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Abstract
The tropicalization of an algebraic variety X is a combinatorial shadow of X , which
is sensitive to a closed embedding of X into a toric variety. Given a good embedding,
the tropicalization can provide a lot of information about X . We construct two types of
these good embeddings for Mumford curves: fully faithful tropicalizations, which are
embeddings such that the tropicalization admits a continuous section to the associated
Berkovich space X an of X , and smooth tropicalizations. We also show that a smooth
curve that admits a smooth tropicalization is necessarily a Mumford curve. Our key
tool is a variant of a lifting theorem for rational functions on metric graphs.

Keywords Tropical geometry · Smooth tropical curves · Mumford curves · Extended
skeleta · Faithful tropicalization
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1 Introduction

Let K be a field that is algebraically closed and complete with respect to a non-
archimedean non-trivial absolute value. Given a closed subvariety X of a toric variety
Y over K , one can associate a so-called tropical variety Trop(X)which is a polyhedral
complex. Note however, that Trop(X) is not an invariant of X , but depends on the
embedding into Y .

In good situations, Trop(X) can retain a lot of information about X . Let us mention
here work by Katz, Markwig and Markwig on the j-invariant of elliptic curves [21,
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22] and work by Itenberg, Mikhalkin, Katzarkov and Zharkov on recovering Hodge
numbers in degenerations of complex projective varieties [17].

In the latter work, a smoothness condition for tropical varieties in arbitrary codi-
mension appears: a tropical variety is called smooth if it is locally isomorphic to the
Bergman fan of a matroid. (See Definition 2.6 for an equivalent definition for curves.)
For tropical hypersurfaces, this is equivalent to the associated subdivision of the New-
ton polytope being a primitive triangulation, which is the definition of smoothness that
is generally used for tropical hypersurfaces [17, Remark p. 24].

The definition in [17] ismotivated by complex analytic geometry.A complex variety
is smooth if it is locally isomorphic to open subsets of C

n in the analytic topology.
Bergman fans of matroids are the local models for linear spaces in tropical geometry,
thus it makes sense to call a tropical variety smooth if it is locally isomorphic to the
Bergman fan of a matroid.

This smoothness condition has been shown to imply many tropical analogues of
classical theorems from complex and algebraic geometry, for example intersection
theory, Poincaré duality and a Lefschetz (1, 1)-theorem [18,19,31].

In this paper, we investigate the question for which smooth projective curves there
exist closed embeddings ϕ into toric varieties such that Tropϕ(X) := Trop(ϕ(X)) is
smooth. The answer turns out to be Mumford curves (see Definition 2.11). Indeed,
we show that for these curves we can “repair” any given embedding by passing to a
refinement (see Definition 2.16 for a definition of refinement).

Theorem A (Theorem 4.10, Theorem 5.6) Let X be a smooth projective curve of
positive genus. Then the following are equivalent:

(i) X is a Mumford curve.
(ii) There exists a closed embedding ϕ : X → Y for a toric variety Y that meets the

dense torus such that Trop(ϕ(X)) is a smooth tropical curve.
(iii) Given a closed embedding ϕ : X → Y of X into a toric variety Y that meets the

dense torus, there exists a refinement ϕ′ : X → Y ′ of ϕ such that Trop(ϕ′(X)) is
a smooth tropical curve.

Denote by X an the Berkovich analytification of X [3].We give alternative character-
izations of Mumford curves in terms of X an in Remark 2.12. Theorem A, specifically
the equivalence of (i) and (ii), may be viewed as an alternative characterization that is
purely tropical.

Payne showed in [30, Theorem 4.2] that we have a homeomorphism

X an = lim←−
ϕ : X→Y

Tropϕ(X). (1.1)

Theorem A shows that if X is a Mumford curve we can let the limit on the right
hand side as well run only over closed embeddings ϕ such that Tropϕ(X) is a smooth
tropical curve, meaning the smoothness on the left hand side is reflected on the right
hand side.

Another often used property of tropicalizations is faithfulness. For curves thismeans
that given a finite skeleton � of X an, one requires that ϕtrop := trop ◦ϕan is a homeo-
morphism from � onto its image, preserving the piecewise linear structure. Existence
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of faithful tropicalizations was proved by Baker, Payne and Rabinoff for curves and
generalized to higher dimension by Gubler, Rabinoff and Werner [6,13]. For further
work on faithful tropicalizations see for example [10,24,25,33].

Baker, Payne andRabinoff also introduced so-called completed extended skeleta for
curves. For a smooth projective curve X , these are metric subgraphs � of X an, poten-
tially with edges of infinite length, that comewith a canonical retraction τ : X an → �.
Given a closed embedding ϕ : X → Y for Y a toric variety with dense torus T ,
there exists an associated complete skeleton �(ϕ), which has the property that ϕtrop
factors through the retraction τ : X an → �(ϕ) (see Definition 2.17). Denote by
X◦ := ϕ−1(T ). We call ϕtrop fully faithful if ϕtrop maps �(ϕ) homeomorphically
onto its image and is an isometry when restricted to �(ϕ) ∩ X◦,an. Note that this is
much stronger than a faithful tropicalization, since by definition the image of �(ϕ) is
Tropϕ(X).

We prove the following fully faithful tropicalization result.

Theorem B (Theorem 4.6) Let X be a Mumford curve and ϕ : X → Y a closed
embedding into a toric variety Y that meets the dense torus. Then there exists a
refinement ϕ′ of ϕ that is fully faithful.

As a direct consequence of the fact that ϕ′ is fully faithful, we obtain a continuous
section s : Tropϕ′(X) → X an of ϕ′

trop by composing the inverse of ϕ′
trop|�(ϕ′) with the

inclusion of �(ϕ′) into X an (see Corollary 4.7). Such sections, though only defined
on subsets of Tropϕ(X), were also constructed in [6, Theorem 5.24] and [14, Theorem
8.15].

For reader interested in effective bounds on the dimensions of the ambient toric
varieties, let us mention [12], where Gunn and the author construct fully faithful trop-
icalizations in ambient dimension 3, and also give bounds on the ambient dimensions
for smooth tropicalizations.

We prove Theorem B as a first step to prove Theorem A, more precisely that (i)
implies (iii) therein. Our techniques to prove these results are based on the following
lifting theorem for rational functions on metric graphs, which is a variant of a theorem
by Baker and Rabinoff [7, Theorem 1.1]. The relevant notions are recalled in Sect. 2.5.

Theorem C (Theorem 3.2) Let X be a Mumford curve and � be a finite skeleton with
retraction τ . Let D ∈ Div(X) be a divisor of degree g and let B = p1 + · · · + pg ∈
Div(�) be a break divisor such that τ∗D − B is a principal divisor on �. Assume
that B is supported on two-valent points of �. Then there exist xi ∈ X(K ) such that
τ∗xi = pi and such that D − ∑g

i=1 xi is a principal divisor on X.

Theorem C is of independent interest, since, given a skeleton of X , it enables one
to construct closed embeddings with nice tropicalizations. We treat an example of this
in Example 3.5 for a genus 1 Mumford curve (also called a Tate curve).

We give an idea of the proof of Theorem B, which is carried out in Sect. 4.2.
Given an edge e of �(ϕ), using Theorem C, we construct a rational function fe ∈
K (X)∗ in such a way that log | f | has slope 1 along e. Considering the embedding
ϕ′ := (ϕ, fe) : X → Y ×P

1, this ensures that ϕ′
trop maps e homeomorphically onto its

image and that the corresponding stretching factor equals 1 (see Definition 2.18 for the
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definition of stretching factor). Using a good choice of D ∈ Div(X) and B ∈ Div(�),
Theorem C moreover allows us to construct fe in such a way that the same holds for
all edges of �(ϕ′) that are not contained in �(ϕ). Doing so for every edge of �(ϕ),
we obtain Theorem B.

In Sect. 4.3, we proceed similarly for smoothness and thus prove that (i) implies
(iii) in Theorem A.

In Sect. 5 we prove that, for a smooth projective curve X , the existence of a closed
embedding with a smooth tropicalization already implies that X is a Mumford curve.
The key result we use is a joint observation by Mikhalkin, Sturmfels and Ziegler [26],
which states that a variety whose tropicalization is a tropical linear space is actually
a linear space (see Theorem 5.4). The version of the theorem we use was proved by
Katz and Payne [23] and works for trivially valued fields in any characteristic (see
Theorem 5.4). We also show that if Tropϕ(X) is smooth then ϕtrop is necessarily fully
faithful (see Theorem 5.7).

Conventions

Throughout, K will be an algebraically closed field that is complete with respect to
a non-archimedean non-trivial absolute value | . |K . We denote the value group by
� := log |K×|K , the valuation ring by K ◦ and the residue field by K̃ . A variety
over K is a separated reduced irreducible scheme of finite type and a curve is a one-
dimensional variety. X will be a smooth projective curve over K . We will denote finite
skeleta of X by � and completed extended skeleta in the sense of [5] by �. We will
generally denote toric varieties by Y and their dense tori by T .

2 Preliminaries

2.1 Tropical toric varieties and tropical curves

Let N be a free abelian group of rank n, M := HomZ(N , Z) its dual, NR := N ⊗ R

and � a rational pointed fan in NR. We write T := R ∪ {−∞}.
For σ ∈ � we define the monoid Sσ := {ϕ ∈ M | ϕ(v) ≥ 0 for all v ∈ σ } and

write N (σ ) := NR/〈σ 〉R, where 〈σ 〉R denotes the real vector space spanned by σ . We
write

N� =
∐

σ∈�

N (σ ).

We endow N� with a topology in the following way:
For σ ∈ � write Nσ = ∐

τ≺σ N (τ ). This is naturally identified with
HomMonoids(Sσ , T). We give Nσ the subspace topology of T

Sσ . For τ ≺ σ , the space
Hom(Sτ , T) is naturally identified with the open subspace of HomMonoids(Sσ , T) of
maps that map τ⊥ ∩ M to R. We define the topology of N� to be the one obtained by
gluing along these identifications.
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Definition 2.1 We call the space N� a tropical toric variety.

The space N� is sometimes called the canonical compactificationof NRwith respect
to �. Note that N� contains NR as a dense open subset.

Example 2.2 Let N = Z
n with basis x1, . . . , xn and� be the complete fan whose rays

are spanned by −x1, . . . ,−xn and x0 := ∑
xi . For any d-rays there is a face σ of

dimension d that contains exactly these rays. Then N (σ ) is an n−d-dimensional vector
space. The topology is such that N� is homeomorphic to an n-simplex, where N (σ )

is identified with the relative interior of a n−d-dimensional simplex in the boundary.
For example, NR corresponds to the vertex at the origin in � and forms the interior of
N� when we view N� as a simplex.

However, we will heavily use the structure of NR as a vector space, so we generally
view N� as a compactification of NR by strata that are infinitely far away.

Definition 2.3 Let C be a one dimensional �-rational polyhedral complex in NR. For
an edge e (i.e. a one-dimensional polyhedron) of C we denote byL(e) = {λ(u1−u2) |
u1, u2 ∈ e, λ ∈ R} the linear space of e. Since X is �-rational, L(e) contains a
canonical lattice which we denote by Z(e).

For a vertex v of e we denote by wv,e the unique generator of Z(e) that points in e
away from v.

We call C weighted if every edge is equipped with a positive integral weight m(e)
and balanced if for every vertex v of C we have

∑

e : v≺e

m(e)wv,e = 0.

The local cone at v is the one-dimensional fan whose rays are spanned by the ww,e

and given weight m(e) for v ≺ e. This is also sometimes referred to as the star of the
vertex v (see for example [27]).

Definition 2.4 A tropical curve in NR is a one dimensional �-rational polyhedral
complex equipped with weights on its edges that satisfies the balancing condition, up
to the equivalence relation generated by subdivision of edges preserving the weights.

A tropical curve X in a tropical toric variety N� is the closure in N� of a tropical
curve X◦ in NR.

X\X◦ is a finite set, whose points we consider as vertices of X and call the infinite
vertices. The edges of X are the closures of the edges of X◦.

A �-metric graph (which we will often just call a metric graph) is, roughly speak-
ing, a finite graph in which every edge e has a positive length le ∈ �∪{∞}. We allow
loop edges, meaning edges whose endpoints agree and half open edges, i.e. edges
which have only one endpoint. If le ∈ �>0, we view e as an interval of length e. Half
open edges are identified with R≥0. Leaf edges are the only edges that are allowed
to have infinite length and are identified with [0,∞] with the topology of a closed
interval. For amore precise account onmetric graphs, we refer the reader to [1, Section
2.1].
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Fig. 1 The types of vertices in tropical curves in R
2. The vertex on the left is smooth, the other two vertices

are not smooth

By an edge of a metric graph � we mean an edge in some graph model G of �. For
an edge e of � we denote by e̊ the relative interior of e, meaning e with its endpoints
removed. For two points x, y ∈ e̊ we denote by de(x, y) their distance in e̊. (Note that
this might not be the distance in �, as there might be a shorter path that leaves e̊.)

We call a metric graph finite if all its edges have finite length.

Example 2.5 A tropical curve in NR has a canonical structure as a metric graph where
the length of an edge is given by the lattice length, meaning the length of the primitive
vector wv,e equals 1.

A tropical curve X in a tropical toric variety N� is not necessarily a metric graph
since two infinite rays might meet at infinity, creating a vertex at infinity which does
not have valence 1. However, X is a metric graph if every point in X\X◦ has exactly
one adjacent edge.

Definition 2.6 An edge in a tropical curve is smooth if its weight is 1. A finite vertex v

is smooth if 〈wv,e | v ≺ e〉Z is a saturated lattice of rank val(v)−1 in N , where val(v)

is the number of edges adjacent to v. An infinite vertex is smooth if it has one adjacent
edge. A vertex that is not smooth is called singular. A tropical curve is smooth if all
its edges and vertices are smooth.

Remark 2.7 Following [17] a tropical variety is smooth if it is locally isomorphic to
the Bergman fan of a matroid.

A one-dimensional weighted fan in R
n is the Bergman fan of a matroid if and only

if it is isomorphic to the fan whose rays are spanned by x1, . . . , xn and −∑n
i=1 xi

and all weights are 1. Thus Definition 2.6 agrees with the one in [17] for the case of
curves.

Example 2.8 Consider the tropical curves in Fig. 1. Each of them depicts a vertex
in a tropical curve in R

2 with lattice N = Z
2. In the leftmost picture, the outgoing

directions are (−1, 0), (0,−1) and (1, 1), which span Z
2, thus v1 is a smooth vertex.

In the picture in the middle, the span of the primitive vectors is again Z
2, but there

are 4 vertices adjacent to v2, thus v2 is not smooth. In the picture on the right, the
outgoing directions are (2,−1), (−1, 2) and (−1,−1). The span of these vectors is
{(x, y) ∈ Z

2 | x − y is divisible by 3}. This has rank 2, but is not saturated in Z
2, thus

v3 is not a smooth vertex.
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2.2 Berkovich curves and their extended skeleta

Let X be a variety over K . The associated Berkovich space [3] is

X an := {x = (px , | . |x ) | px ∈ X , | . |x is an absolute value on k(px ) extending | . |K }

with the topology such that the canonical forgetfulmap X an → X is continuous and for
all open subsets U of X and f ∈ O(U )× the map U an → R, (px , | . |x ) �→ | f (px )|x
is continuous. We will often write | f (x)| := | f (px )|x . If X = Spec(A) is an affine
variety then

X an = {| . | multiplicative seminorm on A extending | . |K }

with the topology such that for all f ∈ A the map X an → R; | . | �→ | f | is continuous.
For morphism ϕ : X → Y of K -varieties we obtain a morphism ϕan : X an → Y an.

Now let X be a curve over K . For x ∈ X an we denote byH (x) the completion of

k(px ) with respect to | . |x and by H̃ (x) its residue field. Following Berkovich and
Thuillier [3,32] we say x is of type I if px ∈ X(K ) and of type II if px is the generic

point of X and trdeg[H̃ (x) : K̃ ] = 1. If x is of type I, then | . |x = | . |K , thus the
forgetful map X an → X induces a bijection from the set of type I points of X an onto
X(K ). We will thus identify X(K )with the subset of X an that consists of type I points.
If x is of type II, then we denote by Cx the smooth projective K̃ -curve with function

field H̃ (x) and by g(x) its genus, which we call the genus of x .
We now recall the notion of completed skeleta of X an, which is due to Baker, Payne

and Rabinoff [5].

Definition 2.9 We consider A
1 = Spec K [T ]. For −∞ ≤ s < r ∈ R denote

B(r) = {x ∈ A
1,an | log |T |x < r} and A(r , s) = {x ∈ A

1,an | s < log |T |x < r}.

We call B(r) an open disc of logarithmic radius r and A(r , s) a generalized open
annulus of logarithmic radii s and r . We call A(r , s) an annuluswith logarithmic radii
s and r if s ∈ R and a punctured disc of radius r if s = −∞. We call r − s ∈ R ∪ ∞
the length of A(r,s).

We denote by ρB(t) the element of B(t) defined by
∣
∣
∑

ai T i
∣
∣
ρB(t)

= maxi |ai |t i and
call the set

�(A(r , s)) = {
ρB(t) | s < log t < r

}

the skeleton of A(r , s). There is a canonical retraction τ : A(r , s) → �(A(r , s))which
is a strong deformation retraction.

Definition 2.10 Let X be a smooth projective curve over K . A completed semistable
vertex set V of X is a finite subset of X an consisting of type I and II points such that
X an\V is isomorphic to a disjoint union of finitely many generalized open annuli and
infinitely many open discs.
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For a completed semistable vertex set V of X an there is a canonical associated
subspace �(V ) of X an, called the completed skeleton �(V ), which is a metric graph.
There is a canonical retraction τV : X an → �(V ), such that �(V ) is a strong defor-
mation retract of X an. As the name suggests, the vertex set of �V is V . The edges are
the skeleta of the generalized open annuli that are connected components of X an\V .
The length of such an edge is the length of the corresponding annulus.

If X is projective and V is a completed semistable vertex set that only consists of
type II points, we call V a semistable vertex set and �(V ) a finite skeleton of X . A
finite skeleton is a finite metric graph and we will often denote it by �.

Let V be a completed semistable vertex set of X . Then the set of type II points in
V forms a semistable vertex set for X . We call the associated finite skeleton the finite
part of �(V ) and denote it by �(V )fin.

Definition 2.11 A smooth projective curve of genus g > 0 is calledMumford curve if
for some semistable vertex set V the skeleton �(V ) has first Betti number equal to g.

Remark 2.12 Note that since �(V ) is a deformation retract of X an, the first Betti
number of �(V ) is independent of V . Thus we might replace “some” by “every” in
Definition 2.11. Furthermore X is a Mumford curve if and only if g(x) = 0 for all
type II points x in X an. Another equivalent definition of Mumford curve is that any
point x ∈ X an has a neighborhood that is isomorphic to an open subset of P

1,an [20,
Proposition 2.26 & Theorem 2.28].

2.3 Tropicalization of curves

Let Y be a toric variety with dense torus T . Let N be the cocharacter lattice of T ,
NR := N ⊗ R and � the fan in NR associated to Y .

Definition 2.13 The tropicalization of Y is

Trop(Y ) := N�.

There is a canonical tropicalization map trop : Y an → Trop(Y ), which is a contin-
uous proper map of topological spaces [30, Section 3].

We assume that the reader is familiar with tropicalizations of closed subvarieties of
algebraic tori [15,28]. Here we consider tropicalizations of closed subvarieties of toric
varieties, which may be seen as a compactification of the latter. We quickly sketch
the relation: Given a closed embedding ϕ : X → Y of a smooth projective curve X
into a toric variety Y that meets the dense torus T , denote by X◦ := ϕ−1(T ). Then
Tropϕ(X◦) is a dense open subset of Tropϕ(X) andwe obtain the latter from the former
by putting points at the end of the unbounded edges.

Example 2.14 If Y = G
n
m is a torus of dimension n with fixed coordinates, then �

is only the origin in R
n and we have Trop(Y ) = R

n . The restriction of the map
trop : G

n,an
m → R

n to G
n
m(K ) = (K ∗)n is the usual tropicalization map X(K ) →

R
n; x �→ (log |x1|K , . . . , log |xn|K ).
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If Y = P
1, then Example 2.2 shows that Trop(P1) is homeomorphic to a closed

interval. Since it contains a one-dimensional vector space as a dense open subset, a
good point of view is Trop(P1) = [−∞,∞] with the topology of a closed interval.

The map trop : P
1,an → Trop(P1) is then given by (p, | . |x ) �→ log |z(p)|x , where

z is the coordinate function on P
1.

Remark 2.15 For two toric varieties Y1 and Y2, we have Trop(Y1 × Y2) = Trop(Y1) ×
Trop(Y2). This holds because the fan of Y1 × Y2 is the product of the fans of Y1 and
Y2.

Let X be a curve over K . For a closed embedding ϕ : X → Y we denote ϕtrop :=
trop ◦ϕan and Tropϕ(X) := ϕtrop(X an) the associated tropicalization of X . One can
define canonical weights on Tropϕ(X) that make it into a tropical curve in Trop(Y )

in the sense of Definition 2.4 (see for example [15]). We will define these weights in
Definition 2.18.

Definition 2.16 If Y ′ is another toric variety, ϕ′ : X → Y ′ is another closed embed-
ding and π : Y ′ → Y is a morphism of toric varieties, there exists a canonical map
Trop(Y ′) → Trop(Y ), which is linear on the dense subset NR and maps Tropϕ′(X)

onto Tropϕ(X). We call ϕ′ a refinement of ϕ.

Note that refinements yield the inverse system in Payne’s result that the inverse
limit of all tropicalizations is homeomorphic to X an [30, Theorem 4.2].

2.4 Factorization skeleta

Let ϕ : X → Y be a closed embedding of a smooth projective curve X into a toric
variety Y that meets the dense torus T . Denote by X◦ := ϕ−1(T ) the preimage of the
dense torus.

Definition 2.17 Let �(ϕ) be the set of points in X an that do not have an open neigh-
borhood that is isomorphic to an open disc and contained in (X◦)an. We call �(ϕ) the
completed skeleton associated to ϕ.

The set �(ϕ) is indeed a completed skeleton for X [5, Theorem 4.22]. We denote
by τϕ : X an → �(ϕ) the retraction.

Baker, Payne and Rabinoff show that we have a commutative diagram

X an
ϕtrop

τϕ

Tropϕ(X)

�(ϕ)

ϕtrop|�(ϕ)

(2.1)

and that ϕtrop|�(ϕ) is linear on each edge of �(ϕ) [6, Lemma 5.3 & Proposition 5.4
(1)].

We can subdivide Tropϕ(X) and �(ϕ) in such a way that each edge of �(ϕ) is
either contracted to a point or mapped homeomorphically to an edge of Tropϕ(X) [6,
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Lemma 5.4. (2)]. Let e be an edge in Tropϕ(X). Let e1, . . . , ek be the edges of �(ϕ)

mapping homeomorphically to e. For each i , we fix xi �= yi ∈ e̊i .

Definition 2.18 We call

m(ei ) = de(ϕtrop(xi ), ϕtrop(yi ))

dei (xi , yi )
and m(e) =

k∑

i=1

m(ei )

the stretching factor of ϕtrop|ei and the weight of e, respectively.

The definition of weight agrees with the usual one (see for example [15, Definition
3.14]) by [6, Corollary 5.9].

Proposition 2.19 Let ϕ : X → Y be a closed embedding of X into a toric variety that
meets the dense torus T and �(ϕ) the associated skeleton. Denote by X◦ := ϕ−1(T ).
Then the following are equivalent:

(i) ϕtrop maps �(ϕ) homeomorphically onto its image and is an isometry when
restricted to �(ϕ) ∩ X◦,an.

(ii) The map ϕtrop|�(ϕ) : �(ϕ) → Tropϕ(X) is injective and all weights on Tropϕ(X)

are 1.

Proof Assume that (ii) holds. The map ϕtrop|�(ϕ) is surjective, thus bijective. Since it
is a bijective map between compact Hausdorff spaces, it is a homeomorphism. Hence
both (i) and (ii) imply that ϕtrop|�(ϕ) is a homeomorphism onto its image.

Thus it remains to show that if ϕtrop|�(ϕ) is a homeomorphism it is an isometry
when restricted to �(ϕ) ∩ X◦,an if and only if all weights on Tropϕ(X) are all equal
to one. This follows from Definition 2.18. ��
Definition 2.20 We say that ϕtrop is fully faithful if the equivalent conditions of Propo-
sition 2.19 hold.

The notion of fully faithful tropicalization is stronger then the notion of faithful
tropicalization introduced by Baker, Payne and Rabinoff [6]. It is also slightly stronger
then the notion of totally faithful tropicalization introduced by Cheung, Fantini, Park
and Ulirsch [9] (see also [8]). The difference is that a totally faithful tropicalization
only needs to be an isometry when restricted to �(ϕ) ∩ X◦,an. Note however that the
authors of [9] mainly work in the situation of tropical compactifications and in this
case the notions of totally faithful and fully faithful agree.

2.5 Rational functions and divisors onmetric graphs

Let� be a finite�-metric graph. A point x ∈ � is called�-rational if its distance from
some, or equivalently every, vertex is in �. A rational function on � is a piecewise
linear function F : � → R with integer slopes all of whose points of non-linearity are
�-rational. A divisor on � is a finite formal linear combination of �-rational points.
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Its degree is the sum of the coefficients. We denote by Div(�) the group of divisors.
For a rational function F its divisor is

div(F) :=
∑

λi xi where λi :=
∑

e : xi≺e

deF(xi )

and deF(xi ) is the outgoing slope of F along the edge e at xi . We call div(F) a
principal divisor on �. We denote by Prin(�) the group of principal divisors on �.

Let X be a smooth projective curve and� a finite skeletonwith retraction τ . Let f be
in K (X)∗. Then F := log | f (x)|∣∣

�
is a rational functionon� and τ∗(div( f )) = div(F)

[5, Theorem 5.15] (see also [32, Proposition 3.3.15] for the same result phrased in a
slightly different language).

Definition 2.21 We say that edges e1, . . . , eg form the complement of a spanning tree
of � if there exists a graph model G for � with set of edges E such that ei ∈ E and
the subgraph ofG spanned by the edges E\{e1, . . . , eg} is connected, contractible and
contains all vertices of G.

Note that in this definition, g is necessarily the first Betti number of �.
The notion of break divisor was introduced by Mikhalkin, and Zharkov [29]. They

observed that any degree g divisor on a metric graph has a unique break divisor in
its rational equivalence class (see Theorem 2.23). Break divisors were also studied in
detail by An, Baker, Kuperberg, and Shokrieh, who also study discrete versions [2].

Definition 2.22 Let� be a metric graph and g = dimR H1(�, R) its first Betti number.
A break divisor is a degree g effective divisor B = p1 +· · ·+ pg such that there exist
edges e1, . . . , eg that form the complement of a spanning tree of � such that pi ∈ ei .

Theorem 2.23 (Mikhalkin - Zharkov) Let D be a degree g divisor on �. Then there
exists a unique break divisor B on � such that D − B ∈ Prin(�).

Break divisors will play an important role in Theorem 3.2, which we will use to
prove our main theorems, as well as to construct tropicalizations in honeycomb form
for elliptic curves (see Example 3.5). In our applications we will deal with break
divisors that are supported on two-valent points of �. If B is such a break divisor then
�\ supp(B) is connected and contractible.

We will see in Example 3.6 that it is really necessary to restrict to break divisors
that are supported on two-valent points in Theorem 3.2.

3 Lifting theorem

In this section X is a smooth projective Mumford curve of genus g over K . We fix
a semistable vertex set V with corresponding finite skeleton � and retraction τ . We
denote by J0(X) := {[D] ∈ Pic(X) | τ∗D ∈ Prin(�)}.
Proposition 3.1 Let B = p1 + · · · + pg be a break divisor on � that is supported on
two-valent points and write Ri = τ−1(pi ) ∩ X(K ). Then for all Y = (y1, . . . , yg) ∈
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Fig. 2 An edge e with four pillar
points p1, p2, p3 and p4 and a
piecewise linear function with
divisor p1 − p2 − p3 + p4

R1 × · · · × Rg the map

ϕY : R1 × · · · × Rg → J0(X)

(x1, . . . , xg) �→
g∑

i=1

[xi − yi ]

is a surjection.

Proof We consider [7, Proof of Theorem 1.1]. Baker and Rabinoff work in the same
setup, but for them X is any curve, not necessarily a Mumford curve. Thus in their
situation both the set ofY they allow and the domain ofϕY is (R1×· · ·×Rb)×C∗. Here
b is the first Betti number of the skeleton of X and C∗ = ∏

x∈Xan;g(x)>0 Cx (K̃ )g(x).
An element Y ∈ (R1×· · ·× Rb)×C∗ is denoted by (Y1,Y2) forY1 ∈ R1×· · ·× Rb

and Y2 ∈ C∗. They show that ϕ(Y1,Y2) is surjective when Y2 is generic. If X is a
Mumford curve, then b = g and C∗ is just a one point set. Thus Y2 is automatically
generic and our proposition follows. ��
Theorem 3.2 Let D ∈ Div(X) of degree g and B = p1 + · · · + pg ∈ Div(�) a break
divisor such that τ∗D − B is a principal divisor on �. Assume that B is supported on
two-valent points of �. Then there exist xi ∈ X(K ) such that τ∗xi = pi and such that
D − ∑g

i=1 xi is a principal divisor on X.

Proof Let yi ∈ X(K ) such that τ∗yi = pi . We have
[
D − ∑g

i=1 yi
] ∈ J0(X). Thus

by Proposition 3.1 there exist xi ∈ τ−1(pi ) ∩ X(K ) such that
[
D − ∑g

i=1 yi
] =

[∑g
i=1(xi − yi )

]
. In other words

[
D − ∑g

i=1 xi
] = 0 which means that D−∑g

i=1 xi
is a principal divisor on X . ��
Definition 3.3 Let e be an edge of �. Four points p1, p2, p3, p4 ∈ e̊ are called pillar
points in e if they are �-rational, de(p1, p2) = de(p3, p4) and for i = 2, 3 we have
[pi−1, pi ] ∩ [pi , pi+1] = pi (See Fig. 2.)

Figure 2 shows the graph of a piecewise linear function whose divisor is p1 − p2 −
p3 + p4. In particular that divisor is principal.

Corollary 3.4 Let D ∈ Div0(X) such that τ∗D is a principal divisor on �. Let
e1, . . . , eg be edges that form the complement of a spanning tree of �. Fixing pil-
lar points pi,1, pi,2, pi,3, pi,4 in e̊i there exist xi j ∈ X(K ) such that τ(xi j ) = pi j and
f ∈ K (X)∗ such that div( f ) = D + ∑g

i=1(xi,1 + xi,4) − ∑g
i=1(xi,2 + xi,3).

Proof The divisor
∑g

i=1(pi,1 + pi,4) − ∑g
i=1(pi,2 + pi,3) is principal on �, thus so

is τ∗D + ∑g
i=1(pi,1 + pi,4) − ∑g

i=1(pi,2 + pi,3). Thus, for j = 1, 3, 4, fixing xi j
such that τ∗xi j = pi j and writing D′ = D + ∑g

i=1(xi,1 + xi,4) − ∑g
i=1 xi,3 and
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B = p1,2 + · · · + pg,2, we find that τ∗D′ − B is a principal divisor on �. Since B is a
break divisor supported on two-valent points, applying Theorem 3.2 to D′ and B we
get the result. ��
Example 3.5 (Tate curves) Chan and Sturmfels use theta functions to produce nice
tropicalizations of elliptic curves [11] (see also [6, Theorem 6.2]). In this example we
show how Theorem 3.2 can be used to construct such nice tropicalizations combina-
torially.

Let E be an elliptic curve with bad reduction. We will use Theorem 3.2 to construct
a closed embedding ϕ : E → P

2 whose tropicalization looks like the right hand side
of Fig. 3, which Chan and Sturmfels call symmetric honeycomb form.

The minimal skeleton �min is a circle. We pick three points q1, q2, q3 ∈ �min that
are equidistant from each other. Our skeleton � is obtained from �min by adding edges
of length d(qi , q j )/2 at each of the qi , denoting their endpoints by pi . We subdivide
each edge [qi , q j ] at its midpoint and label our new vertices as on the left hand side
of Fig. 3. The solid part of the figure is now our skeleton �.

We pick points x1,1 �= x1,2, x2,1 �= x2,2, x3,1 �= x3,2 and x6 ∈ E(K ) such that
τ(xi, j ) = pi and τ(x6) = p6.

Let D1 = −x1,1 + x2,1 − x2,2 + x3,1 − x6. Then τ∗D1 = −p1 + p3 − p6 and
τ∗D1 + p4 = div(F1) for a rational function F1 on �.

Now applying Theorem 3.2 to −D1 and p4 we obtain a function f1 ∈ K (E)∗ and
x4 ∈ E(K ) such that τ(x4) = p4 and div( f1) = D1 + x4. We normalize f1 such that
F1 = log | f1|

∣
∣
�
.

Similarly let D2 = −x1,1 + x1,2 − x2,2 + x3,2 − x6 then τ∗D2 = −p2 + p3 − p6
and τ∗D2 + p5 = div(F2), for a rational function F2 on �. We obtain a function
f2 ∈ K (E)∗ and x5 ∈ E(K ) such that τ(x5) = p5 and div( f2) = D2 + x5.
Let ϕ be the morphism associated to the rational map [ f1 : f2 : 1] : E → P

2.
By construction, the graph on the left hand side of Fig. 3, including the dashed lines,
which are infinite edges, is the associated completed skeleton �(ϕ). We write Gi =
log | fi |

∣
∣
�(ϕ)

. Note that Gi |� = Fi . Further, ϕtrop|�(ϕ) = (G1,G2). Thus Tropϕ(E) =
(G1,G2)(�(ϕ)) is the tropical curve on the right hand side of Fig. 3.

The functions f1, f2, 1 are linearly independent over K , since f1 is not constant
on the zeros of f2. Thus by the Riemann–Roch theorem, they form a basis of L(D)

where D = x1,1 + x2,2 + x6. Since D is very ample by [16, Corollary IV.3.2(b)], this
shows that ϕ is a closed embedding.

Example 3.6 In the same example, we can also see that Theorem 3.2 does not hold
if we do not require B to be supported on two-valent points. Let D = p1. Then the
unique break divisor that is linearly equivalent to D is B = q1. However we cannot
find x and y such that τ(x) = p1 and τ(y) = q1 such that x − y is principal, since no
difference of two distinct points is principal on an elliptic curve.
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Fig. 3 The skeleton and tropicalization of a Tate curve

4 Fully faithful and smooth tropicalizations

4.1 Describing tropicalizations using extended skeleta

Let X be smooth projective curve of genus g > 0. Let V be a minimal semistable
vertex set of X with associated finite skeleton � and retraction τ .

Definition 4.1 Let � be a completed skeleton of X with retraction τ� , f ∈ K (X)∗
and write div( f ) = ∑±xi . Then f is said to be faithful with respect to � if we have
τ�(xi ) �= τ�(x j ) for all i �= j .

Note that this implies that f has only simple poles and zeros.

Construction 4.2 Let ϕ : X → Y be a closed embedding of X into a toric variety Y
that meets the dense torus. Let �(ϕ) be the completed skeleton associated to ϕ. Let
f ∈ K (X)∗ be faithful with respect to �(ϕ). Consider the induced closed embedding
ϕ′ = (ϕ, f ) : X → Y × P

1.
We obtain the associated skeleton �(ϕ′) for ϕ′ by adding infinite rays [xi , τϕ(xi )]

for all xi ∈ supp(div( f )). We denote by τϕ′ the associated retraction.
We have the following diagram

X an
τϕ′

τϕ

�(ϕ′)
ϕ′
trop

Tropϕ′(X) Trop(Y ) × Trop(P1)

π1

�(ϕ)
ϕtrop

Tropϕ(X) Trop(Y ).

The map on the left contracts the edges [xi , τϕ(xi )] to τϕ(xi ). The map π1 on the right
is forgetting the last coordinate.

Thus we obtain Tropϕ′(X) from Tropϕ(X) in two steps:

(i) Take the graph of log | f | restricted to �(ϕ).
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Fig. 4 Situation in Construction 4.4. The dashed lines are infinite edges and solid lines are finite edges

(ii) Add the images of the edges ei = [xi , τ (xi )]. These are infinite rays from
(ϕtrop(xi ), log | f (xi )|) to (ϕtrop(xi ),±∞) where the sign of ∞ is the opposite
of the sign of xi in div( f ).

Lemma 4.3 In the situation of Construction 4.2, every edge e in �(ϕ′) that is not an
edge of �(ϕ) is infinite and satisfies m(e) = 1.

Proof The edge e has to be infinite since we only added infinite rays to �(ϕ) in
Construction 4.2. Since f has only simple poles and zeros, the slope of log | f | along
e is equal to one, thus the corresponding expansion factor equals one. ��

4.2 Fully faithful tropicalization

Throughout this section, X is aMumford curve and ϕ : X → Y a closed embedding of
X into a toric variety that meets the dense torus. In this section, we prove Theorem B
from the introduction, showing that ϕ has a refinement that is fully faithful.

We fix a minimal semistable vertex set V and denote by � the corresponding finite
skeleton of X with retraction τ . For our completed skeleton �(ϕ) associated to ϕ we
denote the retraction by τϕ and the finite part by �(ϕ)fin.

We will now construct for an edge e a function fe ∈ K (X)∗ such that the slope of
log | fe| is equal to 1 along e and such that fe is faithful with respect to �(ϕ).

Construction 4.4 Let e be a finite edge of�(ϕ) that is not in �. We label the endpoints
v and w in such a way that w and � lie in different connected components of �(ϕ)\v
(see Fig. 4). Let v′, w′ ∈ X(K ) be such that τϕ(v′) = v and τϕ(w′) = w. We fix edges
e1, . . . , eg that form the complement of a spanning tree of �(ϕ) and pillar points pei j
in ei . Applying Corollary 3.4 to �(ϕ)fin and D′ = v′ − w′ we obtain fe ∈ K (X)∗
such that div( fe) = v′ − w′ + ∑±xei j . By construction fe is faithful with respect to

�(ϕ) and the slope of log | fe| along e is 1. Replacing fe by a−1 · fe where a ∈ K
such that | fe(v)| = |a| we may assume log | fe(v)| = 0.

Construction 4.5 Let e be an infinite edge of �(ϕ) with finite vertex v and infinite
vertex w′. Let v′ be a point in X(K ) such that τϕ(v′) = v (see Fig. 5). We fix edges
e1, . . . , eg that form the complement of a spanning tree of �(ϕ)fin and pillar points
pei j in ei . Applying Corollary 3.4 to �(ϕ)fin and D = v′ − w′ we obtain fe ∈ K (X)∗
that is faithful with respect to �(ϕ) and such that log | fe| has slope 1 along e. We
again normalize such that log | fe(v)| = 0.
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Fig. 5 Situation in Construction 4.5. The dashed lines are infinite edges and solid lines are finite edges

Theorem 4.6 Let X be a Mumford curve. Let ϕ : X → Y be a closed embedding
of X into a toric variety that meets the dense torus. Then there exists a refinement
ϕ′ : X → Y ′ for ϕ that is fully faithful.

Proof Recall that we fixed a finite skeleton of � of X . By [6, Theorem 1.1] we may
assume, after possibly replacing ϕ by a refinement, that the map ϕtrop|� is an isometry
onto its image.

Let E be the set of edges of �(ϕ) that are not in �. The strategy of proof will be
as follows: For each edge e ∈ E , we apply Construction 4.4 (if e is a finite edge)
or Construction 4.5 (if e is an infinite edge). We make sure that the pillar points we
choose to apply these constructions do not get in the way of each other (condition (iii)
below) and do not interfere with e after tropicalization (condition (ii) below). This
yield a rational function fe for each e ∈ E . We then check that the corresponding
embedding (ϕ, ( fe)e∈E ) : X → Y × (P1)|E | is fully faithful.

For each i = 1, . . . , g, j = 1, . . . , 4 and e ∈ E we pick pei j ∈ � such that

(i) for all e ∈ E there are edges eei , i = 1, . . . , g, that form the complement of a
spanning tree of �(ϕ) and pei,1, . . . , p

e
i,4 are pillar points in eei ;

(ii) ϕtrop([pei,1, pei,4]) ∩ ϕtrop(e) = ∅ for all i = 1, . . . , g;

(iii) [pei,1, pei,4] ∩ [pe′
i ′,1, p

e′
i ′,4] = ∅ for (e, i) �= (e′, i ′).

Note that a choice of pei j that satisfies (ii) is possible since ϕtrop(e) is a line segment,
thus cannot cover a full cycle of �.

Now for all finite (resp. infinite) edges e ∈ E we apply Construction 4.4 (resp.
Construction 4.5) and obtain functions fe ∈ K (X)∗.

We consider the closed embedding

ϕ′ := (ϕ, ( fe)e∈E ) : X → Y × (P1)|E |.

Following Construction 4.2, the completed skeleton�(ϕ′) associated to ϕ′ is obtained
from�(ϕ) by attaching an infinite edge eei j at each pei j and by attaching for each e ∈ E
infinite edges to its finite endpoints. If e = [v,w], we denote these edges by eev and
eew respectively. We claim that the map

ϕ′
trop : �(ϕ′) → Trop(Y ) × Trop(P1)E
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is injective. We denote Fe := log | fe|
∣
∣
�(ϕ′). By construction, ϕ′

trop is injective when
restricted to an edge, since ϕtrop|� is injective and Fe is injective when restricted to e
and eei j for e ∈ E .

To show global injectivity, let us set up some notation. Recall that for each edge
e ∈ E we denote by ve the endpoint of e such that � and e̊ lie in different connected
components of �\v and by we the other endpoint. Furthermore, fe was normalized
in such a way that Fe(ve) = 0. Recall that � is a deformation retract of �(ϕ′). Thus,
we may define a partial order on E by declaring e ≤ e′ if “e is closer to � then e′”,
meaning that e̊ and e̊′ lie in the same connected component of �(ϕ′)\ve.

The idea of the proof of injectivity is that for a point z ∈ �(ϕ′)\� we can detect in
which edge e ∈ E it is contained simply by looking at the set of functions Fe satisfying
Fe(z) �= 0. We then do a case by case analysis of the situation.

Now assume ϕ′
trop(z1) = ϕ′

trop(z2) for z1, z2 ∈ �(ϕ′). This means that ϕtrop(z1) =
ϕtrop(z2) and Fe(z1) = Fe(z2) for all e ∈ E .

Note that we may assume z1 /∈ �, since if both z1 and z2 are in �, then we are done
since ϕtrop is already injective on �. Denote

E ′ := {e ∈ E | Fe(z1) �= 0} = {e ∈ E | Fe(z2) �= 0}.

Since Fe(ve) = 0 and div(Fe) = ve − we + ∑g
i=1(p

e
i,1 − pei,2 − pei,3 + pei,4) we

have Fe(ve) = 0, Fe(we) > 0, Fe(pei,1) = Fe(pei,4) = 0 and Fe is constant on the
connected components of �(ϕ′)\(e ∪ [pei,1, pei,4]) (see Figure 6). Thus

supp(Fe) =
⋃

e′≥e

e′ ∪
g⋃

i=1

[pei1, pei4]. (4.1)

We deduce that E ′ is closed under ≤ and non-empty since z1 /∈ �.
If |E ′| = 1, say E ′ = {e}, then

z1 ∈ e ∪
⋃

i j

eei j and z2 ∈ e ∪
⋃

i j

eei j ∪
⋃

i

[pei,1, pei,4]. (4.2)

In the case z1 ∈ e, we have ϕtrop(z2) = ϕtrop(z1) ∈ ϕtrop(e) which forces z2 ∈ e by
(ii) above and (4.2). Since Fe|e is injective, it follows that z1 = z2.

In the case z1 ∈ eei j , we have ϕtrop(z2) = ϕtrop(z1) = pei j , thus z2 ∈ eei j and because
Fe|eei j is injective we have z1 = z2.

If |E ′| > 1, then there exists e ∈ E such that E ′ = {e′ ∈ E | e′ ≤ e} by (iii) above
and (4.1). For the same reason |E ′| > 1 implies z1, z2 ∈ e and consequently z1 = z2.
Thus ϕ′

trop|�(ϕ′) is injective.
The stretching factor for all edges of � is 1 since ϕ|e is an isometry onto its image.

For all e ∈ E , the stretching factors are equal to 1 since the slope of fe along e is 1. For
all eei j the stretching factor is equal to 1 by Lemma 4.3. Since ϕ′

trop|�(ϕ′) in injective
this means all weights are equal to 1. Thus ϕ′

trop represents �(ϕ′) faithfully. ��
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Fig. 6 The graph of log | fe| on
eei and the adjacent edges eei j in

�(ϕ′)

Corollary 4.7 Let ϕ : X → Y be a closed embedding of X into a toric variety Y
that meets the dense torus. Then there exists a refinement ϕ′ of ϕ and a section
ψϕ′ : Tropϕ′(X) → X an for ϕ′

trop.

Proof ByTheorem4.6we can chooseϕ′ such thatϕ′
trop is fully faithful. Thusϕ

′
trop|�(ϕ′)

is a homeomorphism and we define ψϕ′ as the composition of the inclusion of �(ϕ′)
into X an with (ϕ′

trop|�(ϕ′))−1. ��

4.3 Smooth tropicalization

Throughout this section, we will work in the following situation: X is a Mumford
curve over K and ϕ : X → Y a closed embedding that meets the dense torus such that
ϕtrop is fully faithful. We denote by �(ϕ) the associated complete skeleton and by τϕ

the retraction.

Lemma 4.8 Let f ∈ K (X)∗ that is faithful with respect to �(ϕ). Then ϕ′ =
(ϕ, f ) : X → Y × P

1 is fully faithful. Further, all vertices in �(ϕ′) that map to
singular vertices in Tropϕ′(X) are contained in �(ϕ) and map to singular vertices in
Tropϕ(X).

Proof All edges of �(ϕ′) that are not edges of �(ϕ) have expansion factor equal to 1
by Lemma 4.3. Since f is faithful all these edges have different images under τϕ . Since
ϕtrop is fully faithful, they have different images under ϕ′

trop. Consequently ϕ′
trop|�(ϕ′)

is injective. Thus ϕ′
trop is fully faithful.

Let v be a vertex of �(ϕ′). Then v is a vertex in �(ϕ) (after potential subdivision)
or infinite. Since ϕ′

trop is fully faithfully, the infinite vertices of Tropϕ′(X) have only
one adjacent vertex and are thus smooth. Thus we have to show that if ϕtrop(v) is a
smooth finite vertex of Tropϕ(X), then ϕ′

trop(v) is a smooth vertex of Tropϕ′(X).
Let e0, . . . , en be the adjacent edges of v and write wi := wv,ei for the primitive

integral vector pointing from ϕtrop(v) into ϕtrop(ei ). We denote F = log | f |∣∣
�(ϕ′) and

L(F) = F − F(v).
If v is not in div(F), then F is locally around ϕtrop(v) the restriction to Tropϕ(X)

of an affine function on NR. The vertex v still has n + 1 adjacent edges e′
0, . . . , e

′
n in

�(ϕ′) and the primitive vectors arew′
0 = (w0, L(F)(e0)), . . . , w′

n = (wn, L(F)(en)).
Since F has integer slopes and is the restriction of an affine function and the wi span a
saturated lattice of rank n, so do the w′

i , which shows that ϕtrop(v) is a smooth vertex
of Tropϕ′(X).
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Fig. 7 The graph of Fe1 along the edges e0 and e1 in Construction 4.9, with the dashed line being the zero
level

If v ∈ div(F), since f is faithful with respect to �(ϕ), v has n + 2 adjacent edges
e′
0, . . . , e

′
n, e

′
n+1 in �(ϕ′) and the primitive vectors are

w′
0 = (w0, L(F)(e0)), . . . , w

′
n = (wn, L(F)(en)), w

′
n+1 = (0,±1).

Since the wi span a saturated lattice of rank n, the w′
i span a saturated lattice of rank

n + 1, which shows that ϕ′
trop(v) is a smooth vertex of Tropϕ′(X). ��

For a vertex v of �(ϕ) and two adjacent edges e0 and e1, we now construct a
function fe1 in K (X)∗ that we will use to construct a tropicalization that is smooth
at v. This may be viewed as generalization to any ambient dimension and any vertex
of the constructions done for special vertices and ambient dimension 2 by Cueto and
Markwig [10, Section 3]

Construction 4.9 Let v be a vertex of �(ϕ) and let e0 and e1 be adjacent edges. Let
Fe1 be a piecewise linear function such that Fe1(v) = 0, de1Fe1(v) = 1, de0Fe1(v) =
−1, deFe1 = 0 for all other adjacent edges, supp(Fe1) ⊂ e1 ∪ e0, and such that
div(Fe1) = ∑±pi for distinct points pi (see Fig. 7). For each i fix xi ∈ X(K ) such
that τ∗xi = pi and write D = ∑ ±xi . Fixing pillar points p jk outside of supp(F) and
applying Corollary 3.4 we obtain a function fe1 ∈ K (X)∗ that is faithful with respect
to �(ϕ) and such that the outgoing slope at v of log | fe1 | equals 1 along e1 and −1
along e0.

Theorem 4.10 Let ϕ : X → Y be an embedding of X into a toric variety Y that meets
the dense torus. Then there exists a refinement ϕ′ : X → Y ′ for a toric variety Y ′ such
that Tropϕ′(X) is a smooth tropical curve.

Proof By Theorem 4.6, after replacing ϕ by a refinement, we may assume that ϕtrop
is fully faithful.

Let v be a vertex of �(ϕ) such that ϕtrop(v) is a singular vertex of Tropϕ(X). Let
e0, . . . , en be the adjacent edges. For k = 1, . . . , n we pick functions Fei : �(ϕ) → R

as in Construction 4.9. For each k = 1, . . . , n and i = 1, . . . , g we pick pillar points
pki,1, p

k
i,2, p

k
i,3, p

k
i,4 in such a way that

[pki,1, pki,4] ∩ supp(Fk) = ∅ for all i, k and

[pki,1, pki,4] ∩ [pk′
i ′,1, p

k′
i ′,4] = ∅ for (k, i) �= (k′, i ′).



60 Page 20 of 23 P. Jell

Applying now Construction 4.9, we obtain functions fei ∈ K (X). We consider the
closed embedding ϕ′ := (ϕ, ( fek )k=1,...,n) : X → (P1)n and its tropicalization

ϕ′
trop : X an → Trop(Y ) × Trop(P1)n .

Applying Lemma 4.3 n times, we see that ϕ′
trop is fully faithful. By construction v

still has n + 1 adjacent edges e′
0, . . . , e

′
n in �(ϕ′) and log | fei | has slope 1 along e′

i ,
slope −1 along e′

0, and is constant on the other edges. This means that projecting a
neighborhood of ϕ′

trop(v) in Tropϕ′(X) ⊂ Trop(Y ) × Trop(P1)n to the second factor,
the image is isomorphic to the one-dimensional fan in R

n whose rays are spanned by
the coordinate vectors x1, . . . , xn and their negative sum x0 = −∑n

i=1 xi . Further the
primitive vector wv,e′

i
is mapped to xi . Thus the wv,e′

i
span a saturated lattice of rank

n, which means that v is smooth in Tropϕ′(X).
Since v is singular in Tropϕ(X) but not in Tropϕ′(X), by inductively applying

Lemma 4.8, we see that Tropϕ′(X) has fewer singular points than Tropϕ(X).
Thus inductively we can construct ϕ′ such that Tropϕ′(X) is smooth. ��

5 Only Mumford curves admit smooth tropicalizations

Let X be a smooth projective curve. In this section we show that the existence of a
closed embedding ϕ : X → Y such that Tropϕ(X) is smooth already implies that X
is a Mumford curve. Since we will not change the embedding in this section, we will
identify X with its image and simply treat X as a closed subcurve of Y . We denote the
completed skeleton associated to the inclusion of X into Y by �.

We denote by K ◦ the valuation ring of K and by K̃ its residue field. Further we
denote by T the dense torus of Y , by N its cocharacter lattice and N� = N⊗� ⊂ NR.

We will use the notion of affinoid domains in X an and their formal models. For an
introduction to these notions we refer the reader to [6, Section 3].

Definition 5.1 Let w ∈ N� ∩Trop(X). Then Xw := trop−1(w) is an affinoid domain
in X an. The point w determines a formal model Xw for Xw.

The initial degeneration is the special fiber inw(X) := Xw
s := Xw ⊗K ◦ K̃ .

Remark 5.2 Assume that inw(X) is reduced. By [6, Proposition 3.13] we have thatXw

is the canonical model of Xw. Then we have a canonical reduction map red : Xw →
inw(X) [3, Section 2.4]. Let C be an irreducible component of inw(X) with generic
point η. Then there is a unique point xw ∈ Xw such that red(xw) = η and that point
satisfies that Cxw is birational to C [3, Proposition 2.4.4]. If z is a smooth closed point
of inw(X) then red−1(z) is isomorphic to an open disc [4, Proposition 2.2].

In particular, if inw(X) is smooth and rational, then all type II points in Xw have
genus 0.

Wewill use the following Proposition. Sincewewill apply it in the case of a trivially
valued field, we allow the absolute value of the field to be trivial.
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Proposition 5.3 Let T be an algebraic torus over a non-archimedean field, whose
absolute value may be trivial. Let T ′ be a subtorus and let U be a closed subvariety
of T . If Trop(U ) ⊂ Trop(T ′) then a translate of U that has the same tropicalization
as U is contained in T ′.

Proof Weconsider the quotient torus T /T ′. Denote byU the image ofU in the quotient
torus T /T ′. Then the tropicalization of U in Trop(T /T ′) = Trop(T )/Trop(T ′) is a
point by construction, meaning thatU is contained in a translate t · T ′ of T ′, where all
entries of T have absolute value 1. Thus t−1 · U is a translate of U that is contained
in T ′ and has the same tropicalization as U . ��

In the following,we view K̃ as a non-archimedean field, carrying the trivial absolute
value.

Theorem 5.4 Let T be an algebraic torus over K̃ . Let U ⊂ T be a closed curve. If
Trop(U ) is smooth then U is smooth and rational.

Proof In the case where Trop(U ) spans Trop(T ), it follows from [23, Proposition 4.2]
that the closure of U in P

n is a one-dimensional linear space. Thus U is a smooth
rational curve. We reduce to this case: Let V be the vector subspace of Trop(T ) that
is spanned by Trop(U ). Since V is a rational subspace, there exists a subtorus T ′ of T
such that Trop(T ′) = V . Now replacing U by the translate from Proposition 5.3 and
applying Katz’s and Payne’s result to U and T ′ proves the theorem. ��
Corollary 5.5 If Trop(X) is smooth, then inw(X) is a smooth rational curve for all
w ∈ Trop(X) ∩ N�.

Proof Let w ∈ Trop(X) ∩ N�. Then inw(X) is a closed subvariety of a torus TK̃
over K̃ . Denote by Trop(inw(X)) its tropicalization. Then the local cone at w in
Trop(X) equals Trop(inw(X)) by [15, 10.15]. Thus inw(X) is a smooth rational curve
by Theorem 5.4.

Theorem 5.6 If Trop(X) is smooth, then X is a Mumford curve.

Proof Let w ∈ Trop(X)∩ N�. By Corollary 5.5, inw(X) is smooth and rational. Thus
all type II points in Xw have genus 0 by Remark 5.2. Since all type two points map
to N� under the tropicalization map, all type II points in X an have genus zero which
shows that X is a Mumford curve by Remark 2.12 ��
Theorem 5.7 If Trop(X) is smooth, then the tropicalization map is fully faithful.

Proof By Corollary 5.5, all initial degenerations are smooth and rational. For all w ∈
N� ∩ Trop(X), by Remark 5.2, there is a unique point xw ∈ Xw that satisfies that
red(xw) is the generic point of inw(X). Furthermore, every point in Xw\{xw} has a
neighborhood isomorphic to an open disc, thus is not contained in �. We conclude
that every pointw ∈ N� ∩Trop(X) has xw as its unique preimage under trop |� . Since
trop |� is continuous and linear on each edge, this implies that trop |� : � → Trop(X)

is bijective. Since all weights are 1, this shows that the tropicalization map is fully
faithful. ��
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Note that when X comes by base change from a family of Riemann surfaces over
the punctured disc, Theorems 5.6 and 5.7 are consequences of [17, Corollary 2]. The
relation between Hodge and Betti numbers in tropical geometry is different than in
complex geometry. The (0, 1)-tropical Hodge number of Trop(X) is equal to the first
Betti number of Trop(X). Using this and [17, Corollary 2] one finds that the first Betti
number of Trop(X) is equal to g, which, since Trop(X) is smooth, implies that trop |�
is injective, hence bijective.

Acknowledgements Open Access funding provided by Projekt DEAL. The author was inspired to recon-
sider the questions in this paper by a question asked by HannahMarkwig during an open problem session at
the program “Tropical geometry, amoebas and polytopes” at the Institute Mittag-Leffler. He would like to
thank Hannah Markwig for the encouragement and the Institute Mittag-Leffler for the wonderful working
conditions. Hewould also like to thankMatt Baker,Walter Gubler, Yoav Len, HannahMarkwig, SamPayne,
Joe Rabinoff, Veronika Wanner and Annette Werner for helpful discussions and comments. He would also
like to thank the anonymous referees for their precise reports and detailed comments.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Amini, O., Baker, M., Brugallé, E., Rabinoff, J.: Lifting harmonic morphisms I: metrized complexes
and Berkovich skeleta. Res. Math. Sci., 2:Art. 7, 67 (2015)

2. An, Y., Baker,M., Kuperberg, G., Shokrieh, F.: Canonical representatives for divisor classes on tropical
curves and the matrix-tree theorem. Forum Math. Sigma, 2:e24, 25 (2014)

3. Berkovich, V.G.: Spectral theory and analytic geometry over non-Archimedean fields, volume 33 of
Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1990)

4. Bosch, S., Lütkebohmert, W.: Stable reduction and uniformization of abelian varieties. I. Math. Ann.
270(3), 349–379 (1985)

5. Baker, M., Payne, S., Rabinoff, J.: On the structure of non-Archimedean analytic curves. In Tropical
and non-Archimedean geometry, volume 605 of Contemp. Math., pages 93–121. Amer. Math. Soc.,
Providence, RI (2013)

6. Baker, M., Payne, S., Rabinoff, J.: Nonarchimedean geometry, tropicalization, and metrics on curves.
Algebr. Geom. 3(1), 63–105 (2016)

7. Baker, M., Rabinoff, J.: The skeleton of the Jacobian, the Jacobian of the skeleton, and lifting mero-
morphic functions from tropical to algebraic curves. Int. Math. Res. Not. IMRN 16, 7436–7472 (2015)

8. Cartwright, D., Dudzik, A., Manjunath, M., Yao, Y.: Embeddings and immersions of tropical curves.
Collect. Math. 67(1), 1–19 (2016)

9. Cheung, M.-W., Fantini, L., Park, J., Ulirsch, M.: Faithful realizability of tropical curves. Int. Math.
Res. Not. IMRN 15, 4706–4727 (2016)

10. Cueto, M.A., Markwig, H.: How to repair tropicalizations of plane curves using modifications. Exp.
Math. 25(2), 130–164 (2016)

11. Chan, M., Sturmfels, B.: Elliptic curves in honeycomb form. In Algebraic and combinatorial aspects
of tropical geometry, volume 589 of Contemp. Math., pages 87–107. Amer. Math. Soc., Providence,
RI, (2013)

12. Gunn, Trevor, Jell, Philipp: Construction of fully faithful tropicalizations for curves in ambient dimen-
sion 3. (2019). arxiv:1912.02648

13. Gubler, W., Rabinoff, J., Werner, A.: Skeletons and tropicalizations. Adv. Math. 294, 150–215 (2016)

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1912.02648


Constructing smooth and fully faithful tropicalizations for Mumford curves Page 23 of 23 60

14. Gubler, W., Rabinoff, J., Werner, A.: Tropical skeletons. Ann. Inst. Fourier (Grenoble) 67(5), 1905–
1961 (2017)

15. Gubler, W.: A guide to tropicalizations. In Algebraic and combinatorial aspects of tropical geometry,
volume 589 of Contemp. Math., pages 125–189. Amer. Math. Soc., Providence, RI, (2013)

16. Hartshorne, R.: Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in
Mathematics, No. 52 (1977)

17. Itenberg, I., Katzarkov, L., Mikhalkin, G., Zharkov, I.: Tropical homology. Math. Ann. 374(1–2),
963–1006 (2019)

18. Jell, P., Rau, J., Shaw, K.: Lefschetz (1,1)-theorem in tropical geometry. Épijournal Geom. Algébrique,
2:Art. 11 (2018)

19. Jell, P., Shaw, K., Smacka, J.: Superforms, tropical cohomology, and Poincaré duality. Adv. Geom.
19(1), 101–130 (2019)

20. Jell, P., Wanner, V.: Poincaré duality for the tropical Dolbeault cohomology of non-archimedeanMum-
ford curves. J. Number Theory 187, 344–371 (2018)

21. Katz, E., Markwig, H., Markwig, T.: The j-invariant of a plane tropical cubic. J. Algebra 320(10),
3832–3848 (2008)

22. Katz, E., Markwig, H., Markwig, T.: The tropical j-invariant. LMS J. Comput. Math. 12, 275–294
(2009)

23. Katz, E., Payne, S.: Realization spaces for tropical fans. In Combinatorial aspects of commutative
algebra and algebraic geometry, volume 6 of Abel Symp., pages 73–88. Springer, Berlin (2011)

24. Kawaguchi, S., Yamaki, K.: Effective faithful tropicalizations associated to linear systems on curves.
2016. arxiv:1612.01098, to appear in Memoirs of the American Mathematical Society (2016)

25. Manjunath, M.: Tropical graph curves. (2016). arxiv:1603.08870.pdf
26. Mikhalkin, G.: What are tropical counterparts of algebraic varieties? Oberwolfach Reports 5(2), 1460–

1462 (2008)
27. Maclagan, D., Sturmfels, B.: Introduction to tropical geometry. Book in progress, draft available at

http://homepages.warwick.ac.uk/staff/D.Maclagan/papers/papers.html
28. Maclagan, D., Sturmfels, B.: Introduction to tropical geometry, volume 161 of Graduate Studies in

Mathematics. American Mathematical Society, Providence, RI (2015)
29. Mikhalkin, G., Zharkov, I.: Tropical curves, their Jacobians and theta functions. In Curves and abelian

varieties, volume 465 of Contemp. Math., pages 203–230. Amer. Math. Soc., Providence, RI (2008)
30. Payne, S.: Analytification is the limit of all tropicalizations. Math. Res. Lett. 16(3), 543–556 (2009)
31. Shaw, K.: A tropical intersection product in matroidal fans. SIAM J. Discrete Math. 27(1), 459–491

(2013)
32. Thuillier, A.: Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applica-

tions à la théorie d’Arakelov. (2005). https://tel.archives-ouvertes.fr/file/index/docid/48750/filename/
tel-00010990.pdf

33. Wagner, T.: Faithful tropicalization of Mumford curves of genus two. Beitr. Algebra Geom. 58(1),
47–67 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://arxiv.org/abs/1612.01098
http://arxiv.org/abs/1603.08870.pdf
http://homepages.warwick.ac.uk/staff/D.Maclagan/papers/papers.html
https://tel.archives-ouvertes.fr/file/index/docid/48750/filename/tel-00010990.pdf
https://tel.archives-ouvertes.fr/file/index/docid/48750/filename/tel-00010990.pdf

	Constructing smooth and fully faithful tropicalizations for Mumford curves
	Abstract
	1 Introduction
	Conventions

	2 Preliminaries
	2.1 Tropical toric varieties and tropical curves
	2.2 Berkovich curves and their extended skeleta
	2.3 Tropicalization of curves
	2.4 Factorization skeleta
	2.5 Rational functions and divisors on metric graphs

	3 Lifting theorem
	4 Fully faithful and smooth tropicalizations
	4.1 Describing tropicalizations using extended skeleta
	4.2 Fully faithful tropicalization
	4.3 Smooth tropicalization

	5 Only Mumford curves admit smooth tropicalizations
	Acknowledgements
	References




