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Abstract
We define a category of perverse coherent sheaves as the abelian category correspond-
ing to the category of modules under Bondal–Rickard equivalence which arises from
a tilting bundle for a projective morphism. The purpose of this paper is to determine
versal non-commutative deformations of simple collections in the categories of per-
verse coherent sheaves in some cases. In general we prove that the non-commutative
structure algebra is recovered as the parameter algebra of the versal non-commutative
deformation of the simple collection consisting of all simple objects over a closed
point of the base space. In the case where the fiber dimensions are at most 1 and the
structure sheaf is relatively acyclic, we determine the versal deformations of some par-
tial simple collections consisting of vanishing simple objects. In particular it is proved
that the parameter algebra of the versal non-commutative deformation is isomorphic
to its opposite algebra in this case.
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1 Introduction

Let k be an algebraically closed field of characteristic 0, and let f :Y → X be a
projective morphism of Noetherian k-schemes such that X = Spec(R) is an affine
scheme. A locally free coherent sheaf P on Y is called a tilting generator if the
following conditions are satisfied: (1) all higher direct images of End(P) for f van-
ishes, (2) P generates the derived category of quasi-coherent sheaves D(Qcoh(Y ))

(see Definition 2.1). Then the derived Morita equivalence theorem of Bondal [5]
and Rickard [26] tells us that there is an equivalence of triangulated categories
Db(coh(Y )) ∼= Db(mod-A), where A = f∗End(P) is a coherent sheaf of associative
OX -algebras. Let Perv(Y/X) be the abelian subcategory of Db(coh(Y )) correspond-
ing to the category of coherent right A-modules (mod-A).

We would like to call Perv(Y/X) the category of perverse coherent sheaves. By
definition, the category of coherent sheaves coh(Y ) is more geometric and Perv(Y/X)

more algebraic. For example, for a k-valued point x0 ∈ X , the set of simple objects
in coh(Y ) above a simple object Ox0 in coh(X) is identified as the set-theoretic fiber
f −1(x0) and is an infinite set in general. On the other hand, such a set in Perv(Y/X)

is finite since A is coherent.
The original perverse sheaves [3] are complexes in a derived category of con-

structible sheaves which correspond to sheaves of regular holonomic D-modules by
the Riemann–Hilbert correspondence [20,25]. It was defined by generalizing the inter-
section homology theory of Goresky and MacPherson [14] which was discovered in
the pursuit of homology theory for singular spaces which behaves better under the
Poincare duality. Our definition is similar in that the perverse coherent sheaves are
complexes of coherent sheaves which correspond to sheaves over associative algebras
by theBondal–Rickard equivalence. The perverse coherent sheaves possessmore alge-
braic nature due to the construction, and we can expect that they behave better under
certain problems.

In this paper, we consider the multi-pointed non-commutative deformations of sets
of simple objects [24] in Perv(Y/X), and determine the versal deformations in some
cases.

We first determine the versal deformation of the simple collection consisting of all
simple objects over a closed point of the base space in general and prove that we can
recover the associative structure algebra:
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Theorem 1.1 (=Theorem6.1)Let {s j }mj=1 be the set of all simple objects inPerv(Y/X)

above a closed point x0 ∈ X. Let P̂ be the completion of the direct sum of all inde-
composable projective objects {Pi }mi=1 in the category of perverse coherent sheaves

Perv(Ŷ/X̂) on the completion Ŷ = Y×X X̂ above x0. Then P̂ is the versal deformation
of the simple collection

⊕m
j=1 s j with the parameter algebra Â = f∗End(P̂).

Next we determine the versal deformation of a partial collection consisting of
vanishing simple objects in the case of perverse coherent sheaves of Bridgeland [7]
and Van den Bergh [28], and prove that we can recover the contraction algebra of
Donovan and Wemyss [10]:

Theorem 1.2 (= Theorem 6.2) Assume that the dimension of the fibers of f are at
most 1, and that R f∗OY = OX . Let C be the scheme theoretic closed fiber of f above
x0, and let Ci (i = 1, . . . , r) be the irreducible components of C.

(A) Let {Pi }ri=0 and {s j }rj=0 be the sets of indecomposable projective objects and simple

objects in −1Perv(Ŷ/X̂) defined in Sect. 3 (A). Let P̂ = ⊕r
i=0 Pi , and let Q be

the kernel of the natural homomorphism p: f ∗ f∗ P̂ → P̂. Let I be the two-sided
ideal of Â = f∗End(P̂) generated by endomorphisms of P̂ which can be factored
in the form P̂ → P0 → P̂. Then Q[1] ∈ −1Perv(Ŷ/X̂) is the versal deformation
of the simple collection

⊕r
j=1 s j with the parameter algebra End(Q[1]) ∼= Â/I .

(B) Let {P ′
i }ri=0 and {s′

j }rj=0 be the sets of indecomposable projective objects and

simple objects in 0Perv(Ŷ/X̂) defined in Sect. 3 (B). Let P̂ ′ = ⊕r
i=0 P

′
i , and let

Q′ be the cokernel of the natural homomorphism p′: f ∗ f∗ P̂ ′ → P̂ ′. Let I ′ be
the two-sided ideal of Â′ = f∗End(P̂ ′) generated by endomorphisms of P̂ ′ which
can be factored in the form P̂ ′ → P ′

0 → P̂ ′. Then Q′ ∈ 0Perv(Ŷ/X̂) is the
versal deformation of the simple collection

⊕r
j=1 s

′
j with the parameter algebra

End(Q′) ∼= Â′/I ′.

As a corollary we prove that Â/I is isomorphic to its opposite ring:

Corollary 1.3 (=Corollary 6.3) A/I ∼= (A/I )o, the opposite ring.

The reason for this is that we have s j = s′
j [1] for j �= 0, hence Q ∼= Q′. But we

note that P̂ �= P̂ ′ and −1Perv(Ŷ/X̂) �= 0Perv(Ŷ/X̂). We also note that Y need not to
be Gorenstein and f need not to be crepant.

The contraction algebra Â/I ∼= Â′/I ′ is an important invariant of f . For example,
Donovan and Wemyss conjectured that, in the case of a flopping contraction of a
smooth threefold Y , the contraction algebra determines the singularity of X (see [15,
17,18] for the development).

We also have an alternative proof of the following result of Donovan and Wemyss
[10,11,13], see also Bodzenta and Bondal [4]:

Corollary 1.4 (= Corollary 6.5) Assume in addition that f is a birational morphism.
Then f is an isomorphism outside the fiber over x0 in a neighborhood of the fiber if and
only if the parameter algebra Â/I of the versal deformation of the simple collection⊕r

j=1 s j is finite dimensional as a k-vector space.
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We assume that all schemes and morphisms in this paper are defined over a fixed
algebraically closed base field k of characteristic 0.

The author would like to thank Kohei Yahiro for letting him know the argument in
Lemma 2.6. He would also like to thank the referee for correcting the statements of
Example 4.4.

This work is partly supported by Grant-in-Aid for Scientific Research (A)
16H02141.

2 Perverse coherent sheaves

Definition 2.1 Let f :Y → X be a projective morphism between noetherian schemes
such that X = Spec(R) is an affine scheme. A locally free coherent sheaf P on Y is
said to be a tilting generator for f if the following conditions are satisfied:

(1) Rp f∗End(P) = 0 for p > 0.
(2) For a ∈ D(Qcoh(Y )), if Hom(P, a[p]) ∼= 0 for all p, then a ∼= 0.

Theorem 2.2 (Bondal [5] and Rickard [26]) Let f : Y → X = Spec(R) be a projective
morphism between noetherian schemes, let P be a tilting generator for f , and let
A = f∗End(P) be the endomorphism algebra. Then A is an associative OX -algebra
which is coherent as an OX -module, and there is an equivalence of triangulated
categories

�: Db(coh(Y )) → Db(mod-A)

given by an exact functor �(•) = RHom(P, •). The quasi-inverse functor
�: Db(mod-A) → Db(coh(Y )) is given by �(•) = • ⊗L

A P.

The theorem connects (algebraic) geometry and (non-commutative) algebra.
We mainly consider the case where X is a spectrum of a noetherian complete local

ring. This is justified by the following proposition:

Proposition 2.3 Let f : Y → X = Spec(R) be a projective morphism between noethe-
rian schemes, let x ∈ X be a closed point, let X̂ be the completion of X at x, let
Ŷ = Y ×X X̂ be the fiber product, and let f̂ : Ŷ → X̂ be the induced morphism.

(1) Let P be a tilting generator for f , and let A = f∗End(P) be the endomorphism
algebra. Let P̂ be the locally free sheaf on Ŷ induced from P, and let Â =
f̂∗End(P̂) be the endomorphism algebra. Then P̂ is a tilting generator for f̂ , and
Â = OX̂ ⊗OX A.

(2) Let
⊕r

j=1 s j be a simple collection on Y whose support is contained in a fiber

f −1(x). Then its non-commutative deformations on Y are the same as those on Ŷ
(please see Sect. 5 for the definitions of non-commutative deformations).

We define the abelian category of perverse coherent sheaves:

Definition 2.4 Let f : Y → X = Spec(R) be a projective morphism between noethe-
rian schemes, and let P be a tilting generator for f . The category of perverse coherent
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sheaves Perv(Y/X) for f is the abelian category corresponding to the category of
finitely generated right A-modules (mod-A) by �. In other words,

Perv(Y/X) =
{
a ∈ Db(coh(Y )) | Hom(P, a[p]) ∼= 0 for p �= 0

}
.

Thus the standard t-structure on Db(mod-A) is transferred to a t-structure on
Db(coh(Y )) whose heart is the category of perverse coherent sheaves.

We would like to call an object in Perv(Y/X) a perverse coherent sheaf. It is
not a sheaf nor perverse. This is a generalization of such a category defined in the
seminal paper by Bridgeland [7] and extended by Van den Bergh [28]. We note that
the category Perv(Y/X) depends on the choice of the tilting generator P . Indeed we
obtain pPerv(Y/X) with different perversities p ∈ Z in their papers for different
choices of P . For example, if L is an invertible sheaf on Y , then the auto-equivalence
of Db(coh(Y )) defined by • 	→ • ⊗ L sends the tilting generator P and the category
of perverse coherent sheaves Perv(Y/X) to different ones.

By definition, we have the following:

Proposition 2.5 Let f : Y → X = Spec(R) be a projective morphism between
noetherian schemes, let P be a tilting generator for f , and let Perv(Y/X) be the
corresponding category of perverse coherent sheaves. Then P ∈ Perv(Y/X), and P
become its projective generator, i.e., P is a projective object in this abelian category
and Hom(P, a) ∼= 0 for a ∈ Perv(Y/X) implies that a ∼= 0.

The category of perverse coherent sheaves Perv(Y/X) has a different nature from
the category of coherent sheaves coh(Y ) in the sense that there are only finitely many
points, or simple objects, above a point of a base space X .

The author learned the following lemma, which is well-known to experts, from Dr.
Kohei Yahiro:

Lemma 2.6 Let X = Spec R be the spectrum of a noetherian complete local ring
R whose residue field is isomorphic to the base field, and let A be an associative
R-algebra which is finitely generated as an R-module. Then the numbers of mutually
non-isomorphic simple objects and mutually non-isomorphic indecomposable projec-
tive objects are finite in the abelian category (mod-A). Moreover their numbers, say
m, are equal. Let s1, . . . , sm (resp. P1, . . . , Pm) be such simple objects (resp. indecom-
posable projective objects). Then dimHom(Pi , s j ) = δi j after possible permutations
of indexes.

Proof Let J be the Jacobson radical of A, i.e., the intersection of all maximal right
ideals. Since J is a fully invariant right submodule of A, it is invariant under auto-
morphisms by left multiplications, hence a two-sided ideal. Then Ā = A/J becomes
an associative Artin algebra. Ā is semi-simple, and is isomorphic as an Ā-module to
a direct sum of finitely many simple modules. It follows that simple Ā-modules and
indecomposable projective Ā-modules are the same, hence the assertion of the lemma
for Ā.

A simple A-module is the same as a simple Ā-module with the natural A-module
structure. On the other hand, since A is J -adically complete, the map from the set
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of finitely generated projective A-modules to the set of finitely generated projective
Ā-modules given by P 	→ P ⊗A Ā is bijective [1, III-2.12]. Therefore the lemma is
proved. 
�

If X = Spec(R) is the spectrum of a complete local ring, then the original tilting
generator P is a direct sum of the indecomposable projective objects Pi . The reduced
sum P̄ = ⊕m

i=1 Pi is also a tilting generator which gives the same category of perverse
coherent sheaves. We call P̄ the reduced tilting generator.

3 The case of Bridgeland and Van den Bergh

We recall the definition of perverse coherent sheaves by Bridgeland [7] and Van den
Bergh [28].

Let f : Y → X be a projective morphism between noetherian k-schemes. Assume
the following conditions:

(1) X = Spec(R) for a complete local ring R whose residue field is isomorphic to k.
(2) The dimension of the closed fiber of f is equal to 1.
(3) R f∗OY = OX .

Let C be the scheme theoretic closed fiber of f , and let Ci (i = 1, . . . , r ) be the
irreducible components of C . By the assumption that R1 f∗OY = 0, we have Ci ∼= P1

for all i . Let

C̄ = {c ∈ Db(coh(Y )) | R f∗c = 0}

and C = C̄ ∩ coh(Y ). By the spectral sequence

E p,q
2 = Rp f∗Hq(c) ⇒ Rp+q f∗c

we deduce that, for c ∈ Db(coh(Y )), we have c ∈ C̄ if and only if H p(c) ∈ C for all
p.

Remark 3.1 (1) C is an abelian category. Let h: c0 → c1 be a morphism in C, i.e, a
homomorphism of coherent sheaves such that Ri f∗c j = 0 for i, j = 0, 1. Let
c′
0 = Ker(h) and c′

1 = Coker(h) in the category of coherent sheaves. Then we
claim that c′

j ∈ C for j = 0, 1.

Indeed c′
0 ⊂ c0 implies f∗c′

0 = 0. Since f∗Im(h) = 0 and R1 f∗c0 = 0, we have
R1 f∗c′

0 = 0. c′
1 is treated similarly.

(2) But C̄ � Db(C). For example, assume that f : Y → X is a contraction of a smooth
rational curve C in a smooth threefold whose normal bundle is isomorphic to
OP1(−1)⊕OP1(−1). ThenC is rigid, andC is equivalent to the category of k-vector
spaces generated by OC (−1). On the other hand, Hom3(OC (−1),OC (−1)) ∼= k
in Db(Coh(Y )).

We define the following categories of perverse coherent sheaves.
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(A) Let P0 = OY , and let Li for i = 1, . . . , r be line bundles on Y such that (Li ,C j ) =
δi j . We define locally free sheaves P̃i on Y by exact sequences:

0 → O⊕ri
Y → P̃i → Li → 0 (3.1)

such that the induced homomorphisms

Hom(O⊕ri
Y ,OY ) → Ext1(Li ,OY )

are surjective. Then P̃ = ⊕r
i=0 P̃i is a tilting generator, and the corresponding

category of perverse coherent sheaves is denoted by −1Perv(Y/X).

The number −1 is the perversity; we have C[1] ⊂ −1Perv(Y/X). More precisely,
we have

−1Perv(Y/X)

= {E ∈ Db(coh(Y )) | f∗H−1(E) = 0, R1 f∗H0(E) = 0,Hom(H0(E), C) = 0

H p(E) = 0 for p �= 0,−1}.
(3.2)

Let P̃i ∼= Pi ⊕ Pr̄i
0 be a decomposition into indecomposable sheaves. Let s0 = OC

and s j = OC j (−1)[1] for j > 0. Then {Pi }ri=0 and {s j }rj=0 are the sets of inde-

composable projective objects and simple objects in −1Perv(Y/X) [28, Propositions
3.5.7].

(B) Let P ′
0 = OY , and define locally free sheaves P̃ ′

i by exact sequences

0 → P̃ ′
i → O⊕r ′

i
Y → Li → 0 (3.3)

such that the induced homomorphisms

Hom(OY ,O⊕r ′
i

Y ) → Hom(OY , Li )

are surjective. Then P̃ ′ = ⊕r
i=0 P̃

′
i is a tilting generator, and the corresponding

category of perverse coherent sheaves is denoted by 0Perv(Y/X).

The number 0 is the perversity; we have C ⊂ 0Perv(Y/X). More precisely, we have

0Perv(Y/X)

= {E ∈ Db(coh(Y )) | f∗H−1(E) = 0,Hom(C, H−1(E)) = 0, R1 f∗H0(E) = 0

H p(E) = 0 for p �= 0,−1}.
(3.4)

Let P̃ ′
i

∼= P ′
i ⊕ (P ′

0)
r̄ ′
i be a decomposition into indecomposable sheaves. Let s′

0 =
ωC [1], the shift of the dualizing sheaf of C , and s′

j = OC j (−1) for j > 0. Then
{P ′

i }ri=0 and {s′
j }rj=0 are the sets of indecomposable projective objects and simple

objects in 0Perv(Y/X) [28, Propositions 3.5.8].
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We have P ′
i

∼= P∗
i = Hom(Pi ,OY ). Hence A′ ∼= Ao, the opposite algebra where

the addition is the same but the multiplication is reversed.

4 Other examples

We consider divisorial contractions in this section.

4.1 Contraction of a projective space

Let f : Y → X = Spec(R) be a projective birational morphism from a smooth variety
to a variety with an isolated singularity whose exceptional locus is a prime divisor
E ∼= Pn−1 with normal bundle NE/Y ∼= OE (−d) for some d > 0. X has a terminal
singularity if d < n, and f is crepant if d = n. The line bundlesOE (i) can be extended
to line bundles Pi = OY (i) for integers i .

Proposition 4.1 P = ⊕n−1
i=0 Pi is a tilting generator of Db(coh(Y )).

Proof For any small positive number ε, the pair (Y , (1 − ε)E) is log terminal. By
[21, Theorem 1.2.5], we have Rp f∗OY (i) = 0 for p > 0 and i > −n, because
OE (KY + E) ∼= OE (−n). Therefore Rp f∗(P∗

i ⊗ Pj ) = 0 for p > 0 and 0 ≤ i, j ≤
n − 1.

By [6, Lemma 4.2.4] or [28, Lemma 3.2.2], Db(coh(Y )) is generated by theOY (i)
for 0 ≤ i ≤ n − 1. 
�

We denote by Perv(Y/X) the corresponding category of perverse coherent sheaves.

Proposition 4.2 s j = �
j
E ( j)[ j] for 0 ≤ j ≤ n−1 are the simple objects of Perv(Y/X)

above the singular point of X such that Hom(Pi , s j ) ∼= kδi j .

Proof By [2], there is a resolution of the diagonal �E ⊂ E × E :

0 → OE (−n + 1) � �n−1
E (n − 1) → · · ·

· · · → OE (−1) � �1
E (1) → OE � OE → O�E → 0.

We define an integral functor �: Db(coh(E)) → Db(coh(E)) by

�(•) = p1∗(p∗
2 • ⊗O�E ).

Since �(OE (−i)) ∼= OE (−i), we deduce that OE (−i) is quasi-isomorphic to a
complex

OE (−n + 1) ⊗ R	(E,�n−1
E (n − 1 − i)) → · · ·

· · · → OE (−1) ⊗ R	(E,�1
E (1 − i)) → OE ⊗ R	(E,OE (−i))
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where the last term is put at degree 0. Therefore, for 0 ≤ i, j ≤ n − 1, we have

R	(E,�
j
E ( j − i)) ∼=

{
0 if i �= j

k[− j] if i = j .

Thus the proposition is proved. 
�
We can obtain a similar result for the Grassmannian variety G(r , n) if we use [19]

instead of [2].
X has only one quotient singularity. Let X̃ be the associated Deligne–Mumford

stack. Then there is a fully faithful functor Db(coh(Y )) → Db(coh(X̃)) if and only
if KY ≤ f ∗KX [22,23]. This inequality is equivalent to saying that X is not terminal,
or d ≥ n.

An associative algebra A is said to be homologically homogeneous if the homolog-
ical dimension of all simple objects are equal. If A is homologically homogeneous,
then A has finite global dimension and is Cohen–Macaulay [8]. Van den Bergh [28]
defined that X = Spec(R) has a non-commutative crepant resolution if there is a
reflexive R-module M such that A = End(M) is homologically homogeneous.

These facts correspond to the following:

Proposition 4.3 A = f∗End(P) is Cohen–Macaulay if and only if d ≥ n.

Proof A is Cohen–Macaulay if and only if A satisfies the condition Extp(A, ωX ) = 0
for p > 0, where ωX is the canonical sheaf of X . Since Rp f∗End(P) = 0 for p > 0,
we have R f∗End(P) ∼= A. By the Grothendieck duality theorem, our condition is
equivalent to that Rp f∗End(P)(KY ) = 0 for p > 0, where we have OY (KY ) ∼=
OY (d − n). Since End(P) is a direct sum of the OY (m) for −n + 1 ≤ m ≤ n − 1, it
follows that End(P)(KY ) is a direct sum of theOY (m) for d − 2n + 1 ≤ m ≤ d − 1.
We have Rp f∗OY (m) = 0 for p > 0 andm ≥ −n+1 by the proof of Proposition 4.1.
On the other hand, since Hn−1(E,OE (−n)) ∼= k, we have Rn−1 f∗OY (−n) �= 0.
Hence we obtain our assertion. 
�
Example 4.4 Assume that n = 2. By the above lemma, A is Cohen–Macaulay if and
only if d ≥ 2. The homological dimension is calculated in [30, Theorem 3.2 and
Corollary 3.4]:

(1) h.d.(s0) = 1 if d = 1 and = 2 if d ≥ 2.
(2) h.d.(s1) = 2 if d = 2 and = 3 if d ≥ 3.

For example, we have Hom3(OE (−1)[1],OE ) = Hom2(OE (−1),OE ) ∼=
Hom(OE ,OE (−1 + (KY , E)))∗ �= 0 if (KY , E) > 0.

4.2 Contraction of a singular quadric surface

Let X be a singularity of dimension 3 defined by an equation

xy + z2 + w3 = 0
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in the completion of C4 at the origin, and let f : Y → X be the blowing up of the
origin. Y is smooth, and the exceptional divisor E of f is a singular quadric surface
with a singular point Q.

Let OE (m) for m ∈ Z be a reflexive sheaf of rank 1 on E corresponding to a Weil
divisor mC1, where C1 is a line on the cone E . mC1 is a Cartier divisor if and only if
m is even. Let �̂1

E be the double dual of the sheaf of Kähler differentials on E . It is a
reflexive sheaf of rank 2 on E with a short exact sequence

0 → �̂1
E → OE (−1)⊕2 ⊕ OE (−2) → OE → 0

because E ∼= P(1, 1, 2). It follows that, for the double dual of the sheaf of differential
2-forms, we have �̂2

E
∼= OE (−4).

Let L be a line bundle of Y such that L|E = OE (2), let S ∈ |L| be a generic
member, and let C2 = S ∩ E ∈ |OE (2)|. We take a generic curve C0 on S such that
C0 ∩ C2 = C1 ∩ C2 scheme theoretically.

It is known that there is a non-trivial extension

0 → OE (1) → Q1 → OE (1) → 0

on E such that Q1 is a locally free sheaf of rank 2 [24]; Q1 is defined by the following
commutative diagram of exact sequences

0 0 0
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 −−−−→ OE (−1) −−−−→ Q1(−L) −−−−→ OE (−1) −−−−→ 0
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 −−−−→ OE (−1) −−−−→ O⊕2
E −−−−→ OE (1) −−−−→ 0
⏐
⏐
�

⏐
⏐
�

OC2(1)
=−−−−→ OC2(1)

⏐
⏐
�

⏐
⏐
�

0 0

Similarly there is a locally free sheaf P1 of rank 2 on Y such that P1|E ∼= Q1 defined
by the following exact sequence

0 → P1(−S) → O⊕2
Y → OS(C0) → 0

where the right hand side arrow is obtained as a composition of surjective homomor-
phisms O⊕2

Y → O⊕2
S → OS(C0).

We denote by P0 = OY and P2 = L . Let s j = �̂
j
E ( j)[ j] for j = 0, 1, 2, where

�̂1
E (1) denotes the double dual of �̂1

E ⊗OE (1). Thus s0 = OE and s2 = OE (−2)[2].
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Proposition 4.5 (1) The sum P = ⊕2
i=0 Pi is a tilting generator of Db(coh(Y )).

(2) {s0, s1, s2} is the set of simple objects in the category of perverse sheaves
Perv(Y/X) for f :Y → X defined by P such that dimHom(Pi , s j ) = δi j .

Proof (1) We have Rp f∗Hom(Pi , Pj ) = 0 for p > 0 and for all i, j except i =
j = 1, because H p(E,OE (i)) = 0 for p > 0 and i ≥ −3 by the vanishing
theorem [21] Theorem 1.2.5) and OE (−E) ∼= OE (2).
We prove that Rp f∗Hom(P1, P1) = 0 for p > 0. There is an exact sequence

0 → OE → Hom(Q1,OE (1)) → OE → Ext1(OE (1),OE (1)) → 0 (4.1)

where we have Ext1(OE (1),OE (1)) ∼= OQ for the singular point Q of E . Since
H p(E,Ker(OE → OQ)) = 0 for all p, we deduce that H p(E,Hom(Q1,OE (1))) =
0 for p > 0. Therefore H p(E,Hom(Q1, Q1)) = 0 for p > 0. We can also check
that, for p > 0 and m > 0, we have H p(E,Ker(OE (2m) → OQ(2m))) = 0,
H p(E,Hom(Q1,OE (1))(2m)) = 0, and H p(E,Hom(Q1, Q1)(2m)) = 0. There-
fore we have Rp f∗Hom(P1, P1) = 0 for p > 0.

We prove that P0, P1, P2 generate Db(coh(Y )). First, OY (i L) for i = 0, 1, 2 gen-
erate Db(coh(Y )) by [6, Lemma 4.2.4] or [28, Lemma 3.2.2]. By the exact sequence

0 → OY (L) → OY (2L) → OS(4C0) → 0

we deduce that OY ,OY (L),OS(4C0) generate Db(coh(Y )). Then by

0 → OY → OY (L) → OS(2C0) → 0

0 → OS(2C0) → OS(3C0)
⊕2 → OS(4C0) → 0

we deduce that OY ,OY (L),OS(3C0) generate Db(coh(Y )). Finally, by

0 → P1 → OY (L)⊕2 → OS(3C0) → 0

we conclude that P0, P1, P2 generate Db(coh(Y )).

(2) We prove that RHom(Pi , s j ) ∼= kδi j . Then it follows that s j ∈ Perv(Y/X) and
dimHom(Pi , s j ) = δi j . For j = 0, we have

RHom(P0, s0) ∼= R	(E,OE ) ∼= k

RHom(P2, s0) ∼= R	(E,OE (−2)) ∼= 0.

Since R	(E,OE (−1)) ∼= 0, we also have RHom(P1, s0) ∼= R	(E, Q∗
1)

∼= 0.
For j = 2, we have

RHom(P0, s2) ∼= R	(E,OE (−2)[2]) ∼= 0

RHom(P2, s2) ∼= R	(E,OE (−4)[2]) ∼= k.

Since R	(E,OE (−3)) ∼= 0, we also have RHom(P1, s2) ∼= 0.
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For j = 1, we have a distinguished triangle

s1[−1] → O⊕2
E ⊕ OE (−1) → OE (1) → s1.

Since Hom(P0,O⊕2
E ) ∼= 	(E,O⊕2

E ) → Hom(P0,OE (1)) ∼= 	(E,OE (1)) is an
isomorphism, we have RHom(P0, s1) ∼= 0.We also have RHom(P2, s1) ∼= 0, because
R	(E,OE (−i)) ∼= 0 for i = 1, 2, 3.

We have RHom(P1,OE ) ∼= RHom(P1,OE (−1)) ∼= 0. Hence we have isomor-
phisms

RHomE (Q1,OE (1)) ∼= RHom(P1,OE (1)) ∼= RHom(P1, s1).

Q1 is a versal non-commutative deformation of OE (1) on E [24]). Therefore we
have HomE (Q1,OE (1)) ∼= k and Hom1

E (Q1,OE (1)) ∼= 0. By duality, we have
Hom2

E (Q1,OE (1)) ∼= HomE (OE (5), Q1)
∗ ∼= 0. Our claim is proved. 
�

LetD be the left orthogonal complement of an exceptional object s2 = OE (−2)[2]
in Db(coh(Y )):

D = {a ∈ Db(coh(Y )) | Hom(a, s2[p]) = 0 ∀p}.

We can extend the concept of the tilting generators for triangulated categories such as
D, and consider the categories of perverse coherent sheaves.

Proposition 4.6 PD = P0 ⊕ P1 is a tilting generator of the triangulated category D.

Proof We prove that P0, P1 ∈ D, and that PD generate D. We already know that
Hom(PD, PD[p]) = 0 for p �= 0.

By the vanishing theorem, we have R	(E,OE (i)) = 0 for i ≥ −3. Thus
RHom(P0,OE (−2)) ∼= R	(E,OE (−2)) ∼= 0. By the duality, we have

RHom(P1,OE (−2)) ∼= RHomE (Q1,OE (−2)) ∼= RHomE (OE (2), Q1[2])∗ ∼= 0.

Hence P0, P1 ∈ D.
There is an exact sequence

0 → P2 → P0 → OE → 0.

Hence P0, P1,OE generate Db(coh(Y )). Since we have ωY = OY (−L), we have
Hom(OE , a) ∼= Hom(a,OE (−2)[3])∗ for any a ∈ Db(coh(Y )) by the Serre duality.
Thus a ∈ D if and only if RHom(OE , a) = 0. Therefore P0, P1 generate D. 
�

Let

Perv(D) = {a ∈ D | Hom(PD, a[p]) = 0 for p �= 0}

be the heart of a t-structure ofD defined by the tilting generator PD.Wewill determine
the set of all simple objects in Perv(D).
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We have

Hom(s0, s2[1]) = Hom(OE ,OE (−2)[3]) ∼= Hom(OE ,OE )∗ ∼= k

by the Serre duality. Let
0 → s2 → s′

0 → s0 → 0 (4.2)

be the corresponding extension in Perv(Y/X), the category of perverse coherent
sheaves defined by the tilting generator P in Db(coh(Y )). Let s′

1 = s1.

Proposition 4.7 {s′
0, s

′
1} is the set of all simple objects in Perv(D) such that

Hom(Pi , s′
j )

∼= kδi j for i, j = 0, 1.

Proof We first prove that s′
j ∈ Perv(D) for j = 0, 1. We have

Hom(s2, s2[p]) ∼= Hom(OE ,OE [p]) ∼=
{
k for p = 0

0 for p �= 0.

Hom(s0, s2[p]) ∼= Hom(OE ,OE [1 − p])∗ ∼=
{
k for p = 1

0 for p �= 1.

The extension sequence (4.2) yields a long exact sequence

0 → Hom(s′
0, s2) → Hom(s2, s2) → Hom(s0, s2[1]) → Hom(s′

0, s2)[1] → 0

where the middle homomorphism is injective, hence bijective, by definition of the
long exact sequence associated to an extension. Therefore Hom(s′

0, s2[p]) ∼= 0 for all
p, hence s′

0 ∈ Perv(D). We have

Hom(OE (−1), s2[p]) ∼= Hom(s2,OE (−1)[3 − p])∗ ∼= 0

Hom(OE , s2[p]) ∼=
{
k for p = 1

0 for p �= 1.

Hom(OE (1), s2[p]) ∼= Hom(OE ,OE (1)[1 − p])∗ ∼=
{
k2 for p = 1

0 for p �= 1.

Moreover Hom(OE (1), s2[1]) → Hom(O⊕2
E , s2[1]) is an isomorphism. Hence we

have RHom(s1, s2) ∼= 0, and s1 ∈ Perv(D).
We prove that Hom(Pi , s′

j )
∼= kδi j for i, j = 0, 1. Then it follows that the s′

j
are simple. By Proposition 4.5, we have RHom(P0, s2) ∼= 0. Hence RHom(P0, s′

0)
∼=

RHom(P0, s0) ∼= k. Since RHom(P1, s j ) ∼= 0 for j = 0, 2, we have RHom(P1, s′
0)

∼=
0. We also have RHom(P0, s1) ∼= 0 and RHom(P1, s1) ∼= k. 
�
Proposition 4.8 (1) f∗P is not reflexive, but f∗PD is reflexive.
(2) f∗End(P) and f∗End(PD) are not Cohen–Macaulay.
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Proof (1) We have f∗P2 � f∗P2(E) ∼= f∗P0 ∼= OX . Thus f∗P2 is an ideal sheaf
whose quotient is supported at the singular point of X , hence is not reflexive. On
the other hand, f∗P1 ∼= f∗P1(E), hence f∗P1 is reflexive.

(2) We have R2 f∗End(P)(KY ) �= 0, becauseHom(P2, P0)⊗OY (KY ) ∼= OY (−2L).
Hence f∗End(P) is not Cohen–Macaulay.
The second statement is more subtle. We consider the exact sequence (4.1) ten-

sored with OY (−L). Since R	(E,OE (−2)) ∼= 0, we have H1(E,Ker(OE (−2) →
OQ(−2))) �= 0 and H2(E,Ker(OE (−2) → OQ(−2))) = 0. Then we deduce that
H1(E,Hom(Q1,OE (−1))) �= 0 and H2(E,Hom(Q1,OE (−1))) = 0. Hence

H1(E,Hom(Q1, Q1(−2))) �= 0, H2(E,Hom(Q1, Q1(−2))) = 0

while H p(E,Hom(Q1, Q1(2m))) ∼= 0 for p > 0 and m ≥ 0. Therefore we have

R1 f∗Hom(P1, P1)(KY ) �= 0

hence f∗End(PD) is not Cohen–Macaulay. 
�
Therefore f∗End(PD) is not homologically homogeneous as already proved in [28,

Example A.1]. Indeed there is no non-commutative crepant resolution in this case [29,
Lemma 4.2].

5 Non-commutative deformations

We recall the theory of multi-pointed non-commutative deformations of simple col-
lections developed in [24].

Definition 5.1 The base ring is a direct product kr of the base field k for a positive
integer r . We deform a set of objects {Fi }ri=1 in a k-linear abelian category. It is said to
be a simple collection if End(F) ∼= kr with F = ⊕r

i=1 Fi , i.e., Hom(Fi , Fj ) ∼= kδi j .

The simple collections are defined in [24] as generalizations of simple sheaves.
If r = 1 and F is a sheaf, then a simple collection is nothing but a simple sheaf.
Simple sheaves behave well under deformations. For example, a stable sheaf is a
simple sheaf. A set of simple objects in a k-linear abelian category is automatically a
simple collection.

Example 5.2 [7] Let f : Y → X = Spec(R) be a projective birational morphism from
a smooth threefold whose exceptional locus C is a smooth rational curve with normal
bundle NC/Y ∼= OC (−1)⊕2. {OC ,OC (−1)[1]} is the set of simple objects above the
singular point x ∈ X in the category of perverse coherent sheaves −1Perv(Y/X). For
a point y ∈ Y above x , there is an exact sequence

0 → OC → Oy → OC (−1)[1] → 0

in −1Perv(Y/X). Oy becomes a stable object under a suitable Bridgeland stability
condition determined by the values of the central charge on the set {OC ,OC (−1)[1]},
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and Y is the corresponding moduli space. If we take a different Bridgeland stability
condition, then we obtain the flop of Y . We refer to [27] for related topics.

Definition 5.3 The category of r -pointed Artin algebras (Artr ) consists of kr -algebras
R with augmentations:

kr
e−−−−→ R

p−−−−→ kr

with p ◦ e = Id, which are finite dimensional as k-vector spaces and such that the
ideals M = Ker(p: R → kr ) are nilpotent.

A (multi-pointed) non-commutative (NC) deformation of a simple collection F =⊕r
i=1 Fi over a parameter algebra R ∈ (Artr ) is a pair (FR, φ) consisting of an object

FR with a left R-module structure and an isomorphism φ: kr ⊗R FR → F such that
FR is flat over R.

Let (Ârtr ) be the category of pro-objects R̂ of (Artr ); R̂ is a kr -algebra with aug-
mentation kr → R̂ → kr such that Rm = R̂/Mm+1 ∈ (Artr ) for all m ≥ 0 and⋂

m>0 M
m = 0, where M = Ker(p: R → kr ). We denote R̂ = lim←− Rm .

A formal NC deformation of F over R̂ is a pair ({FRm }m≥0, {φm}m≥0) consisting
of a series of NC deformations FRm of F over Rm = R̂/Mm+1 with isomorphisms
φm+1: Rm⊗Rm+1 FRm+1 → FRm andφ0: FR0 → F . AnyNCdeformation is considered
to be a special case of a formal NC deformation whose parameter algebra is finite
dimensional as a k-vector space.

A formal NC deformation ({FRm }, {φm}) of F is said to be versal if the following
conditions are satisfied:

(1) For any NC deformation (FR, φ) of F , there are an integer m, a kr -algebra homo-
morphism g: Rm → R and an isomorphism FR ∼= R⊗Rm FRm which is compatible
with {φm} and φ.

(2) The induced homomorphism Rm/M2
Rm

→ R/M2 is uniquely determined by
(FR, φ).

Definition 5.4 An iterated non-trivial extension of F = ⊕r
i=1 Fi is a sequence of

objects {Gn}Nn=0 with Gn = ⊕r
i=1 G

n
i such that

(1) G0
i = Fi for all i .

(2) For each n < N , there are i1 = i1(n) and i2 = i2(n) such that Gn+1
i = Gn

i for
i �= i1 and that there is a non-trivial extension

0 → Fi2 → Gn+1
i1

→ Gn
i1 → 0.

Theorem 5.5 Let {Gn}Nn=0 be an iterated non-trivial extension of a simple collection
F, and let R = End(GN ). Then GN is an NC deformation of F over R.

The point in the above theorem is that dim R = r + N as a k-vector space. A versal
deformation can be constructed by iterated universal extensions:
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Theorem 5.6 [24, Proposition 4.1 and Theorem 4.8] Let F = ⊕r
i=1 Fi be a simple

collection such that dim Ext1(F, F) < ∞. Define a sequence of objects F (n) =
⊕r

i=1 F
(n)
i by universal extensions

0 →
r⊕

j=1

Ext1(F (n)
i , Fj )

∗ ⊗ Fj → F (n+1)
i → F (n)

i → 0.

Then the F (n) can be obtained by iterated non-trivial extensions of F, and the inverse
limit lim←− F (n) is a versal NC deformation of F.

We note that the above exact sequences correspond to distinguished triangles

F (n+1)
i → F (n)

i →
r⊕

j=1

Hom(F (n)
i , Fj [1])∗ ⊗ Fj [1] → F (n+1)

i [1].

6 Versal deformations

The reduced tilting generator P̄ at the end of Sect. 2 is recovered as a versal non-
commutative deformation of the simple objects in the category of perverse coherent
sheaves Perv(X/Y ):

Theorem 6.1 Let f : Y → X be a projective morphism between noetherian schemes,
and let P be a tilting generator for f . Assume that X = Spec(R) for a complete local
ring R whose residue field is isomorphic to the base field. Let {Pi }mi=1 and {s j }mj=1 be
the sets of indecomposable projective objects and simple objects in Perv(Y/X). Set
P̄ = ⊕m

i=1 Pi and Ā = f∗End(P̄). Then P̄ is the versal deformation of the simple
collection

⊕m
j=1 s j with the parameter algebra Ā.

Proof Since X is the spectrum of a complete local ring, we have P̄ = lim←− P̄/mn P̄ for

the maximal ideal m ⊂ R. Since Ā/mn Ā is finite dimensional as a vector space over
the base field, we deduce that P̄/mn P̄ is obtained by iterated (trivial or non-trivial)
extensions of the s j in Perv(Y/X) by Theorem 2.2. By construction, we have

dimHom(P̄, s j ) = 1,Hom(P̄, s j [1]) = 0

for all j . We will prove our assertion using these two cohomological properties.
Let

· · · → Fm+1 → Fm → · · · → F1 → F0 =
n⊕

j=1

s j (6.1)

be a sequence of surjective morphisms in Perv(Y/X) corresponding to the iterated
extensions toward P̄ which passes through the quotients P̄/mn P̄; we have exact
sequences

0 → s j(m) → Fm+1 → Fm → 0
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for each m, where j(m) depends on m.
The first property dimHom(P̄, s j ) = 1 implies that all the extensions are non-

trivial. Indeed if there is a trivial extension during the course, then there exists j and
m such that dim Hom(Fm, s j ) ≥ 2. Since P̄ → Fm is surjective, we deduce that
dim Hom(P̄, s j ) ≥ 2, a contradiction.

By the combination with the second property Hom(P̄, s j [1]) = 0, we deduce that
the formal deformation P̄ is versal. Indeed let G → Fm for somem be any non-trivial
extension by some s j corresponding to a non-trivial morphism Fm → s j [1]; we have

0 → s j → G → Fm → 0.

By an exact sequence

Hom(P̄,G) → Hom(P̄, Fm) → Hom(P̄, s̄ j [1]) = 0

we infer that the morphism P̄ → Fm can be lifted to a morphism P̄ → G, so that P̄
dominates this non-trivial extension. Since a versal deformation can be obtained by a
sequence of iterated non-trivial extensions, we conclude that P̄ is a versal deformation.


�
In the case of Bridgeland and Van den Bergh, the non-commutative deformations

in the null category C can be described by the following theorem, which extends and
recovers [4, §6], [10, §3.2 and Lemma 3.9] who work mainly in the birational case:

Theorem 6.2 Let f : Y → X be as in Sect. 3.

(A) Let {Pi }ri=0 and {s j }rj=0 be the sets of indecomposable projective objects and simple

objects in −1Perv(Y/X) as in Sect. 3 (A). Then the reduced tilting generator P =⊕r
i=0 Pi is relatively generated by global sections, i.e., the natural homomorphism

p: f ∗ f∗P → P is surjective. Let Q = Ker(p) be the kernel. Let I be the two-sided
ideal of A = f∗End(P) generated by endomorphisms of P which can be factored
in the form P → P0 → P. Then the following hold:

(1) Q[1] ∈ −1Perv(Y/X), and it is the versal deformation of the simple collection⊕r
j=1 s j .

(2) The parameter algebra of the versal deformation Q[1] is given by the following
formula

End(Q[1]) ∼= A/I .

(B) Let {P ′
i }ri=0 and {s′

j }rj=0 be the sets of indecomposable projective objects and

simple objects in 0Perv(Y/X) as in Sect. 3 (B). Let P ′ = ⊕r
i=0 P

′
i be the reduced

tilting generator, let p′: f ∗ f∗P ′ → P ′ be the natural homomorphism, and let
Q′ = Coker(p′) be the cokernel. Let I ′ be the two-sided ideal of A′ = f∗End(P ′)
generated by endomorphisms of P ′ which can be factored in the form P ′ → P ′

0 →
P ′. Then the following hold:
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(1) Q′ ∈ 0Perv(Y/X), and it is the versal deformation of the simple collection⊕r
j=1 s

′
j .

(2) The parameter algebra of the versal deformation Q′ is given by the following
formula

End(Q′) ∼= A′/I ′.

Proof (A) In the exact sequence (3.1), Li is relatively generated by global sections and
R1 f∗OY = 0. Hence P̃i is also relatively generated by global sections.
We have an exact sequence

0 → Q → f ∗ f∗P → P → 0 (6.2)

in coh(Y ). We have f∗ f ∗ f∗P ∼= f∗P by the projection formula. Hence f∗Q = 0.
Since R1 f∗OY = 0 and the fiber dimension is 1, we deduce that R1 f∗ f ∗ f∗P = 0.
Hence R1 f∗Q = 0. Thus R f∗Q = 0 and Q[1] ∈ −1Perv(Y/X).

As in the proof of Theorem 6.1, Q[1]/mnQ[1] for any n can be expressed by a
series of (trivial or non-trivial) iterated extensions of the s j for 0 ≤ j ≤ r . We claim
that s0 does not appear in this series. This follows from the following facts:

Hom(P0, Q[1]) = R1 f∗Q = 0,Hom(P0, s0) ∼= k,Hom(P0, s j [1]) = 0 ∀ j .

Indeed if s0 appears in the series of extensions {Fm} as in (6.1), then we have
Hom(P0, Fm0) �= 0 for somem0, since Hom(P0, s0) ∼= k. Since Hom(P0, s j [1]) = 0,
the natural homomorphisms

Hom(P0, F
m+1) → Hom(P0, F

m)

are surjective for allm ≥ m0. ThenHom(P0, Q[1]) = lim←−Hom(P0, Q[1]/mnQ[1]) �=
0, a contradiction.

Nowwe prove that Q[1] is the versal deformation of the simple collection
⊕r

j=1 s j .
By the argument of the proof of Theorem 6.1, it is sufficient to prove the following
claim:

Hom(Q[1], s j ) ∼= k,Hom(Q[1], s j [1]) = 0 for 1 ≤ j ≤ r .

Since Hom(P, s j ) ∼= k and Hom(P, s j [q]) = 0 for q �= 0, our claim is reduced to
the assertion that Hom( f ∗ f∗P, s j [t]) = 0 for t = −1, 0 and 1 ≤ j ≤ r . This is
equivalent to saying that Hom( f ∗ f∗P,OC j (−1)[t]) = 0 for t = 0, 1.

Let G1 → G0 → f∗P → 0 be an exact sequence with free OX -modules
Gi for i = 0, 1. Then we have exact sequences f ∗G1 → G ′ → 0 and 0 →
G ′ → f ∗G0 → f ∗ f∗P → 0 for some G ′. Since R f∗OC j (−1) ∼= 0, we have
Hom( f ∗Gi ,OC j (−1)[t]) = 0 for all i, j, t . Then Hom(G ′,OC j (−1)) = 0 and we
obtain our claim.
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We prove the second assertion that End(Q[1]) ∼= A/I . The exact sequence (6.2) in
the category coh(Y ) of coherent sheaves defines a distinguished triangle

f ∗ f∗P → P → Q[1] → f ∗ f∗P[1]

in Db(coh(Y )). Since R1 f ∗ f∗P ∼= 0 and Hom( f ∗ f∗P, C) ∼= Hom( f∗P, f∗C) ∼= 0,
we have f ∗ f∗P ∈ −1Perv(Y/X) by (3.2). Therefore the above distinguished triangle
yields an exact sequence

0 → f ∗ f∗P → P → Q[1] → 0

in the abelian category −1Perv(Y/X). In particular, we have a surjective morphism
h: P → Q[1] in −1Perv(Y/X). The induced surjective morphism P → Q[1]⊕ s0 is a
natural morphism from a versal deformation of a simple collection

⊕r
j=0 s j to another

non-commutative deformation. Let h∗:End(P) → End(Q[1]) be the corresponding
surjective homomorphism of the parameter rings.

Let I1 = Ker(h∗). We have to prove that I1 = I . If an endomorphism g: P →
P factors through P0, then the composition h ◦ g: P → Q[1] vanishes, since
Hom(P0, Q[1]) = 0. Therefore h∗(g) = 0, and I ⊂ I1.

Conversely, assume that g ∈ I1, i.e., h∗(g) = 0. Then there is the following
commutative diagram in the category coh(Y ):

0 −−−−→ Q −−−−→ f ∗ f∗P
p−−−−→ P −−−−→ 0

0

⏐
⏐
�

⏐
⏐
� g

⏐
⏐
�

0 −−−−→ Q −−−−→ f ∗ f∗P
p−−−−→ P −−−−→ 0.

By the diagram chasing, we find a homomorphism g̃: P → f ∗ f∗P such that g is
factored as g = p ◦ g̃.

LetG1 → G0 → f∗P → 0 be an exact sequence with locally freeGi as in the first
part of the proof, and letG ′ = Im( f ∗G1 → f ∗G0).We claim that the homomorphism
g̃: P → f ∗ f∗P can be lifted to g̃0: P → f ∗G0. Indeed, since Hom(P, f ∗G1[1]) =
0, we obtain Hom(P,G ′[1]) = 0, because the fiber dimension of f is 1 and that f ∗G1
andG ′ are sheaves. Then the homomorphismHom(P, f ∗G0) → Hom(P, f ∗ f∗P) is
surjective. Therefore g is factored through a direct sum of P0, hence g ∈ I . Therefore
I = I1, and the theorem is proved.

(B) We have exact sequences

0 → H1 → P ′ → Q′ → 0

0 → H2 → f ∗ f∗P ′ → H1 → 0
(6.3)

in coh(Y ) for some sheaves H1, H2. We have f∗ f ∗ f∗P ′ ∼= f∗P ′ by the projection
formula. Hence f∗ f ∗ f∗P ′ ∼= f∗H1 ∼= f∗P ′. Since R1 f∗ f ∗ f∗P ′ = 0 and the fiber
dimension is 1,we deduce that R1 f∗H1 = 0.Hence f∗Q′ = 0. Since R1 f∗P ′ = 0,
we have R1 f∗Q′ = 0. Therefore R f∗Q′ = 0 and Q′ ∈ 0Perv(Y/X).
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As in the proof of case (A), Q′ can be expressed by a series of iterated extensions
of the s′

j for 1 ≤ j ≤ r , since Hom(P ′
0, Q

′) = 0.
Now we prove that Q′ is the versal deformation of the simple collection

⊕r
j=1 s

′
j .

It is sufficient to prove the following claim:

Hom(Q′, s′
j )

∼= k,Hom(Q′, s′
j [1]) = 0, 1 ≤ j ≤ r .

We have Hom(P ′, s′
j )

∼= k and Hom(P ′, s′
j [q]) = 0 for q �= 0. Since H1 is a quotient

of a direct sum of P ′
0, we have Hom(H1, s′

j ) = 0 for 1 ≤ j ≤ r . Therefore we have
our claim and the versality of Q′.

We prove the second assertion that End(Q′) ∼= A′/I ′. Since R1 f∗H1 = 0, we have
also H1 ∈ 0Perv(Y/X) by (3.4). Hence the first exact sequence of (6.3) is an exact
sequence in 0Perv(Y/X). In particular, we have a surjective homomorphism h′: P ′ →
Q′ in 0Perv(Y/X), which is a homomorphism of non-commutative deformations. Let
h′∗:End(P ′) → End(Q′) be the corresponding homomorphism of the parameter rings
of the deformations.

Let I ′
1 = Ker(h′∗). We have to prove that I ′

1 = I ′. If an endomorphism
g: P ′ → P ′ factors through P ′

0, then the composition h′ ◦ g: P ′ → Q′ vanishes,
since Hom(P0, Q′) = 0. Therefore h′∗(g) = 0, and I ′ ⊂ I ′

1.
Conversely, assume that g ∈ I ′

1. Then there is the following commutative diagram
in the category coh(Y ):

0 −−−−→ H1 −−−−→ P ′ −−−−→ Q′ −−−−→ 0
⏐
⏐
� g

⏐
⏐
� 0

⏐
⏐
�

0 −−−−→ H1
p1−−−−→ P ′ −−−−→ Q′ −−−−→ 0.

By the diagram chasing, we find a homomorphism g1: P ′ → H1 such that g is fac-
tored as g = p1 ◦ g1. Since f∗ f ∗ f∗P ′ ∼= f∗H1 and R1 f∗ f ∗ f∗P ′ = 0, we have
R f∗H2 = 0, hence H2 ∈ 0Perv(Y/X). Thus the second sequence in (6.3) is also exact
in 0Perv(Y/X). Since P ′ is a projective object, we have Hom(P ′, H2[1]) = 0. Hence
Hom(P ′, f ∗ f∗P ′) → Hom(P ′, H1) is surjective, and g1 is lifted to g̃: P ′ → f ∗ f∗P ′.

Let G1 → G0 → f∗P → 0 be an exact sequence with free sheaves Gi as in
part (A) of the proof, and let G ′ = Im( f ∗G1 → f ∗G0). Since R1 f∗ f ∗G1 = 0,
we have R1 f∗G ′ = 0, and G ′ ∈ 0Perv(Y/X). Then Hom(P ′,G ′[1]) = 0, and
Hom(P ′, f ∗G0) → Hom(P ′, f ∗ f∗P ′) is surjective, and g̃ is lifted to a morphism
through a direct sum of P ′

0. Thus I
′
1 ⊂ I ′, and this completes the proof. 
�

Corollary 6.3 (1) Q ∼= Q′.
(2) A/I ∼= A′/I ′ ∼= (A/I )o, where the last term is an opposite ring.

Proof (1) We have s j ∼= s′
j [1] for 1 ≤ j ≤ r in Db(coh(Y )). Though the non-

commutative deformations of the s j and s′
j [1] are considered in different abelian

categories, their deformations are the same. Indeed the extension group Ext1(a, b)
fora, b ∈ Db(coh(Y )) is independent of the abelian categories containinga, b. The
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corresponding distinguished triangles in Db(coh(Y )) determine the extensions.
Therefore we have Q ∼= Q′.

(2) We have A/I ∼= A′/I ′ by (1). On the other hand, we have an order-reversing
bijection A → A′ which sends an endomorphism g: P → P to its transpose
t g: P∗ → P∗. If g is factored as P → OY → P , then t g is factored as
P∗ → OY → P∗. Therefore the isomorphism Ao → A′ induces an isomor-
phism (A/I )o → A′/I ′. 
�

Example 6.4 [10, Example 1.3] Let X = Speck[[u, v, x, y]]/(u2 +v2y− x(x2 + y3))
and let f : Y → X be a small crepant resolution. Then A/I ∼= k〈〈x, y〉〉/(xy+yx, x2−
y3).

The following recovers a result of Donovan and Wemyss [12, Theorem 4.7]:

Corollary 6.5 Assume in addition that f is a birational morphism. Then f is an iso-
morphism outside the closed fiber if and only if the parameter algebra of the versal
deformation A/I of the simple collection

⊕r
j=1 s j is finite dimensional as a vector

space over the base field.

Proof We prove that the cosupport Supp(A′/I ′) of I ′ coincides with the discriminant
locus D ⊂ X of f , the set of scheme theoretic points on X over which f is not an
isomorphism. Then it follows that A′/I ′ is finite dimensional if and only if D consists
of an isolated point.

If x /∈ D, then f is an isomorphism near x . Then f ∗ f∗P ′ → P ′ is an isomorphism
near x , and Q′ = 0 near x . Therefore x /∈ Supp(A′/I ′).

Conversely, assume that x ∈ D. Since the fiber f −1(x) is positive dimensional and
P ′ has a negative degree along the fiber, it follows that P ′ is not generated by relative
global sections. Then Q′ �= 0 near x , and x ∈ Supp(A′/I ′). 
�
Question 6.6 Let C ∼= P1 be a smooth rational curve embedded in a 3-dimensional
complex manifold Y . If C is contractible complex analytically by a proper bimero-
morphic morphism f : Y → X which is an isomorphism on Y\C , then the parameter
algebra of the versal non-commutative deformation of C in Y is finite dimensional by
the corollary. Conversely, one can ask the following question: if the parameter algebra
of the versal non-commutative deformation of C in Y is finite dimensional, then is
C contractible by a proper bimeromorphic morphism? An example by Clemens [9]
shows that it is not sufficient to consider only commutative deformations (cf. [16]).
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