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Abstract

The tropicalization of an algebraic variety X is a combinatorial shadow of X, which
is sensitive to a closed embedding of X into a toric variety. Given a good embedding,
the tropicalization can provide a lot of information about X. We construct two types of
these good embeddings for Mumford curves: fully faithful tropicalizations, which are
embeddings such that the tropicalization admits a continuous section to the associated
Berkovich space X" of X, and smooth tropicalizations. We also show that a smooth
curve that admits a smooth tropicalization is necessarily a Mumford curve. Our key
tool is a variant of a lifting theorem for rational functions on metric graphs.

Keywords Tropical geometry - Smooth tropical curves - Mumford curves - Extended
skeleta - Faithful tropicalization
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1 Introduction

Let K be a field that is algebraically closed and complete with respect to a non-
archimedean non-trivial absolute value. Given a closed subvariety X of a toric variety
Y over K, one can associate a so-called tropical variety Trop(X) which is a polyhedral
complex. Note however, that Trop(X) is not an invariant of X, but depends on the
embedding into Y.

In good situations, Trop(X) can retain a lot of information about X. Let us mention
here work by Katz, Markwig and Markwig on the j-invariant of elliptic curves [21,
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22] and work by Itenberg, Mikhalkin, Katzarkov and Zharkov on recovering Hodge
numbers in degenerations of complex projective varieties [17].

In the latter work, a smoothness condition for tropical varieties in arbitrary codi-
mension appears: a tropical variety is called smooth if it is locally isomorphic to the
Bergman fan of a matroid. (See Definition 2.6 for an equivalent definition for curves.)
For tropical hypersurfaces, this is equivalent to the associated subdivision of the New-
ton polytope being a primitive triangulation, which is the definition of smoothness that
is generally used for tropical hypersurfaces [17, Remark p. 24].

The definition in [17] is motivated by complex analytic geometry. A complex variety
is smooth if it is locally isomorphic to open subsets of C" in the analytic topology.
Bergman fans of matroids are the local models for linear spaces in tropical geometry,
thus it makes sense to call a tropical variety smooth if it is locally isomorphic to the
Bergman fan of a matroid.

This smoothness condition has been shown to imply many tropical analogues of
classical theorems from complex and algebraic geometry, for example intersection
theory, Poincaré duality and a Lefschetz (1, 1)-theorem [18,19,31].

In this paper, we investigate the question for which smooth projective curves there
exist closed embeddings ¢ into toric varieties such that Trop, (X) := Trop(¢(X)) is
smooth. The answer turns out to be Mumford curves (see Definition 2.11). Indeed,
we show that for these curves we can “repair” any given embedding by passing to a
refinement (see Definition 2.16 for a definition of refinement).

Theorem A (Theorem 4.10, Theorem 5.6) Let X be a smooth projective curve of
positive genus. Then the following are equivalent:

(1) X is a Mumford curve.
(ii) There exists a closed embedding ¢: X — Y for a toric variety Y that meets the
dense torus such that Trop(¢ (X)) is a smooth tropical curve.
(iii) Given a closed embedding ¢ : X — Y of X into a toric variety Y that meets the
dense torus, there exists a refinement ¢': X — Y’ of ¢ such that Trop(¢’ (X)) is
a smooth tropical curve.

Denote by X?" the Berkovich analytification of X [3]. We give alternative character-
izations of Mumford curves in terms of X" in Remark 2.12. Theorem A, specifically
the equivalence of (i) and (ii), may be viewed as an alternative characterization that is
purely tropical.

Payne showed in [30, Theorem 4.2] that we have a homeomorphism

X" = l(in Trop,, (X). (1.1)
¢: X—>Y

Theorem A shows that if X is a Mumford curve we can let the limit on the right
hand side as well run only over closed embeddings ¢ such that Trop,, (X) is a smooth
tropical curve, meaning the smoothness on the left hand side is reflected on the right
hand side.

Another often used property of tropicalizations is faithfulness. For curves this means
that given a finite skeleton I" of X*", one requires that @yp := trop op®" is a homeo-
morphism from I onto its image, preserving the piecewise linear structure. Existence
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of faithful tropicalizations was proved by Baker, Payne and Rabinoff for curves and
generalized to higher dimension by Gubler, Rabinoff and Werner [6,13]. For further
work on faithful tropicalizations see for example [10,24,25,33].

Baker, Payne and Rabinoff also introduced so-called completed extended skeleta for
curves. For a smooth projective curve X, these are metric subgraphs ¥ of X", poten-
tially with edges of infinite length, that come with a canonical retraction 7 : X*" — X.
Given a closed embedding ¢: X — Y for Y a toric variety with dense torus T,
there exists an associated complete skeleton X (¢), which has the property that @yp
factors through the retraction 7: X* — X(¢) (see Definition 2.17). Denote by
X° = ¢ (T). We call Quop fully faithful if ¢yop maps X (@) homeomorphically
onto its image and is an isometry when restricted to X (¢) N X", Note that this is
much stronger than a faithful tropicalization, since by definition the image of X (¢) is
Trop(p (X).

We prove the following fully faithful tropicalization result.

Theorem B (Theorem 4.6) Let X be a Mumford curve and ¢: X — Y a closed
embedding into a toric variety Y that meets the dense torus. Then there exists a
refinement ¢’ of ¢ that is fully faithful.

As a direct consequence of the fact that ¢’ is fully faithful, we obtain a continuous
section s Trop, (X) — X" of ¢, by composing the inverse of ¢y, |5 () With the
inclusion of X(¢’) into X*" (see Corollary 4.7). Such sections, though only defined
on subsets of Trop(p (X), were also constructed in [6, Theorem 5.24] and [ 14, Theorem
8.15].

For reader interested in effective bounds on the dimensions of the ambient toric
varieties, let us mention [12], where Gunn and the author construct fully faithful trop-
icalizations in ambient dimension 3, and also give bounds on the ambient dimensions
for smooth tropicalizations.

We prove Theorem B as a first step to prove Theorem A, more precisely that (i)
implies (iii) therein. Our techniques to prove these results are based on the following
lifting theorem for rational functions on metric graphs, which is a variant of a theorem
by Baker and Rabinoff [7, Theorem 1.1]. The relevant notions are recalled in Sect. 2.5.

Theorem C (Theorem 3.2) Let X be a Mumford curve and T be a finite skeleton with
retraction T. Let D € Div(X) be a divisor of degree g and let B = p1 + --- + pg €
Div(I") be a break divisor such that t.D — B is a principal divisor on T". Assume
that B is supported on two-valent points of I'. Then there exist x; € X(K) such that
ToX; = p;i and such that D — Zle X; is a principal divisor on X.

Theorem C is of independent interest, since, given a skeleton of X, it enables one
to construct closed embeddings with nice tropicalizations. We treat an example of this
in Example 3.5 for a genus 1 Mumford curve (also called a Tate curve).

We give an idea of the proof of Theorem B, which is carried out in Sect. 4.2.
Given an edge e of X(p), using Theorem C, we construct a rational function f, €
K (X)* in such a way that log | f| has slope 1 along e. Considering the embedding
¢ = (¢, f.): X = Y x P! this ensures that (pt’mp maps e homeomorphically onto its
image and that the corresponding stretching factor equals 1 (see Definition 2.18 for the
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definition of stretching factor). Using a good choice of D € Div(X) and B € Div(I"),
Theorem C moreover allows us to construct f, in such a way that the same holds for
all edges of X (¢’) that are not contained in X (g). Doing so for every edge of Z(¢),
we obtain Theorem B.

In Sect. 4.3, we proceed similarly for smoothness and thus prove that (i) implies
(iii) in Theorem A.

In Sect. 5 we prove that, for a smooth projective curve X, the existence of a closed
embedding with a smooth tropicalization already implies that X is a Mumford curve.
The key result we use is a joint observation by Mikhalkin, Sturmfels and Ziegler [26],
which states that a variety whose tropicalization is a tropical linear space is actually
a linear space (see Theorem 5.4). The version of the theorem we use was proved by
Katz and Payne [23] and works for trivially valued fields in any characteristic (see
Theorem 5.4). We also show that if Trop,, (X) is smooth then @irop is necessarily fully
faithful (see Theorem 5.7).

Conventions

Throughout, K will be an algebraically closed field that is complete with respect to
a non-archimedean non-trivial absolute value |.|x. We denote the value group by
A := log|K*|g, the valuation ring by K° and the residue field by K. A variety
over K is a separated reduced irreducible scheme of finite type and a curve is a one-
dimensional variety. X will be a smooth projective curve over K. We will denote finite
skeleta of X by I' and completed extended skeleta in the sense of [5] by X. We will
generally denote toric varieties by Y and their dense tori by 7.

2 Preliminaries
2.1 Tropical toric varieties and tropical curves

Let N be a free abelian group of rank n, M := Homz(N, Z) its dual, Ng := N @ R
and A a rational pointed fan in Nr. We write T := R U {—o00}.

For 0 € A we define the monoid S, := {¢ € M | p(v) > Oforallv € o} and
write N (o) := Nr/(0)r, where (o)Rr denotes the real vector space spanned by o. We
write

N = ]_[ N(o).

oeA

We endow N with a topology in the following way:

For 0 € A write N, = [][,_, N(r). This is naturally identified with
Homponoids (So, T). We give N, the subspace topology of TS . For t < o, the space
Hom(S;, T) is naturally identified with the open subspace of Homyjonoids(Ss, T) of
maps that map 7 N M to R. We define the topology of N to be the one obtained by
gluing along these identifications.
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Definition 2.1 We call the space N a tropical toric variety.

The space N is sometimes called the canonical compactification of N with respect
to A. Note that No contains N as a dense open subset.

Example 2.2 Let N = 7" with basis x1, ..., x, and A be the complete fan whose rays
are spanned by —xi, ..., —x, and xo := ) x;. For any d-rays there is a face o of
dimension d that contains exactly these rays. Then N (o) is an n —d-dimensional vector
space. The topology is such that N is homeomorphic to an n-simplex, where N (o)
is identified with the relative interior of a n—d-dimensional simplex in the boundary.
For example, Nr corresponds to the vertex at the origin in A and forms the interior of
Na when we view Ny as a simplex.

However, we will heavily use the structure of Ny as a vector space, so we generally
view N as a compactification of Ny by strata that are infinitely far away.

Definition 2.3 Let C be a one dimensional A-rational polyhedral complex in Ng. For
an edge e (i.e. a one-dimensional polyhedron) of C we denote by L(¢) = {A(u; —u2) |
uy,ur € e, A € R} the linear space of e. Since X is A-rational, [L(e) contains a
canonical lattice which we denote by Z(e).

For a vertex v of e we denote by w, . the unique generator of Z(e) that points in e
away from v.

We call C weighted if every edge is equipped with a positive integral weight m (e)
and balanced if for every vertex v of C we have

Z m(e)wy., = 0.

e: v<e

The local cone at v is the one-dimensional fan whose rays are spanned by the w,, ,
and given weight m(e) for v < e. This is also sometimes referred to as the star of the
vertex v (see for example [27]).

Definition 2.4 A tropical curve in Np is a one dimensional A-rational polyhedral
complex equipped with weights on its edges that satisfies the balancing condition, up
to the equivalence relation generated by subdivision of edges preserving the weights.

A tropical curve X in a tropical toric variety N is the closure in N of a tropical
curve X° in Ng.

X\ X° is a finite set, whose points we consider as vertices of X and call the infinite
vertices. The edges of X are the closures of the edges of X°.

A A-metric graph (which we will often just call a metric graph) is, roughly speak-
ing, a finite graph in which every edge e has a positive length [, € A U {co}. We allow
loop edges, meaning edges whose endpoints agree and half open edges, i.e. edges
which have only one endpoint. If [, € A-, we view e as an interval of length e. Half
open edges are identified with Rxq. Leaf edges are the only edges that are allowed
to have infinite length and are identified with [0, co] with the topology of a closed
interval. For a more precise account on metric graphs, we refer the reader to [1, Section
2.1].
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Fig.1 The types of vertices in tropical curves in RR2. The vertex on the left is smooth, the other two vertices
are not smooth

By an edge of a metric graph I' we mean an edge in some graph model G of I". For
an edge e of I we denote by é the relative interior of e, meaning e with its endpoints
removed. For two points x, y € é we denote by d, (x, y) their distance in é. (Note that
this might not be the distance in I, as there might be a shorter path that leaves é.)

We call a metric graph finite if all its edges have finite length.

Example 2.5 A tropical curve in Ny has a canonical structure as a metric graph where
the length of an edge is given by the lattice length, meaning the length of the primitive
vector wy . equals 1.

A tropical curve X in a tropical toric variety Na is not necessarily a metric graph
since two infinite rays might meet at infinity, creating a vertex at infinity which does
not have valence 1. However, X is a metric graph if every point in X\ X° has exactly
one adjacent edge.

Definition 2.6 An edge in a tropical curve is smooth if its weight is 1. A finite vertex v
is smooth if (w, . | v < e)z is a saturated lattice of rank val(v) — 1 in N, where val(v)
is the number of edges adjacent to v. An infinite vertex is smooth if it has one adjacent
edge. A vertex that is not smooth is called singular. A tropical curve is smooth if all
its edges and vertices are smooth.

Remark 2.7 Following [17] a tropical variety is smooth if it is locally isomorphic to
the Bergman fan of a matroid.

A one-dimensional weighted fan in R” is the Bergman fan of a matroid if and only
if it is isomorphic to the fan whose rays are spanned by x, ..., x, and — > /| x;
and all weights are 1. Thus Definition 2.6 agrees with the one in [17] for the case of
curves.

Example 2.8 Consider the tropical curves in Fig. 1. Each of them depicts a vertex
in a tropical curve in R? with lattice N = Z2. In the leftmost picture, the outgoing
directions are (—1, 0), (0, —1) and (1, 1), which span 72, thus v] 1s a smooth vertex.
In the picture in the middle, the span of the primitive vectors is again Z2, but there
are 4 vertices adjacent to vo, thus vy is not smooth. In the picture on the right, the
outgoing directions are (2, —1), (—1,2) and (—1, —1). The span of these vectors is
{(x,y) € Z? | x — y is divisible by 3}. This has rank 2, but is not saturated in 72, thus
v3 1s not a smooth vertex.
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2.2 Berkovich curves and their extended skeleta
Let X be a variety over K. The associated Berkovich space [3] is
X :={x = (px,|.lx) | px € X, .|y is an absolute value on k(p,) extending | . |g}

with the topology such that the canonical forgetful map X** — X is continuous and for
all open subsets U of X and f € O(U)* the map U™ — R, (px, | . |x) = |f(px)lx
is continuous. We will often write | f(x)| := |f(py)|x. If X = Spec(A) is an affine
variety then

X = {|.| multiplicative seminorm on A extending | .|}

with the topology such that for all f € A the map X*" — R; |. |+ | f]is continuous.
For morphism ¢: X — Y of K-varieties we obtain a morphism ¢*": X" — Y2,

Now let X be a curve over K. For x € X* we denote by . (x) the completion of
k(py) with respect to | .|, and by 57 (x) its residue field. Following Berkovich and
Thuillier [3,32] we say x is of type I if p, € X(K) and of type I if p, is the generic
point of X and trdeg[7(x) : K] = 1.If x is of type I, then | .|y = |. |k, thus the
forgetful map X" — X induces a bijection from the set of type I points of X*" onto
X(K). We will thus identify X (K) with the subset of X" that consists of type I points.
If x is of type II, then we denote by C, the smooth projective K -curve with function
field 7 (x) and by g(x) its genus, which we call the genus of x.

We now recall the notion of completed skeleta of X", which is due to Baker, Payne
and Rabinoff [5].

Definition 2.9 We consider A! = Spec K[T]. For —co < s < r € R denote
B(r) = {x € AV | log|T|x <r}and A(r,s) = {x € A" | s < log|T|, < r}.

We call B(r) an open disc of logarithmic radius r and A(r, s) a generalized open
annulus of logarithmic radii s and r. We call A(r, s) an annulus with logarithmic radii

s and r if s € R and a punctured disc of radius r if s = —o0o0. We callr —s €e RU o0
the length of A(rs). _ _
We denote by pp(;) the element of B(¢) defined by |Z a;T' |PB(1) = max; |a;|t' and

call the set
X (A(r,s)) = {,OB(;) | s <logt < r}

the skeleton of A(r, s). There is a canonical retractiont: A(r,s) — X (A(r, s)) which
is a strong deformation retraction.

Definition 2.10 Let X be a smooth projective curve over K. A completed semistable
vertex set V of X is a finite subset of X*" consisting of type I and II points such that
X2\ V is isomorphic to a disjoint union of finitely many generalized open annuli and
infinitely many open discs.
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For a completed semistable vertex set V of X" there is a canonical associated
subspace (V) of X", called the completed skeleton 3(V'), which is a metric graph.
There is a canonical retraction 7y : X" — X (V), such that ¥ (V) is a strong defor-
mation retract of X*". As the name suggests, the vertex set of Xy is V. The edges are
the skeleta of the generalized open annuli that are connected components of X"\ V.
The length of such an edge is the length of the corresponding annulus.

If X is projective and V is a completed semistable vertex set that only consists of
type II points, we call V a semistable vertex set and X (V) a finite skeleton of X. A
finite skeleton is a finite metric graph and we will often denote it by I'.

Let V be a completed semistable vertex set of X. Then the set of type II points in
V forms a semistable vertex set for X. We call the associated finite skeleton the finite
part of ¥(V) and denote it by X(V)gp.

Definition 2.11 A smooth projective curve of genus g > 0 is called Mumford curve if
for some semistable vertex set V the skeleton I'(V) has first Betti number equal to g.

Remark 2.12 Note that since I'(V) is a deformation retract of X?", the first Betti
number of I'(V) is independent of V. Thus we might replace “some” by “every” in
Definition 2.11. Furthermore X is a Mumford curve if and only if g(x) = 0 for all
type II points x in X?". Another equivalent definition of Mumford curve is that any
point x € X has a neighborhood that is isomorphic to an open subset of P! [20,
Proposition 2.26 & Theorem 2.28].

2.3 Tropicalization of curves

Let Y be a toric variety with dense torus 7. Let N be the cocharacter lattice of T,
Ngr := N ® R and A the fan in N associated to Y.

Definition 2.13 The tropicalization of Y is
Trop(Y) := Na.

There is a canonical tropicalization map trop: YY" — Trop(Y), which is a contin-
uous proper map of topological spaces [30, Section 3].

We assume that the reader is familiar with tropicalizations of closed subvarieties of
algebraic tori [15,28]. Here we consider tropicalizations of closed subvarieties of toric
varieties, which may be seen as a compactification of the latter. We quickly sketch
the relation: Given a closed embedding ¢: X — Y of a smooth projective curve X
into a toric variety Y that meets the dense torus 7', denote by X° := ¢~ (7). Then
Trop,, (X°) is a dense open subset of Trop,, (X)) and we obtain the latter from the former
by putting points at the end of the unbounded edges.

Example2.14 If Y = G/, is a torus of dimension n with fixed coordinates, then A
is only the origin in R” and we have Trop(Y) = R". The restriction of the map
n,an

trop: G;;° — R" to G} (K) = (K*)" is the usual tropicalization map X(K) —
R"; x — (log|xtlk, ..., log|x,lk)-



Constructing smooth and fully faithful tropicalizations for Mumford curves Page90of23 60

If Y = P!, then Example 2.2 shows that Trop(P') is homeomorphic to a closed
interval. Since it contains a one-dimensional vector space as a dense open subset, a
good point of view is Trop(]P’l) = [—o0, oo] with the topology of a closed interval.

The map trop: P12 — Trop(P') is then given by (p, | . |x) — log|z(p)|x, where
z is the coordinate function on P!

Remark 2.15 For two toric varieties Y| and Y>, we have Trop(Y] x Y2) = Trop(Y]) x
Trop(Y2). This holds because the fan of ¥ x Y> is the product of the fans of Y| and
Ys.

Let X be a curve over K. For a closed embedding ¢: X — Y we denote @yop :=
trop op™ and Trop,, (X) := ¢op(X™") the associated tropicalization of X. One can
define canonical weights on Trop,, (X) that make it into a tropical curve in Trop(Y')
in the sense of Definition 2.4 (see for example [15]). We will define these weights in
Definition 2.18.

Definition 2.16 If Y’ is another toric variety, ¢’: X — Y’ is another closed embed-
ding and 7w : Y/ — Y is a morphism of toric varieties, there exists a canonical map
Trop(Y’) — Trop(Y), which is linear on the dense subset Ng and maps Trop‘p/(X )
onto Trop,, (X). We call ¢’ a refinement of ¢.

Note that refinements yield the inverse system in Payne’s result that the inverse
limit of all tropicalizations is homeomorphic to X" [30, Theorem 4.2].

2.4 Factorization skeleta

Let ¢: X — Y be a closed embedding of a smooth projective curve X into a toric
variety Y that meets the dense torus 7'. Denote by X° := ¢~ !(T) the preimage of the
dense torus.

Definition 2.17 Let X (¢) be the set of points in X" that do not have an open neigh-
borhood that is isomorphic to an open disc and contained in (X°)*". We call X (¢) the
completed skeleton associated to ¢.

The set X (¢) is indeed a completed skeleton for X [5, Theorem 4.22]. We denote
by 7,: X* — X (¢p) the retraction.
Baker, Payne and Rabinoff show that we have a commutative diagram

Ptrop

xan Trop,, (X) 2.1
X %ﬂw)
(o)

and that @uopls(y) is linear on each edge of X (¢) [6, Lemma 5.3 & Proposition 5.4
(DI

We can subdivide Trop,(X) and X (¢) in such a way that each edge of X(p) is
either contracted to a point or mapped homeomorphically to an edge of Trop,, (X) [6,
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Lemma 5.4. (2)]. Let e be an edge in Trop,,(X). Let ey, ..., ex be the edges of X (¢)
mapping homeomorphically to e. For each i, we fix x; # y; € é;.

Definition 2.18 We call

me;) = d, (@trop(Xi) s Prrop (i)
v de, (xi, yi)

k
and m(e) = Zm(e[)
i=1

the stretching factor of guople; and the weight of e, respectively.

The definition of weight agrees with the usual one (see for example [15, Definition
3.14]) by [6, Corollary 5.9].

Proposition 2.19 Let ¢: X — Y be a closed embedding of X into a toric variety that
meets the dense torus T and X () the associated skeleton. Denote by X° := ¢~ (T).
Then the following are equivalent:

(1) @uwop maps % (@) homeomorphically onto its image and is an isometry when
restricted to X (@) N X",

(ii) The map ¢woplx(p): X(p) — Trop, (X) is injective and all weights on Trop,, (X)
are 1.

Proof Assume that (ii) holds. The map ¢uop|x(p) is surjective, thus bijective. Since it
is a bijective map between compact Hausdorff spaces, it is a homeomorphism. Hence
both (i) and (ii) imply that @yop|x () is @ homeomorphism onto its image.

Thus it remains to show that if ¢yop|s(p) 1S @ homeomorphism it is an isometry
when restricted to X (¢) N X*" if and only if all weights on Trop,,(X) are all equal
to one. This follows from Definition 2.18. O

Definition 2.20 We say that ¢yp is fully faithful if the equivalent conditions of Propo-
sition 2.19 hold.

The notion of fully faithful tropicalization is stronger then the notion of faithful
tropicalization introduced by Baker, Payne and Rabinoff [6]. It is also slightly stronger
then the notion of totally faithful tropicalization introduced by Cheung, Fantini, Park
and Ulirsch [9] (see also [8]). The difference is that a totally faithful tropicalization
only needs to be an isometry when restricted to X (¢) N X°2". Note however that the
authors of [9] mainly work in the situation of tropical compactifications and in this
case the notions of totally faithful and fully faithful agree.

2.5 Rational functions and divisors on metric graphs

LetI" be a finite A-metric graph. A pointx € I is called A-rational if its distance from
some, or equivalently every, vertex is in A. A rational function on I' is a piecewise
linear function F: I' — R with integer slopes all of whose points of non-linearity are
A-rational. A divisor on I is a finite formal linear combination of A-rational points.
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Its degree is the sum of the coefficients. We denote by Div(I") the group of divisors.
For a rational function F its divisor is

div(F) := Zkixi where A; = Z d.F(x;)

e: xj<e

and d, F(x;) is the outgoing slope of F along the edge e at x;. We call div(F) a
principal divisor on I'. We denote by Prin(I") the group of principal divisors on I'.

Let X be asmooth projective curve and I" a finite skeleton with retraction t. Let f be
in K(X)*. Then F := log | f(x)] r isarational functiononI" and 7 (div(f)) = div(F)
[5, Theorem 5.15] (see also [32, Proposition 3.3.15] for the same result phrased in a
slightly different language).

Definition 2.21 We say that edges ey, .. ., ey form the complement of a spanning tree
of T if there exists a graph model G for I' with set of edges E such that ¢; € E and
the subgraph of G spanned by the edges E'\{ey, ..., ey} is connected, contractible and
contains all vertices of G.

Note that in this definition, g is necessarily the first Betti number of I".

The notion of break divisor was introduced by Mikhalkin, and Zharkov [29]. They
observed that any degree g divisor on a metric graph has a unique break divisor in
its rational equivalence class (see Theorem 2.23). Break divisors were also studied in
detail by An, Baker, Kuperberg, and Shokrieh, who also study discrete versions [2].

Definition 2.22 Let I be a metric graph and g = dimg H' (I, R) its first Betti number.
A break divisor is a degree g effective divisor B = p1 + - - - + pg such that there exist
edges ey, ..., eg that form the complement of a spanning tree of I' such that p; € e;.

Theorem 2.23 (Mikhalkin - Zharkov) Let D be a degree g divisor on I'. Then there
exists a unique break divisor B on T" such that D — B € Prin(I").

Break divisors will play an important role in Theorem 3.2, which we will use to
prove our main theorems, as well as to construct tropicalizations in honeycomb form
for elliptic curves (see Example 3.5). In our applications we will deal with break
divisors that are supported on two-valent points of I'. If B is such a break divisor then
I'\ supp(B) is connected and contractible.

We will see in Example 3.6 that it is really necessary to restrict to break divisors
that are supported on two-valent points in Theorem 3.2.

3 Lifting theorem

In this section X is a smooth projective Mumford curve of genus g over K. We fix
a semistable vertex set V with corresponding finite skeleton I' and retraction 7. We
denote by Jo(X) := {[D] € Pic(X) | t.D € Prin(I')}.

Proposition 3.1 Let B = p1 + - - - + p, be a break divisor on I that is supported on
two-valent points and write R; = r_l(p,-) N X(K). Then forall Y = (y1,...,Ys) €
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Fig.2 An edge e with four pillar
points py, p2, p3 and p4 and a
piecewise linear function with

- B -_,,,-
divisor p1 — p2 — p3 + p4 P P2 Ps P4 ¢

Ry x -+ X Rg the map

py: Ry X -+ X Ry — Jo(X)

8
(X1, - X)) > Y X = il
i=1

is a surjection.

Proof We consider [7, Proof of Theorem 1.1]. Baker and Rabinoff work in the same
setup, but for them X is any curve, not necessarily a Mumford curve. Thus in their
situation both the set of ) they allow and the domain of ¢y is (Ry X - - - X Rp) x C*. Here
b is the first Betti number of the skeleton of X and C* = [], ¢ yan. g(x)=0 Cx (K)8™,
Anelement)) € (R; x --- X Rp) x C*isdenoted by (Y1, Vo) for Y € Ry x -+ X Ry
and ), € C*. They show that ¢y, y,) is surjective when ) is generic. If X is a
Mumford curve, then b = g and C* is just a one point set. Thus ), is automatically
generic and our proposition follows. O

Theorem 3.2 Let D € Div(X) of degree g and B = p1 + - - - + pg € Div(I") a break
divisor such that t. D — B is a principal divisor on T'. Assume that B is supported on
two-valent points of I'. Then there exist x; € X(K) such that t,.x; = p; and such that
D — Zle x; is a principal divisor on X.

Proof Let y; € X(K) such that t,.y; = p;. We have [D — >°%_, y;] € Jo(X). Thus
by Proposition 3.1 there exist x; € 7~ !(p;) N X(K) such that [D — Zle yi] =
[>°%_, (xi — yi)]- In other words [ D — }°%_, x;] = 0 which means that D — >"%_, x;
is a principal divisor on X. O

Definition 3.3 Let e be an edge of I'. Four points py, p2, p3, pa € é are called pillar
points in e if they are A-rational, d,(p1, p2) = d.(p3, p4) and for i = 2,3 we have
[pi-1, pil N [pi, pi+1] = pi (See Fig. 2.)

Figure 2 shows the graph of a piecewise linear function whose divisor is p; — p» —
p3 + pa. In particular that divisor is principal.

Corollary 3.4 Let D € Div'(X) such that t.D is a principal divisor on T. Let
el,...,eg be edges that form the complement of a spanning tree of I'. Fixing pil-
lar points p; 1, pi.2, Pi 3, Pi 4 in é; there exist x;j € X (K) such that T(x;;) = p;;j and
f e K(X)* such that div(f) = D+ Y5, (xi1 +xia) — Y5 (xi2 + X 3).

Proof The divisor Z;-g:] (pin+ pia) — Zle (pi2 + pi3)is principal on I', thus so
is D + YF (pia + pia) = XfL  (pi2 + pi3). Thus, for j = 1.3, 4, fixing x;;
such that 7,x;; = p;; and writing D =D+ Z}g:l(xi,l + xi4) — Zle x; 3 and
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B = p1o+-- -+ pg2, we find that 7, D’ — B is a principal divisor on I'. Since B is a
break divisor supported on two-valent points, applying Theorem 3.2 to D’ and B we
get the result. O

Example 3.5 (Tate curves) Chan and Sturmfels use theta functions to produce nice
tropicalizations of elliptic curves [11] (see also [6, Theorem 6.2]). In this example we
show how Theorem 3.2 can be used to construct such nice tropicalizations combina-
torially.

Let E be an elliptic curve with bad reduction. We will use Theorem 3.2 to construct
a closed embedding ¢: E — P? whose tropicalization looks like the right hand side
of Fig. 3, which Chan and Sturmfels call symmetric honeycomb form.

The minimal skeleton 'y, is a circle. We pick three points g1, g2, g3 € I'min that
are equidistant from each other. Our skeleton I is obtained from I, by adding edges
of length d(g;, q;)/2 at each of the g;, denoting their endpoints by p;. We subdivide
each edge [g;, g;] at its midpoint and label our new vertices as on the left hand side
of Fig. 3. The solid part of the figure is now our skeleton I'.

We pick points x1,1 # x1,2,%2,1 # x22,x3,1 # x32 and x¢ € E(K) such that
7(x;,j) = p; and T(xg) = pe.

Let D1 = —x1,1 + x2,1 — x22 + x3,1 — X6. Then 1, D; = —p; + p3 — pe and
D1 + ps = div(F) for a rational function F; on I'.

Now applying Theorem 3.2 to —D; and p4 we obtain a function f| € K(E)* and
x4 € E(K) such that 7(x4) = p4 and div(f1) = D1 + x4. We normalize f; such that
F =log|fil[p-

Similarly let Dy = —x1,1 +x12 —x22 +x32 —xs then 7, Dy = —p2 + p3 — p¢
and t.D> + p5 = div(F3), for a rational function F, on I'. We obtain a function
f» € K(E)* and x5 € E(K) such that t(x5) = ps and div(f2) = Dy + xs.

Let ¢ be the morphism associated to the rational map [fi : f>» : 1]: E — P2
By construction, the graph on the left hand side of Fig. 3, including the dashed lines,
which are infinite edges, is the associated completed skeleton X (¢). We write G; =
log |fi||z(¢)' Note that G;|r = F;. Further, guopls(p) = (G1, G2). Thus Tropw(E) =
(G1, G2)(Z(p)) is the tropical curve on the right hand side of Fig. 3.

The functions fi, f2, | are linearly independent over K, since fj is not constant
on the zeros of f>. Thus by the Riemann—Roch theorem, they form a basis of L(D)
where D = x1,1 4+ x2,2 + X¢. Since D is very ample by [16, Corollary IV.3.2(b)], this
shows that ¢ is a closed embedding.

Example 3.6 In the same example, we can also see that Theorem 3.2 does not hold
if we do not require B to be supported on two-valent points. Let D = pj. Then the
unique break divisor that is linearly equivalent to D is B = g;. However we cannot
find x and y such that t(x) = pj and t(y) = ¢ such that x — y is principal, since no
difference of two distinct points is principal on an elliptic curve.
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Fig.3 The skeleton and tropicalization of a Tate curve

4 Fully faithful and smooth tropicalizations
4.1 Describing tropicalizations using extended skeleta

Let X be smooth projective curve of genus g > 0. Let V be a minimal semistable
vertex set of X with associated finite skeleton I" and retraction 7.

Definition 4.1 Let X be a completed skeleton of X with retraction ty, f € K(X)*
and write div(f) = >_ =+x;. Then f is said to be faithful with respect to X if we have

Ty (x;) # tn(x;) forall i # j.
Note that this implies that f has only simple poles and zeros.

Construction 4.2 Let ¢: X — Y be a closed embedding of X into a toric variety Y
that meets the dense torus. Let ¥ (¢) be the completed skeleton associated to ¢. Let
f € K(X)* be faithful with respect to X (¢). Consider the induced closed embedding
o =(p, f): X - Y xPL

We obtain the associated skeleton X (¢’) for ¢’ by adding infinite rays [x;, Ty (x)]
for all x; € supp(div(f)). We denote by 7, the associated retraction.

We have the following diagram

T(ﬂ/

Piro
(¢ o Trop, (X) —— Trop(Y) x Trop(P')

el .

() Trop,, (X) ———— Trop(Y).

Xan

The map on the left contracts the edges [x;, Ty (x;)] to T, (x;). The map 71 on the right
is forgetting the last coordinate.
Thus we obtain Trop(p, (X) from Trop(p (X) in two steps:

(i) Take the graph of log | f| restricted to X (¢).
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Fig.4 Situation in Construction 4.4. The dashed lines are infinite edges and solid lines are finite edges

(i) Add the images of the edges ¢; = [x;, t(x;)]. These are infinite rays from
(@rop(xi), log | f(xi)]) to (@uop(xi), £00) where the sign of oo is the opposite
of the sign of x; in div(f).

Lemma 4.3 In the situation of Construction 4.2, every edge e in X (¢') that is not an
edge of X () is infinite and satisfies m(e) = 1.

Proof The edge e has to be infinite since we only added infinite rays to X(¢) in
Construction 4.2. Since f has only simple poles and zeros, the slope of log | f| along
e is equal to one, thus the corresponding expansion factor equals one. O

4.2 Fully faithful tropicalization

Throughout this section, X is a Mumford curve and ¢ : X — Y aclosed embedding of
X into a toric variety that meets the dense torus. In this section, we prove Theorem B
from the introduction, showing that ¢ has a refinement that is fully faithful.

We fix a minimal semistable vertex set V and denote by I the corresponding finite
skeleton of X with retraction 7. For our completed skeleton X (¢) associated to ¢ we
denote the retraction by 7, and the finite part by X (¢)fin.

We will now construct for an edge e a function f, € K (X)* such that the slope of
log | fe| is equal to 1 along e and such that f, is faithful with respect to X (¢).

Construction 4.4 Let e be a finite edge of X (¢) thatis notin I". We label the endpoints
v and w in such a way that w and I' lie in different connected components of X (¢)\v
(see Fig. 4). Letv’, w’ € X (K) be such that r(p(v/) = vand 7,(w') = w. We fix edges
et, ..., eg that form the complement of a spanning tree of X (¢) and pillar points pfj
in ¢;. Applying Corollary 3.4 to X(¢)fi, and D’ = v/ — w’ we obtain f, € K(X)*
such that div(f,) = v —w' + Y +x;;. By construction f, is faithful with respect to
% (¢) and the slope of log | f.| along e is 1. Replacing f, by a~! - f, where a € K
such that | f,(v)| = |a| we may assume log | f.(v)| = 0.

Construction 4.5 Let ¢ be an infinite edge of X (¢) with finite vertex v and infinite
vertex w’. Let v’ be a point in X (K) such that tw(v’) = v (see Fig. 5). We fix edges
et ..., eg that form the complement of a spanning tree of X (¢)fn and pillar points
p;; ine;. Applying Corollary 3.4 to £ (¢)fin and D = v/ — w’ we obtain f, € K(X)*
that is faithful with respect to X (¢) and such that log | f.| has slope 1 along e. We
again normalize such that log | f, (v)| = 0.
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Fig.5 Situation in Construction 4.5. The dashed lines are infinite edges and solid lines are finite edges

Theorem 4.6 Let X be a Mumford curve. Let ¢: X — Y be a closed embedding
of X into a toric variety that meets the dense torus. Then there exists a refinement
¢ . X — Y for ¢ that is fully faithful.

Proof Recall that we fixed a finite skeleton of I of X. By [6, Theorem 1.1] we may
assume, after possibly replacing ¢ by a refinement, that the map @uqp|r is an isometry
onto 1ts 1mage.

Let E be the set of edges of X (¢) that are not in I'. The strategy of proof will be
as follows: For each edge e € E, we apply Construction 4.4 (if e is a finite edge)
or Construction 4.5 (if e is an infinite edge). We make sure that the pillar points we
choose to apply these constructions do not get in the way of each other (condition (iii)
below) and do not interfere with e after tropicalization (condition (ii) below). This
yield a rational function f, for each e € E. We then check that the corresponding
embedding (¢, (fo)ecr): X — Y x (PYHIE is fully faithful.

Foreachi=1,...,g,j=1,...,4ande € Ewepickpfj e I" such that

() for all e € E there are ed