(3, r) skein algebra is the space spanned by bivariant
tensor diagrams, subject to the skein relations inFig. 5 and the additional skein relations
in Fig. 8. The bi-invariant [T ] associated to T is the image of T in the skein algebra.

A non-elliptic biweb is defined as before, with the additional requirement that there
are no loops or 3-cycles based at boundary vertices. A biweb invariant is the image
of a non-elliptic biweb in the skein algebra. Kuperberg’s theorem still holds: biweb
invariants are a basis for the skein algebra. The arborization algorithm for bivariant
tensor diagrams allows for the steps in Fig. 7, as well as the boundary 3-cycle removal
step.

Through a more intrinsic definition, one can see that any bivariant tensor diagram
T defines a function [T ] on a configuration of affine flags (F1,•, . . . , Fr ,•) (cf. Exam-
ple 9.12). The i th affine flag Fi,• = (Fi,(1), Fi,(2)) corresponds to the i th boundary
vertex. The black part of the bi-colored vertex corresponds to the vector Fi,(1), and the
white part of the vertex corresponds to Fi,(2) ∈ ∧2

(V ). We have this more intrinsic
definition in mind, but it will not play a very important role in our proofs.

Example 9.12 The Fock–Goncharov coordinates (24) for C(FG(3, r)) correspond to
either 1) bipods, i.e. an arc connecting a black part of one boundary vertex to the
white part of another boundary vertex, or 2) tripods connecting the black parts of three
boundary vertices. The duality map ∗ acts on bivariant tensor diagrams by globally
swapping the colors black and white. The frozen variables are the 2r bipods joining
consecutive boundary vertices.

9.3 Webs for SL4

By a similar approach to the one we carry out in detail for Gr(3, 9), the braid group
action allows us to give a description of all cluster variables for Gr(4, 8). We give a
very quick introduction to tensor diagrams in this case.

Tensor diagrams for Gr(4, n) are drawn in a disk with n black boundary vertices.
Unlike tensor diagrams for Gr(3, n), each edge is labeled with multiplicity (either 1
or 2), so that the sum of multiplicities around every interior vertex is 4. All boundary
edges have multiplicity 1. The tensor diagram should be bipartite, with every interior
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vertex either bivalent or trivalent. We draw multiplicity 2 edges as “double bonds,”
and multiplicity 1 edges as ordinary.

As before, there is a set of skein relations amongst such tensor diagrams for Gr(4, n)

(the crossing removal [8, Corollary 6.2.3] together with the relations amongst planar
diagrams [33, Chapter 4]), and there is a way of interpreting each such tensor diagram
T as an invariant [T ] ∈ C[˜Gr(4, 8)]. We note that, at least in the most naive way,
the invariant [T ] ∈ C[˜Gr(4, n)] represented by a tensor diagram T is only well-
defined up to a sign. For brevity’s sake, we will forgo a careful discussion of these
signs, referring the reader to [8] or [23] for some possible choices of conventions.
We illustrate the smallest non-Plücker SL4 webs (both of which are cluster variables),
called “octapods”:

(43)

Using the SL4 skein relations, one can write any element of the skein algebra as
a linear combination of planar diagrams without 0-cycles or 2-cycles (once we have
removed 2-cycles, our double bond drawings are unambiguous). We call these latter
planar diagrams web invariants. The key difference between Gr(3, n) and Gr(4, n)

is that web invariants are merely a spanning set. There is no convenient analogue of
the notion of non-elliptic, thus no known natural way of identifying a smaller subset
of basis web invariants. We have the following relationship between cluster variables
and SL4 webs:

Theorem 9.13 In the cluster algebra C[˜Gr(4, 8)]:
• Every cluster variable x is proportional to a web invariant [W ] that can also be
expressed as [W ] = [T ], where T is a tensor diagram T with no interior cycles.

• Up to the action of the cluster modular group, every cluster variable is either a
Plücker coordinate or an octapod (cf. (43)).

We call T as above the tree form of the cluster variable. Note that we believe that
in fact, every cluster variable is (not merely is proportional to) a web invariant with a
tree form, but we do not carefully prove this. The property of having a tree form is an
analogue of the condition of arborizability for SL3 webs. The following diagrammatic
move is the analogue of Fig. 7 for Gr(4, 8) webs:

=
. (44)

More precisely, the move (44) is the analogue of removing a 4-cycle at the boundary
of an SL3 web, and the general arborization move is one in which the black boundary
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vertex in (44) is replaced by two isomorphic copies of the same tree connecting to the
boundary. It is a consequence of our proof of Theorem 9.13 that every cluster variable
x ∈ C[˜Gr(4, 8)] has a planar form x = [W ] that can be converted to tree form by
repeated applications of this arborization move. However, we are not bold enough
to conjecture the analogue of (1) from Conjecture 9.8 holds, i.e. a web invariant in
C[˜Gr(4, n)] is a cluster variable if and only if it can be transformed into tree form by
repeating (44).

We have the following presentation for the cluster modular group.

Theorem 9.14 The cluster modular group G(Gr(4, 8)) has the presentation

G = 〈σ1, σ2, σ3, τ, θ : σ1σ2σ1 = σ2σ1σ2, σ2σ3σ2 = σ3σ2σ3, σ1σ3 = σ3σ1,

σ1σ2σ
2
3 σ2σ1 = (σ3σ2σ1)

8 = 1, τσi = σiτ for i = 1, . . . , 3,

θ2 = 1, θτθ = τ−1, θσiθ = σ−1
4−i for i = 1, . . . , 3.

(45)
Likewise, we obtain an isomorphism G+/Z(G+) ∼= MCG(S2, 4).

Besides the order of the cyclic shift, the centrality of τ , and the description of
conjugation by θ , the only interesting relations are the braid relations and the relation
σ1σ2σ

2
3 σ2σ1 = 1.

Remark 9.15 (Groups in finite mutation type) The (skew-symmetric) quivers of finite
mutation type and of rank ≥ 3 were classified in [13]. Besides the quiver mutation
classes of surface type [20], for whom the cluster modular group is closely related
to the mapping class group of the surface [7, Proposition 8.5], there are 11 more
quiver mutation classes of finite mutation type. Six of these extra 11 types are finite
or affine type, with the groups computed in [2]. Theorems 9.11 and 9.14 address
two of the remaining five cases—namely the extended affine types E (1,1)

8 and E (1,1)
7

respectively. This leaves three remaining finite mutation types—E (1,1)
6 and X6, X7

[10]. It remains an open problem to compute the cluster modular group, and to give
a combinatorial description of the cluster variables and clusters, in these three cases.
Significant progress has been made for E (1,1)

6 [4] and for X6, X7 [30]. It would also be
interesting to answer these questions for the skew-symmetrizable examples of finite
mutation type (cf. [14]).

10 Proofs for finite mutation type

Our goal in this section is to describe all cluster variables in Gr(3, 9) and Gr(4, 8),
and also to give a presentation for both cluster modular groups. We begin with some
generalities and a summary of the computer verifications underlying our proofs.

Let f : A → A be a quasi-automorphism of a cluster algebra. If x ∈ A is a cluster
variable, then f (x) is proportional to a cluster variable x ∈ A. We henceforth use the
notation

f · x = x (46)
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to summarize the situation f (x) ∝ x and x is a cluster variable, and refer to this as the
dot action of f on cluster variables. For SL3 webs or biwebs,we use the samedot action
notation f · [W ] = [W ′] to summarize the situation that W ,W ′ are indecomposable
web invariants and f ([W ]) = M f ([W ′]) for a monomial M in the frozen variables.

The following lemma appears in [16, Appendix 1]. We rewrite a proof in our own
language because the construction underlies the proof of Theorem 9.11.

Lemma 10.1 If Q0 is a quiver (without frozen vertices) of finite mutation type, then
the cluster modular group for the cluster algebra A(Q0) is finitely generated.

Proof Let � be the graph whose vertices are the (isomorphism classes of) quivers
mutation equivalent to Q0: two vertices Q1, Q2 ∈ � are connected by an edge if

μk(Q1) ∼= Q2 for some direction k. (47)

Note that whether or not (47) holds for some k is symmetric in Q1, Q2, but the number
of such k’s is not always symmetric.

Now consider the fundamental group of � based at the quiver Q0. Since � is a
finite graph, the fundamental group is finitely generated by generators g1, . . . , g�. For
simplicity, we take a list of generators that is closed under taking inverses. For each
such generating cycle gi , lift it in all possible ways to a sequence of mutations in
A(Q0). That is, for each edge Q1

e−→ Q2 in gi , replace e by every mutation μk as in
(47). We obtain a finite list of mutation sequences, h1, . . . , hL , each of which returns
the quiver Q0 to itself. Some of these hi could represent trivial elements of the cluster
modular group (for an example: π1(�) will contain 4-cycles arising from commuting
mutations μi ◦ μ j = μ j ◦ μi ). Furthermore, different hi ’s could represent the same
element of the cluster modular group.

Now pick a choice of initial seed �0 for A(Q0), whose underlying quiver is Q0.
Let g be an element of the cluster modular group forA(Q0). Then g sends�0 to some
new seed �g in A(Q0). There exists a sequence μ of mutations from �0 to �g , and
this sequence descends to a cycle in�. This cycle in� can be expressed as a product of
the generators g1, . . . , g�, hence μ can be written as a composition of the h1, . . . , h�.
Thus, the elements of the cluster modular group coming from h1, . . . , h� generate G.

��
The following lemma isolates the computer verifications underlying our results.

The relevant software is included as an ancillary file with the arXiv version of this
paper [22]. For a cluster algebra of finite mutation type, a fundamental domain is a
specific choice of seeds exhausting the finitely many mutable subquivers.

Lemma 10.2 The following facts were checked on a computer:

• In both casesGr(3, 9) andGr(4, 8), the cluster modular group is generated by the
Artin generators σi together with the reflection symmetry θ and the twist τ .

• On a fundamental domain forGr(3, 9), every cluster monomial is a web invariant,
and every cluster variable is indecomposable and arborizable.

• On a fundamental domain for Gr(4, 8), every cluster variable is an SL4 web that
can also be written in tree form.
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Proof To check the statement about generators for the cluster modular group, we
implement the argument in Lemma 10.1. For Gr(3, 9) there are 5739 isomorphism
classes of quivers, and the quiver exchange graph � from Lemma 10.1 has 22007
independent cycles. For Gr(4, 8) there are 506 isomorphism classes of quivers, and
the quiver exchange graph � from Lemma 10.1 has 1506 independent cycles. In either
case, for each cycle C in �, we perform the sequence of mutations described by C
starting from an initial seed �1, and check that this sequence of mutations can be
realized as a composition of the Artin generators σi and the twist τ . Then we do the
same for each two-cycle.

Let us move on to the statements about cluster variables and clusters on a funda-
mental domain. In Gr(3, 9), a breadth-first search produces a choice of fundamental
domain of seeds�1, . . . , �5739, one for each quiver isomorphism class. We computed
the cluster variables in these seeds as webs using the program [22]. To do this, we
encoded webs of small degree (e.g. Plückers, hexapods, and so on) as explicit polyno-
mials in the coordinates on V 9, so that each exchange relation can be verified directly.
We wrote a compatibility tester for webs of small degree. To perform a mutation, we
eliminate all webs of the correct degree that are not compatible with the current cluster,
and check that the corresponding exchange relation holds.

All of the SL3 webs that show up in�1, . . . , �5739 are arborizable. By construction,
any two webs in a given cluster �i are pairwise compatible. For arborizable webs of
small degree, it is not hard to convince oneself that if all webs in �i are pairwise
compatible, then any monomial in �i is again a non-elliptic web.

The computation for Gr(4, 8) is similar, but weaker because we did not write a
compatibility tester for SL4 webs (it is tedious to make sure one has identified all web
invariants in a given degree because they are a spanning set rather than a basis; as a
consequence, it is tedious to show that a given element in the skein algebra is not a web
invariant). We checked that every SL4 web in the fundamental domain has a tree form,
but we did not check that webs in a shared cluster are always pairwise compatible.
We note that our chosen fundamental domain contains a handful of cluster variables
that are neither Plücker coordinates nor octapods, but we checked by hand that each
of these could be moved to a Plücker or octapod via the braid group. ��

10.1 Proofs for Gr(3,9)

We now set out to prove Theorems 9.10 and 9.11. By a fork in a (bivariant) tensor
diagram T we will mean an interior vertex v of T that is adjacent to consecutive
boundary vertices i and i + 1 (considered modulo n), both of which necessarily
have the same color. We identify this fork with the subgraph of T connecting the
vertex v to the two boundary vertices. If i, i + 1 are black boundary vertices in a
tensor diagram T for Gr(3, 9), then a fork between these vertices encodes the exterior
product vivi+1 ∈ ∧2

(V ) in the invariant [T ]. Likewise, a fork between the black parts
of boundary vertices i, i + 1 in a tensor diagram for FG(3, 6) encodes the exterior
product Fi,(1)Fi+1,(1) ∈ ∧2

(V ), whereas a fork between the white parts encodes the
vector Fi,(2) ∩ Fi+1,(2) ∈ V . These forks play an important role in our statement of
Lemma 10.5.
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Fig. 9 To evaluate �∗ on a tensor diagram [T ] ∈ C[FG(3, 4)], reattach edges incident to Fi,(a) in T by the
fragment labeled by Fia in the first figure, for i = 1, . . . , 4 and a = 1, 2. The result is a tensor diagram in
C[Gr(3, 6)]. To evaluate �∗ on a tensor diagram [T ] ∈ C[Gr(3, 6)], reattach edges incident to boundary
vertex vi in T to according to the strand labeled by vi in the second figure, for i = 1, . . . , 6

By Lemma 10.2 the group G+(FG(3, 6)) is generated by the duality map ∗∗, the
cyclic shift of affine flags P∗, and the map �∗ ◦ ρ∗ ◦ �∗, which is the cyclic shift
on Gr(3, 9) translated over to FG(3, 6). Recall that ∗ acts by swapping the colors
black and white, and P acts by rotation. Let us explain how to evaluate the third map
�∗ ◦ ρ∗ ◦ �∗ on a tensor diagram.

Since � is induced by a map from vectors to affine flags (27), evaluating �∗
corresponds to an operation on the boundary edges of the tensor diagram: the interior
edges of the tensor diagram are not affected, but boundary edges are reattached via
fragments which encode the substitution (27). The first half of Fig. 9 illustrates this
substitution for�∗ : C[FG(3, 4)] → C[˜Gr(3, 6)]. For example, since F1,• = v1, v1v2
in (27), every edge e in T that connects to the black boundary vertex F1,(1) gives
rise to an edge connecting to the first boundary vertex in �∗([T ]), while an edge
connecting to the white boundary vertex F1,(2) gives rise to a fork between the first
two boundary vertices in �∗([T ]). The diagram encoding �∗ has a similar flavor,
pictured in the second diagram of Fig. 9. For an example of how to carry out these
reattaching operations, see Example 10.4 below.

Our first main assertion is that the maps�∗ and�∗ preserve the web combinatorics
from Sect. 9, so we may translate freely between C[˜Gr(3, 3r)] and C[FG(3, 2r)].
Lemma 10.3 Let [W ] be an indecomposable biweb invariant for FG(3, 2r), not equal
to a frozen variable. Then�∗([W ]) factors as M[W ′] where M is a product of frozens
inC[˜Gr(3, 3r)], and W ′ is an indecomposable non-elliptic web invariant forGr(3, 3r)
not equal to a frozen variable. Furthermore, W ′ is arborizable if and only if W is. The
analogous statements hold with the roles of FG(3, 2r) and ˜Gr(3, 3r) reversed.

Proof Given a web invariant [W ] ∈ C[˜Gr(3, 3r)], we evaluate �∗([W ]) by plugging
in to the second diagram in Fig. 9. The resulting bivariant tensor diagram will not
necessarily be planar. However, the only crossings that are created come fromplugging
in to the fork labeled by v2 several times (or one of the rotations v2+3i of this by 3
units). For each such crossing, applying the crossing removal skein relation produces
two terms, oneofwhichvanishes by the degeneracy relation.This planarizationprocess
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adds a boundary 4-cycle to the diagram, but does not affect the interior faces (thus
preserves the condition that all such interior faces have at least six sides). Resolving
all of these crossings, we obtain a connected biweb whose invariant equals �∗([W ]).
This diagram is not necessarily non-elliptic due to the potential presence of boundary
3-cycles. However, by inspection of Fig. 9, the only possible boundary 3-cycles created
arise from plugging in forks v1v2, or plugging in forks v2v3, or rotations of vi �→ vi+3
of these by 3 units. In both instances, after applying the boundary 3-cycle relation,
the diagram factors into two pieces, one of which is a frozen variable and the other
of which remains a connected planar diagram whose interior faces have at least six
sides. After removing all such 3-cycles, the leftover diagram (with the frozen variables
ignored) is a connected non-elliptic webW ′. The removal of boundary 3-cycles did not
affect the arborizability of the web (it did not affect the interior faces). To summarize,
if W is non-elliptic, then after applying crossing and boundary 3-cycle removals,
�∗([W ]) = M[W ′] where M is a monomial in the frozens and W ′ is a connected
non-elliptic biweb invariant.

Next we consider an indecomposable biweb B ∈ C(FG(3, 2r)). We evaluate
�∗([B]) by plugging in to the first diagram in Fig. 9. As above, the resulting ten-
sor diagram might not be planar (due to crossings between the strands labeled F11
and F12, or by using the strand labeled by F12 several times, or rotations of these
crossings). However, it can be planarized by applying the crossing removal relation
and then the degeneracy relation. Again, this does not affect the interior faces. The
resulting diagram is already non-elliptic (however, it might have some boundary 4-
cycles, so it might possibly factor). To summarize, if [B] is an indecomposable biweb
invariant, then after resolving crossings, �∗([B]) = [B ′] for a web invariant B ′. If B
is not a frozen variable, then �∗([B ′]) is not a product of frozen variables (as follows
by applying �∗).

Now we can argue that if the web invariant W above is indecomposable, then so
is W ′. Since �∗ ◦ �∗(W ) = �∗(M)�∗(W ′), if W ′ factored into a product of one
or more non-frozen web invariants, then by the arguments in the second paragraph,
it would follow that �∗ ◦ �∗(W ) does too. But from the proof of Theorem 7.2,
�∗(M)�∗(W ′) = M ′W for some product of frozens M ′. We conclude that W is not
indecomposable (so our assumption that W ′ factored was false). On the other hand, if
W factors a product of non-frozenweb invariants, thenW ′ does clearly.This establishes
Lemma 10.3 for [W ] ∈ C[˜Gr(3, 3r)]; the other direction follows by applying �∗ and
using �∗ ◦ �∗ ∝ Id. ��

The first two parts of Theorem 9.10 follow immediately:

Proof of Theorem 9.10 (1) and (2) ByLemma 10.2, there are only finitelymany clusters
in C[˜Gr(3, 9)] up to the dot action of B3. The B3 action is generated by the cyclic shift
ρ and the composition (� ◦ P ◦ �)∗, and by Lemma 10.3 both of these generators
preserves the adjectives indecomposable, arborizable, and non-elliptic, when acting
by the dot action. Since every cluster variable on the fundamental domain is an inde-
composable arborizable web invariant, it follows that all cluster variables are. Since
every cluster monomial on the fundamental domain is a web invariant, it follows that
all cluster monomials are. ��
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Fig. 10 The first diagram shows how to compute �∗ρ∗�∗([B]) by reattaching a bivariant tensor dia-
gram B for FG(3, 6) to the boundary via the indicated connections. The second diagram does so for
�∗(ρ2)∗�∗([B])

Establishing the presentation Theorem 9.11 is more subtle, and for this part of the
proof we work in FG(3, 6) rather than ˜Gr(3, 9). On this side, P∗ acts by rotation,
and the interesting functions are (� ◦ ρ ◦ �)∗ and (� ◦ ρ2 ◦ �)∗. Figure 10 and
Example 10.4 shows how to evaluate these on tensor diagrams.

Example 10.4 Consider the Fock–Goncharov coordinate 
2,3,5 ∈ C[FG(3, 6)] (24).
As a biweb, 
2,3,5 is a tripod joining the black parts of boundary vertices 2, 3 and
5. We calculate (�∗ ◦ ρ∗ ◦ �∗)(
2,3,5) by creating a tripod on the strands labeled
F2,(1), F3,(1), and F5,(1) in the first diagram in Fig. 10. The result is a “hexapod”
corresponding to the function

(F1,•, . . . , F6,•) �→ ω∗ (

F3,(1)(F3,(2) ∩ F4,(2))(F5,(2) ∩ F6,(2))
) ∈ C[FG(3, 6)].

(48)
This hexapod has a boundary 3-cycle based at the third bi-colored boundary vertex
F3,•. Applying the boundary 3-cycle skein relation produces a factorization of the
right hand side of the above as ω∗ (

F3,(1)F4,(2)
)

ω∗((F3,(2) ∩ F5,(2))F6,(2)). The factor
ω∗ (

F3,(1)F4,(2)
)

is a frozen bipod, and the factor ω∗((F3,(2) ∩ F5,(2))F6,(2)) is a tripod
on the white parts of the boundary vertices 3, 5 and 6. Denoting this latter tripod by

3,5,6, the dot action is

(�∗ ◦ ρ∗ ◦ �∗) · 
2,3,5 = 
3,5,6 ∈ C[FG(3, 6)]. (49)

We call a fork in a (bivariant) tensor diagram black (resp. white) if the boundary
vertices i and i + 1 it connects to are both black (resp. white). We call the fork even
(resp. odd) if the boundary vertex i is even (resp. odd). Note that it can happen that
a fork is both even and odd, but this happens precisely when the fork is the interior
vertex of a tripod on three consecutive vertices.

Lemma 10.5 Let B be an indecomposable biweb invariant, not a frozen variable or a
tripod on three consecutive vertices. Let B ′ = �∗ρ∗�∗ · B and B ′′ = �∗(ρ2)∗�∗ · B
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be the dot actions of B under the ρ and ρ2. By Lemma 10.3, these biwebs are well-
defined. Then if B contains an odd black fork, then both of B ′ and B ′′ contain an odd
white fork. If B has an even white fork, then both of B ′, B ′′ have an even black fork.

Proof To calculate �∗ρ∗�∗([B]), we take the first diagram in Fig. 9, rotate it by one
unit, and plug it in to the second diagram. The result is the first diagram in Fig. 10.
When we plug in B to Fig. 10, as argued in Lemma 10.3, we obtain B ′ by planarizing
all the crossings that are introduced via the crossing removal skein relation, and then
removing all boundary 3-cycles to remove factor out frozen variables. If B has an
odd black fork (e.g. F1,(1)F2,(1)), then the strand labeled by F1,(1) contributes an odd
white fork. This odd black fork persists through the planarizing step and does not
contribute to a boundary 3-cycle (on the contrary, even black forks F6,(1)F1,(1) give
rise to boundary 3-cycles).

The analogous diagram for the square of the cyclic shift �∗(ρ2) ∗ �∗([B]) is also
drawn in Fig. 10. The same style of argument for the three remaining cases (an even
white fork for �∗ρ∗�∗([B]), as well as odd black forks and even white forks for
�∗(ρ2) ∗ �∗([B])) completes the proof. ��

We make use of the following variant [41] of the well-known Ping Pong Lemma.

Lemma 10.6 Let H be a groupwith nonidentity subgroups H1, H2, whose non-identity
elements are denoted by H#

1 , H#
2 respectively. Suppose that H acts on a set X having

distinct nonempty subsets X1, X2, satisfying H#
1 X1 ⊆ X2, H#

2 X2 ⊆ X1. Finally, sup-
pose |H2| ≥ 3. Then the group generated by H1, H2 inside H is naturally isomorphic
to the free product H1 ∗ H2.

Now we establish our presentation for G(Gr(3, 9)), and by the same methods, part
(3) of Theorem 9.10.

Proof of Theorem 9.11 We identify the cluster modular groups for Gr(3, 9) and
FG(3, 6) via the maps �∗ and �∗, so we can think of the cyclic shift ρ∗ of vectors
as an element of G(FG(3, 6)) and so on. We elide the notational difference between a
map and its pullback, writing P , rather than P∗, as an element of the cluster modular
group.

The main step is to study how the subgroup 〈ρ, P〉 acts on the Fock–Goncharov
coordinate
1,3,5, which is a tripod on the black part of boundary vertices 1, 3, 5. This
cluster variable is fixed by P2, so B3/Z(B3) ∼= PSL2(Z) ∼= Z/2Z∗Z/3Z is the group
that naturally acts on this orbit. We use the Ping Pong Lemma to show that this action
of PSL2(Z) is faithful.

Let X be the PSL2(Z)-orbit of 
1,3,5 with respect to the dot action. Since every
element of X is stabilized by P2 (and P2 = ρ3 commutes with ρ), X does not contain
any tripods on three consecutive vertices.

Next we define the Ping Pong sets X1, X2 ⊂ X . Let X1 consist of those biwebs
in X that have no even white forks or odd black forks. Likewise, let X2 consist of
those webs in X that have no even black forks or odd white forks. Notice that 
1,3,5
is in both X1 and X2, so these two sets are nonempty. On the other hand, these two
sets are distinct—the element ρ · 
1,3,5, which is a hexapod (F1,•, . . . , F6,•) �→
(F1,(2) ∩ F2,(2))(F3,(2) ∩ F4,(2))(F5,(2) ∩ F6,(2)), is in X1 \ X2.
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Clearly, P(X1) ⊂ X2 (in fact, P(X1) = X2). It remains to show that ρ(X2) ⊂ X1
and ρ2(X2) ⊂ X1. Indeed, let W ∈ X2 and let W ′ = ρ · W and W ′′ = ρ2 · W .
By Lemma 10.5, if W ′ had an odd black fork, then ρ2 · W ′ = W must have an odd
white fork, contradicting W ∈ X2. Repeating this argument completes the proof. By
Lemma 10.6, the group 〈ρ, P〉 acts on X as a free product of cyclic groups of orders
2 and 3.

Now let G be the group with presentation given in the statement of the theorem.
All of the relations in G are satisfied in G, so there is a homomorphism G → G.
The group generated by the twist is normal, so this homomorphism descends to a
well-defined map Aut(B3) ∼= G/〈τ 〉 → G/〈τ 〉. Here, we recall that the only outer
automorphism of B3 is the map inv : σi �→ σi

−1. We have a short exact sequence
B3/Z(B3) ↪→ Aut(B3) � 〈inv〉, and a similar short exact sequence 〈ρ, P〉 ↪→
G/〈τ 〉 → 〈θ〉. We have shown that B3/Z(B3) ∼= 〈ρ, P〉. By the five lemma it follows
that Aut(B3) ∼= G/〈τ 〉. Finally, we “unquotient” by the center. We have a composition
G � G � Aut(B3) whose kernel is generated by 〈τ 〉, and consists of 6 elements.
Thus ker(G → G) ⊂ ker(G → Aut(B3)) = 〈τ 〉. It is easy to check on a particular
cluster variable that the powers of τ are distinct elements of the cluster modular group.
Thus the kernel of G → G is trivial (i.e., the stated relations give a presentation). ��
Proof of Theorem 9.10 (3) Let B be one of the two single cycle biwebs for FG(3, 6).
That is, B is a biweb obtained by drawing a hexagon in the interior of the disk, and
connecting the six vertices of the hexagon to the six boundary vertices with colors
as demanded by bipartiteness. There are two such diagrams (rotations of each other).
This is an indecomposable non-arborizable biweb. Notice that B is stabilized by P2

(it is also stabilized by reflection and the DT transformation, so the 〈ρ, P〉-orbit is the
entire G-orbit ofW ). Let XB be the orbit of B with respect to the dot action of ρ and P .
Let X1,B ⊂ XB and X2,B ⊂ XB be the Ping Pong sets defined in terms of black/white
and even/odd forks as in the preceding proof. One checks that these two subsets are
nonempty anddisjoint. It follows that PSL2(Z) acts freely on XB , i.e. the orbit is infinite
(in fact, the elements in the orbit are labeled by PSL2(Z)). Translating to Gr(3, 9) via
the quasi-isomorphism, the same is true for the single cycle web in Fig. 4. ��

10.2 Proofs for Gr(4,8)

We prove Theorem 9.13, and with quite a bit more work, prove Theorem 9.14.

Proof of Theorem 9.13 The argument is the same as the proof of parts (1) and (2) ofThe-
orem 9.10. On the fundamental domain, every cluster variable is a web that is already
in tree form. One checks that the renormalized Artin generator σ̃1

∗ (cf. Remark 5.6)
preserves the set of SL4 web invariants. As before, this is not a priori obvious, since
evaluating σ̃1

∗ by “reattaching” (i.e., the SL4 analogue of Figs. 9 and 10) introduces
crossings. However, all such crossings can be planarized by a combination of the SL4
crossing removal and degeneracy relations. On the other hand, evaluating σ̃1

∗ only
involves reattaching certain boundary edges to the boundary in a new way via certain
trees, and thus sends tree invariants to tree invariants. Since every cluster variable on
the fundamental domain is a web and a tree, the same is true for every cluster variable
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(up to a monomial in the frozens). The statement about Plückers and octapods is true
because it holds on a fundamental domain, as noted in the proof to Lemma 10.2. ��

The proof of Theorem 9.14 is more “hands on” than the proof of Theorem 9.11 for
several reasons. First, there is no basis of SL4 web invariants, which makes equality
testing hard. Second, there are proportionality relations amongst Artin generators that
are difficult to see at the level of tensor diagrams (cf. Remark 8.6). Third, letting

 ∈ B4 denote the half-twist braid, the key step in our proof of Theorem 9.14 is
to show that G+/〈
2〉 = MCG(S2, 4). After this, we “unquotient” by the center as
was done in the proof of Theorem 9.11. However, unlike in that proof, in the current
situation, to establish G+/〈
2〉 = MCG(S2, 4) it is not enough to consider the orbit of
a single cluster variable (which will have a nontrivial stabilizer), but rather to consider
several cluster variables at a time.

We let 
 ∈ B4 denote the half-twist, and consider also the braids α = σ2σ1, β =
σ2σ1σ2. The next lemma is well known:

Lemma 10.7 The elements α, β satisfy α3 = β2 = 1 in the quotient
B4/〈
2, σ1σ2σ

2
3 σ2σ1〉 = MCG(S2, 4). They generate a free product Z/2Z∗Z/3Z ⊂

MCG(S2, 4), of index four inMCG(S2, 4), with the braids {1, σ3, σ3σ2, σ3σ2σ1} serv-
ing as right coset representatives.

Proof The proof is geometric. For any k, there is an inclusion Bk/Z(Bk) ⊂
MCG(S2, k + 1) of the braid group modulo its center into the mapping class group of
a sphere with k + 1 marked points, described as follows. The braid group Bk can be
thought of as the mapping class group of a closed disk D with k punctures. Let D′ be a
once-punctured disk. Gluing D and D′ along their boundary produces a sphere S2 with
k + 1 punctures. We view the k + 1st puncture as sitting at the North Pole. The inclu-
sion of spaces D ⊂ S2 induces a homomorphism Bk → MCG(S2, k + 1) of mapping
class groups. As a mapping class, the full twist 
2 ∈ Bk corresponds to a Dehn twist
along the boundary of the disk D, and this mapping class represents a trivial element
of MCG(S2, k + 1). The homomorphism factors Bk/Z(Bk) → MCG(S2, k + 1) to
the quotient by 
2, and this latter homomorphism is injective (as follows from the
Birman exact sequence [11]). The subgroup Bk/Z(Bk) ⊂ MCG(S2, k + 1) is identi-
fied with the normal subgroup of mapping classes that fix the North Pole. In our case
of interest, k = 3, we get a copy of B3/Z(B3) = PSL2(Z) ⊂ MCG(S2, 4), generated
by the elements α = σ2σ1 and β = σ1σ2σ1. There is a surjection MCG(S2, 4) → S4
(sending σi to the transposition (i, i +1)), and PSL2(Z) ⊂ MCG(S2, 4) is the inverse
image of S3 ⊂ S4. It follows that PSL2(Z) has index 4 in MCG(S2, 4), and that the
four braids above serve as coset representatives. ��
Lemma 10.8 Let w ∈ Z/2Z ∗ Z/3Z be a (reduced) word in the generators α, β. If w
defines a trivial element of the cluster modular group, then w is conjugate to a power
of βαβα.

Proof We prove this by considering the 〈α, β〉-orbit of the Plücker coordinate 
2468.
We let fα, fβ ∈ Aut(˜Gr

◦
(4, 8)) be the automorphisms corresponding to the braids α

and β, and let fw be the corresponding composition of fα and fβ . Since both fα and
fβ commute with the cyclic shift ρ4, this is also true of fw.
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If w is trivial in the cluster modular group, then it fixes each cluster variable up to
a frozen Laurent monomial. In particular, f ∗

w(
2468) = M
2468 for a frozen Laurent
monomial M . This Laurent monomial is necessarily ρ4 invariant, e.g. if
1234 appears
in the numerator of M , then 
5678 also appears in the numerator of M , and so on.
It follows that the homogeneous degree of the monomial M with respect to the Z

8-
grading on C[˜Gr◦(4, 8)] is an integer multiple of the all-ones vector (1, . . . , 1) ∈ Z

8.
If e1, . . . , e8 are standard basis vectors for Z

8, then f ∗
w(
2468) has degree e2 + e4 +

e6 + e8 + m(1, . . . , 1) for some m ∈ Z. Recall that σ ∗
1 acts by permuting e1 ↔ e2

and e5 ↔ e6, while σ ∗
2 acts by permuting e2 ↔ e3 and e6 ↔ e7 (cf. the formula for

σ1(v · t) before the statement of Theorem 5.3). Thus σ ∗
1 and σ ∗

2 , and therefore f ∗
α and

f ∗
β , preserve the all-ones vector. One calculates the following action of f ∗

α and f ∗
β on

e2 + e4 + e6 + e8 ∈ Z
8/(1, . . . , 1):

e2 + e4 + e6 + e8
f ∗
α

f ∗
β

e1 + e4 + e5 + e8

f ∗
α

e3 + e4 + e7 + e8
f ∗
β

f ∗
α

. (50)

That is, modulo the all ones vector, the group PSL2(Z) permutes the three vectors
in (50). We get a homomorphism PSL2(Z) � S3 in which α acts by a 3-cycle
and β acts by a transposition. The symmetric group S3 has a dihedral presentation
〈α, β : α3 = β2 = 1, βαβ = α−1.〉, so ker(PSL2(Z) � S3) is the normal subgroup
generated by βαβα. If w acts trivially in the cluster modular group then it lies in this
kernel, i.e. w is conjugate to a power of βαβα. ��
Lemma 10.9 The quasi-automorphism determined by the braid βαβα has infinite
order in G(˜Gr(4, 8)).

Proof Using the braid relations one finds that βαβα = α3σ1σ
2
2 σ1 ∈ B4, and thus

βαβ = σ1σ
2
2 σ1 ∈ MCG(S2, 4). So it suffices to show that the quasi-automorphism

(σ1σ
2
2 σ1)

∗ has infinite order in the cluster modular group.
By direct calculations with the σ ∗

i , each of the Plücker coordinates 
1378,


2367,
3457 is fixed by (σ1σ
2
2 σ1)

∗ up to frozen variables. Likewise, the Plücker
coordinates 
4678 ↔ 
2348 are swapped by (σ1σ

2
2 σ1)

∗ up to frozen variables.
For an example calculation, one sees that σ ∗

1 (
1378) = 
2378. Next, the renor-

malized Artin generator satisfies σ̃ ∗
2 (
2378) = ω∗(v2v3(v6v7 ∩ v8v1v2)v8) =

ω∗(v1v2v3v8)ω∗(v2v6v7v8) ∝ 
2678 by a similar argument as in the proof of Propo-
sition 8.4. Next, σ ∗

2 (
2678) = 
3678, and finally σ̃1
2(
3678) = ω∗(v3(v5v6 ∩

v7v8v1)v7v8) = ω∗(v5v6v7v8)ω∗(v1v3v7v8) ∝ 
1378 as claimed. The other cal-
culations have a similar flavor.

We have described the action of (σ1σ
2
2 σ1)

∗ on the Plücker coordinates


1378,
2348,
2367,
4678,
3457. (51)
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Fig. 11 The extended quiver for a seed in Gr(4, 8). Below it, an initial seed for the subalgebraA′ obtained
by freezing certain variables and setting certain frozen variables equal to 1. To the right, we show the
triangulation of the annulus that corresponds to this quiver. The element w = βαβα acts on this cluster
subalgebra by twisting the outer boundary one unit clockwise.

These are weakly separated, and can be extended to a cluster C for C[˜Gr(4, 8)] by
adding 
2347,
2378,
3678,
3467. The extended quiver Q̃(C) is in Fig. 11. We let
X ∈ C[˜Gr(4, 8)] be the element X((v1, . . . , v8)) = ω∗(v7v8v1(v4v6v7 ∩ v2v3)), and
Y ∈ C[˜Gr(4, 8)] be the element Y ((v1, . . . , v8)) = ω∗(v3v4v5(v2v3v8 ∩ v6v7)). By
another direct calculation, one sees that (σ1σ

2
2 σ1)

∗ acts on the four extra Plücker
coordinates in C by


2347 �→ 
2378 
3678 �→ 
3467 (52)


2378 �→ X 
3467 �→ Y (53)

The exotic-looking cluster variables X and Y are both a single mutation away from
the cluster in Fig. 11. Specifically, μC(
2347) = X and μC(
3678) = Y , which one
sees by checking the corresponding exchange relation (1).

Now we freeze the five variables in (51), obtaining a cluster subalgebra of
C[˜Gr(4, 8)] with 8 + 5 = 13 frozen variables and clusters with 4 mutable variables.
We set all 8 of the original frozen variables equal to 1, and also set 
2367 = 1. We
are left with a cluster algebraA′ with four frozen variables. Our choice of initial seed
for this cluster subalgebra is pictured in Fig. 11. This cluster algebra A′ is the cluster
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algebra associated to an annulus with 2 points on each boundary component, and with
four frozen variables given by the boundary arcs. Our initial seed corresponds to the
triangulation of the annulus pictured in Fig. 11. From our description of how fσ1σ 2

2 σ1

acts on the four frozen variables, as well as the formulas (52) and (53), we see that
σ1σ

2
2 σ1 acts on the annulus by rotating the outer boundary one unit clockwise. Rotat-

ing the outer boundary has infinite order when thought of as a map on clusters in A′.
It follows that (σ1σ 2

2 σ1)
∗ has infinite order in G(Gr(4, 8)).

Proof of Theorem 9.14 Let G be the group with the presentation in the theorem state-
ment. We have a surjection G → G by Lemma 10.2. It descends to the quotient by

2. By the two previous lemmas, we have an injection PSL2(Z) ↪→ G/〈
2〉, where
PSL2(Z) = 〈α, β〉.We claim that this extends to an injectionMCG(S2, 4) ↪→ G/〈
2〉.
Let K be the kernel of this homomorphism. Conjugation by PSL2(Z) acts on the four
cosets of PSL2(Z) ⊂ MCG(S2, 4), fixing the identity coset. The other three cosets
are transitively permuted by conjugation (they are permuted by α). Thus, it suffices to
prove that the coset PSL2(Z)σ3σ2σ1 intersects K trivially.

Remember that σ3σ2σ1 ∝ ρ on Gr(4, 8). Supposew = w′ρ ∈ K withw′ ∈ 〈α, β〉.
Then f ∗

w(
1357) ∝ 
1357, so f ∗
w′(
1357) ∝ 
2468. Thus, 
1357 would be in the

PSL2(Z)-orbit of 
2468, but this is not possible from the calculation with the Z
8-

grading (50). One now argues that G → G is an isomorphism by “unquotienting” the
map MCG(S2, 4) ↪→ G/〈
2〉 in a similar way as was done at the end of the proof
of 9.11. ��
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