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Abstract
For any connected reductive group G over C, we revisit Goresky–Kottwitz–
MacPherson’s description of the torus equivariant Borel–Moore homology of affine
Springer fibers Spγ ⊂ GrG , where γ = ztd and z is a regular semisimple element in
the Lie algebra of G. In the case G = GLn , we relate the equivariant cohomology
of Spγ to Haiman’s work on the isospectral Hilbert scheme of points on the plane.
We also explain the connection to the HOMFLY homology of (n, dn)-torus links, and
formulate a conjecture describing the homology of the Hilbert scheme of points on
the curve {xn = ydn}.
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1 Introduction

In this paper, we study a family of affine Springer fibers depending on a connected
reductive group G over C and a positive integer d. Recall that an affine Springer fiber
SpPγ is a sub-ind-scheme of a partial affine flag variety FlP (see [51] and Sect. 2) that
can be informally thought of as the zero-set of a vector field for an element of the loop
Lie algebra of G, γ ∈ g ⊗ C((t)). For us, γ = ztd , where z is any regular semisim-
ple element in g(C). Without loss of generality, we may take z to be an element of
Lie(T )reg , where T is a fixedmaximal torus of G. In fact, all of our results hold for γ ∈
Lie(T )reg ⊗ C((t)) that are equivalued, but for simplicity we only consider this case.

Using the methods of Goresky–Kottwitz–MacPherson [17,18], we compute the
equivariant Borel–Moore homology of SpPγ when P is a maximal compact subgroup.

In this case, we simply denote SpPγ = Spγ . This is by definition a reduced sub-ind-
scheme of the affine Grassmannian of G. Fix a maximal torus and a Borel subgroup
T ⊂ B ⊂ G, and denote Lie(T ) = t,Lie(B) = b,Lie(G) = g. Let moreover the
cocharacter lattice of T be � := X∗(T ). Denote by C[�] = C[X∗(T )] the group
algebra of the cocharacter lattice. This can be canonically identified with functions on
the Langlands dual torus T ∨, or as the (non-quantized) 3d N = 4 Coulomb branch
algebra for (T , 0) as in [6].

Our first result is the following theorem, proved as Theorem 3.16.

Theorem 1.1 Let � = ∏
α yα ∈ H∗

T (pt) be the Vandermonde element. The equiv-
ariant Borel–Moore homology of Xd := Sptd z for a reductive group G is up to
multiplication by �d canonically isomorphic as a (graded) C[�] ⊗ C[t]-module to
the ideal

J (d)
G =

⋂

α∈�+
J d
α ⊂ C[�] ⊗ C[t].

In particular, there is a natural algebra structure on �d H T∗ (Spγ ) inherited from

C[�] ⊗ C[t], and J (d)
G is a free module over C[t].

Throughout, H T∗ (−) denotes the equivariant BM homology, see Sect. 3 for details. In
a few places, we also use the ordinary T -equivariant homology as in [18]; it is denoted
H T∗,ord(−).

1.1 Anti-invariants and subspace arrangements

Let W be the finite Weyl group associated with G and sgn be the one-dimensional
representation of W where all reflections act by −1. Observe that there is a natural
left action W × T → T , and therefore actions
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W × T ∗T ∨ → T ∗T ∨, W × C[T ∗T ∨] → C[T ∗T ∨].

Note that the cocharacter lattice � = X∗(T ) naturally identifies with the character
lattice of T ∨. In particular, C[�] ∼= C[T ∨], where the left-hand side denotes group
algebra and the right-hand side denotes ring of regular functions. The cotangent bundle
of T ∨ is trivial, and in particular has fibers t. Therefore C[�] ⊗ C[t] ∼= C[T ∗T ∨].

Using the description of the equivariant Borel–Moore homology given in Theo-
rem 1.1, we expect a relationship between the cohomology of Spγ and the sgn-isotypic
component of the natural diagonal W -action on C[T ∗T ∨]. First of all, it is not hard
to see the following result.

Theorem 1.2 Let IG ⊆ C[T ∗T ∨] be the ideal generated by W -alternating regular
functions in C[T ∗T ∨] with respect to the diagonal action. Then there is an injective
map

I d
G ↪→ J (d)

G
∼= �d H T∗ (Spγ ).

Consequently, anyW -alternating regular function on T ∗T ∨ has a unique expression
as a cohomology class in H T∗ (Spγ ), where γ = zt .

In the case when G = GLn , this isotypic part for the corresponding action on
T ∗t∨ was studied by Haiman [24] in his study of the Hilbert scheme of points on
the plane. More specifically, he considered the ideal I ⊂ C[x1, . . . , xn, y1, . . . , yn]
generated by the anti-invariant polynomials, and proved that it is first of all equal to
J = ⋂

i 
= j 〈xi − x j , yi − y j 〉 and moreover free over the y-variables. Note that if
f ∈ C[x±, y], it is by definition of the form f = g

(x1···xn)k for some g ∈ C[x, y] and
k ≥ 0. Since the denominator is a symmetric polynomial, g ∈ C[x, y] is alternating
for the diagonal Sn-action if and only if f is so. In particular, in the localization
C[x±, y] we have that Ix ∼= IGLn for IG as in Theorem 1.2.

Let us quickly sketch how theHilbert scheme of points Hilbn(C2) enters the picture.
Let A ⊂ C[x, y] be the space of antisymmetric polynomials for the diagonal action
of Sn . From for example [27, Proposition 2.6], we have that

Proj
⊕

m≥0

Am ∼= Hilbn(C2).

In addition,

Proj
⊕

m≥0

I m ∼= Xn,

where

Xn ∼= (C2n ×C2n/Sn
Hilbn(C2))red

is the so-called isospectral Hilbert scheme. The superscript red means that we are
taking the reduced fiber product, or fiber product in category of varieties instead of
schemes.
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By results of [25], we have I m = ⋂
i 
= j 〈xi − x j , yi − y j 〉m , so that I d

x
∼= J (d)

GLn
. In

Sect. 4, we prove our next main result following this line of ideas.

Theorem 1.3 There is a graded algebra structure on

⊕

d≥0

�d H T∗ (Spztd ).

When G = GLn, we have

Proj
⊕

d≥0

�d H T∗ (Spztd ) ∼= Yn,

where Yn is the isospectral Hilbert scheme on C
∗ × C.

We next observe that the natural map ρ : Xn → Hilbn(C2) restricts to a map Yn →
Hilbn(C∗ ×C). Define the Procesi bundle on Hilbn(C2) to beP := ρ∗OXn . By results
of Haiman, this is a vector bundle of rank n!. We then have the following corollary to
Theorem 1.3.

Corollary 1.4 We have that

H0(Hilbn(C∗ × C),P ⊗ O(d)) = J (d)
GLn

= �d · H T∗ (Spγ ),

where γ = ztd .

Our results can be at least interpreted in terms of the Coxeter arrangement for
the root data of G or G∨. More precisely, C[X∗(T )] can be thought of as the ring
of functions on the dual torus T ∨ ∼= (C∗)n , which in turn is the complement of
“coordinate hyperplanes” in t∨ ∼= X∗(T ) ⊗Z C for the basis given by fundamental
weights determined by B. Note that the resulting divisor is independent of B.

There is another hyperplane arrangement in this space, determined by �∨, which
is called the Coxeter arrangement, and can be viewed as the locus where at least one
of the positive coroots vanishes. Inside T ∨, this corresponds to the divisor

V =
⋃

α

Vα =
⎧
⎨

⎩

∏

α∈�+
(1 − xα∨

) = 0

⎫
⎬

⎭
⊂ T ∨.

Let us go back to t∨ for a while. We may “double” the Coxeter hyperplane arrange-
ment inside t∨ to a codimension two arrangement in t ⊕ t∨ as follows. Each α∨
corresponds to a positive root α for G, whose vanishing locus is a hyperplane V∨

α in t.
Both α, α∨ also determine hyperplanes inside t⊕t∨ by the same vanishing conditions,
and by abuse of notation we will denote these also by Vα,V∨

α . By intersecting, we
then get a codimension two subspace Vα ∩V∨

α . It is clear from the description that the
union of these subspaces as α runs over �+ is defined by the ideal

⋂

α∈�+
〈yα, xα∨〉 ⊂ C[t ⊕ t∨].
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Here xα∨ and yα are the linear functionals associated to α∨, α. Localizing away
from the coordinate hyperplanes in t∨, we then see that the ideal JG ⊂ C[T ∗T ∨]
from earlier determines a doubled Coxeter arrangement inside T ∗T ∨. In fact, it is
immediate from the description that its Zariski closure inside T ∗t∨ equals

⋃
α Vα∩V∨

α .
In the GLn case, this doubled subspace arrangement coincides with the one studied by
Haiman. In [26, Problem 1.5(b)], Haiman poses the question of what happens for other
root systems. Reinterpreting the doubling procedure to mean the root system and its
(Langlands) dual in T ∗T ∨, instead of taking V⊗C

2 ⊂ t⊗C
2, we have freeness of JG

in “half of the variables” by Theorem 1.1, which answers (a variant of) the question
in loc. cit.

There are several other corollaries to Theorem 1.1 that we now illustrate.
Let G = GLn . It is a conjecture of Bezrukavnikov-Qi-Shan-Vasserot (private

communication) that under the lattice action of � on H∗(S̃pγ ), where γ = zt , we
also have

H∗(S̃pγ )� ∼= DHn

and

H∗(Spγ )� ∼= DHsgn
n .

While we are not able to prove the first conjectural identity, we are able to prove an
analogous statement in Borel–Moore homology for the coinvariants under the lattice
action on the sign character part, see Theorem 4.16. From this, one can also deduce
the statement in cohomology for the sign character part, i.e. the second identity.

Theorem 1.5 We have

H∗(Spγ )� ∼= DHsgn
n .

Let us then discuss the freeness over Sym(t) of the ideals J (d)
G and related ideals

in more detail. For example, in type A, it is clear that the simultaneous substitution
xi �→ xi +c, c ∈ C, i = 1, . . . , n leaves JG invariant, so that the freeness over Sym(t)
of
⋂

i 
= j 〈xi − x j , yi − y j 〉 ⊂ C[x, y] can be deduced from that of JG . We remark that
the results of Sect. 4.3 can also be used to show this statement.

Theorem 1.6 Let G = GLn and J = ⋂
i 
= j 〈xi − x j , yi − y j 〉 ⊂ C[x, y]. Then we

have �d · H T∗ (Spγ ) ∼= J d
x ⊂ C[x±, y], where the subscript x denotes localization in

the x-variables. In particular, J d ⊂ C[x, y] is free over C[y] := C[y1, . . . , yn].
It is somewhat subtle that Theorem 1.1 does not immediately imply the freeness

over Sym(t) of the ideals in C[T ∗T ∨], C[T ∗t∨] generated by the anti-invariants, even
in type A. Of course, one would hope for a similar description as Haiman’s for arbitary
G, but it seems likely some modifications are in order outside of type A [14,15].

Haiman’s original proof [25] of a related stronger statement, “the Polygraph The-
orem”, implying the freeness of the anti-invariant ideal I and its powers over C[y],
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and thus freeness of J d = J (d) over C[y], involves rather subtle commutative alge-
bra. Until recently, it has been the only way of showing the freeness of J (d) without
giving a clear conceptual explanation. On the other hand, Theorem 1.6 gives a quite
hands-on explanation of this phenomenon. It does not seem to be impossible to use
the representation-theoretic interpretation of J (d) and the Sn-action on H T∗ (Spγ ) to
try to directly attack freeness of I d .

In fact, recent work of Gorsky–Hogancamp [20] on knot homology gives another
proof of Theorem 1.6. Their results rest, in turn, on results of Elias-Hogancamp [13]
on the HOMFLY homology of (n, dn)-torus links, which involves some quite non-
trivial computations with Soergel bimodules. In this paper, the complexity of the
freeness statement is hidden in the cohomological purity of Spγ as proved byGoresky–
Kottwitz–MacPherson [19].

1.2 Relation to braids

Let us first consider a general connected reductive group G. Any γ ∈ g ⊗ C((t))
gives a nonconstant (polynomial) loop [γ ] ∈ Hom(SpecC[t±], treg/W ) via Artin
approximation, through which we get a conjugacy class β ∈ π1(t

reg/W ) ∼= BrW .
Note that we do not have a natural choice of basepoint, so that β is not a bona fide
element of the braid group, but just a conjugacy class, or an ”annular closure”.

Let now G = GLn . Then the braid closure β is a knot or link in S3. For links in the
three-sphere, it is natural to consider various link invariants, such as the triply graded
Khovanov–Rozansky homology (or HOMFLY homology) [33]. This is an assignment

β �→ HHH(β)

of Z
⊕3-graded Q-vector spaces to braids, which factors through Markov equivalence.

The invariant HHH(−) was recently generalized to y-ified HOMFLY homology in
[20]. It is an assignment of Z

⊕3-graded C[y1, . . . , ym]-modules to braids, and has
many remarkable properties. We will discuss these in more detail in Sect. 5.

We are mostly interested in HY(−) for the braid associated to γ = ztd , following
previous parts of this introduction. In this case, β is the (nd)th power of a Coxeter
braid coxn (positive lift of the Coxeter element in Sn). In particular, β is the d :th power
of the full twist braid coxn

n . Note that since β is central, it is alone in its conjugacy
class and thus an actual braid. Taking the braid closure of β, it is well-known that we
recover the (n, dn) torus link T (n, dn).

Remark 1.7 The closures of powers of the Coxeter braids coxm
G and their relation to

affine Springer theory has appeared in the literature in several places [23,44,50], in
the case where m is prime to the Coxeter number of G. The case we consider is the
one where m is a multiple of the Coxeter number.

Now, progress in knot homology theory by several people [13,20,22,37] has lead to
an identification of the Hochschild degree zero part of the y-ified HOMFLY homology
of (n, nd)-torus links and the ideals J d = ⋂

i< j 〈xi − x j , yi − y j 〉 from above. In
particular, combining these results and Theorem 3.16, we get the following corollary,
proved in Corollary 5.4.
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Corollary 1.8 There is an isomorphism of C[x±, y]-modules

�d H T∗ (Spγ ) ∼= HY(FTd
n)a=0 ⊗C[x] C[x±]

for γ = ztd .

Remark 1.9 Assuming the purity of affine Springer fibers, one is able to deduce further
results. If

γ =
⎛

⎜
⎝

a1td1

. . .

antdn

⎞

⎟
⎠ ,

the construction above gives us a pure braidβ whose braid closure has linking numbers
di j = min(di , d j ) between components i, j .

By [20, Proposition 5.5], if β has “parity”, ie. HHH(β) is only supported in even
or odd homological degrees, we have the following isomorphism of bigraded C[x, y]-
modules

HYa=0(β) ∼= ∩i< j 〈xi − x j , yi − y j 〉di j .

By equivariant formality of H∗(Spγ ), we then have in analogy to the equivalued case
that

∏

i< j

(yi − y j )
di j H T∗ (Spγ ) ∼=

⋂

i< j

〈xi − x j , yi − y j 〉di j ⊗C[x] C[x±] ∼= HYa=0(β) ⊗C[x] C[x±].

Remark 1.10 It is not clear to us what the correct analogues, if any, of these link-
theoretic notions are for other root data. While the definition of the HOMFLY
homology as Hochschild homology of certain complexes of Soergel bimodules [32]
certainly makes sense in all types, many aspects of the theory, including the y-ification
process, are undeveloped at the time. Work in progress by Hogancamp and Makisumi
addresses some of these questions.

It is also an interesting question whether the resulting (Hochschild) homology of
the (complex corresponding to the) full twist is parity, or related to JG for other types.

1.3 Hilbert schemes of points on curves

It is useful to think of the link β from the previous section as the link of the plane
curve singularity which is the pullback along γ of the universal spectral curve over
treg/Sn . Recall that the link of C ⊂ C

2 at p ∈ C is the intersection of C with a small
three-sphere centered at p. In particular, Link(C, p) is a compact one-manifold inside
S3, i.e. a link in the previous sense. Motivated by conjectures of Gorsky–Oblomkov–
Rasmussen–Shende [23,42] there should then be a relationship of the affine Springer
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fibers, Hilbert schemes of points on the plane and link homology to theHilbert schemes
of the plane curve singularities {xn = ydn}. Namely, for G = GLn and

γ =
⎛

⎜
⎝

a1td

. . .

antd

⎞

⎟
⎠

the characteristic polynomial of γ is

P(x) =
∏

i

(x − ai t
d).

We may assume that ai = ζ i for ζ a primitive nth root of unity, in which case
P(x) = xn − tdn . This determines a spectral curve in A

2 with coordinates (x, t), with
a unique singularity at zero. It has a unique projective model with rational components
and no other singularities. Call this curve C .

The compactified Jacobian of any curve C , denoted Jac(C), is by definition the
moduli space of torsion-free rank one, degree zero sheaves on C . It is known by eg.
[41] that in the case when C has at worst planar singularities (and is reduced), we have
a homeomorphism of stacks

Jac(C) ∼= Jac(C) ×
∏

x∈Csing Jac(Cx )

∏

x∈Csing

Jac(Cx ), (1.1)

where Jac(Cx ) is a local version of the compactified Jacobian at a closed point x ∈ C ,
sometimes also called the Jacobi factor. In the casewhenC = {xn = tdn}, we have just
a unique singularity and rational components, so that Eq. (1.1) becomes a homeomor-
phismbetween a quotient of themoduli of fractional ideals in Frac(C[[x, y]]/xn−ydn)

and the compactified Jacobian. From the lattice description of the affineGrassmannian,
it is not too hard to show that this former space actually equals Spγ /� [36].

It is an interesting problem to determine the Hilbert schemes of points C [n] on these
curves. These are naturally related to the compactified Jacobians via an Abel-Jacobi
map, which has a local version as well. In the case when C is integral, it is known that
the global map becomes a P

n−2g-bundle for g � 0, and respectively an isomorphism
in the local case. In general we only know that it is so for a union of irreducible
components of the compactified Picard, of which there are infinitely many (for each
connected component) in the case when C has locally reducible singularities.

In [31], we have initiated an approach to computing H∗(C [n])where C is reducible,
using a certain algebra action on

V :=
⊕

n≥0

H∗(C [n]).

Note that this is a bigraded vector space, where one of the gradings is given by the
number of points (n, 0), and the other one is given by the homological degree (0, j).
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Theorem 1.11 ([31]) Let

Am := C[x1, . . . , xm, ∂y1 , . . . , ∂ym ,
∑

i

∂xi ,
∑

i

ym] ⊂ Weyl(A2m),

where xi carries the bigrading (1, 0) and yi the bigrading (1, 2). Suppose C is locally
planar and has m irreducible components. Then there is a geometrically defined action
Am × V → V .

Roughly speaking, the action on V is given as follows. For a fixed component Ci

of C , the operator xi : V → V adds points, and ∂yi removes them. These are defined
using a choice of a point ci ∈ Ci and a corresponding embedding C [n] ↪→ C [n+1]. On
the other hand, the operator

∑
i ∂xi : V → V removes a “floating” point and

∑
i yi

adds a floating point. These are defined as Nakajima correspondences.
The original computation of T -equivariant homology of affine Springer fibers in

[18] for G = GL2 bears a striking resemblance to the second main result in [31]. In
particular, if C is the union of two projective lines along a point,

V ∼= C[x1, x2, y1, y2]
(x1 − x2)C[x1, x2, y1 + y2] .

Furthermore, when G = GL2, we have

H T∗,ord(Spt z) = C[x±
1 , x±

2 , y1, y2]
(x1 − x2)C[x±

1 , x±
2 , y1 + y2]

.

Here H T∗,ord(−) means the Borel construction of ordinary T -equivariant homology.
See Theorem 6.6 for a more general statement.

Based on computations in [31] and some new examples in Sect. 6, we are led to
conjecture the following.

Conjecture 1.12 Let C be the (unique) compactification with rational components and
no other singularities of the curve {xn = ydn}. Then as a bigraded An-module, we
have

V :=
⊕

m≥0

H∗(C [m], Q) ∼= C[x1, . . . , xn, y1, . . . , yn]
∑

i 
= j
∑d

k=1(xi − x j )k ker(∂yi − ∂y j )
k
. (1.2)

1.4 Organization

The organization of the paper is as follows. In Sect. 2 we give background on affine
Springer fibers. In Sect. 3 we compute the torus equivariant Borel–Moore homology
of the affine Springer fibers we are interested in, following Goresky–Kottwitz–
MacPherson and Brion. In Section 4, we give background on Hilbert schemes of
points on the plane and relate results from the previous sections with those of Haiman.
We also discuss our results and their implications in this direction for arbitrary G
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in Sect. 4.4. In Sect. 5, we relate the equivariant Borel–Moore homology of affine
Springer fibers with braid theory, and in the type A case with the knot homology theo-
ries of Khovanov-Rozansky and Gorsky-Hogancamp. Finally, in Sect. 6 we compute
some new examples and make a conjecture describing the structure of the homology
of Hilbert schemes of points on the plane curves {xn = ydn}.

2 Affine Springer fibers

In this section, we define the affine Springer fibers we are considering. Formore details
on the definitions, see the notes of Yun [51]. Let G be a connected reductive group
over C. Choose T ⊂ B ⊂ G a maximal torus and a Borel subgroup as per usual. We
denote the Lie algebras of G, B, T respectively by g, b, t.

Denote the lattice of cocharacters X∗(T ) = � and the Weyl group W . Let the
extended affine Weyl group be W̃ := � � W . We use this convention to align with
[18].

If R is a C-algebra and F represents an fpqc sheaf out of Aff/C, we let F(R) be
the associated functor of points evaluated at R (for an excellent introduction to these
notions in the context we are interested in, see notes of Zhu [52]). Often when R = C,
we omit it from the notation and simply refer by F to the closed points.

Denote the affineGrassmannian ofG byGrG and its affineflagvariety byFlG . These
are naturally ind-schemes. If G = GLn , we will often write just Grn and Fln . Write
K = C((t)) and O = C[[t]]. Then GrG(C) = G(K)/G(O) and Fl(C) = G(K)/I,
where I is the Iwahori subgroup corresponding to the choice of B and the uniformizer
t . Let T̃ := T � G

rot
m be the extended torus, where a ∈ G

rot
m scales t by t �→ at .

There is a left action of T (C) on GrG(C) and FlG(C) = G(K)/I. This action is
topological in the analytic topology. Its fixed points are determined using the following
Bruhat decompositions:

G(K) =
⊔

λ∈�

ItλG(O) =
⊔

w∈W̃

ItwI.

Since T (C) acts nontrivially on the real affine root spaces in I, and fixes the cosets
tλG(O), twI respectively, we see that the fixed point sets are discrete, and in a natural
bijection with �, W̃ .

Definition 2.1 Let γ ∈ Lie(G) ⊗C K. The affine Springer fibers Spγ ⊂ GrG and
S̃pγ ⊂ FlG are defined as the reduced sub-ind-schemes ofGrG andFlG whose complex
points are given by

Spγ (C) = {gG(K)|g−1γ g ∈ Lie(G) ⊗C O}
S̃pγ (C) = {gI|g−1γ g ∈ Lie(I)}.
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3 Equivariant Borel–Moore homology of affine Springer fibers

In this section, we prove the main theorem of this paper, Theorem 3.16.

3.1 Borel–Moore homology

We now review equivariant Borel–Moore homology. The paper [8] is the main ref-
erence for this section. For a projective (but not necessarily irreducible) variety X ,
one defines the Borel–Moore homology as H∗(X) := H−∗(X , ωX ), where ωX is
the Verdier dualizing complex in Db

c (X). Note that we use H∗(−) for Borel–Moore
homology, not the usual singular or étale homologies.

For a T -variety X , where T ∼= G
n
m is a diagonalizable torus, imitating the Borel

construction of equivariant (co)homology is not completely straightforward, as the
classifying space BT is not a scheme-theoretic object. However, using approximation
by m-skeleta as in [8], or a simplicial resolution of BT as in [4], one gets around the
issue by defining

H T
k (X) := Hk+2mn(X ×T ETm), m ≥ dim X − k/2.

Here ETm := (Cm+1 − 0)d with the T -action (t1, . . . , td) · (v1, . . . , vd) =
(t1v1, . . . , tdvd). This action is free, and the quotient ETm → (Pm)d is a principal
T -bundle.

The above definition of H T
k (X) is independent of m as follows from the Gysin

isomorphism Hk+2m′n(X ×T ETm′) → Hk+2mn(X ×T ETm) for m′ ≥ m ≥ dim X −
k/2. Note that H T∗ (X) is a graded module over H∗

T (X) via the cap product and in
particular a graded module over H T∗ (pt).

Recall that X is equivariantly formal (see [17,18]) if the Leray spectral sequence

H p(BT , Hq(X)) ⇒ H p+k
T (X)

degenerates at E2. If X is equivariantly formal, then H T∗ (X) is a free H∗
T (pt)-module

[8, Lemma 2].
The above definition of H T∗ (−) enjoys some of the usual localization properties,

as studied e.g. in [8]. For example, we have an ”Atiyah-Bott” formula [8, Lemma 1].

Theorem 3.1 Suppose the T -action on X has finitely many fixed points. Let i∗ :
H T∗ (X T ) → H∗(X) be the C[t]-linear map given by the inclusion of the fixed-point
set to X. Then i∗ becomes an isomorphism after inverting finitely many characters of
T .

From the perspective of commutative algebra, it is useful to note the following from
[8, Proposition 3].

Proposition 3.2 If X is equivariantly formal, then

H T∗ (X) ∼= HomC[t](H∗
T (X), C[t]).
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The map is given by

α �→ (β �→ pX∗(β ∩ α)),

where pX : X ×T ET → BT is the projection.

Another localization theorem was proved in [17, Theorem 7.2] for T -equivariant
(co)homology. As in [8, Corollary 1], it is translated to Borel–Moore homology as
follows.

Proposition 3.3 Let X be an equivariantly formal T -variety containing only finitely
many orbits of dimension ≤ 1. Then H T∗ (X) ∼= i−1∗ H T∗ (X) ⊂ H T∗ (X T )⊗C(t) consists
of all tuples (ωx )x∈X T of rational differential forms on t satisfying the following
conditions.

1. The poles of each ωx are contained in the union of singular hyperplanes and have
order at most one. Recall that a singular hyperplane in t is the vanishing set of dχ ,
where Xker χ 
= X T and ker χ is the codimension one subtorus of T defined by χ .

2. For any singular character χ and for any connected component Y of Xker χ , we
have

Resχ=0

⎛

⎝
∑

x∈Y T

ωx

⎞

⎠ = 0.

As the number of orbits of dimension ≤ 1 is finite, and the closure of each one-
dimensional orbit contains exactly two fixed points (see [17]), it is natural to form the
graph whose vertices are the fixed points and edges correspond to one-dimensional
orbits. We call the associated weighted graph whose edges are labeled by the differ-
entials dχ of singular characters the GKM graph.

Note that it is easy to recover H∗(X) from H T∗ (X) for equivariantly formal varieties
by freeness, as shown in [8, Proposition 1]. Namely, we have

Proposition 3.4 Let T ′ ⊂ T be a subtorus. Then

H T ′
∗ (X) ∼= H T∗ (X)

Ann(t′) · H∗ ,

where Ann(t′) ⊂ C[t] is the annihilator of t′ = Lie(T ′). In particular, when T ′ is
trivial, we get

H∗(X) = H T∗ (X)

C[t]+H T∗ (X)
.

Ultimately, we are interested in the equivariant Borel–Moore homology of the ind-
projective varieties Sptd z . Suppose now that X = lim−→ Xi is an ind-scheme over C

given by a diagram

X0 ⊂ X1 ⊂ X2 ⊂ · · ·
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where the maps are T -equivariant closed immersions and each Xi is projective. By
properness and the definition of H T∗ (−), there are natural pushforwards

H T∗ (Xi ) → H T∗ (Xi+1),

using which we define

H T∗ (X) := lim−→ H T∗ (Xi ).

The usual (non-equivariant) Borel–Moore homology is defined similarly. Note that
since the Xi are varieties we are still abusing notation and mean Xi (C) when taking
homology.

Remark 3.5 While H∗(−) and H T∗ (−) could be defined for any finite-dimensional
locally compact, locally contractible and σ -compact topological space X using the
sheaf-theoretic definition [7, Corollary V.12.21.], it is not true that this definition
gives the same answer for X(C) as the above definition (there’s always a map in one
direction). For example, if X(C) = lim−→[−m, m] ∼= Z is the colimit of the discrete
spaces [−m, m] ⊂ Z, which are of course also the C-points of a disjoint union of
2m + 1 copies of A

0, then H−∗(X , ωX ) ∼= C
Z is the homology of the one-point

compactification of Z with the cofinite topology, while treating X as an ind-variety
we get H∗(X) ∼= C

⊕Z.

Call a T -ind-scheme X equivariantly formal if each Xi is equivariantly formal and
T -stable. Call it GKM if each Xi has finitely many orbits of dimension ≤ 1. We have
the following corollary to Theorem 3.3.

Corollary 3.6 Let X be an equivariantly formal GKM T -ind-scheme. Then H T∗ (X) ⊂
H T∗ (X T ) ⊗ C(t) consists of all tuples (ωx )x∈X T of rational differential forms on t
satisfying the conditions in Theorem 3.3.

Proof By assumption, we have inclusions of T -fixed points X T
i → X T

i+1 and their
union is X T . Taking the colimit of H T∗ (Xi ) ↪→ H T∗ (X T

i ), we get by exactness

ι : H T∗ (X) := lim−→ H T∗ (Xi ) ↪→ lim−→ H T∗ (X T
i ) =: H T∗ (X T ),

which becomes an isomorphism when tensoring with C(t). Any tuple (ωx )x∈X T of
rational differential forms (of top degree) on t inside ι−1∗ H T∗ (X) has some i such that
it is in the image of ι−1∗ H T (Xi ). By Proposition 3.3, it therefore satisfies the desired
conditions. ��

Remark 3.7 While the number of fixed points and one-dimensional orbits might now
be infinite, we may still form the (possibly infinite) GKM graph.
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3.2 The SL2 case

We first prove Theorem 3.16 in the case G = SL2. Recall that T̃ = T (C) × C
∗ ⊂

G((t)) denotes the extended torus.As shown in [18, Lemma6.4], forG = SL2 the one-
dimensional T̃ -orbits of Xd := Sptd z are given as follows. If we identify SpT̃

td z
= Z,

then there is an orbit between a, b ∈ Z if and only if |a − b| ≤ d. Moreover, T̃ acts on
this orbit through the character (in fact, real affine root) (α, a +b) ∈ X∗(T̃ ) ∼= �×Z.
Identify further the differential of this character by y + (a + b)t ∈ C[̃t].

Recall that the affine Grassmannian of SL2 decomposes as the the disjoint union
of finite-dimensional Schubert cells Grm

SL2
:= SL2(O)tm SL2(O). Let Gr≤m

SL2
=

Grm
SL2

= ⊔
l≤m GrlSL2

. It is clear that the subvarieties X≤m
d := (Sptd z)

≤m =
Sptd z ∩ Gr≤m

SL2
are T̃ -stable. The corresponding GKM graph is just the induced sub-

graph formed by the vertices [−m, m] ⊂ Z. In particular, we may compute H T̃∗ (Xm)

using Theorem 3.3 for the corresponding GKM graphs. Note that each such graph in
this case is a chain of complete graphs on d vertices glued along d − 1 vertices. Let
us first practice the case when the length of the chain is one, i.e. we are computing
the T̃ -equivariant Borel–Moore homology of the classical Springer-Spaltenstein fiber
spe ⊂ Gr(2d, d), where e is the square of a regular nilpotent element (see [11]). This
is essentially a projective space of dimension d.

Example 3.8 Let d = 1. Then the GKM graph of spe is two vertices joined by a line,
with the character y + t . Theorem 3.3 then tells us that

i∗ : H T∗ (spT
e ) → H T∗ (spe)

is injective and (i∗)−1H T∗ (spe) consists of rational differential forms (ω0, ω1) so that

Resy=−t (ω0 + ω1) = 0

with poles of order at most one and along y = −t . In particular, any polynomial linear
combination of a = (

dydt
y+t ,

−dydt
y+t ) and b = (dydt, 0) satisfies these requirements and

is the most general choice, so we conclude H T∗ (X) is a free C[y, t]-module with basis
a, b. As spe = P

1 is smooth, we further use the Atiyah-Bott localization theorem to
conclude that a = [P1].
From now on, we will save notation and write each tuple of differential forms
(ω1, . . . , ωq) = ( f1dydt, . . . , fqdydt) simply as ( f1, . . . fq).

Let us now compute H T∗ (Spt z) for G = SL2 for illustrative purposes. This is very
similar to Example 3.8.

Proposition 3.9 If d = 1 and G = SL2, then H T̃∗ (Spt z) is the C[t, y]-linear span of

a = (. . . , 0, 0, 1, 0, 0, . . .)
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and

bi =
(

. . . , 0,
1

(2i + 1)t + y
,

−1

(2i + 1)t + y
, 0, . . .

)

,

where the 1 in a is at the 0th position and the nonzero entries in bi are at the i th and
(i + 1)th positions, respectively. In particular,

H T̃∗ (X)

t · H T̃∗ (X)

∼= H T∗ (X)

is isomorphic to the C[y]-linear span of a and b′
i = (. . . , 0, 1/y,−1/y, 0, . . .).

Proof By the discussion above, the GKM graph has vertices Z and edges exactly
between i, i + 1 for all i . Indeed, it is well-known that X1 is just an infinite chain of
projective lines. The weights of the edges for the T̃ -action are given by the character
(2i + 1)t + y by [18, Lemma 6.4.]. Applying Corollary 3.6 we get the first claim.
Setting t to zero recovers H T∗ (X), so that we get the second result. ��
Lemma 3.10 Let d ≥ 1. Then the T̃ -equivariant Borel–Moore homology of Xd =
Sptd z is the C[t, y]-linear span of

a0 = (. . . , 0, 0, 1, 0, 0, . . .)

a1 =
(

. . . , 0, 0,
1

y + t
,

−1

y + t
, 0, . . .

)

...

ad−1 =
(

. . . , 0, 0,
1

∏d−1
i=1 (y + i t)

,
−(d−1

1

)

(y + t)
∏d−1

i=2 (y + (i + 1)t)
,

. . . ,
(−1)d−1

(d−1
d−1

)

(
∏d−1

i=1 (y + (d − 1 + i)t)
, 0, . . .

)

bk =
(

. . . , 0, 0,

(d
0

)

f (1)
k

,
−(d

1

)

f (2)
k

, . . . ,
(−1)d

(d
d

)

f (d)
k

, 0, . . .

)

, k ∈ Z,

where

f ( j)
k =

j−1∏

i=0

(y + (2k + i + j)t)
d∏

i= j+1

(y + (2k + i + j)t), j = 1, . . . , d.

Here the nonzero entries in ai are at 0, . . . , i and the nonzero entries in bk are at
k, . . . , k + d.

In particular, letting t = 0,

H T∗ (Xd) ⊆ H T∗ (�)
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is the C[y]-linear span of

a′
0 = (. . . , 0, 0, 1, 0, 0, . . .)

a′
1 =

(

. . . , 0, 0,
1

y
,
−1

y
, 0, . . .

)

...

b′
k =

(

. . . , 0, 0,

(d
0

)

yd
,
−(d

1

)

yd
, . . . ,

(−1)d−1
( d

d−1

)

yd

(−1)d
(d

d

)

yd
, 0, . . .

)

, k ∈ Z.

Note that if we write C[�] = C[x±], then in the monomial basis a′
0 = x0, a′

1 = 1−x
y ,

and b′
k = xk(1 − x)d/yd .

Proof Let us first check the residue conditions of Corollary 3.6. Note that a0, . . . , ad−1
are just b0 for some smaller d, in particular it is enough to check the conditions for
bk . There is an orbit between k + j and k + j ′ whenever | j − j ′| ≤ d, and T̃ acts on
said orbit via χ = y + (2k + j + j ′)t . In particular, we need to prove that

Resy=−(2k+ j+ j ′)t

(
(−1) j

(d
j

)

f ( j)
k

+ (−1) j ′(d
j ′
)

f ( j ′)
k

)

= 0.

First, we compute that

f ( j)
k =

∏

i 
= j,1≤i≤d

(y + (2k + i + j)t),

so the residue at y = −(2k + j + j ′)t of 1/ f ( j)
k equals

1
∏

i 
= j, j ′(i − j ′)t
= ( j − j ′)
∏

i 
= j ′(i − j ′)t
= ( j − j ′)

(−1) j ′( j ′)!(d − j ′)! .

If we multiply this by

(−1) j
(

d

j

)

,

we get

( j − j ′)d!
(−1) j ′+ j ( j ′)!(d − j ′)! j !(d − j)! ,

which is antisymmetric under switching j and j ′. By linearity of taking residues, we
get the result.
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We need to show the reverse inclusion. Let spd be the Spaltenstein variety of d-
planes in C

2d stable under the (d, d)-nilpotent element. From [11, page 448], we
know that Xd is an infinite chain of spd glued along spd−1. In addition, X≤m

d from
the beginning of Sect. 3.2 is a chain of 2m copies of spd glued along spd−1. From the
form of the GKMgraph it is immediate that the T -equivariant Borel–Moore homology
of X≤m

d as a graded C[y, t]-module looks like that of a chain of 2m copies of P
d

consecutively glued along P
d−1. In particular, H T∗ (X≤m

d ) has rank 1 over C[y, t] in
degrees ≤ 2d − 2 and rank 2m in degree 2d. Since the classes bi for i = −m, . . . , m
are linearly independent over C[y, t] and there are 2m of them, the bi must span
H T
2d(X≤m

d ). Taking the colimit, the first result follows. The second result is immediate

from the form of f ( j)
k and setting t = 0.

��
Remark 3.11 We thank Eric Vasserot and Peng Shan for pointing out a mistake in the
previous formulation and proof of Lemma 3.10.

Remark 3.12 In [18, Section 12], the analogues of the classes bk are played by the
polynomials denoted fk,d in loc. cit. They are the ones attached to ”constellations” of
one-dimensional orbits.

Remark 3.13 In Proposition 3.9 and Lemma 3.10, the polynomials f ( j)
k that appear

seem to be related to the affine Schubert classes in H T∗ (Xd) given by intersections
by G(O)-orbits on GrSL2 . Since the components ∼= spd are rationally smooth (by

e.g. the criteria in [9, Theorem 1.4]), f ( j)
k are exactly the inverses to T̃ -equivariant

Euler classes of the kth irreducible component at the fixed point j ∈ �. It seems that
for higher rank groups, rational smoothness of the irreducible components no longer
holds in general.

3.3 The general case

In this section, we prove Theorem 3.16. The GKM graph for T̃ acting on Sptd z is
always infinite; indeed we have the following.

Lemma 3.14 The vertices of the GKM graph of Sptd z are � = X∗(T ) and there is an
edge λ → μ whenever λ − μ = kα, where α ∈ �+ and k ≤ d.

Proof From [18, Lemma 5.12], we know that the one-dimensional T̃ -orbits are
(Sptd z)1 = ⋃

α∈�+(Spα
td z

)1 and Spα
td z

∩ Spβ

td z
= � unless β = α. In particular,

we are reduced to the semisimple rank 1 case which is reduced to the SL2 case by
[18, Lemma 8.1] and the SL2 case is handled by Lemma 6.4 in loc. cit. ��

We also need the following corollary to Lemma 3.10.

Corollary 3.15 Let α ∈ �+, and let yα ∈ C[t] = H∗
T (pt) be the linear functional

corresponding to α. Denote Xα
d := Spα

ztd := Spztd ∩ GrHα . For any G and α ∈
�+(G, T ), we have

yd
α H T∗ (Xα

d ) = J d
α = 〈yα, 1 − α∨〉d ⊂ H T∗ (�) = C[�] ⊗ C[t].
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Here 〈S〉 means the ideal in C[�] ⊗ C[t] generated by the subset S.

Proof Since Xα
d is an unramified affine Springer fiber of valuation d for a semisimple

rank one group, it is a disjoint union of infinite chains of Spaltenstein varieties spd , as
explained in Sect. 3.2. More precisely, it is a disjoint union of such over�/〈α∨〉 inside
Xd . Identify H T∗ (�)withC[�]⊗C[t] andwrite its elementsC[t]-linear combinations
of xλ := xλ ⊗ 1. From Lemma 3.10 and [18, Lemma 6.4], we have that H∗

T (Xα
d ) ⊂

H∗(�) ⊗ C(t) is the C[t]-linear span of

xλ(1 − xα∨
)d

yd
α

and

(1 − xα∨
)k

yk
α

for k = 0, . . . , d − 1. In particular, yd
α H∗

T (Spα
zt ) ⊂ C[�] ⊗ C[t] is identified with the

ideal

J d
α = 〈(1 − xα∨

)d , (1 − xα∨
)d−1yα, . . . , (1 − xα∨

)yd−1
α , yd

α 〉.

��
Theorem 3.16 Let � = ∏

α yα ∈ H∗
T (pt) be the Vandermonde element. The equiv-

ariant Borel–Moore homology of Xd := Sptd z for a reductive group G is up to
multiplication by �d canonically isomorphic as a (graded) C[�] ⊗ C[t]-module to
the ideal

J (d) =
⋂

α∈�+
J d
α ⊂ C[�] ⊗ C[t].

In particular, there is a natural algebra structure on �d H T∗ (Spγ ) inherited from

C[�] ⊗ C[t], and J (d) is a free module over C[t].
Proof By [18,Lemma5.12] andCorollary 3.6,wehave that H T∗ (Xd) = ⋂

α H T∗ (Xα
d ) ⊂

H T∗ (�)⊗C(t). By equivariant formality and Corollary 3.6, we furthermore have that

�d · H T∗ (Xd) ⊂ H T∗ (�)

is a free C[t]-module. Since J d
α = yd

α H T∗ (Spα
td z

) contains �, we must have �d ·
H T∗ (Xd) ⊆ J d

α for all α. Inverting �, we see that

�d · H T∗ (Xd)� ∼=
(
⋂

α

J d
α

)

�

.
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But �d · H T∗ (Spt z) was free over C[t], so by [20, Lemma 6.14], we have that J (d) =
�d · H T∗ (Xd). ��
Remark 3.17 A priori, it is not at all obvious that H T∗ (Spα

td z
) would be a C[�]-

submodule of H T∗ (�). The product structure on H T∗ (�), while obvious in the algebraic
statements, is geometrically a convolution product. In fact, it is the convolution prod-
uct on the affine Grassmannian of T , as discussed in [5], and more recently [6] in the
guise of a ”3d N = 4 Coulomb branch for (T , 0)”. Moreover, it is also nontrivial that
yd
α H T∗ (Spα

td z
) should have a natural subalgebra structure.

Remark 3.18 It seems difficult to carry out analysis similar to Remark 3.13 for the
case of general G. Erik Carlsson has informed us that he has performed computations
related to Xd using affine Schubert calculus (see also [10]). It would be interesting to
relate the two approaches.

3.3.1 The affine flag variety

In this section, we consider Yd = S̃pγ , where γ = ztd . We focus on the case d = 1.
The T̃ -fixed points of Yd are in a natural bijection with W̃ = �� W . For G = SL2, it
is known that Y1 is an infinite chain of projective lines again, and if we write elements
of W̃ as (k, w), k ∈ Z, w ∈ {1, s}, there are one-dimensional orbits precisely between
(k, 1) and (k, s) as well as (k + 1, 1) and (k, s), see [18, Section 13].

Lemma 3.19 When G = SL2, we have that H T̃∗ (Y1) ⊂ H T̃∗ (W̃ ) is the C[y, t]-linear
span of the classes

a0 = (. . . , 0, 0, 1, 0, 0, . . .)

bk = (. . . 0, 0,
1

y + 2kt
,− 1

y + 2kt
, 0, 0, . . .)

b′
k = (. . . 0, 0,

1

y + (2k − 1)t
, 0, 0,− 1

y + (2k − 1)t
, 0, 0, . . .)

where bk has nonzero entries at positions (k, 1) and (k, s) and similarly b′
k has nonzero

entries at (k, 1) and (k − 1, s). In particular, by setting t = 0, we get that H T∗ (Y1) is

{
1 − s

y
,
1 − x

y
, 1

}

· C[�] ⊗ C[t] ⊂ C[W̃ ] ⊗ C[t].

Proof The residue conditions needed to apply Corollary 3.6 are almost exactly the
same as in Proposition 3.9. The second claim follows from the fact that in C[W̃ ], we
may compute

−(1 − s) · (λ, 1) + (1 − α∨) · (λ, 1) = −(λ, 1) + (λ, s) + (λ, 1) − (λ + 1, 1)

= (λ, s) − (λ + 1, 1) = −b′
k |t=0y.

��
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Corollary 3.20 Let yα ∈ C[t] = H∗
T (pt) be the linear functional corresponding to α

and Y α
d := S̃p

α
ztd := S̃pztd ∩ FlHα . For any G and α ∈ �+(G, T ), we have

J̃α := yα H T∗ (Y α
1 ) =

{
1 − sα, 1 − xα∨

, yα

}
· C[�] ⊗ C[t] ⊂ C[W̃ ] ⊗ C[t].

Proof This is similar to Corollary 3.15 and [18, page 547]. The affine Springer fiber
Y α
1 is again a disjoint union of infinite chains of projective lines indexed by �/〈α∨〉.

From this fact and the previous Corollary, we get that H T∗ (Y α
1 ) is the C[t]-linear span

of xλ(1−xα)
yα

,
(1−sα)xλ

yα
and 1. Multiplying by yα , we get the result. ��

Theorem 3.21 For any reductive group G,

� · H T∗ (Y1) =
⋂

α

J̃α ⊂ C[W̃ ] ⊗ C[t]

and furthermore J̃G is a free module over C[t]. Here � = ∏
α yα as before.

Proof The proof is entirely similar to Theorem 3.16. ��

Remark 3.22 It is not at all clear from this description whether� · H T̃∗ (Y1) has an alge-
bra structure. Based on Conjecture 4.13 and the fact that there is a (noncommutative)
algebra structure when d = 0, it seems that this could be the case.

3.3.2 Equivariant K-homology

In this section, we state a version of Theorem 3.16 in K-homology. We omit detailed
proofs because they are entirely parallel to those in previous sections.

In [29], more general equivariant cohomology theories, such as the equivariant
K-theory of (reasonably nice) T -varieties is studied from the GKM perspective. Let
K T (X) be the equivariant (topological) K-theory of a T -variety X . Following Propo-
sition 3.2, define the equivariant K-homology of X as

HomR(T )(K T (X), R(T )),

where R(T ) is the representation ring of T overC. In particular, fixing an isomorphism
T ∼= G

n
m , we have R(T ) ∼= C[y±

1 , . . . , y±
n ].

Adapting the description of [29, Theorem 3.1], Proposition 3.3, and Lemma 3.6,
we have an analogue of Corollary 3.6 in K-homology.

Proposition 3.23 Let X be an equivariantly formal GKM T -ind-scheme. Then
K T (X) ⊂ K T (X T ) ⊗ C(t) consists of all tuples (ωx )x∈X T of rational differential
forms on T satisfying the following conditions.

1. The poles of each ωx are contained in the union of singular divisors (i.e. of the
form {yχ = 1} and have order at most one.
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2. For any singular character χ and for any connected component Y of Xker χ , we
have

Resyχ=1

⎛

⎝
∑

x∈Y T

ωx

⎞

⎠ = 0.

From this, it directly follows that we have the following complementary versions
of Theorems 3.16 and 3.21.

Theorem 3.24 Let �′ = ∏
α∈�+(1 − yα) ∈ R(T ) be the Vandermonde element. The

equivariant K -homology of Xd := Sptd z for a reductive group G is up to multiplication
by (δ′)d canonically isomorphic as a C[�] ⊗ R(T )-module to the ideal

(J ′)(d) :=
⋂

α∈�+
(J ′

α)d ⊂ C[�] ⊗ R(T ).

Here J ′
α := 〈1 − yα, 1 − xα∨〉. The algebra structure on (�′)d H T∗ (Spγ ) is given by

the convolution product on K T (�)

Theorem 3.25 For any reductive group G,

� · K T (Y1) =
⋂

α

J̃ ′
α ⊂ C[W̃ ] ⊗ R(T ).

Here

J̃ ′
α =

{
1 − xα∨

, 1 − yα, 1 − sα

}
C[�] ⊗ R(T ) ⊂ C[W̃ ] ⊗ R(T ).

4 The isospectral Hilbert scheme

4.1 Definitions

In this section, we define the relevant Hilbert schemes of points and list some of their
properties. We then discuss the relationship of the results in Sect. 2 to the Hilbert
scheme of points and the isospectral Hilbert scheme.

Definition 4.1 TheHilbert scheme of points on the complex plane, denotedHilbn(C2),
is defined as themoduli space of length n subschemes ofC

2. Its closed points are given
by

{I ⊂ C[x, y]| dimC C[x, y]/I = n},

where I is an ideal.
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Definition 4.2 The isospectral Hilbert scheme Xn is defined as the following reduced
fiber product:

Xn C
2n

Hilbn(C2) C
2n/Sn

ρ ·/Sn

σ

We have the following localized versions of these statements.

Definition 4.3 The Hilbert scheme of points on C
∗ × C is the moduli space of length

n subschemes of C
∗ × C.

Note that C
∗ × C is affine, so that the closed points of Hilbn(C∗ × C) are given by

{I ⊂ C[x±, y]| dimC C[x±, y]/I = n, I ideal}. In fact, Hilbn(C∗ × C) is naturally
identified with the preimage π−1((C∗ × C)n/Sn) under the Hilbert-Chow map

Hilbn(C2) → C
2n/Sn .

Definition 4.4 The isospectral Hilbert scheme on C
∗ × C is denoted Yn , and defined

to be the following reduced fiber product:

Yn (C∗ × C)n

Hilbn(C∗ × C) (C∗ × C)n/Sn

ρ ·/Sn

σ

Let A = C[x, y]sgn be the space of alternating polynomials. This is to be interpreted
in two sets of variables, ie. taking the sgn-isotypic part for the diagonal action. We
recall the following theorem of Haiman.

Theorem 4.5 ([25]) Consider the ideal I ⊂ C[x, y] generated by A. Then for all
d ≥ 0,

I d = J (d) =
⋂

i 
= j

〈xi − x j , yi − y j 〉d ⊆ C[x, y]. (4.1)

Moreover, I d is a free C[y]-module, and by symmetry, a free C[x]-module.

Remark 4.6 J (d) is not free over C[x, y].
We have the following corollary to Theorem 3.16, as stated earlier.

Corollary 4.7 The ideal J (d) ⊂ C[x, y] is free over C[y].
The ideals I d = J d = J (d) and the space of alternating polynomials naturally

emerge in the study of Hilbert schemes of points on the plane.
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Theorem 4.8 The schemes Hilbn(C2) and Xn admit the following descriptions:

Hilbn(C2) ∼= Proj

⎛

⎝
⊕

d≥0

Ad

⎞

⎠ (4.2)

and

Xn ∼= Proj

⎛

⎝
⊕

d≥0

J d

⎞

⎠ . (4.3)

Proof See [28, Proposition 2.6]. ��
Corollary 4.9 We have

Hilbn(C∗ × C) ∼= Proj

⎛

⎝
⊕

d≥0

Ad
x

⎞

⎠ (4.4)

and

Yn ∼= Proj

⎛

⎝
⊕

d≥0

J d
x

⎞

⎠ , (4.5)

where the subscript x denotes localization in the xi .

Proof Both of these equations describe blow-ups; the first along the diagonals in
(C∗ × C)n/Sn and the second along the diagonals in (C∗ × C)n . Note that (J (d))x =
J (d)
x since localization commutes with intersection. Since blowing up commutes with

restriction to open subsets [49, Lemma 30.30.3], Theorem 4.8 gives the result. ��
There are several relevant sheaves on Hilbn(C2) and Xn that relate to H T∗ (Spγ )

and H T∗ (S̃pγ ) naturally. From the Proj construction we naturally get very ample line
bundlesO?(1) on both ? = Xn and ? = Hilbn(C2). Note that it is immediate from the
construction that

OXn (1) = ρ∗OHilbn(C2)(1).

On Hilbn(C2) there is also a tautological rank n bundle T whose fiber at I is given by
C[x, y]/I . Its determinant bundle can be shown to equal O(1).

As noted before, Hilbn(C∗ × C) is the preimage under the Hilbert-Chow map
of (C∗ × C)n/Sn , it is a (Zariski) open subset of Hilbn(C2). Similarly, Yn =
ρ−1(Hilbn(C∗ × C)) ⊂ Xn is an open subset. Restriction then gives very ample
line bundles

OYn (1) = OXn (1)|Yn , OHilbn(C∗×C)(1) = OHilbn(C2)(1)|Hilbn(C∗×C).
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Definition 4.10 Let OXn be the structure sheaf of the isospectral Hilbert scheme.
Define the Procesi bundle P := ρ∗OX on Hilbn(C2).

In particular, H0(Hilbn(C2),P ⊗ O(d)) = J d .

Theorem 4.11 (The n! theorem, [25]) The Procesi bundle is locally free of rank n! on
Hilbn(C2).

Localizing the ideal J at x, we get the following result.

Proposition 4.12 Let γ = ztd ∈ gln ⊗ K as before. Then

H0(Hilbn(C × C
∗),P ⊗ O(d)) = J (d)

x
∼= �d H T∗ (Spγ ). (4.6)

Proof We have by definition that

H0(Hilbn(C × C
∗),P ⊗ O(d)) = H0(Yn,OYn (d)).

SinceYn ⊂ Xn is in fact a principal open subset determined by
∏n

i=1 xi ∈ C[x±, y]Sn ,
restriction to the open subset coincides with localization. So we get

H0(Yn,OYn (d)) = J (d)
x .

By Theorem 3.16, we conclude

H0(Hilbn(C∗ × C),P ⊗ O(d)) ∼= �d H T∗ (Spγ ).

��
Although it is not clear to us what the cohomology of the affine Springer fiber S̃pγ

in FlG describes in these terms, we make the following conjecture.

Conjecture 4.13 As graded C[y1, . . . , yn]-modules, we have

H0(Hilbn(C∗ × C),P ⊗ P∗ ⊗ O(d)) ∼= �d · H T∗ (S̃pztd ). (4.7)

Example 4.14 When d = 0, the above conjecture states

H0(Hilbn(C∗ × C),P ⊗ P∗) = C[W̃ ] ⊗ C[y] = C[x±, y] � W ∼= H T∗ (S̃pz).

If it is also true for d = 1, Theorem 3.21 implies that

H0(Hilbn(C∗ × C),P ⊗ P∗ ⊗ O(1)) ∼= J̃GLn .

Remark 4.15 The motivation for Conjecture 4.13 is as follows. In [16], Gordon and
Stafford relate J (d)

n and the Procesi bundle to the spherical representation of the rational
Cherednik algebra in type A. For d = 1, the antisymmetrized version of this repre-
sentation has the same size (as an Sn-representation) as P ⊗ P , as does H T∗ (S̃pt z).
Since H T∗ (S̃pt z) also carries a trigonometric DAHA-action (at c = 0) by results of
Oblomkov–Yun [44], it is plausible to conjecture that it is ”the same” module as the
Gordon–Stafford construction would give.
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4.2 Diagonal coinvariants and a conjecture on the lattice action

WhenG = GLn , it is known that the fibers of the Procesi bundleP , as introduced in the
previous section, at torus-fixed points in Hilbn(C2) afford the regular representation
of Sn [25], and in particular have dimension n!. On the other hand, they appear
as quotients of the ring of diagonal coinvariants (sometimes also called diagonal
harmonics)

DRn := C[x, y]/C[x, y]Sn+ ,

which is now known to be (n + 1)n−1- dimensional. Additionally, it is known that the
isotypic component DHsgn

n has dimension Cn , where Cn is the nth Catalan number,
and that its bigraded character is given by

(en,∇en).

Here (−,−) is the Hall inner product on symmetric functions over Q(q, t) and e j

denotes the j th elementary symmetric function. The operator ∇ is the nabla operator
introduced by Garsia and Bergeron [3].

As far as the relation with affine Springer theory goes, from work of Oblomkov–
Yun, Oblomkov–Carlsson and Varagnolo–Vasserot [44], [10], [50], it follows that we
have, up to regrading,

H∗(S̃pγ ′) ∼= DRn, H∗(Spγ ′) ∼= DRsgn
n ,

where γ ′ is an endomorphism ofKn = span{e1, . . . , en}K given by γ ′(ei ) = ei+1, i =
1, . . . , n − 1 and γ ′(en) = te1. Note that in this case, γ ′ is elliptic so that Spγ ′
and S̃pγ ′ are projective schemes of finite type and thus their cohomologies are finite
dimensional. In fact, after adding some equivariance to the picture the cohomologies
in question become the finite-dimensional representations of the trigonometric and
rational Cherednik algebras with parameter c = n+1

n .

It is a conjecture of Bezrukavnikov-Qi-Shan-Vasserot (private communication) that
under the lattice action of � on H∗(S̃pγ ), where γ = zt , we also have

H∗(S̃pγ )� ∼= DRn

and

H∗(Spγ )� ∼= DRsgn
n .

So far, we are not able to prove this conjecture, but can deduce the sign character
part as follows.

Theorem 4.16 We have

H∗(Spγ )� ∼= DRsgn
n .
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Proof Using Theorem 3.16, we compute that

H∗(Spγ ) ∼= H T∗ (Spγ )

〈y〉 .

As the actions of C[x±] and C[y] commute, the result is still a C[x±]-module. Taking
coinvariants, we have

H∗(Spγ )� := H∗(Spγ )

〈1 − x〉H∗(Spγ )
∼= H T∗ (Spγ )

〈1 − x, y〉H T∗ (Spγ )
.

The last equality follows from the isomorphism theorems for modules. Here 〈1 − x〉
means the set {1 − x1, . . . , 1 − xn} and y means the set {y1, . . . , yn}.

On the other hand,

JGLn /〈x1 − 1, . . . , xn − 1, y1, . . . , yn〉JGLn

may be identified with J/〈x1 − 1, . . . , xn − 1, y1, . . . , yn〉J , where

J :=
⋂

i 
= j

〈xi − x j , yi − y j 〉 ⊂ C[x, y]

since quotient and localization commute. Since J is translation-invariant with respect
to xi �→ xi + c, i = 1, . . . , n, so that

J/〈x1 − 1, . . . , xn − 1, y1, . . . , yn〉J ∼= J/〈x, y〉J .

On the other hand, we have that J/〈x, y〉J ∼= DRsgn
n by the fact that the left-hand

side is the space of sections ofO(1) on the zero-fiber of the Hilbert-Chow map inside
Hilbn(C2) [25, Proposition 6.1.5]. ��
Corollary 4.17 We have

H∗(Spγ )� ∼= HomC(DRsgn
n , C).

Proof Let X be an equivariantly formal T -ind-scheme with a (commuting) action of
�. Then we have

(H∗(X))�

∼=
(

H∗
T (X)

C[t]+H∗
T (X)

)�

∼=
(
HomC[t](H T∗ (X), C[t]) ⊗C[t] C

)�

∼=
(
HomC[t](H T∗ (X), C)

)�
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∼=HomC(H∗(X), C)�

∼=HomC[�](H∗(X), C)

∼=HomC(H∗(X)�, C).

The second isomorphism follows from the fact that whereas H T∗ (X) is defined as the
restricted dual of H∗

T (X) over C[t], the ordinary dual of H T∗ (X) over C[t] is H∗
T (X).

��
Remark 4.18 By the above corollary and conjecture, it seems that it is best to
think of H∗(S̃pγ )� as the (isomorphic) dual space to DRn , called the diagonal
harmonics, that can be described also as f ∈ C[x, y] annihilated by all P ∈
C[∂x1, . . . , ∂xn , ∂y1 , . . . , ∂yn ]Sn+ .

Corollary 4.19 One has

dimq,t H∗(Spγ )� = 〈en,∇en〉,

and dimC H∗(Spγ )� = Cn, where Cn is the nth Catalan number.

Remark 4.20 In the spirit of Conjecture 4.13, it seems likely that the approach from
above can be used to show that H∗(S̃pγ )� ∼= DRn . Bothwould follow from an explicit
description of H0(Hilbn(C2),P ⊗ P).

4.3 Rational and elliptic versions

Wenowcomment on the relation of our results toHilbn(C2) andHilbn(C∗×C
∗). These

are known to quantize to the rational Cherednik algebra of gln and the full DAHA of
GLn . Let us start with the latter, ”elliptic” version (trigonometric/trigonometric might
be better terminology, as this algebra is not truly an elliptic algebra; on the other
hand the terminology used here comes from the relation to elliptic root systems).
In Theorem 3.24, the description of the K-homology of Spγ is given. As blow-up
commutes with restriction to opens, we have the following analogue to Theorem 4.8
and Corollary 4.9.

Corollary 4.21 We have

Hilbn(C∗ × C
∗) ∼= Proj

(
⊕

d

Ad
x,y

)

(4.8)

and

Y ′
n

∼= Proj

(
⊕

d

(J ′)d

)

. (4.9)

Here the subscript x, y denotes localization in
∏

xi and
∏

yi , and Y ′
n is the isospectral

Hilbert scheme on C
∗ × C

∗.
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Analogously to Proposition 4.12, we have the following.

Proposition 4.22 We have

H0(Hilbn(C∗ × C
∗),P ⊗ O(d)) ∼= (�′)d K T (Sptd z) (4.10)

Let now Gr+GLn := ⊔
λ∈�+ Grλ be the positive part of the affine Grassmannian. Let

Sptd z ∩Gr+GLn
Then the T -fixed points in both are identified with�+ and their classes

inC[�]with themonomials without negative powers. Intersecting�d H T∗ (Sptd z)with
H T∗ (�+) gives J (d) ⊂ C[x, y]. From the proof of Theorem 3.16, it is not hard to see
that this agrees with �d H T∗ (Sp+

td z
). In particular, we have

Theorem 4.23

H0(Hilbn(C2,P ⊗ O(d))) ∼= �d H T∗ (Sp+
td z

).

Remark 4.24 When n = 2, it is not hard to see that Sp+
t z is isomorphic to the Hilbert

scheme of points on the curve singularity {x2 = y2}, as studied in Sect. 6. In forth-
coming work, it will be shown that this is the case for higher n as well.

4.4 Other root data

In this section, we consider a general connected reductive group G. As we will see,
many things from the above discussion are not as straightforward.

In [25], Haiman discusses the extension of his n! and (n+1)n−1 conjectures to other
groups. The naturally appearing space here is T ∗t with its diagonal W - action. In the
case of a general reductive group, Gordon [15] has proved that there is a canonically
defined doubly graded quotient ring RW of the coinvariant ring

C[T ∗t]/C[T ∗t]W+

whose dimension is (h + 1)r for the Coxeter number h and rank r . It is also known
that sgn ⊗ RW affords the permutation representation of W on Q/(h + 1)Q for Q
the root lattice of G. It would be interesting to compare the lattice-invariant parts of
H∗(Spγ ) and H∗(S̃pγ ) to this quotient in other Cartan-Killing types.

We have now seen how the antisymmetric pieces of spaces of diagonal coinvariants
appear from affine Springer fibers in the affine Grassmannian. On the other hand, we
have seen that in type A, the antisymmetric part of C[x, y] plays the main role in
the construction of the isospectral Hilbert scheme Xn as a blow-up. From solely the
point of view of Weyl group representations, it would be then natural to consider the
sgn-isotypic part of C[T ∗t], C[T ∗T ∨].

We now restate and prove Theorem 1.2.

Theorem 4.25 Let IG ⊆ C[T ∗T ∨] be the ideal generated by W -alternating poly-
nomials in C[T ∗T ∨] with respect to the diagonal action. Then there is an injective
map
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I d ↪→ J (d)
G = �d H T∗ (Spγ ).

Proof Write (x, y) = (x1, . . . , xr , y1, . . . , yr ) for the coordinates on T ∗T ∨ deter-
mined by xi = exp(εi ) and where the yi are the cotangent directions. Let f (x, y) ∈ IG

and let α ∈ �+ be a positive root. Denote by sα the corresponding reflection. Without
loss of generality we may take f (x, y) to be W -antisymmetric. Then at points (x, y)
where exp(α∨) = 1, ∂α = 0 we must have sα · f (x, y) = − f (x, y) = f (x, y) for
any sα . Thus f (x, y) = 0 on the subspace arrangement defined by JG , and by the
Nullstellensatz f ∈ JG . Taking dth powers and observing that J d

G ⊆ J (d)
G for any d

gives the result. ��
Proposition 4.26 There is a natural graded algebra structure on

⊕

d≥0

J (d)
G

given by multiplication of polynomials:

J (d1)
G × J (d2)

G → J (d1+d2)
G .

Proof Suppose fi ∈ ⋂
α∈�+〈1 − α∨, yα〉i

, i = 1, 2. Then f1 f2 ∈ 〈1 − α∨, yα〉d1+d2

for all α, so that J (d1)
G J (d2)

G ⊆ J (d1+d2)
G . ��

The following Theorem was communicated to the author by Mark Haiman.

Theorem 4.27

YG := Proj

⎛

⎝
⊕

d≥0

J (d)
G

⎞

⎠

is a normal variety.

Proof The powers of an ideal generated by a regular sequence are integrally closed,
as is an intersection of integrally closed ideals. Therefore, each of the ideals J (d)

G is
integrally closed, and so is the algebra

⊕

d≥0

J (d)
G .

By construction, the ring is an integral domain, so YG is by definition normal. See also
[25, Proposition 3.8.4] for the proof of this statement in type A. ��
Remark 4.28 This Proj-construction is sometimes called the symbolic blow-up. Since
we do not know if J d

G = J (d)
G , and likely this is not the case, the ring

⊕
d≥0 J (d)

G
is not generated in degree one. However, if we did have translation invariance in the
�-direction in this case, we could deduce results about the geometry of the double
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Coxeter arrangement in T ∗t∨ by similar arguments as in typeA. It would be reasonable
to suspect YG also has a map to the “W -Hilbert scheme” or some crepant resolution
but we do not discuss these possibilities any further. It should be mentioned that in
[14], Ginzburg studies the “isospectral commuting variety”. He has proved that its
normalization is Cohen-Macaulay and Gorenstein. It would be interesting to know
how this variety relates to the variety YG .

5 Relation to knot homology

Gorsky and Hogancamp have recently defined y-ified Khovanov-Rozansky homol-
ogy HY(−) [20]. It is a deformation of the triply-graded knot homology theory of
Khovanov and Rozansky [33], which is often dubbed HOMFLY homology, for it cat-
egorifies the HOMFLY polynomial. In this section, we discuss the relationship of the
results in previous sections to these link homology theories.

Recall that the HOMFLY homology of a braid closure β can be defined [33] as the
Hochschild homology of a certain complex of Soergel bimodules called the Rouquier
complex. We denote the triply graded homology of β by HHH(β).

As stated above, there exists a nontrivial deformation of this theory, called y-
ification, which takes place in an enlarged category of curved complexes of y-ified
“Soergel bimodules”. It was defined in [20] and in practice is still defined as the Hoc-
schild homology of a deformed Rouquier complex. We denote the y-ified homology
groups of a braid closure L = β ⊂ S3 by HY(L). They are triply graded modules
over a superpolynomial ring C[x1, . . . , xm, y1, . . . , ym, θ1, . . . , θm], where m is the
number of components in L . The θ -grading comes from Hochschild homology, and
we will mainly be interested in the Hochschild degree zero part. We will denote this
by HY(L)a=0. See [20, Definition 3.4] for the precise definitions.

Definition 5.1 Let coxn ∈ Brn be the positive lift of the Coxeter element of Sn . The
dth power of the full twist is the braid FTd

n := coxnd
n .

Remark 5.2 The element FTn is a central element in the braid group and it is known
to generate the center.

Theorem 5.3 ([20]) We have HY(FTd
n)a=0 ∼= J d ⊂ C[x, y].

Corollary 5.4 There is an isomorphism of C[x±, y]-modules

�d H T∗ (Spγ ) ∼= HY(FTd
n)a=0 ⊗C[x] C[x±]

for γ = ztd .

Following Theorem 3.16 for G = GLn , it is interesting to consider the homologies
of the powers of the full twist as d → ∞. By [30], it is known that the a = 0
part of the ordinary HOMFLY homology of FT∞

n is given by a polynomial ring on
generators g1, . . . , gn of degrees 1, . . . , n, which coincide with the exponents of G,
and in particular with the equivariant BM homology of the affine Grassmannian. In the
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context of loc. cit. the corresponding algebra appears as the endomorphism algebra of a
categorified Jones-Wenzl projector. The corresponding statement in y-ified homology
is stronger, and states

HY(FT∞
n ) ∼= C[g1, . . . , gn, y1, . . . , yn]

as C[y]-modules.

Theorem 5.5 Consider the system of inclusions

H T∗ (Sptd z) → H T∗ (Sptd+1z).

Taking the colimit in the category of C[x±, y]-modules, we have

H T∗ (GrGLn )
∼= HY(FT∞

n ) ∼= C[g1, . . . , gn, y1, . . . , yn].

In particular, the lattice action is trivial.

Remark 5.6 Note that this looks like the coordinate ring of the open affine where
the points on the (isospectral) Hilbert scheme have distinct x-coordinates by [25,
Section 3.6]. However, it does not seem to be true that the algebra structure matches
(it does on cohomology). Namely, the algebra structure on H T∗ (GrGLn ) is that of the
”Peterson subalgebra” studied by various authors, but this does not agree with the
algebra structure of HY(FT∞

n ) found by Gorsky and Hogancamp. On the other hand,
one expects some relation of

lim−→ �d H T∗ (Spγ ),

where the system of maps is given by multiplication by �, to the categorified Jones-
Wenzl projector for the one-column partition.

We record the following theorem from [20, Theorem 1.14], relating commutative
algebra in 2n variables to the link-splitting properties of HY(−).

Theorem 5.7 Suppose that a link L can be transformed to a link L ′ by a sequence of
crossing changes between different components. Then there is a homogeneous “link
splitting map”

� : HY(L) → HY(L ′)

which preserves the Q[x, y, `]-module structure. If, in addition, HY (L) is free as a
Q[y]-module, then � is injective. If the crossing changes only involve components
i and j, then the link splitting map becomes a homotopy equivalence after inverting
yi − y j , where i, j label the components involved.

The cohomological purity of Spγ should be compared to the parity statements in
[20, Definitions 1.16, 3.18, 4.9]. Namely, we have the following Theorem.
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Theorem 5.8 ([20], Theorem 1.17) If an r-component link L is parity then

HY(L) ∼= HHH(L) ⊗ C[y]

is a free C[y]-module.
In particular, HY(L)/yHY(L) ∼= HHH(L) as triply graded vector spaces.
Consequently any link splitting map identifies HY(L) with a Q[x, y, `]- submodule

of HY(split(L)).

In the case of the powers of the full twist, Theorem 5.7 is easy to understand.
Namely, inverting yi − y j we simply remove the ideal (xi − x j , yi − y j ) from the
intersection J . This also clearly holds for J (m). Let us consider similar properties for
the anti-invariants, following Haiman [27].

Lemma 5.9 The ideal I factorizes locally as the product of I for parabolic subgroups
of Sn.

Proof Let g be a generator of

I ′ = I (x1, y1, . . . , xr , yr )I (xr+1, yr+1, . . . , xn, yn),

alternating in the first r and last n − r indices. Let h be any polynomial which belongs
to the localization JQ at every point Q 
= P in the Sn-orbit of P , but doesn’t vanish
at P . Then f = Alt(gh) belongs to I . The terms of f corresponding to w ∈ Sn

not stabilizing P belong to JP , by construction of h. Since g alternates with respect
to the stabilizer of P , the remaining terms sum to a unit times g, or more precisely
g
∑

wP=P wh. Hence g ∈ IP . This means that I and I m factorize locally as products
of the corresponding ideals in the first r and last n − r indices. ��
It is curious to note that a similar property holds for the affine Springer fibers. As
shown in [18, Theorem 10.2], we have the following relationship between equivariant
(co)homology of Spγ and the corresponding affine Springer fiber of an “endoscopic”
group. This is to say, G ′ has a maximal torus isomorphic to T and its roots with
respect to this torus can be identified with a subset of �(G, T ). If G ′ is such a group
for G = GLn (which in this case can just be identified with a subgroup of G), we
have an isomorphism

H T
i (Spγ ; C)S ∼= H T

i−2r (X T
γT

; C)S, (5.1)

where S is the multiplicative subset generated by (1− α∨), where the coroots α∨ run
over all corootsnot corresponding toG ′. Ifwedenote this set by�(G)+−�(G ′)+, then
r is the cardinality of this finite set times d. For general diagonal γ , or alternatively
the pure braids discussed in the introduction, r is the degree of the corresponding
product of Vandermonde determinants, or in the automorphic form terminology the
homological transfer factor. The fact that this localization corresponds exactly to link
splitting in y-ified homology (after using the Langlands duality x ↔ y) is in the
author’s opinion quite beautiful and deep.
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6 Hilbert schemes of points on planar curves

6.1 Hilbert schemes on curves and compactified Jacobians

In the case G = GLn , which we will assume to be in from now on, the affine Grass-
mannian has a description as the space of lattices:

G(K)/G(O) = {� ⊆ Kn|� ⊗O K = Kn,� a projective On-module}

We may think of Spγ as {�|γ� ⊆ �}. If γ is regular semisimple, the characteristic
polynomial of γ determines a polynomial Pγ (x) in O[x], which equals the minimal
polynomial of γ . Denote A = O[x]/Pγ (x), F = Frac(A). As a vector space, we
then have F = K[x]/Pγ (x) ∼= Kn , and Spγ can be identified with the space of
fractional ideals in F . On the other hand, this is by definition the Picard factor or
local compactified Picard associated to the germ O[[x]]/Pγ (x) of the plane curve
C = {Pγ (x) = 0} [1]. By e.g. Ngô’s product theorem [41], there is a homeomorphism
of stacks

Pic(C) ∼= Pic(C) ×
∏

x∈Csing Pic(Cx )

∏

x∈Csing

Pic(Cx ).

Call γ elliptic if it has anisotropic centralizer over K, or equivalently Pγ (x) is
irreducible over K. There has been a lot of work in determining the compactified
Jacobians of C , in particular in the cases where Pγ (x) = tn − xm , gcd(m, n) = 1
[21,34,45,48].

There is always an Abel-Jacobi map AJ : C [n] → Pic(C) given by IZ �→ IZ . It
is known that for elliptic γ this becomes a P

n−2g-bundle over Pic
n
(C) for n > 2g.

For nonelliptic γ as we are interested in, there is no such stabilization. On the local
factors it is known AJ is an isomorphism for n > 2g with Pic

n
(C0) for the elliptic

case, and in the nonelliptic case it is known that AJ is a dominant map to a union of
irreducible components in the same connected component of Pic(C0).

The precise homological relation between Pic(C) and Hilbn(C) is most concisely
summarized in the following Theorem of Maulik and Yun [36, Theorem 3.11].

Theorem 6.1 Let Ô be a planar complete local reduced k-algebra of dimension one,
with r analytic branches. Assume char k = 0 or char k > mult0(Ô). Then there is a
filtration P≤i on H∗(Pic(Ô)/�) so that we have the following identity in Z[[q, t]]:

∑

n

∑

i, j

(−1) j dimGrW
i H j (X)qi tn =

∑
i
∑

k, j (−1) j GrP
i GrW

k H j (Pic(Ô)/�)qkt i

(1 − t)r
.

Here W≤k is the weight filtration.

In addition to the relationship of C [n] with the compactified Jacobians, conjectures
of Oblomkov–Rasmussen–Shende [42,43] predict that they in fact determine the knot
homologies of the links of singularities of C and vice versa. For simplicity, assume
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C has a unique singularity at zero, and let C [n]
0 be the punctual Hilbert scheme of

subschemes of length n in C supported at zero.
Then [42, Conjecture 2] states

Conjecture 6.2

V0 :=
⊕

n≥0

H∗(C [n]
0 ) ∼= HHHa=0(L).

Remark 6.3 On the level of Euler characteristics, this is known to be true by [35].

We should mention that there is yet another reason to care about C [n]; the Hilbert
schemes and their Euler characteristic generating functions are closely related to
BPS/DT invariants as shown in [46,47]. In [46] some of the examples we are interested
in are studied.

In earlier work [31], the author considered the Hilbert schemes of points on
reducible, reduced planar curves C/C. The main result in loc. cit is as follows.

Theorem 6.4 ([31], Theorem 1.1) If C = ⋃m
i=1 Ci is a decomposition of C into

irreducible components, the space V = ⊕
n≥0 H∗(C [n], Q) carries a bigraded action

of the algebra

A = Am := Q[x1, . . . , xm, ∂y1 , . . . , ∂ym ,

m∑

i=1

yi ,

m∑

i=1

∂xi ],

where V = ⊕
n,d≥0 Vn,d is graded by number of points n and homological degree

d. Moreover, the operators xi have degree (1, 0) and the operators ∂yi have degree
(−1,−2) in this bigrading. In effect, the operator

∑
yi has degree (1, 2) and the

operator
∑

∂xi has degree (−1, 0).

Example 6.5 In the case x2 = y2, we have

V = C[x1, x2, y1, y2]
(x1 − x2)C[x1, x2, y1 + y2]

as C[x1, x2, y1 + y2, ∂x1 + ∂x2 , ∂y1 , ∂y2 ]-modules.

6.2 Conjectural description in the case C = {xn = ydn}

As discussed in the introduction, the representation in Example 6.5 very similar to the
main result in [18] when G = GL2 and d = 1. We now recall said theorem.

Theorem 6.6 Let G be a connected reductive group and γ = ztd as before. Then the
ordinary (i.e. not Borel–Moore) T -equivariant homology of Spγ is a C[�] ⊗ C[t∗]-
module, where t acts by derivations, and

H T∗,ord(Spγ ) ∼= C[�] ⊗ C[t]
∑

α∈�+
∑d

k=1(1 − xα∨
)kC[�] ⊗ ker(∂k

α)
.
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Example 6.7 If G = GL2, d = 1, we have

H T∗,ord(Spγ ) = C[x±
1 , x±

2 , y1, y2]
(1 − x1x−1

2 )C[x±
1 , x±

2 , y1 + y2]
.

The above examples, as well as Examples 6.18, 6.17 and Theorem 3.16 motivate
us to conjecture the following.

Conjecture 6.8 Let C = {xn = ydn} be the compactification with unique singularity
and rational components of the curve defined by the affine equation {xn = ydn}. Then
as a bigraded An-module (see Theorem 6.4), we have

V :=
⊕

n≥0

H∗(C [n], Q) ∼= Q[x1, . . . , xn, y1, . . . , yn]
∑

i 
= j
∑d

k=1(xi − x j )k ⊗ ker(∂yi − ∂y j )
k
. (6.1)

Remark 6.9 In some sense, passing from the equivariant homology of affine Springer
fibers to the Borel–Moore version involves only half of the variables, namely the
equivariant parameters. It is not immediate from the construction of the Am- action
in [31] what the analogous procedure would be to pass to H∗(C [n]) from H∗(C [n]).
It would be interesting to know, at least on the level of bigraded Poincaré series, how
to compare V to the ideal J d ⊂ C[x, y], assuming that Conjecture 6.8 is true. The
q, t-character of J d is by work of Haiman [25] known to be given by the following
inner product of symmetric functions:

dimq,t J d = (∇d pn
1 , en).

Thanks to work of Gorsky and Hogancamp [20] we then also know that (up to regrad-
ing) the bigraded character of HY a=0(T (n, dn)) is given by the same formula.

For some support for the conjecture, let us consider the following examples.

Theorem 6.10 ([31]) When C = {x2 = y2}, we have that

V =
⊕

n≥0

H∗(C [n]) ∼= C[x1, x2, y1, y2]
C[x1, x2, y1 + y2](x1 − x2)

(6.2)

as an A2-module, where

A2 = C[x1, x2, ∂x1 + ∂x2 , y1 + y2, ∂y1 , ∂y2 ] ⊂ Weyl(A4).

Remark 6.11 Note that we get an extremely similar looking result for H H∗ (Spdiag(t,−t))

and H∗(C•), where C• = ⊔
n≥0 C [n] is the Hilbert scheme of points on the curve

C = {x2 = y2} ⊂ P
2.
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Remark 6.12 We are no longer using equivariant homology, but have replaced the
equivariant parameters by the fundamental classes of the components of the global
curve C . It does make sense to consider the equivariant cohomology for the Hilbert
schemes of points on C = {xn = ydn}, but we do not know how to produce a nice
action of a rank n torus in this case and whether it would agree with expectations.
Note that there is a natural (C∗)2-action on C and its Hilbert schemes, coming from
the (C∗)2-action with weights (d, 1) on the plane.

Remark 6.13 In general, we may describe the Hilbert schemes C [2] explicitly for C =
{xn = ydn}. Fix a decomposition into irreducible components C = ⋃n

i=1 Ci . Since C
has n rational components, there is a component Mi ∼= Sym2

P
1 ∼= P

2 for each i , and
for each i < j we have a component Ni j ∼= Blpt (P

1 × P
1), see [31, Example 5.9].

The
(n
2

)
components Ni j all intersect along an exceptional P

1 that can be identified
with Hilb2(C2, 0). Denote this line by E . We have Mi ∩ M j = ∅ for all i 
= j , and
Mi ∩ N jk ∼= P

1 if i = j or i = k, and Mi ∩ N jk = ∅ otherwise. Denote these lines of
intersection by Li . It is helpful to picture them as naturally isomorphic to Ci . The Li

do not intersect each other, but intersect Hilb2(C2, 0) at points corresponding to the
slopes of the corresponding lines Ci .

The homology ofC [2] in degree two is spanned by [Li ], i = 1, . . . , n and E . Denote
the fundamental class [Ci ] ∈ H2(C [1]) by yi . Using the An-action, we have elements

xi yi = [Li ] ∈ H2(C
[2]), i = 1, . . . , n, and xi y j = [L j ] − [E], i 
= j .

Hence we have the relations

(xi − x j )(yi + y j ) = 0 ∀i, j

(xi − x j )yk = 0 k 
= i, j .

Using these relations, we may express all the classes [Li ], i = 1, . . . , n and [E] as
linear combinations of xi yi and for example x1y2. Since

dimC H2(C
[2]) = n + 1,

there cannot be any other relations in this degree. This verifies equation (6.1) of
Conjecture 6.8 in degree q2t2.

6.3 Compactified Jacobians and theMSV formula

Homologically, we have the following sheaf-theoretic relationship, along the lines of
Theorem 6.1, between the cohomology of the compactified Jacobians and the Hilbert
schemes of pointsC [n], proved independently byMaulik–Yun andMigliorini–Shende.

Theorem 6.14 ([36,39]) Let π : C → B be a locally versal deformation of C, and
π [n] : C[n] → B, π J : Jac(C) → B be the relative Hilbert schemes of points and
compactified Jacobians of π . Then, inside Db

c (B)[[q]], we have
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⊕

n≥0

qn Rπ [n]∗ C = ⊕qi p Riπ J∗ C

(1 − q)(1 − qL)
,

where L is the Lefschetz motive (ie. the constant local system on B in this case.)

For reducible curves, the bigraded structure can be also computed from the theorem
of Migliorini-Shende-Viviani [40, Theorem 1.16].

Theorem 6.15 Let {CS → BS}S⊂[m] be an independently broken family of reduced
planar curves (see [40] for the definition), such that all the CS → BS are H-smooth,
ie. their relative Hilbert schemes of points have smooth total spaces, and such that
the families CS → BS admit fine compactified Jacobians J (CS) → BS. Then, inside
Db

c (
⊔

BS)[[q]], we have:

(qL)1−g
⊕

n≥0

qn Rπ [n]∗ C = Exp

(

(qL)1−g
⊕

qi I C(�i R1πsm∗C[−i])
(1 − q)(1 − qL)

)

(6.3)

= Exp

(

(qL)1−g
⊕

qi p Riπ J∗ C

(1 − q)(1 − qL)

)

. (6.4)

Here, g : BS → N is the upper semicontinuous function giving the arithmetic genus
of the fibers, and L is the Lefschetz motive.

Remark 6.16 Later, we will use the substitution L �→ t2, which recovers the Poincaré
polynomial.

We turn to a more complicated example of C [n].

Example 6.17 Consider the (projective completion with unique singularity of the)
curve {x3 = y3}, ie. three lines on a projective plane intersecting at a point.

We are interested in computing the stalk of the left hand side of (6.3) at the central
fiber. On the right, the exponential map is a sum over all distinct decompositions of
C = C1 ∪ C2 ∪ C3 into subcurves. By symmetry, there are only three fundamentally
different ones: the decomposition into three disjoint lines, the decomposition into a
node and a line, and the trivial decomposition. Sincewe know that the fine compactified
Jacobians of nodes and lines are points [40], these terms on the right hand side are

relatively easy to compute. Namely, for the three lines we have
(

qL
(1−q)(1−qL)

)3
, and

(
qL

(1−q)(1−qL)

)2
for the decompositions to a node plus a line.

As to the last term on the right, C has arithmetic genus one, so is its own fine
compactified Jacobian, as shown byMelo–Rapagnetta–Viviani [38]. Moreover, C can
be realized as a type III Kodaira fiber in a smooth elliptic surface f : E → T , where
T is a smooth curve. Let � be the singular locus of f . By the decomposition theorem
of Beilinson–Bernstein–Deligne–Gabber [2], we have from eg. [12, Example 1.8.4]

R f∗QE [2] = QT [2] ⊕ (I C(R1 f sm∗ QE ) ⊕ G) ⊕ QT
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where G is a skyscraper sheaf on � with stalks H2( f −1(s))/〈[ f −1(s)]〉. Note that the
rank of this sheaf is the number of irreducible components of the fiber minus one.

The terms in the above direct sum are ordered so that we first have the second
perverse cohomology sheaf pH2(R f∗QE [2]), then the first one inside the parentheses
and lastly the zeroth perverse cohomology sheaf. Since the base is smooth I C(R1) =
R1 and its stalk is zero at the central fiber. This gives that the numerator of our last
term is 1 + 2qL + q2

L. In total, we have

∑

n≥0

qn H∗(C [n]) =
(

qL

(1 − q)(1 − qL)

)3

+ 3

(
qL

(1 − q)(1 − qL)

)2

(6.5)

+ 1 + 2qL + q2
L

(1 − q)(1 − qL)
, (6.6)

which we compute to be

q6
L
3 − 2q5

L
2 + q4

L
2 + q3

L
2 + q4

L − 2q3
L + q2

L + q2 − 2q + 1

(1 − q)3(1 − qL)3
(6.7)

Let us now consider the simplest example where d > 1.

Example 6.18 Similarly,wemay consider the projectivemodel of the curveC = {x4 =
y2}, which has two rational components which are parabolas. This also has arithmetic
genus one and by the same line of reasoning as above we have

∑

n≥0

qn H∗(C [n]) =
(

qL

(1 − q)(1 − qL)

)2

+ 1 + qL + q2
L

(1 − q)(1 − qL)

= q4
L
2 − q3

L + q2
L − q + 1

(1 − q)2(1 − qL)2
.

Let us now compute the Hilbert series, as predicted by Conjecture 6.8, in the cases of
Examples 6.17, 6.18.

Example 6.19 In the case of Example 6.17, write

Ui = (x j − xk)C[x1, x2, x3, y j + yk, yi ], k 
= i 
= j 
= k.

Denote by gr dim V the (q, t)-graded dimension of a bigraded vector space V . Then

gr dim(U1 + U2 + U3) = gr dim(U1) + gr dim(U2) + gr dim(U3)

− gr dim((U1 + U2) ∩ U3) − gr dim(U1 ∩ U2)

and we compute that:

(U1 + U2) ∩ U3 =(x1 − x3)C[x1, x2, x3, y1 + y2 + y3]
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+ (x1 − x2)(x2 − x3)y3C[x1, x2, x3, y1 + y2 + y3],
U1 ∩ U2 =(x1 − x2)C[x1, x2, x3, y1 + y2 + y3].

We then have

gr dim(U1 + U2) ∩ U3 = q + q4t2

(1 − q)3(1 − qt2)

and

gr dim(U1 ∩ U2) = q2

(1 − q)3(1 − qt2)
.

Hence

gr dim(V ) = 1

(1 − q)3(1 − qt2)3
− 3

q

(1 − q)3(1 − qt2)2
+ q + q2 + q4t2

(1 − q)3(1 − qt2)
,

which can be checked to equal the right-hand side of (6.7).

Example 6.20 In the case of Example 6.18, write

U =(x1 − x2)C[x1, x2, y1 + y2],
U ′ =(x1 − x2)

2 (C[x1, x2, y1 + y2] ⊕ C[x1, x2, y1 + y2](y1 − y2)) .

Then U ∩ U ′ = (x1 − x2)2C[x1, x2, y1 + y2], and we have that the right hand side of
(6.1) equals

1

(1 − q)2(1 − qL)2
− q

(1 − q)2(1 − qL)2
− q2(1 + qL)

(1 − q)2(1 − qL)

+ q2

(1 − q)2(1 − qL)
= q4

L
2 − q3

L + q2
L − q + 1

(1 − q)2(1 − qL)2
.

As a continuation of Examples 6.17, 6.18, let us verify that the Poincaré series
agrees with the Oblomkov–Rasmussen–Shende conjectures in both cases, since this
result does not appear in the literature.

Proposition 6.21 If C = {x3 = y3}, then under the substitutions

qL �→ T −1, q �→ Q,

we have the following equality in Z[[q, t]]:
∑

n≥0

qn H∗(C [n]
0 ) = f000(Q, 0, T ),
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where f000(Q, A, T ) denotes the triply graded Poincaré series of

HHH(T (3, 3)).

Note that we are considering the punctual Hilbert schemes C [n]
0 here.

Proof From [13, page 9], we have

f000(Q, A, T ) = 1 + A

(1 − Q)3

(
(T 3Q2 + Q3T 2 − 2T 2Q2 − 2T Q3 − 2QT 3

+ T 3 + Q3 + T Q2 + QT 2 + T Q) + (T 2Q2

− 2T Q2 − 2QT 2 + T 2 + Q2 + T Q + T + T )A + A2
)
.

It is quickly verified that letting A = 0 and doing the substitution above gives the
result. ��
Remark 6.22 In fact, [13] compute the polynomials fv(A, Q, T ) corresponding to
HOMFLY homologies of certain complexes Cv , where v is any binary sequence,
using a recursive description. All of these complexes are supported in even degree,
and it would be interesting to know how the corresponding pure braids are realized
as affine Springer fibers. It would also be interesting to understand these recursions
either on Hilbn(C2) or in terms of affine Springer fibers for GLn .

The case C = {x2 = y4} is slightly more straightforward.

∑

n≥0

qn H∗(C [n]
0 ) = (1 − L

2)2
∑

n≥0

qn H∗(C [n])

can be checked to equal with the Poincaré polynomial of HHHa=0(T (2, 4)) for exam-
ple using [42, Corollary 15], which states

P(HHHa=0(T (2, 4))) = Q2 + (1 − Q)(T 2 + QT )

(1 − Q)2T 2 .
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