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Abstract
We obtain necessary conditions for the existence of special Kähler structures with
isolated singularities on compact Riemann surfaces. We prove that these conditions
are also sufficient in the case of the Riemann sphere and, moreover, we determine the
whole moduli space of special Kähler structures with fixed singularities. The tool we
develop for this aim is a correspondence between special Kähler structures and pairs
consisting of a cubic differential and a hyperbolic metric.
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1 Introduction

For reader’s convenience, let us recall the definition of the affine special Kähler struc-
ture, which is the main object of study of this article.

Definition 1 [7] An (affine) special Kähler structure on a manifold � is a quadru-
ple (g, I , ω,∇), where (�, g, I , ω) is a Kähler manifold with Riemannian metric g,
complex structure I , and symplectic form ω(·, ·) = g(I ·, ·), and∇ is a flat symplectic
torsion-free connection on the tangent bundle T� such that

(∇X I
)
Y = (∇Y I

)
X (2)

holds for all vector fields X and Y .
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If I is fixed, which is always assumed to be the case below, we say for simplicity
that (g,∇) is a special Kähler structure.

The notion of a special Kähler structure has its origin in physics [6,9] and is the
natural structure of the base of an algebraic integrable system [7]. In particular, alge-
braic integrable systems appear naturally in gauge theory [8,14,17,19,20], where a
special instance of an algebraic integrable system—the Seiberg–Witten curve—plays
a central rôle in the (physical) Seiberg–Witten theory. Very recently, special Kähler
structures on Riemann surfaces have been extensively studied from the perspective of
N = 2 superconformal field theory, see [1] and references therein.

Examples of special Kähler structures can be found in [3,5,7,10,12,18]. An elemen-
tary introduction to special Kähler geometry on Riemann surfaces can be found in [4].

Note that a complete special Kähler metric is necessarily flat [2,15]. Besides,
singularities of fibers of an algebraic integrable system lead to singularities of the
corresponding special Kähler structure. This motivates studies of singular special
Kähler metrics as a natural structure on bases of algebraic integrable systems.

Associated to a special Kähler structure is the period map τ , which takes values in
the Siegel upper half-space [7]. If � is a Riemann surface, which is assumed to be the
case below unless otherwise stated explicitly, τ takes values in the upper half-plane
H := {z ∈ C | Im z > 0}, which is endowed with the standard hyperbolic metric
gH = (

Im z
)−2|dz|2.

Definition 3 Let � be a Riemann surface. For a special Kähler structure (g,∇) on �

with the period map τ we call g̃ := τ ∗gH the associated hyperbolic metric.

Notice that τ depends on certain choices and, moreover, is defined locally only (or,
equivalently, on the universal covering of �), however g̃ is well-defined. Also, g̃ may
either degenerate or be singular at isolated points, hence, strictly speaking, g̃ is ametric
outside of somediscrete subset of�. This is not a concern for us, sincewe are interested
in singular special Kähler structures, which involves singular metrics anyway.

In Definition 3 and below, a metric is said to be hyperbolic, if its Gaussian curvature
is constant and equals−1. If g̃ is any hyperbolic metric on�, we say that g̃ represents
a divisor �n

j=1 (α j − 1) p j with 0 ≤ α j �= 1 if the following holds: If α j = 0, then
g̃ has a cusp singularity at p j ; If α j > 0, g̃ has a conical singularity of order α j − 1,
i.e. g̃ has a conical angle of 2πα j at p j (See the precise explanation in Corollary 30).

Recall [7] that for any special Kähler structure we can also construct the associated
cubic form�, which is a holomorphic section of K 3

� , where K� is the canonical bundle
of �. Throughout this manuscript we assume that � is non-zero. This means that we
exclude special Kähler structures (g,∇), where g is flat and ∇ is the Levi–Civita
connection of g.

Thus, to any special Kähler structure on a Riemann surface we can associate a pair
(g̃, �) as above. Our main result, Theorem 8 below, states, roughly speaking, that for
any pair (g̃, �) consisting of a hyperbolic metric possibly singular at isolated points
and a meromorphic cubic form we can construct a special Kähler structure, whose
associated hyperbolic metric and associated cubic form are g̃ and � respectively.

The precise statement requires some notations, which are introduced next. Denote
by (r , θ) the polar coordinates on C

∗, where θ ∈ (0, 2π), and put ρ := log r ,
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12 :=
(
1 0
0 1

)
, and I2 :=

(
0 −1
1 0

)
.

For any k ∈ Z and b ∈ C\{0} the following

gk = −|b|rk log r |dz|2,

ωk,∇ = 1

2

⎛

⎝kI2 +
⎛

⎝
Im

(
b
|b|e

ikθ
)

−1 + Re
(

b
|b|e

ikθ
)

1 + Re
(

b
|b|e

ikθ
)

− Im
(

b
|b|e

ikθ
)

⎞

⎠ ρ−1

⎞

⎠ dθ

+ 1

2

⎛

⎝k12 +
⎛

⎝
1 − Re

(
b
|b|e

ikθ
)

Im
(

b
|b|e

ikθ
)

Im
(

b
|b|e

ikθ
)

1 + Re
(

b
|b|e

ikθ
)

⎞

⎠ ρ−1

⎞

⎠ dρ

(4)

is a special Kähler structure on the punctured disc {0 < r < 1} [3]. Here ωk,∇ is the
connection one-form of ∇ with respect to the trivialization (∂x , ∂y), where z = x + yi
is the standard coordinate on C. By [3, Thm.5], (4) together with flat cones

gcβ = rβ |dz|2, ωc
β,∇ = ωLC = β

2

(
12 dρ + I2 dθ

)
, (5)

where β ∈ R, are local models of isolated singularities of affine special Kähler struc-
tures in complex dimension one provided the associated cubic form is meromorphic.

Definition 6 [3, Def. 6] We say that a special Kähler structure (g,∇) on the punctured
disc has a conical singularity of order 1

2β at the origin, if (g, ω∇) is asymptotic to
(gcβ, ωc

β,∇). We say that (g,∇) has a logarithmic singularity of order 1
2k, k ∈ Z, at

the origin, if (g, ω∇) is asymptotic to (gk, ωk,∇).

Remark 7 Geometrically, (5) can be thought of as follows:

• If β > −2, (5) is a cone of total angle π(β + 2).
• If β = −2, (5) is a cylindrical end with the origin at infinity.
• If β < −2, (5) is a conical end of total angle −π(β + 2), where the origin is at
infinity.

In other words, in the case of conical singularity the corresponding special Kähler
metric is either locally conical, asymptotically cylindrical, or asymptotically conical
respectively.

With this at hand, we can state our main result as follows.

Theorem 8 Let � be a meromorphic cubic differential on a Riemann surface � (not
necessarily compact) with the divisor (�) = ∑

p∈� ordp� · p. Let also g̃ be a
hyperbolic metric on� representing a divisor D. Then there is a unique special Kähler
structure (g,∇) on � whose associated hyperbolic metric and associated cubic form
are g̃ and� respectively.Moreover, (g,∇) is smooth on�0 := �\(supp(�)∪suppD)

and the following also holds:
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(i) Acusp singularity p of g̃ is a logarithmic singularity of (g,∇) of order 1
2 (ordp�+

1);
(ii) A conical singularity p of g̃ of order α is a conical singularity of (g,∇) of order

1
2 (ordp� − α);

(iii) (g,∇)hasa conical singularity of order 1
2ordp�at apoint p ∈ supp(�)\suppD.

A somewhat more precise version of this result is Theorem 31, which is proved in
Sect. 3.

We would like to point out that the correspondence of Theorem 8 is pretty much
explicit. To demonstrate this, pick any local holomorphic coordinate z and write g̃ =
e2v|dz|2 and � = �0(z) dz3. Then the special Kähler metric of Theorem 8 is given
by

g = 4 |�0|e−v|dz|2.

Using [3, (9), (11)], one can also obtain an explicit formula for a connection one-form
of ∇ in terms of v and �0. The details are provided at the end of Sect. 2.

Furthermore, pick integers k ≥ 1, � ∈ [0, k], a k–tuple p = (p1, . . . , pk) of
pairwise distinct points on � as well as a k–tuple b = (β1, . . . , βk) of real numbers.
If (g,∇) is a special Kähler structure on � away from {p1, . . . , pk}, then each p j

is an isolated singularity of the associated cubic form �. It turns out that in general
� may have essential singularities at some of p j ’s (see Example 32), however in the
definition below, we assume that � is meromorphic, i.e., each p j is a pole of � at
worst.

Definition 9 We call

M�
k(p, b) := {

(g,∇) | (g,∇) is a special Kähler structure on � such that

� is meromorphic, � �≡ 0, and ordp j (g,∇) = 1
2β j

}
/R>0

the moduli space of special Kähler structures with fixed singularities (or, simply the
moduli space of special Kähler structures for short), where ordp j (g,∇) is the order
of (g,∇) at p j , the first � points of p are of conical type, and the remaining points are
all of logarithmic type. In particular, β�+1, . . . , βk are integers, if � = 0 all points are
of logarithmic type, whereas for � = k all points are of conical type. Notice that the
group R>0 acts on the set of special Kähler structures via λ · (g, ∇) = (λg, ∇).

In addition, we call

R�
k(p, b) := {

g | ∃ ∇ such that [g,∇] ∈ M�
k(p, b)

}
/R>0

the moduli space of special Kähler metrics.

Notice that at this point both M�
k(p, b) and R�

k(p, b) are defined as sets only. We
justify the name by introducing a topology on these sets in Sect. 5 below.
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Theorem 10 Let � be a compact Riemann surface of genus γ . If M�
k(p, b) is non-

empty, then the following inequalities hold:

4(γ − 1) < β1 + · · · + βk,

[β1] + · · · + [β�] + β�+1 + · · · + βk ≤ 6(γ − 1) + k − �,
(11)

where [β] is the greatest integer not exceeding β.
If M�

k(p, b) �= ∅, then it is homeomorphic to an open dense subset of a sphere
of an odd dimension 2N + 1. In this case the space R�

k(p, b) is homeomorphic to a
Zariski open subset of CPN . In the special case � = k, i.e., all singularities are of
conical type,Mk

k(p, b) is homeomorphic to S2N+1 andRk
k(p, b) is homeomorphic to

CPN . In particular these moduli spaces are compact.
For� = P

1 the spaceM�
k(p, b) is non-empty if and only if (11) holds. In this case,

N = −6 + k − � −
k∑

j=1

[β j ]. (12)

The proof of this theorem can be found in Sect. 5.
We also establish necessary and sufficient conditions for the existence of special

Kähler structures on elliptic curves as well as describe the corresponding moduli
spaces in Corollary 47.

While proving our main statements we obtain also other results, which may be of
some interest. In particular, as already mentioned above we construct an example of a
special Kähler structure whose associated cubic form has essential singularities, see
Example 32. To the best of our knowledge this is the first example of an associated
cubic form with an essential singularity.

We also describe all special Kähler structures compatible with a fixed metric, see
Sect. 4.

Furthermore, let (g,∇) be a special Kähler structure on a compact Riemann surface
with finitely many prescribed singularities. Then the map which assigns to (g,∇) the
associated cubic form � is injective, see Theorem 37 for a more precise statement.
This is surprising, since there is no reason to believe that�, which a priori encodes the
difference between the Levi–Civita and the flat symplectic connections only, should
determine thewhole specialKähler structure (with prescribed singularities).Moreover,
this is a truly global statement in the sense that the corresponding local statement is
clearly false.

Finally, in the last section we construct compactifications of the moduli spaces
M�

k(p, b) and R�
k(p, b) in the case � < k.

2 Preliminaries

Let � ⊂ C be any domain, which is viewed as being equipped with a holomorphic
coordinate z = x + yi and the flat Euclidean metric |dz|2 = dx2 + dy2. We assume
that any element of H1(�; R) can be represented by a co-closed 1-form.
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Write a special Kähler metric g on � in the form

g = e−u |dz|2.

Using the global trivialisation of T� provided by the real coordinates (x, y) the con-
nection∇ is described by its connection 1-formω∇ ∈ �1

(
�; gl(2, R)

)
. A computation

shows [4] that ω∇ can be written in the form

ω∇ =
(

ω11 − ∗ ω11∗ω22 ω22

)
, (13)

where
2ω11 = eu(dh + 2ψ) − du, 2ω22 = −eu(dh + 2ψ) − du. (14)

Here ∗ denotes the Hodge star operator with respect to the flat metric, h is a smooth
function, and ψ is a 1-form. These data are subject to the equation

�h = 0, (d + d∗)ψ = 0, �u = |dh + 2ψ |2e2u, (15)

where � = ∂2xx + ∂2yy . Moreover, given any triple (h, u, ψ) satisfying (15) the metric
g = e−u |dz|2 together with ω∇ , which is given by (13) and (14), constitutes a special
Kähler structure on � (with its complex structure inherited from C).

If � is the punctured disc B∗
1 , any closed and co-closed 1-form can be written as

aϕ, where ϕ is a generator of H1(B∗
1 ; R). For example, we can fix

ϕ = y dx − x dy

x2 + y2
= −d

(
arg (x + iy)

)
.

Hence, a special Kähler structure on the punctured disc can be described in terms
of solutions of the following equations

�h = 0, �u = |dh + aϕ|2e2u, (16)

where h, u ∈ C∞(B∗
1 ) and a ∈ R.

If (h, u, a) is a solution of (16), the associated holomorphic cubic form of the
corresponding special Kähler structure is

� = �0 dz
3 = 1

2

( a

2z
− ∂h

∂z
i
)
dz3.

Remark 17 Tracing through the description of special Kähler structures in terms of
solutions of (16) as given in [4], it is easy to see that the function h is defined only
up to a constant. In other words, if c is any real constant, (h, u, a) and (h + c, u, a)

determine equal special Kähler structures.



Special Kähler structures, cubic differentials and… Page 7 of 21 37

Astraightforward computation shows that |dh+aϕ|2 = 16|�0|2 = 16|�|2. Hence,
the second equation of (16) can be written as

�u = 16 |�|2e2u, (18)

which implies in particular that the Gaussian curvature of the special Kähler metric
g = e−u |dz|2 equals 8|�|2g ≥ 0. Furthermore, write �0(z) = �̊0(z) + Az−1, where

A ∈ C is the residue of �0 at the origin, and denote by H a primitive of �̊0. Notice
that H is well-defined up to a constant. Define

h := −4 ImH − 4 Im A log |z| and a := 4Re A. (19)

Using ∂z Im H = 1
2i ∂zH we compute

1

2

( a

2z
− ∂h

∂z
i
)

= �0(z).

The upshot of this computation is that �0 determines and is determined by h and a.
Slightly more generally, let � = �̃\{p1, . . . , pk}, where �̃ is a simply connected

domain in C. Then any closed and co-closed 1-form ψ representing a non-trivial
cohomology class can be written as

∑k
j=1 akϕk , where ϕk := −d

(
arg (z − pk)

)
. It is

easy to see that the above discussion can be repeated verbatim in this case too leading
to the following result.

Proposition 20 Let � = �̃\{p1, . . . , pk}, where �̃ is a simply connected domain in
C. Any pair (u, �) satisfying (18) determines a special Kähler structure on � such
that the corresponding associated cubic form is �. Conversely, any special Kähler
structure on � determines a solution of (18). �

For the sake of clarity, let us spell the correspondence in the above proposition.
Thus, if (u, � = �0 dz3) is a solution of (18), put g = e−u |dz|2. Also, write
�0(z) = �̊0(z) + ∑

j A j (z − p j )
−1, where A j is the residue of �0 at p j . If H is a

primitive of �̊0, put

h := −4 Im H − 4
k∑

j=1

(
Im A j

)
log |z − p j | and a j := 4Re A j .

Then the corresponding special Kähler structure is given by (13) and (14) with ψ =∑
j a jϕ j .

3 Special Kähler structures and the periodmaps

Let (�, g, I , ω,∇) be a special Kähler structure, where dimC � = n. Denote by U
the corresponding affine structure. This means that U is a covering of M by open
sets; Moreover, each U ∈ U is equipped with a 2n-tuple of holomorphic functions
(z1, . . . , zn;w1, . . . , wn), where (z1, . . . , zn) and (w1, . . . , wn) are conjugate special
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holomorphic coordinates onU [7]. If Ũ ∈ U is another open set equipped with (z̃, w̃),
then we have a relation

(
z
w

)
= P

(
z̃
w̃

)
+

(
a
b

)
,

where P ∈ Sp(2n; R) and a, b ∈ C
n are some constants.

Denote

τ jk = ∂wk

∂z j
.

Then the matrix τ := (τ jk) is symmetric and Im τ is positive definite. In fact, ω =
i
2

∑
Im τ jkdz j ∧ dz̄k . In particular, we have a holomorphic map

τ : U → Hn := {
Z ∈ Mn(C) | Zt = Z , Im Z is positive definite

}

whose target space is the Siegel upper half-space.
Recall that the group Sp(2n, R) acts on Hn via

P · Z = (AZ + B)(CZ + D)−1, where P =
(
A B
C D

)
,

and the unique Sp(2n, R)-invariant metric is given by gHn = tr
(
(Y−1dZ)(Y−1d Z̄)

)
,

where Y = Im Z .
If τ̃ is a map corresponding to the chart Ũ , then the corresponding period maps are

related by

τ = (Dτ̃ + C)(Aτ̃ + B)−1 = P̃ · τ, where P̃ =
(
D C
B A

)
∈ Sp(2n, R).

Hence, τ ∗gHn does not depend on the choice of an affine patch.
While the pull-back metric is defined in any dimension, the case n = 1 has some

special features. Indeed, in this case � is a Riemann surface, H = H1 is the upper
half-plane so that τ is a local biholomorphism except perhaps at isolated points. Hence,
g̃ is non-degenerate on� outside of some discrete subset. Moreover, the subset where
g̃ degenerates is easy to describe, see Proposition 26 below.

More importantly, in the case n = 1 the metric gH1 coincides with the standard

hyperbolic metric
(
Im z

)−2|dz|2. Hence, the pull-back metric g̃ is also hyperbolic
where it is non-degenerate.

Remark 21 Recall, that a holomorphic map τ : � → H, which may be multi-valued,
is called a developing map of a hyperbolic metric g̃, if g̃ = τ ∗gH. Hence, the very
definition yields that the period map of a special Kähler structure is a developing map
of the associated hyperbolic metric.

Example 22 Consider the following local example: � is the punctured unit disc in
C equipped with the metric g = − log |z| |dz|2, which is special Kähler. Then z is
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a special holomorphic coordinate with the conjugate given by w = 2i(z log z − z).
Hence, the period map is τ = 2i log z. Of course, τ is multivalued, but all values of
τ are related by translations by real numbers and therefore τ ∗gH is well defined and
equals (|z| log |z|)−2|dz|2, which is the standard Poincaré metric on the punctured
disc.

Example 23 Let � be the upper half-plane H equipped with the following special
Kähler structure [7, Rem. 1.20]

g = y |dz|2, ω∇ = 1

y

(
dy dx
0 0

)
,

where z = x + yi is a coordinate onH.
It is easy to check that (−i z,− i

2 z
2) is a pair of special holomorphic conjugate

coordinates. Hence, τ(z) = z, which means that τ ∗gH = gH.

It will be useful below to have a relation between � and τ . Thus, if Z is a special
holomorphic coordinate, we have

� = 1

4

dτ

dZ
dZ3. (25)

Then, for an arbitrary holomorphic coordinate z we obtain

� = �0 dz
3 = 1

4

dτ

dZ
dZ3 = 1

4

dτ

dz

dz

dZ

(
dZ

dz

)3

dz3 = 1

4

dτ

dz

(
dZ

dz

)2

dz3,

which yields in turn
dτ

dz
= 4�0 ·

(
dZ

dz

)−2

. (25)

Notice in particular, that we have the following statement, which will be useful
below.

Proposition 26 Let p be a regular point of a special Kähler structure on a Riemann
surface. Then the associated hyperbolic metric degenerates at p if and only if�(p) =
0. �

The next result is the key ingredient in the proof of our main result, Theorem 8.

Lemma 27 Let � be as in Proportion 20.

(i) Let
(
g = e−u |dz|2, ∇)

be a special Kähler structure on �. Then the associated
hyperbolic metric, which is defined on �\�−1(0), is given by g̃ = e2v|dz|2,
where

v = u + log |�0| + 2 log 2. (28)

(ii) Given any hyperbolic metric g̃ = e2v|dz|2 and any holomorphic cubic form
� = �0(z) dz3 on �, there is a unique special Kähler structure (g,∇) on
�\�−1(0) such that g = e−u |dz|2, where u is determined by (28), and � is the
associated cubic form.
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Remark 29 We would like to point out that in the statement of Lemma 27, the domain
� is allowed to have no punctures, i.e., k = 0 is allowed.

Proof of Lemma 27 Notice that since �0 is holomorphic, log |�0| is harmonic on
�\�−1(0). Since by Proportion 20 the pair (u, �0) satisfies (18), for v := u +
log |�0| + 2 log 2 we have

�v = �u = 16 |�0|2e2v−2 log |�0|−4 log 2 = e2v.

Hence, g̃ = e2v|dz|2 is a metric of constant curvature −1 on �\�−1(0).
Furthermore, we claim that τ ∗gH = g̃. To see this, notice that if Z is a special

holomorphic coordinate (in a neighbourhood of some point), we have

g = e−u |dz|2 = (
Im τ

)|dZ |2 = (
Im τ

) |∂z Z |2 |dz|2 = (
Im τ

)4 |�0|
|∂zτ | |dz|2.

Here the last equality follows from (25). Hence,

u = log |∂zτ | − log
(
Im τ

) − log |�0| − 2 log 2 ⇔ v = log |∂zτ | − log
(
Im τ

)
,

which yields in turn

g̃ = e2v|dz|2 = |∂zτ |2
(
Im τ

)2 |dz|2 = τ ∗gH1 .

This clearly proves (i).
The last part, (ii), is obtained essentially by reading the above computation back-

wards. That is, if g̃ = e2v|dz|2 is ametric of constant curvature−1,we have�v = e2v .
Using this, it is easy to check that for any holomorhic function �0 the function

u := v − log |�0| − 2 log 2

satisfies (18). Appealing to Proposition 20, we obtain (ii). �
Corollary 30 Let g be a special Kähler metric on the punctured disc B∗

1 such that the
associated holomorphic cubic form � has order n ∈ Z at the origin. Let g̃ be the
associated hyperbolic metric. Then the following holds:

(i) g is conical of order β/2 if and only if g̃ is conical of order n − β ∈ (−1,+∞),
i.e.,

g = rβ
(
C + o(1)

) |dz|2 ⇐⇒ g̃ = r2(n−β)
(
C ′ + o(1)

) |dz|2;

(ii) g has a logarithmic singularity if and only if g̃ has a cusp, i.e.,

g = −rn+1 log r
(
C + o(1)

) |dz|2 ⇐⇒ g̃ = C ′ + o(1)

(r log r)2
|dz|2.

�
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The inequality n − β > −1 claimed in (i) has been established in [12, Thm.1.1].
Of course, this also follows from the classifaction of isolated singularities for metrics
of constant negative curvature.

Theorem 31 Let � be a Riemann surface (not necessarily compact) and �0 ⊂ � be
an open subset. For any holomorphic cubic form � and any smooth hyperbolic metric
g̃ on �0 there is a unique special Kähler structure (g,∇) on �0\�−1(0) whose
associated hyperbolic metric and associated cubic form are g̃ and � respectively.

If� is meromorphic on� with the divisor (�) = ∑
p∈� ordp� · p and g̃ represents

a divisor D, then for the special Kähler structure (g,∇) on �0 := �\(supp(�) ∪
suppD

)
as above the following holds:

(i) Acusp singularity p of g̃ is a logarithmic singularity of (g,∇) of order 1
2 (ordp�+

1);
(ii) A conical singularity p of g̃ of order α is a conical singularity of (g,∇) of order

1
2 (ordp� − α);

(iii) (g,∇)hasa conical singularity of order 1
2ordp�at apoint p ∈ supp(�)\suppD.

Proof Pick a point p ∈ � and an open set U together with a holomorphic coordinate
z centered at p. If p /∈ supp(�) ∪ suppD, we may think of U as a disc {|z| < 1}.
Otherwise, U can be chosen to be the punctured disc.

By Lemma 27, g̃ = e2v|dz|2 and� = �0(z) dz3 determine a unique special Kähler
structure (g,∇) onU , where g = e−u |dz|2 with u = v− log |�0|−2 log 2.Moreover,
u satisfies (18). Since this construction of (g,∇) involves a local coordinate, (g,∇)

a priori depends on this choice. We prove, however, that it is in fact immaterial, i.e.,
different choices yield equal special Kähler structures.

To this end, choose another holomorphic coordinate ẑ on U . If ẑ = f (z), where f
is holomorphic, the local representations �̂0(ẑ) dẑ3 and �0(z) dz3 of � are related by
�̂0(ẑ) = �0(z)

(
f ′(z)

)−3. Also, for the flat metric g1 = |dẑ|2 and the corresponding
Laplacian �1 = ∂2x̂ x̂ + ∂2ŷ ŷ we have

g1 = | f ′(z)|2|dz|2 and �1 = | f ′(z)|−2�.

Multiply (18) by | f ′(z)|−2 to obtain

�1u = | f ′(z)|−2 |�0(z)|20 e2u = | f ′(z)|4 |�̂0(ẑ)|20 e2u,

where the subscript “0” indicates the norm induced by |dz|2. Furthermore, for û :=
u + 2 log | f ′(z)| we compute

�1 û = �1 u = |�̂0|21 e2û .

Hence, for the unique special Kähler structure (ĝ, ∇̂) determined by (û, �) in the
coordinate ẑ as in Proposition 20, we have

ĝ = e−û |dẑ|2 = e−u |dz|2 = g.
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Since a special Kählermetric and the associated cubic formdetermine the flat symplec-
tic connection uniquely, we conclude that (g,∇) and (ĝ, ∇̂) coincide (more precisely,
this means (g,∇) = f ∗(ĝ, ∇̂)). By the construction, (ĝ, ∇̂) is the special Kähler
structure determined by � and the hyperbolic metric

exp
(
2û + 2 log |�̂0(ẑ)|)

∣∣dẑ|2 = e2v|dz|2 = g̃,

where the above equality follows from the definition of û. Thus, the choice of the local
coordinate used in Proposition 20 is immaterial as claimed. This proves the existence
of a special Kähler structure for given � and g̃.

The uniqueness of the special Kähler structure corresponding to (g̃, �) follows
immediately from the corresponding local statement. The other properties claimed
follow directly from Corollary 30. �
Example 32 (A special Kähler structure whose associated cubic form has an essential
singularity) Let �(z) := e1/zdz3 be a cubic holomorphic form on C

∗. � may be
thought of as a holomorphic cubic form on P

1 with two singularities: one essential
and the other one of degree −6. Pick a hyperbolic metric singular at any 3 points
w1, w2, w3 ∈ P

1. By Theorem 31 we obtain a special Kähler structure on P
1 with

at least three and at most five singularities depending on the number of points in
{w1, w2, w3} ∩ {0,∞} such that � is the associated cubic form. To the best of our
knowledge, this is the first example of a special Kähler structure whose associated
cubic form has essential singularities.

Let (g,∇) be a special Kähler structure on the punctured disc whose associated
cubic form� = �0 dz3 has an essential singularity at the origin.Assume for simplicity
of exposition that the origin is a regular point for the associated hyperbolic metric
g̃ = e2v|dz|2. The existence of such structures follows by Theorem 31 just like in the
example above. By (28) we have

g = e−u |dz|2 = 4e−2v|�0| |dz|2.

Notice that e−2v has a positive limit at the origin, whereas by the great Picard Theorem
|�0| takes any positive value near the origin. Hence, in this case the behavior of g is
highly irregular near the origin.

4 Special Kähler metrics versus special Kähler structures

Theorem 31 allows us to construct inequivalent special Kähler structures such that the
correspondingRiemannianmetrics are equal. Indeed, fix a pair (g̃, �) as inTheorem31
and let g be the corresponding special Kähler metric. It is then clear from (28) that
the pair (g̃, λ�) leads to the metric |λ| · g, where λ ∈ C

∗. Hence, specializing to
|λ| = 1 we obtain a family of special Kähler structures parameterized by S1 such that
all corresponding Riemannian metrics are equal.
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Example 33 Fix arbitrarily a hyperbolicmetric g̃ on the punctured unit disc B∗
1 . Choose

a holomorphic cubic differential � on B∗
1 such that � is of order −3 at the origin.

Observe that the leading coefficient ξ−3 in the expansion�0(z) = ξ−3 z−3+ξ−2 z−2+
· · · is independent of the choice of a local coordinate. Hence, the family { λ � | |λ| =
1} consists of holomorphic cubic differentials that are pairwise inequivalent even up
to a change of coordinates. Hence, for the corresponding family of special Kähler
structures (g,∇λ) the metric is independent of λ and the corresponding structures are
pairwise inequivalent.

Proposition 34 Let � be a Riemann surface.

(i) Let (g,∇) and (ĝ, ∇̂) be two special Kähler structures on �, whose associated
cubic forms are � and �̂ respectively. If g = ĝ, then

�̂ = λ · �, (35)

where λ ∈ C is of absolute value 1;
(ii) If (g,∇) is a special Kähler structure on � whose associated cubic form is �,

then for each λ ∈ S1 there is a unique special Kähler structure (g,∇λ), whose
associated cubic form is λ �.

Proof Clearly, to prove (i) it is enough to check (35) in a neighborhood of a regular
point p ∈ �. Thus, let z be a local holomorphic coordinate in a neighborhoodU of p.

If (g,∇) and (ĝ, ∇̂) are two special Kähler structures with the associated cubic
forms � = �0 dz3 and �̂ = �̂0 dz3 respectively such that g = ĝ, then (18) implies
|�0| = |�̂0|. Since both �0 and �̂0 are holomorphic onU , there is λ ∈ S1 ⊂ C, such
that �0 = λ · �̂0. This proves (i).

Claim (ii) follows from Theorem 31 by setting g̃ to be the associated hyperbolic
metric of (g,∇). �

5 A necessary and sufficient condition for the existence of special
Kähler structures on compact Riemann surfaces

Just like in the introduction, pick integers k ≥ 1, � ∈ [0, k], a k–tuple p =
(p1, . . . , pk) of pairwise distinct points on � as well as a k–tuple b = (β1, . . . , βk)

of real numbers, where β�+1, . . . , βk are integers. Denote

D = D(p, b) := −
�∑

j=1

[β j ]p j −
k∑

j=�+1

(β j − 1)p j , L = L(p, b) := O(
K 3

� + D
)
, and

H(p, b) :=
{
� ∈ H0(L) | � �= 0, ordp j � = β j − 1 for � + 1 ≤ j ≤ k

}
,

where K� is the canonical bundle of�. Recall also that [β] denotes the greatest integer
not exceeding β. In other words, H(p, b) consists of all non-trivial meromorphic cubic
differentials � which are holomorphic on �\{p1, . . . , pk} and satisfy

ordp j � ≥ [β j ] if j ≤ � and ordp j � = β j − 1 if j > �. (36)
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For each j > � choose a local holomorphic coordinate z j centered at p j and
consider the holomorphic map

f j : H0(L) → C defined by f j (�) = a j ⇔ � =
(
a j z

β j−1
j + · · ·

)
dz3j ,

where dots denote the higher order terms. Then H(p, b) is the subset of H0(L) where
each f j does not vanish. Hence, H(p, b) is Zarisky open.

Theorem 37 Let � be a compact Riemann surface of genus γ . Then M�
k(p, b) �= ∅

if and only if the following two conditions hold:

(i) 4(γ − 1) < β1 + · · · + βk;
(ii) H(p, b) �= ∅.

Moreover, the map that assigns to a special Kähler structure (g,∇) as above its
associated cubic form � ∈ H(p, b) is a bijection.

Proof If M�
k(p, b) �= ∅, then by the quantitative relationship between the special

Kähler metric and the associated cubic form in Corollary 30, the associated cubic
form � of any special Kähler structure (g,∇) such that [g,∇] ∈ M�

k(p, b) lies in
H(p, b), hence (ii) holds.

Furthermore, since ordp j �−β j ≥ −1, the associated hyperbolicmetric g̃ has either
a conical singularity with positive angle or a cusp at each p j . Let pk+1, . . . , pm be
further points on� such that g̃ is singular. By Corollary 30,(i) each p j with j ≥ k+1
is conical singularity of g̃ of order ordp j � > 0. Hence, by the Gauß–Bonnet theorem
applied to g̃ we have

k∑

j=1

(
ordp j � − β j

)+
m∑

j=k+1

ordp j � + 2 − 2γ < 0.

Hence, we obtain

k∑

j=1

β j >

m∑

j=1

ordp j � + 2 − 2γ = 4(γ − 1).

It remains to show that (i) and (ii) yield a special Kähler structure. Indeed, notice
that (i) and (ii) imply

k∑

j=1

(
ordp j � − β j

)
+

∑

�(Q)=0
Q /∈{p1,...,pk }

ordQ � + 2 − 2γ < 0.

Hence, by [13] there exists a hyperbolic metric g̃ which has conical singularities at
each zero q of � of order ordq�, and has either a conical singularity or a cusp at each
p j for all 1 ≤ j ≤ k. The proof is finished by appealing to Theorem 31. �
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Denote byπ : M�
k(p, b) → R�

k(p, b) the natural projection, which has been studied
in Sect. 4. In particular, each fiber of π is isomorphic to the circle.

We have the commutative diagram

M�
k(p, b)

�−−−−→ H(p, b)/R>0

π

⏐⏐�
⏐⏐�

R�
k(p, b)

ξ−−−−→ H(p, b)/C
∗,

(38)

where slightly abusing notations� stays for themap, which assigns to a special Kähler
structure its associated cubic form, and ξ is just the induced map. By Proportion 34
and Theorem 10 both � and ξ are bijections. This can be used to define topologies on
M�

k(p, b) andR�
k(p, b). Indeed, H(p, b) is naturally a subset of a vector space H0(L),

which can be equipped with a topology by introducing a Hermitian inner product
(notice that the origin is not contained in H(p, b)).

Proof of Theorem 10 The proof consists of the following parts.

1. The first inequality of (11) coincides with Theorem 37 (i). The second one of (11)
follows by combining the following facts: deg K 3

� = 6γ − 6, � is holomorphic
outside {p j : 1 ≤ j ≤ k}, and (36).

2. ByTheorem37,M�
k(p, b) is homeomorphic to an open subset of the unit sphere in

the complex vector space H0(L). Hence, dimM�
k(p, b) is odd ifM�

k(p, b) �= ∅.
Likely,R�

k(p, b) is homeomorphic to a Zariski open subset ofPH0(L). Moreover,
if � = k, then H(p, b) = H0(L)\{0}. Hence, if H0(L) is non-trivial, M�

k(p, b)

and R�
k(p, b) can be identified with S(H0(L)) and PH0(L) respectively.

3. We prove that the spaceM�
k(p, b) is non-empty for� = P

1 provided (11) holds.
Indeed, given a Z-divisor D = m1[z1] + · · · + mn [zn] (z1, . . . , zn ∈ C ⊂
P
1) of degree −6, the meromorphic cubic differentials whose associated divisor

coincides with D have the formConst. (z−z1)m1 . . . (z−zn)mn dz3. If z1 = ∞ ∈
P
1, then the cubic differentials equals Const. (z−z2)m2 . . . (z−zn)mn dz3. Hence,

given a k-tuple of points on � = P
1 as well as a k-tuple b = (β1, . . . , βk) of real

numbers such that (11) holds, there exists a meromorphic cubic differential �

on P
1 such that (36) holds and � is holomorphic on P

1\{p1, . . . , pk}. It follows
from Theorem 37 that the space M�

k(p, b) is non-empty.
4. Finally, by Riemann–Roch, in the case � = P

1 the complex dimension of
H0(L) = H0(K 3

� + D) is N + 1, where N is given by (12).

�
Remark 39 It is clear from the proof of Theorem 10 that the case� = P

1 is somewhat
special due to the fact that it is easy to describe when H0(L) is non-trivial. In general,
the non-triviality of H0(L) depends on the complex structure on � and the fixed
singularities (p, b) of the special Kähler structures under consideration.

Corollary 40 Let (g,∇) be a special Kähler structure on P
1 such that the associated

cubic form � is non-trivial and meromorphic. Then (g,∇) must have at least three
singularities.
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Proof Combining (11) and the trivial inequality
∑k

j=1 β j ≤ �+∑k
j=1 [β j ], we obtain

4(γ − 1) <

n∑

j=1

β j ≤ 6(γ − 1) + k.

Since γ = 0 for P
1, we conclude −4 < −6 + k, i.e. k ≥ 3. �

Remark 41 For any n ∈ Z the metric g = rn|dz|2 is flat on C\{0}, hence, can be
thought of as a special Kähler structure on P

1 singular at most at 2 points, namely 0
and ∞. Notice that the corresponding cubic form is trivial, hence this example does
not contradict Corollary 40.

Example 42 LetR0
24 denote the moduli space of all special Kähler metrics with 24 sin-

gular points all of logarithmic typeof order zero.R0
24 fibers overSym

24(P1)\{Diagonal
subset}, where each fiber is homeomorphic to a Zariski open subset of CP18. Hence,
M0

24 has complex dimension 42. Ifwe alsomodout by the natural action of PGL(2, C),
the resulting space is of complex dimension 39. This space is of interest for elliptic
K3 surfaces [11].

In what follows below we would like to describe which metrics actually appear as
associated hyperbolic metrics of some special Kähler structure fromM�

k(p, b). Thus,
letRhyp be the set of all hyperbolic metrics on � with isolated singularities. We have
a natural map

T : M�
k(p, b) → Rhyp, T (g,∇) = g̃,

where g̃ is the hyperbolic metric associated with (g,∇).

Proposition 43 For any compact Riemann surface the image of T is isomorphic to
H(p, b)/C

∗. Moreover, if� = P
1, the image of T consists of those hyperbolic metrics

g̃, which satisfy the following: There exist r ≥ 0 points q1, . . . , qr ∈ P
1\{p1, . . . , pk}

as well as m ∈ Z
k and n ∈ Z

r
>0 such that the following holds:

(a) g̃ is smooth on P
1\{p1, . . . , pk, q1, . . . , qr }.

(b) For all j ≤ � we have m j > β j − 1 and

�∑

j=1

m j +
k∑

j=�

(β j − 1) +
r∑

j=1

n j = −6. (44)

(c) If j ≤ �, then ordp j g̃ = m j − β j .
(d) If j > �, then g̃ has a cusp singularity at p j .
(e) Each q j is a conical singularity of g̃ of order n j .

Proof Using Theorem 10, consider T as a map T : H(p, b)/R>0 → Rhyp. By Pro-
portion 34, this yields an injective map H(p, b)/C

∗ → Rhyp with the same image.
Hence, we obtain that the image of T is isomorphic to H(p, b)/C

∗.
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Furthermore, think of P
1 as the affine complex line C compactified by a point at

infinity. Without loss of generality we can assume that none of p j equals ∞. Then for
� = �0 dz3 ∈ H(p, b) we have the following expression:

�0 = A(z− p1)
m1 . . . (z− p�)

m� (z− p�+1)
β�+1−1 . . . (z− pk)

βk−1(z−q1)
n1 . . . (z−qr )

nr .

(45)
Here A �= 0 is a constant, m j is an integer satisfying m j > β j − 1, n j is a positive
integer, and q1, . . . , qr are those zeros of �, which are not contained in {p1, . . . , pk}.
Moreover, (44) holds since � is regular at ∞.

If [g,∇] ∈ M�
k(p, b), where g = e−u |dz|2, then by (28) we obtain that g̃ =

e2v|dz|2 is smooth on P
1\{p1, . . . , pk, q1, . . . , qr }. Moreover, Theorem 31 yields

(c)–(e).
Conversely, given a hyperbolicmetric g̃ satisfying (a)–(e), define�0 by (45) and put

� := �0 dz3. Then Theorem 31 yields a special Kähler structure [g,∇] ∈ M�
k(p, b)

whose associated hyperbolic metric is g̃. �
We note in passing that it is possible to define topologies, or even smooth structures,

on M�
k(p, b) and R�

k(p, b) directly along the lines of [16]. This would then require
to prove that the map � is a homeomorphism, which seems to be excessive for our
modest aims.

6 Existence of special Kahler metrics on Riemann surfaces with
positive genera

Corollary 46 Let � be a compact Riemann surface with genus γ > 0. ThenM�
k(p, b)

is non-empty if and only if the following three conditions hold:

(i) β1 + · · · + βk > 4γ − 4,
(ii) the line bundle L = L(p, b) has a non-trivial holomorphic section, and
(iii) for all � + 1 ≤ j ≤ k we have dimC H0(L) > dimC H0

(
L − p j

)
.

Moreover, under the above conditions, M�
k(p, b) is homeomorphic to an open dense

subset of a sphere of dimension 2N + 1, where N := dimC H0(L) − 1. The space
R�

k(p, b) is homeomorphic to a Zariski open subset of CPN .

Proof Suppose that these three conditions hold. By the last two ones, there exists
a meromorphic cubic differential � which is holomorphic outside {p1, . . . , pk} and
satisfies ordp j � ≥ [β j ] for 1 ≤ j ≤ � and ordp j � = β j − 1 for � + 1 ≤ j ≤ k. The
conclusion follows from the first condition and Theorem 37.

Suppose thatM�
k(p, b) is non-empty. The first two conditions follows from Theo-

rem 37.We show the third one by contradiction. Suppose that there exist �+1 ≤ j ≤ k
such that

dimC H0(L) ≤ dimC H0(L − p j
)
.

Then we find H0(L − p j ) = H0(L). We pick a special Kähler structure (g, ∇) in
M�

k(p, b) with associated cubic differential �. By Theorem 37, we know that � has
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order β j − 1 at p j . On the other hand, since � belongs to H0(L) = H0(L − p j ), the
order of � at p j should be greater than or equal β j . This is a contradiction. �

In the case � is an elliptic curve (compact Riemann surface of genus one), the
statement of the above corollary can be made more explicit.

Corollary 47 For an elliptic curve E the space M�
k(p, b) is non-empty if and only if

the following three conditions hold:

(i) β1 + . . . + βk > 0;
(ii) The line bundle L = L(p, b) has a non-trivial holomorphic section;
(iii) If deg L = 1, then for all � + 1 ≤ j ≤ k, the divisor −D(p, b) + p j is not

equivalent to zero.

Moreover, under these conditions,M�
k(p, b) is homeomorphic to an open dense subset

of a sphere of dimension 2N + 1, where N := dimC H0(L) − 1. The spaceR�
k(p, b)

is homeomorphic to a Zariski open subset of CPN . �
Proof While a proof of this corollary could be obtained from Corollary 46, we prefer
a more direct approach.

Thus, suppose there exists a special Kähler structure (g, ∇) as in the statement
of this corollary. The first two condtions follow from Theorem 37 directly. Suppose
deg L = 1. Then H0(L) has dimension one by the Riemann–Roch theorem. If there
exists � + 1 ≤ j ≤ k such that the divisor −D + p j := −D(p, b) + p j is equivalent
to zero, then there exists an elliptic function f such that ( f ) = −D + p j and H0(L)

is generated by f dz3, where dz is a nonwhere vanishing holomorphic one-form
on E . Furthermore, the associated cubic differential � equals Const. f dz3 and has
order β j at p j . This is a contradiction, which finishes the proof of the “only if”
part.

Assume that (i)–(iii) hold. We divide the proof of the “if” part into the following
two cases.
Case 1. Suppose deg L = 0. Then L is trivial, in particular L has a non-trivial
holomorphic section, and there exists an elliptic function f on E such that ( f ) = −D.
By Theorem 37, there exists a special Kähler structure (g,∇) whose associated cubic
differential is f dz3.
Case 2. Suppose d := deg L > 0. By the Abel–Jacobi theorem, we can find a
point q ∈ E = C/� and an elliptic function f on E such that ( f ) = dq − D. If
q /∈ {p�+1, . . . , pk}, then by Theorem 37 there exists such a special Kähler structure
(g,∇)whose associated cubic differential is f dz3, where dz is a non-where vanishing
holomorphic 1-form on E . Hence, it remains to consider the case q ∈ {p�+1, . . . , pk}.
Subcase 2.1. Suppose d ≥ 2. Since there exist q1, . . . , qd in E\{p�+1, . . . , pk} such
that q1 + · · · + qd ≡ dq (mod�), we can find an elliptic function f on E such that
( f ) = q1 + · · · + qd − D. We are done.
Subcase 2.2. Suppose d = 1. Then there exists �+1 ≤ j ≤ k such that−D+ p j ∼ 0.
However, this possibility is excluded by (iii).

We conclude this section by proposing a conjecture about the existence of certain
cubic differentials and special Kähler structures on compact Riemann surfaces of
genera greater than one.
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Conjecture 48 Let γ be an integer greater than 1 and b = (β1, . . . , βk) be as in Defi-
nition 9. Assume that the numerical condition (11) holds. Then there exists a compact
Riemann surface � of genus γ and a k-tuple p = (p1, . . . , pk) of pairwise distinct
points in � such that H(p, b)—and consequently alsoM�

k(p, b)—is non-empty.

7 On compactifications of themoduli spaces

A consequence of Theorem 10 is that the moduli spaces M�
k(p, b) and R�

k(p, b) are
non-compact provided there is at least one logarithmic singularity, i.e., if � < k. The
purpose of this section is to describe compactifications of these moduli spaces.

Notice first, that we have the following natural stratification

H0(L)\{0} =
⋃

m∈Zk−�
≥0

H(p, bm), (49)

where bm := b+ (0,m). Clearly, H(p, b) = H(p, b0) is the stratum with the highest
dimension. For example, in the case � = P

1 we have

dimC H(p, bm) = −6 + k − � −
k∑

j=1

[β j ] −
k−�∑

j=1

m j

provided H(p, bm) is non-empty.
Moreover, this stratification is in fact finite. Indeed, if γ is the genus of � and

� ∈ H(p, bm), then

6(γ − 1) =
∑

p∈supp(�)

ordp� ≥
k∑

j=1

ordp j � ≥
∑

j≤�

(β j − 1) +
∑

j>�

(β j + m j−� − 1)

= |b| + |m| − k,

which implies the upper bound |m| ≤ k − 6(γ − 1) − |b|.
Notice also that each stratum is invariant under the action of C

∗.
Starting from a different perspective, consider the set M�

k(p, b) which consists of
all special Kähler structures on � satisfying the following:

• The associated cubic form � is non-trivial and meromorphic;
• For j ≤ � we have a conical singularity at p j and ordp j (g,∇) = 1

2β j ;

• For j > � we have a logarithmic singularity at p j and ordp j (g,∇) ≥ 1
2β j .

Just like above, we do not distinguish two special Kähler structures if they differ by a
rescaling of the metric.

Notice that the only difference in the definitions ofM�

k(p, b) andM�
k(p, b) is that

1
2β j is only a lower bound for the order of the logarithmic singularity at p j ( j > �).

Furthermore, M�

k(p, b) admits a stratification akin to (49), namely

M�

k(p, b) =
⋃

m∈Zk−�
≥0

M�
k(p, bm) (50)
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with the top stratum beingM�
k(p, b). Moreover, the map � extends as a bijective map

�̄ : M�

k(p, b) → H0(L)\{0}/R>0

such that eachM�
k(p, bm) is mapped bijectively to H(p, bm). In particular, (50) con-

sists of a finite number of strata. Just like in the case ofM�
k(p, b), we use �̄ to endow

M�

k(p, b) with a topology.
Clearly, we can also construct a compactification of R�

k(p, b) in a similar manner.
Namely, defining

R�

k(p, b) :=
⋃

m∈Zk−�
≥0

R�
k(p, bm)

we obtain a bijection

ξ̄ : R�

k(p, b) → H0(L)\{0}/C
∗ = PH0(L)

fitting into the commutative diagram

M�

k(p, b)
�̄−−−−→ S(H0(L))

π

⏐⏐
�

⏐⏐
�

R�

k(p, b)
ξ̄−−−−→ PH0(L),

cf. (38). Here S(H0(L)) denotes the sphere of unite radius in H0(L) with respect to
some norm.

Summarizing, we obtain the following.

Proposition 51 The map �̄ establishes a natural bijective correspondence between

M�

k(p, b) and the unit sphere in H0(L). Likely, ξ̄ establishes a natural bijective cor-

respondence between R�

k(p, b) and PH0(L). �
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