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Abstract
We show that any Abelian module category over the (degenerate or quantum)
Heisenberg category satisfying suitable finiteness conditions may be viewed as a 2-
representation over a corresponding Kac–Moody 2-category (and vice versa). This
gives a way to construct Kac–Moody actions in many representation-theoretic exam-
ples which is independent of Rouquier’s original approach via “control by K0.” As an
application, we prove an isomorphism theorem for generalized cyclotomic quotients
of these categories, extending the known isomorphism between cyclotomic quotients
of type A affine Hecke algebras and quiver Hecke algebras.
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1 Introduction

The field of higher representation theory has both benefitted and suffered from a
multiplicity of perspectives. One such juncture is in the definition of a categorical
action of a Kac–Moody algebra, which was developed independently by Rouquier
[34] and Khovanov and Lauda [27]. Both of these works introduced a remarkable
new 2-category, the Kac–Moody 2-category U(g) associated to a symmetrizable Kac–
Moody algebra g, although it took several more years before the distinct approaches
taken in [27,34] were reconciled with one another; see [3]. The object set of U(g) is
the weight lattice X of the underlying Kac–Moody algebra. Then a categorical action
of g on a family of categories (Rλ)λ∈X is the data of a strict 2-functor from U(g)
to the 2-category Cat of categories sending λ to Rλ for each λ ∈ X . This means
that there are functors Ei : Rλ → Rλ+αi , Fi : Rλ+αi → Rλ corresponding to the
Chevalley generators ei , fi (i ∈ I ) of g (where αi is the i th simple root), and there
are natural transformations between these functors satisfying relations paralleling the
2-morphisms in U(g). These relations are recorded in Sect. 3.3 below. They imply that

(KM1) there are prescribed adjunctions (Ei , Fi ) for all i ∈ I ;
(KM2) for d ≥ 0 there is an action of the quiver Hecke algebra Q Hd of the same

Cartan type as g on the dth power of the functor E := ⊕
i∈I Ei ;

(KM3) there is an explicit isomorphism of functors lifting the familiar Chevalley
relation [ei , f j ] = δi, j hi in the Lie algebra g; see (3.56)–(3.58).

In this article, we will only consider categorical actions on Abelian categories satisfy-
ing certain finiteness properties, which are needed to ensure that the relevantmorphism
spaces are finite-dimensional vector spaces. More precisely, all categories considered
will either be locally finite Abelian or Schurian k-linear categories for a fixed alge-
braically closed field k; see Sect. 2.2 for these definitions. All functors between such
categories will be assumed to be k-linear without further mention.

In Cartan type A, Rouquier also introduced a related notion of sl′I -categorification,
which was based in part on his previous workwith Chuang [17] treating the case of sl2.
Instead of the tower of quiver Hecke algebras mentioned in the previous paragraph,
the definition of sl′I -categorification involves a tower of affine Hecke algebras of
type A (either quantum or degenerate). In more detail, assume that we are given
z = q−q−1 ∈ k. Let AHd be the affineHecke algebra corresponding to the symmetric
groupSd with defining parameter q if z �= 0, or its degenerate analog if z = 0. Let I
be a subset of k closed under the automorphisms i �→ i± defined by

i± :=
{

q±2i in the quantum case (z �= 0),
i ± 1 in the degenerate case (z = 0),

assuming moreover that 0 /∈ I in the quantum case. The map i �→ i+ defines edges
making the set I into a quiver with connected components of type A∞ if p = 0 or
A(1)

p−1 if p �= 0, where p is the (not necessarily prime!) quantum characteristic, that is,

the smallest positive integer such that q p−1 + q p−3 + · · · + q1−p = 0 or 0 if no such
integer exists. Let g = sl′I be the corresponding (derived) Kac–Moody algebra. To
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have an sl′I -categorification on a locally finite Abelian or Schurian k-linear category
R, one needs:

(SL1) an adjoint pair (E, F) of endofunctors ofR such that F is also left adjoint to
E ;

(SL2) endomorphisms x : E ⇒ E and τ : E2 ⇒ E2 inducing an action of AHd on
the dth power Ed for all d ≥ 0.

Assume moreover that all eigenvalues of x : E ⇒ E belong to the given set I so that,
by taking generalized eigenspaces, one obtains decompositions of E and its adjoint F
into eigenfunctors: E = ⊕

i∈I Ei , F = ⊕
i∈I Fi . Then, we require that

(SL3) the induced maps ei := [Ei ] and fi := [Fi ] make the complexified
Grothendieck group C ⊗Z K0(R) into an integrable representation of the
Lie algebra g, with the Grothendieck group of each block ofR giving rise to
an isotypic representation of the Cartan subalgebra h of g.

Under these hypotheses, there is an induced categorical action of g on (Rλ)λ∈X in the
sense defined in the previous paragraph, for Serre subcategories Rλ of R defined so
that C ⊗Z K0(Rλ) is the λ-weight space of C ⊗Z K0(R). This fundamental result is
known as “control by K0;” see [34, Theorem 5.30] in the locally finite Abelian case
and [8, Theorem 4.27] for the extension to the Schurian case. In its proof, the property
(SL1) obviously implies (KM1), and (SL2) implies (KM2) due to the isomorphism
ÂHd ∼= Q̂ Hd between completions of affine Hecke algebras and quiver Hecke alge-
bras discovered in [10,34]. Finally, and most interesting, to pass from (SL3) (which
involves relations at the level of the Grothendieck group) to (KL3) (which involves
“higher” relations), Rouquier applies the sophisticated structure theory developed in
[17], thereby reducing the proof to minimal sl2-categorifications which are analyzed
explicitly.

In the current literature, almost all examples of categorical actions of Kac–Moody
algebras of Cartan type A on Abelian categories are constructed via this “control by
K0” theorem. In this article, we develop a new approach to constructing such Kac–
Moody actions based instead on the Heisenberg category Heisk of central charge
k ∈ Z. This is a monoidal category that is constructed from affine Hecke algebras in a
way that is entirely analogous to the construction of the Kac–Moody 2-category from
quiver Hecke algebras. It comes in two forms, degenerate or quantum, depending on
the parameter z = q −q−1 as fixed above. In the special case k = −1, the Heisenberg
category was defined originally in the degenerate case by Khovanov [25] and in the
quantum case by Licata and the second author [28]. The appropriate extension of the
definition to arbitrary central charge was worked out muchmore recently; see [4,30] in
the degenerate case and [13] in the quantum case. A categorical Heisenberg action on
a categoryR is the data of a strict monoidal functorHeisk → End(R), where End(R)

is the strict monoidal category consisting of endofunctors and natural transformations.
In view of the defining relations of Heisk recorded in Sects. 3.1 and 3.2 below, this
means that there are endofunctors E, F : R → R and natural transformations such
that

(H1) there is a prescribed adjunction (E, F);
(H2) for d ≥ 0 there is an action of AHd on Ed ;
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(H3) there is an explicit isomorphism of functors lifting the relation [e, f ] = k
in the Heisenberg algebra of central charge k; see (3.9) and (3.10) in the
degenerate case and (3.33) and (3.34) in the quantum case1.

The properties (H1)–(H3) exactly parallel (KM1)–(KM3), unlike (SL1)–(SL3). Now
we can formulate our first main theorem; see Theorem 4.11 below for a more precise
statement. The idea of the proof is to upgrade the homomorphism Q̂ Hd → ÂHd

constructed in [10,34] to the entire 2-category U(g).

Theorem A Let R be either a locally finite Abelian or a Schurian k-linear category
equipped with a categorical Heisenberg action. Let I be the spectrum of R, that is,
the set of eigenvalues of the given endomorphism x : E ⇒ E. This set is closed
under the maps i �→ i± defined above. Let g = sl′I be the corresponding Kac–Moody
algebra with weight lattice X. For each λ ∈ X, there is a Serre subcategory Rλ of R
defined explicitly in Sect. 4.2 below in terms of the action of EndHeisk (1) (“bubbles”).
Moreover, there is a canonically induced categorical action of g on (Rλ)λ∈X in the
sense of (KM1)–(KM3).

This theorem considerably simplifies the construction of the most important
examples of categorical Kac–Moody actions. In these examples, the existence of a
Heisenberg action is straightforward to demonstrate, so that TheoremA can be applied
without any need to develop the theory to the point of being able to check relations
on the Grothendieck group. Of course it is still important to investigate such aspects,
but it is helpful to have the rich structure theory of a categorical Kac–Moody action in
place from the outset. For example, one oftenwants to compute the spectrum I exactly,
or to find an explicit combinatorial description of the underlying crystal structure on
the set B of isomorphism classes of irreducible objects. The answers to these sorts
of more intricate combinatorial questions tend to vary in a discontinuous fashion as
parameters change, whereas the existence of a Heisenberg action is more robust.

Representations of symmetric groups and related Hecke algebras

The original motivating example comes from the representation theory of the sym-
metric groups Sd . As observed in [17, §7.1], the classical representation theory
of symmetric groups (Specht modules, branching rules, blocks, etc...) implies that
R := ⊕

d≥0 kSd -modfd admits the structure of an sl′I -categorification with E given
by induction and F by restriction. The set I (which is the spectrum in our language)
is the image of Z in k, so that sl′I is sl∞(C) if p = 0 or ŝlp(C)′ if p > 0. Applying
“control by K0” it follows that there is an induced categorical action of g = sl′I ; the
Grothendieck group K0(R) is a Z-form for the basic representation of g (e.g., see
[11, Theorem 4.18]). Subsequently, Khovanov [25] used this example to motivate his
definition of the degenerate Heisenberg category Heis−1, making the existence of a
categorical Heisenberg action onR almost tautological: the conditions (H1) and (H2)
are immediate while (H3) follows from theMackey isomorphism F ◦ E ∼= E ◦ F ⊕ Id.
So now Theorem A gives a new proof of the existence of a categorical action of g,

1 In the quantum case there is one additional relation recorded just after (3.34).
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without any need to appeal to combinatorial facts from the representation theory of
symmetric groups. (See also [32] for a different point of view.)

There are many much-studied variations on this example, in which one replaces
kSd by higher level cyclotomic quotients of (degenerate or quantum) affine Hecke
algebras or quiver Hecke algebras; see [1,11,23]. The Grothendieck groups in these
cases give Z-forms for the other integrable highest or lowest weight representations.
Another closely related situation is the category O for rational Cherednik algebras
of types G(�, 1, d) for d ≥ 0, which categorifies Fock space; see [21,36]. This also
includes categories of modules over cyclotomic q-Schur algebras as a special case.
We refer the reader to [13, §§6–7] for further discussion of this from the perspective
of the quantum Heisenberg category; our approach does not require any integrality
assumptions unlike much of the existing literature.

Representations of the general linear group and related algebras

There are many variants of the representation theory of the general linear group,
including

• rational representations of the algebraic group GLn over k;
• representations of the Lie algebra gln(C) in the BGG category O;
• analogous categories for the general linear supergroup GLm|n and its Lie superal-
gebra;

• finite-dimensional representations of restricted enveloping algebras arising from
the Lie algebra gln(k) over a field of positive characteristic;

• analogous categories for the quantized enveloping algebra Uq(gln), including sit-
uations in which q is a root of unity.

Each of these gives rise to a locally finite Abelian categoryR admitting a categorical
Heisenberg action of central charge zero, either degenerate in the classical cases or
quantumwhenUq(gln) is involved. The endofunctors E and F are defined by tensoring
with the n-dimensional defining representation V and its dual V ∗, respectively. The
endomorphism x : E ⇒ E arises from the action of the Casimir tensor, while τ :
E2 ⇒ E2 comes from the tensor flip classically, or its braided analog defined by the
R-matrix in the quantum case. The relations (H1)–(H3) are all easy to check, with
(H3) amounting to the existence of a particular isomorphism V ⊗ V ∗ ∼= V ∗ ⊗ V .
On applying Theorem A, we obtain a uniform proof of the existence of a categorical
Kac–Moody action on each of these categories. In most cases, this action has already
been constructed in the literature via “control by K0;” e.g. see [17, §7.4] and [33,
§6.4] for rational representations of GLn , [17, §7.5] and [9, §4.4] for category O,
[38, §§6–7] and [13, §5] for the quantum analogs, and [16, §5.1] and [12, §3.2] for
the super analogs. In particular, for rational representations of GLn , the complexified
Grothendieck group may be identified with

∧n Nat p, where Nat p is a natural level
zero representation of ŝlp(C)′, while for integral blocks of category O for glm|n(C)

the complexified Grothendieck group is Nat⊗m+ ⊗Nat⊗n− where Nat± are the natural
and dual natural representations of sl∞(C). As well as establishing the existence of a
categorical Kac–Moody action in all of these previously known cases, our approach
encompasses several new situations involving quantum groups at roots of unity and
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restricted enveloping algebras in positive characteristic; for the latterwe are only aware
of [31, Theorem 3.12] in the existing literature, which treats a special case by explicitly
checking relations at the level of K0.

Generalized cyclotomic quotients

We have already mentioned cyclotomic quotients of the affine Hecke algebras AHd .
The isomorphism theorem of [10] shows that these are isomorphic to correspond-
ing cyclotomic quotients of the quiver Hecke algebras Q Hd . Both of these families of
cyclotomic quotients can also be obtained in aMorita equivalent form by taking cyclo-
tomic quotients of the Heisenberg category Heisk or of the Kac–Moody 2-category
U(g). This was first realized by Rouquier in the Kac–Moody setting, indeed, it is the
key to Rouquier’s definition of universal categorifications of integrable highest weight
modules; see [35, Theorem 4.25]. The analogous theorem in the Heisenberg setting is
[4, Theorem 1.7]. This point of view leads naturally to many more examples which we
refer to as generalized cyclotomic quotients; these were first considered in the Kac–
Moody setting in [39, Proposition 5.6] and categorify tensor products of an integrable
lowest weight and an integrable highest weight representation of g. In the final section
of this article, we apply Theorem A, this time with R being a Schurian category, to
prove the following result (see Theorem 5.19).

Theorem B Consider the generalized cyclotomic quotients HZ (μ|ν) of the Kac–
Moody 2-category as defined in Sect. 5.2 and HZ (m|n) of the (degenerate or quantum)
Heisenberg category as defined in Sect. 5.3. Assuming the defining parameters are
chosen so that (5.29) and (5.30) hold, these algebras are isomorphic via an explicit
isomorphism.

The data needed to define generalized cyclotomic quotients in the most general
form includes a finite-dimensional, commutative, local algebra Z , but generalized
cyclotomic quotients are already interesting when Z is simply taken to be equal to
the ground field k. Assuming this and taking the parameter n (which in general is
a monic polynomial n(u) ∈ Z [u]) to be of degree zero, the generalized cyclotomic
quotient HZ (m|n) is the usual cyclotomic quotient of Heisk associated to m (which
in general is a monic polynomial m(u) ∈ Z [u]) for k = − degm(u). Then Theorem B
specializes to the isomorphism theorem between cyclotomic quotients of affine Hecke
algebras and quiver Hecke algebras of type A already mentioned.

Another example of a generalized cyclotomic quotient “in nature” arises by taking
Z = k = C, and either m(u) = u and n(u) = u + d in the degenerate case, or
m(u) = u − 1 and n(u) = u − q−2d in the quantum case for q that is not a root of
unity. Under these assumptions, the generalized cyclotomic quotient HZ (m|n) is the
locally unital algebra underlying the oriented Brauer category denoted OB(d) in [7]
in the degenerate case, or the HOMFLY-PT skein category denoted OS(z, qd) in [5]
in the quantum case. The additive Karoubi envelopes of these monoidal categories
are the Deligne categories RepGLd and RepUq(gld), respectively. Assuming that
d ∈ Z (so that the spectrum I is Z in the degenerate case or q2Z in the quantum case),
Theorem B implies that both of these categories are equivalent as k-linear categories
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to the additive Karoubi envelope of the corresponding generalized cyclotomic quotient
of U(sl∞). This was proved originally using “control by K0” in [5]. (See also [19,
Theorem 10.2.7] for a related uniqueness result.)

Due to their universal nature, generalized cyclotomic quotients also play an impor-
tant role in the proof of the final theorem of the article, Theorem 5.22, which explains
how to construct a categorical Heisenberg action starting from a suitable Kac–Moody
action. This result gives a converse to Theorem A, further clarifying the relationship
between the three formulations (KM1)–(KM3), (SL1)–(SL3) and (H1)–(H3) of the
notion of categorical action discussed in this introduction.

The equivalence of Heisenberg and Kac–Moody actions revealed by this paper
seems to be a feature of categorical actions which does not persist at the decate-
gorified level. For the degenerate Heisenberg category and assuming that the ground
field k is of characteristic zero, [14, Theorem 1.1] shows that the Grothendieck ring
K0(Kar(Heisk)) of the additive Karoubi envelope ofHeisk is isomorphic to a certain
Z-form for the universal enveloping algebra of the infinite-dimensional Heisenberg
Lie algebra specialized at central charge k. In this case, we expect that the passage from
categorical Kac–Moody action to categorical Heisenberg action arising from Theo-
rem 5.22 is related at the level of complexified Grothendieck groups to restriction from
sl∞(C) (suitably completed) to its principal Heisenberg subalgebra.

2 Preliminaries

Throughout the article, k is an algebraically closed field and z ∈ k is a parameter. We
refer to the cases z �= 0 and z = 0 as the quantum and degenerate cases, respectively.
For use in the quantum case, we choose a root q of the polynomial x2 − zx −1, so that
z = q − q−1. We also have in mind some fixed integer k, which we call the central
charge.

2.1 Generating functions

We will often use generating functions when working with elements of an algebra
A. This means that we will work with formal Laurent series f (u) ∈ A((u−1)) in
an indeterminate u (or v, w, …). We write [ f (u)]ur for the ur -coefficient of such a
series, [ f (u)]u<0 for

∑
r<0 [ f (u)]ur ur , [ f (u)]u≥0 for

∑
r≥0 [ f (u)]ur ur (which is a

polynomial), and so on. To give an example, suppose that

f (u) =
∑

r≥0

fr uk−r ∈ uk1A + uk−1A[[u−1]]

for some fr ∈ A. Then we can define new elements gr ∈ A by declaring that

g(u) =
∑

r≥0

gr u−k−r ∈ u−k1A + u−k−1A[[u−1]]
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is the inverse of the formal Laurent series f (u). In fact, setting fr := 0 for r < 0, we
have that

gr = det (− fs−t+1)s,t=1,...,r . (2.1)

This identity is valid even if A is non-commutative providing the determinant is
interpreted as a suitably ordered Laplace expansion. The best known instance of it
arises in the algebra of symmetric functions Sym, in which the generating functions
e(u) = ∑

r≥0 er u−r and h(u) = ∑
r≥0 hr u−r for the elementary and complete sym-

metric functions are related by the identity e(u)h(−u) = 1. The determinantal formula
from [29, (I.2.6)] is then equivalent to (2.1).

2.2 Locally finite Abelian and Schurian categories

We will be studying categorical actions on k-linear Abelian categories R satisfying
certain finiteness conditions, following [15, §2]. The nicest condition to impose is
that R is a locally finite Abelian category. This means that R is Abelian, all objects
are of finite length, and the space of morphisms between any two objects is finite-
dimensional. By a theorem of Takeuchi, an (essentially small) k-linear category R
is a locally finite Abelian category in this sense if and only if it is equivalent to the
category comodfd -C of finite-dimensional right C-comodules for a coalgebra C ; e.g.,
see [20, Theorem 1.9.15].

Special cases of locally finite Abelian categories include finite Abelian categories,
that is, categories equivalent to A-modfd for a finite-dimensional algebra A, and essen-
tially finite Abelian categories in the sense of [15, §2.4]2, that is, the locally finite
Abelian categories that have enough projectives and injectives. An (essentially small)
k-linear categoryR is an essentially finite Abelian category if and only if it is equiva-
lent to the category A- modfd of finite-dimensional left A-modules for some essentially
finite-dimensional locally unital algebra A. Here, a locally unital algebra is an asso-
ciative algebra equipped with a local unit, that is, a system {1a | a ∈ A} of mutually
orthogonal idempotents such that

A =
⊕

a,a′∈A

1a A1a′ . (2.2)

We say that A is essentially finite-dimensional if both dim 1a A < ∞ and dim A1a <

∞ for all a ∈ A. A left A-module means a left module V as usual such that V =⊕
a∈A

1a V .
The other sort of Abelian categories with which we will be concerned are the

so-called Schurian categories. Although a well-known concept, the language is not
standard. The idea was discussed in detail in [8, §2]3, but actually we will follow the
conventions of [15, §2.3], according to which a Schurian category is a categoryR that

2 In [12, §2.1], essentially finite Abelian categories were called “Schurian categories” but we will use the
latter terminology for a slightly different notion.
3 In [8] the terminology “locally Schurian” was used instead of “Schurian.”
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is equivalent to the category A-modlfd of locally finite-dimensional left A-modules
for a locally finite-dimensional locally unital algebra A. Here, a locally unital algebra
A (resp., a left A-module V ) is called locally finite-dimensional if dim 1a A1a′ < ∞
(resp., dim 1a V < ∞) for all a, a′ ∈ A. Care is needed since an object V in a Schurian
category R is not necessarily of finite length, although all such modules have finite
composition multiplicities. Also for V , W ∈ R the morphism space HomR(V , W ) is
not necessarily finite-dimensional, although it is if V is finitely generated. We refer
the reader to [8,15] for further discussion.

To give a sense of the difference between locally finite Abelian categories and
Schurian categories, we formulate the appropriate notion of Grothendieck group
which should be used in the two settings. If R is a locally finite Abelian category,
the Grothendieck group K0(R) is the free Abelian group generated by isomorphism
classes [V ] of modules subject to relations [V ] = [V1] + [V2] for all short exact
sequences 0 → V1 → V → V2 → 0. If R is a Schurian category, the Grothendieck
group K0(R) is the free Abelian group generated by isomorphism classes [P] of
finitely-generated projective modules subject to relations [P] = [P1] + [P2] if
P ∼= P1 ⊕ P2.

Suppose that R is either locally finite Abelian or Schurian. As our ground field is
algebraically closed, we have that EndR(L) ∼= k for any irreducible object L ∈ R.
By a sweet endofunctor ofR, we mean a k-linear functor F : R → R that possesses
both a left adjoint and a right adjoint, with the two adjoints being isomorphic functors.
Such a functor is automatically additive and exact, so it induces an endomorphism [F]
of the Grothendieck ring K0(R). Also, such a functor sends finitely generated objects
to finitely generated objects. In the Schurian case, some further properties of sweet
endofunctors are discussed in [8, §2.4], including the following:

Lemma 2.1 ([8, Lemma 2.12]) Suppose that F and G are sweet endofunctors of a
Schurian category R, and that η : F ⇒ G is a natural transformation such that
ηL : F L → GL is an isomorphism for each irreducible L ∈ R. Then η is an
isomorphism.

For finitely generated V ∈ R, the functor HomR(V ,−) : R → Vecfd has a left
adjoint

V ⊗ − : Vecfd → R. (2.3)

To make an explicit choice for this functor, one needs to pick a basis for each finite-
dimensional vector space W . Then V ⊗W := V ⊕ dim W and, for a linearmap f : W →
W ′, the morphism V ⊗ f : V ⊗W → V ⊗W ′ is the morphism V ⊕ dim W → V ⊕ dim W ′

defined by the matrix of f with respect to the fixed bases.

2.3 Diagrammatics

We will use the string calculus for strict monoidal categories and strict 2-categories
as explained in [37, Chapter 2]. We will also use analogous diagrammatic formalism
when working with module categories and 2-representations.
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To give a brief review, letA be a strict k-linear monoidal category. A (strict)module
category overA is a k-linear categoryR plus a k-linear functor −⊗− : A�R → R
satisfying associativity and unity axioms. Here, A � R is the k-linearization of the
Cartesian product A × R. Equivalently, a module category is a k-linear category R
together with a strict k-linear monoidal functor R : A → Endk(R), where Endk(R)

denotes the strict k-linear monoidal category with objects that are k-linear endofunc-
tors of R and morphisms that are natural transformations. We usually suppress the
monoidal functor R, using the same notation f : E → F both for a morphism in A
and for the natural transformation between endofunctors of R that is its image under
R. The evaluation fV : EV → FV of this natural transformation on an object V ∈ R
will be represented diagrammatically by drawing a line labelled by V on the right-hand
side of the usual string diagram for f :

f

E V

F

.

This line represents the identity endomorphism of the object V . Another morphism
g : V → W in A can be represented by placing a coupon labelled by g on it. For
example, the following depicts ( f ⊗ W ) ◦ (E ⊗ g) = f ⊗ g = (F ⊗ g) ◦ ( f ⊗ V ):

g
f

E V

F W

= gf

E V

F W

= g
f

E V

F W

.

The equality of these morphisms is the interchange law for module categories.
Suppose instead that A is a strict k-linear 2-category. A (strict) 2-representation

of A is a family (Rλ)λ∈A of k-linear categories indexed by the objects of A, plus
k-linear functorsHomA(λ, μ)�Rλ → Rμ for λ,μ ∈ A satisfying associativity and
unity axioms. Equivalently, letting Catk be the strict k-linear 2-category of k-linear
categories, a 2-representation is a family (Rλ)λ∈A of k-linear categories together with
a strict k-linear 2-functorR : A → Catk such thatR(λ) = Rλ for each λ ∈ A. As with
module categories, when working with a 2-representation we will usually drop the 2-
functor R from our notation. The string calculus can be used in this setting too. For
example, a 1-morphism F1λ : λ → μ in A gives rise to a functor F |Rλ : Rλ → Rμ;
the diagram

g

VF

W

λ

depicts the morphism in Rμ obtained by applying this to morphism g : V → W in
Rλ. We say that (Rλ)λ∈A is a locally finite Abelian or a Schurian 2-representation if
each of the categories Rλ is a locally finite Abelian category or a Schurian category,
respectively.
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2.4 A version of Hensel’s lemma

Let Z be a finite-dimensional, commutative, localk-algebrawith uniquemaximal ideal
J = J (Z). As k is algebraically closed, we may naturally identify the quotient Z/J
with k. Note that two polynomials g(u), h(u) ∈ Z [u] are relatively prime if and only
if their images in k[u] are relatively prime. Equivalently, there exist a(u), b(u) ∈ Z [u]
such that a(u)g(u) + b(u)h(u) = 1. The following is well known but we could not
find a suitable reference.

Lemma 2.2 Suppose that I is a proper ideal of Z such that I 2 = 0. Let Z̄ := Z/I .

(1) Suppose that we are given a monic polynomial f̄ (u) ∈ Z̄ [u] and some choice of
f̂ (u) ∈ Z [u] lifting f̄ (u). Then there is a unique monic lift f (u) of f̄ (u) such that
f̂ (u) = f (u)q(u) for q(u) ∈ 1 + I [u]. Moreover, deg f (u) = deg f̄ (u).

(2) For a monic lift f (u) of f̄ (u) as in (1), suppose in addition that we are given rel-
atively prime monic polynomials ḡ(u), h̄(u) ∈ Z̄ [u] such that f̄ (u) = ḡ(u)h̄(u).
There exist monic lifts g(u) of ḡ(u) and h(u) of h̄(u) such that f (u) = g(u)h(u).

(3) The monic lifts g(u) and h(u) in (2) are unique.

Proof (1) Let p(u) be any monic lift of f̄ (u). It is automatically of the same degree.
By the division algorithm, we have that f̂ (u) = p(u)q(u) + r(u) for r(u) with
deg r(u) < deg p(u). On reducing coefficients modulo I , we see that q(u) ∈
1 + I [u] and r(u) ∈ I [u]. Since I 2 = 0 it follows that r(u) = r(u)q(u). Hence,
we have that f̂ (u) = f (u)q(u) for f (u) := p(u) + r(u), which is another monic
lift of f̄ (u). Uniqueness is obvious.

(2) Let ĝ(u) and ĥ(u) be any lifts of ḡ(u) and h̄(u). Since ḡ(u), h̄(u) are relatively
prime, there exista(u), b(u) ∈ Z [u] such thata(u)ĝ(u)+b(u)ĥ(u) = 1.Applying
(1) to the lift ĝ(u) + ( f (u) − ĝ(u)ĥ(u))b(u) of ḡ(u), we see that there exists a
monic lift g(u) of ḡ(u) and p(u) ∈ 1+ I [u] such that g(u)p(u) = ĝ(u)+( f (u)−
ĝ(u)ĥ(u))b(u). Similarly there is a monic lift h(u) of h̄(u) and q(u) ∈ 1 + I [u]
such that h(u)q(u) = ĥ(u) + ( f (u) − ĝ(u)ĥ(u))a(u). Using the assumption
I 2 = 0, it is easy to check that f (u) = g(u)h(u)p(u)q(u). Moreover since f (u)

and g(u)h(u) are monic and p(u)q(u) ∈ 1 + I [u], we must actually have that
p(u)q(u) = 1.

(3) Suppose that we have two such factorizations f (u) = g(u)h(u) = g′(u)h′(u).
Then g′(u) = g(u) + s(u) and h′(u) = h(u) + t(u) for s(u), t(u) ∈ I [u], and
we deduce that g(u)t(u) + h(u)s(u) = 0. Again we choose a(u), b(u) ∈ Z [u] so
that a(u)g(u) + b(u)h(u) = 1. Then we have that

(1 − b(u)h(u))t(u) + a(u)h(u)s(u) = a(u)g(u)t(u) + a(u)h(u)s(u) = 0.

Hence, t(u) = (b(u)t(u) − a(u)s(u))h(u) and h′(u) = (1 + b(u)t(u) −
a(u)s(u))h(u). Buth(u) andh′(u) are bothmonic andb(u)t(u)−a(u)s(u) ∈ I [u],
which implies that b(u)t(u) − a(u)s(u) = 0, i.e., h′(u) = h(u). Similarly,
g′(u) = g(u).

��
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Corollary 2.3 Suppose that f (u) ∈ Z [u] is a monic polynomial whose reduction mod-
ulo J is f̄ (u) ∈ k[u]. Suppose that we are given a factorization f̄ (u) = ḡ(u)h̄(u) for
relatively prime monic polynomials ḡ(u), h̄(u) ∈ k[u]. There exist unique monic lifts
g(u), h(u) ∈ Z [u] of ḡ(u), h̄(u) such that f (u) = g(u)h(u).

Proof This follows from the lemma by induction on the nilpotency degree of J . ��
Corollary 2.4 Suppose that f (u) ∈ Z [u] is a monic polynomial. Let pi be the mul-
tiplicity of i ∈ k as a root of f̄ (u) ∈ k[u], i.e., f̄ (u) = ∏

i∈I (u − i)pi for some
subset I of k. Then there exist unique monic polynomials fi (u) ∈ u pi + J [u] such
that f (u) = ∏

i∈I fi (u − i).

Proof This follows from the previous corollary by induction on deg f (u). (Note the
assumption that fi (u) is monic and belongs to u pi + J [u] is equivalent to the assertion
that fi (u − i) is a monic lift of (u − i)pi ∈ k[u].) ��

3 Three diagrammatic categories

In this section, we review the definitions of the three diagrammatic categories that are
the subject of the paper: the degenerate Heisenberg category, the quantum Heisenberg
category, and the Kac–Moody 2-category of type A. We also explain how to recast the
defining relations in terms of generating functions.

3.1 The degenerate Heisenberg category

The Heisenberg category Heisk is a strict k-linear monoidal category defined by
generators and relations. In this subsection, we review the definition in the degenerate
case z = 0. This was worked out originally by Khovanov [25] for central charge
k = −1 (our convention), then extended to all negative central charges in [30]. We
instead follow the approach of [4, Theorem 1.2], which simplified the presentation and
incorporated also the non-negative central charges,withHeis0 being the affineoriented
Brauer category from [7]. In this approach, the degenerate Heisenberg categoryHeisk

is the strict k-linear monoidal category generated by objects E =↑ and F =↓ and
morphisms

•◦ : E → E, : 1 → F ⊗ E , : E ⊗ F → 1 , (3.1)

: E ⊗ E → E ⊗ E , : 1 → E ⊗ F , : F ⊗ E → 1 (3.2)

subject to certain relations. To record these, we denote n ≥ 0 dots on a string instead
by labelling a single dot with the multiplicity n. Also introduce the sideways crossings

:= , := ,
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and the negatively dotted bubbles

•◦n−k−1 :=
⎧
⎨

⎩

det
( •◦r−s+k

)
r ,s=1,...,n if k ≥ n > 0,

11 if k ≥ n = 0,
0 if k ≥ n < 0,

•◦n+k−1 :=
⎧
⎨

⎩

(−1)n+1 det
( •◦r−s−k

)
r ,s=1,...,n if −k ≥ n > 0,

−11 if −k ≥ n = 0,
0 if −k ≥ n < 0.

Then the relations are as follows:

= , = , •◦ = •◦ + , (3.3)

= , = , (3.4)

= , = , (3.5)

= δk,0 if k ≥ 0, •◦n+k−1 = −δn,011 if −k < n ≤ 0, (3.6)

= δk,0 if k ≤ 0, •◦n−k−1 = δn,011 if k < n ≤ 0, (3.7)

= +
∑

r ,s≥0

•◦−r−s−2
s•◦

•◦r
, = +

∑

r ,s≥0

r•◦
•◦s

•◦−r−s−2 . (3.8)

In fact, one only needs to impose one of the adjunction relations (3.4) or (3.5), then the
other one follows automatically. Moreover,Heisk is strictly pivotal, i.e., the following
relations hold:

•◦ := •◦ = •◦ , := = .

These assertions are established in [4, Theorem 1.3].
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The category Heisk has an alternative presentation which is often useful when
constructingHeisk-module categories since it involves fewer generators and relations.
In this approach, which is [4, Definition 1.1], one just needs the generating morphisms
•◦ , , and (hence, we also have the rightwards crossing defined as above),
subject to the relations (3.3) and (3.4) together with the omnipotent inversion relation,
namely, that the following is an isomorphism in the additive envelope:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

•◦
...

k−1•◦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

: E ⊗ F → F ⊗ E ⊕ 1⊕k if k ≥ 0, (3.9)

[

•◦ · · · −k−1•◦
]

: E ⊗ F ⊕ 1⊕(−k) → F ⊗ E if k ≤ 0.

(3.10)

The resulting category then contains unique morphisms and such that the
other relations (3.6)–(3.8) hold; see [14, Lemma 5.2].

The following additional relations are also derived in [4, Theorem 1.3]: the infinite
Grassmannian relation

∑

r∈Z

•◦r

•◦n−r−2
= −δn,011

for any n ∈ Z, the alternating braid relation

− =
∑

r ,s,t≥0
•◦−r−s−t−3

•◦r

•◦s

•◦ t +
∑

r ,s,t≥0
•◦−r−s−t−3

•◦ r

•◦ s

•◦t ,

the curl relations

n•◦ =
∑

r≥0

n−r−1•◦ r•◦ , n•◦ = −
∑

r≥0

r •◦ n−r−1•◦

for all n ≥ 0, and the bubble slides

n•◦ = n•◦ −
∑

r ,s≥0

n−r−s−2•◦ r+s•◦ , n •◦ = n •◦ −
∑

r ,s≥0

r+s •◦ n−r−s−2 •◦
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for n ∈ Z. It seems to be most convenient to work with these relations in terms of
generating functions as in Sect. 2.1. In order to do this, we switch henceforth to using
the notation •◦xn instead of •◦n to denote a dot of multiplicity n; we do this also for
negatively dotted bubbles using negative values of n. Then we can represent linear
combinations of monomials by labelling dots by polynomials in x too. Viewing the
power series

(u − x)−1 = u−1 + u−2x + u−3x2 + · · · ∈ k[x][[u−1]]

as a generating function for multiple dots on a string, the dot sliding relation implies
the following:

•◦(u−x)−1 − •◦ (u−x)−1 = •◦ •◦(u−x)−1(u−x)−1 = •◦(u−x)−1 − •◦ (u−x)−1

.

(3.11)

To write the other relations in this form, we use the following generating functions for
the dotted bubbles:

(u) :=
∑

r∈Z

•◦ xr u−r−1 ∈ uk11 + uk−1EndHeisk (1)�u−1�, (3.12)

(u) := −
∑

r∈Z

•◦xr u−r−1 ∈ u−k11 + u−k−1EndHeisk (1)�u−1�. (3.13)

Then the infinite Grassmannian relation implies that

(u) (u) = 11. (3.14)

This puts us in the situation of (2.1), which explains the origin of the determinantal
formulae used to define the negatively dotted bubbles above. In terms of generating
functions, the other relations involving bubbles translate into the following:

= −
⎡

⎣
(u)

(u−x)−1•◦
•◦(u−x)−1

⎤

⎦

u−1

, = +
⎡

⎣
(u−x)−1•◦

•◦(u−x)−1
(u)

⎤

⎦

u−1

,

(3.15)

− =
⎡

⎢
⎣ (u)

•◦(u−x)−1

•◦(u−x)−1

•◦ (u−x)−1

⎤

⎥
⎦

u−1

−

⎡

⎢
⎢
⎣

(u)

•◦ (u−x)−1

•◦ (u−x)−1

•◦(u−x)−1

⎤

⎥
⎥
⎦

u−1

,

(3.16)
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(u−x)−1•◦ =
⎡

⎣ (u) •◦(u−x)−1

⎤

⎦

u<0

, (u−x)−1•◦ =
⎡

⎣ (u−x)−1•◦ (u)

⎤

⎦

u<0

,

(3.17)

(u) = (u) •◦1−(u−x)−2 , (u) = (u)•◦1−(u−x)−2 . (3.18)

To understand the last relation, it is helpful to note that 1 − (u − x)−2 =
(u−(x+1))(u−(x−1))

(u−x)2
.

Lemma 3.1 For a polynomial p(u) ∈ k[u], we have that

•◦ p(x) =
[

•◦(u−x)−1 p(u)

]

u−1
, •◦ p(x) =

[

•◦(u−x)−1 p(u)

]

u−1
, (3.19)

•◦ p(x) = − [
(u) p(u)

]
u−1 , •◦ p(x) = [

(u) p(u)
]

u−1 , (3.20)

p(x)•◦ =
⎡

⎣(u−x)−1•◦ (u) p(u)

⎤

⎦

u−1

, p(x)•◦ =
⎡

⎣(u−x)−1•◦ (u) p(u)

⎤

⎦

u−1

.

(3.21)

Proof By linearity, it suffices to prove (3.19) and (3.20) in the case that p(u) = ur

for r ≥ 0, and in that case they follow easily on computing the u−1-coefficient on
the right-hand side, recalling also the definitions (3.12) and (3.13). To deduce (3.21),
rewrite the left-hand side using (3.19), then apply the curl relation (3.17). ��

Finally, let us justify the terminology “Heisenberg category” in more detail. Let
Kar(Heisk) be the additive Karoubi envelope of Heisk , and K0(Kar(Heisk)) be the
Grothendieck ring of that monoidal category. When the characteristic of the ground
field is zero, K0(Kar(Heisk)) is isomorphic to the Heisenberg ring Heisk , that is, the
ring generated by elements {h+

n , e−
n | n ≥ 0} subject to the relations

h+
0 = e−

0 = 1, h+
mh+

n = h+
n h+

m , e−
m e−

n = e−
n e−

m , h+
me−

n =
min(m,n)∑

r=0

(
k

r

)

e−
n−r h+

m−r .

(3.22)

This ring is a Z-form for the universal enveloping algebra of the infinite-dimensional
Heisenberg Lie algebra specialized at central charge k. The existence of an isomor-
phism K0(Kar(Heisk)) ∼= Heisk was conjectured originally by Khovanov in [25] for
k = −1 and it was proved in general in [14, Theorem 1.1]. Under the isomorphism,
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the classes [E], [F] ∈ K0(Kar(Heisk)) correspond to h+
1 , e−

1 ∈ Heisk ; more gen-
erally h+

n , e−
n correspond to summands of En and Fn defined by idempotents that

correspond to the trivial and sign representations of the symmetric groupSn . When k

is of positive characteristic, the category Kar(Heisk) does not have enough indecom-
posable objects for there to be any chance of an analogous isomorphism; in this case,
we expect that one should really work with a “thickened” version of Heisk which
incorporates generators of the affine Schur algebra. However, for the purposes of the
present article, the category Heisk as defined above is exactly the right object.

3.2 The quantumHeisenberg category

In the quantum case z �= 0, the category Heisk was introduced in [13, Definition
4.1], building on the earlier work [28] which produced a different (but closely related)
deformation of Khovanov’s Heisenberg category. In fact, in the quantum case, there
is an additional invertible parameter t which we will treat here as an indeterminate
(although in applications one usually specializes t to a scalar in k

×). Thus, in the
quantum case, we will work over the ground ring

K := k[t, t−1], (3.23)

and define the quantum Heisenberg category Heisk to be the strict K-linear monoidal
category generated by objects E =↑ and F =↓ and the following morphisms:

•◦ : E → E, : 1 → F ⊗ E , : E ⊗ F → 1 , (3.24)

: E ⊗ E → E ⊗ E , : 1 → E ⊗ F , : F ⊗ E → 1. (3.25)

The generators on the left of (3.24) and (3.25), the dot and the positive crossing, are
required to be invertible. The invertibility of the dot means that now it makes sense to
label dots by an arbitrary integer, rather than just by n ∈ N. We denote the inverse of
the positive crossing by

: E ⊗ E → E ⊗ E ,

and call this the negative crossing. Thus, we have that

= = . (3.26)
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We also introduce the sideways crossings, both positive and negative,

:= , := ,

:= , := ,

and the (+)-bubbles4

n−k+ :=

⎧
⎪⎪⎨

⎪⎪⎩

•◦ n−k if k < n,
tn+1zn−1 det

( •◦r−s+k+1
)

r ,s=1,...,n , if k ≥ n > 0,
t z−111 if k ≥ n = 0,
0 if k ≥ n < 0,

+n+k :=

⎧
⎪⎪⎨

⎪⎪⎩

•◦n+k if −k < n,
(−1)n+1t−n−1zn−1 det

( •◦r−s−k+1
)

r ,s=1,...,n if −k ≥ n > 0,
−t−1z−111 if −k ≥ n = 0,
0 if −k ≥ n < 0.

The other defining relations are as follows:

− = z , = , •◦ = •◦
, (3.27)

= , = , (3.28)

= , = , (3.29)

= δk,0t−1 if k ≥ 0, = δk,0t if k ≤ 0, (3.30)

•◦n+k = δn,−k t−δn,0t−1

z 11 if −k ≤ n ≤ 0, •◦ n−k = δn,0t−δn,k t−1

z 11 if k ≤ n ≤ 0,
(3.31)

4 In [13], one also finds (−)-bubbles which will not be needed here.
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= + t z + z2
∑

r ,s>0

+−r−s

s

•◦
•◦

r

, = − t−1z + z2
∑

r ,s>0

r •◦

•◦s

+ −r−s .

(3.32)

As in the degenerate case, one actually only needs to impose one of the adjunction
relations (3.28) or (3.29), after which the other one may be deduced as a consequence
of the other relations. Moreover, the quantum Heisenberg category is strictly pivotal,
so that one can introduce the downward dot and the downward positive and negative
crossings by taking left and/or right mates of the upward ones.

Again like the degenerate case, there are also some alternative presentations involv-
ing an inversion relation; see [13, Definitions 2.2 and 3.1]. To formulate a version of
this, one just needs the generating morphisms •◦ , , and , the first two of
which are required to be invertible (hence, we also get negative upwards and posi-
tive/negative rightwards crossings as above), subject to the relations (3.27) and (3.28)
plus the inversion relation asserting that the following is invertible:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

•◦
...

k−1•◦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

: E ⊗ F → F ⊗ E ⊕ 1⊕k if k ≥ 0, (3.33)

[

•◦ · · · −k−1•◦
]

: E ⊗ F ⊕ 1⊕(−k) → F ⊗ E if k ≤ 0.

(3.34)

The situation is slightly more delicate than in the degenerate case as it is also necessary
to impose one additional relation:

• If k > 0 we require that •◦−1
�♦ = −t211 where �♦ is the last entry of the inverse

of the matrix (3.33).

• If k < 0 we require that •◦−1
�♦ = −t−211 where �♦ is the last entry of the

inverse of the matrix (3.34).
• If k = 0 there are two equivalent presentations here: if one picks (3.33) the

additional relation is = 1−t−2

z 1 where :=
( )−1

, while for (3.34) it

is = t2−1
z 11 where :=

( )−1
.

The resulting category then contains unique morphisms and such that the
other relations (3.30)–(3.32) hold; see [13, Lemma 4.3].
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Remark 3.2 The alternative presentation of Heisk just formulated only involves even
powers of t , so that using it the category could be defined over k[t2, t−2] rather than
the algebra K from (3.23). The square root t of t2 is needed in order for there to exist
leftwards cups and caps satisfying the earlier relations. The specific normalization of
these leftwards cups and caps was chosen originally in [13] so as to match the usual
normalization in the HOMFLY-PT skein category; see [5].

In [13, §§2–4], many additional relations are derived from the defining relations,
including counterparts of the infinite Grassmannian, alternating braid, curl, and bubble
slide relations. Again, all of these relations can be reformulated quite compactly in
terms of generating functions. We do this here just for the infinite Grassmannian
relation, the curl relation and the bubble slides, since actually those are the only ones
we will need later on. Like we did in the previous subsection, we switch from now
onwards to labelling dots by polynomials, now possibly in k[x, x−1], instead of by
integers. We also assemble the (+)-bubbles into the following generating functions:

(u) := t−1z
∑

r∈Z

+ r u−r ∈ uk11 + uk−1EndHeisk (1)�u−1�, (3.35)

(u) := −t z
∑

r∈Z

+r u−r ∈ u−k11 + u−k−1EndHeisk (1)�u−1�. (3.36)

Here, we are using slightly different notation from [13], where these were denoted
+ (u) and + (u). Then we have the following, which are equivalent to [13, Lemmas
3.4, 4.4 and 4.6]:

(u) (u) = 11, (3.37)

(u−x)−1 •◦ = t

⎡

⎢
⎣ (u) •◦ (u−x)−1

⎤

⎥
⎦

u<0

, (u−x)−1•◦ = t−1

⎡

⎢
⎣ (u−x)−1 •◦ (u)

⎤

⎥
⎦

u<0

,

(3.38)

(u) = (u) •◦1−z2xu(u−x)−2 , (u) = (u)•◦1−z2xu(u−x)−2 . (3.39)

For the last relation, we note that 1 − z2xu(u − x)−2 = (u−q2x)(u−q−2x)

(u−x)2
.

Lemma 3.3 For a polynomial p(u) ∈ k[u], we have that

•◦ p(x) =
[

•◦(u−x)−1 p(u)

]

u−1
, •◦ p(x) =

[

•◦(u−x)−1 p(u)

]

u−1
, (3.40)
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•◦ p(x) =
tp(0)11− t−1

[
(u) p(u)

]

u0

z
, •◦ p(x) =

t
[

(u) p(u)
]

u0
− t−1 p(0)11

z
, (3.41)

p(x)•◦ = t−1

⎡

⎢
⎣(u−x)−1 •◦ (u) p(u)

⎤

⎥
⎦

u−1

, p(x)•◦ = t

⎡

⎢
⎣(u−x)−1 •◦ (u) p(u)

⎤

⎥
⎦

u−1

.

(3.42)

Proof This is almost the same as the proof of Lemma 3.1, using (3.35) and (3.36) and
(3.38) instead of (3.12) and (3.13) and (3.17). For (3.41), one also needs to know that

= t z−111 +0 + and = + 0 − t−1z−111 due to [13, (2.18), (3.12)]. ��

In the quantum case for q not a root of unity, it is conjectured that K0(Kar(Heisk))

is isomorphic to the Heisenberg ring Heisk , just like in the degenerate case.

3.3 The Kac–Moody 2-category

Last, but by no means least, we have the Kac–Moody 2-category. This was defined by
Khovanov andLauda [27] andRouquier [34]. In fact, there is such a category associated
to any symmetrizable Cartan matrix, but in this paper we are only interested in the
ones of Cartan type A, so we specialize to that right away. Our exposition is based on
[3], which unified the different approaches of Khovanov–Lauda and Rouquier, and [8,
§3], which incorporated some renormalizations of the bubbles following the idea of
[2] in order to make the strictly pivotal structure apparent.

Assume that I is a set equipped with a fixed-point-free automorphism I → I , i �→
i+. Let i �→ i− be the inverse function. This can also be interpreted as the data of a
quiver whose connected components are of types A∞ or A(1)

p−1 for p ≥ 2. There is
an associated generalized Cartan matrix (ai, j )i, j∈I with ai,i := 2 for each i ∈ I , and
ai, j := −δi+, j − δi, j+ for each i �= j . Let g be the Kac–Moody Lie algebra over C

generated by {ei , fi , hi | i ∈ I } subject to the Serre relations defined from the Cartan
matrix (ai, j )i, j∈I . Note g is a direct sum of Kac–Moody Lie algebras of types sl∞(C)

(the infinite components in the quiver) or ŝlp(C)′ (finite components with p vertices).
Let h be the Cartan subalgebra of g with basis {hi | i ∈ I }. The weight lattice X of

g is the Abelian subgroup of h∗ generated by the fundamental weights {	 j | j ∈ I }
defined from 〈hi ,	 j 〉 = δi, j . We have the set of dominant weights

X+ :=
⊕

i∈I

N	i = {
λ ∈ X

∣
∣ 〈hi , λ〉 ≥ 0 for all i ∈ I and

∑
i∈I 〈hi , λ〉 < ∞}

.

Let αi := ∑
j∈I ai, j	 j ∈ X be the i th simple root. Unlike the fundamental weights,

these are not necessarily linearly independent, indeed, we have that
∑

i∈I0 αi = 0 for
each finite component I0 of I , due to the fact that we have not extended by scaling
elements. Let Y := ∑

i∈I Zαi ⊆ X .
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Finally, we choose signs {σi (λ) |λ ∈ X , i ∈ I } so that σi (λ)σi (λ+α j ) = (−1)δi, j+

for each j ∈ I . There is a unique such choice satisfying σi (λ) = 1 for each i ∈ I and
each λ lying in a set of X/Y -coset representatives.

Then the Kac–Moody 2-category U(g) is the strict k-linear 2-category with objects
X , generating 1-morphisms Ei1λ = ↑↑↑

i
λ : λ → λ + αi and Fi1λ = i↓↓↓λ : λ → λ − αi

for i ∈ I and λ ∈ X , and generating 2-morphisms

•
i

λ : Ei1λ ⇒ Ei1λ,
i

λ : 1λ ⇒ Fi Ei1λ,
i

λ : Ei Fi1λ ⇒ 1λ, (3.43)

j i
λ : E j Ei1λ ⇒ Ei E j1λ,

i
λ : 1λ ⇒ Ei Fi1λ,

i
λ : Fi Ei1λ ⇒ 1λ.

(3.44)

This time, the sideways crossings are defined from

j

i

λ :=
j

i

λ ,

j

i

λ :=
j

i

λ ,

and there are negatively dotted bubbles defined by

• n−〈hi ,λ〉−1

i

λ :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(−1)nσi (λ)n+1 det

⎛

⎝ •r−s+〈hi ,λ〉
i

λ

⎞

⎠

r ,s=1,...,n

if 〈hi , λ〉 ≥ n > 0,

σi (λ)11λ
if 〈hi , λ〉 ≥ n = 0,

0 if 〈hi , λ〉 ≥ n < 0,

•n+〈hi ,λ〉−1

i

λ :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(−1)nσi (λ)n+1 det

⎛

⎝ • r−s−〈hi ,λ〉
i

λ

⎞

⎠

r ,s=1,...,n

if −〈hi , λ〉 ≥ n > 0,

σi (λ)11λ
if −〈hi , λ〉 ≥ n = 0,

0 if −〈hi , λ〉 ≥ n < 0.

The generating 2-morphisms are subject to the following relations:

j i

λ• −
j i

λ
• =

j i

λ
• −

j i

λ• = δi, j

j i

λ , (3.45)



Heisenberg and Kac–Moody categorification Page 23 of 62 74

j i

λ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if j = i ,

j i

λ
• −

j i

λ
• if j− = i �= j+,

j i

λ
• −

j i

λ
• if j− �= i = j+,

2
j i

λ
•• −

j i

λ
•
• −

j i

λ
•
• if j− = i = j+,

j i

λ otherwise,

(3.46)

k j i

λ
−

k j i

λ
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i j i

λ
if j− = i = k �= j+

−
i j i

λ
if j− �= i = k = j+,

2

i j i

λ
• −

i j i

λ
• −

i j i

λ
• if j− = i = k = j+,

0 otherwise,
(3.47)

i

λ =
i

λ ,

i

λ =
i

λ , (3.48)

i

λ =
i

λ ,

i

λ =
i

λ , (3.49)

i
λ

= −δ〈hi ,λ〉,0 σi (λ)

i

λ if 〈hi , λ〉 ≥ 0, (3.50)

i
λ

= δ〈hi ,λ〉,0 σi (λ)

i

λ if 〈hi , λ〉 ≤ 0, (3.51)
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i
λ•n+〈hi ,λ〉−1 = δn,0 σi (λ) 11λ if −〈hi , λ〉 < n ≤ 0, (3.52)

• n−〈hi ,λ〉−1

i
λ = δn,0 σi (λ) 11λ if 〈hi , λ〉 < n ≤ 0, (3.53)

j

i

λ = (−1)δi, j

j

i

λ + δi, j

∑

r ,s≥0

i

λ

i • −r−s−2

•r

i

•s

, (3.54)

j

i

λ = (−1)δi, j

i

j

λ + δi, j

∑

r ,s≥0

i

• r

i
λ

•−r−s−2

• s
i

. (3.55)

As with the Heisenberg category, one only needs to impose one of the relations (3.48)
or (3.49), then the other follows as a consequence. Moreover, U(g) is strictly pivotal,
so that we can again introduce downward dots and crossings by taking right and/or
left mates of the upward ones.

The presentation described in the previous paragraph is similar to the original
approach of Khovanov and Lauda. Rouquier’s approach was based instead on an

inversion relation. To formulate it, we need the generating morphisms •
i

λ,
j i

λ,

i
λ and

i
λ (hence, we also have the rightwards crossings), subject to the relations

(3.45)–(3.48) plus the inversion relation asserting that the following are isomorphisms:

i

j

λ : Ei Fj1λ ⇒ Fj Ei1λ if j �= i , (3.56)

⎡

⎣

i

i

λ

i

λ

· · · i

λ
−〈hi ,λ〉−1•

⎤

⎦ : Ei Fi1λ ⊕ 1⊕−〈hi ,λ〉
λ ⇒ Fi Ei1λ if 〈hi , λ〉 ≤ 0,

(3.57)
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

i

i

λ

i

λ

...

i

λ
〈hi ,λ〉−1•

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

: Ei Fi1λ ⇒ Fi Ei1λ ⊕ 1⊕〈hi ,λ〉
λ if 〈hi , λ〉 ≥ 0. (3.58)

Lemma 3.4 Let A be a strict k-linear 2-category containing objects {oλ | λ ∈ X},
1-morphisms Ei1λ : oλ → oλ+αi and Fi1λ : oλ → oλ−αi , and 2-morphisms •

i
λ,

j i
λ,

i
λ and

i
λ satisfying (3.45)–(3.48). If A contains 2-morphisms

i
λ

and
i
λ for all i ∈ I and λ ∈ X such that the relations (3.50)–(3.55) all hold (for

the sideways crossings and negatively dotted bubbles defined as above), then these
2-morphisms are uniquely determined.

Proof Fix i ∈ I and λ ∈ X . Let M be the matrix (3.57) if 〈hi , λ〉 ≥ 0 or the matrix
(3.58) if 〈hi , λ〉 < 0, viewed as a 2-morphism in the additive envelope Add(A).
The assumed relations (3.45)–(3.48) and (3.50)–(3.55) imply that M is invertible.

Moreover the first entry of the inverse matrix M−1 is −
i

i
λ. Thus, this 2-morphism

is uniquely determined inA independent of the choices of the leftwards cups and caps.

Also if 〈hi , λ〉 > 0 (resp., 〈hi , λ〉 < 0) then the last entry of M−1 is σi (λ)
i
λ (resp.,

σi (λ)
i
λ ). So these 2-morphisms are uniquely determined. Finally, using (3.50) and

(3.51), one sees that

i

λ = σi (λ)

i

λ

−〈hi ,λ〉• if 〈hi , λ〉 ≤ 0,
i

λ = −σi (λ)

i

λ

〈hi ,λ〉 •
if 〈hi , λ〉 ≥ 0.

This means these morphisms are uniquely determined too. ��
Again, one can introduce generating functions and work with the defining rela-

tions in those terms; this technique was pioneered in [40]. We just write down the
counterparts of (3.14), (3.17) and (3.18) and (3.37)–(3.39). Let

λ i (u) := σi (λ)
∑

r∈Z

• r

i
λ u−r−1 ∈ u〈hi ,λ〉11λ + u〈hi ,λ〉−1End(1λ)[[u−1]], (3.59)
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λ i (u) := σi (λ)
∑

r∈Z

i
λ•r u−r−1 ∈ u−〈hi ,λ〉11λ + u−〈hi ,λ〉−1End(1λ)[[u−1]].

(3.60)

Switching from now on to labelling dots by polynomials rather than integers in the
sameway aswe didwhenworkingwith theHeisenberg category, but using the variable
y in place of x to avoid possible confusion later on, we have that

i (u) i (u) λ = 11λ , (3.61)

(u−y)−1 •

i

λ

= σi (λ)

⎡

⎢
⎢
⎢
⎣

i (u) • (u−y)−1

i

λ

⎤

⎥
⎥
⎥
⎦

u<0

, (u−y)−1•

i

λ

= −σi (λ)

⎡

⎢
⎢
⎢
⎣

(u−y)−1 • i (u)

i

λ

⎤

⎥
⎥
⎥
⎦

u<0

,

(3.62)

j (u)

i

λ = j (u)

i
λ

•(u−y)
〈hi ,α j 〉 , j (u)

i
λ

= j (u) •(u−y)
〈hi ,α j 〉

i
λ

. (3.63)

The following is proved in exactly the same way as Lemma 3.1.

Lemma 3.5 For a polynomial p(u) ∈ k[u], we have that

i

•p(y) λ =
⎡

⎣

i

•(u−y)−1
λ

p(u)

⎤

⎦

u−1

,

i

•p(y) λ =
⎡

⎣
i

•(u−y)−1

λ

p(u)

⎤

⎦

u−1

, (3.64)

• p(y)

i
λ = σi (λ)

[
λ i (u) p(u)

]
u−1 , • p(y)

i
λ = σi (λ)

[
λ i (u) p(u)

]
u−1 ,

(3.65)

i
λ

p(y)• = −σi (λ)

⎡

⎢
⎢
⎢
⎣

i
λ

(u−y)−1 • i (u) p(u)

⎤

⎥
⎥
⎥
⎦

u−1

, p(y)•

i

λ

= σi (λ)

⎡

⎢
⎢
⎢
⎣

(u−y)−1 • i (u)

i

λ

p(u)

⎤

⎥
⎥
⎥
⎦

u−1

. (3.66)

Finally, we outline the precise connection betweenU(g) and the quantized envelop-
ing algebra Uq(g) associated to g. To do this, one needs to introduce a Z-grading on
2-morphisms, therebymakingU(g) into a 2-category enriched in graded vector spaces.
From that, one obtains a graded 2-category Uq(g) by formally adjoining grading shift
operators to the 1-morphism categories. TheGrothendieck ring K0(Kar(Uq(g))) of the
additive Karoubi envelope of this graded 2-category is then a Z[q, q−1]-algebra with
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q acting by the grading shift. This Grothendieck ring is isomorphic to the Z[q, q−1]-
form of Lusztig’s idempotented form for the quantized enveloping algebra of g. This
was proved for sl∞(C) in [27], and in general in [41]. Since we will not need these
results here, we omit the detailed constructions.

4 Heisenbergmodule categories

This section is the heart of the article. Let Heisk be the Heisenberg category, either
degenerate or quantumaccording to the choice of z ∈ k. Suppose thatwe are given a (k-
linear)Heisk-module categoryRwhich is either locally finiteAbelian or Schurian.We
are going to show thatR can be given the structure of a Kac–Moody 2-representation.

4.1 Eigenfunctors

The endofunctors E and F of R defined by the generating objects of Heisk are
biadjoint, with adjunctions (E, F) and (F, E) defined by the rightwards cups/caps and
the leftwards cups/caps, respectively. Hence, both E and F are sweet endofunctors.
For i ∈ k, let Ei and Fi be the subfunctors of E and F defined on V ∈ R by declaring
that Ei V and Fi V are the generalized i-eigenspaces of the endomorphisms •◦ V and
•◦ V , respectively.
Let us spell this definition out in more detail. In the Schurian case, any object is the

direct limit of its compact (= finitely presented) subobjects by [15, Lemma 2.6], so in
view of the exactness of E and F it suffices to define Ei V and Fi V under the assump-
tion that V is finitely generated. Assuming this (which is no restriction at all in the
locally finite Abelian case), the objects EV and FV are finitely generated too, hence,
their endomorphism algebras EndR(EV ) and EndR(FV ) are finite-dimensional. So
we can define mV (u), nV (u) ∈ k[u] to be the (monic) minimal polynomials of the
endomorphisms •◦ V and •◦ V , respectively. Then there are injective homomor-
phisms

k[u]/(mV (u)) ↪→ EndR(EV ), k[u]/(nV (u)) ↪→ EndR(FV ),

p(u) �→ •◦p(x)

V

, p(u) �→ •◦p(x)

V

. (4.1)

Also let εi (V ) and φi (V ) denote the multiplicities of i ∈ k as a root of the polynomials
mV (u) and nV (u), respectively. By the Chinese remainder theorem, we have that

k[u]/(mV (u)) ∼=
⊕

i∈k

k[u]/((u − i)εi (V )
)
, k[u]/(nV (u)) ∼=

⊕

i∈k

k[u]/((u − i)φi (V )
)
. (4.2)

There are corresponding decompositions 1 = ∑
i∈k

ei of and 1 = ∑
i∈k

fi of the
identity elements of these algebras as a sum of mutually orthogonal idempotents. We
define Ei V and Fi V to be the summands of EV and FV , respectively, defined by the
images of the idempotents ei and fi under (4.1).
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Wewill represent the identity endomorphisms of the functors Ei and Fi by vertical
strings colored by i , see the first pair of diagrams below. The inclusions Ei ↪→ E and
Fi ↪→ F are depicted by the second pair of diagrams below. The projections E � Ei

and F � Fi are the final pair.

i

: Ei ⇒ Ei ,

i

: Fi ⇒ Fi ,

i

: Ei ⇒ E,

i

: Fi ⇒ F,

i

: E ⇒ Ei ,

i

: F ⇒ Fi .

To illustrate the notation, the natural transformation i : E ⇒ E is the projection of
E onto its summand Ei , while

j

i

= δi, j

i

. (4.3)

It is also clear from the definition that the endomorphisms of E and F defined by
the dots restrict to endomorphisms of the summands Ei and Fi . Representing these
restrictions simply by drawing the dots on a string colored by i , we have that

•◦
i

= •◦
i

, •◦
i

= •◦
i

, •◦
i

= •◦
i

, •◦
i

= •◦
i

. (4.4)

Since the downwards dot is both the left and right mate of the upwards dot, the
adjunctions (E, F) and (F, E) induce adjunctions (Ei , Fi ) and (Fi , Ei ) for all i ∈ I .
We draw the units and counits of these adjunctions using cups and caps colored by i .
Again, the various inclusions and projections commute with these morphisms:

i
=

i
,

i
=

i
,

i
=

i
,

i
=

i
,

i
=

i
,

i
=

i
,

i
=

i
,

i
=

i
.

(4.5)

The situation with crossings is more interesting. For i, j, i ′, j ′ ∈ k, define

j i

j ′ i ′

� :=
j i

j ′ i ′

in the degenerate case,

j i

j ′ i ′

� :=
j i

j ′ i ′

,

j i

j ′ i ′

� :=
j i

j ′ i ′
in the quantum case.

(4.6)

Thus, these natural transformation are defined by first including the summand E j Ei

into E E , then applying natural transformation E E ⇒ E E defined by the usual cross-
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ing (positive or negative in the quantum case), then projecting E E onto the summand
E j ′ Ei ′ . The defining relations plus (4.4) imply that

j i

j ′ i ′

�•◦ =
j i

j ′ i ′

�•◦ + δi,i ′δ j, j ′
j i

,

j i

j ′ i ′

�•◦ =
j i

j ′ i ′

�•◦ + δi,i ′δ j, j ′
j i

(4.7)

in the degenerate case, or

j i

j ′ i ′

�•◦ =
j i

j ′ i ′

�•◦
,

j i

j ′ i ′

�•◦ =
j i

j ′ i ′

�•◦ ,

j i

j ′ i ′

� −
j i

j ′ i ′

� = δi,i ′δ j, j ′ z
j i

(4.8)

in the quantum case. There are also sideways and downwards versions of the new
crossings which may be defined in a similar way, or equivalently by “rotating” the
upwards ones using (4.5). The following lemma is well known but essential.

Lemma 4.1 If {i, j} �= {i ′, j ′} then the natural transformation (4.6) is zero. The same
holds for the rotated versions of these crossings.

Proof For the rotated crossings the lemma follows from the upwards case using also
(4.5). To prove the result for the upwards crossing, we just explain in the degenerate
case; the quantum case is similar using (4.8) in place of (4.7). If {i, j} �= {i ′, j ′}
then one of the following holds: i /∈ {i ′, j ′}, j /∈ {i ′, j ′}, i ′ /∈ {i, j} or j ′ /∈ {i, j}.
Suppose first that j /∈ {i ′, j ′} or i ′ /∈ {i, j}. It suffices to show that the natural
transformation vanishes on every finitely generated V ∈ R. We can find polynomials
f (u), g(u) ∈ k[u] so that f (u)(u − j)ε j (Ei V ) + g(u)(u − i ′)εi ′ (V ) = 1. Letting
p(u) := g(u)(u − i ′)εi ′ (V ), we then use (4.7) to see that

�
j i

j ′ i ′

V

= �
j i

j ′ i ′

•◦p(x)

V

= �
j i

j ′ i ′•◦p(x)

V

= 0.

A similar argument with the dot on the other string treats the cases i /∈ {i ′, j ′} or
j ′ /∈ {i, j}. ��
Nowwe come to an extremely useful diagrammatic convention.On any finitely gen-

erated V ∈ R, the endomorphism
i
•◦x−i V is nilpotent, hence, the notation

i
•◦p(x) V

makes sense for power series p(x) ∈ k[[x − i]] rather than merely for polynomials.
Since any object ofR is a direct limit of finitely generated objects, it follows that there
is a well-defined natural transformation

i

•◦p(x) : Ei ⇒ Ei (4.9)
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for any i ∈ k and any p(x) ∈ k[[x − i]]. The same definition can be made for
dots on downward strings too. More generally, suppose that we are given some more
complicated string diagram for a natural transformation between some endofunctors of
R, together with a sequence of n points P1, . . . , Pn on strings colored i1, . . . , in ∈ k

in this diagram. Then for any p(x1, . . . , xn) ∈ k[[x1 − i1, . . . , xn − in]] there is a
well-defined natural transformation represented diagrammatically by drawing a dot
on each of the given points in the given diagram then joining them up with a dotted
arrow directed from P1 to Pn labelled by the power series p(x1, . . . , xn). Thus, x1
indicates x labelling the first dot (the one nearest the tail of the arrow) and xn indicates
x labelling the last dot (the one nearest the head). To give an example, suppose that
n = 2 and i1 �= i2. Set c := (i2 − i1)−1 so that (x2 − x1)−1 ∈ k[[x1 − i1, x2 − i2]] has
power series expansion c − c2(x1 − i1)+ c2(x2 − i2)+ (higher order terms). Then we
have defined the natural transformations

i2

•◦
i1

•◦(x2−x1)−1 = c
i2 i1

− c2

i2 i1

•◦x−i1 + c2

i2 i1

•◦x−i2 + · · · ,

i1

•◦
i2

•◦(x2−x1)−1 = c
i1 i2

− c2

i1 i2

•◦x−i1 + c2

i1 i2

•◦x−i2 + · · · .

These natural transformations appear in the following lemma.

Lemma 4.2 For j �= i , we have that

j i

j i

� =
j

•◦
i

•◦(x2−x1)−1 in the degenerate case,

j i

j i

� = z
j

•◦
i

•◦x2(x2−x1)−1 ,

j i

j i

� = z
j

•◦
i

•◦x1(x2−x1)−1 in the quantum case.

Proof It suffices to prove this when the natural transformations are evaluated on a
finitely generated object V ∈ R. We have to prove that

φ :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

j i

j i

�
V

−
j

•◦
i

•◦(x2−x1)−1

V

in the degenerate case,

j i

j i

�
V

− z
j

•◦
i

•◦x2(x2−x1)−1

V

in the quantum case

is zero in the finite-dimensional algebra A := EndR(E j Ei V ). Let L : A → A
be the linear map defined by left multiplication (diagrammatically, this is vertical

composition on the top) by
j i
•◦ V , let R : A → A be the linear map defined by

right multiplication (diagrammatically, this is vertical composition on the bottom) by
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j i
•◦ V , and let I : A → A be the identity map. We have that (L − j I )ε j (Ei V ) = 0

and (R − i I )εi (V ) = 0. Hence, for sufficiently large N , we have that

((L − R) + (i − j)I )N = ((L − j I ) − (R − i I ))N = 0.

Now observe that (L − R)(φ) = 0 by the relations (4.7) and (4.8). Hence, we have
shown that (i − j)N φ = 0. Since i �= j this implies that φ = 0. ��

4.2 Bubbles and central characters

Any dotted bubble inHeisk defines an endomorphism of the identity functor IdR, i.e.,
an element of the center of the category R. In particular, for V ∈ R, dotted bubbles
evaluate to elements of the center ZV of the endomorphism algebra EndR(V ). It is
convenient to work with all of these endomorphisms at once in terms of the generating
function

OV (u) := (u)

V
=

(

(u)

V

)−1

. (4.10)

Recalling (3.12) and (3.35), we have OV (u) ∈ uk + uk−1ZV [[u−1]]. In the quantum
case, there is also a distinguished element tV ∈ Z×

V define by the action of t11. In the
following lemma, given a polynomial p(u) = ∑r

s=0 zsur−s ∈ ZV [u], we let

•◦p(x)

V

:=
r∑

s=0

•◦xr−s

V

zs , •◦p(x)

V

:=
r∑

s=0

•◦xr−s zs

V

.

Lemmas 3.1 and 3.5 obviously extend to the setting of coefficients in ZV .

Lemma 4.3 Let V ∈ R be any object.

(1) If f (u) ∈ ZV [u] is a monic polynomial such that •◦f (x) V = 0, then g(u) :=
OV (u) f (u) is a monic polynomial in ZV [u] of degree deg f (u) + k such that
g(x)•◦ V = 0.

(2) If g(u) ∈ ZV [u] is a monic polynomial such that g(x)•◦ V = 0, then f (u) :=
OV (u)−1g(u) is a monic polynomial in ZV [u] of degree deg g(u) − k such that

•◦f (x) V = 0.

In the quantum case, we also have that f (0) = t2V g(0) in both situations.

Proof We just consider (1), since (2) is similar. To show that g(u) is a polynomial, we
must show that [g(u)]u−r−1 = 0 for r ≥ 0. Let p(u) := ur f (u) in the degenerate case
or p(u) := t−1

V zur+1 f (u) in the quantum case. Applying (3.20) or (3.41), we have
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that

[
g(u)

]
u−r−1 = [

OV (u) f (u)
]

u−r−1 =
⎡

⎢
⎣ (u)

V

f (u)

⎤

⎥
⎦

u−r−1

= •◦p(x)

V

.

This is zero as •◦f (x) V = 0. Hence, g(u) is a polynomial in u. Moreover, in the
quantum case the same argument with r = −1 gives that g(0) = t−2

V f (0).

It remains to show that •◦g(x) V = 0. In the degenerate case, this follows by (3.19)
and (3.21):

•◦g(x)

V

=
⎡

⎢
⎣ (u−x)−1•◦

V

g(u)

⎤

⎥
⎦

u−1

=
⎡

⎢
⎣ (u−x)−1•◦ (u)

V

f (u)

⎤

⎥
⎦

u−1

= f (x)•◦
V

= 0.

The proof in the quantum case is similar, using (3.40) and (3.42) instead. ��
If L ∈ R is irreducible then of course OL(u) ∈ k((u−1)). The following relates

the central character information encoded in this generating function to the minimal
polynomials mL(u) and nL(u) introduced earlier.

Lemma 4.4 For an irreducible object L ∈ R, we have that

OL(u) = nL(u)/mL(u).

Moreover, in the quantum case, the (invertible!) constant terms of the polynomials
mL(u) and nL(u) satisfy t2L = mL(0)/nL(0).

Proof Applying Lemma 4.3(1) with f (u) = mL(u) shows that OL(u)mL(u) is a
monic polynomial of degree degmL(u) + k which is divisible by nL(u). Hence,
deg nL(u) ≤ degmL(u) + k. Applying Lemma 4.3(2) with g(u) = nL(u) shows
that OL(u)−1nL(u) is a monic polynomial of degree deg nL(u) − k that is divisible
by mL(u). Hence, degmL(u) ≤ deg nL(u) − k. We deduce that both inequalities are
equalities, and we actually have that nL(u) = OL(u)mL(u). The assertion about the
constant terms follows from the final part of Lemma 4.3. ��

For i ∈ k, define i± as in the introduction.

Lemma 4.5 Suppose that L ∈ R is an irreducible object and let K be an irreducible
subquotient of Ei L for some i ∈ k. Then

OK (u) = OL(u)(u − i)2

(u − i+)(u − i−)
. (4.11)
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Proof This follows from the bubble slides (3.18) and (3.39). For example, in the
degenerate case, we have by (3.18) that

(u)

i L

= (u)
(u−x)2

(u−(x+1))(u−(x−1)) •◦
Li

= OL (u)(u−x)2

(u−(x+1))(u−(x−1)) •◦
Li

.

When we pass to the irreducible subquotient K of Ei L , we can replace the occurences
of x in the expression on the right-hand side here with i , and the lemma follows. ��

Nowwe define the spectrum I ofR to be the union of the sets of roots of theminimal
polynomials mL(u) for all irreducible L ∈ R. Noting that i is a root of mL(u) if and
only if Ei L �= 0, we have equivalently that I is the set of all i ∈ k such that Ei L �= 0
for some irreducible L ∈ R. In view of the exactness of Ei , we can drop the word
“irreducible” in this characterization: the spectrum I is the set of all i ∈ k such that
Ei is a non-zero endofunctor of R. By adjunction, it follows that I is the set of all
i ∈ k such that the endofunctor Fi is non-zero, hence, I could also be defined as the
union of the sets of roots of the polynomials nL(u) for all irreducible L ∈ R. This
discussion shows that

E =
⊕

i∈I

Ei , F =
⊕

i∈I

Fi , (4.12)

with each of the endofunctors Ei and Fi written here being non-zero.

Lemma 4.6 We have that i ∈ I if and only if i+ ∈ I . Moreover, in the quantum case,
we have that 0 /∈ I .

Proof The fact that 0 /∈ I in the quantum case follows from the invertibility of the
dot. For the first part, it suffices to show for i ∈ I that i+ and i− both belong to I .
Let j := i± for some choice of the sign. As i ∈ I , there is an irreducible L ∈ R such
that Ei L �= 0. Let K be an irreducible subquotient of Ei L . By (4.11), we have that
OK (u)(u − i+)(u − i−) = OL(u)(u − i)2. Using Lemma 4.4, we deduce that

mL(u)nK (u)(u − i+)(u − i−) = mK (u)nL(u)(u − i)2.

Thus (u − j) divides either mK (u) or nL(u), so either E j K �= 0 or Fj L �= 0. This
shows that E j �= 0 or Fj �= 0, hence, j ∈ I . ��

In view of Lemma 4.6, the map i �→ i+ defines a fixed-point-free automorphism
of I . This puts us in the situation of Sect. 3.3, so we can associate a Kac–Moody
Lie algebra g with weight lattice X , fundamental weights {	i | i ∈ I }, etc. For an
irreducible object L ∈ R, let

wt(L) :=
∑

i∈I

(φi (L) − εi (L))	i ∈ X . (4.13)

In other words, due to the definition preceeding (4.2) and Lemma 4.4, 〈hi ,wt(L)〉 ∈ Z

is the multiplicity of u = i as a zero or pole of the rational function OL(u) ∈ k(u)
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for each i ∈ I . Then for λ ∈ X we let Rλ be the Serre subcategory of R consisting
of the objects V such that every irreducible subquotient L of V satisfies wt(L) = λ.
The point of this definition is that irreducible objects K , L ∈ R with wt(K ) �= wt(L)

have different central characters. Using also the general theory of blocks in our two
sorts of Abelian category, it follows that

R =
{⊕

λ∈X Rλ ifR is locally finite Abelian,
∏

λ∈X Rλ ifR is Schurian.
(4.14)

We refer to this as the weight space decomposition of R.

Lemma 4.7 For λ ∈ X and i ∈ I , the restrictions of Ei and Fi to Rλ give functors

Ei |Rλ
: Rλ → Rλ+αi , Fi |Rλ

: Rλ → Rλ−αi ,

Proof For Ei , this follows from Lemma 4.5. Then it follows for Fi by adjunction. ��

4.3 Themain isomorphism

The next lemma is quite trivial but serves as a good warm-up exercise for the one that
follows.

Lemma 4.8 For i, j ∈ I with j �= i , the natural transformations

j i

i j

� : Fj Ei ⇒ Ei Fj ,

i j

j i

� : Ei Fj ⇒ Fj Ei

are mutually inverse isomorphisms. (Here, we have drawn the crossings in the degen-
erate case; in the quantum case they should be interpreted as positive or negative
crossings, it does not matter which is chosen.)

Proof Check that the compositions both ways around are the identities. For example,
one way in the degenerate case gives

j i

j i

i j
�
� =

j i

j i

=
j

i

+
∑

r ,s≥0

•◦−r−s−2

j

ij

i

•◦s

•◦r =
j

i

,

using Lemma 4.1 (the sideways crossing version!) for the first equality, the relation
(3.8) for the second, and (4.3)–(4.5) for the final one. The other cases are similar. ��

Now we come to what is really the main step. In the statement of the following
two lemmas, the restrictions Fi Ei |Rλ and Ei Fi |Rλ are endofunctors of Rλ due to
Lemma 4.7.
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Lemma 4.9 Given λ ∈ X and i ∈ I such that 〈hi , λ〉 ≤ 0, the natural transformation
⎡

⎢
⎣

i i

i i

�
i i

•◦ x−i · · ·
i

•◦ (x−i)−〈hi ,λ〉−1

⎤

⎥
⎦ : Ei Fi |Rλ

⊕ Id⊕(−〈hi ,λ〉)
Rλ

⇒ Fi Ei |Rλ

is an isomorphism. (This time, we have drawn the crossing in the quantum case; in
the degenerate case it should be replaced by the degenerate crossing.)

Proof We just prove this in the quantum case; the degenerate case is similar. It suffices
to prove that the natural transformation in the statement of the lemma defines an
isomorphism on every irreducible object L ∈ Rλ; in the Schurian case one needs
to apply Lemma 2.1 to make this reduction. So take an irreducible L ∈ Rλ. We
have that m := εi (L) − φi (L) = −〈hi , λ〉 ≥ 0. Let P := k[u]/(mL(u)) and Q :=
k[u]/(nL(u)). Let Pi and Qi be the summands of P and Q that are isomorphic to
k[u]/((u − i)εi (L)

)
and k[u]/((u − i)φi (L)

)
in the CRT decomposition (4.2). To be

explicit, let f (u) and g(u) be polynomials such that

f (u)mL(u)/(u − i)εi (u) ≡ 1 (mod (u − i)εi (L)),

g(u)nL(u)/(u − i)φi (u) ≡ 1 (mod (u − i)φi (L)).

Then the identity elements ei ∈ Pi and fi ∈ Qi are the images of f (u)mL(u)/(u −
i)εi (L) and g(u)nL(u)/(u − i)φi (L) in P and Q, respectively. Moreover, f (u) is
invertible in Pi , so Pi can be described equivalently as the ideal of P generated by
mL(u)/(u − i)εi (L). Similarly, Qi is the ideal of Q generated by nL(u)/(u − i)φi (L).
There is an injective k[u]-module homomorphism

μ : Qi ↪→ Pi , nL(u)/(u − i)φi (L) �→ t−1
L mL(u)/(u − i)φi (L).

Its image has basis (u − i)mei , (u − i)m+1ei , . . . , (u − i)εi (L)−1ei . Let Ci be the
subspace of Pi with basis ei , (u − i)ei , . . . , (u − i)m−1ei . This is a linear complement
to μ(Qi ) in Pi .

The composition of the algebra embeddings (4.1)with the adjunction isomorphisms
EndR(E L) ∼= HomR(L, F E L) and EndR(F L) ∼= HomR(L, E F L) give us linear
embeddings �β : P ↪→ HomR(L, F E L) and �β : Q ↪→ HomR(L, E F L), respec-
tively. So:

�β(p(u)) = p(x)•◦
L

, �β(p(u)) = p(x)•◦
L

.

Recalling (2.3), the linear maps �β and �β induce morphisms

�γ : L ⊗ P → F E L, �γ : L ⊗ Q → E F L.

For example, if v1, . . . , vn is the fixed basis for P then �γ is the morphism L⊕n →
F E L defined by the matrix

[ �β(v1) · · · �β(vn)
]
. As the morphisms �β(v1), . . . , �β(vn) :
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L → F E L are linearly independent and L is irreducible, �γ is a monomorphism.
Similarly, so is �γ . As �β(ei ) maps L into the summand Fi Ei L of F E L , we have that
�γ (L ⊗ Pi ) ⊆ Fi Ei L . Similarly, �γ (L ⊗ Qi ) ⊆ Ei Fi L . Finally, let

�χ :=
i i

i i

�
L

: Ei Fi L → Fi Ei L, �χ :=
i i

i i

�
L

: Fi Ei L → Ei Fi L.

We are trying to prove that the morphism

[
�χ �β (ei ) �β ((u − i)ei ) · · · �β((u − i)m−1ei

)] : Ei Fi L ⊕ L⊕m → Fi Ei L

is an isomorphism. Equivalently, using the basis ei , (u − i)ei , . . . , (u − i)m−1ei for
Ci to identify L ⊗ Ci with L⊕m , we must show that

θ := [ �χ �γ |L⊗Ci

] : Ei Fi L ⊕ L ⊗ Ci → Fi Ei L

is an isomorphism. This follows from the following series of claims.

Claim 1: �χ( �γ (L ⊗ Pi )) ⊆ �γ (L ⊗ Qi ). To justify this, take p(u) ∈ Pi , we have that

�χ( �β(p(u))) = ii
p(x)•◦

i i

�
L

=
i i

p(x)•◦
i

L

=
p(x)

i i

•◦
L

.

Using the defining relations, p(x) can now be commuted past the crossing and the
curl can be “straightened.” The resulting morphism clearly has image in �γ (L ⊗ Qi ).

Claim 2: �χ ◦ �γ = �γ ◦ (L ⊗ μ). Take a polynomial p(u) ∈ k[u] representing
an element of Qi , i.e., a polynomial divisible by nL(u)/(u − i)φi (L). Let q(u) :=
t−1
L p(u)mL(u)/nL(u) ∈ k[u]. This is a representative for the image of p(u) under
μ : Qi → Pi . Using Lemmas 3.3 and 4.4, we have that

�χ( �β(p(u))) = ii
p(x)•◦

i i

�
L

=
i i

p(x)•◦
i

L

=
p(x)

i i

•◦
L

= t−1

⎡

⎢
⎣p(u)

i

(u−x)−1•◦
(u)

L

⎤

⎥
⎦

u−1

=
⎡

⎣t−1
L p(u)OL(u)−1

i

(u−x)−1•◦
L

⎤

⎦

u−1

=
⎡

⎣q(u)
i

(u−x)−1•◦
L

⎤

⎦

u−1

=
i

q(x)•◦
L

= �β(μ(p(u))).
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The claim follows from this using the definitions of �γ and �γ .

Claim 3: We have that �χ ◦ �χ = 1Fi Ei L + φ for some morphism φ : Fi Ei L → Fi Ei L
whose image is contained in �γ (L ⊗ Pi ). Similarly, �χ ◦ �χ = 1Ei Fi L + φ for some
morphism φ : Ei Fi L → Ei Fi L whose image is contained in �γ (L ⊗ Qi ). We just
explain in the first case. We have that

�χ ◦ �χ =
i i

i i

i i

L

�
� =

i i

i i L

−
∑

j �=i

i i

i i

j j

L

�
� =

i i

i i L

− z

i

i i L

−
∑

j �=i

i i

i i

j j

L

�
�

=
i

i L

+ t z

i

i L

+ z2
∑

r ,s>0

+−r−s

i

i

•◦s

•◦r

L

− z

i

i i L

−
∑

j �=i

i i

i i

j j

L

�
� .

The second, third and fourth terms on the right-hand side are morphisms whose image
is contained in �γ (L ⊗ Pi ). It just remains to see that the final term consists of such
morphisms too. Take j �= i . Like in the proof of Lemma 4.1, we can find a polynomial
p(u) ∈ k[u] divisible by (u − j)φ j (L) so that p(u) ≡ 1 (mod (u − i)φi (Ei L)). We
have that

i i

i i

j j

L

�
� =

i i

i i

j j

L

�
�

p(x)•◦
.

Now using the commutation relations (4.8), we commute p(x) past the crossing to
produce a term that is zero as p(x) is divisible by a sufficiently large power of (x − j),
plus correction terms all of which are morphisms with image lying in �γ (L ⊗ Pi ).

Claim 4: θ is an epimorphism. Note by the first assertion from Claim 3 that Fi Ei L ⊆
�χ(Ei Fi L) + �γ (L ⊗ Pi ). Claim 2 implies that �γ (L ⊗ μ(Qi )) = �χ( �γ (L ⊗ Qi )) ⊆
�χ(Ei Fi L). Since Pi = μ(Qi )⊕Ci , we deduce that Fi Ei L ⊆ �χ(Ei Fi L)+ �γ (L ⊗Ci )

as required.

Claim 5: θ is a monomorphism. Let K be its kernel. Of course, K is contained in the
kernel of the composition �χ ◦ θ = [ �χ ◦ �χ �χ ◦ �γ |L⊗Ci

]
. Using the second assertion

from Claim 3 together with Claim 1, we deduce that K ⊆ �γ (L ⊗ Qi ) ⊕ L ⊗ Ci .
Hence, it suffices to show that

[ �χ ◦ �γ �γ |L⊗Ci

] : L ⊗ Qi ⊕ L ⊗ Ci → Fi Ei L
is a monomorphism. Using Claim 2 again, this follows because both L ⊗ μ and
�γ = [ �γ |μ(Qi )⊗L �γ |L⊗Ci

]
are monomorphisms. ��
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Lemma 4.10 Given λ ∈ X and i ∈ I such that 〈hi , λ〉 ≥ 0, the natural transformation

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

i i

i i

�

i

•◦x−i
i

...

(x−i)〈hi ,λ〉−1•◦
i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

: Ei Fi |Rλ ⇒ Fi Ei |Rλ ⊕ Id⊕〈hi ,λ〉
Rλ

is an isomorphism. (Again, we have just drawn the crossing in the quantum case.)

Proof Let (Heisk)
op be the opposite category viewed as a monoidal category with the

same horizontal composition law as in Heisk . Let Heis′−k be the k-linear category
Heis−k in the degenerate case, or the K-linear category defined in the same way as
Heis−k but with t replaced by t−1 in the quantum case. By [4, Lemma 2.1] or [13,
Theorem 3.2], there is a k-linear isomorphism � : Heis−k

∼→ (Heis′
k)

op defined by
reflecting diagrams in a horizontal plane, then multiplying by (−1)x+y where x is
the total number of crossings and y is the total number of leftward cups and caps in
the diagram. Saying that R is a module category over Heisk is equivalent to saying
thatRop is a module category over (Heisk)

op. Note moreover thatRop is an Abelian
category of the same type (locally finite Abelian or Schurian) as R itself due to [15,
(2.2), (2.10)]. Its pull-back through the isomorphism � gives us a Heis′−k-module
category �∗(Rop). Moreover

(�∗(Rop))−λ = (Rλ)
op.

This follows from (4.13) since � switches E and F . Now we take λ ∈ X with
〈hi , λ〉 ≥ 0 and consider the natural transformation between endofunctors ofRλ from
the statement of the lemma. This natural transformation can be viewed instead as a
natural transformation Fi Ei |(Rλ)op ⊕ Id⊕〈hi ,λ〉

(Rλ)op ⇒ Ei Fi |(Rλ)op between endofunctors
of (Rλ)

op. This is just the same as the natural transformation Ei Fi |(�∗(Rop))−λ
⊕

Id⊕(−〈hi ,−λ〉)
(�∗(Rop))−λ

⇒ Fi Ei |(�∗(Rop))−λ
from Lemma 4.9 applied to the weight −λ and

the Heis′−k-module category �∗(Rop). Hence, it is an isomorphism by the previous
lemma. ��

4.4 Heisenberg to Kac–Moody

Now we can prove the main theorem of the section. Recall that R is a locally finite
Abelian or Schurian module category overHeisk . Let Ei and Fi be the eigenfunctors
from Sect. 4.1, and recall the various diagrams representing natural transformations
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between these functors introduced there. Let I be the spectrum of R as in Sect. 4.2,
and U(g) be the corresponding Kac–Moody 2-category as in Sect. 3.3. We also need
the weight space decomposition ofR from (4.14). As in [10], there is some freedom in
the following theorem as it involves a choice of normalization; for the sake of clarity,
we have fixed a particular one.

Theorem 4.11 Associated to R, there is a unique 2-representation R : U(g) → Catk
defined on objects by λ �→ Rλ, on generating 1-morphisms by Ei1λ �→ Ei |Rλ and
Fi1λ �→ Fi |Rλ , and on generating 2-morphisms by

i

• λ �→
i

•◦ x−i ,
i

λ �→
i

,
i

λ �→
i

,

j i

λ �→

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
i i

i i

•◦ •◦(x2−x1+1)−1
+

i i

•◦ •◦(x2−x1+1)−1 if j = i ,

�
i+1

i i+1

i
•◦ •◦ x2−x1

if j = i+,

− �
j i

ji

•◦ •◦(x2−x1)(x2−x1−1)−1
if j �= i, i+

in the degenerate case, or

i

• λ �→
i

•◦ x
i −1 ,

i
λ �→

i
,

i
λ �→

i
,

j i

λ �→

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i �
i i

i i

•◦ •◦(qx2−q−1x1)−1
+ q−1i

i i

•◦ •◦(qx2−q−1x1)−1 if j = i ,

q−1i−1 �
q2i

i q2i

i
•◦ •◦ x2−x1

if j = i+,

− �
j i

ji

•◦ •◦(x2−x1)(q−1x2−qx1)−1
if j �= i, i+

in the quantum case.
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Proof We need to verify the defining relations (3.45)–(3.48) and (3.56)–(3.58).
The quiver Hecke algebra relations (3.45)–(3.47) follow from the calculations per-

formed in [10]. Note also that our formulae look different from the ones in [10] in
the quantum case due to the fact that we are working with a different normalization
for the quadratic relation in the Hecke algebra. In fact, it is perfectly reasonable to
check all of the relations (3.45)–(3.47) from scratch without referring to [10] at all;
the diagrammatic formalism now in place makes this particularly convenient. To give
the flavor of the calculation, we check the quadratic relation (3.46) in the quantum
case. One first uses (4.8) to check that

j i

λ �→

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−i �
i i

i i•◦ •◦(q−1x2−qx1)−1 + q−1i

i i

•◦ •◦(q−1x2−qx1)−1 if j = i ,

−qi−1 �
i

q−2i i

q−2i

•◦ •◦ x2−x1
if j = i−,

− �
i j

ij
•◦ •◦(x2−x1)(qx2−q−1x1)−1

if j �= i, i−.

Then, we place the right-hand side of the expression just displayed on top of the
formula for the crossing from the statement of the theorem, to obtain a natural transfor-
mation θ . This is easily seen to be zero in the case j = i as required. We are left with
four cases: j− = i �= j+, j− �= i = j+, j− = i = j+ and j− �= i �= j+. According
to (3.46), we need to show that θ equals

j i
•◦ •◦ f where f = −q−1i−1(q−1x2 − qx1),

qi−1(qx2 − q−1x1), −i−2(qx2 − q−1x1)(q−1x2 − qx1) or 1 in these four cases. Note
moreover that

g := (qx2 − q−1x1)(q
−1x2 − qx1) = (x1 − x2)

2 − z2x1x2.

Hence, we have that f = gab where

a :=
{−qi−1 if j = i−,

−(qx2 − q−1x1)−1 if j �= i−,
, b :=

{
q−1i−1 if j = i+,

−(q−1x2 − qx1)−1 if j �= i+.

To complete the analysis, we just have to use Lemmas 4.1–4.2 to see that

θ =

j i

j i

i j
�
�

•◦ (x2−x1)a•◦

•◦ (x2−x1)b•◦
=

j i

j i

•◦ (x2−x1)a•◦

•◦ (x2−x1)b•◦
−

j i

j i

j i
�
�

•◦ (x2−x1)a•◦

•◦ (x2−x1)b•◦
=

j i

•◦•◦ (x2−x1)2ab−z2x1x2ab =

j i

•◦•◦ gab ,

which is what we wanted as f = gab.
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The adjunction relation (3.48) is immediate.
Finally, we need to check the inversion relation. This depends on Lemmas 4.8–4.10.

As usual we just go through the details in the quantum case. First, we observe using
(4.8) that

i

j

λ �→

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i �
i i

i i
•◦ •◦(qx2−q−1x1)−1 = −i �

i i

i i

•◦ •◦(q−1x2−qx1)−1
if j = i ,

q−1i−1 �
i

q2i i

q2i
•◦ •◦ x2−x1

if j = i+,

− �
i j

ij

•◦ •◦(x2−x1)(qx2−q−1x1)−1
if j �= i, i+.

(4.15)

Using this, we can compute the images of the morphisms in (3.56)–(3.58). The first is
equal to the morphism from Lemma 4.8 composed on the right by another invertible
morphism, hence, it is invertible. Similarly, the second is equal to the morphism from
Lemma 4.9 composed on the right by an invertible diagonal matrix. Finally, the last
one is equal to the morphism from Lemma 4.10 composed on the left by an invertible
diagonal matrix. This completes the proof. ��
Remark 4.12 In the setup of Theorem 4.11, the images of the generating 2-morphisms

i
λ and

i
λ are uniquely determined by the images of the other generators thanks to

Lemma 3.4. It is not easy to find explicit formulae for these in practice. Nevertheless,
we do understand how to apply R to dotted bubbles, although it is easier for this to go
in the other direction; see (5.37) and (5.38) below.

5 Generalized cyclotomic quotients

The Heisenberg category Heisk (resp., the Kac–Moody 2-category U(g)) has some
universal cyclic module categories (resp., 2-representations) known as generalized
cyclotomic quotients (GCQs for short). In this section, we construct an explicit isomor-
phism between Heisenberg and Kac–Moody GCQs, and use this to prove a converse
to Theorem 4.11.

5.1 Kac–Moody 2-representations

Let U(g) be the Kac–Moody 2-category as in Sect. 3.3. Its 2-representation theory has
been developed rather fully in the literature. We begin the section by reviewing some
of the basic facts established in [17,34]; see also [8] which extended some of the results
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to the Schurian setting. Actually, as discussed in the introduction, the history here is
a little convoluted, since many of these results were first established in the setting
of (degenerate) affine Hecke algebras. However, with hindsight, the proofs are most
naturally explained in terms of the representation theory of the nil-Hecke algebra.

Suppose that we are given a locally finite Abelian or Schurian 2-representation
(Rλ)λ∈X of U(g). Let

R :=
{⊕

λ∈X Rλ in the locally finite Abelian case,
∏

λ∈X Rλ in the Schurian case,
(5.1)

which is again a locally finite Abelian or Schurian category. The functors Ei |Rλ and
Fi |Rλ

for all λ define endofunctors Ei and Fi of R. The rightwards and leftwards
cups and caps in U(g) define canonical adjunctions (Ei , Fi ) and (Fi , Ei ) for all i ∈ I .
In particular, Ei and Fi are sweet endofunctors of R. There are also divided power
functors E (r)

i , F (r)
i such that Er

i
∼= (E (r)

i )⊕r ! and Fr
i

∼= (E (r)
i )⊕r !. These are con-

structed using the action of the nil-Hecke algebra on the functors Er
i and Fr

i . The

divided power functors induce endomorphisms e(r)
i := [E (r)

i ] and f (r)
i := [F (r)

i ] of
the Grothendieck group

K0(R) =
⊕

λ∈X

K0(Rλ) (5.2)

as defined in Sect. 2.2, making K0(R) into an integrable module over the Kostant
Z-form for the universal enveloping algebra of U (g) with (5.2) as its weight space
decomposition. This assertion is a consequence of the categorical Serre relations
proved in [34, Proposition 4.2] (see also [26, Corollary 7]); the integrability is [8,
Lemma 3.6].

We will assume from now on that the 2-representation (Rλ)λ∈X is nilpotent, mean-
ing that the following hold:

• For each λ ∈ X and V ∈ Rλ, we have that Ei V = Fi V = 0 for all but finitely
many i ∈ I .

• The endomorphisms
i
• Vλ : Ei V → Ei V are nilpotent for all i ∈ I , λ ∈ X

and finitely generated V ∈ Rλ; equivalently, all of the endomorphisms
i
• Vλ are

nilpotent.

The first property implies that

E :=
⊕

i∈I

Ei , F :=
⊕

i∈I

Fi (5.3)

are well-defined endofunctors of R. The canonical adjunctions (Ei , Fi ) and (Fi , Ei )

for all i induce adjunctions (E, F) and (F, E), hence, these are sweet endofunctors
too. By the second property, it makes sense to define εi (V ) and φi (V ) to be the
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nilpotency degrees of the endomorphisms
i
• Vλ and

i

• Vλ , respectively, for any

finitely generated V ∈ Rλ and i ∈ I . In other words, the minimal polynomials of
these endomorphisms are uεi (V ) and uφi (V ), respectively.

Like in Sect. 4.2, for any λ ∈ X and V ∈ Rλ, we let ZV := Z(EndR(V )). Then,
assuming that V is finitely generated so that all but finitely many bubbles act as zero
due to the assumption of nilpotency, we define

OV ,i (u) := i (u)

V

λ =
(

i (u)

V

λ

)−1

∈ u〈hi ,λ〉 + u〈hi ,λ〉−1ZV [u−1] (5.4)

for each i ∈ I . The following are the Kac–Moody counterparts of Lemmas 4.3–4.4;
see also [41, Lemma 3.8].

Lemma 5.1 Suppose that i ∈ I and V is a finitely generated object of Rλ for λ ∈ X.

(1) If f (u) ∈ ZV [u] is a monic polynomial such that •
i

f (y) λ V = 0, then g(u) :=
OV ,i (u) f (u) is a monic polynomial in ZV [u] of degree deg f (u) + 〈hi , λ〉 such

that •
i

g(y) λ V = 0.

(2) If g(u) ∈ ZV [u] is a monic polynomial such that •
i

g(y) λ V = 0, then f (u) :=
OV ,i (u)−1g(u) is a monic polynomial in ZV [u] of degree deg g(u) − 〈hi , λ〉 such
that •

i

f (y) λ V = 0.

Proof Mimic the proof of Lemma 4.3 using Lemma 3.5. ��
Lemma 5.2 Let L ∈ Rλ be an irreducible object. For i ∈ I , we have that

OL,i (u) = uφi (L)−εi (L).

In particular, φi (L) − εi (L) = 〈hi , λ〉.
Proof We first apply Lemma 5.1(1) with f (u) = uεi (L) to deduce that OV ,i (u)uεi (L)

is a monic polynomial of degree εi (L) + 〈hi , λ〉 divisible by uφi (L). Hence, φi (L) ≤
εi (L) + 〈hi , λ〉. Then we apply Lemma 5.1(2) with g(u) = uφi (L) to deduce that
OV ,i (u)−1uφi (L) ismonic of degreeφi (L)−〈hi , λ〉 divisible by uεi (L). Hence, εi (L) ≤
φi (L)−〈hi , λ〉. We deduce that both inequalities are equalities and the lemma follows.

��
Corollary 5.3 If V ∈ Rλ is any finitely generated object, all coefficients of OV ,i (u)

apart from the leading one are nilpotent.

Proof Lemma 5.2 shows that the natural transformations defined by the bubbles
• r

i
λ for r ≥ −〈hi , λ〉 are zero on all irreducible objects L ∈ Rλ. Hence, they

define elements of the Jacobson radical of EndR(V ). ��
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The final fundamental result to be mentioned here reveals some remarkable com-
binatorics which motivated several of our earlier notational choices. Still assuming
nilpotency, there is an associated crystal (B, ẽi , f̃i , εi , φi ,wt) in the general sense of
Kashiwara; more precisely, it is what is called a classical crystal in [24]. This follows
by [17, Proposition 5.20] in the locally finite Abelian setting or [8, Theorem 4.31] in
the Schurian case; many of the ideas here go back to the work of Grojnowski [22].
In more detail, the underlying set B is the set of isomorphism classes of irreducible
objects inR. The crystal operators ẽi , f̃i : B → B� {∅} are defined on an irreducible
object L ∈ Rλ as follows:

• if Ei L �= 0 then ẽi (L) is hd(Ei L) ∼= soc(Ei L) (which is irreducible), else Ei L =
∅;

• if Fi L �= 0 then f̃i (L) is hd(Fi L) ∼= soc(Fi L) (which is irreducible), else Fi L =
∅.

The weight function wt : B → X is defined by wt(L) := λ for L ∈ Rλ. The
functions εi , φi : B → N take L ∈ B to the nilpotency degrees of the endomorphisms

i
• Lλ and

i

• Lλ as above. Part of what it means to say that this is a crystal datum

gives that εi (L) = max{n ∈ N | En
i L �= 0} and φi (L) = max{n ∈ N | Fn

i L �= 0}.
Moreover, it is known that the endomorphism algebras of Ei L and Fi L are isomorphic
to k[u]/(uεi (L)) and k[u]/(uφi (L)), respectively.

Remark 5.4 The2-representations (Rλ)λ∈X constructed inTheorem4.11 are nilpotent.
Moreover, the functors Ei , Fi and functions εi , φi and wt as introduced in Sects. 4.1
and 4.2 are the same as in the present subsection. Consequently, all of the results
summarized here can be applied to the study of locally finite Abelian or Schurian
Heisk-module categories. In particular, the description of the endomorphism algebras
of Ei L and Fi L just mentioned implies that the homomorphisms (4.1) are actually
isomorphisms for irreducible V .

5.2 Kac–Moody GCQs

The next three subsections are concerned with GCQs. These first appeared on the
Kac–Moody side in [39, Proposition 5.6]; see also [8, §4.2]. We will only need them
under the assumption of nilpotency, although it can also be useful to consider these
categories more generally; e.g., see [41]. Let U(g) be the Kac–Moody 2-category as
in the previous subsection. The data needed to define a (nilpotent) GCQ of U(g) is as
follows:

• a finite-dimensional, commutative, local k-algebra Z with maximal ideal J ;
• dominant weights μ, ν ∈ X+;
• monic polynomials μi (u) ∈ u〈hi ,μ〉 + J [u], νi (u) ∈ u〈hi ,ν〉 + J [u] for all i ∈ I .

In the important special case that Z = k, the polynomials μi , νi provide no additional
data beyond that of the dominant weights μ, ν since we necessarily have that μi (u) =
u〈hi ,μ〉 and νi (u) = u〈hi ,ν〉. Let κ := ν − μ ∈ X and

Oi (u) := νi (u)/μi (u) ∈ u〈hi ,κ〉 + u〈hi ,κ〉−1 J [u−1]. (5.5)
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We also need notation for the coefficients of Oi (u) and its inverse defined from the
expansions

Oi (u) = σi (κ)
∑

r∈Z

O
(r)
i u−r−1, Oi (u)−1 = σi (κ)

∑

r∈Z

Õ
(r)

i u−r−1. (5.6)

Associated to the weight κ , there is a universal 2-representation (R(κ)λ)λ∈X defined
by settingR(κ)λ := HomU(g)(κ, λ); the 1- and 2-morphisms in U(g) act by horizon-
tally composing on the left in the obvious way. Extending scalars, we obtain from
this a Z -linear 2-representation (R(κ)λ ⊗k Z)λ∈X . Let (IZ (μ|ν)λ)λ∈X be the sub-2-
representation generated by the 2-morphisms

{

•
i

μi (y) κ ,
i
• yrκ − O

(r)
i 11κ

∣
∣
∣ i ∈ I ,−〈hi , κ〉 ≤ r < 〈hi , μ〉

}

. (5.7)

Equivalently, by [8, Lemma 4.14], (IZ (μ|ν)ν)λ∈X is generated by the 2-morphisms

{
•
i

νi (y) κ ,
i

•yr κ − Õ
(r)

i 11κ

∣
∣
∣ i ∈ I , 〈hi , κ〉 ≤ r < −〈hi , ν〉

}

. (5.8)

The generalized cyclotomic quotient (HZ (μ|ν)λ)λ∈X is the quotient 2-representation.
Thus, for λ ∈ X , we have that

HZ (μ|ν)λ := (R(κ)λ ⊗k Z)
/IZ (μ|ν)λ. (5.9)

This is the Z -linear category with objects that are 1-morphisms G1κ : κ → λ

in U(g), and morphism space HomHZ (μ|ν)λ(G1κ , G ′1κ) that is the quotient of
HomU(g)(G1κ , G ′1κ) ⊗k Z by the Z -submodule spanned by all string diagrams from
G1κ to G ′1κ which have one of the above generating 2-morphisms appearing on its
right-hand boundary. Note in particular by [8, Lemma 4.14] again that

κ i (u) = Oi (u)11κ , κ i (u) = Oi (u)−111κ (5.10)

inEndHZ (μ|ν)κ (1κ). It is often convenient to put all of the categoriesHZ (μ|ν)λ together
into a single Z -linear category

HZ (μ|ν) :=
∐

λ∈X

HZ (μ|ν)λ. (5.11)

Wedenote objects in this category simplybywords in themonoid 〈Ei , Fi 〉i∈I generated
by the symbols Ei , Fi (i ∈ I ), such a word G standing for the 1-morphism G1κ . If
G = Gd · · · G1 with each Gr ∈ {Ei , Fi | i ∈ I }, we let
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wt(G) := wt(G1) + · · · + wt(Gd) where wt(Ei ) = αi and wt(Fi ) = −αi .

(5.12)

Then the object G belongs toHZ (μ|ν)λ for λ = κ + wt(G).
Certain morphism spaces inHZ (μ|ν) can be described quite explicitly. To prepare

for this, recall that there is a basis theorem for 2-morphism spaces in U(g). This was
formulated originally as the nondegeneracy condition by Khovanov and Lauda in [27,
§3.2.3]. It was proved by them in finite type A, and it was proved in general in [41];
see also [18] for a completely different approach.

Lemma 5.5 The quotient of the Z-algebra EndU(g)(1κ)⊗k Z by the ideal V generated

by
{

i
• yrκ − O

(r)
i 11κ ,

i
• μi (y)ysκ

∣
∣ i ∈ I ,−〈hi , κ〉 ≤ r < 〈hi , μ〉, s ≥ 0

}
is

isomorphic to Z.

Proof By the nondegeneracy condition, EndU(g)(1κ) is a polynomial algebra generated
freely by the dotted bubbles

i
• yrκ for i ∈ I and r ≥ −〈hi , κ〉. Sinceμi (u) is monic

of degree 〈hi , μ〉, factoring out the ideal generated by
i
• μi (y)ysκ for s ≥ 0 reduces

to the free polynomial algebra on generators
i
• yrκ for i ∈ I and −〈hi , κ〉 ≤

r < 〈hi , μ〉. Then we tensor over k with Z and factor out the ideal generated by the
remaining elements

i
• yrκ − O

(r)
i 11κ , leaving the algebra Z as the final quotient. ��

Let Q Hd be the quiver Hecke algebra. This is the locally unital k-algebra with
local unit provided by the system {1i | i = (i1, . . . , id) ∈ I d} of mutually orthogonal
idempotents, and generators

{
yr1i , τs1i

∣
∣ i ∈ I d , 1 ≤ r ≤ d, 1 ≤ s < d

}
.

These generators are subject to the “local” relations represented by (3.45)–(3.47),
interpreting yr1i (resp., τs1i ) as the string diagram with d upwards-oriented strings
colored i1, . . . , id from right to left with a dot on the r th one (resp., a crossing of the
sth and (s +1)th ones). The cyclotomic quiver Hecke algebra Hμ

d (Z) is the quotient of
the Z -algebra Q Hd ⊗k Z by the two-sided idealU generated by

{
μi1(y11i )

∣
∣ i ∈ I d

}
;

we interpret Hμ
0 (Z) simply as the algebra Z . Consider the diagram

(Q Hd ⊗k Z) ⊗Z (EndU(g)(1κ) ⊗k Z)
⊕

i, j∈I d HomU(g)(E i1κ , E j1κ) ⊗k Z

Hμ
d (Z)

⊕
i, j∈I d HomHZ (μ|ν)(E i , E j ).

π1⊗̄π2

ıd

π

jd

(5.13)

The top map ıd here is the obvious Z -algebra homomorphism sending 1i ⊗ β to the
endomorphism of E i1κ := Eid · · · Ei11κ induced by β : 1κ ⇒ 1κ , and yr1i ⊗ 1
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and τs1i ⊗ 1 to the 2-morphisms represented by the string diagrams of yr1i and τs1i ,
respectively. The nondegeneracy condition implies that ıd is actually an isomorphism.
The right-hand map π is the natural quotient map. The left-hand map π1⊗̄π2 is the
product of the natural quotient map π1 : Q Hd ⊗k Z � Hμ

d (Z) with kernel U and the
Z -algebra homomorphism π2 : EndU(g)(1κ) ⊗k Z � Z with kernel V arising from
Lemma 5.5. The proof of the following lemma is similar to the proof of [6, Lemma
8.3].

Lemma 5.6 There is a unique isomorphism jd making the diagram (5.13) commute.

Proof Let A := Q Hd ⊗k Z and B := EndU(g)(1κ) ⊗k Z . As ıd is an isomorphism,
it suffices to show that ıd(ker π1⊗̄π2) = ker π . Note that ker π1⊗̄π2 = A ⊗ V +
U ⊗ B. It is obvious that π ◦ ıd sends generators of A ⊗ V and U ⊗ B to zero,
hence, ıd(ker π1⊗̄π2) ⊆ ker π . It remains to show that ı−1

d (ker π) ⊆ ker π1⊗̄π2. By
definition ker π consists of Z -linear combinations of 2-morphisms θ : E i1κ ⇒ E j1κ

of the form

θ = ρλ

τ

σ

i1···id

j1···jd

κ

where ρ is one of the generating 2-morphisms (5.7) for IZ (μ|ν) and σ, τ, λ are any
other 2-morphisms inU(g) so that the compositionsmake sense.Wemust show for such
θ that ı−1

d (θ) ∈ A⊗V +U ⊗B. If ρ =
i
• yrκ −O

(r)
i 11κ for−〈hi , κ〉 ≤ r < 〈hi , μ〉,

the inverse image ı−1
d (θ) obviously lies in A ⊗ V . Assume instead that ρ = •

i
μi (y) κ .

To compute ı−1
d (θ), we first “straighten” the diagram θ . Thus, proceeding by induction

on the number of crossings, we use the relations in U(g) to slide dotted bubbles to
the right-hand edge and to eliminate all other cups or caps from the diagram, always
keeping the generator ρ fixed on the right boundary. This process reduces θ to a
Z -linear combination of morphisms of the following two types:

(I) ρ

τ ′

σ ′

···

i1···id

j1···jd

κ

δ for σ ′, τ ′ ∈ ıd(A ⊗ 1) and δ ∈ ıd(1 ⊗ B);

(II) λ′

i1···id

j1···jd

κ

δ ρ

ys

i

•
for λ′ ∈ ıd(A ⊗ 1), δ ∈ ıd(1 ⊗ B) and s ≥ 0.

These morphisms arise when ρ ends up on a propagating strand (type I) or on a dotted
bubble (type II) after straightening. It remains to observe that the image under ı−1

d
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of a type I morphism lies in U ⊗ B, and the image of a type II morphism lies in
A ⊗ V . ��
Corollary 5.7 For d ≥ 0, we have that dim

(⊕
i, j∈I d HomHZ (μ|ν)(E i , E j )

)
=

�dd! dim Z where � := ∑
i∈I 〈hi , μ〉.

Proof It is well known that dim Hμ
d (Z) = �dd! dim Z . For example, this follows by

a Shapovalov form calculation given the categorification theorem of [23]. ��
Corollary 5.8 HZ (μ|ν) is a finite-dimensional category, i.e., all of its morphism spaces
are finite-dimensional vector spaces over k.

Proof Using the biadjunction of Ei and Fi , it suffices to show that HomHZ (μ|ν)(∅, G)

is finite-dimensional for any word G. This space is clearly zero unless G has an
equal number of E-type letters as F-type letters. Also Corollary 5.7 establishes the
result if G = Fj1 · · · Fjd Eid · · · Ei1 , i.e., all the F-type letters are to the left of the
E-type letters. The general case then follows by induction on the length, using the
isomorphisms (3.56)–(3.58) to establish the induction step. ��
Remark 5.9 In the remainder of the article, we really only need to appeal to fact that
�dd! dim Z is an upper bound for the dimension in Corollary 5.7. This follows from
the existence of a surjective homomorphism jd as in (5.13), which follows as above
from the surjectivity of the homomorphism ıd . The latter assertion is easily proved
without needing to appeal to the nondegeneracy condition.

It is often useful towork in the larger categoryHomk(HZ (μ|ν)op,Vecfd) ofk-linear
functors and natural transformations. This can be thought of in elementary algebraic
terms by replacing HZ (μ|ν) with the locally unital algebra

HZ (μ|ν) :=
⊕

G,G ′∈HZ (μ|ν)

HomHZ (μ|ν)(G, G ′). (5.14)

Multiplication in HZ (μ|ν) is induced by composition in the category HZ (μ|ν),
and its local unit

{
1G

∣
∣ G ∈ 〈Ei , Fi 〉i∈I

}
arises from the identity morphisms of the

objects of HZ (μ|ν). Then Homk(HZ(μ|ν)op,Vecfd) is isomorphic to the category
modlfd -HZ (μ|ν) of locally finite-dimensional right modules over this algebra. In
view of Corollary 5.8, HZ (μ|ν) is locally finite-dimensional, hence, modlfd -HZ (μ|ν)

is a Schurian category. Similarly to (5.14), we define HZ (μ|ν)λ from the category
HZ (μ|ν)λ for each λ ∈ X ; then (5.11) translates into the algebra decomposition

HZ (μ|ν) =
⊕

λ∈X

HZ (μ|ν)λ. (5.15)

The categorical action of U(g) on (HZ (μ|ν))λ∈X extends to make
(modlfd -HZ (μ|ν)λ)λ∈X into a Schurian 2-representation. One way to see this is
explained in [8, Construction 4.26], where the extensions of the categorification func-
tors Ei and Fi to arbitrary HZ (μ|ν)-modules are realized by tensoring with certain
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bimodules, and the generating 2-morphisms of U(g) act via explicit bimodule homo-
morphisms.

Let P := 1∅ HZ (μ|ν) be the finitely generated projective HZ (μ|ν)-module associ-
ated to the empty word. By Lemma 5.6 with d = 0, we have that EndHZ (μ|ν)(P) ∼= Z .
As Z is local, it follows that P is a projective indecomposable module. Then for any
word G ∈ 〈Ei , Fi 〉i∈I the module G P obtained by applying the functor G is identified
with the right ideal 1G HZ (μ|ν). These modules for all G give a projective generating
family for the Schurian category modlfd -HZ (μ|ν) such that

HZ (μ|ν) =
⊕

G,G ′∈〈Ei ,Fi 〉i∈I

1G ′ HZ (μ|ν)1G ∼=
⊕

G,G ′∈〈Ei ,Fi 〉i∈I

HomHZ (μ|ν)(G P, G ′ P).

(5.16)

Remark 5.10 In the special case that ν = 0, the GCQ HZ (μ|ν) is Morita equivalent
to the usual cyclotomic quotient, that is, the locally unital algebra

⊕
d≥0 Hμ

d (Z); see
[35, Theorem 4.25]. Recall by [23] that finitely generated projective modules over this
algebra gives a categorification of the Weyl Z-form of the integrable lowest weight
moduleV (−μ)ofU(g). In general, finitely generated projective HZ (μ|ν)-modules can
be used to categorify the tensor product V (μ|ν) := V (−μ) ⊗ V (ν) of the integrable
lowest weight module V (−μ) and the integrable highest weight module V (ν); see
[39]. This result is not needed below.

5.3 Heisenberg GCQs

On the Heisenberg side, GCQs have been defined in the degenerate case in the intro-
duction of [4], and in the quantum case in [13, §9]. As usual, we will discuss both
cases simultaneously according to the value of z ∈ k. The required data is as follows:

• a finite-dimensional, commutative, local k-algebra Z with maximal ideal J ;
• monic polynomials m(u), n(u) ∈ Z [u], assuming in addition in the quantum case
that m(0), n(0) ∈ Z×.

Let k := deg n(u) − degm(u) and

O(u) := n(u)/m(u) ∈ uk + uk−1Z [[u−1]]. (5.17)

To this data, we are going to associate a left tensor ideal IZ (m|n) of the strict Z -linear
monoidal categoryHeisk ⊗k Z . The precise definition of IZ (m|n) is slightly different
in the degenerate and quantum cases; it will be explained in the next two paragraphs.
Then the generalized cyclotomic quotient is the quotient category

HZ (m|n) := (Heisk ⊗k Z)/IZ (m|n), (5.18)

which is itself naturally a Z -linear Heisk-module category. This quotient category
has objects that are words in the monoid 〈E, F〉, and for two such words G, G ′ the
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morphism space HomHZ (m|n)(G, G ′) is the quotient of HomHeisk (G, G ′)⊗k Z by the
Z -submodule defined by the ideal IZ (m|n). In both cases, we will have that

(u) = O(u)11, (u) = O(u)−111 (5.19)

in EndHZ (m|n)(1).
Here is the definition of the left tensor ideal IZ (m|n) in the degenerate case. Define

O
(r), Õ

(r) ∈ Z from the coefficients of the formal Laurent series O(u), O(u)−1 so
that

O(u) =
∑

r∈Z

O
(r)u−r−1, O(u)−1 = −

∑

r∈Z

Õ
(r)

u−r−1, (5.20)

this notation being consistent with (3.12) and (3.13). Then IZ (m|n) is generated by

{
•◦m(x) , •◦xr − O

(r)11
∣
∣ − k ≤ r < degm(u)

}
. (5.21)

Equivalently, by [4, Lemma 1.8], it is generated by

{
•◦n(x) , •◦xr − Õ

(r)
11

∣
∣
∣
∣ k ≤ r < deg n(u)

}
. (5.22)

The same lemma implies that (5.19) holds.

Lemma 5.11 In the degenerate case, the quotient of the Z-algebra EndHeisk (1) ⊗k Z

by the ideal V generated by
{

•◦xr −O
(r)11, •◦m(x)xs

∣
∣−k ≤ r < degm(u), s ≥ 0

}

is isomorphic to Z.

Proof The basis theorem proved in [14, Theorem 6.4] implies that EndHeisk (1) is a
polynomial algebra generated freely by •◦xr for r ≥ −k. Given this, the lemma
follows similarly to Lemma 5.5. ��

In order to define the left tensor ideal IZ (m|n) in the quantum case, there is a
minor additional complication involving some choices of square roots: we assume
henceforth that we are given distinguished square roots

√
c of each c ∈ k

× such that√
1/c = 1/

√
c. The need for this is an artifact of the choice of normalization of the

quantum Heisenberg category; see Remark 3.2. Given these square roots, we get also
distinguished square roots

√
c of all c ∈ Z× lifting the chosen square root of the image

of c in k = Z/J . Then we define O
(r), Õ

(r) ∈ Z so that

O(u) = z

√
n(0)

m(0)

∑

r∈Z

O
(r)u−r , O(u)−1 = −z

√
m(0)

n(0)

∑

r∈Z

Õ
(r)

u−r , (5.23)
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this notation being consistent with (3.35)–(3.36) for t = √
m(0)/n(0). Then IZ (m|n)

is generated by

{
•◦m(x) , + r − O

(r)11
∣
∣ − k ≤ r < degm(u)

}
. (5.24)

Equivalently, by [13, Lemma 9.2], it is generated by

{
•◦n(x) , +r − Õ

(r)
11

∣
∣ k ≤ r < − deg n(u)

}
, (5.25)

and also (5.19) holds. Recalling from (3.23) that Heisk is defined over the algebra

K = k[t, t−1] in the quantum case, and that t1 = z + −k by the defining relations,

the presence of the generator + −k − O
(−k)11 in the definition of IZ (m|n) has the

effect of forcing the parameter t to act on any morphism inHZ (m|n) bymultiplication
by the scalar

√
m(0)/n(0) ∈ Z×. This is necessary for some choice of the square root

due to the last part of Lemma 4.3.

Lemma 5.12 In the quantum case, the quotient of the Z-algebra EndHeisk (1)⊗k Z by

the ideal V generated by
{

+ r − O
(r)11, •◦m(x)xs

∣
∣ − k ≤ r < degm(u), s ∈ Z

}

is isomorphic to Z.

Proof By the basis theorem from [13, Theorem10.1], EndHeisk (1) is a free polynomial

algebra over K on generators + r for −k < r < degm(u), •◦xs for s < 0, and

•◦xs for s ≥ degm(u). Since m(u) is monic, factoring out the ideal generated by
•◦m(x)xs for s ≥ 0 leaves us with the free polynomial algebra over K on generators

+ r for −k < r < degm(u) and •◦xs for s < 0. Then, since m(0) is a unit,

factoring out the ideal generated by •◦m(x)xs for s < 0 leaves us with the free

polynomial algebra over K on generators + r for −k < r < degm(u). Finally we
tensor over k with Z and factor out the ideal generated by the remaining elements

+ r − h(r)11 for −k ≤ r < degm(u). The first of these with r = −k substitutes

t ∈ K by
√

m(0)/n(0) ∈ Z , leaving a free polynomial algebra over Z on generators

+ r for −k < r < degm(u). Then the remaining relations for −k < r < degm(u)

evaluate these generators to elements of Z . ��

Now we proceed like in the previous subsection. Let AHd be the affine Hecke
algebra, degenerate or quantum according to the value of z. This is the k-algebra with
generators {x1, . . . , xd , s1, . . . , sd−1} (dots and crossings) in the degenerate case or
{x±1

1 , . . . , x±1
d , τ±1

1 , . . . , τ±1
d−1} (invertible dots and positive/negative crossings) in the

quantum case subject to the “local” relations represented by (3.3) or (3.26) and (3.27),
respectively. The cyclotomic Hecke algebra Hm

d (Z) is the quotient of the Z -algebra
AHd ⊗k Z by the two-sided ideal U generated by m(x1); we interpret Hm

0 (Z) simply
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as the algebra Z . Consider the diagram

(AHd ⊗k Z) ⊗Z (EndHeisk (1) ⊗k Z) EndHeisk (Ed) ⊗k Z

Hm
d (Z) EndHZ (a|b)(Ed).

π1⊗̄π2

ıd

π

jd

(5.26)

The top map ıd is the evident Z -algebra homomorphism. The basis theorem proved in
[14, Theorem 6.4] or [13, Theorem 10.1] implies that this is actually an isomorphism.
The right-hand map π is the natural quotient map. The left-hand map π1⊗̄π2 is the
product of the natural quotient map π1 : AHd ⊗k Z � Hm

d (Z) with kernel U and the
Z -algebra homomorphism π2 : EndHeisk (1) ⊗k Z � Z with kernel V arising from
Lemmas 5.11 and 5.12.

Lemma 5.13 There is a unique isomorphism jd making the diagram (5.26) commute.

Proof This is similar to the proof of Lemma 5.6, using Lemmas 5.11 and 5.12 in place
of Lemma 5.5. ��
Corollary 5.14 dim EndHZ (a|b)(Ed) = �dd! dim Z where � := degm(u).

Proof This is the dimension of the level � cyclotomic Hecke algebra Hm
d (Z). ��

Corollary 5.15 HZ (m|n) is a finite-dimensional category.

Proof This follows by an argument similar to Corollary 5.8, using (3.9) and (3.10) in
the degenerate case, or the analogous inversion relations in the quantum case. ��

As we did in (5.14), we switch from now on to using algebraic language by viewing
the finite-dimensional category HZ (m|n) instead as the locally finite-dimensional
locally unital algebra

HZ (m|n) :=
⊕

G,G ′∈HZ (m|n)

HomHZ (m|n)(G, G ′), (5.27)

with local unit {1G | G ∈ 〈E, F〉} and multiplication induced by composition. Then
we can consider the Schurian category modlfd -HZ (m|n). The categorical action of
Heisk on HZ (m|n) extends canonically to make modlfd -HZ (m|n) into a Schurian
Heisk-module category.

Let P := 1∅ HZ (m|n). As EndHZ (m|n)(P) ∼= Z , this is a projective indecomposable
module. Then for any G ∈ 〈E, F〉 the projective module G P is identified with the
right ideal 1G HZ (m|n). These modules for all G give a projective generating family
for modlfd -HZ (m|n) such that

HZ (μ|ν) =
⊕

G,G ′∈〈E,F〉
1G ′ HZ (μ|ν)1G ∼=

⊕

G,G ′∈〈E,F〉
HomHZ (μ|ν)(G P, G ′ P).

(5.28)



Heisenberg and Kac–Moody categorification Page 53 of 62 74

Remark 5.16 Like in Remark 5.10, in the case that n(u) = 1, the GCQ HZ (m|n) is
Morita equivalent to the usual cyclotomic quotient, that is, the locally unital algebra⊕

d≥0 Hm
d (Z). This is proved in the degenerate case in [4, Theorem 1.7]; the proof in

the quantum case is similar.

5.4 Isomorphisms between GCQs

Fix a finite-dimensional, commutative, local k-algebra Z with maximal ideal J and
monic polynomialsm(u), n(u) ∈ Z [u], and let k := deg n(u)−degm(u). Then define
the Heisenberg GCQ HZ (m|n) as in (5.27). Let m̄(u), n̄(u) ∈ k[u] be the reductions
of m(u), n(u)modulo J . Let I be the union of the trajectories of the roots of m̄(u) and
n̄(u) under the automorphisms i �→ i± defined in the introduction. This gives us the
data needed to define the Kac–Moody algebra gwith root lattice X . Let μ, ν ∈ X+ be
the dominantweights defined by declaring that 〈hi , μ〉 and 〈hi , ν〉 are themultiplicities
of i ∈ I as a root of m̄(u) and n̄(u), respectively, and let κ := ν − μ. Then we apply
Corollary 2.4 to the polynomials m(u), n(u) to deduce that there are unique monic
polynomials μi (u) ∈ u〈hi ,μ〉 + J [u], νi (u) ∈ u〈hi ,ν〉 + J [u] such that

m(u) =
∏

i∈I

μi (u − i), n(u) =
∏

i∈I

νi (u − i) (5.29)

in the degenerate case (here μi (u), νi (u) are the polynomials mi (u), ni (u) produced
by Corollary 2.4), or

m(u) =
∏

i∈I

i 〈hi ,μ〉μi
( u

i − 1
)
, n(u) =

∏

i∈I

i 〈hi ,ν〉νi
( u

i − 1
)

(5.30)

in the quantum case (this time μi (u), νi (u) are i−〈hi ,μ〉mi (iu), i−〈hi ,ν〉ni (iu)). These
polynomials give us the data needed for the Kac–Moody GCQ HZ (μ|ν) according to
(5.14). In this subsection, we are going to show that HZ (μ|ν) ∼= HZ (m|n). In order
to do this, we apply the general machinery from Section 4 to analyze the Schurian
Heisk-module category modlfd -HZ (m|n).

Lemma 5.17 The spectrum of the Heisk-module category modlfd -HZ (m|n) is the set
I generated by the roots of the polynomials m(u) and n(u) as above.

Proof From (5.29) and (5.30), we get the CRT decomposition

Z [u]/(m(u)) ∼=
{⊕

i∈I Z [u]/(μi (u − i)) in the degenerate case,
⊕

i∈I Z [u]/ (μi
( u

i − 1
))

in the quantum case.
(5.31)

Moreover, the image of (u − i) in the i th summand of this decomposition is nilpotent.
From the d = 1 case of Lemma 5.13, we see that there is an isomorphism

Z [u]/(m(u))
∼→ EndHZ (m|n)(E P), u �→ •◦ P .
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So from (5.31),we get induced a decomposition of themodule E P such that (u−i) acts
nilpotently on the i th summand. It follows that this summand is simply the generalized
i-eigenspace Ei P as defined in Sect. 4.1. This shows that E P = ⊕

i∈I Ei P with
EndHZ (m|n)(Ei P) ∼= Z [u]/(μi (u)). Consequently, Ei P is non-zero if and only if i ∈ I
and 〈hi , μ〉 > 0. A similar discussion applies to F P: we have that F P = ⊕

i∈I Fi P
with EndHZ (m|n)(Fi P) ∼= Z [u]/(νi (u)). Consequently, Fi P is non-zero if and only
if i ∈ I and 〈hi , ν〉 > 0. In view of Lemma 4.6, we deduce that the spectrum of
modlfd -HZ (m|n) contains the set I .

Conversely, we must show that I is contained in the spectrum of modlfd -HZ (m|n).
To prove this, we say that V ∈ modlfd -HZ (m|n) belongs to I if EV = ⊕

i∈I Ei V
and FV = ⊕

i∈I Fi V . We must show that every V ∈ modlfd -HZ (m|n) belongs to
I . As the modules G P for G ∈ 〈E, F〉 give a projective generating family, and these
functors are exact, it suffices to show that all G P belong to I . To prove this, we proceed
by induction on the length of the word G. The base case G = ∅ follows from the
previous paragraph. To prove the induction step, it suffices to establish the following:
if L is an irreducible HZ (m|n)-module belonging to I then the modules E L and F L
also belong to I . To see this, let K be an irreducible subquotient of either E L or F L .
Since L belongs to I , all roots of the minimal polynomials mL(u) and nL(u) belong to
I . We must show that all roots of mK (u) and nK (u) also belong to I . In the case that
K is a subquotient of E L , we argue as follows. All roots of mK (u) belong to I due to
a well-known observation about the affine Hecke algebra AH2; see [14, Lemma 6.1]
or [13, Lemma 9.3]. To deduce that all roots of nK (u) belong to I , use the fact that
nK (u) = nL (u)mK (u)

mL (u)
×(a rational function in k(u) with zeros and poles in I ) thanks

to Lemmas 4.4 and 4.5. The argument in the case that K is a subquotient of F L is
similar. ��

WithLemma5.17 inhand,we see that the endofunctors E and F ofmodlfd -HZ (m|n)

decompose into eigenfunctors as E = ⊕
i∈I Ei and F = ⊕

i∈I Fi as in (4.12). Apply-
ing (4.14), we also have the weight decomposition

modlfd -HZ (m|n) =
∏

λ∈X

modlfd -HZ (m|n)λ. (5.32)

Applying Theorem 4.11, (modlfd -HZ (m|n)λ)λ∈X is a nilpotent 2-representation of
U(g). Let P be the projective indecomposable module 1∅ Hm|n and recall that κ =
ν − μ.

Lemma 5.18 The module P belongs to modlfd -HZ (m|n)κ . Moreover, under the cate-
gorical action of U(g) just defined, we have isomorphisms

Z [u]/(μi (u))
∼→ EndHZ (m|n)(Ei P), u �→ •

i

κ P , (5.33)

Z [u]/(νi (u))
∼→ EndHZ (m|n)(Fi P), u �→ •

i
κ P . (5.34)

Finally, the generating function from (5.4) satisfies OP,i (u) = νi (u)/μi (u).
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Proof For the first statement, it suffices to show that the unique irreducible quotient
L of P belongs to modlfd -HZ (m|n)κ . By (5.19) and the definition (5.17), we have
that OP (u) = n(u)/m(u), where OP (u) is the generating function defined by (4.10).
Hence, OL(u) = n̄(u)/m̄(u). Using the observation immediately following (4.13)
together with (5.29) and (5.30), it follows that 〈hi ,wt(L)〉 = 〈hi , ν〉 − 〈hi , μ〉 =
〈hi , κ〉. Thus, wt(L) = κ as required.

Toestablish (5.33), the argument from thefirst paragraphof theproof ofLemma5.17
shows that there is an isomorphism

Z [u]/(μi (u))
∼→ EndHZ (m|n)(Ei P), u �→

⎧
⎪⎨

⎪⎩

•◦
i

x−i P in the degenerate case,

•◦
i

x
i −1 P in the quantum case.

So we get (5.33) using the definition of the action of •
i

κ from the statement of Theo-

rem 4.11. The proof of (5.34) is similar.
Finally, we must compute OP,i (u) ∈ u〈hi ,κ〉 + u〈hi ,κ〉−1Z [u−1]. Applying

Lemma 5.1(1) with f (u) = μi (u), we see that g(u) := OP,i (u)μi (u) is a monic

polynomial in Z [u] of degree 〈hi , ν〉 such that •
i

g(y) κ P = 0. Then by (5.34), it
follows that the image of g(u) − νi (u) is zero in Z [u]/(νi (u)). Since g(u) − νi (u)

is a polynomial of degree 〈hi , ν〉 − 1 and 1, u, u2, . . . , u〈hi ,ν〉−1 are linearly indepen-
dent over Z in this algebra, it follows that g(u) = νi (u). Now we have shown that
OP,i (u)μi (u) = νi (u), and the result follows. ��

Finally, we need to pass to an idempotent expansion of the locally unital algebra
HZ (m|n), i.e., we must refine its local unit. Take G = Gd · · · G1 ∈ 〈E, F〉. As
E = ⊕

i∈I Ei and F = ⊕
i∈I Fi , there is a decomposition

G =
⊕

i∈I d

G i (5.35)

of the endofunctor G, where G i := (Gd)id · · · (G1)i1 for i = (i1, . . . , id) ∈ I d .
Recalling that G P = 1G HZ (m|n), we deduce that the idempotent 1G ∈ HZ (m|n)

decomposes as 1G = ∑
i∈I d 1G i for mutually orthogonal idempotents 1G i such that

1G i HZ (m|n) = G i P . In this way, we have defined a refinement of the original local
unit for the algebra HZ (m|n), with the new local unit being indexed by the same set
〈Ei , Fi 〉i∈I as the local unit of HZ (μ|ν). Note moreover for G ∈ 〈Ei , Fi 〉i∈I that G P
belongs to modlfd -HZ (m|n)λ for λ = κ +wt(G). So the weight space decomposition
of modlfd -HZ (m|n) from (5.32) is consistent with the algebra decomposition

HZ (m|n) =
⊕

λ∈X

HZ (m|n)λ where HZ (m|n)λ :=
⊕

G,G ′∈〈Ei ,Fi 〉i∈I
wt(G)=wt(G ′)=λ−κ

1G ′ HZ (m|n)1G .

(5.36)
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This should be compared with the decomposition (5.15) of the algebra HZ (μ|ν).

Theorem 5.19 With notation as above, there is a unique isomorphism of locally unital
Z-algebras θ : HZ (μ|ν)

∼→ HZ (m|n) defined on generators of the algebra HZ (μ|ν)

involving upwards dots or crossings or rightwards cups or caps by the formulae in the
statement of Theorem 4.11, and with θ(1G) = 1G for each G ∈ 〈Ei , Fi 〉i∈I .

Proof As the projectivemodule P belongs tomodlfd -HZ (m|n)κ , the categorical action
of U(g) on the family (modlfd -HZ (m|n)λ)λ∈X induces a unique Z -linear morphism
of 2-representations

(R(κ)λ ⊗k Z)λ∈X → (modlfd -HZ (m|n)λ)λ∈X

sending 1κ �→ P . Lemma 5.18 shows that the generators of IZ (μ|ν) from (5.7)
map to zero, hence, this factors through the quotient to give a Z -linear morphism
of 2-representations (HZ (μ|ν)λ)λ∈X → (modlfd -HZ (m|n)λ)λ∈X . Thus, we have
constructed a Z -linear functor

� : HZ (μ|ν) → modlfd -HZ (m|n)

sending G to G P for each G ∈ 〈Ei , Fi 〉i∈I . Using (5.14) and (5.28), it follows that �
induces a Z -algebra homomorphism θ : HZ (μ|ν) → HZ (m|n) sending 1G �→ 1G for
each G ∈ 〈Ei , Fi 〉i∈I . By its definition, this may be computed explicitly on generators
of HZ (μ|ν) involving upwards dots or crossings or rightwards cups or caps using the
formulae from Theorem 4.11; as noted in Remark 4.12, we have not given explicit
formulae for leftwards cups or caps, but these are not needed.

To show θ is an isomorphism, we show equivalently that the functor � is
fully faithful, i.e., it defines isomorphisms �G,G ′ : HomHZ (μ|ν)(G, G ′) ∼→
HomHZ (m|n)(G P, G ′ P) for all G, G ′ ∈ 〈Ei , Fi 〉i∈I . We first treat the case that G
and G ′ both belong to 〈Ei 〉i∈I . We may assume that both G and G ′ have the same
length d ≥ 0, since otherwise both morphism spaces are zero. Then the Z -linear map
�G,G ′ is surjective. To see this, since every morphism in HomHZ (m|n)(G P, G ′ P) is a
Z -linear combination of morphisms obtained by composing dots and crossings of the
form (4.6), we just need to show that all of the latter morphisms are in the image. This
follows on inverting the formulae in Theorem 4.11 (we will write the inverse formulae
explicitly explicitly in Theorem 5.22 below). Then to see that �G,G ′ is injective we
use the equality of dimensions which follows on comparing Corollaries 5.7 and 5.14.

To establish the fully faithfulness for more general words G, G ′ ∈ 〈Ei , Fi 〉i∈I ,
the idea is to reduce to the special case just treated. We proceed by induction
on the sum of the lengths of the words G and G ′. Given morphisms H , H ′ ∈
Add(HZ (μ|ν)), i.e., finite direct sums of words in 〈Ei , Fi 〉i∈I , and an isomorphism
α ∈ HomHZ (μ|ν)(H ′, H) defined by some 2-morphism in U(g), we can apply � to
obtain an isomorphism β ∈ HomHZ (m|n)(H ′ P, H P) such that the following diagram
commutes:
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HomHZ (μ|ν)(H , G ′) HomHZ (m|n)(H P, G ′ P)

HomHZ (μ|ν)(H ′, G ′) HomHZ (m|n)(H ′ P, G ′ P)

α∗

�H ,G′

β∗

�H ′,G′

.

The vertical arrows in this diagram are isomorphisms, so we deduce that �H ,G ′ is
an isomorphism if and only if �H ′,G ′ is an isomorphism. Using this observation for
isomorphismsα obtained from the isomorphisms (3.56)–(3.58), one reduces to proving
the fully faithfulness in the situation that all letters of the form Fi (i ∈ I ) in G appear
to the left of all letters of the form Ei (i ∈ I ); this argument also requires the induction
hypothesis since shorter words may arise when (3.57) and (3.58) are used. Next, we
note for any H ∈ 〈Ei , Fi 〉i∈I that the following diagram commutes:

HomHZ (μ|ν)(Fi H , G ′) HomHZ (m|n)(Fi H P, G ′ P)

HomHZ (μ|ν)(Ei Fi H , Ei G
′) HomHZ (m|n)(Ei Fi H P, Ei G

′ P)

HomHZ (μ|ν)(H , Ei G
′) HomHZ (m|n)(H P, Ei G

′ P)

Ei

�Fi H ,G′

Ei

α∗
�Ei Fi H ,Ei G′

β∗

�H ,Ei G′

,

where α : H → Ei Fi H is themorphism inHZ (μ|ν) defined by the unit of the adjunc-
tion (Fi , Ei ) and β : H P → Ei Fi H P is its image under �. The compositions down
the left edge and down the right edge of this diagram are adjunction isomorphisms, so
we deduce that �Fi H ,G ′ is an isomorphism if and only if �H ,Ei G ′ is an isomorphism.
Using this observation, we reduce the proof of fully faithfulness to the situation that
G ∈ 〈Ei 〉i∈I . Then we repeat the process to reduce further to the case that all letters
of the form Fi (i ∈ I ) in G ′ appear to the left of all letters of the form Ei (i ∈ I ).
Finally, using the other adjunction (Ei , Fi ) we move all the letters Fi from G ′ to G,
putting us into the situation treated in the previous paragraph. ��

Corollary 5.20 Let θ∗ : modlfd -HZ (m|n) → modlfd -HZ (μ|ν) be the restriction func-
tor arising from the isomorphism θ . This defines a strongly equivariant isomorphism
between (modlfd -HZ (m|n)λ)λ∈X , that is, the 2-representation obtained by applying
Theorem 4.11 to the Heisenberg GCQmodlfd -HZ (m|n), and (modlfd -HZ (μ|ν)λ)λ∈X ,
that is, the 2-representation arising from the Kac–Moody GCQ.

Remark 5.21 Bearing in mind Remarks 5.10 and 5.16, Theorem 5.19 can be viewed
as a substantial generalization of the isomorphism theorem from [10]. The original
isomorphism Hμ

d (Z)
∼→ Hm

d (Z) from [10] may be recovered from Theorem 5.19
using also Lemmas 5.6 and 5.13; actually, one just needs the special case n(u) =
1, ν = 0 of the theorem.
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5.5 Kac–Moody to Heisenberg

Now we can prove the converse to Theorem 4.11. As usual we discuss the degenerate
case z = 0 and the quantum case z �= 0 simultaneously. Let I be a subset of k closed
under the automorphisms i �→ i± defined in the introduction, assuming 0 /∈ I in the
quantum case. Let U(g) be the Kac–Moody 2-category associated to this data. The
dotted arrows in the statement of the following theorem should be interpreted in the
same way as was explained after (4.9). Now these dotted arrows can be labelled by
any power series in k[[y1, . . . , yn]], and make sense due to the assumed nilpotency.

Theorem 5.22 Assume that (Rλ)λ∈X is a nilpotent 2-representation of U(g) that is
either locally finite Abelian or Schurian. Let R be defined from this as in (5.1). Assume
in addition that R is of central charge k ∈ Z, i.e., Rλ �= 0 ⇒ ∑

i∈I 〈hi , λ〉 = k. Then
there is a unique way to make R into a Heisk-module category so that E and F act
as the endofunctors (5.3), and the generating morphisms in Heisk map to natural
transformations according to

•◦ �→
∑

λ∈X
i∈I

i

• y+i
λ

, �→
∑

λ∈X
i∈I

i
λ , �→

∑

λ∈X
i∈I

i
λ ,

�→
∑

λ∈X
i∈I

⎛

⎜
⎝

i i
• • y2−y1+1

λ −
i i

λ

⎞

⎟
⎠

+
∑

λ∈X
i∈I

⎛

⎜
⎜
⎝

i+1 i
• •(y2−y1+1)−1

λ +
i+1 i

• •(y2−y1+1)−1

λ

⎞

⎟
⎟
⎠

+
∑

λ∈X
i, j∈I
j �=i,i+

⎛

⎜
⎜
⎝−

j i
• •(y2−y1+ j−i−1)(y2−y1+ j−i)−1

λ +
j i

• •(y2−y1+ j−i)−1

λ

⎞

⎟
⎟
⎠

in the degenerate case, or

•◦ �→
∑

λ∈X
i∈I

i

• i(y+1)
λ

, �→
∑

λ∈X
i∈I

i
λ , �→

∑

λ∈X
i∈I

i
λ ,

�→
∑

λ∈X
i∈I

⎛

⎜
⎜
⎜
⎝

i i

• • q(y2+1)−q−1(y1+1)

λ − q−1

i i

λ

⎞

⎟
⎟
⎟
⎠
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+
∑

λ∈X
i∈I

⎛

⎜
⎜
⎜
⎜
⎝

q2 i i

• • (
q(y2+1)−q−1(y1+1)

)−1

λ + qz

q2 i i

• • (y2+1)
(
q(y2+1)−q−1(y1+1)

)−1

λ

⎞

⎟
⎟
⎟
⎟
⎠

+
∑

λ∈X
i, j∈I
j �=i,i+

⎛

⎜
⎜
⎜
⎜
⎝

−

j i

• •
(
q−1 j(y2+1)−qi(y1+1)

)
( j(y2+1)−i(y1+1))−1

λ + z

j i

• • j(y2+1)( j(y2+1)−i(y1+1))−1

λ

⎞

⎟
⎟
⎟
⎟
⎠

in the quantum case with the action of t ∈ K chosen so that tL =
√∏

i∈I (−i)−〈hi ,λ〉
for all irreducible L ∈ Rλ and λ ∈ X. We also have tha

(u) �→
∑

λ∈X

(
∏

i∈I

λ i (u − i)

)

, (u) �→
∑

λ∈X

(
∏

i∈I

λ i (u − i)

)

(5.37)

in the degenerate case, and

(u) �→
∑

λ∈X

(
∏

i∈I

i 〈hi ,λ〉
λ i

(u

i
− 1

)
)

, (u) �→
∑

λ∈X

(
∏

i∈I

i−〈hi ,λ〉
λ i

(u

i
− 1

)
)

(5.38)

in the quantum case.

Proof Note to start with that the formulae for dots, crossings and rightwards cups and
caps in the statement of the theorem are equivalent to the ones in Theorem 4.11. We
have simply rearranged them to make the Heisenberg morphisms the subjects.

We first explain the proof in the (easier) degenerate case. The formulae in the the-
orem give us well-defined natural transformations •◦ : E ⇒ E , : E2 ⇒ E2,

: IdR ⇒ F E and : E F ⇒ IdR. We just need to verify that these nat-
ural transformations satisfy the relations (3.3) and (3.4) and the inversion relations
(3.9) and (3.10). As every object of R is a direct limit of finitely generated objects,
and every finitely generated object is a finite direct sum of indecomposable objects,
it suffices to check the relations on an indecomposable, finitely generated V ∈ Rκ

and κ ∈ X . Let Z := ZV = Z(EndR(V )), which is a finite-dimensional, com-
mutative, local k-algebra. Let μ ∈ X+ be defined so that 〈hi , μ〉 is the nilpotency
degree of the endomorphism

i
• Vκ . Let μi (u) := u〈hi ,μ〉. Let ν := κ + μ and

νi (u) := OV ,i (u)μi (u) ∈ Z [u], which is a polynomial of degree 〈hi , ν〉. In other

words, Oi (u) := νi (u)/μi (u) is OV ,i (u). Defining O
(r)
i as in (5.6), the relations

(5.7) are satisfied in the action of U(g) on V . These are the defining relations of
the Kac–Moody GCQ HZ (μ|ν), so we get induced a unique Z -linear morphism of
2-representations (HZ (μ|ν))λ∈X → (Rλ)λ∈X sending 1κ �→ V . This gives us a
Z -linear functor HZ (μ|ν) → R, ∅ �→ V . Hence, using the isomorphism of Theo-
rem 5.19, we get a Z -linear functor HZ (m|n) → R, ∅ �→ V for m(u), n(u) ∈ Z [u]
defined as in (5.29). The assumption thatR is of central charge k means thatHZ (m|n)

is aHeisk-module category. The evaluations on V of the natural transformations aris-
ing in the relations to be checked are the images under this functor of corresponding
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morphisms in HZ (m|n). Since the relations hold for the latter this does the job. It
just remains to prove (5.37). Again it suffices to check that this holds when evaluated
on the chosen object V , that is, we must show that OV (u) = ∏

i∈I OV ,i (u − i). We
know already that OV ,i (u) = νi (u)/μi (u), so by the definition (5.29) we have that∏

i∈I OV ,i (u − i) = n(u)/m(u). This equals OV (u) due to (5.17) and (5.19).
Now consider the quantum case. The formulas in the statement of the theorem

give us natural transformations •◦ : E ⇒ E , : E2 ⇒ E2, : IdR ⇒ F E
and : E F ⇒ IdR, the first two of which are clearly invertible. As Heisk is a
K-linear category rather than a k-linear category, we also need to define an invertible
natural transformation t : R → R such that tEV = EtV and tFV = FtV for each
V ∈ R. Before we do this in general, consider the situation for an irreducible object

L ∈ Rλ. The minimal polynomials of
i
• Lλ and

i
• Lλ are uεi (L) and uφi (L), so in a

Heisk-action consistent with these formulas, we have that mL(u) = ∏
i∈I (u − i)εi (L)

and nL(u) = ∏
i∈I (u − i)φi (L). In view of Lemma 4.4, using also that 〈hi , λ〉 =

φi (L) − εi (L) by Lemma 5.2, it follows that t2L = ∏
i∈I (−i)−〈hi ,λ〉. In the statement

of the theorem, we have stipulated that tL =
√∏

i∈I (−i)−〈hi ,λ〉, thereby making the
same fixed choice of square root as in the definition of GCQs in Sect. 5.3. In general, it
suffices to define the natural transformation t on objects V that are finitely generated
and indecomposable; then we can define tV on an arbitrary V ∈ R by taking direct
sums and limits. Fixing such an object V ∈ Rκ , define Z , μ, ν, μi (u) and νi (u) as in
the previous paragraph. Then, as before, we get a Z -linear functor HZ (μ|ν) → R,
∅ �→ V . Composing with the isomorphism from Theorem 5.19, this gives us a Z -
linear functor HZ (m|n) → R, ∅ �→ V where m(u), n(u) ∈ Z [u] are defined as in
(5.30). OnHZ (m|n), we know that t acts as

√
m(0)/n(0) =

√∏
i∈I i−〈hi ,κ〉μi (−1)/νi (−1) ∈ Z .

Modulo the unique maximal ideal J of Z , this expression equals
√∏

i∈I (−i)−〈hi ,κ〉,
which is the desired action of t on irreducible quotients of V . So we can use this
formula to define the morphism tV : V → V , and have the data needed to define
the natural transformation t . We still need to check that tEV = EtV and tFV = FtV
and to verify the other defining relations of Heisk , namely, (3.27) and (3.28), the
inversion relation (3.33) and (3.34), and the additional relation explained immediately
after (3.34). But these all follow as in the previous paragraph because they are true for
the action of Heisk on HZ (m|n). Finally, to prove (5.38), we argue in the same way
as explained at the end of the previous paragraph, using (5.30) instead of (5.29). ��

Remark 5.23 Like in Remark 4.12, the actions of the leftwards cups and caps inHeisk

are uniquely determined by the actions of the other generators due now to [14, Lemma
5.2] or [13, Lemma 4.3], but it is not easy to find explicit formulae.
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