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Abstract
We give a uniform description of the bijection � from rigged configurations to tensor
products of Kirillov–Reshetikhin crystals of the form

⊗N
i=1 Bri ,1 in dual untwisted

types: simply-laced types and types A(2)
2n−1, D(2)

n+1, E (2)
6 , and D(3)

4 . We give a uniform
proof that � is a bijection and preserves statistics. We describe � uniformly using
virtual crystals for all remaining types, but our proofs are type-specific. We also give
a uniform proof that � is a bijection for

⊗N
i=1 Bri ,si when ri , for all i , map to 0 under

an automorphism of the Dynkin diagram. Furthermore, we give a description of the
Kirillov–Reshetikhin crystals Br ,1 using tableaux of a fixed height kr depending on r
in all affine types.Additionally,we are able to describe crystals Br ,s using kr ×s shaped
tableaux that are conjecturally the crystal basis for Kirillov–Reshetikhin modules for
various nodes r .

Keywords Crystal · Rigged configuration · Kirillov–Reshetikhin crystal · Fermionic
formula
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1 Introduction

Kashiwara began the study of crystals in the early 1990’s as amethod to explore the rep-
resentation theory of quantum groups [36,37]. One particular application is the highest
weight elements of a tensor product of Kirillov–Reshetikhin (KR) crystals naturally
index solutions on two-dimensional solvable latticemodels from usingBaxter’s corner
transfer matrix [1]. Kerov, Kirillov, and Reshetikhin introduced combinatorial objects
called rigged configurations that naturally index solutions to the Bethe Ansatz for the
isotropic Heisenberg spin model [41,42]. Moreover, the row-to-row transfer matrices
can be described by tensor product of KR crystals. This suggests a link between rigged
configurations and highest weight elements of a tensor product of KR crystals.

This was formalized by Kerov, Kirillov, and Reshetikhin by constructing a bijec-
tion � for the tensor product (B1,1)⊗N in type A(1)

n and the corresponding rigged
configurations. This was extended to the general case

⊗N
i=1 Bri ,si in type A(1)

n in [43],
and it was soon conjectured that there exists an analogous bijection in all affine types.
For the remaining non-exceptional types, such a bijection for (B1,1)⊗N was given in
[74] and type E (1)

6 in [71]. Many other special cases are also known: the
⊗N

i=1 B1,si

case for non-exceptional types [75,89]; the
⊗N

i=1 Bri ,1 case for types D(2)
n+1, A(2)

2n ,

and C (1)
n [76], and type D(1)

n [86]; the case Br ,s for type D(1)
n [69] and other non-

exceptional types [88]; and both types of tensor products are known for type D(3)
4

[93]. Recently, the general case for type D(1)
n was proven [70], followed soon there-

after for all non-exceptional types [73]. Additionally, the bijection � was extended to
a crystal isomorphism for the full crystal in type A(1)

n in [14,92] and a classical crystal
isomorphism for type D(1)

n in [81] and A(2)
2n−1 in [88].

Despite being defined recursively, obfuscating many of its properties, the bijection
� has many remarkable (conjectural) attributes. There is a natural statistic defined
on tensor products of KR crystals called energy that arose from the related statistical
mechanics, but energy is an algebraic statistic whose computation requires using the
very intricate combinatorial R-matrix. On the rigged configuration side, there is a
combinatorial statistic called cocharge, which also comes from the related physics,
and � sends energy to cocharge (with interchanging riggings and coriggings). This
gives a combinatorial proof the X = M conjecture of [20,22]. We recall that the
X side comes from the sum over the classically highest weight elements of tensor
products of KR crystals and is related to the one-point function of 2D lattice models.
Additionally, the M side is summed over highest weight rigged configurations and is
related to solutions to the Bethe equation of the Heisenberg spin chain. Moreover, the
combinatorial R-matrix gets sent to the identity map under �.
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Because of these properties, rigged configurations in type A(1)
n describe the action-

angle variables of box-ball systems [46], which is an ultradiscrete version of the
Korteweg-de Vries (KdV) equation. More specifically, the partition ν(1) describes
the sizes of the solitons when there is no interaction [46,97]. A tropicalization of a
ratio of (cylindric) loop Schur functions is conjectured to describe � for box-ball
systems [48,94], and�−1 can be described using the τ function from the Kadomtsev–
Petviashvili (KP) heirarchy [47]. Generalizations of box-ball systems, soliton cellular
automata [3,21,23,58,98,99], are also believed to have deep connections with rigged
configurations. In type A(1)

n , the state energy was related to rigged configurations [80].
There are many properties of rigged configurations that are known to be uniform.

A crystal structure on rigged configurations was first given for simply-laced types
in [87], which was then extended to a classical crystal structure for U ′

q(g)-crystals
for affine types [88] and highest weight crystals and B(∞) for general Kac–Moody
algebras in [82,84]. Furthermore, the ∗-involution on B(∞) [38,57] is the map that
replaces all riggings with their respective coriggings [85]. In [83], the bijection � was
also extended (uniformly) to describe a bijection between the rigged configurations
and marginally large tableaux [13,27] for B(∞).

Similarly, there are also uniform descriptions of KR crystals of the form B =⊗N
i=1 Bri ,1 using the alcove path model (up to non-dual Demazure arrows) [50] and

quantum and projected level-zero LS paths [51–53,59–61]. This is based upon the
work of Kashiwara [39], where B is a crystal basis of the tensor product of the corre-
sponding KRmodules and is constructed by projecting the crystal basis of a level-zero
extremal weight module. A uniformmodel of extremal level-zero crystals using Naka-
jima monomials was given in [26], but the projection onto B was done type-by-type.
The connection of (resp. Demazure) characters of B with (resp. non-symmetric) Mac-
donald polynomials was given in [51,53] (resp. [54]).

KR crystals also have a number of other additional properties. Their characters
(resp. q-characters in the sense of [19]) give solutions to Q-systems (resp. T-systems)
[24,25,62–64]. The existence and combinatorial structure of Br ,s was given for non-
exceptional types in [16,67,72] and a few other special cases [30,35,100]. Existence
for types G(1)

2 and D(3)
4 was recently proven in [66]. KR crystals are conjectured to

generally be perfect, which is known for non-exceptional types [17] and some other
special cases [35,100].

While many special cases of the conjectured bijection � are known (as mentioned
above), the description of � is given in a type-by-type fashion, meaning that there
is no natural extension to the other exceptional types. The original goal of this paper
was to extend � to

⊗N
i=1 Bri ,1 for type E (1)

6,7,8 by using the crystal graph, which was

first explicitly used by Okado–Sano [71] for
⊗N

i=1 B1,1 in type E (1)
6 . However, it

soon became apparent that our description of � could be given uniformly for dual
untwisted types, and moreover, the proofs given here are uniform. Using this, we are
able to prove a number of special cases of the X = M conjecture in all exceptional
types, where there has otherwise been very little progress [30,35,71,93,100].

Explicitly, the core of our main result is a description of � when the basic map
δ removes the left-most factor Br ,1, where �r is either a minuscule weight (Sect. 3,
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Lemma 7.7) or the highest (short) root1 (i.e., it is the perfect crystal of [2] or B(�r ) is
the (“little”) adjoint representation) (Sect. 4, Lemma 7.9).We then extend the bijection
to B = ⊗N

i=1 Bri ,1 (Sect. 5, Proposition 7.11). As stated above, the description and
proof of this is uniform for all dual untwisted types. For the remaining types, we give a
uniform description using virtual crystals (Sect. 6), and while our proof is essentially
uniform, it does contain some type-specific arguments. However, the last part of our
main results are that we give a uniform proof that the virtualization map commutes
with the bijection � (Theorem 7.26).

We show that these descriptions of δ are equivalent to those described in [4,43,
74,86,93] (in particular, proving the conjectural description of � in [4]) (Sect. 8). As
a secondary result, we provide further evidence of the conjecture that KR crystals
Br ,s in the exceptional types correspond to crystal bases of KR modules and of the
X = M conjecture by showing the fermionic formula agrees with the conjectured
decompositions of [20,22]. We also describe the so-called Kirillov–Reshetikhin (KR)
tableaux for Br ,1 in types E (1)

6,7,8, E (2)
6 , F (1)

4 , and G(1)
2 (Sect. 9). For certain r , we

describe the KR tableaux for Br ,s and show that � gives a bijection for the single
tensor factor.

We are further able to extend our bijection for
⊗N

i=1 Bri ,si when�ri is a minuscule
weight by using the tableaux description given in [30] (Theorem 7.35). Specifically,
the tableaux can be thought of as single rows that are weakly increasing with entries
in B(�ri ), which is naturally considered as a poset. Moreover, the proofs that we give
are also uniform. This is the generalization of the results of [89].

Our results are evidence that there should be a natural bijection between rigged
configurations and the aforementioned models for KR crystals. Additionally, it also
suggests that there should be a uniform description of the U ′

q(g)-crystal structure on
rigged configurations by considering the Demazure subcrystal of B(��0) following
[18,91]. Furthermore, our results and our proof techniques are further evidence that the
map η that replaces riggings with coriggings in our setting of rigged configurations,
which is key in the proof that� preserves statistics, is connected with the ∗-involution
on B(∞). Our results also give a uniform description of the combinatorial R-matrix in
the cases we consider (extend Remark 7.20 to all of our results), for which a uniform
description was given on the alcove path model in [49], but our proof is type-specific.

Our results also give further evidence that rigged configurations are intimately
connected with theWeyl chamber geometry. Indeed, as rigged configurations are well-
behaved under virtualization, the results of [77] gives the first evidence. Yet, it is the
fact that our results are given for the types where the fundamental alcove is translated
by precisely αa (there are some slight modifications needed for type A(2)

2n ) to another
alcove is further evidence. This is additionally emphasized with our result showing �

intertwines with the virtualization map, extending results of [75,76,88]. Additionally,
the related results of [74] for the untwisted non-simply-laced types appears to be related
to our descriptions when the rigged partition (ν, J )(a) is scaled by the coefficient of
αa required to translate the fundamental alcove. Making this explicit would lead to a
completely uniform description of � and more strongly link rigged configurations to
the underlying geometry.

1 Our results also include type A(1)
n , where we instead have B1,1 ⊗ Bn,1 as the atomic object.
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Summary of new results Recall that we consider the case
⊗N

i=1 Bri ,1 and the case
⊗N

i=1 Bri ,si , where ri is a minuscule node for all i . Our results for the rigged config-
uration bijection and a combinatorial proof of the X = M conjecture are new for all
exceptional types with the exception of (Br ,1)⊗N for r = 1, 6 (the r = 6 is implicit
in [71] by the diagram symmetry) and

⊗N
i=1 B1,si and

⊗N
i=1 Bri ,1 in type D(3)

4 . Fur-

thermore, our description of the bijection for single columns in type A(1)
n and spin

columns in type D(1)
n is new, which significantly reduces the number of steps needed

to compute the bijection �. In addition, we note that our proofs are now done almost
uniformly.

Organization This paper is organized as follows. In Sect. 2, we describe the necessary
background on crystals, KR crystals, rigged configurations, and the bijection �. In
Sect. 3, we describe themap δ for minuscule nodes for dual untwisted types. In Sect. 4,
we describe the map δ for the adjoint node for dual untwisted types. In Sect. 5, we
extend the left-boxmap for dual untwisted types. In Sect. 6, we show that the map δ for
untwisted types is well-defined by using the virtualization map to the corresponding
dual type. In Sect. 7, we give our results and proofs. In Sect. 8, we show that our
description of � is the same as the KSS bijections. In Sect. 9, we describe the highest
weight rigged configurations and KR tableaux for Br ,s in a number of different cases.
In Sect. 10, we give our concluding remarks.

The majority of this work was done while the author was at the University of
Minnesota.

2 Background

In this section, we provide the necessary background.

2.1 Crystals

Let g be an affine Kac–Moody Lie algebra with index set I , Cartan matrix (Aab)a,b∈I ,
simple roots (αa)a∈I , simple coroots (α∨

a )a∈I , fundamental weights (�a)a∈I , weight
lattice P , coweight lattice P∨, and canonical pairing 〈 , 〉 : P∨ × P → Z given by〈
α∨

a , αb
〉 = Aab. We note that we follow the labeling given in [5] (see Fig. 1 for the

exceptional types and their labellings). Let g0 denote the canonical simple Lie algebra
given by the index set I0 = I\{0}. Let �a and αa denote the natural projection of
�a and αa , respectively, onto the weight lattice P of g0. Note (αa)a∈I0 are the simple
roots in g0.

Let ca and c∨
a denote the Kac and dual Kac labels [31, Table Aff1-3]. We define

ta := max

(
ca

c∨
a

, c∨
0

)

, t∨a := max

(
c∨

a

ca
, c0

)

.

Note that t∨a for type g equals ta for the dual type of g. Let Ta denote the translation
factors, the smallest factors such that Taαa maps the fundamental polygon, the funda-
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E
(1)
6

0

1 3 4 5 6

2

E
(1)
7

0 1 3 4 5 6 7

2

E
(1)
8

01 3 4 5 6 7 8

2

F
(1)
4

1 2 3 40
E

(2)
6

1 2 3 40

G
(1)
2

1 2 0
D

(3)
4

2 1 0

Fig. 1 Dynkin diagrams for the exceptional affine types

mental domain of the action of the root lattice or the image of the fundamental alcove
under the corresponding finite Weyl group, to another polygon. Note that Ta = ta
except for type A(2)

2n (resp. A(2)†
2n ), where we have Tn = 1

2 (resp. T0 = 1
2 ) and Ta = 1

otherwise. We have Ta = 1 for all a ∈ I except in the cases mentioned above, Tn = 2
in type B(1)

n , Ta = 2 for a �= 0, n in type C (1)
n , T3 = T4 = 2 in type F (1)

4 , and T1 = 3

in type G(1)
2 . The null root is δ = ∑

a∈I caαa , and the canonical central element is
c = ∑

a∈I c∨
a α∨

a . The normalized (symmetric) invariant form (·|·) : P × P → Z is

defined by (αa |αb) = c∨
a

ca
Aab. We write a ∼ b if Aab �= 0 and a �= b; in other words,

the nodes a and b are adjacent in the Dynkin diagram of g.
For g not of type A(1)

n , let Ng denote the unique node such that Ng ∼ 0, which
we call the adjoint node. We say a node r ∈ I0 is special if there exists a diagram
automorphism φ : I → I such that φ(0) = r . We say a node r ∈ I0 is minuscule if it
is special and g is of dual untwisted affine type.

An abstract Uq(g)-crystal is a set B with the crystal operators ea, fa : B → B{0},
for a ∈ I , and weight function wt : B → P that satisfy the following conditions. Let
εa, ϕa : B → Z≥0 be statistics given by

εa(b) := max{k | ek
ab �= 0}, ϕa(b) := max{k | f k

a b �= 0}.

(1) ϕa(b) = εa(b) + 〈α∨
a ,wt(b)

〉
for all b ∈ B and a ∈ I .
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(2) fab = b′ if and only if b = eab′ for b, b′ ∈ B and a ∈ I .

We say an element b ∈ B is highest weight if eab = 0 for all a ∈ I . Define

ε(b) =
∑

a∈I

εa(b)�a, ϕ(b) =
∑

a∈I

ϕa(b)�a .

Remark 2.1 The abstract crystals we consider in this paper sometimes called regular
or seminormal in the literature.

We call an abstract Uq(g)-crystal B a Uq(g)-crystal if B is the crystal basis of
someUq(g)-module. Kashiwara has shown that the irreducible highest weight module
V (λ) admits a crystal basis [37]. We denote this crystal basis by B(λ), and let uλ ∈
B(λ) denote the unique highest weight element and is the unique element of weight
λ. Recall that B(λ) is connected. A Uq(g0)-crystal is a minuscule representation if
the corresponding finite Weyl group W acts transitively on B(�r ). In particular, the
Uq(g0)-crystal B(�r ) is a minuscule representation if and only if r is a minuscule
node.

We define the tensor product of abstract Uq(g)-crystals B1 and B2 as the crystal
B2 ⊗ B1 that is the Cartesian product B2 × B1 with the crystal structure

ea(b2 ⊗ b1) =
{

eab2 ⊗ b1 if εa(b2) > ϕa(b1),

b2 ⊗ eab1 if εa(b2) ≤ ϕa(b1),

fa(b2 ⊗ b1) =
{

fab2 ⊗ b1 if εa(b2) ≥ ϕa(b1),

b2 ⊗ fab1 if εa(b2) < ϕa(b1),

εa(b2 ⊗ b1) = max(εa(b1), εa(b2) − 〈α∨
a ,wt(b1)

〉
),

ϕa(b2 ⊗ b1) = max(ϕa(b2), ϕa(b1) + 〈α∨
a ,wt(b2)

〉
),

wt(b2 ⊗ b1) = wt(b2) + wt(b1).

Remark 2.2 Our tensor product convention is opposite of Kashiwara [37].

Let B1 and B2 be two abstract Uq(g)-crystals. A crystal morphism ψ : B1 → B2
is a map B1  {0} → B2  {0} with ψ(0) = 0 such that the following properties hold
for all b ∈ B1:

(1) If ψ(b) ∈ B2, then wt
(
ψ(b)

) = wt(b), εa
(
ψ(b)

) = εa(b), and ϕa
(
ψ(b)

) =
ϕa(b).

(2) We have ψ(eab) = eaψ(b) if ψ(eab) �= 0 and eaψ(b) �= 0.
(3) We have ψ( fab) = faψ(b) if ψ( fab) �= 0 and faψ(b) �= 0.

An embedding and isomorphism is a crystal morphism such that the induced map
B1  {0} → B2  {0} is an embedding or bijection respectively. A crystal morphism
is strict if it commutes with all crystal operators.

In type En forn = 6, 7,we follow [30] and label elements b ∈ B(�n) (and in B(�1)

for type E6) by X ⊂ {1, 1, 2, 2, . . . , n, n}, where we have an a ∈ X (resp. a ∈ X )
if and only if ϕa(b) = 1 (resp. εa(b) = 1). To ease notation, we write X as a word
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1 12 23 345

45

45

345 23 12 1
1 2 3

4

5

4

5

3 2 1

Fig. 2 The crystal B(�1) in type D5

1 13 34 245 256 26

25 2456 246

346 3456 35

136 1356 1345 124 12

16 156 145 1234 123

23 234

45

56

6

1 3 4 5 6

2 2 2
5 6

4 4
6 5

3 3 3
6 5 4 2

1 1 1 1 1
6 5 4 2

3 3
2

4

5

6

Fig. 3 The crystal B(�1) in type E6

in the alphabet {1, 1, . . . , n, n}. See Figs. 2 and 3 for examples. We follow the same
notation for an element of any minuscule representation.

2.2 Kirillov–Reshetikhin crystals

Let U ′
q(g) = Uq([g, g]) denote the quantum group of the derived subalgebra of g.

Denote the corresponding weight lattice by P ′ = P/Zδ, and therefore, there is a
linear dependence relation on the simple roots in P ′. As we will not be considering
Uq(g)-crystals in this paper, we will abuse notation and also denote the U ′

q(g)-weight
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lattice by P . If B is a U ′
q(g)-crystal, then we say b ∈ B is classically highest weight

if eab = 0 for all a ∈ I0.
Kirillov–Reshetikhin (KR) crystals are the conjectural crystal bases correspond-

ing to an important class of finite-dimensional irreducible U ′
q(g)-modules known as

Kirillov–Reshetikhin (KR) modules [20,22]. We denote a KR module and crystal by
W r ,s and Br ,s , respectively, where r ∈ I0 and s ∈ Z>0. KR modules are classified
by their Drinfel’d polynomials, and W r ,s corresponds to the minimal affinization of
B(s�r ) [6–12]. In [72], it was shown that KR modules in all non-exceptional types
admit crystal bases whose combinatorial structure is given in [16]. For the exceptional
types, this has been done in a few special cases [30,34,35,100]. Recently, existence
was established in general for types G(1)

2 and D(3)
4 in [66]. Moreover, a uniformmodel

for Br ,1 was given using quantum and projected level-zero LS paths [51–53,59–61].
We note that there is a unique element u(Br ,s) ∈ Br ,s , called the maximal element,

which is characterized by being the unique element of classical weight s�r (it is
also classically highest weight, so εa

(
u(Br ,s)

) = 0 and ϕa
(
u(Br ,s)

) = δar s for all
a ∈ I0). Furthermore, it is known that tensor products of KR crystals are connected
[18,68], and it is known that the maximal vector of B ⊗ B ′ is given by the tensor
product of maximal elements u ⊗ u′. We define the unique U ′

q(g)-crystal morphism
R : B ⊗ B ′ → B ′ ⊗ B, called the combinatorial R-matrix, by R(u ⊗ u′) = u′ ⊗ u,
where u and u′ are the maximal weight elements of B and B ′ respectively.

We say a KR crystal Br ,1 is minuscule if r is a minuscule node. We note that
Br ,s ∼= B(s�r ) as Uq(g0)-crystals if r is a special node.

2.3 Virtual crystals

We recall the definition of a virtual crystal from [75,76]. Let φ : �̂ ↘ � denote a
folding of the Dynkin diagram �̂ of ĝ onto the Dynkin diagram � of g that arises from
the natural embeddings [29]

C (1)
n , A(2)

2n , A(2)†
2n , D(2)

n+1 ↪−→ A(1)
2n−1,

B(1)
n , A(2)

2n−1 ↪−→ D(1)
n+1,

F (1)
4 , E (2)

6 ↪−→ E (1)
6 ,

G(1)
2 , D(3)

4 ↪−→ D(4)
4 .

(2.1)

For ease of notation, if X is an object for type g, we denote the corresponding object
for type ĝ by X̂ . By abuse of notation, let φ : Î ↘ I also denote the corresponding
map on the index sets. We define the scaling factors γ = (γa)a∈I by

γa = maxa Ta

Ta
.

Note that if |φ−1(a)| = 1, then γa = 1. See Table 1.
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Table 1 The values γa for a ∈ I
g (γa)a∈I

Dual untwisted type γa = 1 (a ∈ I )

B(1)
n

γa = 2 (a �= n)

γn = 1

C(1)
n

γa = 2 (a = 0, n)

γa = 1 (a �= 0, n)

A(2)
2n

γa = 2 (a �= n)

γn = 1

A(2)†
2n

γa = 2 (a �= 0)
γ0 = 1

F(1)
4 (2, 2, 2, 1, 1)

G(1)
2 (3, 1, 3)

Furthermore, we have a natural embedding � : P → P̂ given by

�a �→ γa

∑

b∈φ−1(a)

�̂b,

and note this induces a similar embedding on the root lattice

αa �→ γa

∑

b∈φ−1(a)

α̂b

and �(δ) = c0γ0δ̂.

Definition 2.3 Let B̂ be a U ′
q (̂g)-crystal and V ⊆ B̂. Let φ and (γa)a∈I be the folding

and the scaling factors given above. The virtual crystal operators (of type g) are defined
as

ev
a :=

∏

b∈φ−1(a)

ê γa
b , f v

a :=
∏

b∈φ−1(a)

f̂ γa
b .

A virtual crystal is the quadruple (V , B̂, φ, (γa)a∈I ) such that V has an abstract
U ′

q(g)-crystal structure defined by

ea := ev
a, fa := f v

a ,

εa := γ −1
a ε̂b, ϕa := γ −1

a ϕ̂b,

wt := �−1 ◦ ŵt,

(2.2)

for any b ∈ φ−1(a).

When there is no danger of confusion, we simply denote the virtual crystal by V .
We say B virtualizes in B̂ if there exists a U ′

q(g)-crystal isomorphism v : B → V for
some virtual crystal, and we call the resulting isomorphism a virtualization map.
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It is straightforward to see that virtual crystals are closed under direct sums. More-
over, they are closed under tensor products.

Proposition 2.4 ([75, Prop. 6.4]) Virtual crystals form a tensor category.

Furthermore, KR crystals are conjecturally well-behaved under virtualization.

Conjecture 2.5 ([75, Conj. 3.7]) There exists a virtualization map from the KR crystal
Br ,s into

B̂r ,s =
{

Bn,s ⊗ Bn,s if g = A(2)
2n , A(2)†

2n and r = n,
⊗

r ′∈φ−1(r) Br ′,γr s otherwise.

Conjecture 2.5 is known for all non-exceptional types [68, Thm. 5.1] and Br ,1 for
all other types unless r = 2 and g is of type F (1)

4 [88]. A more uniform proof of
Conjecture 2.5 for some special cases using projected level-zero LS paths was given
in [77]; in particular, for Br ,1 when γr = 1.

2.4 Adjoint crystals

We recall the construction of certain level 1 perfect crystals from [2]. Define θ :=
δ/c0 − α0, and so

θ = (c1α1 + c2α2 + · · · + cnαn)/c0.

Let � = {wt(b) | b ∈ B(θ)}\{0}. We denote the vertices of the Uq(g0)-crystal B(θ)

by

{xα | α ∈ �}  {ya | a ∈ I0, αa ∈ �},

and a-arrows of B(θ) are given by

• xα
a−−−→ xβ if and only if α − αa = β, or

• xαa

a−−−→ ya
a−−−→ x−αa .

The (classical) weight function wt is given by wt(xα) = α and wt(ya) = 0. Let
�± := � ∩ P±, and we say wt(b) > 0 if wt(b) ∈ �+ and wt(b) < 0 if wt(b) ∈ �−.

Remark 2.6 Ifg is of untwisted type, then B(θ) is the adjoint representation and� is the
set of all roots of g0. For g of twisted type, B(θ) is the “little” adjoint representation of
g0 with highest weight being the highest short root of g0 and� the set of all short roots
of g0. For type A(2)

2n , there does not exist an a ∈ I0 such that αa ∈ �. For type A(2)†
2n ,

we have B(θ) = B(�1) of type Bn . For more information on finite (crystallographic)
root systems, we refer the reader to standard texts such as [5,28].
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Let ∅ be the unique element of B(0). We then define a U ′
q(g)-crystal Bθ,1 by the

classical decomposition

Bθ,1 ∼=
{

B(θ) if g is of type A(2)†
2n ,

B(θ) ⊕ B(0) otherwise,

and 0-arrows

• xα
0−−−→ xβ if and only if α + θ = β and α, β �= ±θ , or

• x−θ
0−−−→ ∅ 0−−−→ xθ .

The weight is given by requiring it to be level zero. That is to say, we let

wt(b) = wt(b) + k0�0, (2.3)

under the natural lift �a → �a for all a ∈ I0 and k0 is such that 〈c,wt(b)〉 = 0. Thus
we have

Bθ,1 ∼=

⎧
⎪⎨

⎪⎩

Bn,1 ⊗ B1,1 if g is of type A(1)
n ,

B Ng,2 if g is of type C (1)
n ,

B Ng,1 otherwise.

Remark 2.7 In the construction of Bθ,1, we can consider ∅ = y0. Thus, for type A(2)†
2n ,

as there are not elements xα0 nor x−α0 , we do not include y0. This reflects the fact that
A(2)†
2n is isomorphic to A(2)

2n after forgetting about the choice of the affine node.

There exists higher level analogs Bθ,s , where as classical crystals, we have Bθ,s ∼=⊕s
k=0 B(kθ). The U ′

q(g)-crystal structure is currently known for all non-exceptional

types [16,32,34,45,90] and type D(3)
4 [35]. However, the U ′

q(g)-crystal structure is not
known in general, much less uniformly. One potential approach might be to generalize
the approach of [45] by examining various embeddings of Bθ,s−1 into Bθ,s , where
the difficulty is overcoming that the multiplicity of the weights of B(kθ) that do not
appear in B

(
(k − 1)θ

)
are not all 1 in general.

2.5 Rigged configurations

For this section, we assume that g is not of type A(2)
2n or A(2)†

2n for simplicity of the
exposition. However, the analogous statements with the necessary modifications for
these types may be found in [88].

DenoteH0 := I0×Z>0. Consider a tensor product ofKRcrystals B =⊗N
i=1 Bri ,si .

A configuration ν = (ν(a)
)

a∈I0
is a sequence of partitions. Let m(a)

i denote the multi-
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plicity of i in ν(a). Define the vacancy numbers as

p(a)
i (ν; B) =

∑

j∈Z>0

L(a)
j min(i, j) − 1

t∨a

∑

(b, j)∈H0

(αa |αb)min(tbυai, taυb j)m(b)
j

=
∑

j∈Z>0

L(a)
j min(i, j) −

∑

b∈I0

Aab

γb

∑

j∈Z>0

min(γai, γb j)m(b)
j ,

(2.4)

where L(r)
s equals the number of factors Br ,s that occur in B and

υa =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2 a = n and g = C (1)
n ,

1
2 a = n and g = B(1)

n ,
1
2 a = 3, 4 and g = F (1)

4 ,
1
3 a = 1 and g = G(1)

2 ,

1 otherwise.

When there is no danger of confusion, we will simply write p(a)
i . Note that when

ta = 1 for all a ∈ I0, we have

− p(a)
i−1 + 2p(a)

i − p(a)
i+1 = L(a)

i −
∑

b∼a

Aabm(b)
i . (2.5)

Moreover, when m(a)
i = 0, we have the convexity inequality

p(a)
i−1 + p(a)

i+1 ≤ 2p(a)
i (2.6)

or equivalently −p(a)
i−1 + 2p(a)

i − p(a)
i+1 ≥ 0.

Remark 2.8 The values (υa)a∈I0 arise from a different convention for rigged configu-
rations than those used in, e.g., [74].

A B-rigged configuration is the pair (ν, J ), where ν is a configuration and J =
(J (a)

i )(a,i)∈H0 is such that J (a)
i is a multiset {x ∈ Z | x ≤ p(a)

i (ν; B)} with |J (a)
i | =

m(a)
i for all (a, i) ∈ H0. When B is clear, we call a B-rigged configuration simply a

rigged configuration. A highest weight rigged configuration is a rigged configuration
(ν, J ) such that min J (a)

i ≥ 0 for all (a, i) ∈ H0 such that m(a)
i > 0. Let RCH W (B)

denote the set of all highest weight B-rigged configurations.
The integers in J (a)

i are called riggings or labels. The corigging or colabel of a

rigging x ∈ J (a)
i is defined as p(a)

i − x . We note that we can associate a row of length
i in ν(a) with a rigging x , and we call such a pair (i, x) a string. We identify each row
of the partition ν(a) with its corresponding string. We say a row (or string) is singular
if p(a)

i = x . We say a row (or string) is quasisingular if p(a)
i = x + 1 and there does

not exist a singular row of length i .
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Next, let RC(B) denote the closure of RCH W (B) under the following crystal oper-
ators. Fix a rigged configuration (ν, J ) and a ∈ I0. For simplicity, we assume there
exists a row of length 0 in ν(a) with a rigging of 0. Let x = min{min J (a)

i | i ∈ Z>0};
i.e., the smallest rigging in (ν, J )(a).

ea If x = 0, then define ea(ν, J ) = 0. Otherwise, remove a box from the smallest
row with rigging x , replace that rigging with x + 1, and change all other riggings
so that the coriggings remain fixed. The result is ea(ν, J ).

fa Add a box from the largest row with rigging x , replace that rigging with x −1, and
change all other riggings so that the coriggings remain fixed. The result is fa(ν, J )

unless the result is not a valid rigged configuration, in which case fa(ν, J ) = 0.

We can extend this to a full Uq(g0)-crystal structure on RC(B) by

wt(ν, J ) =
∑

(a,i)∈H0

i
(

L(a)
i �a − m(a)

i αa

)
.

We note that

〈
α∨

a ,wt(ν, J )
〉 = p(a)∞ =

∑

j∈Z>0

j L(a)
j −

∑

b∈I0

Aab|ν(b)|,

and we can extend the classical weight wt : RC(B) → P to the affine weight
wt : RC(B) → P as in Equation (2.3).

Theorem 2.9 ([87,88]) Let B be a tensor product of KR crystals. Fix some (ν, J ) ∈
RCH W (B). Let X(ν,J ) denote the closure of (ν, J ) under ea and fa for all a ∈ I0.
Then X(ν,J )

∼= B(λ), where λ = wt(ν, J ).

Furthermore, we have the following way to compute the statistics εa and ϕa on a
rigged configuration.

Proposition 2.10 ([81,87,88]) Let x = min{min J (a)
i | i ∈ Z>0}; i.e., the smallest

rigging in (ν, J )(a). We have

εa(ν, J ) = −x, ϕa(ν, J ) = p(a)∞ − x .

Remark 2.11 Proposition 2.10 states that we could define fa(ν, J ) = 0 if and only if
ϕa(ν, J ) = p(a)∞ − x = 0.

We will need the complement rigging involution η : RC(B) → RC(Brev), where
Brev is B in the reverse order. The map η is given on highest weight rigged configu-
rations by replacing each rigging with its corresponding corigging and then extended
as a Uq(g0)-crystal isomorphism.

Additionally, rigged configurations are known to be well-behaved under virtualiza-
tion [75,76,88]. We construct a virtualization map v : RC(B) → RC(B̂), where the
virtual rigged configuration (̂ν, Ĵ ) := v(ν, J ) is given by

m̂(b)
γai = m(a)

i , (2.7a)
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Ĵ (b)
γai = γa J (a)

i , (2.7b)

for all b ∈ φ−1(a). Moreover, we have

p̂(b)
γai = γa p(a)

i (2.8)

for all b ∈ φ−1(a).

2.6 Statistics

We now describe two important statistics that arise from mathematical physics. The
first is defined on tensor products of KR crystals and the second is defined on rigged
configurations.

Let Br ,s and Br ′,s′
be KR crystals of type g. The local energy function H : Br ,s ⊗

Br ′,s′ → Z is defined as follows. Let b̃′ ⊗ b̃ = R(b ⊗ b′), and define the following
conditions:

(LL) e0(b ⊗ b′) = e0b ⊗ b′ and e0(̃b′ ⊗ b̃) = e0b̃′ ⊗ b̃;
(RR) e0(b ⊗ b′) = b ⊗ e0b′ and e0(̃b′ ⊗ b̃) = b̃′ ⊗ e0b̃.

The local energy function is given by

H
(
ei (b ⊗ b′)

) = H(b ⊗ b′) +

⎧
⎪⎨

⎪⎩

−1 if i = 0 and (L L),

1 if i = 0 and (R R),

0 otherwise,

(2.9)

and it is known H is uniquely defined up to an additive constant [33]. We normalize
H by the condition H

(
u(Br ,s) ⊗ u(Br ′,s′

)
) = 0.

Next consider Br ,s , and let b� be the unique element such that ϕ(b�) = ��0, where
� = min{〈c, ϕ(b)〉 | b ∈ Br ,s}. We then define DBr ,s : Br ,s → Z, following [22], by

DBr ,s (b) = H(b ⊗ b�) − H(u(Br ,s) ⊗ b�).

Let B =⊗N
i=1 Bri ,si . We define energy [20] D : B → Z by

D =
∑

1≤i< j≤N

Hi Ri+1Ri+2 · · · R j−1 +
N∑

j=1

DBr j ,s j R1R2 · · · R j−1, (2.10)

where Ri and Hi are the combinatorial R-matrix and local energy function, respec-
tively, acting on the i-th and (i +1)-th factors and DBr j ,s j acts on the rightmost factor.
Note that D is constant on classical components since H is and R is a U ′

q(g)-crystal
isomorphism.
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For rigged configurations, we define a statistic called cocharge as follows. First
consider a configuration ν, and define the cocharge of ν by

cc(ν) = 1

2

∑

(a,i)∈H0
(b, j)∈H0

(αa |αb)min(tbυai, taυb j)m(a)
i m(b)

j . (2.11)

To obtain the cocharge of a rigged configuration (ν, J ), we add all of the riggings to
cc(ν):

cc(ν, J ) = cc(ν) +
∑

(a,i)∈H0

t∨a
∑

x∈J (a)
i

x . (2.12)

Moreover, it is known that cocharge is invariant under the classical crystal operators.

Proposition 2.12 ([87,88]) Fix a classical component X(ν,J ) as given in Theorem 2.9.
The cocharge cc is constant on X(ν,J ).

Let q be an indeterminate. The one-dimensional sum is defined as

X(B, λ; q) =
∑

b∈P(B;λ)

q D(b), (2.13)

whereP(B; λ) denotes the classically highest weight elements of B of classical weight
λ. The fermionic formula is defined as

M(B, λ; q) =
∑

ν∈C(B;λ)

qcc(ν)
∏

(a,i)∈H0

[
m(a)

i + p(a)
i

m(a)
i

]

q

, (2.14)

where C(B; λ) are all B-configurations of classical weight λ and
[a

b

]
q is the usual

q-binomial. Note that J (a)
i of a highest weight rigged configuration can be considered

as a partition in a p(a)
i × m(a)

i box for all (a, i) ∈ H0. Thus we can write

M(B, λ; q) =
∑

(ν,J )∈RCH W (B;λ)

qcc(ν,J ).

Now we recall the X = M conjecture of [20,22].2

Conjecture 2.13 (X = M conjecture) Let B be a tensor product of KR crystals of type
g. Then we have

X(B, λ; q) = M(B, λ; q).

2 To obtain the formulas of [20,22], we need to substitute q = q−1.
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Consider a virtualizationmap v : B → Bv . We first define the virtual combinatorial
R-matrix Rv : Bv ⊗ B ′v → B ′v ⊗ Bv as the restriction of the type ĝ combinatorial
R-matrix R̂ to the image of v. We note that it is not clear that Rv is well-defined, but
this follows for Br ,1⊗ Br ′,1 for dual untwisted types from the results of [49,51,53,77].
Thus, we may define virtual analogs of (local) energy and cocharge by

Hv(b ⊗ b′) := γ −1
0 Ĥ

(
v(b) ⊗ v(b′)

)
,

Dv(b) := γ −1
0 D̂

(
v(b)

)
,

ccv(ν, J ) := γ −1
0 ĉc(̂ν, Ĵ ).

Hence, we define

Xv(B, λ; q) =
∑

b∈P(B;λ)

q Dv(b),

Mv(B, λ; q) =
∑

(ν,J )∈RCH W (B;λ)

qccv(ν,J ).

Proposition 2.14 ([76]) Let Bv be a virtual crystal of B. Then we have

Dv(b) = D(b),

ccv(ν, J ) = cc(ν, J ).

Moreover, we have

Xv(B, λ; q) = X(B, λ; q),

Mv(B, λ; q) = M(B, λ; q).

2.7 Kleber algorithm

These results will be used in Sect. 9.
We first recall the Kleber algorithm [44] for when g is an affine type such that g0

is simply-laced. For x, y ∈ P
+
, let dxy := x − y.

Definition 2.15 (Kleber algorithm) Let B be a tensor product of KR crystals of type g.
The Kleber tree T (B) is a tree whose nodes will be given by weights in P

+
and edges

are labeled by dxy ∈ Q
+\{0} and constructed recursively as follows. Begin with T0

being the tree consisting of a single node of weight 0. We then do the following steps
starting with � = 1.

(K1) Let T ′
� be obtained from T�−1 by adding

∑n
a=1 �a

∑
i≥� L(a)

i to the weight of
each node.

(K2) Construct T� from T ′
� as follows. Let x be a node at depth � − 1. Suppose there

is a weight y ∈ P
+
such that dxy ∈ Q

+\{0}. If x is not the root, then let w be
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the parent of x . Then we have dwx − dxy ∈ Q
+\{0}. For all such y, attach y as

a child of x .
(K3) If T� �= T�−1, then repeat from (K1); otherwise terminate and return T (B) = T�.

Now we convert the tree to highest weight rigged configurations as follows. Let x be a
node at depth p in T (B), and x0, x1, . . . , x p = x be the weights of nodes on the path
from the root of T (B) to x . The resulting configuration ν is given by

m(a)
i = (xi−1 − 2xi + xi+1 | �a)

where we make the convention that x = x j for all j > p. We then take the riggings

over all possible values between 0 and p(a)
i .

Remark 2.16 We can reformulate the construction of the configuration ν in the follow-
ing ways. Suppose dxi−1xi = ∑

b∈I k(b)
i αb for all 1 ≤ i ≤ p. There are k(a)

i rows of

length i in ν(a).We also have ν(a) equal to the transpose of the partition k(a)
1 k(a)

2 · · · k(a)
p ,

or we stack a column of height k(i)
a over all i .

When g0 is of non-simply-laced type, we use the virtual Kleber algorithm [76] by
using virtual rigged configurations.

Definition 2.17 (Virtual Kleber algorithm) The virtual Kleber tree is defined from the
Kleber tree of B̂ in the ambient type, but we only add a child y to x in step (K2) if the
following conditions are satisfied:

(V1) (y | α̂b) = (y | α̂b′) for all b, b′ ∈ φ−1(a).
(V2) For all a ∈ I0, if � − 1 /∈ γaZ, then the coefficient of αa in dwx and dxy , where

w is the parent of x , must be equal.

Let T̂ (B) be the resulting tree, whichwewill call the ambient tree. Let γ = maxa∈I γa .
We now select nodes which satisfy either:

(A1) y is at depth � ∈ γ Z, or

(A2) (dxy | �̂a) = 0 for every a such that 1 < γ = γa , where x is the parent of y.

We construct the final rigged configurations from the selected nodes by devirtualizing
the (virtual) rigged configurations obtained from the usual Kleber algorithm satisfying
Equation (2.7b) (note that Equation (2.7a) is satisfied by (V1) and (V2)).

2.8 KSS-type bijection

In this section, we describe the (conjectural) KSS-type bijection �̃ : RC(B) → B.
Let B be a tensor product of KR crystals. We consider B expressed in terms

of the so-called Kirillov–Reshetikhin (KR) tableaux of [69,88,93]. KR tableaux,
generally speaking, are r × s rectangular tableaux filled with entries of B1,1 and
determined by their classically highest weight elements. Following [43], we define a
map �̃ : RC(B) → B recursively by the composition of

δ̃ : B1,1 ⊗ B• → B•,
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b ⊗ b• �→ b•,
lb : Br ,1 ⊗ B• → B1,1 ⊗ Br−1,1 ⊗ B• (r �= 1),

b1
...

br−1

br

⊗ b• �→ br ⊗
b1
...

br−1

⊗ b•,

ls : Br ,s ⊗ B• → Br ,1 ⊗ Br ,s−1 ⊗ B• (s ≥ 2),

b11 b12 · · · b1s
...

...
. . .

...

br1 br2 · · · brs

⊗ b• �→
b11
...

br1

⊗
b12 · · · b1s
...

. . .
...

br2 · · · brs

⊗ b•,

where B• is a tensor product of KR crystals, and their corresponding maps on rigged
configurations. We do not explicitly recall the map δ̃ on rigged configurations here as
it strongly depends upon type and we later give a more uniform description of the map.
Instead we refer the reader to [71,74,93] for the explicit (type-dependent) descriptions.
Note that δ̃ is currently only described/known for non-exceptional affine types, type
E (1)
6 , and type D(3)

4 .3 Moreover, δ̃ is the key component of the bijection. The map lb
is given for all non-exceptional types by adding a length 1 singular row to all ν(a) for
all a < r . The map ls is the identity map.

We recall and consolidate some of the conjectures given in [88] and has been known
to experts prior.

Conjecture 2.18 Let B be a tensor product of KR crystals of affine type. Then
�̃ : RC(B) → B is a (classical) crystal isomorphism such that D ◦ �̃ ◦ η = cc
and the diagram

RC(B)
�̃

id

B

R

RC(B ′)
�̃

B ′

commutes, where B ′ is a reordering of the factors of B.

Whenwe restrict �̃ to classically highestweight elements, this gives a combinatorial
proof of the X = M conjecture of [20,22].

In type A(1)
n , it was shown in [43] that Conjecture 2.18 holds on classically highest

weight elements, and as such, the analogous (conjectural) bijections are known as
KSS-type bijections. This was an extension of the pioneering work of Kerov, Kirillov,
and Reshetikhin in [41,42], where they showed Conjecture 2.18 is true for classically

3 A map for when the left factor is B2,1 of type E(1)
6 was conjectured in [4].
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highest weight elements in the special case B = (B1,1)⊗N of type A(1)
n . In [14], it

was shown that �̃ is a classical crystal isomorphism in type A(1)
n and a U ′

q(g)-crystal
isomorphism in [92]. Furthermore, Conjecture 2.18 is known to (partially) hold in
many different special cases for classically highest weight elements across the non-
exceptional types [69,74–76,86,88,89], with recent and some progress has been made
in the exceptional types [71,93]. Furthermore, in [81], it was shown that �̃ is a classical
crystal isomorphism in type D(1)

n . Recently, the general case for type D(1)
n was proven

in [70] and all non-exceptional types in [73].
Aswewill need it later on, we recall the general steps of the proof that �̃ is a statistic

preserving bijection on highest weight elements for B = ⊗N
k=1 B1,1 when rk = 1

for all k. Let (ν, J ) ∈ RCH W (B; λ). Define (ν, J ) = δ̃(ν, J ) and let r be the return
value from δ̃. Denote by β

(rN )
1 , β

(rN )

1 the length of the first column in ν(rN ), ν(rN ),
respectively.

There are five things the need to be verified to show that �̃ is a statistic preserving
bijection on classically highest weight elements for B = BrN ,1 ⊗ B•, where B• is a
tensor product of KR crystals:

(I) λ − wt(r) is dominant.
(II) δ̃(ν, J ) ∈ RCH W

(
B•, λ − wt(r)

)
.

(III) r can be appended to (ν, J ) to give (ν, J ).
(IV) For N ≥ 2, we have

cc(ν, J ) − cc(ν, J ) = t∨rN

c∨
0

β
(rN )
1 − χ(bN = ∅). (2.15)

(V) For N ≥ 2, we have

H(bN ⊗ bN−1) = t∨rN

c∨
0

(
β

(rN )
1 − β

(rN )

1

)
− χ(bN = ∅) + χ(bN−1 = ∅),

(2.16)

where χ(S) is 1 if the statement S is true and 0 otherwise.
We remark that Equation (2.15) and Equation (2.16) are those given in [74,

Lemma 5.1].
Next, we will need dual notions of the maps δ̃, lb, and ls acting on the right, which

we denote by δ̃�, rb, and rs. First, we recall the definition of Lusztig’s involution
� : B(λ) → B(λ), the unique Uq(g0)-crystal involution satisfying

(ei b)� = fξ(i)b
�, ( fi b)� = eξ(i)b

�, wt(B�) = w0 wt(b), (2.17)

where w0 is the long element of the Weyl group of g0 and ξ : I0 → I0 is defined
by w0�i �→ �ξ(i) and w0αi = −αξ(i). In particular, Lusztig’s involution sends the
highest weight element to the lowest weight element. We extend Lusztig’s involution
to an involution � : Br ,s → Br ,s by defining ξ(0) = 0 and satisfying Equation (2.17)
and sends the maximal element to the minimal element, the unique element of weight
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−wt
(
u(Br ,s)

)
. We also can extend Lusztig’s involution to tensor products by a natural

isomorphism

(B2 ⊗ B1)
� ∼= B�

1 ⊗ B�
2

given by (b2⊗b1)� = b�
1⊗b�

2. Then we define on classically highest weight elements

δ̃� := ↑ ◦ � ◦ δ̃ ◦ �, rb := � ◦ lb ◦�, rs := � ◦ ls ◦�,

where ↑(b) is the classically highest weight corresponding to b. By considering � :=
↑ ◦ �, we also have

δ̃� = � ◦ δ̃ ◦ �, rb = � ◦ lb ◦�, rs = � ◦ ls ◦ � .

We then extend these maps as classical crystal isomorphisms.

3 Minuscule ı for dual untwisted types

In this section, we describe the map δ used to construct � for minuscule fundamental
weights when g is of dual untwisted affine type. More explicitly, we restrict ourselves
to simply-laced affine types and types A(2)

2n−1 and D(2)
n+1 as types D(3)

4 and E (2)
6 do not

contain any minuscule fundamental weights. Note that for these types, we have ta = 1
for all a ∈ I .

We construct the map δr : Br ,1 ⊗ B• → B•, where B• is a tensor product of KR
crystals and �r is a minuscule weight of type g0 (i.e., r is a special node) as follows.
Start at b1 = u�r

, and set �0 = 1. Consider step j . From b j , let � j denote a minimal

ia ≥ � j−1 (a ∈ I0 also varies) such that fab j �= 0 and ν(a) has a singular row of
length ia that has not been previously selected. If no such row exists, terminate, set all
� j ′ = ∞ for j ′ ≥ j , and return b j . Otherwise select such a row in ν(a) and repeat the
above with b j+1 := fab j .

We form the new rigged configuration by removing a box from each row selected
by δr , making the resulting rows singular, and keeping all other rows the same.

Example 3.1 Consider type D(1)
5 and B = B5,1 ⊗ B4,1 ⊗ B1,1 ⊗ B5,1. See Fig. 4 for

the crystal graphs of B(�4) and B(�5) and Fig. 2 for the crystal graph of B(�1). We
compute the bijection
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�1

�2

�3

�4

0
0

0
0

0
0
0

0
0
0

0
0
0
0

0
0
0
0

0
0

1
1

0
0
0

0
0
0

δ5 (returns 14)

�1

�2

�3 �4�5

�601 0
0

0
0

0
0
0

0
0
0

0
0

0
0

0
0

0
0

δ4 (returns 14)

�1 �2 �3 �100 00 00 ∅ 00

δ1 (returns 45)

∅ ∅ ∅ ∅ ∅

δ5 (returns 5)

∅ ∅ ∅ ∅ ∅

where at each step, we have labeled the sequence of boxes that are removed under δr .
Recall that we are using the notation for minuscule nodes, so for an element b, any
a ∈ b (resp. a ∈ b) corresponds to εa(b) = 1 (resp. ϕa(b) = 1) and is 0 otherwise.
By using the sequence of returned elements above, we obtain

0
0

0
0

0
0
0

0
0
0

0
0
0
0

0
0
0
0

0
0

1
1

0
0
0

0
0
0

��−→ 14 ⊗ 14 ⊗ 45 ⊗ 5.

4 Adjoint ı for dual untwisted types

In this section, we describe the map δθ := δNg for the adjoint node Ng for dual
untwisted types (i.e., ta = 1 for all a ∈ I or equivalently, g is of simply-laced affine
type, A(2)

2n−1, D(2)
n+1, D(3)

4 , E (2)
6 ). Furthermore, we give a uniform proof that � is a

statistic preserving bijection.
We define the map δθ : Bθ,1 ⊗ B• → B•, where B• is a tensor product of KR

crystals, by the following algorithm. Begin with r1 = uθ being the highest weight
element in B(θ) ⊆ Bθ,1, and set �0 = 1. Consider step j such that r j = xβ , where
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4

34

235 25

125 1235 134 14

15 135 1234 124

24 234

35

5

4

3
5

2 2
5 3 4

1 1 1 1
5 3 4

2 2
4

3

5

5

35

234 24

124 1234 135 15

14 134 1235 125

25 235

34

4

5

3
4

2 2
4 3 5

1 1 1 1
4 3 5

2 2
5

3

4

Fig. 4 The crystals B(�4) (left) and B(�5) (right) in type D5

β > 0 and β �= αa for all a ∈ I0. From r j , consider any outgoing arrow labeled
by a and find the minimal ia ≥ � j−1 such that ν(a) has a singular row of length
ia which has not been previously selected. If no such row exists, terminate, set all
� j ′ = ∞ for j ′ ≥ j and � j ′ = ∞ for all j ′, and return r j . Otherwise select such a
row, set � j = mina ia , and repeat the above with r j+1 := fa′r j , where a′ is such that
ia′ = mina ia . If r j = xαa for some a ∈ I0, we do one of the following disjoint cases.
We discard all previously selected (singular) rows.

(S) If there exists a singular row of length ia ≥ max{� j−1, 2},4 select such a row and
set � j = ia .

(E) If there exists a singular row of length 1 and � j−1 = 1, we terminate, set � j = 1
and � j ′ = ∞ for all j ′, and return ∅.

(Q) If there exists a quasisingular row of length ia ≥ � j−1, we select the quasisingular
string and set � j = ia .

(T) Otherwise we terminate, set � j = � j ′ = ∞ for all j ′, and return xαa .

If the process has not terminated, set r j+1 := ya and perform the following. Let
�0 = �h , where h =∑a∈I0 ca , i.e., the height of θ or the number of steps we currently
have done. Consider step j , and consider any outgoing arrow labeled by a from r j .
Find the minimal ia ≥ � j−1 such that ν(a) has a singular row of length ia such that

4 Note that if � j−1 = 1 and there exists a singular row of length 1, then we would not be in this case as
ia = 1 < max{� j−1, 2} = 2.
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(D) it had been selected at step j ′ with � j ′ = ia or
(N) it had not been previously selected and Case (D) does not occur.

If no such row exists, terminate, set all � j ′ = ∞ for j ′ ≥ j , and return r j . Otherwise
select such a row, set � j = mina ia , redefine � j ′ := � j ′ − 1 if Case (D) had occurred,
and repeat the above with r j+1 := fa′r j , where a′ is such that ia′ = mina ia .

We form the new rigged configuration by

(1) removing a box from each row each time it was selected by δ (i.e., if Case (D)
occurred, then we remove 2 boxes);

(2) making the resulting rows singular unless Case (Q) occurred, then we make the
row selected by �1 (if �1 �= ∞) quasisingular; and

(3) keeping all other rows the same.

Note that the same row cannot be selected twice by Case (D) due to the redefinition
of � j ′ . We clearly cannot have more than xαa in this process since αa is a simple root
and hence has no directed path between them by the crystal axioms.

Remark 4.1 This is the (conjectural) map δ of bin Mohammad [4] for g of type E (1)
6 .

Moreover, this was the map δ̃ for g of type D(2)
n+1 in [74] and of type D(3)

4 in [93].

Remark 4.2 We can extend this description for types C (1)
n , A(2)

2n , and A(2)†
2n . Indeed,

since Bθ,1 for type A(2)
2n (resp., type A(2)†

2n ) does not contain any elements ya , for
a ∈ I0 (resp., a = 0), as noted in Remark 2.6 (resp. Remark 2.7), we modify the
definition of δθ by removing Case (Q) (resp., Case (E)) as a possibility. Likewise for
type C (1)

n , we do not have ya for all a ∈ I , so we modify the definition of δθ by
removing both Case (Q) and Case (E) and combine Case (S) with the first Case (D)

(think of performing these steps simultaneously to do xα1

1−−−→ x−α1 ), but we also

need to consider the parts of ν(n) doubled as per Remark 2.8.

Wehave the following classification of elements in B(θ) andwill be used to describe
the KR tableaux of type E (1)

8 and E (2)
6 .

Proposition 4.3 Let g be of simply-laced or twisted type, and fix some b ∈ B(θ). Then
b has the following properties.

• b is uniquely determined by ε and ϕ.
• wt(b) = 0 if and only if there exists a unique i ∈ I0 such that εi (b) = ϕi (b) = 1

and ε j (b) = ϕ j (b) = 0 for all j �= i .
• εi (b) = 2 implies ε j (b) = 0 for all j �= i .
• ϕi (b) = 2 implies ϕ j (b) = 0 for all j �= i .

Proof This follows from the description of B(θ). �

Thus, similar to types E6,7, we can equate our elements in B(θ) by multisets of
{1, 1, 2, 2, . . . , n, n}, which as above, we write as words.
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Example 4.4 Consider type E (2)
6 and B = (B1,1)⊗4. See Fig. 5 for the corresponding

classical crystal B(�1). We compute the bijection

�1

�2

�3

�4

�5

�6

�7

�9

�8

�10

�11

�12

�13

�14�151
0

2
1

1
1
2
2

0
0
0

0
0
0

0
0
0
0
0
0

0
0

0
0

0
0
0
0

0
0

0
0

δθ (returns 12)

�1 0
1

0
2

0
0
0

0
0
0

0
0

0
0

00

δθ (returns 12)

�1

�2

�3

�4

�5

�6�7�8 1
1

1
1

0
0
0

0
0
0

0
0

0
0

00

δθ (returns ∅)

∅ ∅ ∅ ∅
and the final application of δθ returns 1. As with Example 3.1, we label the sequence
of boxes removed under δθ , but in our labeling here, we have �k−h = �k for all k ≥ h.
Note that for the first (resp. third) application of δθ , we used Case (Q) (resp. Case (E))
when at xα1 = 211. Hence, the result of applying � is the element

12 ⊗ 12 ⊗ ∅ ⊗ 1.

Example 4.5 Consider type E (2)
6 and B = (B1,1)⊗3. We compute the bijection

�1

�8

1
0

1
1

�2

�5

�7 0
0
0

0
0
0

�3

�6 0
0

0
0

�4 00

δθ (returns 11)

1
0

1
1

0
0
0

0
0
0

0
0

0
0

00
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1

12

32 432 421 41

42 4321 431

321 3221

211 11

22

211

3221

321

431

4321

41

421

42 432 32

21

1

1

2
3 2 1

4 4 4
2 1

3 3
1

2
1 1

2 2

1
2

3

3
1 1

4

4

2 2
4 3

2

1

Fig. 5 The crystal graph of B(�1) in the dual of type F4 (i.e., the usual labeling of F4 has become i ↔ 5−i)

used in constructing B1,1 in type E(2)
6

the second application of δθ is similar and also returns 11 and the final returns 1. Note
that in the examples above we are in Case (Q) when performing δθ as we disregarded
the previously selected singular row in ν(1) (as in Example 4.4). Hence, the result of
applying � is the element

11 ⊗ 11 ⊗ 1.

Example 4.6 Consider type E (2)
6 and B = (B1,1)⊗3. We compute the bijection

�1

�6�12

�16 1
1

1
1

�2

�5

�8�9

�13

�15

0
0
0

0
0
0

�3

�7�10

�14

0
0

0
0

�4�11 00

δθ (returns 1)

∅ ∅ ∅ ∅

and the last two applications of δθ return 1. In this example, we are in Case (S) when at
xα2 = 3221 and then the remaining strings are selected according to Case (D). Hence,
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the result of applying � is the element

1 ⊗ 1 ⊗ 1.

5 Extending the left-boxmap

In this section, we describe a generalization of the left-box map in order to give a
tableau description of the crystals Br ,1 for dual untwisted types. To do so, we first
construct lb-diagrams, which are digraphs on I0 such that

• every node has at most one outgoing edge,
• there is a unique sink σ , and

• each arrow r
b−−−→ r ′ is labeled by b ∈ B(�σ ) such that εa(b) = δar ′ and

ϕa(b) = δar .

For a fixed lb-diagram D, we define the left-box map on rigged configurations

lb : RC(Br ,1) → RC(Bσ,1 ⊗ Br ′,1), where we have the arrow r
b−−−→ r ′ in D as

follows. Let ea1ea2 · · · eam b = u�σ
, and define lb(ν, J ) as the rigged configuration

obtained by adding a singular row of length 1 to ν(ai ), for all 1 ≤ i ≤ m. By weight
considerations, the map is well-defined since the result is independent of the order of
the path from b to the highest weight. Note that we can consider δ ◦ lb to be the same
procedure as δ except starting at b.

Next, we define lb on Br ,1 by requiring that the diagram

RC(Br ,1)
lb

�

RC(Bσ,1 ⊗ Br ′,1)

�

Br ,1
lb

Bσ,1 ⊗ Br ′,1

commutes, where again σ is the unique sink in the lb-diagram. In particular, we note
that lb is a strictUq(g0)-crystal embedding. Therefore, we defineKirillov–Reshetikhin
(KR) tableaux as the tableaux given by iterating the lb map, where the entries elements
in Bσ,1 and the classical crystal structure is induced by the reverse column reading
word. See Appendix A for the description of Br ,1 in types E (1)

6,7,8 and E (2)
6 .

For example, consider for lb : Br ,1 → Bσ,1 ⊗ Bσ,1 corresponding to the arrow

r
b−→ σ , we can use this to construct the tableau x

y
, where x, y ∈ Bσ,1, given by

its image under lb, which is y ⊗ x . We also note that the construction of the KR
tableaux is dependent upon the choice of lb-diagram.

We then extend the left-box map to lb : Br ,1 ⊗ B• → Bσ,1 ⊗ Br ′,1 ⊗ B•, with
respect to the lb-diagram D, as the strictUq(g0)-crystal embedding given by b⊗b• �→
lb(b) ⊗ b•.
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Wenote that this is a generalization of the lbmap for theKSS bijection. Specifically,
for the non-exceptional types, the defining lb-diagram is

1 2 · · · n − 1 n
1 2 n − 2 n − 1

.(5.1)

For type E (1)
6 , we use the lb-diagram

1

2

3 4

56

13 34

26 25

16

. (5.2)

(Note that the edges are labeled by the elements given in Fig. 3). We have chosen
the lb-diagram to minimize the distance from node r to σ and each edge label b has
minimal depth from u�σ

.

Example 5.1 In type E (1)
6 for B6,1 ⊗ B6,1, we have for

(ν, J ) = ∅ 00 00 0
0

0
0

0
0

0
0

0
0

0
0

,

lb(ν, J ) = 0
0

0
0

0
0

0
0

0
0
0

0
0
0

0
0
0
0

0
0
0
0

0
0
0

0
0
0

0
0

0
0

,

which is in RC(B1,1 ⊗ B1,1 ⊗ B6,1). In particular, we added 2 singular rows of length
1 to ν(1), ν(3), ν(4) and 1 such row to ν(2), ν(3), ν(5) since 1 = e1e3e4e2e5e4e3e1(16).

Note that 16 comes from the edge 1
16←−− 6 in the lb-diagram. Thus, we obtain

�
(
lb(ν, J )

) = lb
(
�(ν, J )

) = 6 ⊗ 1 ⊗ 1

16
, �(ν, J ) = 1

6
⊗ 1

16
.

Remark 5.2 We could alternatively use the lb-digram for type E (1)
6 by having the edge

3
23←−−− 2 instead of 6

26←−−− 2. However, this results in different KR tableaux.

Using δ6, we define the lb∨-diagram for type E (1)
6 by

1 2 3

456

16

12 23

4556
. (5.3)
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Note that this is a usual lb-diagram, but we name it in parallel to the contragredient
dual (recall B(�1)

∨ = B(�6) and we can define δ∨
1 = δ6).

For type E (1)
7 , the definition of left-box we use is given by the lb-diagram

1 2 3

4567
67 56 45

12

17

23

. (5.4)

We note that other lb-diagrams are possible, but we use the one in (5.4) for its similarity
to (5.2).

Example 5.3 In type E (1)
7 for B4,1, consider the rigged configuration

(ν, J ) = 00 0
0

0
0

1
0

1
1

0
0
0
0

0
0
0
0

0
0
0

0
0
0

0
0

0
0

00 .

Note that e7e6e5(45) = 7, and so we have

lb(ν, J ) = 00 0
0

0
0

1
0

1
1

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0

0
0
0

0
0

0
0

in RC(B7,1 ⊗ B5,1). Next, by applying δ7, we remove the following boxes:

�1

�2

�3�4

�5

�6�7

�8 �9

�10

�1100 0
0

0
0

1
0

1
1

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0

0
0
0

0
0

0
0

.

Thus δ7 returns 137 and the resulting rigged configuration (δ7 ◦ lb)(ν, J ) ∈ RC(B5,1)

is the following:

∅ 00 00 0
0

0
0

0
0

0
0

00 ∅ .

Since e7e6(56) = 7, applying lb results in

∅ 00 00 0
0

0
0

0
0

0
0

0
0

0
0

00 ,

and applying δ7 selects

�1

�2�3�4

�5 �6 �7 �8 �9∅ 00 00 0
0

0
0

0
0

0
0

0
0

0
0

00 ,
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Table 2 The map δv
r for the

virtualization map v given by
g → g∨

g B(1)
n C(1)

n F(1)
4 G(1)

2

g∨ D(1)
n+1 D(2)

n+1 E(2)
6 D(3)

4

r n 1 4 1

δv
r δ̂n ◦ δ̂n+1 δ̂1 δ̂1 ◦ δ̂1 ◦ l̂b δ̂1 ◦ δ̂1 ◦ l̂b ◦ δ̂1 ◦ l̂b

Recall that l̂b is the lbmap in type g∨ and is needed to split the resulting
column from the virtualization map

which yields the empty rigged configuration and a return value of 167. Thus, iterating
this, we have

�(ν, J ) =
7

76

167

137

.

For type E (1)
8 , the lb-diagram is

1 2 3

45678
78 67 56 45

12

18

23

. (5.5)

For type E (2)
6 , we use the lb-diagram

1 2 3

4

12 23

14

. (5.6)

6 Untwisted types

Let g be of typeC (1)
n , F (1)

4 , orG(1)
2 . For these types, we note that there is a virtualization

map v to the corresponding dual type g∨ and that the scaling factors (γa)a∈I are exactly
those considering g as a folding of the corresponding simply-laced type ĝ. For type
G(1)

2 to D(3)
4 , we also need to interchange 1 ↔ 2 due to our numbering conventions.

However, for type B(1)
n , wewill use the embedding into type D(1)

n+1 as it affords an easier

proof than A(2)
2n−1. Using this, we construct the bijection � by showing it commutes

with the virtualization map to the dual untwisted type.
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6.1 Themap ır

It is known that Br ,1 can be realized as a virtual crystal inside of

B̂r ,1 =

⎧
⎪⎨

⎪⎩

Bn+1,1 ⊗ Bn,1 if g = B(1)
n ,

B2,1 if g = G(1)
2 ,

Br ,1 otherwise,

of type g∨. We want to define the map δr := v−1 ◦ δv
r ◦ v, where r and δv

r are given
in Table 2. Thus, we need to show that

δv
r : R̂C(Br ,1 ⊗ B•) → R̂C(B•)

is well-defined when restricted to the image of v.

Theorem 6.1 Suppose (̂ν, Ĵ ) satisfies Equation (2.7), then δv
r (̂ν, Ĵ ) satisfies Equa-

tion (2.7). Moreover, the map δv
r is well-defined when restricted to the image of v.

Proof We proceed by induction by examining (δv
r )−1, where the base case is done by

δv
r (̂ν, Ĵ ) = (̂ν, Ĵ ), which returns the highest weight element v(u�r

). Next we assume
the claim holds when δv

r returns b̂ := v(b). Fix a ∈ I0. Let (̂ν′, Ĵ ′) be the rigged
configuration such that (ν, J ) := δv

r (̂ν, Ĵ ) = δv
r (̂ν′, Ĵ ′) but with a return value of

f v
a b̂ = v( fab).

For type C (1)
n , we have that (̂ν′, Ĵ ′) differs from (̂ν, Ĵ ) by the addition of γa boxes

to a row in ν̂(a). From Equation (2.8), we have all riggings Ĵ ′ are still multiples of γa′
for all a′ ∈ Î , and the claim follows.

Next we consider type F (1)
4 . The case when f v

a lb(̂b) = ( f v
a b̂2) ⊗ b̂1 is similar to

the type C (1)
n case. Now suppose f v

a lb(̂b) = ( f̂a b̂2) ⊗ ( f̂a b̂1). Note that δ̂−1 for f̂a b̂1
starts at ν(a) and the only singular rows in ν(a′) for γa′ > 1 are the rows selected by
δ̂−1

r by Equation (2.8). Hence, applying δ̂−1 for f̂a b̂2 must select those same rows in
ν(a′) for γa′ > 1 as there are sufficient singular rows in ν(a′) for γa′ = 1 of length
�i j ≤ �k ≤ �i j+1 for all i j ≤ k ≤ i j+1, where �i1, . . . , �iq are the lengths of the

rows selected of ν(a′) for fixed a′ such that γa′ > 1. We note that such rows exists
because b̂2 ≥ b̂1. Once all such rows have been paired, we are equivalent to the case
of b̂′ ⊗ v(u�r

) with all sufficiently long rows non-singular. Hence, the claim follows
by induction.

Now suppose f v
a lb(̂b) = b̂2 ⊗ ( f v

a b̂1) and let (̃ν, J̃ ) and (̃ν′, J̃ ′) denote δ̂−1
r (ν, J )

by adding b̂1 and f v
a b̂1 respectively. Note that any row selected to obtain ν̃′ is at most

as long as that to obtain ν̃ and that δ̂−1
r added γa boxes to this row in obtaining (̃ν′)(a).

Therefore, this case follows from our induction assumption for the case where the
necessary rows are made to be (non-)singular but with a return value of lb(̂b).

The proof for type G(1)
2 is similar. For type B(1)

n , we note that if f̂a (̂b2 ⊗ b̂1) =
( f̂a b̂2) ⊗ b̂1 for a �= n, n + 1, then we must have previously had f̂a act on the right.
Specifically, this is equivalent to having sa have the same sign in both columns of

B(�̂n) ⊗ B(�̂n+1). Thus the proof is also similar for type B(1)
n . �
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Wenote that our proof is almost type independent as it is the same general technique,
but we require some mild type dependencies. We also note that Theorem 6.1, [88,
Rem. 5.15], and [88, Thm. 6.5] implies that we could define δ by considering the
virtualization map of B(1)

n into A(1)
2n−1.

Remark 6.2 Instead of using the scaling factors to enlarge the partitions, we could
instead consider scaling each ν(a) by 1/Ta . So that the partitions have integer lengths,
we scale by (a multiple of) maxa Ta , which the net effect would be to multiply by γa .
This suggests a strong relationship between the Weyl chamber geometry and rigged
configurations through the bijection �.

6.2 Defining lb and general columns

The lb-diagram for type C (1)
n is given by Equation (5.1). For type B(1)

n , the lb-diagram
we consider is

n 1

...

n − 1

1n

(n − 1)n

.

For type F (1)
4 , we use the lb-diagram

4 3 2

1

34 23

14

.

For type G(1)
2 , we want to consider B(�1) as a virtual crystal inside of B(3�1) ⊆

B(�2)⊗ B(�2). This corresponds to adding a singular row of length 1 to ν(2), which

would be of length γ2 in γ2ν
(2). This allows us to construct an lb-diagram as 1

132−−−→ 2.

7 Results

We gather our results and proofs here. We first prove our results for minuscule nodes.
Next will be for the adjoint node. We then extend our results to all single-columns. In
the following subsection, we collect our main results: a uniform description and proof
of the rigged configuration bijection� and X = M for all single-column KR tableaux
in dual untwisted types. We then discuss how � can be extended to a bijection for all
affine types by describing the relation with virtualization. We conclude this section
extending � and X = M uniformly to tensor products of higher level KR crystals
corresponding to minuscule nodes.
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7.1 Minuscule nodes

We assume that g is a dual untwisted type and r is a minuscule node.
We note that δ1 = δ̃ was described by Okado and Sano [71] for type E (1)

6 . It is also

straightforward to see that δ1 = δ̃ in type A(1)
n (given in [41,42]) and type D(1)

n and
A(2)
2n−1 (given in [74]). We collect these results the following theorem.

Theorem 7.1 Let B = ⊗N
i=1 B1,1 be of type A(1)

n , D(1)
n , E (1)

6 , or A(2)
2n−1. The map

�̃ : RC(B) → B is a bijection such that �̃ ◦ η sends cocharge to energy.

Weneed a few facts about minuscule representations (see, e.g., [96]). Let W = 〈sa |
a ∈ I0〉 be theWeyl group of g0 with sa being the simple reflection corresponding toαa .
The cosets W/W r̂ , where W r̂ is the parabolic subgroup generated by 〈si | i ∈ I0\{r}〉,
parameterize the elements B(�r ). Specifically, we have

B(�r ) = {bw := fa1 · · · fa�
u�r

| w = sa1 · · · sa�
∈ W/W r̂ }, (7.1)

where the elementsw are the minimal length coset representatives. Furthermore, there
reduced expressions of w give all paths from bw to u�r

.

Lemma 7.2 Let �r be a minuscule weight. Then 0 ≤ εa(b) + ϕa(b) ≤ 1 for all
b ∈ B(�r ) and a ∈ I0.

Proof The claim follows immediately from Equation (7.1). �
The following lemma is the key fact for minuscule nodes, which is a generalization

of [71, Lemma 2.1].

Lemma 7.3 Let λ ∈ P+. Then λ is a minuscule weight if and only if the crystal graph
of B(λ) has the following properties:

(A) Consider a path P in B(�r ) such that the initial and terminal arrows have the
same color a. Then either

(a) there are exactly two arrows colored by a′ and a′′ in P such that a′ ∼ a and
a′′ ∼ a, or

(b) there is exactly one arrow colored by a′ in P such that Aaa′ = −2.

(B) Consider a length 2 path with colors (a, a′) in B(�r ) with a � a′. Then there
exists a length 2 path (a′, a) with the same initial and terminal vertices in B(�r ).

Proof We recall that λ ∈ P+ is minuscule implies λ is a fundamental weight. By
Equation (7.1), property (A) is given by [95, Prop. 2.3] and (B) was shown in [78] for
the simply-laced case and the general case by [95, Prop. 2.1]. �
Remark 7.4 The conditions (2) and (4) of [71, Lemma 2.1], respectively, are conse-
quences of (A) and (B) of Lemma 7.3, respectively, which correspond to (1) and (3)
in [71], respectively. Thus we have only stated the necessary properties.
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One important consequence of Lemma 7.3 is that the result of δr does not depend
on the choice of a′ such that ia′ = mina ia at each step. Another is that the proof given
in [71] holds in this generality except for a fact about the local energy function (i.e.,
part (V)). Recall that we need to show H(bN ⊗bN−1) is equal to the number of length
1 singular rows selected by δr in ν(r), which implies that � preserves statistics. Note
that we have already shown that � is a bijection.

Next, we compute the (local) energy function on classically highestweight elements
in Br ,1 ⊗ Br ,1.

Theorem 7.5 Let �r be a special node. Then for classically highest weight elements
b ⊗ us′�r

∈ Br ,s ⊗ Br ,s′
, we have H(b ⊗ us′�r

) equal to the number of r-arrows in

the path from b to us�r
in B(s�r ).

Proof First recall that for r to be a special node, there exists a diagram automorphism
φ such that r = φ(0). Therefore, if we consider the finite-type gr given by Ir :=
I\{r}, then the corresponding fundamental weight �̌0 is minuscule. We note that
Br ,s ∼= B(s�̌0) as Uq(gr )-crystals, and the classically highest weight element in Br ,s

is the Ir -lowest weight element in B(s�̌0). Hence, for every classically highest weight
element b ⊗ us′�r

∈ Br ,s ⊗ Br ,s′
, there exists a path to us�r

⊗ us′�r
using the crystal

operators fa , for a ∈ I\{r}. Moreover, the crystal operators only act on the left-most
factor since ϕ(us�r

) = s�r . The number of 0-arrows is equal to the number of r -

arrows in the path from b to us�r
in B(s�r ) because fr f0b = f0 fr b as r � 0. Hence,

we have H(b ⊗ us′�r
) as claimed. �

It remains to show the local energy function satisfies Equation (2.16).

Lemma 7.6 Part (V) holds for

B =
N⊗

i=1

Br ,1

when �r is a minuscule weight.

Proof Note that in order for the second application of δr to return u�r
, there must not

exist any singular rows in ν(r) after the first application of δr . Hence all rows selected
in ν(r) must have length 1. Thus the claim holds on classically highest weight elements
of Br ,1 ⊗ Br ,1 by Theorem 7.5.

Thus, to show this holds in the general case ofb′⊗b,weuse inductionon the classical
components in Br ,1 ⊗ Br ,1. We note that we are not applying fr to the crystal/rigged
configuration, but instead looking at how the two left-most factors differ, which results
in a box being added to a row in ν(r). Indeed, we show the claim holds by showing
the additional box removed to obtain fa(b′ ⊗ b) must not have come from a length 1
row as H(b′ ⊗ b) = H

(
fa(b′ ⊗ b)

)
for all a ∈ I0.

Suppose fr (b′ ⊗ b) = b′ ⊗ ( fr b) and let (ν′, J ′) be the corresponding rigged
configuration. We note that the element b′ is unchanged, and so δr selects the same
number of boxes in ν(r) as in ν′(r). There must be at least one more singular row in
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the r -th partition of δr (ν
′, J ′) than in δr (ν, J ). This implies we must have removed

the same number of (singular) rows of length 1 from ν(r) and ν′(r). Hence, the claim
follows by induction.

The case for a �= r is similar as above except the number of singular rows in the
r -th partition of δr (ν

′, J ′) is at least the same as in δr (ν, J ).
Instead suppose fr (b′ ⊗ b) = ( fr b′) ⊗ b. Let (ν, J ) = δr (ν, J ) = δr (̃ν, J̃ ) with

a return value of b′ ⊗ b and ( fr b′) ⊗ b respectively. Thus, we have εr (b′) ≥ ϕr (b),
and we must have εr (b′) = ϕr (b) = 0 because fr (b′) �= 0 and Lemma 7.2. This
implies that b �= u�r

as ϕr (u�r
) = 1, and so there must exist a singular string in ν(r).

Suppose we select only length 1 singular strings in ν̃(r), then in order for these to be
singular strings in ν(r), wemust have followed twice asmany a-arrows, for a ∼ r , than
r -arrows. However, by Lemma 7.3, we can only select the same number of a-arrows
as r -arrows. This is a contradiction, and hence, the claim follows. �

Thus, we collect all of our results for this section in the following.

Lemma 7.7 Let B =⊗N
i=1 Br ,1, where r is a minuscule node. The map

�r : RC(B) → B,

which is given by applying δr , is a bijection on classically highest weight elements
such that �r ◦ η sends cocharge to energy.

7.2 Adjoint nodes

We assume that g is a dual untwisted type and consider the adjoint node Ng.
As for minuscule representations, there is a bijection between paths xα to xθ and

reduced expressions of minimal length coset representatives in W/W N̂g
(or W/W 1̂,̂n

for type A(1)
n ). We also have an analog of Lemma 7.3 for B(θ).

Lemma 7.8 Consider the path

xαa

a−−−→ ya
a−−−→ x−αa

as a single edge. Then (A) and (B) of Lemma 7.3 holds for B(θ).

Proof This follows from Proposition 4.3 and that W acts transitively on �. �
Lemma 7.9 Let g be such that ta = 1 for all a ∈ I . Let B = ⊗N

i=1 Bθ,1 be a tensor
product of KR crystals. Then the map

� : RC(B) → B

is a bijection on classically highest weight elements such that � ◦ η sends cocharge
to energy.
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We follow the proof of the KSS-type bijection [74]. Recall that we have p(a)∞ =
〈
α∨

a ,wt(ν, J )
〉
. We give our proof when g not of type A(1)

n for simplicity, but the proof

for type A(1)
n follows by considering Ng = {1, n}.

Proof of (I) Suppose λ̃ = λ − wt(r) is not dominant. Thus r �= ya,∅ as wt(ya) =
wt(∅) = 0 for all a ∈ I . Thus the only possibilities which make λ̃ not dominant for
some a is when 0 ≤ 〈α∨

a , λ
〉
< ϕa(r). Note that δθ terminates at ν(a) in each of these

cases, and let Pδ denote the path taken by δθ . Let � = ν
(a)
1 , i.e., the largest part of ν(a).

Let uθ denote the highest weight element in B(θ) ⊆ B Ng,1.
We start by assuming � = 0. Then we have

〈
α∨

a , λ
〉 =

∑

j∈Z>0

j L(a)
j −

∑

b∈I0\{a}
Aab

∣
∣
∣ν(b)

∣
∣
∣ . (7.2)

Consider the case when
〈
α∨

a , λ
〉 = 0. If a = Ng, then this is a contradiction since

L
(Ng)

1 > 0 and Aab ≤ 0 for all b ∈ I0\{a}. Now if a �= Ng, then r �= uθ . Thus
we must have removed a box from ν(b) for some b ∼ a when performing δθ . So
−Aab

∣
∣ν(b)

∣
∣ > 0, which is a contradiction. Next, consider the case

〈
α∨

a , λ
〉

> 0.
Hence, we have ϕa(r) > 1, and so r �= uθ (specifically, r = xαa in the types we
consider). Note that either

• there exists a a′ ∼ a such that δθ removes a box from ν(a′) with −Aaa′ ≥ ϕa(r),
or

• there exists a′, a′′ such that a′, a′′ ∼ a such that δθ removes a box from ν(a′) and
ν(a′′) (if a′ = a′′, then two boxes are removed)

from the crystal structure of B(θ). (Note this is essentially Lemma 7.8.) Thus, Equa-
tion (7.2) implies

〈
α∨

a , λ
〉 ≥ ϕa(r), which is a contradiction.

Now assume that � > 0. By the definition of the vacancy numbers, we have

0 ≤ p(a)
i +

∑

b∈I0

Aabm(b)
i = 〈α∨

a , λ
〉
.

In particular, we have

− p(a)
i−1 + 2p(a)

i − p(a)
i+1 = L(a)

i −
∑

b∈I0

Aabm(b)
i . (7.3)

〈
α∨

a , λ
〉 = 0:

We note that this is the same proof of (I) for � > 0 as given in [71].
In this case, ν(a) has a singular string of length � since 0 ≥ p(a)

� ≥ J (a)
� ≥ 0 by

convexity. Moreover, we have m(b)
i = 0 for all b ∼ a and i > �. If not all rows of

length � in ν(a) have been selected (or doubly selected in Case (S) if we return xα

with α < 0), then we have a contradiction as we can select a row from m�. Next, by
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considering the smallest subpath P of Pδ ending at r and starting with an a arrow, the
fact selecting every row of length � implies

2m(a)
� ≤

∑

b∼a

Aabm(a)
i (7.4)

by Lemma 7.8. Thus, Equation (7.3) implies that p(a)
�−1 = 0 and that Equation (7.4) is

an equality. Therefore all rows of length � in ν(b) for b ∼ a are selected by δ between.
Hence, when δθ selected the first row of length �, then all rows of length at most �− 1
must have been selected by the definition of δθ , otherwise we would have selected a
row of length at most � − 1 in μ(b) for b ∼ a. Thus, we can proceed by induction and
show that we select every row of ν(a).

Therefore, we now have

0 = L(a)
1 −

∑

b∈I0

Aabm(b)
1 .

If a = Ng, then this is a contradiction from Equation (7.4) and L1 ≥ 1. If a �= Ng,
then we must have selected all boxes in length 1 rows of ν(b) for b ∼ a between the
first box of a length 1 row of ν(a). However, to get to a, we must have selected a length
1 row of ν(b) for some b ∼ a. This is a contradiction.
〈
α∨

a , λ
〉 = 1 :

As above, we have ϕa(r) > 1 and r = xαa . By convexity, we have p(a)
� ≤ p(a)

�+1 ≤
〈
α∨

a , λ
〉
. If p(a)

� = 1, then we have m(a′)
i = 0 for all a′ ∼ a and i > � because

〈
α∨

a , λ
〉 = p(a)

i = p(a)
� and Equation (7.3). Furthermore, every row of ν(a) of length

� must be selected and singular, as otherwise δθ would select such a (quasi)singular
row. Therefore, the previous argument holds and results in a contradiction. Hence, we
can assume p(a)

� = 0.

Since 0 = p(a)
� < p(a)

�+1 = 1, we must have m(a′)
�+1 = 1 for precisely one a′ ∼ a

with Aaa′ = −1 by Equation (7.3). Note that there exists a singular row of length � in
ν(a). If δθ can select a row of length � from ν(a) (whether there is a selectable row or
not), then we have a contradiction as above. Therefore, we must have δθ selecting the
row of length � + 1 in ν(a′). If the row of length � + 1 was the first row of length � + 1
selected, then we would have chosen this row in ν(a) before the row in ν(a′), which
is a contradiction. Thus suppose δθ previously selected a row of length � + 1 in ν(a′′)

corresponding to some node xα ∈ B(θ). If a′′ ∼ a, then we have p(a)
�+1 > 1, which is

a contradiction. We note that fa xα �= 0 as the coefficient of αa′ in α is still 1. Hence,
by Lemma 7.8, the map δθ would remove a box from ν(a) before the one from ν(a′′).
This is a contradiction. �

Proof of (II) We need to show that

0 ≤ max J (a)
i ≤ p(a)

i (7.5)
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for all (a, i) ∈ H0. Considering the algorithm for δ and considering the change in
vacancy numbers, the only way to violate Equation (7.5) is when the following cases
occur.

(1) There exists a singular or quasisingular string of length i in ν(a) such that p̃(a)
i −

p(a)
i = −1,−2 respectively and �′ ≤ i < �.

(2) We have m(a)
�−1 = 0, p(a)

�−1 = 0, and �′ < �.

In both cases, let � be the length of the row selected by δ in ν(a) and �′ be the length
of the row selected immediately before � in ν(c) such that c ∼ a.

We will first show that (1) cannot occur. Assume a singular string occurs, then δ

would have selected the string of length i , which is a contradiction. Now suppose a
quasisingular string occurs which corresponds to p̃(a)

i − p(a)
i = −2, in this case we

have a = 1 and again, the map δ would have selected this quasisingular string, which
is a contradiction.

Now we will show that (2) cannot occur. Let t < � be the largest integer such that
m(a)

t > 0, and if no such t exists, set t = 0. By the convexity condition, we have
p(a)

i = p(a)
�−1 for all t < i < �. Thus m(c)

i = 0 for all c ∼ a and t ≤ i ≤ �. Thus
�′ < t . If t = 0, then this is a contradiction since 1 ≤ �′. If t > 0, then we have
p(a)

t = 0 and the row must be singular because m(a)
t > 0. Thus we must have t = �,

which is a contradiction. �
Proof of (III) rom the change in vacancy numbers, any string of length not of a length
created from δθ becomes non-singular. Therefore it is easy to see that the procedure
outlined for δ−1

θ is the inverse of δθ . �
Proof of (IV) Recall that (ν, J ) = δθ (ν, J ). We can rewrite Equation (2.11) using
Equation (2.4) as

cc(ν) = 1

2

∑

(a,i)∈H0

t∨a

⎛

⎝
∑

j∈Z>0

L(a)
j min(i, j) − p(a)

i

⎞

⎠m(a)
i (7.6)

Next we express (�k)k as (�
(ak )
m )k by the m-th selection in ν(ak ) by δ. Let m(a)

i , p(a)
i ,

J
(a)

i , and L
(a)

i denote m(a)
i , p(a)

i , J (a)
i , and L(a)

i , respectively, after applying δ, and we
have

m(a)
i = m(a)

i +
∑

m

δ
�
(a)
m −1,i

− δ
�
(a)
m ,i

, (7.7a)

L
(a)

i = L(a)
i − δa,Ngδi,1, (7.7b)

Let �
(
cc(ν, J )

) := cc(ν, J )− cc(ν, J ). Next, from a straight-forward, but somewhat
tedious, calculation using the changes in vacancy numbers, we obtain

�
(
cc(ν)

) =
∑

(a,i)∈H0

t∨a
(

p(a)
i − p(a)

i

)
(

m(a)
i −

∑

m

δ
�
(a)
m ,i

)

− χ(r = ya)
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Table 3 Local energy on Bθ,1⊗ Bθ,1, where θ− = θ −αNg and α ∈ �+\{θ−} is such that α+αNg ∈ �+

b′ ⊗ b xθ ⊗ xθ xθ− ⊗ xθ ∅ ⊗ xθ xθ ⊗ ∅ xα ⊗ xθ ya ⊗ xθ x−θ ⊗ xθ ∅ ⊗ ∅
H(b′ ⊗ b) 0 −A0,Ng 1 1 2 2 2 2

+
t∨Ng

c∨
0

∑

i∈Z≥0

m
(Ng)

i − χ(r = ∅),

where r is the return value of δθ . Moreover, from the description of δθ , we have

�
(|J |) =

∑

(a,i)∈H0

t∨a
(

p(a)
i − p(a)

i

)
(

m(a)
i −

∑

m

δ
�
(a)
m ,i

)

+ χ(r = ya),

where the last term is because a quasisingular string was changed into a singular string
if that holds. Combining this with the fact that bN = r , we have

�
(
cc(ν, J )

) = �
(
cc(ν)

)+ �
(|J |) =

t∨Ng

c∨
0

β
(Ng)

1 − χ(bN = ∅)

as desired. �

Proof of (V) We recall the local energy function on Bθ,1 ⊗ Bθ,1 from [2] in Table 3,
renormalized to our convention. We note that there are two minor typos in [2], where
it is stated H(xα ⊗ xθ ) = 1 and H(xθ−αNg

⊗ xθ ) = 1 (the only difference is for types

D(2)
n+1 and A(2)

2n ).
Note that in order for the second application of δθ to return xθ or ∅, we must not

have any singular rows in ν(Ng). Hence, β
(Ng)

1 − β
(Ng)

1 is the number of Ng-arrows in
the path from xθ to b′ from the definition of δθ . We note that for every type, we have
cNg = 2, and hence, it is straightforward to see the claim holds in this case.

When b′ ⊗ b is not classically highest weight, this is similar to the non-highest
weight case in the proof of Lemma 7.6. �

We can also extend our proof to types C (1)
n , A(2)

2n , and A(2)†
2n (recall Remark 4.2).

We note that for the proofs above to hold for type A(2)
2n and A(2)†

2n . We have to use the
(modified) scaling factors of γ̃a = 1 for all a ∈ I and the matrix

( Ãab)a,b∈I0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

instead of the Cartan matrix in, e.g., Equation (7.3) and Equation (7.4).



42 Page 40 of 84 T. Scrimshaw

7.3 Onwards and upwards

We have shown that δ induces a bijection �. Now we need to show lb induces a
bijection. Note that lb is clearly a (classically strict) crystal embedding. Let σ denote
the unique sink of the lb-diagram.

Lemma 7.10 The vacancy numbers are invariant under lb.

Proof Given an arrow r
b−−−→ r ′, note that wt(b) = �r − �r ′ . Since lb adds rows

of length 1 and the number of rows in ν(a) corresponds to the coefficient of αa in
�σ − wt(b) = �σ − �r + �r ′ , the claim follows from the definition of vacancy
numbers. �
Proposition 7.11 Suppose r �= σ , and let r

br−−−→ r ′ be the outgoing arrow of r in

the lb-digram. Let B = Br ,1 ⊗ B•. Then we have

lb ◦� = � ◦ lb .

Proof Suppose the claim holds for r ′ (so � is a bijection for Bσ,1 ⊗ Br ′,1 ⊗ B• by
induction). It is sufficient to show the claim on classically highest weight elements.
Consider some classically highest weight element b ⊗ b• ∈ Br ,1 ⊗ B•, and let lb(b ⊗
b•) = b′′ ⊗ b′ ⊗ b•. If b′′ = br , then b = u(Br ,1) and b′ = u(Br ′,1) from the
definition of lb and there is a unique element of maximal weight. Therefore, �−1(b•)
has the same partitions and riggings as �−1(b′ ⊗ b•) (we will see below that applying
lb−1 removes the boxes added by δ−1

σ with br ). Now since b′ = u(Br ′,1), the vacancy

numbers p(r ′)
i of (ν, J ) := �−1(b′ ⊗ b•) are all one larger than those of �−1(b•).

Thus, there are no singular rows in ν(r ′). Hence, when we add br , we only add singular
rows of length 1 as the first box added under δ−1

σ (br ) has to be to a row of length 0 in
ν(r) and δ−1

σ adds boxes to weakly shorter rows at each subsequent step. Hence, the
result is in the image of lb, and hence lb−1 can be applied.

Next, we proceed by induction on the depth of b′′ ⊗ b′ to br ⊗ u(Br ′,1) (i.e., the
number of ea operators, for a ∈ I0, one needs to apply). Suppose fa(b′′ ⊗ b′) =
fab′′ ⊗ b′, then the claim follows by induction as one additional box is added by
δσ . Indeed, δ−1

σ ( fab′′) could only have increased the number of length-one singular
rows added compared to δ−1

σ (b′′) as δ−1
σ ( fab′′) adds an extra box to some singular

row in ν(a) during its initial step and the subsequent selected rows must be weakly
smaller. Thus every row selected for δ−1

σ ( fab′′) must be weakly smaller than the
corresponding one from δ−1

σ (b′′). Now instead assume fa(b′′ ⊗ b′) = b′′ ⊗ fab′. Let
(ν, J ) = �−1(b′ ⊗b•) and (̃ν, J̃ ) = �−1( fab′ ⊗b•). For b† ∈ Br ′,1, to ease notation

define δ−1
σ (b†) := δ−1

σ (b†σ ), where lb(b†) = b†σ ⊗ b
†
. As in the previous case, the

rows selected by δ−1
σ ( fab′) are at most as long as those added by δ−1

σ (b′). From the
tensor product rule, we must have 0 = εa(b′′) < ϕa(b′) = 1, and so the first row that
we add a box for δ−1

σ (b′′) cannot be in ν(a). By considering how the vacancy numbers
change after applying δ−1

σ (b′), the first box added by δ−1
σ (b′′) to (̃ν, J̃ ) can be at a row

at most as long as the one selected by δ−1
σ (b′′) for (ν, J ). Hence, the rows selected by
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δ−1
σ (b′′) in (̃ν, J̃ ) must be at most as long as those selected for (ν, J ). Therefore, we
can apply lb−1. �
Lemma 7.12 Let B = Br ,1 ⊗⊗N

i=1 Bri ,si . For (ν, J ) ∈ RC(B), we have

cc
(
lb(ν, J )

)− cc(ν, J ) =
�∑

k=1

t∨ak

∑

j∈Z>0

L(ak)
j + 1

2

�∑

k=1

t∨ak
(δakr ′ + δakσ − δakr ),

where we have the path b = fa1 fa2 · · · fa�
u�σ for the arrow r

b−−→ r ′ in the lb-

diagram.

Proof Recall fromEquation (7.6) that the cocharge of a configuration can be expressed
as

cc(ν) = 1

2

∑

(a,i)∈H0

t∨a

⎛

⎝
∑

j∈Z>0

L(a)
j min(i, j) − p(a)

i

⎞

⎠m(a)
i .

Since lb adds a singular string of length 1 to ν(ak ) for all 1 ≤ k ≤ �, where we have

b = fa1 fa2 · · · fa�
uθ , for the arrow r

b−−→ r ′ in the corresponding lb-diagram. A

straightforward tedious calculation gives

K :=
∑

(a,i)∈H0

t∨a
∑

j∈Z>0

(
L̃(a)

j m̃(a)
i − L(a)

j m(a)
i

)
min(i, j)

=
∑

(a,i)∈H0

t∨a (δar ′ + δaσ − δar )m
(a)
i +

�∑

k=1

t∨ak

∑

j∈Z>0

L(ak )
j

+
�∑

k=1

t∨ak
(δakr ′ + δakσ − δakr )

= −
�∑

k=1

t∨ak
p(ak )
1 + 2

�∑

k=1

t∨ak

∑

j∈Z>0

L(ak)
j +

�∑

k=1

t∨ak
(δakr ′ + δakσ − δakr ).

Note that during the derivation, we used Lemma 7.10 and note that min(i, j) = 1 if
either i = 1 or j = 1. Therefore, we have

cc
(
lb(ν, J )

)− cc(ν, J ) = 1

2

(

K −
�∑

k=1

t∨ak
p(ak)
1

)

+
�∑

k=1

t∨ak
p(ak)
1

=
�∑

k=1

t∨ak

∑

j∈Z>0

L(ak )
j + 1

2

�∑

k=1

t∨ak
(δakr ′ + δakσ − δakr )

as desired. �



42 Page 42 of 84 T. Scrimshaw

Wefirst need a type-independent proof of [91, Thm. 6.1], which we show for s = 1.
This is essentially the same proof as the proof of [65, Thm. 9.4].

Proposition 7.13 Let B = ⊗N
i=1 Bri ,1 for dual untwisted types, and let λ =

−∑N
i=1 �ξ(ri ). Let tλ denote the translation by λ in the extended affine Weyl group,

and let tλ = vτ , where v is an element in the affine Weyl group. Then there exists a
U ′

q(g)-crystal isomorphism

j : B(�τ(0)) → B ⊗ B(�0)

such that the image of the Demazure subcrystal Bv(�τ(0)) is B ⊗ u�0 .

Proof Recall from [55,56] that any Littelmann path that stays in the dominant chamber
with an endpoint of λ generates B(λ). The claim follows from using (projected) level-
zeroLSpaths [59–61], that tensor products in theLittelmannpathmodel corresponding
to concatenation of the LS paths [55,56]. �
Lemma 7.14 Let B =⊗N

i=1 Bri ,1 ⊗ Br ,1. For b ∈ B, we have

D
(
rb(b)

)− D(b) =
�∑

k=1

t∨ak

⎛

⎝
∑

j∈Z>0

L(ak)
j + 1

2
(δakr ′ + δakσ − δakr )

⎞

⎠ ,

where b = fa1 fa2 · · · fa�
u�σ

, for the arrow rN
b−−→ r ′

N .

Proof Let u denote the maximal vector in B. Note that u� ∈ B is the unique element
of classical weight w0 wt(u) and is in the same classical component as u.

Let B• = ⊗N
i=1 Bri ,1, and denote the maximal vector in B by u• ⊗ ur , where u•

and ur are the maximal elements in B• and Br ,1 respectively. We note that the unique
element of classical weight w0 wt(u) is given by v = u�• ⊗ u�

r (technically we apply
� to each factor individually, but we do not care about the ordering of B• and u•). We
note that v is in the same classical component as u• ⊗ur . Therefore, v� is the maximal
element in Br ,1 ⊗ B•.

Therefore, we have

lb(v�) = b ⊗ ur ′ ⊗ u•,
lb(v�)� = u�• ⊗ uξ(r ′) ⊗ b� =: b0,

where

b� = fξ(a1) fξ(a2) · · · fξ(a�)u�σ
.

Next, we want to apply a sequence e|k to bk−1 such that we obtain

bk := u�• ⊗ uξ(r ′) ⊗
(

fξ(ak+1) · · · fξ(a�)u�σ

)
,
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where b� = u�• ⊗ uξ(r ′) ⊗ u�σ
.

Fix some j ∈ I0 and i . Let Iri = I\{ri }. If we have vri ⊗ x , where vri is the lowest
weight element in Bri ,1, then if ri �= j , we have e j (vri ⊗ x) = vri ⊗ e j x . If ri = j ,
then e2j (vri ⊗ x) = (e jvri ) ⊗ (e j x), but we note that there exists a sequence of crystal
operators ej that acts only on the left that returns to vi ⊗ (e j x) that uses precisely tak

0-arrows. This follows from the fact that e jvi is the unique Iri -lowest weight element
in the unique Iri -component B(�̌0) ⊆ Br ,1. Note that these 0-arrows are Demazure,
not at the beginning of a 0-string, as the extra Bσ,1 results in ϕ0(lb(v�)�)−ϕ0(v) = 1.

From [91, Lemma 7.3], the number of Demazure 0-arrows, a 0-arrow that is not
at the end of a 0-string, between two elements determines the difference in energy.
Therefore, we have

D
(
rb(v)

)− D(v) =
�∑

k=1

t∨ak

∑

j∈Z>0

L̃(ak)
j + S,

where L̃ corresponds to B• and S is the claim for a single tensor factor Br ,1. Thus, it
remains to show the claim for a single tensor factor, which is a finite computation using
the results from [51,53]. Thus the claim holds for any element in the same classical
component of v.

Let d(b) denote the affine grading of b [91, Def. 7.1], the number of Demazure
0-arrows in the path from b to u�τ(0) in B(�τ(0)). Next, for any other classically lowest
weight element v′, we have d

(
rb(v′)

) = d(b′) since the number of Demazure 0-arrows
is determined by the coefficient of α0 in �τ(0) − wt(v′) and wt

(
rb(v′)

) = wt(v′).
Therefore, we have

D
(
rb(v′)

)− D(v′) = [d(rb(v′)
)− d(vrb)

]− [d(v′) − d(v)
]

= [d(rb(v′)
)− d(v′)

]+ [d(v) − d(vrb)
]

= D
(
rb(v)

)− D(v),

where vrb is the minimal element in rb(B). Hence, the claim follows. �
Remark 7.15 The proof of Lemma 7.12 and Lemma 7.14 is true for general type g and
any lb-diagram.

Remark 7.16 The proof of Lemma 7.14 holds for general tensor factors provided there
is an analog of [91, Lemma7.2] and [91, Thm. 6.1] for all Br ,s in any type. In particular,
we are using [91, Lemma 7.3], which is essentially a type-independent proof (other
than the single factor case, i.e., [91, Lemma 7.2]).

7.4 Statistic preserving bijection

Proposition 7.17 Let g be of type A(1)
n , D(1)

n , E (1)
6,7,8, or E (2)

6 . Let B = ⊗N
i=1 Bri ,1

and B ′ =⊗N ′
i=1 Br ′

i ,1 (except possibly for ri and r ′
i being 4, 5 in type E (1)

8 ). Then the
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diagram

RC(B ⊗ B ′) �

id

B ⊗ B ′

R

RC(B ′ ⊗ B)
�

B ′ ⊗ B

commutes.

Proof For type A(1)
n (resp. D(1)

n ) was shown in [43] (resp. [70]). For types E (1)
6,7,8

and E (2)
6 , the claim reduces to Br1,1 ⊗ Br2,1 by the definition of � and is a finite

computation. �
Now we can show that the map � is a bijection that sends cocharge to energy.

Theorem 7.18 Let B =⊗N
i=1 Bri ,1 be a tensor product of KR crystals. Then the map

� : RC(B) → B

is a bijection on highest weight elements such that � ◦ η sends cocharge to energy.

Proof By Proposition 7.11, Lemma 7.12, and Lemma 7.14, showing the bijection is
well-defined and preserves statistics is reduced to showing when the left-most factor
for RC(B) and right-most factor for Brev is minuscule or adjoint. Thus the claim
follows by Lemma 7.7 and Lemma 7.9. �
Theorem 7.19 Let � be defined using δr such that r is a minuscule node. Then
� : RC(B) → B is a Uq(g0)-crystal isomorphism.

Proof A straightforward check shows that� preserves weights. A tedious but straight-
forward check shows that the arguments in [81] extend to all minuscule nodes by the
description of δr and that the arguments are about the relative position where two
boxes are added by applying fa . �
Remark 7.20 Let B be as in Theorem 7.19 and B ′ be some reordering of the tensor
factors. From Proposition 7.17 and Theorem 7.19, we can construct the combinatorial
R-matrix R : B → B ′ by R = �′ ◦ �−1, where �′ : RC(B ′) → B ′ is the corre-
sponding bijection. Note that this provides a uniform combinatorial construction of
the combinatorial R-matrix.

For r = 1, 2, 6 in type E (1)
6 , we can describe e0 and f0 on RC(Br ,s) by using

the description in [30] as it is given solely in terms of εi , ϕi , and the weight. Hence,
Theorem 7.19 immediately implies the following.

Corollary 7.21 Let g be of type E (1)
6 and r = 1, 2, 6. Then

� : RC(Br ,s) → Br ,s

is a U ′
q(g)-crystal isomorphism.
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7.5 Virtual bijection

In order to extend the bijection to full columns in all other types, we need to extend
lb to commute with virtualization maps. In particular, we introduce the notion of a
virtual lb map, which we denote by lbv . Specifically, we generalize the notion of an
lb-diagram to use for the map lbv , which we call a lbv-diagram. In all cases below, the
resulting lbv-diagram is derived from a virtualization map.

For type E (2)
6 as a folding of type E (1)

6 , we require having an arrow (r1, r2) −→ r ′
defining a map lbv : Br1,1 ⊗ Br2,1 → B2,1 ⊗ Br ′,1. Hence, the virtual lbv-diagram we
use is

2 4 (3, 5)

(1, 6)

24 435

216

. (7.8)

For type B(1)
n as the dual of A(2)

2n−1 (this has a virtualization map with scaling factors
given by Table 1), the lbv-diagram we consider is

n [1]

...

[n − 1]

[1, 2, . . . , n]

[1, . . . , n − 1, n]

where [r ] corresponds to Br ,2. Note that the arrows are labeled by a single-column
KR tableau [t1, . . . , tk], where we read the column from top to bottom. See also
Appendix A.

For type F (1)
4 as the dual of E (2)

6 , the lbv-diagram is amodification ofEquation (5.6):

4 3 [2]

[1]

[1, 134] [1, 1223]

[1, 14]

.

The derivation is similar to the type B(1)
n case.

For type G(1)
2 as the dual of D(3)

4 , recall that we consider B(�1) as the natural

virtual crystal of B(3�1) ⊆ B(�2) ⊗ B(�2) in type G(1)
2 . Continuing this in type

D(3)
4 , we construct an lbv-diagram as 2

[1,3]−−−→ [[1]], where [[1]] corresponds to B1,3.
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Example 7.22 Consider type B(1)
4 and B3,1.Note that the image under the virtualization

map B(1)
4 ↪−→ A(2)

7 is B3,2. Then we have

lbv

(
1
2
3

)

=
1
2
3
4

⊗
1
2
3
4

∈ B4,1 ⊗ B4,1.

Proposition 7.23 Let v be one of the virtualization maps of

C (1)
n ↪−→ A(2)

2n ↪−→ D(2)
n+1 ↪−→ A(1)

2n−1, (7.9)

with scaling factors (2, 1, . . . , 1), (1, . . . , 1, 2), and (1, . . . , 1) respectively. Then

v ◦ δθ = δ̂θ ◦ v.

Proof Let g be of type D(2)
n+1 and ĝ of type A(2)

2n−1. We note that if δθ selects a singular

string in ν(a) for a �= n, then it must select the same singular string in ν(a′) = ν(a′′)

for all a′, a′′ ∈ φ−1(a).
For the remaining virtualization maps, this follows from the description of δθ as

per Sect. 4. �
Remark 7.24 We can also compose the virtualization maps of Equation (7.9), and we
obtain another proof of [76, Thm. 7.1].

We also can use

C (1)
n ↪−→ A(2)†

2n ↪−→ D(2)
n+1 ↪−→ A(1)

2n−1,

with scaling factors (1, . . . , 1, 2), (2, 1, . . . , 1), and (1, . . . , 1), respectively, instead
of Equation (7.9).

For type D(2)
n+1 as a folding of type A(1)

2n−1, we use the lb
v-diagram:

(1, 2n − 1) · · ·

· · · (n − 1, n + 1) [n]

12(2n − 2)(2n − 1)

(n − 2)(n − 1)(n + 1)(n + 2) (n − 1)nn(n + 1)

.

Lemma 7.25 Let g be of non-simply-laced affine type. Then we have

v ◦ lb = lbv ◦v,

where v is one of the virtualization maps given above.

Proof Suppose g is of type E (2)
6 . Recall that lb adds a length 1 singular string to

ν̂(ai ), where ea1 · · · eak b = u�2
. Moreover, recall that lb does not change the vacancy
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numbers. It is a finite computation to show that for any arrow r
b−−−→ r ′ in the lb-

diagram inEquation (5.6), we have an arrowφ−1(r)
v(b)−−−→ φ−1(r ′), whereφ : E (1)

6 ↘
E (2)
6 is the diagram folding, in the lbv-diagram in Equation (7.8). Thus the claim

follows.
For the other types, the proof is similar with also considering the doubling (or

tripling) map. �
Theorem 7.26 Let g be of non-simply-laced affine type. Then

v ◦ � = �̂ ◦ v,

where v is one of the virtualization maps given above. Moreover, � is a bijection such
that � ◦ η sends cocharge to energy.

Proof Lemma 7.25 implies that it is sufficient to show v ◦ δ = δ̂ ◦ v. For untwisted
types, this follows by definition and Theorem 6.1. For all dual untwisted types, type
A(2)
2n , and type A(2)†

2n , the proof is similar to the proof of Proposition 7.23. Thus the
claim follows. �
Proposition 7.27 Let g be of affine type. Let B = ⊗N

i=1 Bri ,1, and let B ′ =
⊗N ′

i=1 Br ′
i ,1. Then the diagram

v(B ⊗ B ′) R̂
v(B ⊗ B ′)

B ′ ⊗ B

v

R
B ′ ⊗ B

v

commutes. Moreover, the combinatoral R-matrix can be defined as the restriction of
R̂ to the image of v.

Proof This follows from Proposition 7.13. �
Corollary 7.28 Proposition 7.17 holds for all affine types.

Proof This follows from Theorem 7.26, Proposition 7.27, and Proposition 7.17. �

7.6 Higher levels for minuscule nodes

Proposition 7.29 Let r be such that �r is a minuscule weight. Then B(s�r ) ⊆
B(�r )

⊗s is characterized by

{b1 ⊗ · · · ⊗ bs | b1 ≤ · · · ≤ bs}.
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Proof By [30, Lemma 2.9], it is sufficient to show when s = 2. We show this by
induction, where the base case is x1 = x2 = u�r

. Next, suppose x1 ≤ x2, and let
x2 = fam · · · fa1x1. Fix some i ∈ I0. Consider when fi (x1 ⊗ x2) = x1 ⊗ ( fi x2), then
we have x1 ≤ fi x2. Now, consider the case fi (x1 ⊗ x2) = ( fi x1) ⊗ x2. Since B(�r )

is minuscule, all elements are parameterized by trailing words of the longest coset
representative w ∈ W/W r̂ and that w is fully commutative [95, Prop. 2.1]. Since w

is fully commutative, we must have fa1 fi x = fi fa1x , and similarly, there exists a k
such that ak = i and

x2 = fam · · · fak+1 fak−1 · · · fa1 fak x1.

Therefore, we have fi x1 ≤ x2. �
Next, we note that the proof given in [89, Lemma 8.2] that the left-split map

ls : Br ,s ⊗ B• → Br ,1 ⊗ Br ,s−1 ⊗ B• is preserved under � is straightforward to
generalize to when r is a minuscule node. We also can show that � send the combi-
natorial R-matrix to the identity map on rigged configurations

Proposition 7.30 Let B = ⊗N
i=1 Bri ,si and B ′ = ⊗N ′

i=1 Br ′
i ,s

′
i , where ri and r ′

i are
minuscule nodes for all i . Then the diagram

RC(B ⊗ B ′) �

id

B ⊗ B ′

R

RC(B ′ ⊗ B)
�

B ′ ⊗ B

commutes.

Proof By the description of � it is sufficient to reduce this to the case when B = Br ,s

and B ′ = Br ′,s′
. Recall that Br ,s ∼= B(s�r ) as Uq(g0)-crystal when r is a special

node. Since�r and�r ′ areminusculeweights, it follows from [96] that Br ,s ⊗Br ′,s′ ∼=
B(s�r ) ⊗ B(s′�r ′) is multiplicity free. �

Next, it is straightforward to see that on rigged configurations, we have rb acting as
the identity map on the configuration ν and preserves the coriggings. Next, we need
the following description of the dual version of δr .

Lemma 7.31 Let r be a minuscule node, and define δ�
r := η ◦ δr ◦η on rigged configu-

rations. Suppose B = B• ⊗ Br ,1 and (ν, J ) is a highest weight rigged configuration.
Define (ν, J ) by

J
(a)

i =
{

J (a)
i if a �= r ,

{x − 1 | x ∈ J (r)
i } if a = r ,
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for all i ∈ Z>0. Then we have

δ�(ν, J ) = ea1 · · · eak (ν, J ),

where a1, . . . , ak ∈ I0 and ea1 · · · eak (ν, J ) is a highest weight rigged configuration.

Proof On (ν, J ), it is clear that δ�
r proceeds the same as δr except by preserving

coriggings and selecting and keeping cosingular rows: rows with a rigging of 0. Thus
if there exists a cosingular row in (ν, J )(r) (which is the first partition we must select
from under δ�

r ), there exists a row with a negative rigging in (ν, J )(r) and we can apply
er . Moreover, er removes a box from the smallest row in (ν, J )(r), which matches the
procedure for δ�

r , and decreases the riggings by 1 in all weakly longer rows in (ν, J )(r
′)

for all r ′ ∼ r . Hence, if there are any cosingular rows in (ν, J )(r
′) selected by δ�

r in the
next step, we can also apply er ′ to er (ν, J ). By repeating this argument, we can clearly
apply an ea j for every cosingular row in (ν, J )(a j ) selected by δ�

r . The fact this is an
if and only if is similar to the proof that δ�

r gives a bijection (see the proof in [71]).
From the definition of ea j and the resulting change in vacancy numbers (recall that
the classical crystal operators on rigged configurations preserve the coriggings of all
unchanged rows), it is straightforward to see that the resulting rigged configurations
are equal. �

Example 7.32 Consider B = B3,1 ⊗ B4,1 ⊗ B2,2 ⊗ B6,1 in type E (1)
6 . Then we have

(ν, J ) =
�5

0
0

0
0

�6 0
1

1

0
1
1

�4

0
0

0
0

0
0
0
0

�3

�7 0
0
0

0
0
0

0
0
0
0
0
0

�2

�8 0
0

0
0

0
0
0
0

�1

�9 0
0

0
1

δ�
6(ν, J ) = 11 0

1
1

0
1
1

0
0

0

0
0
0

0
0
0

0
0

0
0
0
0
0

0
0

0

0
0
0

01

(where the return value of δ�
6 is 136). Now, we compute e6e5e4e2e1e3e4e5e6(ν, J ):

(ν, J ) = 0
0

0
0

0
1

1

0
1
1

0
0

0
0

0
0
0
0

0
0
0

0
0
0

0
0
0
0
0
0

0
0

0
0

0
0
0
0

−1
−1

−1
0

6←−− 0
0

0
0

0
1

1

0
1
1

0
0

0
0

0
0
0
0

0
0
0

0
0
0

0
0
0
0
0
0

−1
−1

−1
−1

−1
−1
−1
−1

11
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5←−− 0
0

0
0

0
1

1

0
1
1

0
0

0
0

0
0
0
0

−1
−1
−1

−1
−1
−1

−1
−1
−1
−1
−1
−1

1
1

1

1
1
1

00
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and note that the result equals δ�
6(ν, J ).

Proposition 7.33 Let r be a minuscule node. Let δ�
r := η ◦ δr ◦ η on rigged configu-

rations and δ�
r := � ◦ δr ◦ � on classically highest weight elements in tensor product

of KR crystals and extended as a classical crystal isomorphism. We have

δ� ◦ � = � ◦ δ�.
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Proof Recall δr commutes with the classical crystal operators by Theorem 7.19. Note
that we can define δ�

r on classically highest weight elements in a tensor product of
KR crystals by removing the rightmost factor and then going to the highest weight
element from [89, Prop. 5.9(5)].5 Lemma 7.31 shows the same description for the
rigged configurations.

To prove the claim, it is sufficient to prove this on classically highest weight
elements. Since the rightmost factor is Br ,1, where r is a minuscule node, the corre-
sponding rightmost element in the tensor product must be u�r

. Recall that �−1(u�r
)

is the empty rigged configuration (but with vacancy numbers p(r)
i shifted by 1 for all

i ∈ Z>0). Note also that �−1 is only computed using singular rows, not the actual
rigging values. Therefore, if�−1(b⊗u�r

) = (ν, J ), then�−1(b) = (ν, J ) as defined
in Lemma 7.31. If ea1 · · · eak b, where a1, . . . , ak ∈ I0, is the corresponding classically
highest weight element, then we have

�−1(δ∗(b ⊗ us�r
)
) = �−1(ea1 · · · eak b) = ea1 · · · eak �

−1(b) = δ∗(�−1(b ⊗ us�r
)
)

as desired. �
We also have the following from Proposition 7.33 and that clearly [δ, δ�] = 0 on a

tensor product of KR crystals.

Corollary 7.34 On rigged configurations, we have [δ, δ�] = 0.

We remark that this provides an alternative proof of [43, Lemma 3.13] and [89,
Thm. 8.4(1)].

Using Corollary 7.34, the remaining proof of [89, Thm. 8.6] that � ◦ � = � ◦ θ

holds. Hence, the proof of [89, Thm. 8.8] by using Theorem 7.19. Thus, we have the
following.

Theorem 7.35 Let B =⊗N
i=1 Bri ,si be a tensor product of KR crystals, where ri is a

minuscule node for all i . Then the map

� : RC(B) → B

is a Uq(g0)-crystal isomorphism such that � ◦ η sends cocharge to energy.

8 Equivalent bijections

In this section, we show that all of our defined bijections give the same bijection and
� = �̃ for all types except B(1)

n (where it remains a conjecture), F (1)
4 , and G(1)

2 . We
show that � defined using a combination of various δσ defines the same bijection as
�̃ for types A(1)

n , D(1)
n , and E (1)

6 . Note that for type A(1)
n , the map δn−1 is the dual

5 Recall that δ�
r in [89], where it was denoted by rh, was defined by removing the rightmost factor (and

then going to the highest weight element) in contrast to our definition of conjugating the left factor removal
by �. However, these definitions are equivalent by [89, Prop. 5.9(5)].
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bijection of [89, Sec. 9]. For types A(1)
n and D(1)

n , we will show that the bijection
defined by δσ and δ̃ are equal. For type A(2)

2n−1, we only have δ1 = δ̃, which was done

in [74]. For type D(2)
n+1, we will use the virtualization map and type A(1)

2n−1. For type

E (1)
6 , the map δ1 = δ̃ from [71] and δ6 follows from the diagram automorphism given

by 1 ↔ 6.
We will first show that all of the bijections defined using δr for any r ∈ I0 in type

A(1)
n are equal.

Lemma 8.1 Let g be of type A(1)
n and B = Br ,1 ⊗ B•. We have

δr = δ̃ ◦ (̃δ ◦ lb)r−1

such that lbr−1(br ) = br
1 ⊗ · · · ⊗ b11 (with lb always acting on the rightmost factor),

were bi
1 is the return value for the i-th application of δ̃.

Proof We note that δ1 = δ̃. Thus fix an r > 1. We proceed by induction on r . Note
that it is sufficient to show by our induction assumption that

δr = δr−1 ◦ δ̃ ◦ lb (8.1)

such that lb(br ) = b ⊗ br−1, where br denotes the return value of δr and b ⊗ br−1
the return values under δr−1 ◦ δ̃ ◦ lb. Recall that lb(u�r

) = r ⊗ u�r−1
, which defines

the unique strict crystal embedding B(�r ) → B(�1) ⊗ B(�r−1).
Suppose δr selects (singular) rows �

(a)
1 ≤ · · · ≤ �

(a)
ka

from ν(a) for all a ∈ I0; we

consider ka = 0 if no such row was selected in ν(a). Note that δ̃ ◦ lb selects the same
singular row of length �

(a)
1 in ν(a) under δr as it is the smallest selectable singular row

in ν(a) for all r ≤ a < b, where δ̃ returns b , and both algorithms (effectively6) start

at ν(r). Indeed, by the definition of δr , we must have �
(a)
1 ≤ �

(a+1)
1 and no singular

rows in ν(a+1) of length �
(a)
1 ≤ i < �

(a+1)
1 for all r ≤ a < b − 1 as δr selects the

minimal singular row and would have instead selected any singular row of length
�
(a)
1 ≤ i < �

(a+1)
1 .

Next, let (ν, J ) = (̃δ ◦ l̃b)(ν, J ). We claim that δr−1 on (ν, J ) must select exactly
all other rows selected by δr . If kr−1 = 0, then δr has selected no other singular rows
(note that in this case the crystal structure of B(�r ) ⊆ B(�1) ⊗ B(�r−1) implies
ka = 1 for all r ≤ a < b and ka = 0 otherwise). Now we have

p(r−1)
i (ν, J ) =

{
p(r−1)

i (ν, J ) + 1 if i < �
(r)
1 ,

p(r−1)
i (ν, J ) otherwise,

(8.2)

so none of these rows of length i < �
(r)
1 are singular and kr−1 = 0 with Equation (8.2)

implies the other rows are not singular, thus δr−1 returns u�r−1
, and the claim holds.

6 From the definition of lb and that lb preserves vacancy numbers, we can consider δ̃ ◦ lb as one operation
that is the same as δ̃ except that it begins at ν(r) instead of ν(1).
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Now suppose kr−1 > 0. The algorithm for δr−1 begins by selecting the row of
length �

(r−1)
1 because of Equation (8.2) and δr would have selected any singular rows

of length �
(r)
1 ≤ i < �

(r−1)
1 . Indeed, if there was such a singular row R and δr selects

�
(r−1)
1 at step t , then R would have been selected during the an earlier step of δr by the
fact we select a singular row of minimal length and we could always select a string
from ν(r−1) after the first step (and up to step t). Next, we note that there are no singular
rows in ν(r) of length �

(r)
1 ≤ i < �

(r+1)
1 as p(r)

i has been increased by 1 in that region.

Therefore, the next selected row in ν(r) is of length �
(r)
2 since

• all vacancy numbers p(r)
i for i ≥ �

(r+1)
1 remain unchanged,

• �
(r−1)
1 ≥ �

(r)
1 ,

• all other rows of length at least �
(r+1)
1 are singular in (ν, J )(r) if and only if they

are singular in (ν, J )(r),
• and we can select a second row in ν(r) as soon as we select a row in ν(r−1) from
the definition of δr .

Similarly for all (ν, J )(a) with r < a < b − 1, but we note there are no singular
rows in ν(b−1) of length at least �

(b−1)
1 . Note that by the definition of δr and the

crystal B(�r ), we must have �
(b−2)
2 ≥ �

(b−1)
1 (as otherwise we would have

b − 1
b − 1

as a subtableau for that element since the definition of δr would imply the (b − 2)-

arrow
b − 1
b − 2

b−2−−−→ b − 1
b − 1

in the crystal graph exists, which is impossible (note

all other entries in the tableau do not matter by the column strictness, so we do not
write them)). Thus, we have b ⊗ br−1 ∈ B(�r ) ⊆ B(�1) ⊗ B(�r−1) (equivalently

lb(br ) = b ⊗ br−1) as δr−1 must select the row of length �
(b−2)
2 in ν(b−2) before

selecting a row in ν(b−1) and hence cannot select anymore rows in ν(b−1). Additionally,
we have (ν, J )(a) = (ν, J )(a) for all a < r with the same vacancy numbers for all
a < r − 1 and

p(a)
i (ν, J ) =

{
p(a)

i (ν, J ) + 1 if �
(a)
1 ≤ i < �

(a+1)
1 ,

p(a)
i (ν, J ) if i ≥ �

(a+1)
1 ,

for all r ≤ a < b − 1. Thus, once δr−1 starts selecting �
(a)
2 , it must select the same

rows of length �
(a)
k for k ≥ 2 as δr . Hence the rest of the algorithm for δr−1 selects

all the same other rows selected by δr following the same path as δr except for those
boxes selected by δ̃ ◦ lb. Therefore, the resulting rigged configurations are equal, and
hence the claim follows. �

We note that the proof of Lemma 8.1 is given by δr−1 ◦ δ̃ ◦ lb following the path

u�r
= u

r
r−−−→ · · · b−1−−−→ u

b
︸ ︷︷ ︸

δ̃◦lb

δr−1−−−−−→ x
b

= br
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in B(�r ), where u = u�r−1
and x = br−1.

Example 8.2 Consider

B = B3,1 ⊗ B2,2 ⊗ B4,2 ⊗ B1,5 ⊗ B4,3 ⊗ B3,2 ⊗ B4,1 ⊗ B2,1 ⊗ B4,2

of type A(1)
5 . Then we have

�3

0
1

2
1

�2

�6 0
0

0
0

0
0
0
0 �1

�5 4
1

2
2

4
4
2
2

�4

�8 1
1
1

0

1
1
1
1

�7 22

δ3 (returns
3
5
6
)

02 0
0

0

0
0
0

3
1

2

3
3
2

2
1

0
0

2
2
0
0

22

Furthermore, we also compute

0
1

2
1

0
0

0
0

0
0
0
0 �1

4
1

2
2

4
4
2
2

�2

1
1
1

0

1
1
1
1

�3 22

δ̃ ◦ lb (returns 6 )

�2

0
1

2
1

�1

�4 0
0

0
0

0
0
0
0

�3 4
1

2

4
4
3

�5 2
1

0
0

2
2
0
0

22

δ2 (returns 3
5
)

02 0
0

0

0
0
0

3
1

2

3
3
2

2
1

0
0

2
2
0
0

22

which agrees with applying δ3 as per Lemma 8.1.

In order to show that the bijections agree for type D(1)
n , we recall themap δsp : Br ,1⊗

B• → B• for r = n − 1, n from [86]. Let v : Br ,1 → Br ,2 denote the virtualization
map given by γa = 2 for all a ∈ I . Let lb(r) : Br ,2⊗ B• → B1,1⊗ Bn−1,1⊗ Bn,1⊗ B•
be given on rigged configurations by adding a length-one singular row to ν(a) for all
a ≤ n−2 and a = n, n−1 if r = n−1, n respectively. Let lb : Bn−1,1⊗ Bn,1⊗ B• �→
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Bn−2,1 ⊗ B• be given on rigged configurations by adding a length-one singular row
to ν(a) for all a ≤ n − 2. We define δsp : Br ,1 ⊗ B• → B• by

δsp := v−1 ◦ (̃δ ◦ lb)n−2 ◦ δ̃ ◦ lb ◦ δ̃ ◦ lb(r) ◦v.

We could also define δsp by using the (generalized) lb-diagram of

1 · · · n − 2 (n − 1, n) [r ]1 n − 2 n − 1 x
,

where x = n, n if r = n − 1, n respectively and recall [r ] corresponds to Br ,2.

Lemma 8.3 Let g be of type D(1)
n and B = Br ,1 ⊗ B• with r = n − 1, n. We have

δr = δsp.

Proof We will use the spin representation for elements of B(�r ) ∼= Br ,1 (as Uq(g0)-

crystals) of type D(1)
n . That is, an element b ∈ B(�r )withwt(b) = 1

2

∑n
i=1 siεi (given

as an element in the ambient 1
2Z

n lattice) we represent as the ±-sequence (s1, . . . , sn)

(see also, e.g., [40, Sec. 6.4]). Under the doubling map v, the corresponding tableau
has an i (resp. ı) if and only if si = + (resp. si = −), written in increasing order
down the column. Note that u�r

= (+,+, . . . ,+,±), where we have sn = −,+ if
r = n − 1, n respectively.

The proof is essentially the same as the proof of Lemma 8.1. Indeed, it is sufficient
to show that the resulting rigged configurations are equal after applying δr and δsp to
a fixed rigged configuration (ν, J ) as B(�r ) is a minuscule representation. Let b be
the return value of δr , which selects rows of length �

(a)
1 ≤ · · · ≤ �

(a)
ka

in ν(a) for all

a ∈ I0, where we consider ka = 0 if no row was selected in ν(a).
Let j1 < · · · < jm be all indices such that s jh = −. Let (̃ν, J̃ ) = v(ν, J ).

Let ř = n, n − 1 if r = n − 1, n respectively. For h = 1, we must have applied
fr fn−2 · · · f j1 to u�r

in order to obtain b. Thus, the application of δ̃ ◦ lb(r) results

in selecting the row of length 2�(a)
1 in ν̃(a) for all a = r , n − 2, . . . , j1 as a row is

singular in (ν, J ) if and only if it is singular in (̃ν, J̃ ). Let (ν, J ) be the resulting rigged
configuration. For h = 2, we must have also applied fř fn−2 · · · f j2 . When applying

δ̃ ◦ lb, we note that we have increased p(ř)
i for all i < 2�(n−2)

1 , and so we must select

a row of length 2�(ř)
1 in ν(ř). Similar to the proof of Lemma 8.1, we select rows of

length 2�(a)
2 in ν(a) for all a = n − 2, . . . , j2. The case for all other h and applying

δ̃ ◦ lb is similar except the initial steps until we reach n − 1, n remove a box from an
odd length row. Similarly, all of the positive values in the column v(b) remove a box
from an odd length row. Therefore, the resulting rigged configurations are equal and
the claim follows. �

Next, we consider the case of D(2)
n+1 and recall that B̂n,1 = Bn,1 of type A(1)

2n−1. Let

δ̂n denote the map δn of type A(1)
2n−1. Thus, we have the following from the definition

of δr .
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Proposition 8.4 Let g be of type D(2)
n+1. Then

v ◦ δn = δ̂n ◦ v.

Lemma 8.5 Let g be of type E (1)
6 and B = B6,1 ⊗ B•. Then

δ6 = δ1 ◦ δ1 ◦ lb,

δ1 = δ6 ◦ δ6 ◦ lb∨ .

Proof Similar to the proof of Lemma 8.1. �
In type D(2)

n+1, we define lb : B1,1 ⊗ B• → Bn,1 ⊗ Bn,1 ⊗ B• by

1 ⊗ b• �→ 1n ⊗ n ⊗ b•,
∅ ⊗ b• �→ n ⊗ n ⊗ b•,

and extended as a Uq(g0)-crystal embedding.

Lemma 8.6 Consider B = Bθ,1 ⊗ B• of type g. Then, we have

δθ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

δn ◦ δ1 = δ1 ◦ δn if g = A(1)
n ,

δ1 ◦ δ1 ◦ lb if g = D(1)
n ,

δn ◦ δn ◦ lb if g = D(2)
n+1,

δ1 ◦ δ1 ◦ lb ◦δ1 ◦ lb if g = E (1)
6 ,

δ7 ◦ δ7 ◦ lb if g = E (1)
7 .

Proof We first consider type E (1)
6 .

Note that B(θ) ⊆ B(�1)
⊗3 is the unique factor with highest weight element

26 ⊗ 16 ⊗ 1. By Lemma 8.5, we have

δ1 ◦ δ1 ◦ lb ◦δ1 ◦ lb = δ6 ◦ δ1 ◦ lb .

Therefore, it is sufficient to show δθ = δ6 ◦ δ1 ◦ lb. Note that the return values
can be ignored since there is a unique B(θ) ⊆ B(�6) ⊗ B(�1) and unique B(�6) ⊆
B(�1)⊗B(�1), giving a canonical identification of the return values. Furthermore, the
only non-zero weight multiplicity of B(θ) is for weight 0, but these are distinguished
by εa(ya′) = δaa′ , which in terms of the algorithm δθ is determined by the partition
ν(a) the algorithm terminates at.

We proceed by induction on depth of the return value of δθ . The base case is when
δθ returns uθ as no boxes are removed, and so we wish to show δ6 ◦ δ1 ◦ lb returns
26 ⊗ 6. Adding uθ under δ−1

θ does not change the rigged configuration. Similarly,
adding 6 under δ−1

6 only makes all rows in ν(6) non-singular. Hence, all boxes added
by 26 under δ−1

1 must be of length 1, which are all subsequently removed by lb−1.
Hence, we have δθ = δ6 ◦ δ1 ◦ lb.
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Considerb′⊗b ∈ B(θ) ⊆ B(�1)⊗B(�6). If fa(b′⊗b) = ( fab′)⊗b, then the claim
follows from induction as the new box is selected on the application of δ1. Therefore,
suppose fa(b′ ⊗ b) = b′ ⊗ ( fab). Therefore, we must have εa(b′) = 0 < 1 = ϕa(b)

by the tensor product rule. If ϕa(b′) = 1, then we have ϕa(b′ ⊗ b) = 2, and hence,
b′ ⊗ b corresponds to xαa . In this case, fa(b′ ⊗ b) differs by a quasisingular string
in ν(a), hence after δ1 ◦ lb, this string becomes singular and selected by δ6. Thus, the
result of δ6 ◦ δ1 ◦ lb is b′ ⊗ fab. Therefore, we have ϕa(b′) = 0. Hence, the new
singular row in ν(6) is selected during δ6. Hence, we have δθ = δ6 ◦ δ1 ◦ lb.

Finally, we consider the case when δθ returns ∅. In this case, we want to show
δ6 ◦ δ1 ◦ lb returns 6 and 6 respectively. Adding ∅ under δ−1

θ adds ca singular rows of
length 1 to ν(a). Next, we note that δ−1

6 adding 6 makes all rows in ν(6) non-singular.
Therefore, adding 6 under δ−1

1 can only create singular rows of length 1 and, after
performing lb−1, there are precisely ca such rows. Hence, we have δθ = δ6 ◦ δ1 ◦ lb.

The other cases are similar. �
Lemma 8.7 Let g be of type C (1)

n . Then δ1 = δ̃.

Proof This follows from the description of δ1 and Proposition 7.23. �
By combining the above results and noting that our proofs did not rely on any

specific choice of lb-diagram (with a given sink), we have the following.

Theorem 8.8 Let g be of dual untwisted type or type A(2)
2n , A(2)†

2n , C (1)
n . Let σ be either

a minuscule or adjoint node. Let � be a bijection defined by δσ with a corresponding
lb-diagram. Then we have

� = �̃.

Moreover, for any bijection �′ defined by δσ ′ , where σ ′ is either a minuscule or adjoint
node, with a corresponding lb-diagram, then we have � = �′.

Conjecture 8.9 Theorem 8.8 holds for type B(1)
n .

Theorem 8.8 states that there is a unique bijection � that is defined by KKR-
type algorithms. In other words, for a fixed rigged configuration, we can only obtain
different KR tableaux representations of the same element in a tensor product of KR
crystals under such a bijection. It is likely that there is a unique bijection that sends
cocharge to energy and the combinatorial R-matrix to the identity map.

9 The fillingmap

In this section, we characterize all highest weight rigged configurations appearing
in RCH W (Br ,s) for various r ∈ I0 in types E (1)

6,7,8, E (2)
6 , and F (1)

4 . Note that it has
not been shown that Br ,s is the crystal basis of the KR module W r ,s in general. For
non-exceptional types, this was shown in [72] and for certain other special cases in
[30,35,100]. We note that when r is a special (resp. adjoint) node, then W r ,s has a
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crystal basis by [72, Rem. 3.1] and [34, Prop. 3.4.4] (resp. [34, Prop. 3.4.5]). However,
this provides further evidence for this to be true as we show many of the graded
decompositions agrees with the conjectures of [20,22]. Using this, we describe the
filling map and define Kirillov–Reshetikhin (KR) tableaux for Br ,s for certain r in
types E (1)

6,7,8 and E (2)
6 as an extension of [69,88,93]. We give a table of the KR tableaux

for Br ,1 in Appendix A. Note that the height of the KR tableaux is the distance from
r to σ in the lb-diagram (recall σ is the unique sink in the lb-diagram); in particular,
r no longer necessarily corresponds to the height.

For the nodes we do not consider here, the roots which appear as edge labels in the
(ambient) Kleber tree, and hence the weights can appear in the decompositions, are
completely determined by those at level 1, i.e., appear in the (ambient) Kleber tree
for Br ,1. Thus, it is possible to determine an explicit parameterization of the classical
decomposition of Br ,s for all exceptional types, as well as the corresponding rigged
configurations (and their cocharge). In particular, this parameterization will be given
by integer points in a polytope.

However, the author believes any such parameterization is likely to not be enlight-
ening as it will involve numerous linear inequalities (and possibly some equalities).
Then for the filling map, the rules can become even more complicated. For example,
consider the parameterization for B2,s of type D(3)

4 given in [93, Def. 4.10] and the
corresponding filling map.

9.1 Notation

We define some notation to aid in the description of RCH W (Br ,s). Consider a tuple
(α(1), α(2), . . . , α(�)), where α(k) =∑a∈I0 c(k)

a αa ∈ Q+
0 for all 1 ≤ k ≤ �. We denote

by ν(α(1), α(2), . . . , α(�)) the configuration given by ν(a) stacking a column of height
c(k)

a for all 1 ≤ k ≤ � and left justifying this (so it is a partition). We also denote
k ∗ [α] as the sequence (α, α, . . . , α) of length k and k1 ∗ [α(1)] + k2 ∗ [α(2)] as the
concatenation of the two sequences.

9.2 Type E(1)6

For r = 1 and r = 6 in type E (1)
6 , we have Br ,s ∼= B(s�r ) as Uq(g0)-crystals. Thus,

the filling map fill : Br ,s → T r ,s is the identity map. Moreover, we have RC(Br ,s) ∼=
RC(Br ,s; s�r ) as Uq(g0)-crystals.

Proposition 9.1 Consider the KR crystal B2,s of type E (1)
6 . We have

RC(B2,s) =
s⊕

k=0

RC(B2,s; (s − k)�2).
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Moreover, the highest weight rigged configurations inRC(B2,s) are given by ν(k∗[α])
with all riggings 0, where

α = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6 = �2,

and

cc(ν, J ) = k.

Proof Note that byCondition (K2) ofDefinition 2.15, the only root thatwe can subtract
from �2 is α. Thus the Kleber tree T (B2,s) is a path where the node at depth k has
weight �2 − kα for 0 ≤ k ≤ s. Hence, the rigged configuration is given by ν(k ∗ [α]).
It is straightforward to check that cc(ν, J ) = k. �
Definition 9.2 We define the filling map fill : B2,s → T 2,s on the classically highest
weight element b ∈ B

(
(s − k)�2

) ⊆ B2,s by defining fill(b) as the tableau with the
first s − k columns as [1, 16, 26], the next �k/2� columns as

25 1

56 16

6 26

and if k is odd, the final column as [1, 16, 6]. We then extend fill as a classical crystal
isomorphism.

Example 9.3 Consider B2,8 of type E (1)
6 . Then B(k�2) ⊆ B2,8 corresponds to the

classically highest weight element

k = 4 �
1 1 1 1 25 1 25 1

16 16 16 16 56 16 56 16

26 26 26 26 6 26 6 26

,

k = 5 �
1 1 1 25 1 25 1 1

16 16 16 56 16 56 16 16

26 26 26 6 26 6 26 6

,

where the shaded regions are the parts that are “filled in.” The corresponding rigged
configurations, respectively, are

00 00
0

0
0

0
0

0
0
0

0
0
0

0
0

0
0

00
,

00 00
0

0
0

0
0

0
0
0

0
0
0

0
0

0
0

00
,
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Proposition 9.4 Let fill : B2,s → T 2,s given by Definition 9.2 and ι be the natural
(classical) crystal isomorphism. We have

� = fill ◦ι

on classically highest weight elements.

Proof If we apply column splitting ls to B2,s when s > k, then we make all rows in
ν(2) nonsingular. A straightforward computation shows that we obtain [1, 13, 23] and
the rigged configuration has not changed. If s = k, then ls keeps all rows of length
k being singular. It is a straightforward computation shows the column is [12, 16, 6]
when k > 1 and the new rigged configuration is obtained by deleting two boxes from
every row of ν(a) for all a ∈ I0. If k = 1, then a finite computation shows we obtain
[1, 16, 6]. �
Proposition 9.5 Consider the KR crystal B3,s of type E (1)

6 . We have

RC(B3,s) =
s⊕

k=0

RC(B3,s; (s − k)�3 + k�6).

Moreover the highest weight rigged configurations inRC(B3,s) are given by ν(k ∗[α])
with all riggings 0, where

α = α1 + α2 + 2α3 + 2α4 + α5 = �3 − �6,

and

cc(ν, J ) = k.

Proof Similar to the proof of Proposition 9.1. �
Definition 9.6 We define the filling map fill : B3,s → T 3,s on classically highest
weight element b ∈ B((s − k)�3 + k�6) ⊆ B3,s by defining fill(b) as the tableau
with the first s − k columns as [1, 13], the next �k/2� columns as

136 1

16 13

and if k is odd, the last column as [1, 16]. We then extend fill as a classical crystal
isomorphism.

Proposition 9.7 Let fill : B3,s → T 3,s given by Definition 9.6 and ι be the natural
(classical) crystal isomorphism. We have

� = fill ◦ι

on classically highest weight elements.
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Proof Similar to the proof of Proposition 9.4. �
The case for r = 5 is dual to the above. In particular, the proofs of the following

propositions are similar to those for the r = 3 case.

Proposition 9.8 Consider the KR crystal B5,s of type E (1)
6 . We have

RC(B5,s) =
s⊕

k=0

RC(B5,s; (s − k)�5 + k�1).

Moreover the highest weight rigged configurations inRC(B5,s) are given by ν(k ∗[α])
with all riggings 0, where

α = α2 + α3 + 2α4 + α5 + α6 = �5 − �1,

and

cc(ν, J ) = k.

Definition 9.9 We define the filling map fill : B5,s → T 5,s on classically highest
weight element b ∈ B

(
(s − k)�5 + k�1

) ⊆ B5,s by defining fill(b) as the tableau
with the first s − k columns be [1, 13, 23, 25], the next �k/2� columns as

1 1

256 13

6 23

12 25

and if k is odd, the last column as [1, 13, 23, 21]. We then extend fill as a classical
crystal isomorphism.

Proposition 9.10 Let fill : B5,s → T 5,s given by Definition 9.9 and ι be the natural
(classical) crystal isomorphism. We have

� = fill ◦ι

on classically highest weight elements.

Proposition 9.11 Consider the KR crystal B4,s of type E (1)
6 . We have

RC(B4,s) =
⊕

λ

RC(B4,s; λ)⊕(1+k2−k4−2k5),
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where λ = s�4 −∑5
i=1 kiα

(i) with

α(1) := 2α1 + 3α2 + 4α3 + 6α4 + 4α5 + 2α6 = �4,

α(2) := α1 + α2 + 2α3 + 3α4 + 2α5 + α6 = �4 − �2,

α(3) := α2 + α3 + 2α4 + α5 = �4 − �1 − �6,

α(4) := α2 + α4 = �2 + �4 − (�3 + �5),

α(5) := α2 = 2�2 − �4,

such that

(1) k1 + k2 + k3 + k4 ≤ s,
(2) ki ≥ 0 for i = 1, 2, 3, 4, 5, and
(3) k2 ≥ k4 + 2k5.

Moreover the highest weight rigged configurations in RC(B4,s) are given by

ν(k1 ∗ [α(1)] + k2 ∗ [α(2)] + k3 ∗ [α(3)] + k4 ∗ [α(4)] + k5 ∗ [α(5)]),

with all riggings 0 except for x in the first row of ν(2), which satisfies 0 ≤ x ≤
k2 − k4 − 2k5, and

cc(ν, J ) = 3k1 + k2 + k3 + k4 + k5 + x .

Proof Note thatα(1) > α(2) > α(3) > α(4) > α(5) component-wise expressed in terms
of {αi }i∈I0 . The claim for the rigged configurations follows from Definition 2.15 and
the description of α(i) for i = 1, 2, 3, 4, 5. The claim for the cocharge is a straightfor-
ward computation. �

We first note that for r = 1, 2, 3, 5, 6, it is clear that these graded decompositions
agree with the conjectures in [20, App. A] (with some straightforward relabeling).
Thus, we show the r = 4 case.

Proposition 9.12 Let qk B(�r ) denote that B(�r ) is given a grading of k. We have

B4,s ∼=
⊕

j1+ j2+2 j3+ j4≤s
j1, j2, j3, j4∈Z≥0

min(1 + j2, 1 + s − j1 − j2 − 2 j3 − j4)q
3s−2 j1−3 j2−4 j3−2 j4

×
j1∑

k=0

qk B
(

j1�2 + j2�4 + j3(�3 + �5) + j4(�1 + �6)
)
.

Proof First note that

wt(ν, J ) = s�4 − k1�2 − k2(�4 − �2) − k3(�4 − �1 − �6)

− k4
(
�2 + �4 − (�3 + �5)

)− k5(2�2 − �4)
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= (k2 − k4 − 2k5)�2 + (s − k1 − k2 − k3 − k4 + k5)�4

+ k4(�3 + �5) + k3(�1 + �6)

Hence, we must have

j1 = k2 − k4 − 2k5, j2 = s − k1 − k2 − k3 − k4 + k5,

j3 = k4, j4 = k3.
(9.1)

Note that the conditions on k1, k2, k3, k4, k5 guarantee that j1, j2, j3, j4 ≥ 0. Next,
we have

j1 + j2 + 2 j3 + j4 = s − k1 − k5 ≤ s,

3s − 2 j1 − 3 j2 − 4 j3 − 2 j4 = 3k1 + k2 + k3 + k4 + k5 = cc(ν).

Additionally, we want the multiplicity to agree, so we need to show

M := min(1 + j2, 1 + s − j1 − j2 − 2 j3 − j4)

equals the number of time a node of weight j1�2+ j2�4+ j3(�3+�5)+ j4(�1+�6)

occurs since the multiplicity of a node equals 1 + k2 − k4 − 2k5 = 1 + j1. We
note that α(1) = 2α(2) + α(5). Explicitly, we fix some j1, j2, j3, j4 ∈ Z≥0 such that
j1+ j2+2 j3+ j4 ≤ s, andwewant to show M equals the number of k1, k2, k3, k4, k5 ∈
Z≥0 such that

s ≥ k1 + k2 + k3 + k4, (9.2a)

k2 ≥ k4 + 2k5, (9.2b)

and, from Equation (9.1), that:

k1 + k5 = s − j1 − j2 − 2 j3 − j4, k2 − 2k5 = j1 + j3,

k3 = j4, k4 = j3.
(9.3)

Immediately, we have k3, k4 ≥ 0 and are completely determined since we have
fixed j3, j4 ∈ Z≥0. We note that

k2 = j1 + j3 + 2k5 ≥ j3 + 2k5 = k4 + 2k5, (9.4)

k1 + k2 + k3 + k4 = s − j2 + k5, (9.5)

and so if we take k5 = 0, then k1 and k2 are completely determined and give a valid set.
Next, since we want to look over all possible values that give rise to the same weight,
the linear dependence α(1) = 2α(2)+α(5) implies we can replace k1 �→ 2k2+k5. Note
Equation (9.4), and hence Equation (9.2b), still holds under this replacement, but from
Equation (9.5) and Equation (9.2a), we have k5 ≤ j2 (so we can do this replacement
at most j2 times). However, we can only do this at most s − j1 − j2 − 2 j3 − j4 times
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since it is the maximum value of k1. Thus, we have exactly M possible values for k1,
k2, k3, k4, and k5. �

9.3 Type E(1)7

For r = 7 in type E (1)
7 , we have RC(B7,s) ∼= RC(B7,s; s�7). Threrefore the filling

map fill : B7,s → T 7,s is the identity map.

Proposition 9.13 Consider the KR crystal B1,s of type E (1)
7 . We have

RC(B1,s) ∼=
s⊕

k=0

RC(B1,s; k�1).

Moreover the highest weight rigged configurations inRC(B3,s) are given by ν(k ∗[α])
with all riggings 0, where

α = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7 = �1,

and

cc(ν, J ) = k.

Proof Similar to the proof of Proposition 9.1. �
Definition 9.14 We define the filling map fill : B1,s → T 1,s on classically highest
weight element b ∈ B

(
(s − k)�1

) ⊆ B1,s by defining fill(b) as the tableau with the
first s − k columns as [7, 17], the next �k/2� columns as

17 7

7 17

and if k is odd, the last column as [7, 7]. We then extend fill as a classical crystal
isomorphism.

Proposition 9.15 Let fill : B1,s → T 1,s given by Definition 9.14 and ι be the natural
(classical) crystal isomorphism. We have

� = fill ◦ι

on classically highest weight elements.

Proof Similar to the proof of Proposition 9.4. �
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Proposition 9.16 Consider the KR crystal B2,s of type E (1)
7 . We have

RC(B2,s) ∼=
s⊕

k=0

RC(B2,s; (s − k)�2 + k�7)

Moreover the highest weight rigged configurations inRC(B3,s) are given by ν(k ∗[α])
with all riggings 0, where

α = α1 + 2α2 + 2α2 + 3α4 + 2α5 + α6 = �2 − �7,

and

cc(ν, J ) = k.

Proof Similar to the proof of Proposition 9.1. �
Definition 9.17 We define the filling map fill : B2,s → T 2,s on classically highest
weight element b ∈ B((s − k)�2 + k�7) ⊆ B2,s by defining fill(b) as the tableau
with the first s − k columns as [7, 17, 12], the next �k/2� columns as

25 1

56 16

6 26

and if k is odd, the last column as [7, 17, 17]. We then extend fill as a classical crystal
isomorphism.

Proposition 9.18 Let fill : B2,s → T 2,s given by Definition 9.17 and ι be the natural
(classical) crystal isomorphism. We have

� = fill ◦ι

on classically highest weight elements.

Proof Similar to the proof of Proposition 9.4. �
Proposition 9.19 Consider the KR crystal B6,s of type E (1)

7 . We have

RC(B6,s) ∼=
⊕

k1+k2≤s
k1,k2∈Z≥0

RC(B6,s; (s − k1 − k2)�6 + k2�1).

Moreover the highest weight rigged configurations in RC(B6,s) are given by

ν(k1 ∗ [α(1)] + k2 ∗ [α(2)]),
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where

α(1) = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 2α7 = �6,

α(2) = α2 + α3 + 2α4 + 2α5 + 2α6 + α7 = �6 − �1,

with all riggings 0 and

cc(ν, J ) = 2k1 + k2.

Proof Similar to the proof of Proposition 9.11 as α(1) > α(2). �

Proposition 9.20 Consider the KR crystal B3,s of type E (1)
7 . We have

RC(B3,s) =
⊕

λ

RC(B3,s; λ)⊕(1+k2−k4−2k5),

where λ = s�3 −∑5
i=1 kiα

(i) with

α(1) = 3α1 + 4α2 + 6α3 + 8α4 + 6α5 + 4α6 + 2α7 = �3

α(2) = α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + 1α7 = �3 − �1

α(3) = α1 + α2 + 2α3 + 2α4 + α5 = �3 − �6

α(4) = α1 + α3 = �1 + �3 − �4

α(5) = α1 = 2�1 − �3

such that

(1) k1 + k2 + k3 + k4 ≤ s,
(2) ki ≥ 0 for i = 1, 2, 3, 4, 5, and
(3) k2 ≥ k4 + 2k5.

Moreover the highest weight rigged configurations in RC(B3,s) are given by

ν(k1 ∗ [α(1)] + k2 ∗ [α(2)] + k3 ∗ [α(3)] + k4 ∗ [α(4)] + k5 ∗ [α(5)]),

with all riggings 0 except for x in the first row of ν(1), which satisfies 0 ≤ x ≤
k2 − k4 − 2k5, and

cc(ν, J ) = 3k1 + k2 + k3 + k4 + k5 + x .

Proof Similar to the proof of Proposition 9.11. �
We note that our graded decompositions for r = 1, 2, 3, 6, 7 agree with the conjec-

tures of [20,App.A],where the case of r = 3 is similar to the proof of Proposition 9.12.
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9.4 Type E(1)8

For type E (1)
8 , we do not have any minuscule nodes as there are no diagram automor-

phism. Thus, we begin with the adjoint node.

Proposition 9.21 Consider the KR crystal B8,s of type E (1)
8 . We have

RC(B8,s) =
s⊕

k=0

RC(B8,s; (s − k)�8).

Moreover the highest weight rigged configurations inRC(B8,s) are given by ν(k ∗[α])
with all riggings 0, where

α = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8 = �8

and cc(ν, J ) = k.

Proof The proof is similar to Proposition 9.1. �
Definition 9.22 We define the filling map fill : B8,s → T 8,s on classically highest
weight element b ∈ B

(
(s − k)�8

) ⊆ B8,s by defining fill(b) as the tableau with the
first s − k columns as [8], the next �k/2� columns as 8 8 , and if k is odd, the last
column as [∅]. We then extend fill as a classical crystal isomorphism.

Proposition 9.23 Let fill : B8,s → T 8,s given by Definition 9.22 and ι be the natural
(classical) crystal isomorphism. We have

� = fill ◦ι

on classically highest weight elements.

Proof Similar to the proof of Proposition 9.4. �
Proposition 9.24 Consider the KR crystal B7,s of type E (1)

8 . We have

RC(B7,s) =
⊕

λ

RC(B7,s; λ)⊕(1+k2−k4−2k5)

where

α(1) = 4α1 + 6α2 + 8α3 + 12α4 + 10α5 + 8α6 + 6α7 + 3α8 = �7,

α(2) = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + α8 = �7 − �8,

α(3) = α2 + α3 + 2α4 + 2α5 + 2α6 + 2α7 + α8 = �7 − �1,

α(4) = α7 + α8 = �7 + �8 − �6,

α(5) = α8 = 2�8 − �7,

and λ = s�7 −∑5
i=1 kiα

(i), such that
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(1) k1 + k2 + k3 + k4 ≤ s,
(2) ki ≥ 0 for i = 1, 2, 3, 4, 5, and
(3) k2 ≥ k4 + 2k5.

Moreover the highest weight rigged configurations in RC(B8,s) are given by

ν(k1 ∗ [α(1)] + k2 ∗ [α(2)] + k3 ∗ [α(3)] + k4 ∗ [α(4)] + k5 ∗ [α(5)])

with all riggings 0 except the first row of ν(8), which satisfies 0 ≤ x ≤ k2 − k4 − 2k5,
and

cc(ν, J ) = 3k1 + k2 + k3 + k4 + k5 + x .

Proof Similar to the proof of Proposition 9.11. �

Proposition 9.25 Consider the KR crystal B1,s of type E (1)
8 . We have

RC(B1,s) =
⊕

k1,k2≥0
k1+k2≤s

RC(B1,s; (s − k1 − k2)�1 + k2�8).

Moreover the highest weight rigged configurations in RC(B1,s) are given by

ν(k1 ∗ [α(1)] + k2 ∗ [α(2)]),

where

α(1) = 4α1 + 5α2 + 7α3 + 10α4 + 8α5 + 6α6 + 4α7 + 2α8 = �1,

α(2) = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7 = �1 − �8,

with all riggings 0 and

cc(ν, J ) = 2k1 + k2.

Proof Similar to the proof of Proposition 9.11 as α(1) > α(2). �
We note that our graded decompositions for r = 1, 7, 8 agree with the conjectures

of [20, App. A], where the case of r = 7 is similar to the proof of Proposition 9.12.

Remark 9.26 The cases of r = 4 of type E (1)
6 , r = 3 of type E (1)

7 , and r = 7 of

type E (1)
8 are all nodes which are distance 2 from the affine node, and all have the

same graded decompositions. Thus it would be interesting to see if there is a uniform
describe of these KR crystals, and additionally to compare it with Br ,s for r = 1, 3 in
type D(1)

n and r = 2, n − 2 in type A(1)
n .
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9.5 Type E(2)6

For r = 1, this is immediate deduced from the devirtualization of Proposition 9.1
(r = 2 in type E (1)

6 ) as γa = 1 for all a ∈ I .

Proposition 9.27 Consider the KR crystal B1,s of type E (2)
6 . We have

RC(B1,s) =
s⊕

k=0

RC(B1,s; (s − k)�1).

Moreover, the highest weight rigged configurations inRC(B1,s) are given by ν(k∗[α])
with all riggings 0, where

α = 2α1 + 3α2 + 2α3 + α4 = �1,

and

cc(ν, J ) = k.

Proof The proof is similar to Proposition 9.1 as the ambient Kleber tree is the same
as the virtual Kleber tree. �
Definition 9.28 We define the filling map fill : B1,s → T 1,s on classically highest
weight element b ∈ B

(
(s − k)�1

) ⊆ B1,s by defining fill(b) as the tableau with the
first s − k columns as [1], the next �k/2� columns as 1 1 , and if k is odd, the last
column as [∅]. We then extend fill as a classical crystal isomorphism.

Proposition 9.29 Let fill : B1,s → T 1,s given by Definition 9.28 and ι be the natural
(classical) crystal isomorphism. We have

� = fill ◦ι

on classically highest weight elements.

Proof Similar to the proof of Proposition 9.4. �
Proposition 9.30 Consider the KR crystal B2,s of type E (2)

6 . We have

RC(B2,s) =
⊕

λ

RC(B2,s; λ)⊕(1+k2−k4−2k5),

where

α(1) := 3α1 + 6α2 + 4α3 + 2α4 = �2,

α(2) := α1 + 3α2 + 2α3 + α4 = �2 − �1,
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α(3) := α1 + 2α2 + α3 = �2 − �4,

α(4) := α1 + α2 = �1 + �2 − �3,

α(5) := α1 = 2�1 − �2,

and λ = s�2 −∑5
i=1 kiα

(i), such that

(1) k1 + k2 + k3 + k4 ≤ s,
(2) ki ≥ 0 for i = 1, 2, 3, 4, 5, and
(3) k2 ≥ k4 + 2k5.

Moreover the highest weight rigged configurations in RC(B2,s) are given by

ν(k1 ∗ [α(1)] + k2 ∗ [α(2)] + k3 ∗ [α(3)] + k4 ∗ [α(4)] + k5 ∗ [α(5)]),

with all riggings 0 except for x in the first row of ν(1), which satisfies 0 ≤ x ≤
k2 − k4 − 2k5, and

cc(ν, J ) = 3k1 + k2 + k3 + k4 + k5 + x .

Proof Note that α(1) > α(2) > α(3) > α(4) > α(5) component-wise expressed in
terms of {αi }i∈I0 . Thus any sequence (k1, k2, k3, k4, k5) uniquely determines a path
in the ambient Kleber tree, which is the same tree constructed in Proposition 9.11.

Hence the claim follows from Definition 2.17 as all α̂
(i)

are symmetric with respect
to the diagram automorphism φ and that γa = 1 for all a ∈ I . �
Proposition 9.31 Consider the KR crystal B4,s of type E (2)

6 . We have

RC(B4,s) =
⊕

k1,k2≥0
k1+k2≤s

RC(B4,s; k2�1 + (s − k1 − k2)�4).

Moreover, the highest weight rigged configurations in RC(B4,s) are given by

ν(k1 ∗ [α(1)] + k2 ∗ [α(2)]),

where

α(1) = 2α1 + 4α2 + 3α3 + 2α4 = �4,

α(2) = α2 + α3 + α4 = �4 − �1,

with all riggings 0 and

cc(ν, J ) = 2k1 + k2.

Proof We note that α(1) > α(2) (and likewise for their ambient counterparts). The
claim follows from Definition 2.17. �
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It is straightforward to see that our graded decompositions agree with those conjec-
tured in [22, App. A], where the r = 2 case is similar to the proof of Proposition 9.12.

9.6 Type F(1)4

We can also describe the set RCH W (Br ,s) for r = 1, 2, 4 in type F (1)
4 .

For r = 1, 2 in type F (1)
4 , this is the same as for type E (2)

6 except for ν(3) and ν(4)

are scaled by 2. This follows from Definition 2.17, that γ0,1,2 = 2, and that γ3,4 = 1.

Proposition 9.32 Consider the KR crystal B4,s of type F (1)
4 . We have

RC(B4,s) =
⊕

k1,k2≥0
k1+k2≤s/2

RC(B4,s; k2�1 + (s − 2k1 − 2k2)�4).

Moreover the highest weight rigged configurations in RC(B4,s) are given by

ν(1) = (k1, k1)

ν(2) = (k1 + k2, k1, k1, k1),

ν(3) = (2k1 + 2k2, 2k1, 2k1),

ν(4) = (2k1 + 2k2, 2k1),

with all riggings 0.

Proof Similar to the proof of Proposition 9.31 except for we select all nodes at even
depths and the note above about devirtualization. �

Given the devirtualization map and that all nodes for r = 1, 2, 4 appear at even
levels in the ambient Kleber tree, and Proposition 9.12, it is straightforward to see that
our crystals agree with the conjectured decompositions of [20, App. A].

10 Outlook

For untwisted non-simply-laced affine types, the author believes that there is a way to
modify the description of the rigged configurations such that each partition is scaled by
1/Tr as in Remark 6.2. In particular, this modification will be similar to the description
given here and the proof would be similar and uniform. We note that this was done for
type C (1)

n and B(1)
n for B1,1 in [74]. However, we need to take B1,2 for type C (1)

n and
B2,1 for type B(1)

n in order to get the adjoint node (and have a perfect crystal of level
1). As such, a modification to our description would be needed. It seems plausible
that the extra possibility of case (Q), a singular row of length one less than previously
selected, as given in δ1 of type B(1)

n from [74] is the necessary modification. For type
G(1)

2 , this is an open problem from [93], which we give here in more generality.
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Proposition 10.1 Describe explicitly the map δθ for g of untwisted non-simply-laced
affine type.
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sions. The author would like to thank Anne Schilling for useful discussions. The author would like to thank
Ben Salisbury for comments on an early draft of this paper. The author would like to thank the referee for
their useful comments. This work benefited from computations using SageMath [15,79].

Appendix A: KR tableaux for fundamental weights

In this section, we list the classically highest weight KR tableaux for Br ,1 for types
E (1)
6,7,8, E (2)

6 , F (1)
4 , and G(1)

2 .

Recall that highest weight rigged configurations must have 0 ≤ p(a)
i for all

(a, i) ∈ H0. Moreover, all rigged configurations in this section will have p(a)
i = 0

except for possibly one (b, j) ∈ H0 where p(b)
j = 1. Therefore we describe the

rigged configuration simply by its configuration ν and if p(a)
i = 1, then we write

the corresponding rigging x as the subscript (x). We also write the column tableau
x1 x2 x3 · · · xr

t
as [x1, x2, x3, . . . , xr ].

Example A.1 In type E (1)
7 for B4,1, we denote the rigged configuration

00 0
0

0
0

1
0

1
1

0
0
0
0

0
0
0
0

0
0
0

0
0
0

0
0

0
0

00 ,

by (1, 11, 1(1)1(0), 1111, 111, 11, 1) or more compactly (1, 12, 12(1,0), 1
4, 13, 12, 1).

In the remaining part of this section, we give the KR tableaux for Br ,1 for the
exceptional types (except for r = 4, 5 in type E (1)

8 , which can be generated using
SageMath [15]).

A.1. Type E(1)6

r = 1

(∅,∅,∅,∅,∅,∅) �→ [1]

r = 2

(∅,∅,∅,∅,∅,∅) �→ [1, 16, 26]
(1, 12, 12, 13, 12, 1) �→ [1, 16, 6]



Uniform description of the rigged... Page 73 of 84 42

r = 3

(∅,∅,∅,∅,∅,∅) �→ [1, 13]
(1, 1, 12, 12, 1,∅) �→ [1, 16]

r = 4

(∅,∅,∅,∅,∅,∅) �→ [1, 13, 34]
(∅, 1, 1, 12, 1,∅) �→ [1, 13, 136]

(1, 1(0), 1, 1
3, 12, 1) �→ [1, 16, 26]

(1, 1(1), 1
2, 13, 12, 1) �→ [1, 13, 23]

(12, 13, 14, 16, 14, 12) �→ [1, 16, 6]

r = 5

(∅,∅,∅,∅,∅,∅) �→ [1, 16, 26, 25]
(∅, 1, 1, 12, 12, 1) �→ [1, 16, 26, 12]

r = 6

(∅,∅,∅,∅,∅,∅) �→ [1, 16]

A.2. Type E(1)7

r = 1

(∅,∅,∅,∅,∅,∅,∅) �→ [7, 17]
(12, 12, 13, 14, 13, 12, 1) �→ [7, 7]

r = 2

(∅,∅,∅,∅,∅,∅,∅) �→ [7, 17, 12]
(1, 12, 12, 13, 12, 1,∅) �→ [7, 17, 17]

r = 3

(∅,∅,∅,∅,∅,∅,∅) �→ [7, 17, 12, 23]
(1, 1, 12, 12, 1,∅,∅) �→ [7, 17, 12, 26]

(1(0), 1
2, 13, 14, 13, 12, 1) �→ [7, 17, 17, 17]

(1(1), 1
2, 13, 14, 13, 12, 1) �→ [7, 17, 12, 12]

(13, 14, 16, 18, 16, 14, 12) �→ [7, 17, 17, 7]
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r = 4

(∅,∅,∅,∅,∅,∅,∅) �→ [7, 67, 56, 45]
(∅, 1, 1, 12, 1,∅,∅) �→ [7, 67, 56, 156]

(∅, 12, 12, 14, 13, 12, 1) �→ [7, 67, 167, 17]
(1, 1(0), 1

2, 13, 12, 1,∅) �→ [7, 67, 167, 12]
(1, 1(1), 1

2, 13, 12, 1,∅) �→ [7, 67, 56, 257]
(1, 12, 12(0,0), 1

4, 13, 12, 1) �→ [7, 17, 12, 23]
(1, 12, 12(1,0), 1

4, 13, 12, 1) �→ [7, 67, 167, 137]
(1, 12, 12(1,1), 1

4, 13, 12, 1) �→ [7, 67, 56, 35]
(12, 13, 14, 16, 14, 12,∅) �→ [7, 67, 167, 17]

(12, 13, 14, 16, 14, 12(0,0), 1) �→ [7, 17, 12, 26]
(12, 13, 14, 16, 14, 12(1,0), 1) �→ [7, 67, 167, 167]
(12, 13, 14, 16, 14, 12(1,1), 1) �→ [7, 67, 56, 56]

(12(0,0), 1
4, 15, 18, 16, 14, 12) �→ [7, 17, 17, 17]

(12(1,0), 1
4, 15, 18, 16, 14, 12) �→ [7, 17, 12, 12]

(12(1,1), 1
4, 15, 18, 16, 14, 12) �→ [7, 67, 167, 7]

(14, 16, 18, 112, 19, 16, 13) �→ [7, 17, 17, 7]
(2, 21, 22, 2212, 212, 12, 1) �→ [7, 67, 26, 26]

(12, 212, 213, 2214, 2212, 22, 2) �→ [7, 67, 26, 21]
(22, 2212, 2312, 2414, 2313, 2212, 21) �→ [7, 67, 67, 7]

r = 5

(∅,∅,∅,∅,∅,∅,∅) �→ [7, 67, 56]
(∅, 1, 1, 12, 12, 1,∅) �→ [7, 67, 167]

(1, 1(0), 1
2, 13, 13, 12, 1) �→ [7, 17, 12]

(1, 1(1), 1
2, 13, 13, 12, 1) �→ [7, 67, 26]

(12, 13, 14, 16, 15, 13, 1(0)) �→ [7, 17, 17]
(12, 13, 14, 16, 15, 13, 1(1)) �→ [7, 67, 67]

r = 6

(∅,∅,∅,∅,∅,∅,∅) �→ [7, 67]
(∅, 1, 1, 12, 12, 12, 1) �→ [7, 17]
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(12, 13, 14, 16, 15, 14, 12) �→ [7, 7]

r = 7

(∅,∅,∅,∅,∅,∅,∅) �→ [7]

A.3. Type E(1)8

r = 1

(∅,∅,∅,∅,∅,∅,∅,∅) �→ [8, 18]
(12, 12, 13, 14, 13, 12, 1,∅) �→ [8,∅]

(14, 15, 17, 110, 18, 16, 14, 12) �→ [∅,∅]

r = 2

(∅,∅,∅,∅,∅,∅,∅,∅) �→ [8, 18, 12]
(1, 12, 12, 13, 12, 1,∅,∅) �→ [8, 18, 17]

(1(0), 1
3, 13, 15, 14, 13, 12, 1) �→ [8, 18, 11]

(1(1), 1
3, 13, 15, 14, 13, 12, 1) �→ [8, 18,∅]

(13, 15, 16, 19, 17, 15, 13, 1(0)) �→ [8,∅, 88]
(13, 15, 16, 19, 17, 15, 13, 1(1)) �→ [8,∅,∅]

(15, 18, 110, 115, 112, 19, 16, 13) �→ [∅,∅,∅]

r = 3

(∅,∅,∅,∅,∅,∅,∅,∅) �→ [8, 18, 12, 23]
(1, 1, 12, 12, 1,∅,∅,∅) �→ [8, 18, 12, 26]

(1(0), 1
2, 13, 14, 13, 12, 1,∅) �→ [8, 18, 17, 178]

(1(1), 1
2, 13, 14, 13, 12, 1,∅) �→ [8, 18, 12, 128]

(12, 12(0,0), 1
4, 15, 14, 13, 12, 1) �→ [8, 18, 17, 27]

(12, 12(1,0), 1
4, 15, 14, 13, 12, 1) �→ [8, 18, 12, 22]

(12, 12(1,1), 1
4, 15, 14, 13, 12, 1) �→ [8, 18, 12,∅]

(13, 14, 16, 18, 16, 14, 12,∅) �→ [8, 18, 17, 788]
(13, 14, 16, 18, 16, 14, 12(0,0), 1) �→ [8, 18, 11, 17]
(13, 14, 16, 18, 16, 14, 12(1,0), 1) �→ [8, 18, 17, 77]
(13, 14, 16, 18, 16, 14, 12(1,1), 1) �→ [8, 18, 17,∅]
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(13(0,0,0), 1
5, 17, 110, 18, 16, 14, 12) �→ [8,∅, 88, 18]

(13(1,0,0), 1
5, 17, 110, 18, 16, 14, 12) �→ [8, 18, 11, 11]

(13(1,1,0), 1
5, 17, 110, 18, 16, 14, 12) �→ [8, 18, 11,∅]

(13(1,1,1), 1
5, 17, 110, 18, 16, 14, 12) �→ [8, 18,∅,∅]

(15, 17, 110, 114, 111, 18, 15, 12(0,0)) �→ [8,∅, 88, 88]
(15, 17, 110, 114, 111, 18, 15, 12(1,0)) �→ [8,∅, 88,∅]
(15, 17, 110, 114, 111, 18, 15, 12(1,1)) �→ [8,∅,∅,∅]
(17, 110, 114, 120, 116, 112, 18, 14) �→ [∅,∅,∅,∅]

(21, 22, 2212, 2312, 2212, 212, 12, 1) �→ [8, 18, 12, 27]
(13, 213, 215, 2216, 2214, 2212, 22, 2) �→ [8, 18, 17, 17]

(221(0), 2
213, 2314, 2416, 2315, 2214, 213, 12) �→ [8, 18, 11, 18]

(221(1), 2
213, 2314, 2416, 2315, 2214, 213, 12) �→ [8, 18,∅, 18]

(2213, 2314, 2416, 2618, 2516, 2414, 2312, 22) �→ [8,∅,∅, 8]

r = 6

(∅,∅,∅,∅,∅,∅,∅,∅) �→ [8, 78, 67]
(∅, 1, 1, 12, 12, 11, 1,∅) �→ [8, 78, 178]

(1, 1(0), 1
2, 13, 13, 13, 12, 1) �→ [8, 18, 12]

(1, 1(1), 1
2, 13, 13, 13, 12, 1) �→ [8, 78, 27]

(12, 13, 14, 16, 15, 14, 12,∅) �→ [8, 78, 788]
(12, 13, 14, 16, 15, 14, 12(0,0), 1) �→ [8, 18, 17]
(12, 13, 14, 16, 15, 14, 12(1,0), 1) �→ [8, 78, 77]
(12, 13, 14, 16, 15, 14, 12(1,1), 1) �→ [8, 78,∅]

(12(0,0), 1
4, 15, 18, 17, 16, 14, 12) �→ [8, 88, 18]

(12(1,0), 1
4, 15, 18, 17, 16, 14, 12) �→ [8, 18, 11]

(12(1,1), 1
4, 15, 18, 17, 16, 14, 12) �→ [8, 188,∅]

(14, 16, 18, 112, 110, 18, 15, 12(0,0)) �→ [8, 88, 88]
(14, 16, 18, 112, 110, 18, 15, 12(1,0)) �→ [8, 88,∅]
(14, 16, 18, 112, 110, 18, 15, 12(1,1)) �→ [8,∅,∅]
(16, 19, 112, 118, 115, 112, 18, 14) �→ [∅,∅,∅]

(12, 212, 213, 2214, 2213, 2212, 22, 2) �→ [8, 78, 17]
(22, 2212, 2312, 2414, 2314, 2214, 213, 12) �→ [8, 18, 18]
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(2212, 2313, 2414, 2616, 2515, 2414, 2312, 22) �→ [8,∅, 8]

r = 7

(∅,∅,∅,∅,∅,∅,∅,∅) �→ [8, 78]
(∅, 1, 1, 12, 12, 12, 12, 1) �→ [8, 18]

(12, 13, 14, 16, 15, 14, 13, 1(0)) �→ [8, 88]
(12, 13, 14, 16, 15, 14, 13, 1(1)) �→ [8,∅]
(14, 16, 18, 112, 110, 18, 16, 13) �→ [∅,∅]

r = 8

(∅,∅,∅,∅,∅,∅,∅,∅) �→ [8]
(12, 13, 14, 16, 15, 14, 13, 12) �→ [∅]

A.4. Type E(2)6

r = 1

(∅,∅,∅,∅) �→ [1]
(12, 13, 12, 1) �→ [∅]

r = 2

(∅,∅,∅,∅) �→ [1, 12]
(1, 12, 1,∅) �→ [1, 14]

(1(0), 1
3, 12, 1) �→ [1, 11]

(1(1), 1
3, 12, 1) �→ [1,∅]

(13, 16, 14, 12) �→ [∅,∅]

r = 3

(∅,∅,∅,∅) �→ [1, 12, 23]
(∅, 1, 1,∅) �→ [1, 12, 124]

(∅, 12, 12, 1) �→ [1, 12, 112]
(1, 12(0,0), 1

2, 1) �→ [1, 14, 24]
(1, 12(1,0), 1

2, 1) �→ [1, 12, 22]
(1, 12(1,1), 1

2, 1) �→ [1, 12,∅]
(12, 14, 13, 1(0)) �→ [1,∅, 14]
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(12, 14, 13, 1(1)) �→ [1, 14,∅]
(12(0,0), 1

5, 14, 12) �→ [1, 11, 11]
(12(1,0), 1

5, 14, 12) �→ [1, 11,∅]
(12(1,1), 1

5, 14, 12) �→ [1,∅,∅]
(14, 18, 16, 13) �→ [∅,∅,∅]

(2, 22, 21, 1) �→ [1, 12, 24]
(12, 213, 212, 2) �→ [1, 14, 14]

(22, 2312, 2212, 21) �→ [1,∅, 1]

r = 4

(∅,∅,∅,∅) �→ [1, 14]
(∅, 1, 1, 1) �→ [1,∅]

(12, 14, 13, 12) �→ [∅,∅]

A.5. Type F(1)4

We follow Proposition 4.3 to describe the elements of B(�4).
r = 1

(∅,∅,∅,∅) �→ [4, 14]
(12, 13, 22, 2) �→ [4, 4]

r = 4

(∅,∅,∅,∅) �→ [4, 34, 23]
(1, 12, 2,∅) �→ [4, 34, 344]

(1(0), 1
3, 22, 2) �→ [4, 44, 14]

(1(1), 1
3, 22, 2) �→ [4, 34, 13]

(13, 16, 24, 22) �→ [4, 44, 4]

r = 3

(∅,∅,∅,∅) �→ [4, 34]
(1, 12, 21, 1) �→ [4, 44]

r = 4

(∅,∅,∅,∅) �→ [4]
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A.6. Type G(1)
2

r = 1

(∅,∅) �→ [1]

r = 2

(∅,∅) �→ [1, 2]
(3, 12) �→ [1, 1]

Appendix B: Examples with SageMath

We give some examples using SageMath [15], where rigged configurations, KR
tableaux, and the bijection � has been implemented by the author.

We first construct Example 4.4.

sage : RC=RiggedConfigurations ([ ’E ’ ,6 ,2] , [[1 ,1]]∗4)
sage : n=RC( part i t ion_list =[[2 ,2 ,1 ,1] ,[2 ,2 ,2 ,1 ,1 ,1] ,[2 ,2 ,1 ,1] ,[2 ,1]] ,
. . . . : rigging_list =[[1 ,0 ,2 ,1] ,[0 ,0 ,0 ,0 ,0 ,0] ,[0 ,0 ,0 ,0] ,[0 ,0]])
sage : ascii_art (n)
1[ ][ ]1 0[ ][ ]0 0[ ][ ]0 0[ ][ ]0
1[ ][ ]0 0[ ][ ]0 0[ ][ ]0 0[ ]0
2[ ]2 0[ ][ ]0 0[ ]0
2[ ]1 0[ ]0 0[ ]0

0[ ]0
0[ ]0

sage : n. to_tensor_product_of_kirillov_reshetikhin_tableaux ( ) .pp()
(1 , −2) (X) (−1, 2) (X) E (X) (1 ,)

Next, we construct Example 5.3.

sage : RC=RiggedConfigurations ([ ’E ’ ,7 ,1] , [[4 ,1]])
sage : nu=RC.module_generators[6]
sage : ascii_art (nu)

0[ ]0 0[ ]0 1[ ]1 0[ ]0 0[ ]0 0[ ]0 0[ ]0
0[ ]0 1[ ]0 0[ ]0 0[ ]0 0[ ]0

0[ ]0 0[ ]0
0[ ]0

sage : nu. to_tensor_product_of_kirillov_reshetikhin_tableaux ( ) .pp()
(7 ,)

(−7, 6)
(−6, 7, 1)
(−1, −7, 3)
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