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Abstract
We study complexified Bogomolny monopoles using the complex linear extension
of the Hodge star operator, these monopoles can be interpreted as solutions to the
Bogomolny equation with a complex gauge group. Alternatively, these equations can
be obtained from dimensional reduction of the Haydys instanton equations to three
dimensions, thus we call them Haydys monopoles. We find that (under mild hypothe-
ses) the smooth locus of the moduli space of finite energy Haydys monopoles on R

3

is a Kähler manifold containing the ordinary Bogomolny moduli space as a minimal
Lagrangian submanifold—anA-brane.Moreover, using a gluing construction we con-
struct an open neighborhood of this submanifold modeled on a neighborhood of the
zero section in the tangent bundle to the Bogomolny moduli space. This is analogous
to the case of Higgs bundles over a Riemann surface, where the (co)tangent bundle
of holomorphic bundles canonically embeds into the Hitchin moduli space. These
results contrast immensely with the case of finite energy Kapustin–Witten monopoles
forwhichwe have showed a vanishing theorem inNagy andOliveira (Kapustin–Witten
equations on ALE and ALF Gravitational Instantons, 2019).
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1 Introduction andmain results

1.1 Preparation andmotivation

Let (M, g) be a Riemannian 3-manifold, and �∗M its exterior algebra bundle. For
any orthogonal vector bundle E → M the Hodge star operator extends to E-valued
differential forms yielding a map ∗ : �∗M ⊗ E → �3−∗M ⊗ E . Fix a principal
G-bundle P → M , where G is a compact Lie group. A smooth pair (∇,�) consisting
of a G-connection on P and a section of gP = ad(P) (equipped with a G-invariant
inner product), is called a Bogomolny monopole if

∗F∇ = d∇�. (1.1)

In the situation when M = R
3 equipped with the Euclidean metric and G = SU(2)

several things are known about solutions to this equation. For instance, up to the action
of the automorphisms of P , the (finite energy) Bogomolny monopoles form a smooth
noncompact moduli space. This can be equipped with the canonical L2-metric which
turns out to be complete and hyperkähler. For higher rank structure groups, for instance
when G = SU(N ) with N > 2, less is know, but in many cases (cf. Hypothesis 3.3
and Remark 3.4 later), analogous results hold. In particular, when the moduli space
is smooth at a Bogomolny monopole m = (∇,�) any (gauge fixed) tangent vector
v = (a, �) at m satisfies the linearized Bogomolny monopole equations:

∗d∇a − d∇� − [a,�] = 0, (1.2a)

d∗∇a + [�,�] = 0, (1.2b)

with the second equation arising from requiring the tangent vector to be orthogonal to
the slice cut out by the action of the gauge group at m. Moreover, the formal L2 dual
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equations

∗d∇a + d∇� + [a,�] = 0, (1.3a)

d∗∇a + [�,�] = 0, (1.3b)

have no solutions in L2, at least under certain standard hypotheses; again, see Hypoth-
esis 3.3. This is in fact the reason why the Implicit Function Theorem can be used to
show smoothness of the moduli space of finite energy Bogomolny monopoles.

Now we “complexify” the Bogomolny Eq. (1.1) by considering�∗
C

M = �∗M ⊗R

C, GC the complexification ofG, and PC = P×GGCwhich is the principal GC-bundle
associated with the standard conjugation action of G onGC. The Hodge star operator ∗
may nowbe extended in two inequivalentways to�∗

C
M⊗gP � �∗M⊗gPC . Thismay

be either as a complex linear operator, which we still denote ∗, or as a conjugate linear
one, which we denote by ∗. Depending on which such extension one uses we obtain
two different complex monopole equations. In this second paper we only consider one
of these which is made using ∗. Let (A, ϒ) respectively be a connection on PC and a
section of gPC . Then, we have the following complex monopole equation

∗FA = dAϒ, (1.4)

Remark 1.1 The equation obtained using ∗ instead is given by

∗FA = dAϒ, (1.5)

and studied in the second paper in this series [12].

Let the real gauge group be denoted by G = Aut(P) and the complex one by
GC = Aut(PC). Both complex monopole Eqs. (1.4) and (1.5) are invariant under
the usual action of GC. In order to work only modulo the action of G we proceed as
follows. Observe that A can be uniquely written as A = ∇ + ia, with ∇ a connection
on P and a ∈ �1(M, gP ). Similarly ϒ = 1√

2
(� + i�), with �,� ∈ �0(M, gP ). A

standard procedure in gauge theory to “break down the gauge symmetry” is to include
an extra equation obtained by formally working orthogonally to the gauge action, such
as a Coulomb gauges as used in [20]. In favorable cases this has the effect of making
the resulting gauge theoretical equations elliptic. In the situation at hand, instead of
breaking the full symmetry we may first “break it down” to that of the real gauge
group G by imposing an extra equation of the form

d∗∇a = i[ϒ,ϒ] ⇔ d∗∇a + [�,�] = 0, (1.6)

which is a Coulomb type gauge fixing condition. In particular, this makes the full
system of PDE’s ellipticmodulo the action ofG. This can be seen bywriting a complex
of linear differential operator which in the first step has the linearized gauge action,
and in the second, the linearization of Eqs. (1.4) and (1.6).
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Remark 1.2 Alternatively, this extra equation may be motivated by comparison with
the Kempf–Ness Theorem in finite dimensional situations. Indeed, Eq. (1.6) may be
interpreted as a moment map equation for an Hamiltonian action of G on the space of
quadruples (∇, a, �,�) equipped with a natural L2-symplectic structure.

One other point of interest in Eqs. (1.4) to (1.6) is that they may be obtained from
dimensional reductions of the instanton equations of Haydys (cf. [4]) and Kapustin–
Witten (cf. [9]) respectively. In this paper we focus on the first of these. For more on
the later we refer the reader to our parallel article [12]. While the Kapustin–Witten
equations, and their dimensional reductions, have been attracting an increasing amount
of interest from themathematical community (see, for example, [6,7,11,17–19,21,22])
theHaydys equation has remained less explored.However, it was pointed out in [4] that
its moduli space carries interesting geometric structures which have a shadow in the
dimensional reduction that we consider in Sect. 4.2. For completeness and motivation
we included the corresponding computations in Sect. 2.

In order to establish notation, recall that the wedge product of two gP X -valued
forms a = ∑

|I |=p aI dx I and b = ∑
|J |=q bJ dx J is given by

[a ∧ b] =
∑

|I |=p
|J |=q

[aI , bJ ]dx I ∧ dx J ,

and satisfies [a ∧ b] = (−1)pq+1[b ∧ a]. Using this, a simple computation shows that
Eqs. (1.4) and (1.6) are equivalent to

∗F∇ − d∇� − 1
2 ∗ [a ∧ a] + [a, �] = 0, (1.7a)

∗d∇a − d∇� − [a,�] = 0, (1.7b)

d∗∇a + [�,�] = 0. (1.7c)

Remark 1.3 A similar computation shows that Eqs. (1.5) and (1.6) are equivalent to

∗F∇ − d∇� − 1
2 ∗ [a ∧ a] + [a, �] = 0, (1.8a)

∗d∇a + d∇� + [a,�] = 0, (1.8b)

d∗∇a + [�,�] = 0. (1.8c)

Again, we point out that we studied these equations in the parallel article [12].

Given that, as mentioned in the previous paragraph, these equations are obtained
from dimensional reduction of the Haydys instanton equation, we name Eqs. (1.7a) to
(1.7c) the Haydys monopole equations and their solutions Haydys monopoles. In the
same way, we call Eqs. (1.8a) to (1.8c) Kapustin–Witten monopole equations and their
solutions Kapustin–Witten monopoles. Observe that both these sets of gauge theoretic
equationswith gauge groupG (rather thanGC), are ellipticmodulo its action as already
explained above.

Furthermore, notice that the Eqs. (1.7a) and (1.8a) are the same, and can be seen as
a quadratic (but algebraic) perturbation of the Bogomolny monopole Eq. (1.1). As for
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the second and third Haydys monopole Eqs. (1.7b) and (1.7c), these are exactly the
tangent space Eqs. (1.2a) and (1.2b) for the Bogomolny moduli space. On the other
hand, the second and third Kapustin–Witten monopole Eqs. (1.8b) and (1.8c) are dual
Eqs. (1.3a) and (1.3b).

We now introduce the relevant energy functional in this complex monopole setting.
Denote by ‖·‖ the usual L2 norm for sections of any bundle over M . Given a quadruple
(∇,�, a, �) as before, we define a Yang–Mills–Higgs type energy functional by

E(∇,�, a, �) = ‖F∇‖2 + ‖∇a‖2 + ‖∇�‖2 + ‖∇�‖2 + 1
4‖[a ∧ a]‖2

+‖[a,�]‖2 + ‖[a, �]‖2 + ‖[�,�]‖2. (1.9)

We also point out, without proof, that up to an overall constant and for M Ricci flat,
the energy (1.9) is simply a sum of the L2 norms of F∇+ia with d∇+ia(� + i�) on
M .

1.2 Main results

Before stating ourmain results we recall some—by now classic—results on themoduli
spaces ofBogomolnymonopoles. Let M = R

3 with theEuclideanmetric, G a compact
Lie group, and denote byMB andMH the moduli spaces of Bogomolny and Haydys
monopoles. NowMB canonically embeds intoMH , as the real solutions (that is, with
vanishing imaginary parts a = 0 = �). Under a certain genericity hypothesis called
maximal symmetry breaking (see Hypothesis 3.3 and Remark 3.4), the moduli space
MB is a smooth and complete hyperkähler manifold. Its tangent bundle TMB is well
defined (as a smooth manifold) and MB also embeds into TMB , as the zero section.
Under these assumptions, our first main result can be stated as follows:

Main Theorems 1 (Existence theorem for Haydys monopoles) Under the assumptions
of Hypothesis 3.3: The Haydys moduli space MH is a smooth manifold around the
Bogomolny moduli space MB, and the tangent and normal bundles of MB are iso-
morphic.

In particular, there exists finite energy Haydys monopoles that are not Bogomolny
monopoles.

Remark 1.4 This situation contrasts with that of finite energy Kapustin–Witten
monopoles onR3. Indeed, while we find that many Haydys monopoles exist which are
not simply Bogomolny monopoles, we proved in [12] that any finite energy Kapustin–
Witten monopole on M = R

3 must actually be a Bogomolny monopole.

The moduli space of finite energy solutions to the Haydys monopole equation on
M = R

3 inherits some interesting geometric structures mirroring the hyperkähler
structure on the moduli space of Bogomolny monopolesMB . Namely, we prove that
there is an infinite dimensional space

C = A × �0(M, gP ) × �1(M, gP ) × �0(M, gP ) ∼= T (A × �0(M, gP ))
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carrying 3-different hyperkähler structures (I1, I2, I3), (J1, J2, J3), and (K1, K2, K3)

associated with the same metric h and such that I1 = J1 = J1, which we denote as
L1 for simplicity. The group of gauge transformation G acts on C preserving all the
structure and the space of Haydys monopoles CH ⊂ C can be obtained as the common
zero level set of all moment maps. Furthermore (L1, h) descends to the moduli space
of Haydys monopolesMH equipping it with a Kähler structure with respect to which
MB ⊂ MH is a minimal Lagrangian submanifold, i.e. a minimal A-brane.
Finally, the three different hyperkähler structures on Cmentioned above, even though
not descending to the whole of MH , they do descend to MB equipping it with its
standard hyperkähler structure.

Main Theorems 2 The following assertions hold:

(a) MH is a Kähler manifold with respect to a structure compatible with the L2-metric.
(b) MB ↪→ MH as a minimal Lagrangian submanifold.
(c) The complex structures I2, J2, and K2, together with the L2-metric, descend to

MB ↪→ MH equipping it with a well defined hyperkähler structure, which is
isomorphic to its canonical L2-hyperkähler structure.

Remark 1.5 In the terminology of [9], part (b) of this theorem is equivalent to saying
that MB ↪→ MH is a minimal A-brane.

1.3 Organization

In Sect. 2, we prove that theHaydysmonopole Eqs. (1.7a) to (1.7c) are the dimensional
reduction of the 4-dimensionalHaydys equation (as in [4]). In Sect. 3, after introducing
the necessary toolswe proveMainTheorem1whose proof relies on a use of theBanach
space contractionmapping principle. In Sect. 4.2 we study the geometry of the Haydys
monopole moduli space, and prove Main Theorem 2.

2 Dimensional reduction

In this section we prove the dimensional reductions of the 4-dimensional Haydys
equation yield the Haydys monopole Eqs. (1.7a) to (1.7c).

Let us start by recalling the notion of complex (anti-)self-duality in dimension 4.
Given an oriented, Riemannian 4-manifold (X , g4), let �∗

C
X be the complexification

of its exterior algebra bundle, and let ∗4 and ∗4 be the complex linear and conjugate
linear extensions of the Hodge star operator on �∗

C
X , respectively. Both ∗4 and ∗4

square to the identity on �2
C

X and hence either can be used to define (anti-)self-dual
complex 2-forms. In this paper we consider the complex linear case, that is when
(anti-)self-duality if defined using ∗4.

Let now G be a compact Lie group, and GC its complex form. Let P X be principal
G-bundle over X , and define the complexified GC-bundle P X

C
= P X ×G GC as being

that associated with respect to the standard action by left multiplication of G on GC.
Let gP X and gP X

C

be the corresponding adjoint bundles. Note that gP X
C

� gP X ⊗R C,



The Haydys monopole equation Page 7 of 30 58

and thus

�k
C

X ⊗R gP X � �k
C

X ⊗C gP X
C

� (�k X ⊗ gP X ) ⊕ i(�k X ⊗ gP X ).

Any “complex” connectionA on P X
C

decomposes asA = A + i B, where A is a “real”
connection on P X and B ∈ �1(X , gP X ). Then we can decompose the curvature FA
of A as follows

FA = Re(FA) + i Im(FA).

and thus

Re(FA) = FA − 1
2 [B ∧ B],

Im(FA) = dA B.

Let the ± superscripts denote the pointwise orthogonal projection from �2X ⊗ gP X

onto �2± X ⊗ gP X . Now we can A anti-self-dual with respect to ∗4 if

∗4 FA = −FA ⇔ Re(FA)+ = 0 = Im(FA)+. (2.1)

Note that when A is an G-connection, that is when B = 0, then both Eq. (2.1) reduce
to the classical anti-self-duality (instanton) equation on X .

Supplementing Eq. (2.1) with d∗
A B = 0 one gets the Haydys equation; cf. [4,

Sect. 4.2].
Assume now that X = S

1 × M , where M is a Riemannian 3-manifold with metric
g, and gX is the product metric. Furthermore, let the orientation of X given by the
product orientation. The group of orientation preserving isometries of X has a normal
subgroup, which is isomorphic to SO(2), that acts on S

1 as rotations. Thus, one can
look for SO(2)-equivariant (“static”) solutions of the Haydys Eq. (2.1). It is easy to
see, that if A is an SO(2)-equivariant connection on X , then there exists a principal
G-bundle P → M , together with and isomorphism between its pullback to X and P X ,
and a quadruple (∇,�, a, �), such that ∇ is a connection on P , a ∈ �1(M, gP ), and
�,� ∈ �0(M, gP ), with the property that (omitting pullbacks and the isomorphism)

A = ∇ + �dt + i (a + �dt). (2.2)

Let ∗ be the Hodge star operator of (M, g). Then we have the following lemma:

Lemma 2.1 (Dimensional reduction of the Haydys equation) The complex connection
A in (2.2) solves the Haydys Eq. (2.1) and d∗

A B = 0, if and only if Eqs. (1.7a) to (1.7c)
hold.
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Proof Let A = A + i B. Recall that the Haydys equations for A are

Re(FA)+ = 0, (2.3a)

Im(FA)+ = 0,

d∗4
A B = 0, (2.3b)

where

Re(FA) = FA − 1
2 [B ∧ B], Im(FA) = dA B.

Now we further assume that A has the form

A = ∇ + �dt, B = a + �dt,

and the quadrupole (∇,�, a, �) is pulled back from M . Straightforward computations
yield

FA = F∇ + d∇� ∧ dt, 1
2 [B ∧ B] = 1

2 [a ∧ a] + [a, �] ∧ dt,

thus Eq. (2.3a) is equivalent to

∗F∇ − d∇� − 1
2 ∗ [a ∧ a] + [a, �] = 0,

proving Eqs. (1.8a) and (1.7a).
We also have

dA B = d∇a + (d∇� + [a,�]) ∧ dt,

thus for Eq. (2.3b) we have

Im(FA)+ = (dA B)+ = 1
2 (d∇a − ∗ (d∇� + [a, �])) + 1

2 (∗d∇a − (d∇� + [a, �])) ∧ dt .

Thus Im(FA)+ = 0 is equivalent to

∗d∇a − d∇� − [a,�] = 0,

which proves Eq. (1.7b).
Finally, we have

d∗4
A B = d∗4∇+�dt (a + �dt) = d∗∇a − [�,�] = d∗∇a + [�,�],

which proves Eq. (1.7c). This completes the proof. ��
Before proceeding, let us point out a couple of other possible ways one can interpret

the Haydys monopole equations.
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Remark 2.2 (Reduction of the Vafa–Witten equations) The Vafa–Witten equation is
another set of 4-dimensional, gauge theoretic PDE’s; cf. [5, Sect. 4.1] for example.We
remark, without proof, that the similar reduction of the Vafa–Witten equations also
results in Eqs. (1.7a) to (1.7c). A simpleway to see this is to observe that�1M � �2+ X
via the map b �→ 1

2 (dt ∧ b + ∗b).

Remark 2.3 (Reduction of the split G2-monopole equation) The Haydys monopole
Eqs. (1.7a) to (1.7c) can be obtained as the reduction of the G2-monopole equations
on R

7 equipped with the split G2-structure of signature (3, 4). See, for example, [13,
Sect. 2].

3 Solving the Haydysmonopole equation

The goal of this section is to construct solutions to the Haydys monopole Eqs. (1.7a)
to (1.7c) on M = R

3 and, more concretely, to prove Main Theorem 1. We achieve that
as follows: First, we recall the linearization of the Bogomolny Eq. (1.1) in Sect. 3.1,
then we introduce the relevant function spaces to be used in Sect. 3.2, and prove a
gap theorem for the adjoint of the linearization in Sect. 3.3. In Sect. 3.4, we prove a
multiplication property of the function spaces introduced in Sect. 3.2. In Sect. 3.5, we
reinterpret the the Haydys monopole Eqs. (1.7a) to (1.7c) which we supplement in
Sect. 3.6 with the gauge fixing condition. These new set of equations can be viewed as
fixed point equation, which we solve using Banach Fixed Point Theorem in Sect. 3.7.
Finally, Sect. 4.1 contains a computation of the dimension of the moduli space, which
reveals that our construction yields, in fact, an open subset of the moduli space.

3.1 The Bogomolnymonopole equation and its linearization

Let M = R
3 andm0 = (∇0,�0) ∈ A×�0(M, gP )be apair satisfying theBogomolny

monopoleEq. (1.1), and the finite energy condition, that is |F∇0 | = |d∇0�0| ∈ L2(R3).
Furthermore, we make the following two hypotheses on m0, which are standard in the
literature:

Hypothesis 3.1 Let R > 0 and the radius R ball BR ⊂ R
3, thenR3\BR ∼= [R,+∞)×

S
2 and consider the projection π∞ : R3\B → S

2. We suppose that there is a a unitary
connection, ∇∞, on a bundle P∞ → S

2 which for sufficiently large R � 1

P|R3\BR
∼= π∗∞ P∞,

and smooth nonzero sections �∞, κ ∈ �0(S2, ad(P∞)), such that �0 and d∇0�0
have the asymptotic expansions

�0 = π∗∞�∞ − 1
2r π∗∞κ + O

(
r−2

)
,

d∇0�0 = 1
2r2

π∗∞κ ⊗ dr + O
(

r−3
)

.
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Furthermore, we have

∇∞�∞ = 0, F∇∞ = 1
2κ ⊗ volS2∞ , [�∞, κ] = 0.

Remark 3.2 Hypothesis 3.1 has been proven in some cases (see [8, Theorem 10.5] for
the first example) and, conjecturally, holds for all finite energy monopoles on R

3; cf.
[8, Theorem 18.4 & Corollary 18.5]. The authors of this paper, together with Benoit
Charbonneau, are currently working on a proof of this conjecture.

We furthermore impose a more technical hypothesis, which is crucial in the proof
of Main Theorem 1.

Hypothesis 3.3 The field �∞ takes values in the interior of a Weyl chamber, i.e. it
attains no value in a facet of one such Weyl chamber. A Bogomolny monopole satisfying
this hypothesis is said to have maximal symmetry breaking.

Remark 3.4 It is easy to see that a monopole has maximal symmetry breaking exactly
if ker(ad(�∞)) is Abelian. Note also that any nonflat monopole with structure group
G = SU(2) has to have maximal symmetry breaking. This said, we point out that
monopoles without maximal symmetry breaking do exist; see [2,3].

Furthermore, we mention here, without proof, that by adapting the arguments in
[1], it is possible to prove that maximal symmetry breaking implies Hypothesis 3.1.
The proof of this—among more general claims—is currently being completed by the
authors; see Remark 3.2.

Finally, we conjecture that Main Theorem 1 holds for monopoles with nonmaximal
symmetry breaking as well.

Definition 3.5 For any v0 = (a0, �0) ∈ �1(M, gP ) ⊕ �0(M, gP ), let

d2(v0) = ∗d∇0a0 − d∇0�0 − [a0,�0],
d∗
1 (v0) = d∗∇0

a0 − [�0, �0],

and D = d2 ⊕ d∗
1 , let D∗ be the formal adjoint of D. A pair v0 = (a0, �0) ∈

�1(M, gP )⊕�0(M, gP ) is called a tangent vector to the Bogomolny monopole moduli
space at m0 if it lies in kerL2

1
(D).

Moreover, for any c0, if we define

(d∇0�0)
W (c0) = (∗[a0 ∧ d∇0�0] − [d∇0�0, �0], [〈d∇0�0, a0〉]

)

∈ �1(M, gP ) ⊕ �0(M, gP ).

It is easy to see that

DD∗c = ∇∗
0∇0c − [[c,�0],�0],

D∗ Dc = DD∗c + 2(d∇0�0)
W (c).
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Remark 3.6 The operator D is the linearization of the Bogomolny monopole Eq. (1.1)
together with the standard Coulomb type gauge fixing condition d∗∇0

a0 = [�0, �0].
Thus, when D : L2

1 → L2 is surjective the implicit function theorem can be used to
prove that the Bogomolny monopole moduli space is smooth and its tangent space at
m0 can be identified with kerL2

1
(D).

3.2 Function spaces

Now we introduce the various functions spaces that are used in the proof of Main
Theorem 1.

Definition 3.7 Let ‖ · ‖ denote L2-norms and ρ = (1 + |x |2)1/2. Define the Hilbert
spacesHk (with k = 1, 2, or 3) as the norm-completions of C∞

0 (R3, (�0⊕�1)⊗gP)

via the norms

‖c‖2H0
= ‖c‖2,

‖c‖2H1
= ‖∇0c‖2 + ‖ρ−1c‖2 + ‖[�0, c]‖2,

‖c‖2H2
= ‖∇2

0c‖2 + ‖ρ−1∇0c‖2 + ‖[�0,∇0c]‖2
+ ‖[�0, [�0, c]]‖2 + ‖[�0, ρ

−1c]‖2 + ‖ρ−2c‖2.

The corresponding inner products are denoted by 〈·, ·〉Hk .

Lemma 3.8 (Sobolev andHardy’s inequalities) Let c ∈ H1. Then the Sobolev inequal-
ity says

‖∇0c‖ ≥ 3
2‖c‖L6(R3),

and Hardy’s inequality says

‖∇0c‖ ≥ 1
2‖ρ−1c‖L2(R3).

Remark 3.9 Let the symbol∼ denote normequivalence. Then usingHardy’s inequality
and Hypothesis 3.1 gives

‖c‖2H1
∼ ‖∇0c‖2 + ‖[�0, c]‖2,

‖c‖2H2
∼ ‖∇2

0c‖2 + ‖[�0,∇0c]‖2 + ‖ρ−2c‖2.
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Lemma 3.10 (First order inequalities, partly in [16, Lemma 6.8]) There are positive
constants R, Cm0 , depending only on the monopole m0, such that for all c0 ∈ H1

‖c0‖2H1
≤ Cm0‖D∗c0‖2H0

,

‖c0‖2H1
≤ Cm0

(
‖Dc0‖2H0

+ ‖c0‖2L2(BR(0))

)
,

‖c0‖2H2
≤ Cm0

(
‖D∗c0‖2H1

+ ‖c0‖2L2(BR(0))

)
,

‖c0‖2H2
≤ Cm0

(
‖Dc0‖2H1

+ ‖c0‖2L2(BR(0))

)
.

Proof We start by proving the first inequality, which follows from the Weitzenböck
type formula DD∗c = ∇∗

0∇0c − [[c,�0],�0] as follows

‖D∗c‖2 = 〈c, DD∗c〉 = ‖∇0c‖2 + ‖[�0, c]‖2 ∼ ‖c‖2H1
.

Themethod for proving the second inequality is outlined in [16]. For completeness, we
include here its proof using the strategy outlined in that reference. By Hypothesis 3.1,
we have that ρ2d∇0�0 ∈ L∞, and hence, if c ∈ H1, then we can integrate by parts
and thus

‖Dc‖2H0
= 〈c, D∗ Dc〉 = 〈c,∇∗

0∇0c − [[c,�0],�0] + 2(d∇0�0)
W (c)〉

= ‖∇0c‖2 + ‖[�0, c]‖2 + 2〈c, (d∇0�0)
W c〉

= ‖c‖2H1
+ 2〈c, (d∇0�0)

W c〉. (3.1)

Now, for R � 1 let χR be a smooth bump function supported in BR(0) and equal to
1 in BR−1(0). Then,

〈c, (d∇0�0)
W c〉 = 〈χRc, (d∇0�0)

W c〉 + 〈(1 − χR)c, (d∇0�0)
W c〉,

with the first terms satisfying

|〈χRc, (d∇0�0)
W c〉| ≤

(

sup
x∈BR(0)

|d∇0�0(x)|
)

‖c‖2L2(BR(0)).

As for the second term, we may use the particular form of (d∇0�0)
W c and the Ad-

invariance of the inner product to find a bilinear map N (·, ·) so that

|〈(1 − χR)c, (d∇0�0)
W c〉| � ‖(1 − χR)d∇0�0‖L2‖N (c, c)‖L2 � ‖(1 − χR)d∇0�0‖L2‖c‖2H1

,

where in the last inequality we have used Lemma 3.16 to be proven later. Now, given
that d∇0�0 ∈ L2, for any positive ε � 1 we may find R = Rε � 1 so that ‖(1 −
χRε )d∇0�0‖L2 ≤ ε and so

|〈(1 − χRε )c, (d∇0�0)
W c〉| � ε‖c‖2H1

.
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Inserting these back into Eq. (3.1) we find

‖Dc‖2H0
� (1 − ε)‖c‖2H1

−
(

sup
x∈BRε (0)

|d∇0�0(x)|
)

‖c‖2L2(BRε (0)),

and rearranging yields the second inequality in the statement.
We now turn to proving the last two inequalities, i.e. the last two ones. Using the

first inequality just proved above we compute

‖c‖2H2
� ‖∇0c‖2H1

+ ‖[�0, c]‖2H1
+ ‖ρ−1c‖2H1

� ‖D∗∇0c‖2H0
+ ‖D∗[�0, c]‖2H0

+ ‖D∗ρ−1c‖2H0

� ‖∇0D∗c − B(∇0�0, c)‖2H0
+ ‖[�0, D∗c] + B(∇0�0, c) + [�0, [�0, c]]‖2H0

+ ‖ρ−2c + ρ−1D∗c‖2H0

� ‖∇0D∗c‖2H0
+ ‖[�0, D∗c]‖2H0

+ ‖[�0, [�0, c]]‖2H0

+ ‖ρ−1D∗c‖2H0
+ ‖B(∇0�0, c)‖2H0

+ ‖ρ−2c‖2H0

� ‖D∗c‖2H1
+ ‖[�0, [�0, c]]‖2H0

+ ‖ρ−2c‖2H0
, (3.2)

where B(−,−) denotes a bilinear operator which is algebraic, and thus continuous.
Now, using the definition of the H1-norm we have

‖D∗c‖2H1
= ‖∇0D∗c‖2 + ‖[�0, D∗c]‖2, (3.3)

and we consider each of these separately. For the first term we use the Hardy’s
inequality together with Young’s inequality in the form 2〈D∗(ρ−1c), ρ−2dρ ⊗ c〉 ≤√
2‖D∗(ρ−1c)‖ + 1√

2
‖ρ−2c‖2

‖∇0D∗c‖2 � ‖ρ−1D∗c‖2 � ‖D∗(ρ−1c) − ρ−2dρ ⊗ c‖2
� (1 − √

2)‖D∗(ρ−1c)‖2 + (1 − 1√
2
)‖ρ−2 ⊗ c‖2

� 3 − δ − 2
√
2

2
‖ρ−2c‖2 + δ‖∇(ρ−1c)‖2 + δ‖[�0, ρ

−1c]‖2

� ‖ρ−2c‖2 + ‖∇(ρ−1c)‖2 + ‖[�0, ρ
−1c]‖2,
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for somefixed δ ∈ (0, 3−2
√
2). As for the second term,weuseHypothesis 3.1, namely

that d∇0�0 = O(ρ−2), and an argument as that made above to control 〈(d∇0�0)
W c, c〉

‖[�0, D∗c]‖2 � ‖D∗[�0, c] − (d∇0�0)
W c‖2

� ‖D∗[�0, c]‖2 − ‖(d∇0�0)
W c‖2

� ‖[�0, [�0, c]]‖2 − 〈(d∇0�0)
W ρ−1c, ρ−1c〉

� ‖[�0, [�0, c]]‖2 − ‖c‖2L2(BRε )
− ε‖ρ−1c‖2H1

.

We now sum these inequalities, i.e. insert them back into Eq. (3.3), and recall that
‖∇0(ρ

−1c)‖2 + ‖[�0, ρ
−1c]‖2 = ‖ρ−1c‖2H1

to obtain

‖D∗c‖2H1
� ‖ρ−2c‖2 + ‖[�0, [�0, c]]‖2 + ‖ρ−1c‖2H1

− ‖c‖2L2(BRε )
− ε‖ρ−1c‖2H1

� ‖ρ−2c‖2 + ‖[�0, [�0, c]]‖2 + ‖ρ−1c‖2H1
− ‖c‖2L2(BRε )

,

where we have chosen ε > 0 sufficiently small so it may be absorbed. Then, rearrang-
ing we obtain

‖ρ−2c‖2 + ‖[�0, [�0, c]]‖2 + ‖ρ−1c‖2H1
� ‖D∗c‖2H1

+ ‖c‖2L2(BR)
,

for some R > 0. Then, inserting this into the (3.2) we obtain

‖c‖2H2
� ‖D∗c‖2H1

+ ‖c‖2L2(BR)
,

which proves the third inequality in the statement. The proof of the last one follows
from a very similar computation, which we omit. ��
Lemma 3.11 (Second order inequalities) There is C > 0 depending only on the
monopole m0 so that for all c0 ∈ H2

‖c0‖2H2
≤ C

(
‖DD∗c0‖2H0

+ ‖c0‖2L2
1(BRε (0))

)
, (3.4a)

‖c0‖2H2
≤ C

(
‖D∗ Dc0‖2H0

+ ‖c0‖2L2(BRε (0))

)
. (3.4b)

Proof The last two inequalities in the statement of Lemma 3.10 yield

‖c0‖2H2
� ‖D∗c0‖2H1

+ ‖c0‖2L2(BR(0))

‖c0‖2H2
� ‖Dc0‖2H1

+ ‖c0‖2L2(BR(0)).

Composing these with the first two in Lemma 3.10 yields

‖c0‖2H2
� ‖DD∗c0‖2H0

+ ‖D∗c0‖2L2(BR(0)) + ‖c0‖2L2(BR(0))

‖c0‖2H2
� ‖D∗Dc0‖2H0

+ ‖c0‖2L2(BR(0)),
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which yields the stated inequalities. ��
Corollary 3.12 For k = 1, 2, the operators D, D∗ : Hk+1 → Hk are continuous and
Fredholm. In particular DD∗, D∗ D : H2 → H0 are also continuous and Fredholm.1

Proof The continuity of these operators is immediate so we focus on the Fredholm
property. The inequalities in Lemma 3.10 together with the compactness of the embed-
ding H1 ↪→ L2(BRε ), imply that the operators D, D∗ : H1 → H0 have finite
dimensional kernel and closed image. Similarly, these inequalities show that both
kerL2(D∗) and kerL2(D) are contained inH1. Hence, these can be respectively iden-
tified with the cokernel of the operators D, D∗ : H1 → H0, and so their cokernels
are also finite dimensional. Putting all these facts together follows that the mentioned
first order operators are Fredholm.

In order to prove that the second order operators DD∗, D∗ D : H2 → H0 are
Fredholm is enough that D and D∗ also be Fredholm when defined from H2 to H1,
which can be done through a very similar computation. Alternatively, it follows from
the same argument as above, but using nequalities (3.4a) and (3.4b) instead. ��

3.3 A gap theorem

In the proof of Lemma 3.10 we saw that

‖D∗c‖2 = ‖∇0c‖2 + ‖[�0, c]‖2,

which implies the operator D∗ : H1 → H0 is injective. Indeed, from Lemma 3.10,
the inequality

‖D∗c‖2H0
� ‖c‖2H1

,

holds for any c ∈ H1. Thus, DD∗ : H2 → H0 is also injective, and, since it is a
formally self-adjoint elliptic operator, its spectrum is gapped.

Theorem 3.13 (Gap Theorem) There is a constant C > 0, possibly depending on the
monopole m0 = (∇0,�0), such that

‖DD∗c‖2H0
≥ C‖c‖2H2

. (3.5)

Proof The proof of this assertion is a standard argument by contradiction using the
fact that kerH2(DD∗) ⊆ kerH2(D∗) = {0}. Indeed, if inequality (3.5) is not true, then
there is a sequence ci ∈ H2 such that ‖ci‖H2 = 1 and ‖DD∗ci‖2H0

→ 0. Since the
sequence {ci } is bounded inH2 by assumption, there is aweakH2-limit, say c∞ ∈ H2,
which satisfies DD∗c∞ = 0. As DD∗ has no H2-kernel, we have c∞ = 0, that is ci

converges weakly to 0.

1 When D and D∗ are considered as maps from L2
1(R

3) to L2(R3), Corollary 3.12 does not hold, because
of the failure of the Rellich Lemma for unbounded domains.
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Now, consider any bounded domain � ⊂ R
3, the embeddingH2(�) ↪→ L2

1(�) is
compact, ci → c∞ = 0 strongly in L2

1(�). Putting this together with inequality (3.4a)
for DD∗ follows that

‖ci‖2H2
≤ C

(
‖DD∗ci‖2H0

+ ‖ci‖2L2
1(BR(0))

)
.

Taking the limit as i → ∞, the right hand side converges to zero, so we also have

lim
i→∞ ‖ci‖H2 = 0,

which contradicts ‖ci‖H2 = 1. ��
Using the Lax–Milgram Theorem, we immediately conclude the following:

Corollary 3.14 (Green operator of DD∗) There is continuous linear map

G : H0 → H2,

such that G ◦ DD∗ = idH2 .

3.4 Multiplication properties of the function spaces

Lemma 3.15 Let

N0 : (�1 ⊕ �0) ⊕ (�1 ⊕ �0) → R,

be a bilinear map whose norm is pointwise uniformly bounded, that is there is a
positive constant C, such that for all x ∈ R

3, and all γ1, γ2 ∈ �1
x ⊕ �0

x

|N0(γ1, γ2)| ≤ C |γ1||γ2|.

Then, for any connection ∇, there is some other constant C ′ such that if now c1, c2
are L2

1 sections, then

‖N0(γ1, γ2)‖ ≤ C ′‖∇γ1‖(‖γ2‖ + ‖∇γ2‖).

Proof Given that 3
2 < 2 < 3 and using the Hölder’s inequality twice and then the

Sobolev inequality from Lemma 3.8, we have

‖N0(γ1, γ2)‖ � ‖ |γ1| |γ2| ‖
� ‖ |γ1| |γ2| ‖L3 + ‖ |γ1| |γ2| ‖L3/2

� ‖γ1‖L6‖γ2‖L6 + ‖γ1‖L6‖γ2‖L2

� ‖∇γ1‖ ‖∇γ2‖ + ‖∇γ1‖ ‖γ2‖,

which concludes the proof. ��
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The nonlinearities of the Haydys monopole Eqs. (1.7a) to (1.7c) are quadratic, but
come composed with the Lie algebra bracket [·, ·] acting in the g-valued components.
Thus, given a quadratic map N0 as in Lemma 3.15, the maps under consideration are
of the form N (c1, c2), that is if for i = 1, 2: ci = si ⊗ γi with si ∈ g, γi ∈ �0 ⊕ �1

we have

N (c1, c2) = [s1, s2] ⊗ N0(γ1, γ2).

In that context, and in terms of the Hk-norms, the result in the Lemma 3.15 must
be rephrased, which requires some preparation. For instance, recall that given a
finite energy monopole m0 = (∇0,�0), there is �∞ : S

2 → g − {0} so that
limρ→∞ �0|S2ρ = �∞ uniformly. Recall, that a monopole m0 is said to have maximal
symmetry breaking, if ker(ad(�∞)) is Abelian.

Lemma 3.16 (Multiplication properties of the Hk-spaces) Let m0 = (∇0, m0) be a
monopole with maximal symmetry breaking and N a quadratic map as above. Then
there exists Cm0 > 0, possibly depending on the monopole m0 = (∇0,�0), such that

‖N (c1, c2)‖H0 ≤ Cm0‖c1‖H1‖c2‖H1 .

Proof We start by proving the claimed inequality inside a bounded domain � ⊂ R
3.

Notice that, as� is bounded and ρ continuous the H1(�)-norm is equivalent to L2
1(�)

norm. Then, from Lemma 3.15 we immediately obtain

‖N (c1, c2)‖H0(�) ≤ Cm0‖c1‖H1(�)‖c2‖H1(�).

Weare then left with proving the inequality in the statement outside a compact domain.
By Hypothesis 3.1, the Higgs field �0 approaches a ∇∞-parallel field �∞ �= 0 at
infinite. Hence, there exists an R > 0, such that |�0| > |�∞|/2. On the other hand,
Hypothesis 3.1 and 3.3 implies that ker(ad(�0)) is Abelian on R

3 − BR(0). Let g
denote the trivial Lie(G)-bundle, which we identify now with ad(P). Furthermore,
let g|| = ker(ad(�0)). Then, over R3 − BR(0), g|| is a smooth, Abelian Lie-algebra
bundle, and

g � g|| ⊕ g⊥,

withg⊥ = ker(ad(�0))
⊥. Sections of (�0⊕�2)⊗g can be thenwritten as c = c||+c⊥.

By the maximal symmetry breaking hypothesis again, we have that [g||, g||] = {0}.
Thus

[c1, c2] = [c||
1 , c⊥

2 ] + [c⊥
1 , c||

2 ] + [c⊥
1 , c⊥

2 ].

Thus, it suffices to prove the stated inequality separately for each of these components.
Start by noticing that ‖c⊥‖H1 ∼ ‖c⊥‖L2

1
while ‖c||‖H1 ∼ ‖∇0c||‖L2 +‖ρ−1c⊥‖L2 ∼
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‖∇0c||‖L2 , and so making use of Lemma 3.15 we have

‖[c⊥
1 , c||

2 ]‖ � (‖c⊥
1 ‖ + ‖∇c⊥

1 ‖)‖∇c||
2‖ � ‖c⊥

1 ‖H1‖c||
2‖H1 � ‖c1‖H1‖c2‖H1 .

A similar application of Lemma 3.15 with the roles of c1, c2 interchanged gives the
same bound on the term [c⊥

1 , c||
2 ], and in any order regarding c1, c2 also one for the

term [c⊥
1 , c⊥

2 ]. ��

3.5 Preparation for the proof of theMain Theorem 1

LetD = A⊕�0(M, gP ) andC = TD = A⊕�0(M, gP )⊕�1(M, gP )⊕�0(M, gP )

be the configuration space for Haydys monopoles, that is (∇,�, a, �) ∈ C. Further-
more, let R = �1(M, gP ) ⊕ �1(M, gP ) ⊕ �0(M, gP ), and

κ : C → R; (∇,�, a, �) �→
⎛

⎝
∗F∇ − d∇� − 1

2 ∗ [a ∧ a] + [a, �]
∗d∇a − d∇� − [a,�]

d∗∇a + [�,�]

⎞

⎠ .

Then we can rewrite the Haydys monopole Eqs. (1.7a) to (1.7c) as

κ(∇,�, a, �) = 0.

We call κ the Haydys map.

Remark 3.17 Note that if m0 = (∇0,�0) is a Bogomolny monopole on M , then for
v0 = (a0, �0) ∈ �1(M, gP ) ⊕ �0(M, gP ) the last two components of κ(m0, v0) are
exactly the linearization of the Bogomolny Eq. (1.1) together with the usual Coulomb
type gauge fixing condition which we have been writing as D(v0) = (d2 ⊕ d∗

1 )(v0);
see Sect. 3.1. Let now v0 be a tangent vector to the Bogomolnymonopolemoduli space
at m0 as in Definition 3.5. Then the last two components and the terms involving m0
in the first component of κ(m0, v0) vanish, but the (quadratic) terms depending on v0
need not, in general. So (m0, ν0) fails to solve the Haydys monopole Eqs. (1.7a) to
(1.7c) for v0 ∈ ker(D) − {0}, but the error is of order O(|v0|2) pointwise.

3.6 Linearization and gauge fixing

In this section, we look for solutions of the Haydys monopole Eqs. (1.7a) to (1.7c)
as follows: Let m0 be a (finite energy) Bogomolny monopole, and v0 = (a0, �0)

be a tangent vector to the Bogomolny monopole moduli space at m0 with unit L2-
norm. Then consider c0 = (m0, tv0) = (∇0,�0, ta0, t�0), for small t , which is
O(t2) away from being a Haydys monopole, as in Remark 3.17. Since C is an affine
space over V = (�1(M, gP ) ⊕ �0(M, gP ))⊕2, we have that Tc0C � V. Let then
δc0 = (b1, φ, b2, ψ) ∈ V, and we search for a solution which is of the form c =
(m, v) = (m0, tv0) + δc0. As we are interested in solutions up to gauge equivalence
only, it is convenient to work on the orthogonal complement of a slice of the gauge
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action. For that reason, we add the condition that δc0 is orthogonal to the gauge slice
passing through (m0, tv0), which is equivalent to

gc0(δc0) = d∗
1 (b1, φ) − ∗[a0 ∧ ∗b2] − [�,ψ] = 0.

We can further restrict the form of δc0: write δc0 = (δm0, δv0), and require that both
δm0 and δv0 are perpendicular to the kernel of D, that is to all tangent vector to the
Bogomolny monopole moduli space at m0. In other words, δc0 ∈ Im(D∗ ⊕ D∗). We
do not lose any generality due to this requirement in what follows. Indeed, a tangential
component in δm0 would just “redefine” m0, and—even more clearly—a tangential
component in δv0 could be absorbed in v0.

3.7 The proof of Main Theorem 1

Proof From the discussion in the previous section, the gauge fixed Haydys monopole
Eqs. (1.7a) to (1.7c) around c0 ∈ C is encoded in a map

κ̂c0 : V → R ⊕ �0(M, gP ); δc0 �→ (κ(c0 + δc0), gc0(δc0)). (3.6)

Let V0 = �1(M, gP ) ⊕ �0(M, gP ), and thus V � R ⊕ �0(M, gP ) � V⊕2
0 . In this

sense, the linearization of κ̂c0 at a Bogomolny monopole c0 = (m0, 0) is

d κ̂c0 =
(L 0
0 L

)

,

where L is the gauge fixed linearization of the Bogomolny equation at m0. Under
Hypothesis 3.3, L is a continuous and surjective Fredholm operator (cf. [10,14,16]),
and thus so is d κ̂c0 . Hence we can conclude that MH is a smooth manifold around
MB , and moreover the normal bundle of MB is isomorphic to TMB . In particular,
dim(MH ) = 2 dim(MB). We construct below an explicit isomorphism.

Now let c0 = (m0, tv0), where again v0 is a tangent vector of the Bogomolny
monopole moduli space at m0 with unit L2-norm, and t is to be specified later. Let
δc0 = sδc, where δc = (δm, δv) and s a small parameter also to be specified later.
By Remark 3.17, the gauge fixed Haydys monopole Eqs. (1.7a) to (1.7c) become
κ̂c0(sδc) = 0. Since κ̂c0 is quadratic, the equation becomes

0 = κ̂c0(s δc) = κ̂c0(0) + s d κ̂c0(δc) + s2 Qc0(δc, δc), (3.7)

where Qc0 is the continuous quadratic remainder in the Taylor expansion of κ̂ around
(c0, 0), and there are no higher order terms. As noted in Remark 3.17, we have

κ̂c0(0) = (κ(m0, t v0), 0) = t2 (κ(m0, v0), 0) = O(t2 |v0|2).
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Short computation shows that in the direction (b1, φ, b2, ψ) ∈ V � Tc0C, the lin-
earization of κ at c0 = (∇0,�0, a0, �0) is

dκc0(b1, φ, b2, ψ) =
⎛

⎝
d2(b1, φ) − ([a0 ∧ b2] + [∗b2, �0] + [∗a0, ψ])
d2(b2, ψ) + ([b1 ∧ a0] − [∗b1, �0] − [∗a0, φ])

d∗
1 (b2, ψ) − (∗[b1 ∧ ∗a0] + [φ,�0])

⎞

⎠ ,

which combined with the linearization of g, yields

d κ̂c0(δc) = d κ̂c0(δm, δv) = (Dδm, Dδv) + t Lc0(δc)

for some continuous, linear remainder term Lc0 , which is algebraic (not a differ-
ential operator). Since δc = (δm, δv) ∈ Im(D∗ ⊕ D∗), we can write (δm, δv) =
(D∗u1, D∗u2) = D∗u, where D∗ = D∗ ⊕ D∗ and u = (u1, u2) ∈ H⊕2

2 . Thus we
have

d κ̂c0(δc) = (DD∗u1, DD∗u2) + t Lc0(D
∗u) = DD∗u + t Lc0(D

∗u).

Hence the gauge fixed Haydys Eq. (3.7)—now in terms of u—becomes

0 = t2 (κ(m0, v0), 0) + s DD∗u + st Lc0(D
∗u) + s2 Qc0(D

∗u,D∗u), (3.8)

By Corollary 3.14, the operator DD∗ : H2 → H0 admits a continuous Green’s
operator G. Let G = G ⊕ G, thus G ◦ DD∗ = idH⊕2

2
. Thus, applying G to Eq. (3.8)

yields

0 = G
(

t2 (κ(m0, v0), 0) + s DD∗u + st Lc0(D
∗u) + s2 Qc0(D

∗u,D∗u)
)

= t2 G(κ(m0, v0), 0) + s u + st G(Lc0(D
∗u)) + s2 G(Qc0(D

∗u,D∗u)).(3.9)

Note, that Eq. (3.9) can be rewritten as a fixed point equation on u as

u = F(u) = − t2
s G(κ(m0, v0), 0) − t G(Lc0(D

∗u))

−s G(Qc0(D
∗u,D∗u)). (3.10)

In what follows, for each operator on a Banach space, X , let ‖X‖ be its operator norm.
In order to use the Banach Fixed Point Theorem, we now prove that for t sufficiently
small and s chosen appropriately, F is a contraction from B1(0) ⊂ H⊕2

2 to itself. First,
we prove itmaps B1(0) ⊂ H⊕2

2 to itself. Indeed, usingLemma3.16 andCorollary 3.12
together with ‖v0‖H0 = 1, we obtain that for u ∈ B1(0) ⊂ H⊕2

2

‖F(u)‖H⊕2
2

≤ t2
s ‖G(κ(m0, v0), 0)‖H⊕2

2
+ t ‖G(Lc0(D

∗u))‖H⊕2
2

+ s ‖G(Qc0(D
∗u,D∗u))‖H⊕2

2

≤ Cm0 ‖G‖
(

t2
s + t ‖D∗‖ + s ‖D∗‖2

)
.
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For a fixed t > 0, and varying, but positive s, the term in the parentheses is minimized
when s(t) = t

‖D∗‖ , in which case we get

‖F(u)‖H⊕2
2

≤ threeCm0‖G‖‖D∗‖ t ≤ 6Cm0‖G‖‖D∗‖ t .

Hence, for t ≤ tmax(m0) = (6Cm0‖G‖‖D∗‖)−1, F definitely maps the ball B1(0) ⊂
H⊕2

2 to itself. Now we show that in this case F is also a contraction. Let u, v ∈ B1(0).
Then, by Lemma 3.16 and Corollary 3.12, we have for s = t

‖D∗‖

‖F(u) − F(v)‖H⊕2
2

≤ t ‖G(Lc0(D
∗(u − v)))‖H⊕2

2

+ t
‖D∗‖ ‖(G ◦ Qc0)(D

∗u,D∗u) − (G ◦ Qc0)(D
∗v,D∗v)‖H⊕2

2

≤ t Cm0 ‖G‖ ‖D∗‖ ‖u − v‖H⊕2
2

+ t
‖D‖ ‖G‖ ‖Qc0(D

∗(u + v),D∗(u − v))‖H⊕2
0

≤ t Cm0 ‖G‖
(
‖D∗‖ ‖u − v‖H⊕2

2
+ 1

‖D∗‖ ‖D∗(u + v)‖H⊕2
1

‖D∗(u − v))‖H⊕2
1

)

≤ t Cm0‖G‖
(
‖D∗‖‖u − v‖H⊕2

2
+ 1

‖D∗‖ ‖D∗‖2‖u + v‖H⊕2
1

‖u − v‖H⊕2
1

)

≤ t (3Cm0‖G‖‖D∗‖) ‖u − v‖H⊕2
2

≤ t
tmax(m0)

‖u − v‖H⊕2
2

.

Hence, if t < tmax(m0) the hypotheses of the Banach Fixed Point Theorem apply, and
so there is a unique solution to the fixed point Eq. (3.10), which in turn provides a
(unique) solution to the Haydys monopole Eqs. (1.7a) to (1.7c) of the form

(m, v) = (m0 + s δm, t v0 + s(t) δv) =
(

m0 + t D∗u1‖D∗‖ , t v0 + t D∗u2‖D∗‖
)

.

In fact, u can be approximated as

u = u(m0, t v0) = lim
n→∞ Fn(0),

where recall that the (m0, t v0)-dependence is encoded in F ; see Eq. (3.10). This
concludes the proof of Main Theorem 1. ��
Remark 3.18 In our construction the neighborhood of the monopole moduli space
we constructed is an open ball-bundle, with, a priori, varying radius tmax(m0). In
particular the normal bundle of MB ⊂ MH is canonically isomorphic to the tangent
bundle TMB .

Remark 3.19 Note furthermore that the situation is similar to that of the Higgs bundle
moduli space over a Riemann surface: every holomorphic bundle over a closed Rie-
mann surface can be viewed as a Higgs bundle with vanishing Higgs field, and thus
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defines a submanifold of the Hitchin moduli space. Moreover the tangent bundle and
normal bundles of this submanifold are isomorphic.

We see the same picture with the Riemann surface replaced by R
3, holomorphic

bundles replaced by monopoles, and Higgs bundles replaced by Haydys monopoles.

Example 3.20 Let G = SU(2) and MB be the charge 1 moduli space; see Sect. 4.1
for definitions. In this case MB = R

3 × S
1 with its flat metric. Furthermore, there

is an action of R3 by translations and of S1 by gauge transformations of the form
exp(s�), for s ∈ R. This action extends to MH and using it we find that MH is a
product Riemannian manifold of the formMH � R

3 × S
1 × F , where the fiber F is

a 4-dimensional hyperkähler manifold along its (nonempty) smooth locus, Fsmooth. In
particular, tmax is constant (and thus its infimum is positive), and the smooth locus of
MB is R3 × S

1 × Fsmooth.

4 On the geometry of the Haydysmonopole moduli space

4.1 Dimension of the Haydysmoduli space

Let us consider the G = SU(2) case first. Let (∇,�) be a finite energy SU(2) Bogo-
molny monopole. By Hypothesis 3.1, regarding ad(P∞) a real, oriented, rank-3 vector
bundle over S2∞, the asymptotic Higgs field �∞ ∈ �(ad(P∞)) is nonzero and ∇∞-
parallel. Hence �∞ determines a map from S

2∞ to the sphere in the Lie algebra
su(2) ∼= R

3 and so is a map between two 2-spheres. Hence, it has a degree which
is commonly called charge. Let us denote by Mk

H the connected component of the
moduli space of Haydys monopoles with real structure group SU(2) that contains the
Bogomolny monopoles of charge k. We now prove that dimR(Mk

H ) = 8k. Indeed,
the linearization of the gauge fixed Haydys monopole map (3.6), is the linear operator
D ⊕ D. As in the case of monopoles, from the analysis in [16, Proposition 9.2] follows
that any tangent vector v toMk

H at Haydys monopole (∇,�, a, �) must be such that

‖∇c‖2 + ‖[�, c]‖2 < ∞.

Thus, dimR(Mk
H ) = dim(kerH1(D ⊕ D)) = 2 dim(kerH1(D)), which, in fact, coin-

cides with the index of D ⊕ D : H1 → H0. Finally, for k > 0, the dimension of
kerH1(D) can be computed, as in [16, Proposition 9.1], to be 4k. Putting these together
we conclude that

dimR(Mk
H ) = 8k.

Thus, we have constructed an open subset of Mk
H .

Remark 4.1 Also for all G we construct an open subset of the connected component
of MH containing MB . This follows immediately from the fact that

dimR(MH ) = dim(kerH1(D ⊕ D)) = 2 dim(kerH1(D)) = 2 dimR(MB).
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For G = SU(N ) the latest have been computed in [15, Theorem 4.3.9] as being 4
times the sum of the magnetic weights.

4.2 Geometric structures on the Haydysmonopole moduli space

4.2.1 Linear model

Let g be a real semisimple Lie algebra and consider the quaternionic vector space
V = g ⊗R H. Writing an element of V as A = A0 + i A1 + j A2 + k A3 may be
equipped with a G-bi-invariant metric obtained by 〈A, A′〉 = ∑3

i=0〈Ai , A′
i 〉, where in

the rightmost termwe use the Killing form on g. The quaternionic structure determines
three symplectic structures ωI , ωJ , ωK with respect to which adjoint action of G is
tri-Hamiltonian. The three moment maps associated with these respectively are

νi (A) = [A0, Ai ] + [A j , Ak]

where i = 1, 2, 3 respectively and (i, j, k) is a cyclic permutation of (1, 2, 3).
This whole setup may be complexified by considering gC rather than g. Then, we

define

VC = gC ⊗R H = (g ⊗R H) ⊕ i(g ⊗R H) ∼= V ⊕ V

and use the rightmost term to extend the inner product from V to VC. Furthermore,
we use this to consider the three quaternionic structures on VC given by

I1 =
(
0 −1
1 0

)

, I2 =
(

I 0
0 −I

)

, I3 =
(
0 I
I 0

)

,

and similarly for J and K . Notice in particular that I1 = J1 = K1 but that all these
complex structures together do not form a compatible octonionic structure. Further
notice that for example I2 ◦ J2 �= K2 and I3 ◦ J3 �= K3, in fact we have

I2 ◦ J2 ◦ K2 = I3 ◦ J3 ◦ K3 = diag(1,−1).

Together with the inner product 〈·, ·〉 these complex structures give rise to three sets
of hyperkähler structures with respect to which G acts in an Hamiltonian fashion. The
associated moment maps can be written as

μI1(A, B) =
3∑

i=0

[Ai , Bi ] (4.1)

with μJ1 = μK1 being given by same formula, while

μI2(A, B) = ([A0, A1] + [A2, A3]) − ([B0, B1] + [B2, B3]) , (4.2)
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and μJ2 , μK2 similarly obtained by cyclic permutations of (1, 2, 3). Finally, we have

μI3(A, B) = ([A0, B1] + [A2, B3]) − ([A1, B0] + [A3, B2]) , (4.3)

with again μJ3 and μK3 being obtain from a cyclic permutation of (1, 2, 3).

Remark 4.2 There is one further quite natural hyperkähler structure on VC
∼= V ⊕ V

which is given by diag(I , I ), diag(J , J ) and diag(K , K ). Using these we can still
obtain the moment maps μI2 , μJ2 , μK2 as follows. Instead of considering a Rieman-
nian metric on VC we use the indefinite pairing

b((A, B), (A′, B ′)) = 〈A, A′〉 − 〈B, B ′〉.

Using it and the quaternionic structure above we define three symplectic forms with
respect to which we can define moment maps very much in the same manner. These
coincide with the moment maps μI2 , μJ2 , μK2 .

We now consider the joint moment maps

μI = (μI1 , μI2 , μI3) : VC → R
3,

together with μJ and μK . As the complex structure I1 = J1 = K1 is common to the
three triples, it is the only one which immediately restricts to

Q = μ−1
I (0) ∩ μ−1

J (0) ∩ μ−1
K (0).

Wemust now check that all the other ones equally do restrict to Q. The first observation
which is relevant for our analysis is the fact that the zero level set of moment maps
μI , μJ , μK are invariant under the map ι : VC → VC given by ι(A, B) = (A,−B) as
can be immediately seen from the Eqs. (4.1) to (4.3). From this, we find the following.

Lemma 4.3 Let

Fix(ι) = {(A, 0) ∈ VC | A ∈ V },

be the fixed locus of the involution ι. As Q ⊂ VC is invariant under the map ι we find
that Fix(ι) ∩ Q = Fix(ι|Q).

We now use this to shortcut the proof of the following statement.

Proposition 4.4 Along all of Q, the tangent spaces to Q are invariant under the com-
plex structure I1 = J1 = K1.

Along Fix(ι) ∩ Q, the tangent spaces to Q are invariant under all the On the other
hand structures Ii , Ji , Ki for i = 1, 2, 3. In other words, these complex structures
preserve T Q|Fix(ι|Q).
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Proof For the first statement we simply note that by the standard Kähler reduction
technique the tangent spaces to μ−1

I1
(0) are preserved by I1. Now, let x ∈ μ−1

I (0) ∩
μ−1

J (0)∩μ−1
K (0), we show that Tx = Tx (μ

−1
I (0)∩μ−1

J (0)∩μ−1
K (0)) is invariant by I1.

This follows immediately from the formulas dμJ2 ◦ I1 = dμJ3 and dμK2 ◦ I1 = dμK3

which can be obtained by direct inspection.
As for the second part of the statement, instead of showing that for x ∈ Fix(ι) ∩ Q

the tangent space Tx is invariant by all these complex structures, we show that
its orthogonal complement T ⊥

x is itself invariant. To do this notice that Tx =
∩I=I ,J ,K ∩3

i=1 ker(dμIi ) and so

T ⊥
x = {∇μIi ,∇μJi ,∇μKi , i = 1, 2, 3}.

However, recall that for L = I , J , K and i = 1, 2, 3 we have that for any ξ ∈ g

d〈ξ, μLi 〉(·) = ωLi (ξ∗, ·) = 〈Liξ∗, ·〉,

where ξ∗ denotes the vector field in VC obtained through via the infinitesimal action
of ξ ∈ g. Thus, from this formula and the definition of the gradient we find that
∇ (〈ξ, μLi 〉

) = Liξ∗. Thus, we find

T ⊥
x = {Iiξ∗, Jiξ∗, Kiξ∗ , for i = 1, 2, 3 , ξ ∈ g},

and must show this is invariant under the complex structures Ii , Ji , Ki . On the other
hand, from Lemma 4.3 we find that dι|Q : T Q → T Q, and as ι|Fix(ι|Q) is the identity

(dι)|Fix(ι|Q) : T Q|Fix(ι|Q) → T Q|Fix(ι|Q),

is a bundle map. Furthermore, as ι is a linear map on VC, then regarding Tx and T ⊥
x

as a subspace of VC, we can identity its derivative d(ι)|Fix(ι|Q) with ι itself.
Hence, in order to show that T ⊥

x is invariant under the complex structures Ii , Ji , Ki .
This would be immediate if these complex structures formed a closed algebra as that of
the octonions for example. That is only true modulo ι, indeed we have I2 ◦ J2 = ι◦ K2,
I3 ◦ J3 = ι ◦ K3 and similar formulas for other compositions. ��
Remark 4.5 Alternatively, we can explicitly check that for all A ∈ V

⋂

L∈{I ,J ,K }

3⋂

i=1

ker(dμLi )(A,0),

is preserved by all the complex structures.

Remark 4.6 Given that I1 = J1 = K1 we have dim(Q) = dim(g) if g is finite
dimensional.
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Notice that the fixed point locus of the involution ι is given by Fix(ι) = V ⊕0 ⊂ VC

is a complex submanifold with respect to I2, J2, K2 which restrict to Fix(ι) as I , J , K
respectively, thus inducing an hyperkähler structure there. On the other hand, Fix(ι) is
totally real with respect to all the remaining complex structures. In fact, it is complex-
Lagrangian with respect to the respectively induced complex symplectic structure.
This may be trivially checked by noticing that it is complex with respect to I2 and
Lagrangian with respect to ωI3 + iωI1 for all I = I , J , K . In summary we have the
following.

Lemma 4.7 Consider VC equipped with a the complex structure I1 = J1 = K1 and the
corresponding symplectic form ω. The fixed locus Fix(ι) is Lagrangian with respect
to ω.

On the other hand, Fix(ι) is complex with respect to any of the structures I2, J2, K2.
Furthermore, I2, J2, K2, equip Fix(ι) with an hyperkähler structure. In fact, Fix(ι) is
a complex-Lagrangian submanifold of VC with respect to the hyperkähler structures
induced by (I2, I3, I1), (J2, J3, J1), (K2, K3, K1) on VC.

Remark 4.8 In the terminology of [9], Fix(ι) is an A-brane with respect to (ω1, I1 =
J1 = K1) and an (ABA)-brane with respect to the three hyperkähler structures on VC

induced by (I1, I2, I3), (J1, J2, J3), (K1, K2, K3).
Notice that the involution ι is non (anti)-symplectic or (anti)-holomorphic, so the

construction above is not contained in any standard use of involutions to find branes.

This linear model serves as the model for a more general construction which we
use to obtain some interesting geometric structures in the moduli space of solutions
to the Haydys equation in Sect. 4.2.3. In the next section, we briefly outline the finite
dimensional curved version of that construction.

4.2.2 Curvedmodel

Let X be a smooth manifold equipped with three different hyperkähler structures,
compatible with the same metric h, as those of the previous section. This means that
they are all compatible with the same Riemannian metric h and the complex structures
(I1, I2, I3), (J1, J2, J3), (K1, K2, K3) satisfy I1 = J1 = K1, which we denote by L1
for clarity, and

I2 ◦ J2 ◦ K2 = I3 ◦ J3 ◦ K3,

with each of these sides squaring to the identity.2 Further, we suppose that there is
a Lie group action G which acts on X in a tri-Hamiltonian fashion, with respect to
all three hyperkähler structures. In order to perform a meaningful reduction we seek
to require the structure which makes Proposition 4.4 work. For that we must imitate
the existence of a map χ , taking the role of ι in the proof of Proposition 4.4, which
along its fixed loci closes the algebra of the complex structures and preserves the
moment map equation. Such a bundle map must be G-invariant, so that it descends

2 It is unclear whether this condition could be dropped in some cases of interest.
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to the quotient. Finally, notice that the fixed loci of an isometric anti-holomorphic
involution on a Kähler manifold is not only Lagrangian but a minimal submanifold.
This is summarized as follows.

Proposition 4.9 Let Q = ⋂
I=I ,J ,K

⋂
i=1,2,3 μ−1

Ii
(0), then (L1, ωL1) descends to

Q/G which is a Kähler manifold of real dimension dim(X) − 8 dim(G).
Suppose there is a smooth G-invariant L1-anti-holomorphic isometric involution

χ : X → X satisfying χ(Q) ⊂ Q. Then, χ descends to χ̂ : Q/G → Q/G and its
fixed locus F is a minimal Lagrangian submanifold of Q/G.

Furthermore, if along Fix(χ) ∩ Q, the bundle maps

{I1, I2, I3, J1, J2, J3, K1, K2, K3, (dχ)|Fix(χ)∩Q}

form a closed algebra. Then, all the hyperkähler structures on X determined by the
metric and (I1, I2, I3), or (J1, J2, J3), or (K1, K2, K3) restricts to Fix(χ) ∩ Q and
descend to F ⊂ Q/G which then is an hyperkähler manifold of real dimension
1
2 (dim(X) − 8 dim(G)) in three different ways.

4.2.3 Proof of Main Theorem 2

Proof By fixing a connection one can identify the space of connections on P with
�1(M, gP ), and do the construction from Sect. 4.2.1 with the quaternionic Lie algebra
V replaced by �1(M, gP ) ⊕ �0(M, gP ), with M = R

3. We now recall the flat
hyperkähler structure on �1(M, gP )⊕�0(M, gP ). This is obtained by first fixing the
usual L2-metric

hB((∇̇, �̇), (∇̇′, �̇′)) =
∫

M

(〈∇̇, ∇̇′〉 + 〈�̇, �̇′〉) vol,

also used to define themetric on themoduli space of Bogomolnymonopoles. Then, we
consider the complex structures Iv , parametrized by v ∈ S

2 ⊂ R
3 acting on (c, ψ) ∈

�1(M, gP )⊕�0(M, gP ) as follows. Identify (c, ψ)with c+ψdt ∈ �1(M ×Rt , gP ),
then use the identifications M × Rt ∼= v⊥ ⊕ (vR × Rt ) ∼= C

2 to define a complex
structure on M ×Rt and define Iv as its action by pullback on�1(M ×Rt , gP ). Using
e1, e2, e3 as the standard basis of R3, we write I = Ie1 , J = Ie2 , K = Ie3 .

Finally, we turn to our version of VC which is the configuration space

C = (A ⊕ �0(M, gP )) ⊕ (�1(M, gP ) ⊕ �0(M, gP )),

equipped the constant coefficient metric h given by

h((∇̇, �̇, ȧ, �̇), (∇̇′, �̇′, ȧ′, �̇ ′)) = hB((∇̇, �̇), (∇̇′, �̇′)) + hB((ȧ, �̇), (ȧ′, �̇ ′)),

with hB as above. Then, we may equip C with the three quaternionic structures
(I1, I2, I3), or (J1, J2, J3), or (K1, K2, K3) as in Sect. 4.2.1. As in there, the gauge
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groupG of automorphisms of P acts onC by conjugation and sowe obtain themoment
maps which for convenience we organize here as

(μIi , μJi , μKi ) : C → R
3 ⊗ �0(MgP) ∼= �1(MgP ),

for i = 1, 2, 3.3 A straightforward computation shows that the equation

∗F∇ − d∇� − 1
2 ∗ [a ∧ a] + [a, �] = 0,

can be identified with (μI2 , μJ2 , μK2) = 0. In the same way, we have

∗d∇a − d∇� − [a,�] = 0,

which can be identified with (μI3 , μJ3 , μK3) = 0. Finally the last equation

d∗∇a + [�,�] = 0,

corresponds to μI1 = μJ1 = μK1 = 0 which recall is only one equation as I1 = J1 =
K1.

Formally, the same argument as that we used in Proposition 4.4, shows that this
common complex structure restricts to the locus CH ⊂ C cut out by the Haydys
equations. Thus, the Kähler structure determined by (h, I1 = J1 = K1) descends to
the quotient

MH = CH /G,

which can be identified with the moduli space of solutions to the Haydys equation.
On C we have an involution ι sending c = (∇,�, a, �) to ι(c) = (∇,�,−a,−�)

which trivially preserves CH . Thus, by Lemma 4.7, Fix(ι) ⊂ C and so is a complex
Lagrangian submanifold of C with respect to the whole three hyperkähler structures
(L2, L3, L1) where L ∈ {I , J , K }, i.e. an ABA-brane with respect to any of these. In
particular, as stated in that Lemma Fix(ι) is Lagrangian with respect to I1 = J1 = K1.

The points of Fix(ι) correspond to those c of the form c = (∇,�, 0, 0). In par-
ticular, for c ∈ Fix(ι) ∩ CH we find that (∇,�) is actually a Bogomolny monopole.
Furthermore, ι is a G-invariant I1 = J1 = K1-antiholomorphic and isometric invo-
lution of C and as stated in Proposition 4.9 it descends to the Haydys moduli space
ι̂ : MH → MH . Its fixed loci is then the moduli subspace of Bogomolny monopoles

MB = Fix(ι̂) = (Fix(ι) ∩ CH )/G,

which is then a minimal Lagrangian submanifold of MH to which the hyperkähler
structures {L1, L2, L3}, for L ∈ {I , J , K } descend and agree. In other words, it is a
minimal Lagrangian A-brane which arises as a reduction of Fix(ι) which is itself an

3 Note that here we are organizing the moment maps in a nonstandard way. Indeed, for any fixed i , the
complex structures Ii , Ji , Ki do not follow the quaternionic relations.
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ABA-brane of C with respect to the hyperkähler structures {L2, L3, L1}. This is the
main result of this section which we state as follows.

Theorem 4.10 There is an infinite dimensional affine space C equipped with three
are three G-invariant hyperkähler structures such that space of Haydys monopoles
CH ⊂ C is cut out the zero set of all the corresponding moment maps.

The moduli space of Haydys monopoles MH = CH /G is a Kähler manifold which
has the moduli space of Bogomolny monopolesMB as a minimal Lagrangian subman-
ifold of MH . Furthermore, the three different hyperkähler structures on C descend to
MB equipping it with an hyperkähler structure.

This finally implies Main Theorem 2. ��
Remark 4.11 In the terminology of [9], MB is a minimal A-brane of the Kähler
manifold MH which arises from reduction of an (ABA)-brane with respect to the
three hyperkähler structures on C induced by all the different structures (I1, I2, I3),
(J1, J2, J3), (K1, K2, K3). Furthermore, these do descend toMB , which the induced
structure from (I2, J2, K2) and the metric h equips with an hyperkähler structure.

Remark 4.12 As in the case of the Bogomolny monopole moduli spaceMB , the trans-
lations of R3 and the gauge transformations of the form exp(s�) for s ∈ R give rise
to flat directions in the moduli spaceMH . Thus, as in the case of monopoles we may
quotient out by these and consider centered configurations.
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