
Selecta Mathematica (2019) 25:70
https://doi.org/10.1007/s00029-019-0520-9

SelectaMathematica
New Series

Families of nested graphs with compatible
symmetric-group actions

Eric Ramos1 · Graham White2

Published online: 8 November 2019
© Springer Nature Switzerland AG 2019

Abstract
For fixed positive integers n and k, the Kneser graph KGn,k has vertices labeled by
k-element subsets of {1, 2, . . . , n} and edges between disjoint sets. Keeping k fixed
and allowing n to grow, one obtains a family of nested graphs, each of which is acted
on by a symmetric group in a way which is compatible with these inclusions and
the inclusions of each symmetric group into the next. In this paper, we provide a
framework for studying families of this kind using the FI-module theory of Church
et al. (Duke Math J 164(9):1833–1910, 2015), and show that this theory has a variety
of asymptotic consequences for such families of graphs. These consequences span a
range of topics including enumeration, concerning counting occurrences of subgraphs,
topology, concerning Hom-complexes and configuration spaces of the graphs, and
algebra, concerning the changing behaviors in the graph spectra.
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1 Introduction

1.1 Motivation

Let FI denote the category whose objects are the finite sets [n] := {1, . . . , n}, and
whose morphisms are injections. In their seminal work, Church et al. [10] introduced
the notion of an FI-module to formalize the connection between a large number of
seemingly unrelated phenomena in topology and representation theory. Formally, an
FI-module is a functor from FI to the category of real vector spaces. Noting that the
endomorphisms in FI are permutations, one may imagine an FI-module as a series of
representations of the symmetric groupsSn , with n increasing, which are compatible
in some sense.

Recently there has been a push in the literature to use the same philosophy under-
lying FI-modules to study combinatorial objects. For instance, in his recent work [21]
Gadish studies what he calls FI-posets and FI-arrangements. In this work, we will be
mostly focused on FI-graphs, functors from FI to the category of graphs. For us, a
graph is a finite 1-dimensional simplicial complex. Given a graph G, we write V (G)

for the set of vertices ofG and E(G) for the set of edges. Note that V (G) and E(G) are,
by how we have defined graph, both necessary finite. Just as with the work of Gadish,
we will discover that a relatively simple combinatorial condition on FI-graphs will
allow us to conclude a plethora of interesting structural properties of the graphs which
comprise it.

Throughout this paper we will often denote FI-graphs byG•, and useGn as a short-
hand for its evaluation on [n]. The transition maps of G• are the graph morphisms
induced by the morphisms of FI which are not permutations. We say that an FI-graph
G• is vertex-stable of stable degree ≤ d if for all n ≥ d, every vertex of Gn appears in
the image of some transition map. Some common examples of vertex-stable FI-graphs
include:

• The complete graphs Kn ;
• The Kneser graphs KGn,r , for each fixed r . These are the graphs whose vertices
are r -element subsets of [n], and whose edges indicate disjointness;

• The Johnson graphs Jn,r , for each fixed r . These are the graphs whose vertices are
r -element subsets of [n], and whose edges indicate that the intersection of the two
subsets has size r − 1.

Other examples of vertex-stable FI-graphs are given at the end of Sect. 3.1. While it
is straightforward to verify that the above examples are vertex-stable, one might also
observe that they have a variety of other symmetries. The main structure theorem of
vertex-stable FI-graphs is that the condition of vertex-stability automatically yields
several other symmetries.

Theorem A Let G• be a vertex-stable FI-graph. Then for all n � 0:

1. The transition maps originating from Gn are injective;
2. The transitionmaps originating fromGn have induced images (seeDefinition 2.1);
3. Every edge of Gn+1 is the image of some edge of Gn under some transition map;
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4. For any fixed r ≥ 1 and any collection of vertices {v1, . . . , vr } of Gn+1, there
exists a collection of r vertices of Gn, {w1, . . . , wr } which map to {v1, . . . , vr }
under some transition map.

One should note two recurring themes in the above theorem. Firstly, many of the
results in this work (indeed, many of the results in the theory of FI-modules) are only
true asymptotically. Secondly, while one can prove the existence of certain behaviors
in general, it is usually quite difficult to make such existential statements effective
(see Theorem 3.31 for an instance where this is not the case). This is a consequence
of the methods used to prove such statements. In this work, the main proof techniques
which will be employed fall under what one might call a Noetherian method. Namely,
we rephrase what needs to be proven in terms of finite generation of some associated
module. We then prove that this module is a submodule of something which is easily
seen to be finitely generated, and apply standard Noetherianity arguments to conclude
that the original module was finitely generated. It is an interesting question to ask
which, if any, of our results can be made effective through more combinatorial means.

Following the proof of Theorem A, we spend the majority of the body of the paper
illustrating various applications. These applications come in three flavors: enumera-
tive, topological, and algebraic.

1.2 Enumerative applications

We begin by asking the following question: Given a vertex-stable FI-graph G•, is it
possible to count the occurrences of some fixed substructure in Gn , as a function of
n?

If G is a graph, then an induced subgraph of G is a graph obtained from G by
deleting some subset of the vertices and any edges involving those vertices, and a
subgraph of G is a graph obtained from G by deleting some subset of the vertices, any
edges involving those vertices, and some subset of the remaining edges. For a graph
H , there could be multiple ways to realise it as a subgraph of G, by deleting different
vertices and/or edges. This gives an instance of the above question. Can we count the
number of times a given graph H occurs in Gn as a function of n? We answer this
question in the affirmative.

Theorem B Let G• be a vertex-stable FI-graph of stable degree ≤ d, and let H be a
graph. Then there exists a polynomial pH (x) ∈ Q[x] of degree ≤ |V (H)| · d such
that for all n � 0 the function

n �→ the number of subgraphs of Gn isomorphic to H

agrees with pH (n).

Remark 1.1 For a fixed pair of graphs G and H , the number of subgraphs of G iso-
morphic to H is not the number of graph injections from H to G. Indeed, usually
one is concerned with counting the number of such injections up to composition with
automorphisms of H . Because H is independent of n, the above theorem remains true
regardless of how the counting problem is interpreted.
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To convince themselves of this theorem, one should consider the case of the com-
plete graphs Kn . In this case, one can count the number of occurrences of H by first
choosing |V (H)| vertices, and then counting the number of copies of H in the induced
K|V (H)| subgraph. We will see in Sect. 3.1 that FI-graphs are fairly diverse, and there-
fore one should not expect the general case to be quite this straightforward. However,
the idea that one should begin by choosing |V (H)| vertices of Gn remains relevant.
From this point one proceeds by applying the fourth part of Theorem A.

Another interesting enumerative consequence of vertex-stability involves counting
degrees of vertices. Recall that in a given graph G, the degree of a vertex v is the
number of edges adjacent to v. We usually write �(G) for the maximum degree of a
vertex in G, and δ(G) for the minimum degree.

Theorem C Let G• be a vertex-stable FI-graph of stable degree ≤ d. Then the func-
tions

n �→ �(Gn) and n �→ δ(Gn)

each agree with a polynomial of degree at most d for all n � 0.

While TheoremC appears very similar to TheoremB, there is one subtle difference.
In the case of Theorem B, one reduces to the case of FI-modules by considering the
family of symmetric group representations induced by the symmetric group action on
copies of H inside Gn . It is unclear, however, whether such an approach can work
to prove Theorem C, as the maximum and minimum degrees of Gn cannot in any
obvious way be realized as the dimension of some symmetric group representation.
The proof of Theorem C is therefore a bit more subtle, and can be considered more
traditionally combinatorial than that of Theorem B.

To conclude our enumerative applications, we consider the question of counting
walks in Gn . Recall that for a fixed integer r ≥ 0 and a graph G, a walk of length r in
G is an (r + 1)-tuple of vertices of G, (v0, . . . , vr ), such that for all 0 ≤ i ≤ r − 1,
{vi , vi+1} ∈ E(G). We say that a walk (v0, . . . , vr ) is closed if vr = v0.

Theorem D Let G• be a vertex-stable FI-graph of stable degree ≤ d. Then the func-
tions

n �→ |{walks in Gn of length r}| and n �→ |{closed walks in Gn of length r}|

each agree with a polynomial of degree at most (r + 1)d whenever n � 0.

1.3 Topological applications

In this paper we will be primarily concerned with two topological applications of the
theory of vertex-stable FI-graphs. Our major results will prove that certain natural
topological spaces associated to vertex-stable FI-graphs will be representation stable
in the sense of Church and Farb [12] (see Definition 2.19).
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Remark 1.2 In the language of [12], representation stability is a property of sequences
of symmetric group representations. In this paper, we expand this definition to
sequences of topological spaces with symmetric group actions, by asserting that the
homology groups of spaces are representation stable in the original sense. This use of
the terminology is not standard in the literature.

The first of our applications is related to the so-called Hom-complexes. Let H and
G be two graphs. A multi-homomorphism from H to G is a map of sets,

α : V (H) → P(V (G)) − ∅

such that for all edges {x, y} ∈ E(H), and all choices of v ∈ α(x) and w ∈ α(y),
one has {v,w} ∈ E(G). The Hom-complex of H and G, denoted Hom(H ,G), the
polyhedral complex whose cells are indexed by multi-homomorphisms between H
and G, such that the closure of any cell given by subset inclusion (See Definition 2.4
for details). These complexes first rose to popularity through the work of Babson and
Koslov [4,5], which expanded upon famous work of Lovász [28]. For instance, it is
shown in those works that the topological connectivity of the spaceHom(K2,G) can
be used to bound the chromatic number of G.

Theorem E Let G• be a vertex-stable FI-graph. Then for any graph H, the functor

n �→ Hom(H ,Gn)

is representation stable (see Definition 2.19). In particular, if i ≥ 0 is fixed, then the
function

n �→ dimR(Hi (|Hom(H ,Gn)|;R))

eventually agrees with a polynomial of degree at most |V (H)| · d(i + 1).

While this result might seem somewhat technical, it has one particularly notable
consequence about counting graph homomorphisms into FI-graphs.

Corollary F Let G• denote a vertex-stable FI-graph of stable degree at most d. Then
for any graph H the function

n �→ |Hom(H ,Gn)|

agrees with a polynomial of degree at most |V (H)| · d for all n � 0.

Remark 1.3 The algebraic theory of graph homomorphisms implies that there are very
concrete connections between counting homomorphisms into a graph, counting injec-
tive homomorphisms into a graph, and counting induced homomorphisms into a graph
(see, for instance, [29, Chapter 5]). In particular, Corollary F, Theorem D, and The-
orem B are not independent of each other, and can be in certain cases deduced from
one another. Our presentation of the material was chosen to stress the interpretation
that the polynomial behavior of homomorphisms can be thought of as a consequence
of the fact that a certain family of topological spaces exhibits representation stability.
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It is a well known fact that n-colorings of vertices of a graph H are in bijection
with Hom(H , Kn), where Kn is the complete graph on n vertices. The above theorem
can therefore be thought of as an extension of the theorem which posits the existence
of the chromatic polynomial.

Remark 1.4 The idea of treating the chromatic polynomial as an “FI phenomenon”
was conveyed to the first author by JohnWiltshire-Gordon and Jordan Ellenberg. This
observation was a large part of the motivation for the present work.

Following our treatment of the Hom-complex, we next turn our attention to config-
uration spaces of graphs. Given a topological space X , the n-stranded configuration
space of X is the topological space of n distinct points on X ,

Confn(X) := {(x1, . . . , xn) ∈ Xn | xi 	= x j , i 	= j}.

Configuration spaces are in many ways the prototypical topological application of
FI-module theory. In fact, one of the results which eventually inspired the study of
FI-modules was Church’s proof that configuration spaces of manifolds are often rep-
resentation stable [7]. It is unfortunately true, however, that if G is any graph then the
family of topological spaces {Confn(G)}n cannot be representation stable. In fact, they
are extremely unstable in this sense, exhibiting factorial growth in their Betti num-
bers (see the discussion following Theorem 2.10). In this paper we therefore adapt
a different approach, recently used by Lütgehetmann [27]. We consider the spaces
Confm(G•), where m is fixed and G• is a vertex-stable FI-graph.

Theorem G Let G• be a vertex-stable FI-graph with stable degree at most d whose
transition maps are all injective and whose constituent graphs Gn are all connected.
Then for any m ≥ 1 the functor

n �→ Confm(Gn)

is representation stable (see Definition 2.19). In particular, if i ≥ 0 is fixed, then the
function

n �→ dimR(Hi (Confm(Gn);R))

eventually agrees with a polynomial of degree at most 2dm.

Remark 1.5 Theorem A implies that the transition maps of any vertex-stable FI-graph
are eventually injective. Because the content of the previous theorem is asymptotic,
we may always replace our FI-graph with a new FI-graph whose transition maps are
injective and agrees with our original graph for all n � 0. In particular, the assumption
that the transition maps of our FI-graph must be injective is not particularly restrictive.

The condition that Gn be connected is also not necessary, although the eventual
conclusion is a bit less clean if it is not assumed. The most general version of Theorem
G is proven as Theorem 4.12 below.



Families of nested graphs with compatible symmetric-group… Page 7 of 42 70

This theorem was proven for a particular FI-graph (see Example 3.9) by Lütgehet-
mann [27], although he did not use this language. His approach in that work is very
topological, and sharpens certain bounds that we discover in this work, although it is
limited to that example. Our approach is much more combinatorial in nature, and has
the benefit of proving the above theorem for all vertex-stable FI-graphs.

1.4 Algebraic applications

Our final kind of application involves studying the spectrumof vertex-stable FI-graphs.
For any graph G, let RV (G) denote the real vector space with basis indexed by the
vertices of G. Then there are many natural endomorphisms of RV (G) which are of
interest in algebraic graph theory. Perhaps the most significant is the adjacency matrix
of G. This is the matrix AG defined on vertices v ∈ V (G) by

AGv =
∑

{w,v}∈E(G)

w

The adjacency matrix of any graph is a real symmetric matrix, and therefore its
eigenvalues must be real. This justifies the hypotheses of the following theorem.

Theorem H Let G• be a vertex-stable FI-graph, and let An denote the adjacency
matrix of Gn. We may write the distinct eigenvalues of An as,

λ1(n) > λ2(n) > · · · > λr(n)(n),

for some function r(n). Then for all n � 0

1. The function r(n) is constant. In particular, the number of distinct eigenvalues of
An is eventually constant;

2. For any i the function

n �→ λi (n)

agrees with an function which is algebraic over the field Q(n);
3. For any i the function

n �→ the multiplicity of λi (n)

agrees with a polynomial.

Remark 1.6 The proof of the above theorem will appear in upcoming work of the
authors and David Speyer [36]. It is included in this paper for completeness’s sake.
Hints toward the proof are given in Sect. 4.3.

Further note that the most general version of Theorem H allows one to work with
matrices other than the adjacency matrix. For instance, one reaches the same conclu-
sion working with the Laplacian matrix (see Definition 2.6).
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Table 1 A summary of the quantities shown in this paper to be eventually polynomial, and bounds on the
degree of that polynomial in terms of the stable degree d of the FI-graph

Quantity Max degree Reference

Number of subgraphs isomorphic to H |V (H)| · d Theorem B

Min and max vertex degrees d Theorem C

Number of walks and closed walks (r + 1)d Theorem D

dimR(Hi (|Hom(H ,Gn)|;R)) |V (H)| · d(i + 1) Theorem E

Number of homomorphisms from H to Gn |V (H)| · d Corollary F

dimR(Hi (Confm (Gn);R)) 2dm Theorem G

See the referenced results for definitions and notation

Perhaps the simplest example one can call upon to illustrate this theorem is the
complete graph. In this instance the eigenvalues of the adjacency matrix An are −1
and n − 1, with multiplicities n − 1 and 1 respectively. Hence the number of distinct
eigenvalues of An becomes constantly 2 beginning at n = 2, and the multiplicities of
these eigenvalues are given by polynomials.

Table 1 summarizes these results.

1.5 Outline

The overall structure of the present work is as follows.We begin by recalling necessary
background. This ranges from graph theory (Sect. 2.1) to the configuration spaces of
graphs (Sect. 2.2) to the theory of FI-modules and representation stability (Sect. 2.3).
Our hope is that this background will be sufficient so that readers from a large variety
of fields can better follow the work in the body of the paper.

Following this, we turn our attention to the basic definitions and examples from the
theory of FI-graphs (Sect. 3.1). We then describe the phenomenon of vertex-stability
and its major structural consequences (Sect. 3.2). This third section is then capped off
by a more technical chapter which solves the question of when the transition maps
of a vertex-stable FI-graph must begin to have induced image (Sect. 3.3). The fourth
section is dedicated to proving the applications detailed above, as well as various
smaller consequences that one might find interesting.

To conclude the work, we consider generalization of the theory of FI-graphs in two
distinct directions. Firstly, we consider what would happen if instead of FI, one con-
sidered functors from certain other categories into the category of graphs (Sect. 5.1).
In particular, we argue that virtually everything described in the paper will have some
analog for FIm-graphs and VI(q)-graphs (see Definition 5.1). Secondly, we consider
higher dimensional analogs of FI-graphs. Namely, we consider general FI-simplicial-
complexes and show that certain structural facts will continue to work in this context
(Sect. 5.2).
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1.6 Future directions

In an upcoming paper of the authors and David Speyer [36], we classify finitely
generated FI-sets and investigate the behavior of relations between FI-sets, proving
for instance the present Theorem H.

Other forthcoming work concerns the behavior of random walks on FI-graphs. We
show that expected hitting times of simple random walks on FI-graphs eventually
agree with algebraic functions, and give bounds for the mixing times of these walks
in terms of the relative sizes of vertex and edge orbits.

It would be interesting to investigate which graph theoretic properties stabilize as
one moves along an FI-graph, particularly global properties which do not follow from
our observations on local structure. Example 3.16 provides an example of an FI-graph
for which the existence of a Hamiltonian cycle need not stabilize. Another particularly
interesting question concerns the chromatic number. The examples considered in this
paper whose chromatic number have been computed each have chromatic number
eventually agreeingwith a polynomial, though it is unknownwhether this is something
one should expect for all FI-graphs. A result in this direction would be particularly
relevant to the Johnson graphs, whose chromatic number is still not known.

Recent work of Bahran has applied the theory of FI-graphs to questions in finite
group theory [2].

2 Background

2.1 Graph theory

For the purposes of this paper, we will only consider finite graphs with no multi-edges
or self-loops. Graphs will be permitted to be disconnected.

Definition 2.1 A graph is a finite 1-dimensional simplicial complex. Given a graph
G, we will write V (G) to denote its vertex set, and E(G) to denote its edge set. Both
V (G) and E(G) are necessarily finite. If v ∈ V (G), then μ(v) will be used to denote
its degree, which is the number of edges having v as one of their endpoints. The
minimum degree of a vertex of G will be denoted δ(G), while themaximum degree
will be written �(G).

A homomorphism of graphs φ : G → G ′ is a map of sets φ : V (G) → V (G ′)
such that if {x, y} ∈ E(G), then {φ(x), φ(y)} ∈ E(G ′). The category of graphs and
graph homomorphisms will be denoted Graph.

A subgraph of a graph G is a graph G ′ with inclusions V (G ′) ⊆ V (G) and
E(G ′) ⊆ E(G). We say that a subgraph G ′ is induced if for all x, y ∈ V (G ′),
{x, y} ∈ E(G ′) whenever {x, y} ∈ E(G).

In this work, we will be applying the theory of FI-modules to the study of certain
natural families of graphs. Our applications will be grouped into three categories:
enumerative, topological, and algebraic.
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To begin, we review some elementary facts and notations from enumerative graph
theory. Much of what follows can be found in any standard text in graph theory (see,
for instance, [3]).

Definition 2.2 Let G and H be graphs. We write ηH (G) to denote the total number
of distinct subgraphs of G which are isomorphic to H . We will also write ηindH (G) to
denote the total number of distinct induced subgraphs of G which are isomorphic to
H

Remark 2.3 When one speaks of computing the number of copies of H inside G, one
is usually talking about counting the number of graph injections from H to G up to
composition of automorphisms of H . This is the perspective we take in this work.

The question of determining whether ηH (G) > 0 is known as the subgraph iso-
morphism problem. It is known, for general choices of H and G, that the subgraph
isomorphism problem is NP-complete [8,26]. The analogous induced subgraph iso-
morphism problem is also known to be NP-complete, although it is also known to be
solvable in polynomial time inmany instances [38]. In this paper, wewill be concerned
with computing these two counting invariants across the members of certain families
of graphs (see Theorem 4.1).

After enumerative considerations, we next turn our attention to topological applica-
tions of theFI-graph structure.Ourfirst application is related to so calledHom-complex
construction. Interest in these complexes originates fromwork of Lovász [28], wherein
similar spaces were used to resolve the Kneser conjecture. Babson and Koslov later
showed that the the spaces used in Lovász’s work were specific examples of Hom-
complexes [4,5]. Following this, there has been some amount of interest in various
topological aspects of these spaces (see [16,17] for some examples). For instance, it
is known that every simplicial complex can be realized as a subdivision of the Hom-
complex of some pair of graphs [17]. In this paper, wewill approach theHom-complex
from the perspective of representation stability.

Definition 2.4 Let H ,G be graphs. A multi-homomorphism from H to G is a map
of sets

α : V (H) → P(V (G)) − ∅

between the vertices of H and the power set of the vertices of G, such that if {x, y} ∈
E(H) then for all x ′ ∈ α(x) and all y′ ∈ α(y), {x ′, y′} ∈ E(G). The Hom-complex
of H and G, Hom(H ,G), is the polyhedral complex whose cells are in bijection
with multi-homomorphisms from H to G. Given two multi-homomorphisms α and
τ , we have that the cell corresponding to α is contained in the closure of the cell
corresponding to τ if and only if α(x) ⊆ τ(x) for all x ∈ H .

Remark 2.5 In the literature, the Hom-complex is sometimes defined to be the order
complex of the poset of multi-homomorphisms and inclusions [16,17]. This simpli-
cial definition of the Hom-complex can be realized as a subdivision of our chosen
polyhedral complex construction (See the discussion following [4, Definition 1.2]).
We use the definition of the Hom-complex as a polyhedral complex provided by [4],
as it makes the arguments which follow a bit easier.
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Wewill later construct large families of graphsGn , indexed by the natural numbers,
such that for any graph H , the complexes Hom(H ,Gn) are representation stable in
the sense of Church and Farb (see Theorem 4.9 and Definition 2.19).

Following this, we will spend some time proving facts about configuration spaces
of graphs. The background for this material is detailed in the next section.

The final type of application we will concern ourselves with relates to spectral
properties of graphs. More specifically, we will concern ourselves with eigenspaces
and eigenvalues of adjacency and Laplacian matrices.

Definition 2.6 LetG be a graph. The adjacencymatrix ofG, AG , is the matrix whose
columns and rows are labeled by vertices of G and whose entries are defined by

(AG)(v,w) :=
{
1 if {v,w} ∈ E(G)

0 otherwise.

TheLaplacianmatrix ofG, LG , is the difference DG−AG , where DG is the diagonal
matrix whose entries display the degrees of the vertices of G.

The collection of eigenvalues of AG will be referred to as the spectrum of G.

There are many things that one may immediately observe from the fact that AG

and LG are real and symmetric. For instance:

1. The matrices AG and LG are diagonalizable.
2. The eigenvalues of AG and LG are real. Therefore, they can be ordered as λ1 ≥

λ2 ≥ · · · ≥ λ|V (G)|.
In our work we will be largely concerned with the following two questions: Given cer-
tain natural families of graphs Gn , indexed by the natural numbers, how many distinct
eigenvalues can AGnand LGn have (as a function of n), and how do themultiplicities of
these eigenvalues change with n? For instance, the adjacency matrix of the complete
graph Kn , with n ≥ 2, has distinct eigenvalues n − 1 and −1 with multiplicities 1 and
n−1, respectively. In other words, so long as n is sufficiently large, the complete graph
Kn has a fixed number of distinct eigenvalues, and the corresponding eigenspaces have
dimensions which are polynomial in n. One of the main motivations for this paper is
proving a framework which explains such behavior.

For references on graph spectra, see [3,9,14,15].

2.2 Configuration spaces of graphs

Definition 2.7 Let G be a graph. Then the m-stranded configuration space of G is
the topological space

Confm(G) := {(x1, . . . , xm) ∈ Gm | x j 	= xi , i 	= j .}

Configuration spaces of various topological spaces have a long history including
work ofMcDuff [33], andChurch et al. [10], amongmanyothers.Muchof the literature
is focused on the configuration spaces of manifolds. Recently, some attention has been



70 Page 12 of 42 E. Ramos, G. White

Fig. 1 The cell (v0, e4,7)
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given to the configuration spaces of graphs, due to their connections with robotics [23].
Muchof the newly emerging literature seems to indicate that these configuration spaces
are heavily influenced by the combinatorics of the graph (see [1,13,19,22,23,27,35],
for a small sampling). For instance, the following theorem of Abrams puts a very
natural cellular structure on Confm(G), which depends highly on the vertices of G
of degree at least 3. Cellular models have also been proposed by Światkowski [37],
Ghrist [23], Lütgehetmann [27], and Wiltshire-Gordon [42].

Definition 2.8 LetG be a graph. Themth subdivision ofG is the graphG(m) obtained
from G by adding m − 1 vertices of degree 2 to every edge of G.

Theorem 2.9 [1] Let G be a graph, and let DConfm(G) denote the sub-complex of
the cubical complex Gm comprised of cells of the form

σ1 × · · · × σm

where σi is either an edge or vertex of G, and for each i 	= j ,

∂(σi ) ∩ ∂(σ j ) = ∅.

Then DConfm(G(m)) is homotopy equivalent to Confm(G(m)).

The original work of Abrams is more precise than the above, but this is sufficient for
what follows.Wenote that for anygraphG, Confm(G(m)) is identical toConfm(G).We
observe that DConfm(G) is the largest subcomplex of Gm which avoids the diagonals
xi = x j . Abrams’ theorem therefore states that this complex will contain the same
topological information as Confm(G) so long as there are enough vertices in G such
that every coordinate in a given configuration can fit on a single edge using only
vertices.

It is often convenient to visualize the cells of DConfm(G(m)) as living on the graph
G(m). In such a visualization, we bolden the vertices and edges appearing in the cell
on the graphG(m), and label the position in which they appear in the cell. For instance,
Fig. 1 shows a cell of DConf2(G(2)) for a particular choice of G.

Among themany incredible theoretical properties of configuration spaces of graphs
is the precise computation of their Euler characteristic. The following result is due to
Gal, and provides a large part of the motivation for this work.
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Theorem 2.10 [22] Let G be a graph, and let e(t) denote the exponential generating
function

e(t) =
∑

m≥0

χ(Confm(G))

m! tm .

Then

e(t) =
∏

v∈V (G)(1 − (1 − μ(v))t)

(1 − t)|E(G)| .

A theorem of Ghrist [23] and Światkowski [37] implies that Hi (Confm(G)) = 0
for all graphs G and all i larger than the number of vertices of G of degree at least
3. In particular, this is independent of m. It follows from this fact, as well as the
theorem of Gal, that the Betti numbers of Confm(G) should be expected to grow in
m like m!. Such growth precludes Confm(G) from being representation stable (see
Definition 2.19 for the definition of representation stable, and Theorem 2.18 to see
why the above precludes Confm(G) from having this property). Looking again at the
theorem of Gal, we see that the Euler characteristic of Confm(G), as a function of
m, looks like m! multiplied by a polynomial in invariants of G. In other words, the
extreme growth in the Euler characteristic seems to be primarily influenced by the
number of points being configured, rather than the the graph G itself.

One guiding philosophy of the present work is that if we fix the number of points
begin configured, and instead allow the graph itself to vary, then the collection of
spaces Confm(Gn) will be representation stable in the sense of Definition 2.19.

This philosophy has also appeared in recent work of Lütgehetmann [27]. Theorem
G extends the main theorem of that work.

2.3 FI-modules and representation stability

The main tool we introduce in this paper are objects we refer to as FI-graphs. Before
working through the technical details of that construction, we must first discuss a key
auxiliary concept: FI-modules.

Definition 2.11 Let FI denote the category whose objects are the finite sets [n] :=
{1, . . . , n} and whose maps are injections. An FI-module is a (covariant) functor from
FI to the category of R-vector spaces.

Remark 2.12 FI-modules can be put into more concrete terms. Observe that for any set
[n], the endomorphisms inFI are precisely the permutations onn letters,Sn . Therefore,
if V is an FI-module, each of the vector spaces V ([n]) is actually a representation of
the symmetric group Sn . An FI-module may be thought of as a sequence of vector
spaces

V0 → V1 → · · ·
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such that each Vn is a representation ofSn , and each of the forward maps Vn → Vn+1
is a linearmapwhich is equivariant with respect to the action ofSn , whereSn ≤ Sn+1
as the subgroup of permutations which fix the element n + 1.

More precisely, Remark 3.3.1 of [10] says that such a sequence of spaces and maps
forms an FI-module if and only if for any n and k, any element of Sn+k which fixes
all of [n] acts trivially on the image of Vn in Vn+k .

Remark 2.13 Note that most works in the literature allow FI-modules to be valued
in any module category over a commutative ring. For our purposes, we will mostly
consider FI-modules which are valued in vector spaces over R. In certain areas of the
paper, such as Lemma 4.6, we consider FI-modules over Z, i.e. functors from FI to
the category of abelian groups. Most of the definitions and theorems in this section
work equally well in this case.

For an FI-module V , wewill oftenwrite Vn := V ([n]) and f* := V ( f ). One should
note that for any n, the endomorphisms of [n] in FI are precisely the permutations on n
letters,Sn . Functoriality therefore implies that, for each n,Vn is a representation ofSn .

Just aswith the study of vector spaces, it is often reasonable to restrict one’s attention
to those objectswhich are finitely generated in the appropriate sense. Before describing
how such a condition can be applied to FI-modules, we note that the category of FI-
modules and natural transformations is abelian. Indeed, one may define the usual
abelian operations point-wise. In fact, one may very naturally define constructions
such as direct sums and products, tensor products, symmetric products, etc. for FI-
modules.

Definition 2.14 An FI-module V is said to be finitely generated in degree ≤ d if
there is a finite set

{vi } ⊆ d
n=0Vn

which no proper submodule of V contains. Equivalently, the set {vi } generates V if,
for all n, the vector space Vn is spanned by the images of the vi under the various
maps f* induced by V from injections of sets.

Perhaps the most remarkable thing about finitely generated FI-modules is that they
exhibit a Noetherian property. The following was first proven by Snowden [39], and
later repoven by Church et al. [10].

Theorem 2.15 [10,39] Let V be a finitely generated FI-module. Then every submodule
of V is also finitely generated.

We will use the above Noetherian property to deduce various somewhat surprising
combinatorial facts about FI-graphs.

As one might expect, if V is an FI-module generated in degree ≤ d, then it is not
necessarily the case that submodules of V are also generated in degree ≤ d. Despite
this, one may still conclude certain things about submodules of V based on properties
of V . For this reason, we introduce the following.
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Definition 2.16 We say that a finitely generated FI-module V is d-small if V is a
subquotient of an FI-module which is finitely generated in degree ≤ d.

Proposition 2.17 [10] If V is finitely generated in degree ≤ d and W is finitely gen-
erated in degree ≤ e, then

1. The FI-module V ⊕ W is generated in degree ≤ max{d, e}, where (V ⊕ W )n =
Vn ⊕ Wn;

2. The FI-module V ⊗W is generated in degree≤ d+e, where (V ⊗W )n = Vn⊗Wn.

The following list of properties are proven throughout [10].

Theorem 2.18 [10] Let V be an FI-module. If V is finitely generated then for all n � 0
and all injections f : [n] → [n + 1],
1. The function f* is injective;
2. The vector space Vn+1 is spanned as an Sn+1-representation by f*(Vn);
3. The Sn-representation Vn admits a decomposition of the form

Vn =
⊕

λ,|λ|≤d

mλV (λ)n

where the coefficient mλ is independent of n and d is some constant independent of
n (see [10] for details on the representations V (λ)). In particular, the multiplicity
of the trivial representation in Vn is eventually independent of n.

4. If V is d-small, then there exists a polynomial pV (X) ∈ Q[X ] of degree ≤ d such
that for all n � 0, pV (n) = dimQ Vn.

The above will be used extensively in what follows.
The notion of representation stability was first introduced by Church and Farb

in their seminal work [12]. From these beginnings the field has seen a boom in the
literature and has been proven to be applicable to a large collection of subjects. For
the purposes of this paper, we state the following definition, which is a modernized
version of the original definition of Church and Farb.

Definition 2.19 Let X• denote a functor from FI to the category of topological spaces.
Then we say that X• is representation stable if for all i ≥ 0 the FI-module over Z

Hi (X•;Z)

is finitely generated.

Note that this definition describeswhat ismeant by an FI-space being representation
stable, not an FI-module.

Remark 2.20 Again we note that this definition is not standard in the literature.
Observe that being representation stable in the above sense implies that the FI-module
Hi (X•;R) is finitely generated in at most the same degree. This is much more similar,
in spirit, to the original work of Church and Farb [12].
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It was famously proven by Church [7], and later reexamined by Church et al. [10],
that if M is a compact orientable manifold with boundary of dimension at least two
then

n �→ Confn(M)

is representation stable. We have already seen, however, that an analogous statement
cannot be true if we replace M with a graph (see the discussion following Theorem
2.10). We therefore change our approach and instead consider the functors

n �→ Confm(Gn) (2.1)

wherem is fixed, and G• is a particularly nice FI-graph (see the statement of Theorem
G). The main theorem of this paper can be restated to say that in this case the functor
(2.1) is representation stable. Our approach will be largely combinatorial, and we will
use structural facts about FI-graphs aswell as the cellularmodel of Theorem2.9. This is
in contrast to the work of Lütgehetmann, which proves that n �→ Confm(Gn) is repre-
sentation stable for a particular choice of G• (see Example 3.9) using very topological
methods. We will find that our method provides a stronger bound on the degree of the
polynomial encoding the Betti numbers in this case, while Lütgehetmann’s method
provides bounds on the degree of generation of the FI-modules Hi (Confm(G•)).

Remark 2.21 For future use, we now explicitly point out the properties of FI-modules
over Z which will be used in the sequel. These are:

1. FI-modules over Z satisfy the Noetherian property. That is, submodules of finitely
generated modules are once again finitely generated [11, Theorem A];

2. If V is a finitely generated FI-module over Z, then the function n �→ rank(Vn)
agree with a polynomial for n � 0 [11, Theorem B];

3. If V is a finitely generated FI-module over Z, then transition maps of V are
eventually injective [11, Lemma 2.15].

4. If V andW are finitely generated FI-modules overZ, then both V ⊗W and V ⊕W
are also finitely generated [10, Proposition 2.61].

Note that the primary differences between FI-modules and FI-modules over Z involve
the behaviors of the Sn-representations Vn . This can be thought of as a consequence
of the fact that representation theory, and the representation theory of the symmetric
groups specifically, is generally much less well behaved over Z.

3 FI-graphs

3.1 Definitions and examples

The primary objective of this section is to provide a framework through which one
can study families of graphs in the spirit of Kneser graphs and their generalizations.
Recall that, for any fixed integers n ≥ k, one defines the Kneser graph KGn,k as
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the graph whose vertices are labeled by k-element subsets of [n], and whose edges
connect disjoint sets.

It is clear that for each n, elements of Sn act on KGn,k by graph automorphisms.
What is perhaps more subtle, is that if f : [n] ↪→ [m] is any injection, then there is
an induced map of graphs

KG( f ) : KGn,k → KGm,k

Looking back at the definition of FI-modules, one is therefore motivated to make the
following definition.

Definition 3.1 An FI-graph is a functor from the category FI to the category Graph
of (simple) graphs. We will usually denote an FI-graph by G• : FI → Graph. We
will use G( f ) to denote the induced maps of G•.

Remark 3.2 We may consider FI-graphs in a more concrete fashion, similar to how
FI-modules were treated in Remark 2.12. An FI-graphmay be thought of as a sequence
of graphs

G0 → G1 → · · ·

such that each Gn carries a vertex action bySn , and each of the forward maps Gn →
Gn+1 is a graph theoretic homomorphism which is equivariant with respect to the
action of Sn , where Sn ≤ Sn+1 as the subgroup of permutations which fix n + 1.

As in Remark 2.12, such a sequence of graphs andmapsmay not be an FI-graph, but
following Remark 3.3.1 of [10], the sequence of graphs and maps forms an FI-graph if
and only if for any n and k, any element ofSn+k which fixes all of [n] acts trivially on
the image of Gn in Gn+k . Example 3.15 shows the behavior that may occur without
this assumption.

While the above definition captures the core of the above discussion, it is still a bit
too general for our purposes. For instance, if

G0 ⊆ G1 ⊆ G2 ⊆ · · ·

is any chain of graphs, then we may define an FI-graph by setting the Sn-action
to be trivial for each n, and having the transition maps be the given inclusions. An
arbitrary chain of graphs like the above can become rather complicated, and there
won’t necessarily be any way to gather meaningful information above the invariants
of any Gn from those that came before it. What is needed is some notion of finite
generation for FI-graphs. For this purpose, we define the following.

Definition 3.3 Let G• be an FI-graph. We say that G• is vertex-stable with stable
degree ≤ d if for all n ≥ d, and every vertex v ∈ V (Gn+1) there exists some vertex
w ∈ V (Gn) and some injection f : [n] ↪→ [n + 1] such that G( f )(w) = v.
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That is, an FI-graph is vertex-stable with stable degree ≤ d if for each n > d,
every vertex in Gn is in the image of one of the transition maps. Informally, no ‘new’
vertices appear after the graph Gd , up to symmetric group actions.

We will find that this fairly simple combinatorial condition is sufficient to prove
a plethora of facts about the graphs Gn . Before we delve into these details, we first
introduce the various examples which motivated this paper. In most of these examples,
vertices are labeled by elements of [n] = {1, 2, . . . , n} or by sets or tuples (unordered
or ordered, respectively) of such elements. The symmetric group Sn acts on such
vertices by acting on each element individually. It is a result of the upcoming work
[36] that all vertex-stable FI-graphs arise from such constructions, slightly generalized.

Example 3.4 For any fixed k ≥ 0, the Kneser graphs KG•,k form a vertex-stable FI-
graph with stable degree k (or stable degree 1 if k = 0). The same can therefore be
said about the complete graphs K• = KG•,1.

More generally, if n, k, and r are fixed integers, then we define the generalized
Kneser graph KGn,k,≤r to have vertices labeled by subsets of [n] of size k and edges
connecting subsets whose intersection has size at most r . In particular, KGn,k =
KGn,k,0. The generalized Kneser graphs KG•,k,≤r form a vertex-stable FI-graph for
each fixed k and r , again with stable degree k.

Rather than putting edges between subsets whose intersection is of at most a certain
size, we could instead require that the intersection have exactly that size—for instance,
let KGn,k,r be the graph whose vertices are subsets of size k and with an edge between
two vertices if their subsets have an intersection of exactly size r . The graphs KG•,k,r

also form a vertex-stable FI-graph with stable degree k.

We could generalize this example further, allowing edges to correspond to inter-
sections of various specified sizes.

Example 3.5 For any fixed k ≥ 0, we can define a variant of the Kneser graph, which
we denote KGn,≤k . The vertices of KGn,≤k will be labeled by subsets of [n] of size
at most k, and the edges will connect disjoint subgraphs, just as was the case with the
Kneser graph. Because self-loops are forbidden, we do not connect the empty set to
itself.

Note that for each n, the symmetric group action on KGn,≤k is not transitive.
Despite this, the collection KG•,≤k still forms a vertex-stable FI-graph with stable
degree k. It will be useful to consider the orbits of vertices under the symmetric group
actions. Our examples tend to have few orbits for the sake of being simple examples,
but this is not a restriction on general FI-graphs.

Example 3.6 For any fixed k ≥ 0, the complete bipartite graphs K•,k form a vertex-
stable FI-graph with stable degree 1. Here, our transition maps and permutations fix
the vertices in the part of size k. It follows that the series of star graphs, Star• = K•,1
form a vertex-stable FI-graph.

Example 3.7 For any fixed n, k ≥ 0, define the Johnson graph Jn,k as that whose
vertices are labeled by subsets of [n] with size k, and whose edges connect subsets
with intersection size k − 1. Then J•,k naturally forms a vertex-stable FI-graph with
stable degree k.
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In the notation of Example 3.4, the Johnson graph Jn,k is the generalized Kneser
graph KGn,k,k−1.

Example 3.8 Recall that the n-cube graph Qn is defined to be the 1-skeleton of the
n-dimensional hypercube. This collection cannot be endowed with the structure of a
vertex-stable FI-graph, as its number of vertices grows too fast (see Theorem 4.3).
There is, however, a variation of the n-cube graph which can be endowed with the
structure of a finitely generated FI-graph.

For fixed n, k ≥ 0, let Qn,k denote the graph whose vertices are ordered k-tuples of
elements of [n], where two vertices are connected if they differ in only one coordinate.
This graph is sometimes called the k-lattice graph of characteristic n. The cubic lattice
graph of characteristic n is notable in that it can be entirely characterized by certain
simple combinatorial properties (see [30]). For our purposes, we simply note that for
any fixed k the family Q•,k can be endowed with the structure of a vertex-stable FI-
graph. Indeed, let n > k, and let (i1, . . . , ik) be a vertex of Qn+1,k . Because k < n, we
know that there is some integer l ∈ [n] such that l 	= i j for any j . Then (i1, . . . , ik) is
in the image of the transition map induced by the injection f : [n] ↪→ [n + 1] given
by,

f (x) =
{
n + 1 if x = l,

x otherwise.

This FI-graph has stable degree k.

Example 3.9 Our next example appears in earlier work of Lütgehetmann [27]. Let
G, H be any pair of pointed graphs. Then we can construct a new graph by wedging
G with H n times, producing the graph

Gn := G
∨

H∨n

Then we may endow Gn with the structure of an FI-graph by having the symmetric
group act by permuting the factors of H . This FI-graph has stable degree 1.

The examples thus far have been quite regular, in the sense that for each n, the
construction of the vertices and edges of the graph Gn has been the same. It is worth
examining how this can be varied, particularly because results later in this section will
limit how wild such variation can be.

Example 3.10 Let G• be an FI-graph, and modify it by removing all edges from each
Gi , for i = 1 to k − 1.

Example 3.11 LetG• be an FI-graph, and modify it by replacing eachGi by the empty
graph, for i = 1 to k − 1.

While Examples 3.10 and 3.11 remove vertices and edges from graphs in the first
few degrees, this cannot necessarily be done in later degrees. The transition maps
are permitted to map pairs of vertices not connected by an edge to pairs of vertices
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connected by an edge, but not the reverse. Two vertices joined by an edge may not
map to the same vertex, because there cannot be an edge from this vertex to itself.
For instance, if Gn contains a complete graph on k vertices then Gn+1 also contains
a complete graph on k vertices.

Disjoint unions of FI-graphs are FI-graphs, and it is possible to increase the number
of copies from a certain point onwards.

Example 3.12 Fix a positive integer k, and let G• be any FI-graph with stable degree
at most k. We create a new FI-graph H• as follows. For i < k, the graph Hi is equal to
Gi . For i ≥ k, the graph Hi is a disjoint union of two copies of Gi . For concreteness,
color vertices and edges in one of these subgraphs red and in the other, blue. The action
of Sn preserves the color of vertices. Transition maps preserve the color of vertices
and take uncolored vertices to red vertices. This FI-graph has stable degree k.

Example 3.12 did not need the two graphs to be the same—the new graphs intro-
duced from degree k could have been the respective components of any FI-graph.

It is also possible to decrease the number of components. This does require the use
of transition maps which are not injective.

Example 3.13 Let G• be any FI-graph. Fix a positive integer k, and create a new FI-
graph H• as follows. For i < k, the graph Hi is a disjoint union of two copies of
Gi . Color vertices and edges in one of these subgraphs red and in the other, blue. For
i ≥ k, the graph Hi is equal to Gi . The action of Sn preserves the color of vertices.
Transition maps preserve the color of vertices if their image is in Gi with i < k, and
forget colors otherwise.

An FI-graph may be modified by changing the times at which the various ‘types’
of edges begin to appear, as in the following variant of the Kneser graph.

Example 3.14 Let the vertex set of Gn be indexed by subsets of [n] of size r , and let
a0 to ar be r + 1 fixed positive integers. In Gn , there is an edge between two vertices
if and only if n ≥ ak , where k is the number of elements the two vertices have in
common.

That is, Example 3.14 is describing a sequence of graphs where edges between
disjoint sets are present from the a0th graph onwards, edges between sets with a single
element in common are present from the a1th graph onwards, and so on.

Example 3.14 could be generalized further by taking the vertices to be ordered r -
tuples, in which case there would be more edge orbits—two tuples may be compared
not just by how many elements they have in common, but also by which positions
these overlaps occupy. For instance, if the vertices are ordered pairs, then there are
five orbits of edges rather than three in the unordered case—between pairs of vertices
((a, b), (a, c)),((a, b), (c, b)),((a, b), (b, c)),((a, b), (c, a)), and ((a, b), (c, d)).

There are also examples whose vertices are in between sets (unordered) and tuples
(ordered)—we could start with vertices indexed by r -tuples, choose a subgroup H
of the symmetric group Sr , and identify two tuples if the action of H takes one
to the other. For instance, we might care about the order of an r–tuple up to cyclic
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...
...

...
...

...

Red Orange Yellow Green Blue

Fig. 2 The FI-graph of Example 3.16. The key feature is that there are n ‘bridges’ from the right side of
the graph to the left, and any Hamiltonian path must cross each of them

permutation. It turns out that all finitely-generated FI-graphs may be constructed in
essentially this way—see Theorem A of [36].

The next example fails to be an FI-graph in a subtle way. If it was an FI-graph, it
would violate Theorem 3.31.

Example 3.15 For each i 	= 2, let Gi be the complete graph on the vertex set [i], with
the natural symmetric group action where the group Si permutes the set [i]. Let G2
have vertex set {1, 2, 3}, with edges 13 and 23 and the nonidentity element of S2
interchanging the vertices 1 and 2 and fixing 3. Transition maps from Gn to Gn+1 are
obtained by including Gn into Gn+1, using the same symbols for the vertex labels of
each graph, and then acting by any element of Sn+1. We shall not attempt to define
further transition maps, because this cannot be done in a consistent manner, as we
shall now see.

From Remark 3.2, we know that for G• to be an FI-graph, the transposition (3 4)
would need to fix the image of G2 in G4, because it fixes 1 and 2. But this isn’t
the case, so G• can’t be an FI-graph. This is perhaps a surprising failure, because
transition maps from each Gi to the next graph Gi+1 can be defined naturally, and
it is only longer-range maps which fail. Attempts to define such transition maps in a
consistent way will run into difficulties deciding where to send the vertex 3 from G2.
This example illustrates the consistency condition required by Remark 3.2.

If rather than FI we were working over a category where maps from [2] to [n] were
instead sequences of maps from [2] to [3] to [4] and so on, then this construction
would not fail in this way, and so over such a category, the analogue of Theorem 3.31
is false.

Example 3.16 Consider the FI-graph defined as follows. Let Gn have five orbits of n
vertices, indexed by the colors red, orange, yellow, green, and blue. At the moment,
these orbits are isomorphic, though they will differ once we introduce the edges. The
symmetric group action and the transition maps both preserve the colors. The graph
Gn has edges between

• Each red vertex and each red or orange vertex
• Each yellow vertex and the orange and green vertices of equal label, and
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• Each green or blue vertex and each blue vertex.

See Fig. 2 for a schematic of this graph.
This particular FI-graph is of theoretical interest, as it provides an example of a

global property which does not stabilize in n. In particular, we claim that Gn admits
a Hamiltonian cycle if and only if n is even.

When n is even, consider the path which starts at the top left of Fig. 2 and ‘snakes’
downward by moving all the way to the right, takes one step down, moves all the way
to the left, takes a step down, and repeats. The initial and final vertices of this path are
adjacent, so this is a Hamiltonian cycle.

When n is odd, each time a non-backtracking path passes through a yellow vertex,
it switches between the left and right pieces of the graph, comprised of red and orange
or green and blue vertices, respectively. There is no other way to move between the
two sides, and there are an odd number of yellow vertices, so any path passing through
each vertex once must end on the opposite side to which it started.

3.2 Vertex-stability and its consequences

While it is clearly the case that the examples of Sect. 3.1 are vertex-stable, one might
also note that these cases seem to have much more structure than this. For instance, it
is natural to go a step further and make the following definitions:

Definition 3.17 1. An FI-graph is eventually injective if for n � 0, the transition
maps of G• are injective;

2. An FI-graph is eventually induced if for n � 0, the image of any transition map
is an induced subgraph;

3. An FI-graph is edge-stable with edge-stable degree ≤ k if for n ≥ k and any
{x, y} ∈ E(Gn) there is an edge {v,w} ∈ V (Gk) and an injection f : [k] ↪→ [n]
such that G( f )(v) = x and G( f )(w) = y;

4. An FI-graph is r-vertex-stable if for all n � 0, and any collection of r vertices of
V (Gn+1), {x1, . . . , xr }, there is a collection of vertices of Gn , {v1, . . . , vr }, and
an injection f : [n] ↪→ [n + 1], such that G( f )(vi ) = xi for each i .

These stability properties may occur at quite different times, and at different times
to vertex-stability. Example 3.13 is injective only from degree k onwards, Example
3.12 is vertex-stable and edge-stable from degree k onwards, and Example 3.14 is
vertex-stable in degree r , but edge-stable only once the degree is greater than all of a0
through ar .

The Kneser graphs KG•,k (Example 3.4) are vertex-stable in degree k, edge-stable
in degree 2k, and r -vertex-stable in degree rk. In contrast, the lattice graphs Q•,k

(Example 3.8) are vertex-stable in degree k, edge-stable in degree k+1, and r -vertex-
stable in degree rk.

It is left to the reader to verify that all of the examples of the previous section satisfy
each of the above conditions. Somewhat miraculously, it turns out that this is not a
coincidence.

Theorem 3.18 Let G• be a vertex-stable FI-graph. Then:
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1. G• is r-vertex-stable for all r ≥ 1;
2. G• is edge-stable;
3. G• is eventually injective and induced.

It is worth noting that vertex-stability is strictly stronger than edge-stability, as
shown by the following example.

Example 3.19 For each n, let Gn be the union of the complete graph Kn and n isolated
vertices. The symmetric groupSn acts naturally on the complete graph and fixes each
of the other vertices. This FI-graph is edge-stable in degree 2, but is not vertex-stable.

Edge stability may happen either before or after 2-vertex-stability, because edge-
stability includes only pairs of vertices which are connected by edges, but it is possible
for edges to not appear until long after any pair of vertices are contained in the image
of some transition map. Example 3.14 is 2-vertex-stable in degree 2r , but is not edge-
stable until the degree equal to the maximum of the ai .

Before we prove Theorem 3.18, it will be useful to us to rephrase the above prop-
erties in terms of finite generation of certain FI-modules.

Definition 3.20 Let G• denote an FI-graph, and let r ≥ 1 be fixed. We write

R

(
V (G•)

r

)

to denote the FI-module whose evaluation at [n] is the R vector space with basis
indexed by collections of r vertices of Gn . We will often write RV (G•) := R

(V (G•)
1

)
.

Note that the image of a collection of r vertices under a transition map may not be a
collection of r vertices if this transition map is not injective on vertices. In this case
we simply declare the map to be zero on this collection. Similarly, we define RE(G•)
to be the FI-module whose evaluation at [n] is the R vector space with basis indexed
by the edges of E(Gn).

Remark 3.21 The modules R
(V (G•)

r

)
can also be constructed in the following fashion.

Observe that if G• is an FI-graph, then
(V (G•)

r

)
is an FI-set, i.e. a functor from FI to

the category of finite sets. There is a functor from the category of finite sets to the
category of R vector spaces given by linearization. Specifically, this is the functor
which sends a set to the R vector space with a basis indexed by the elements of the
set. The module R

(V (G•)
r

)
can therefore be realized as a composition of the functor(V (G•)

r

)
with linearization. This perspective is pervasive through the sequel work [36],

where FI-sets are a more primary focus. In this work we will not dive too deeply into
this idea.

Lemma 3.22 Let G• be an FI-graph.
1. G• is vertex-stable with stable degree ≤ d if and only if RV (G•) is finitely gener-

ated in degree ≤ d.
2. G• is eventually injective if and only if the transition maps of RV (G•) are even-

tually injective.
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3. G• is edge-stable with edge-stable degree ≤ d if and only if RE(G•) is finitely
generated in degree ≤ d.

4. G• is r-vertex-stable if and only if R
(V (G•)

r

)
is finitely generated.

Proof All of these assertions follow from the relevant definitions. �
Remark 3.23 Note that this lemma is critically dependent on the assumption that Gn

has finitely many vertices and edges for each n. For instance, consider the collection
of infinite graphs

V (Gn) := N, E(Gn) := {{1, 2}, {2, 3}, . . . , {n − 1, n}}

We can introduce an FI-structure on G• by having the symmetric group act trivially.
Then it is clear thatRV (Gn) is not finitely generated, despiteG• being “vertex-stable”
in some sense.Also note that the collectionG• is not edge-stable in this case, seemingly
violating Theorem 3.18.

This lemma is the key piece in the proof of Theorem 3.18.

Proof of Theorem 3.18 To begin, Lemma 3.22 implies that wemust show thatR
(V (G•)

r

)

is finitely generated. We note that there is a surjection of FI-modules

RV (G•)⊗r → R

(
V (G•)

r

)

Indeed, this is induced by the assignments

x1 ⊗ · · · ⊗ xr �→
{

{x1, . . . , xr } if xi 	= x j for i 	= j

0 otherwise.

By assumptionRV (G•) is finitely generated, whence the same is true of (RV (G•))⊗r

by Proposition 2.17. This concludes the proof of the first statement.
The second statement follows from the Noetherian property as well as the inclusion

RE(G•) ↪→ R

(
V (G•)

2

)
.

Eventual injectivity follows from Theorem 2.18.
By definition, G• is eventually induced if and only if for n large enough and for

{x, y} /∈ E(Gn) any pair of nonadjacent vertices of Gn , then the images of x and y
under any injection f : [n] ↪→ [n+1], f*(x) and f*(y), are not connected by an edge
in Gn+1. For each n, letOn denote the set ofSn-orbits of pairs of vertices in Gn . Note
thatOn may be partitioned into two subsets, depending on whether or not pairs in the
orbit correspond to edges or not. Further note that the transition maps of G• will send
an “edge” orbit to an edge orbit. On the other hand, the third part of Theorem 2.18
implies that |On| is eventually independent of n, as it is equal to the multiplicity of
the trivial representation in R

(V (Gn)
2

)
.
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For similar reasons the orbits of pairs corresponding to edges must stabilize as well.
Note that even once the number of orbits of pairs of orbits has stabilized (that is, that
|Ok | is constant for all k ≥ n), it may not be the case that the edge orbits have already
stabilized at the same graph n. Rather, this value of |Ok | gives a finite upper bound
on the number of times that the number of edge orbits may increase, which shows
that this number eventually stabilizes. However, there is no bound on how long this
may take, as can be seen by considering Example 3.14 and taking any of the ak to be
arbitrarily large.

Once the edge orbits have stabilized, non-edged orbits will eventually map exclu-
sively into non-edged orbits, as desired. �
Remark 3.24 Proposition 2.17 and the above proof together imply that R

(V (G•)
r

)
is

generated in degree ≤ rd, where d is the generating degree of RV (G•). In particular,
RE(G•) is 2d-small.

Remark 3.25 It is possible to prove one part of Theorem 3.18 directly. Consider any
set of k vertices v1 through vk in Gn , for n ≥ kr . Each vi is in the image of a transition
map from Gk to Gn , and each of these transition maps is induced by an injection
from [k] to [n]. Let f1 through fk be these injections. Take f to be an injection from
[kr ] to n whose image includes the image of each fi . Then each fi factors through
f , so each vi is in the image of the transition map induced by f . This completes the
proof.

The proof of r -vertex-stability in Theorem 3.18 relies on the tensor product of
finitely generated FI-modules being finitely generated. The proof of this fact may be
made explicit, and this is what lies behind the proof given above.

An application of Theorem 3.18 is the following construction of new vertex-stable
FI-graphs from existing vertex-stable FI-graphs.

Definition 3.26 Let G be a graph. The line graph of G, L(G), is the graph whose
vertices are labeled by the edges of G such that two vertices are connected if and only
if the corresponding edges of G share an end point.

Line graphs have been studied extensively. One avenue of research is the ques-
tion of how much of the graph G can be determined by studying its line graph.
A celebrated theorem of Whitney [41] implies that the line graph almost always
uniquely determines the original graph. Indeed, the only exception to this is the fact
that L(K3) = L(K3,1). Algebraically, one is also interested in the question of deciding
when a line graph is determined by its spectrum (See, for instance, [25] or Chapter
1.3 of [14]).

Corollary 3.27 Let G• denote a vertex-stable FI-graph. Then the collection of line
graphs L(G•) can be endowed with the structure of a vertex-stable FI-graph.

Proof This result follows immediately from Theorem 3.18 and the definition of the
line graph. �
Remark 3.28 We note that the line graph L(Kn) is isomorphic to the Johnson graph
Jn,2. The line graphs of the complete bipartite graphs Kn,m have been studied (see,
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for instance, [32] or the references in [14]), and are sometimes referred to as the rook
graphs, as they can be thought of as encoding legal rook moves on an m × n chess
board.

3.3 Determining when the induced property begins

Theorem 3.18 implies that all FI-graphs are eventually induced. In this section we
consider the question of bounding when this behavior begins. To begin we impose the
following technical condition on the FI-graph G•. We will see this condition return
again when we consider configuration spaces of graphs.

Definition 3.29 We say an FI-graph G• is torsion-free if for all injections f : [n] ↪→
[m] the transition map G( f ) is injective.

Most of the examples in Sect. 3.1 are torsion-free. Example 3.13 is not torsion-free.

Remark 3.30 We say an FI-module is torsion-free if all of its transition maps are
injective. The above definition is intended to emulate this.

Theorem 3.18 insists that vertex-stability implies edge-stability. In particular, at
some point the transition maps of a vertex-stable FI-graph will contain every edge in
the union of their respective images. It is therefore natural for one to guess that it will
be at this point that the image of these transition maps must be induced. We do indeed
find this to be the case for torsion-free FI-modules.

Theorem 3.31 Let G• be a torsion-free vertex-stableFI-graphwith edge-stable degree
≤ dE . Then for any n ≥ dE and any injection f : [n] ↪→ [n + 1] the image of Gn

under the transition map G( f ) is an induced subgraph of Gn+1.

While it might seem natural for there to be some kind of pigeon-hole or counting
argument for the above theorem, such an argument has thus far eluded the authors.
Just like much of the rest of this work, we instead prove Theorem 3.31 through the
algebra of FI-modules. To begin, we must rephrase the eventually induced property
in the language of FI-modules.

Definition 3.32 The coinvariants functor  from FI-modules to graded R[x]-
modules is defined by

(V )n := Vn ⊗Sn R

Multiplication by x is induced by the action of the transition maps.

In the setting of FI-graphs and their associated FI-modules, the coinvariants functor
takes a particularly nice form.

Recall that we define R
(V (G•)

2

)
to be the FI-module encoding pairs of vertices of

G•. The coinvariants of R
(V (G•)

2

)
can be constructed in the following way. We define



Families of nested graphs with compatible symmetric-group… Page 27 of 42 70

 to be the graded R[x]-module for which n is the free R vector space with basis
indexed by the orbits of the symmetric group action on pairs of vertices ofGn . For each
n we may define ιn : [n] ↪→ [n + 1] to be the standard inclusion. Then G(ιn) induces
a map between the orbits of pairs of vertices of Gn and those of Gn+1. Multiplication
by x in the module  will be defined by this map.

Lemma 3.33 Let V be a finitely generated FI-module. If V is torsion-free as an FI-
module, then (V ) is torsion-free as a R[x]-module.
Proof This follows from the fact that coinvariants are exact over fields of
characteristic 0. �

This lemma is the key piece needed to prove Theorem 3.31.

Proof of Theorem 3.31 Let G• be a torsion-free vertex-stable FI-graph, and assume
that G• has edge-stable degree ≤ dE . Assume by way of contradiction that there is
some n ≥ dE such that the image ofGn under any transitionmapG( f ) : Gn → Gn+1
is not an induced subgraph. This implies that there is some pair of vertices {v1, v2} in
Gn , which are not connected by an edge, while G( f )({v1, v2}) is an edge of Gn+1.
On the other hand, because n ≥ dE , there must be some transition map G(h), as well
as some edge e ∈ E(Gn) such that G(h)(e) = G( f )({v1, v2}). We may apply some
element ofSn+1 to conclude the following: The transition map G( f ) must map some
non-edge of Gn , as well as some edge of Gn , to the same Sn+1 orbit on the pairs of
vertices of Gn+1. In particular, this would imply that the coinvariants of R

(V (G•)
2

)
has

torsion. This contradicts Lemma 3.33. �

4 Applications

In the following sections we prove the variety of applications of the primary structure
theorem that were claimed in the introduction. Many of these proofs ultimately take
the same form: one encodes the invariant or homology groups as the graded pieces
of a finitely generated FI-module (over Z). Finite generation in these cases is usually
proven by embedding the FI-module into a larger FI-module which is known to be
finitely generated, and then applying the Noetherian property. These “bigger” FI-
modules which we embed into are almost always R

(V (G•)
j

)
(Remark 3.24), as well as

tensor products of the modules R
(V (G•)

j

)
(Proposition 2.17).

4.1 Enumerative consequences of vertex-stability

We begin this section by revisiting the invariants ηH and ηindH for some fixed graph
H . In particular, if G• is a vertex-stable FI-graph, we consider the functions

n �→ ηH (Gn) and n �→ ηindH (Gn).

Our primary result in this direction is the following.
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Theorem 4.1 Let G• be a vertex-stable graph with stable degree ≤ d. Then for any
graph H there exists polynomials pH (X), pindH (X) ∈ Q[X ] of degree ≤ d · |V (H)|
such that for all n � 0,

pH (n) = ηH (Gn) and pindH (n) = ηindH (Gn)

Proof We will count the number of graph injections from H to G•. This quantity is
a constant multiple of ηH (G•), and it is therefore sufficient to count. Let V H• denote
the FI-module whose evaluation at [n] is the R vector space with basis indexed by the
distinct graph theoretic injections of H into Gn . To make sure the transition maps are
well defined, we will set V H

n = 0 before the point where the transition maps of G• are
both induced and injective. We therefore see that V H• can be realized as a submodule

V H• ↪→ (RV (G•))⊗|V (H)|

via the point-wise assignment,

φ �→
⊗

x∈V (H)

(φ(x)).

Proposition 2.17 implies that V H• is (d · |V (H)|)-small, and Theorem 2.18 implies the
existence of our desired polynomial. The proof for the induced case is the same. �
Example 4.2 Looking the FI-graph K• of complete graphs, the above result is clear.
H cannot appear in Kn when n < |V (H)|. If we call γH the number of copies of H
in K|V (H)|, then

pH (n) =
(

n

|V (H)|
)

γH

The content of Theorem 4.1 is that this behavior is common to all vertex-stable FI-
graphs. The examples of the previous section illustrate that vertex-stable FI-graphs
can be fairly diverse, and so this might come as a bit of a surprise.

Fix k ≥ 2 and let KG•,k be the FI-graph which encodes the Kneser graphs. In this
case we may easily count the number of triangles which appear in KGn,k . Indeed, to
form a triangle, one needs to provide three mutually disjoint subsets of [n] of size k.
It follows that

pK3(n) =
( n
3k

)( 3k
k,k,k

)

6
.

Note that if we take the usual convention that
(n
k

) = 0 whenever n < k, then the
above polynomial agrees with ηK3(KGn,k) for all n ≥ 0. If we instead try to count the
number of occurrences of the six-vertex graph which looks like the letter H , things
get considerably more complicated. Despite the seeming drastic increase in difficulty,
Theorem 4.1 assures us that the value of ηH (KGn,k) must (eventually) agree with a
polynomial, and that this polynomial will have degree at most 6k.
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As an immediate corollary to the above, we find that vertex-stable FI-graphs have
very controlled growth in their vertices and edges, as well as in the degrees of their
vertices.

Corollary 4.3 Let G• be a vertex-stable FI-graph. Then the following functions are
each equal to a polynomial for n � 0:

1. n �→ |V (Gn)|;
2. n �→ |E(Gn)|;
3. n �→ δ(Gn);
4. n �→ �(Gn).

If the stable degree of G• is at most d, then these polynomials have degree at most
d in the first, third, and fourth cases, and degree at most 2d in the second case
(n �→ |E(Gn)|).
Proof The first two statements follow from a direct application of Theorem 4.1 with
H being an isolated vertex and a single edge, respectively.

For the final two statements, we prove a more general statement. Fix m � 0, and
let v ∈ V (Gm). Then every vertex in theSm-orbit of v, which we denoteOv(m), has
the same degree. Let ROv(•) denote the submodule of RV (G•) generated by v, and
for n ≥ m let μ(Ov(n)) denote the degree of any (and therefore all) vertices inOv(n).
We will prove that the map

n �→ μ(Ov(n))

is equal to a polynomial. To see that this implies the final two statements of our corol-
lary, note that the final part of Theorem 2.18 implies that the total number of distinct
orbits of V (Gn) is eventually independent of n. Because non-equal polynomials are
only permitted to be equal at finitely many points, the above implies that there is a
well-defined polynomial which outputs the smallest (or largest) degree of any vertex
of Gn when n is large enough.

To prove our more general claim, we need a bit of notation. We will write
RE(Ov(•)) for the submodule ofRE(G•)whosen-th piece is spanned by edgeswhose
both end points are inOv(n). We will also write N (Ov(n)) to denote the subgraph of
Gn comprised of all vertices and edges that onemay encounter by beginning at a vertex
inOv(n) and moving along any single edge adjacent to it. Put another way, N (Ov(n))

is the neighborhood graph on the vertex set Ov(n). By setting N (Ov(n)) = ∅ when-
ever n < m, we see that N (Ov(•)) is actually a vertex-stable FI-graph. Therefore, by
the second part of this corollary,

n �→ |E(N (Ov(n)))|

is eventually equal to a polynomial. On the other hand, we may count the set
|E(N (Ov(n)))| in the following alternative way,

|E(N (Ov(n)))| = μ(Ov(n)) · |Ov(n)| − |E(Ov(n))|.
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In other words, if we sum the degrees of all vertices in Ov(n), then we would have
counted each edge in E(Ov(n)) exactly twice. Because ROv(•) is a submodule of
RV (G•), we know that its dimension is eventually equal to a polynomial. A similar
statement can also be made about |E(Ov(n))|. Solving for μ(Ov(n)), we find that it is
equal to a rational function for n sufficiently large. However, the only rational functions
which can take integral values at all sufficiently large integers are polynomials. This
concludes the proof. �

Another consequence of vertex-stability concerns finite walks in the graph Gn .
Recall that a walk of length r in a graph G is a tuple of vertices of G, (v0, . . . , vr ),
such that for each i , {vi , vi+1) is an edge of G. We say that a walk is closed if vr = v0.

Theorem 4.4 Let G• be a vertex-stable FI-graph with stable degree ≤ d. Then the
following functions are each equal to a polynomial, of degree ≤ (r + 1)d in the first
case and of degree ≤ rd in the second, for n � 0 and any fixed r ≥ 0:

1. n �→ |{walks in Gn of length r}|;
2. n �→ |{closed walks in Gn of length r}|.
Proof Our strategy here is similar to the strategy of much of the rest of the paper.
Encode the objects we hope to count as the dimension of some vector space, and use
the Noetherian property to prove that the collection of all these vector spaces form a
finitely generated FI-module. LetWr (G•) denote the FI-module for whichWr (Gn) is
the formal vector space spanned by walks of length r in Gn . Similarly defineWc

r (G•)
for closed walks. Note that these FI-modules may not be well defined if the transition
maps ofG• are not injective.While injectivitymaynot be the case for small n, Theorem
3.18 implies that it certainly will be the case for n � 0. Therefore, we simply define
Wr (Gn), andWc

r (Gn) to be zero before injectivity takes effect. To prove thatWr (G•)
is finitely generated, we simply note that there is an embedding,

Wr (G•) ↪→ RV (G•)⊗(r+1)

defined on points by

(v0, . . . , vr ) �→ v0 ⊗ v1 ⊗ · · · ⊗ vr

The moduleRV (G•)⊗(r+1) is finitely generated in degree≤ (r +1) ·d by Proposition
2.17. The Noetherian property concludes the proof. Note that in the case of closed
walks, the fact that v0 = vr removes a degree of freedom in our choices of vertices. In
particular, we may embed Wc

r (G•) into RV (G•)⊗r . By consequence, the dimension
of Wc

r (G•) is bounded by a polynomial of degree ≤ rd, as required. �
The above work illustrates how certain invariants of Gn can grow with n. We also

find, however, there are some invariants which must eventually stabilize.

Proposition 4.5 Let G• denote a vertex-stable FI-graph. Then the following invariants
are independent of n for n � 0:

1. The diameter of Gn;
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2. The girth (i.e. the size of the smallest cycle) of Gn;

Proof For both statements, it suffices to show that the relevant invariant is eventually
weakly decreasing in n. If n � 0, and u, v ∈ V (Gn), then byTheorem3.18 there exists
x, y ∈ V (Gn−1) and an injection f : [n − 1] ↪→ [n] such that u = G( f )(x), v =
G( f )(y). In particular, if P is any path in Gn−1 connecting x and y, then G( f )(P)

is a path in Gn connecting u to v. This shows that the shortest path between u and v

cannot be longer than the shortest path between x and y. By definition, the diameter of
Gn cannot be bigger than the diameter of Gn−1. A similar argument works for girth.

�

4.2 Topological consequences of vertex-stability

In this section we consider a collection of topological applications of vertex-stability.
Our first applications are simple consequences of the work in the previous section, as
well as facts from our background sections.

Lemma 4.6 Let H be a graph, G• a vertex-stable FI-graph of stable degree ≤ d, and
CH
n,i denote the free Z-module with basis indexed by the i-cells ofHom(H ,Gn). Then

CH•,i can be endowed with the structure of a finitely generated FI-module over Z which
is (d(|V (H)| + i))-small.

Proof We first recall the definition of the Hom-complex Hom(H ,Gn). The cells of
Hom(H ,Gn) are multi-homomorphisms, where α is contained in the closure of τ if
and only if α(x) ⊆ τ(x) for all x . It is clear that the transition maps of G• induce
the transition maps of CH•,i , turning this collection of abelian groups into an FI-module
over Z.

We have that i-cells of the complex correspond to multi-homomorphisms α satis-
fying

∑

x∈V (H)

|α(x)| = |V (H)| + i

The data of an i-cell can therefore be encoded as an |V (H)|-tuple

(αx )x∈V (H)

such that:

• Each αx is a non-empty subset of V (Gn);
• ∑

x∈V (H) |αx | = |V (H)| + i ;
• If {x, y} ∈ E(H) then for all v ∈ αx and w ∈ αy , {v,w} ∈ E(Gn).

Just as we have done previously, such as in the proof of Theorem 3.18, we may
realize CH•,i as a submodule of

⊕

r1+···+r|V (H)|=|V (H)|+i

(
⊗

k

R

(
V (G•)
rk

))
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The Noetherian property, as well as previous discovered facts about the modules
R

(V (G•)
j

)
(see the proof of Theorem 3.18) imply our lemma. �

Lemma 4.6 is the main tool we will need in proving that Hom-complexes of vertex-
stable FI-graphs are representation stable in the sense of Church and Farb. Before we
get to this theorem, we observe the following consequence of the above in terms of
counting homomorphisms into G•.
Corollary 4.7 Let H be any graph, and let G• be a vertex-stable FI-graph of stable
degree ≤ d. Then for n � 0, then the function

n �→ |Hom(H ,G•)|

agrees with a polynomial of degree ≤ d · |V (H)|.
Proof This follows from Theorem 2.18, Lemma 4.6, and the fact that the module CH

n,0
from Lemma 4.6 has basis indexed by Hom(H ,Gn). �
Remark 4.8 It is easily seen that homomorphisms Hom(H , Kn) are in bijection with
vertex colorings of H for which no adjacent vertices are of the same color. The above
corollary therefore recovers the existence of the so-called chromatic polynomial.
Note that the chromatic polynomial exists for all n ≥ 0, while the above only guar-
antees it for n � 0. One can recover the fact that the chromatic polynomial exists for
n ≥ 0 by showing that the collection of vector spacesRHom(H , K•) can be endowed
with the structure of an FI�-module (see [10]).

Note that a similar idea, i.e. using FI-module techniques to recover the chromatic
polynomial, was conveyed to the authors by JohnWiltshire-Gordon and Jordan Ellen-
berg. This alternative techniquewas very similar in spirit, but used FA-modules instead
of FI-modules. Here, FA is the category of finite sets and all maps (see, for instance,
[42]).

Theorem 4.9 Let H be a graph, G• a vertex-stable FI-graph of stable degree ≤ d,
and let i ≥ 0 be a fixed integer. Then the FI-module over Z

Hi (Hom(H ,G•))

is (d(|V (H)| + i))-small.

Proof Recall the groups CH
n,i from the Lemma 4.6. Standard polyhedral homology

informs us that there is a complex,

CH
n,� : · · · → CH

n,i
∂→ CH

n,i−1 → · · · → CH
n,0 → 0

with homology isomorphic to H�(Hom(H ,Gn)). Lemma 4.6 tells us that for each
fixed i the groups CH•,i form a finitely generated FI-module over Z. It isn’t hard to

show that the action of the transition maps of CH•,i commute with the differentials ∂ . It
follows that there is a complex of FI-modules over Z

CH•,� : · · · → CH•,i
∂→ CH•,i−1 → · · · → CH•,0 → 0
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whose homology agrees with the FI-modules Hi (Hom(H ,G•)). The Noetherian
property and Lemma 4.6 imply our result. �

To conclude this section, we review some fundamental concepts and definitions
which will be used in the proof of Theorem G.

For the remainder of this section, we fix a vertex-stable, torsion-free FI-graph G•
as well as a positive integer m. We will assume that G• has stable degree ≤ d and
edge-stable degree ≤ dE .

To begin, we note that the necessary edge subdivisions of Theorem 2.9 can be
accomplished in a way consistent with the FI-module structure of G•.

Proposition 4.10 There exists an FI-graph, G(m)• , for which G(m)
n is the m-th subdivi-

sion of Gn and for any injection of sets f : [n] ↪→ [r ] one has

G(m)( f )(x) = G( f )(x)

for all x ∈ V (Gn). If G• has stable degree ≤ d and edge-stable degree ≤ dE , then
G(m)• has stable degree ≤ max{d, dE } and edge-stable degree ≤ dE .

Proof The existence of G(m)• follows from the definition of the m-th subdivision. If
x, y ∈ V (Gn) are connected via an edge, then the same must be true of G( f )(x) and
G( f )(y), for any f . Therefore, ifwe enumerate the subdivision vertices of {x, y} (resp.
{G( f )(x),G( f )(y)}) as v1, . . . , vm−1 (resp. w1, . . . , wm−1), where v1 is adjacent to
x (resp. w1 to G( f )(x)), then we set G( f )(vi ) = wi . The statement on stable degrees
follows from the fact that subdivision creates new vertices and edges within existing
edges. �

This proposition will prove to be critical for us, as it essentially asserts, with Theo-
rem 2.9, that there exists a combinatorial model of Confm(G•) which interacts nicely
with the FI-graph structure of G•.

We are now ready to provide the main novel computational construction of this
section. Recall that we have fixed a vertex-stable torsion-free FI-graph G•.

Definition 4.11 Fix integers m, n, i ≥ 0. We write Kn,m,i to denote the free Z-
module with basis vectors indexed by the i-dimensional cells of the cubical complex
DConfm(G(m)

n ). Given any injection of sets f : [n] ↪→ [r ], Proposition 4.10 implies
that the transition map G( f ) induces a transition map G(m)

n → G(m)
r , which, in turn,

induces a map

f* : Kn,m,i → Kr ,m,i .

This procedure equips the family {Kn,m,i }n with the structure of an FI-module over
Z.

Having observed the FI-module structure on the familiesK•,m,i , the strategy of our
proof of Theorem G becomes clear. We begin by proving that, for all choices of m
and i , the FI-module K•,m,i is finitely generated. In fact, we will prove that K•,m,i is
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(max{d, dE }(m − i) + dEi)-small, where d is the stable degree of G•. Following this
one notes that the action of FI on the collection {Kn,m,i }n commutes with the usual
differentials

∂n,i,m : Kn,m,i → Kn,m,i−1.

This implies that the collection of complexes

· · · → Kn,m,i → Kn,m,i−1 → · · · → Kn,m,0 → 0

can be pieced together to form a complex of FI-modules. The Noetherian property is
then sufficient for us to prove the main theorem.

We observe that this approach has the downside that it cannot be used to estimate
the generating degree of the FI-module over Z, Hi (Confm(G•)). It is the belief of the
authors that proving a result of this kindwill require a deeper topological understanding
of the spaces Confm(Gn) as n-varies. This seems like a rich avenue for future research,
as surprisingly little is thus far understood about these spaces.

Theorem 4.12 Assume that G• has stable degree ≤ d and edge-stable degree ≤ dE .
Then for all choices of m, i ≥ 0, the FI-module over Z, K•,m,i , is (max{d, dE }(m −
i) + dEi)-small. In the case wherein Gn is connected for n � 0, the moduleK•,m,i is
dEm-small.

Proof Note that it follows from definition that RV (G•) is generated in degrees ≤ d,
while RE(G•) is generated in degrees ≤ dE . Propositions 2.17 and 4.10 imply that
the FI-module

Qi :=
⊕

f :[n]→{V ,E},| f −1(E)|=i

n⊗

j=1

Q f , j

is generated in degrees ≤ max{d, dE }(m − i) + dEi , where,

Q f , j =
{
RE(G(m)• ) if f ( j) = E

RV (G(m)• ) otherwise.

We have thatK•,m,i is a submodule of Qi , whence it is (max{d, dE }(m− i)+dEi)-
small.

In the case where Gn is connected for n � 0, it is a fact that dE = max{d, dE }.
This concludes the proof. �
Example 4.13 Let G• be the FI-graph of Example 3.9. Then the above implies that the
Betti numbers of Hi (Confm(Gn)) eventually agree with a polynomial of degree ≤ m.
This bound is sharp for m ≥ 2, and i = 1 in the case wherein G is a single point, and
H is an edge. Namely, the case where G• =Star• (see [23] for this computation).
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4.3 Algebraic consequences of vertex-stability

In this section, we consider adjacency and Laplacian matrices associated to an FI-
graph. We focus on properties of the eigenspaces associated to these matrices.

To begin, note that we may view the adjacency and Laplacian matrices of a graph
G as linear endomorphisms of RV (G). Given an FI-graph G•, it is unfortunately
not the case that the collections AG• and LG• can be considered as endomorphisms
of the FI-module RV (G•). Despite this, we will find that these matrices have some
surprising interactions with the FI-module structures. To begin, we have the following
key observation.

Lemma 4.14 Let G• be an FI-graph. Then for each n the matrices AGn and LGn

commute with the action of Sn. In particular, the eigenspaces of these matrices are
sub-representations of RV (Gn).

Proof For a fixed vertex v ∈ V (Gn), we write N (v) to denote the collection of vertices
adjacent to v. Then,

AGnv =
∑

w∈N (v)

w.

Therefore if σ ∈ Sn ,

AGnσ(v) =
∑

w∈N (σ (v))

w =
∑

w′∈N (v)

σ (w′) = σ(AGnv).

The same proof works for the Laplacian matrix.
The second half of the lemma follows from linear algebra. If twomatrices commute,

then they preserve each others’ eigenspaces. �
As an immediate consequence of Lemma 4.14, we obtain the following:

Proposition 4.15 Let G• be a vertex-stable FI-graph. Then there is a constant c, inde-
pendent of n, such that the number of distinct eigenvalues of the adjacency matrix
(resp. the Laplacian) of Gn is bounded by c for all n.

Proof This follows from Lemma 4.14 as well as the third part of Theorem 2.18. In
particular, we see that the number of distinct eigenvalues are both bounded from above
by the (eventually constant) number of irreducible factors of the Sn-representation
RV (Gn). �
Remark 4.16 Proposition 4.15 can be used in certain cases to prove that certain fam-
ilies of graphs cannot be endowed with the structure of a vertex-stable FI-graph. For
example, the cycle graphs Cn and the wheel graphs Wn have n distinct eigenvalues.

In fact Proposition 4.15 is the first piece of evidence describing a much more robust
structure. The following theorem follows as a consequence of upcomingwork ofDavid
Speyer and the authors [36].
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Theorem 4.17 [36] Let G• denote a vertex-stable FI-graph. Then there exist constants
cA, cL such that for all n � 0, AGn (resp. LGn ) has cA (resp. cL) distinct eigenvalues.
For i = 1, . . . cA (resp. i = 1, . . . , cL) and n � 0, let λA

i (n) (resp. λL
i (n)) denote

the i-th largest eigenvalue of AGn (resp. LGn ). Then the for all i and all n � 0 the
functions

n �→ the multiplicity of λA
i (n), n �→ the multiplicity of λL

i (n)

each agree with a polynomial.

Example 4.18 We illustrate the above theorem with some examples. Let G• = K•
denote the FI-graph of complete graphs. Then for n ≥ 1, the Sn-representation
RV (Gn) is isomorphic to the usual permutation representation on Rn . This decom-
poses into a pair of irreducible representations

Rn ∼= R ⊕ Sn,

where R is the trivial representation, and Sn is the standard irreducible (n − 1)-
dimensional representation ofSn .We note that the decompositionRn ∼= R⊕Sn agrees
with the eigenspace decomposition of RV (Gn) with respect to both the adjacency
matrix and the Laplacian matrix. The trivial representation is the eigenspace for n− 1
(resp. 0), while Sn is the eigenspace for −1 (resp. −n). It is easy to see that the
collection S• actually forms a submodule of the FI-module RV (Gn), and is therefore
finitely generated. This implies that dimR Sn agrees with a polynomial for n � 0,
which implies the same about the eigenvalue multiplicities in question.

Next let G• = Star• = K•,1. For simplicity we only work with the eigenspaces
for the adjacency matrix, although the Laplacian is not much different. For n ≥ 1,
the distinct eigenvalues of Gn are ±√

n and 0. We may decompose the representation
RV (Gn) as

RV (Gn) = R ⊕ R ⊕ Sn

where Sn is as in the previous example, and R is once again the trivial representation.
As before, this decomposition of RV (Gn) as a representation corresponds exactly to
its decomposition in terms of eigenspaces.

Of course, one should not expect these eigenspaces to be irreducible as Sn-
representations in general. For example if we instead consider G• = K•,m , where
m > 1, then the eigenspaces of the adjacency matrix are not all irreducible as Sn-
representations. Generally, onewill find itmuch easier to use the fact that the adjacency
and Laplacian matrices preserve isotypic components of RV (Gn) to work with these
submodules instead of the eigenspaces themselves. Indeed, the proof of the previous
theorem involves working with a filtration of the FI-module RV (G•) by its isotypic
pieces.
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5 Generalizations and alterations

In this final section, we briefly discuss how the work of the previous sections can
be generalized and altered to prove facts about different families of graphs and other
simplicial complexes. We begin by considering graphs over categories other than FI,
and then move on to higher dimensional analogues to the previous work. Note that
these sections are intended to be more motivation for further study, and should by no
means be considered exhaustive.

5.1 Other categories

The representation theory of categories has seen a recent explosion in the literature,
largely motivated by its connections with representation stability. In this section we
consider representations of the categories VI(q), where q is a power of a prime,
and FIm , where m is a positive integer. These categories can be seen discussed in
[20,24,31,34,40].

Definition 5.1 Let m be a fixed positive integer, and let q be a power of a fixed prime
p. The category VI(q) is that whose objects are free vector spaces over the finite field
Fq , and whose morphisms are injective linear maps. The category FIm is defined to
be the categorical product of FI with itself m times. That is, it is the category whose
objects arem-tuples of non-negative integers (n1, . . . , nm), and whose morphisms are
m-tuples of injective maps ( f1, . . . , fm) : [n1] × · · · × [nm] ↪→ [n′

1] × · · · × [n′
m],

where fi : [ni ] → [n′
i ].

One may think of VI(q) as an analog of FI, where the relevant acting groups are
the finite general linear groups GL(n, q). Similarly, FIm is the analog of FI where the
relevant acting groups are Sn1 × · · · × Snm . Just as with FI, a module over either of
these categories will be defined to be a functor from the category to R vector spaces.
Definitions such as finite generation carry over in the obvious way

The following facts can be found in [20,24,31,34,40].

Theorem 5.2 Let C denote either the category FIm or VI(q). Then:

1. [20,31] If C = FIm, and V is a finitely generated C-module, then there exists a
polynomial pV (x1, . . . , xm) ∈ Q[x1, . . . , xm] such that for all (n1, . . . , nm) with∑

i ni � 0,

dimR(Vn1,...,nm ) = pV (n1, . . . , nm)

2. [20,40] If V ,W are finitely generated C-modules, then the same is true of V ⊗W.
3. [24] If V is a finitely generated VI(q)-module, then there exists a polynomial

pV (x) ∈ Q[x] such that for all n � 0

pV (qn) = dimR V (Fn
q).

4. If V is a finitely generated C-module, then the transition maps of V are all even-
tually injective.
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5. [34,40] If V is a finitely generated C-module, then all submodules of V are also
finitely generated.

As one can see, these two categories have very similar properties to FI-modules.
Indeed, it is sufficient for us to recover virtually everything that was proven in previous
sections.

Definition 5.3 Let C denote either the category FIm or VI(q). Then a C-graph is a
functor G• : C → Graph. We say that G• is vertex-stable if the associated C-module
RV (G•) is finitely generated.

Borrowing notation and proofs from the previous sections, we conclude the follow-
ing.

Theorem 5.4 Let C denote eitherVI(q) or FIm, and let G• be a vertex-stable C-graph.
Then:

1. The C-module RE(G•) is finitely generated;
2. For any r ≥ 1, the C-module R(V (G•)

r

)
is finitely generated;

3. IfC = FIm, and H is anyfixedgraph, then there exist polynomials pH (x1, . . . , xm),

pindH (x1, . . . , xm) ∈ R[x] such that for all n := (n1, . . . , nm) with
∑

i ni � 0

pH (n) = ηH (Gn), and pindH (n) = ηindH (Gn)

4. If C = VI(q), and H is any fixed graph, then there exist polynomials
pH (x), pindH (x) ∈ Q[x] such that for all n � 0

pH (qn) = ηH (GFnq
), and pindH (qn) = ηindH (GFnq

)

5. If C = FIm, and r ≥ 1 is fixed, then there exist polynomials pr (x), pcr (x) ∈
Q[x1, . . . , xm] such that for all n := (n1, . . . , nm) with

∑
i ni � 0

pr (n) = |{number of walks in Gn of length r}|, and pcr (n)

= |{number of closed walks in Gn of length r}|.

6. If C = VI(q), and r ≥ 1 is fixed, then there exist polynomials pr (x), pcr (x) ∈ Q[x]
such that for all n � 0

pr (q
n) = |{number of walks in Gn of length r}|, and pcr (q

n)

= |{number of closed walks in Gn of length r}|

7. For any fixed i , and any fixed graph H the C-module over Z, Hi (Hom(H ,G•)),
is finitely generated;

8. If G• is torsion-free then for any fixed m, i the C-module over Z, Hi (Confm(Gn)),
is finitely generated.

To conclude this section, we consider various natural examples of FIm and VI(q)

graphs. The reader should keep in mind Theorem 5.4 while reading what follows.



Families of nested graphs with compatible symmetric-group… Page 39 of 42 70

Example 5.5 Recall that for fixed m, we considered the vertex-stable FI-graph K•,m .
While this yielded various results, it is perhaps more correct to allow m to vary,
and consider the vertex-stable FI2-graph K•1,•2 . More generally, we can consider the
complete r -partite graph K•1,...,•r as a vertex-stable FIr -graph.

IfG, H are any graphs, then there aremultiple ways one can define the product ofG
and H . One such method is with the tensor (or categorical) product G× H . The graph
G×H is that whose vertex set is given by V (G×H) = V (G)×V (H) and for which
{(x1, y1), (x2, y2)} ∈ E(G × H) if and only if {x1, x2}, {y1, y2} ∈ E(G) ∪ E(H). If
G• and H• are two vertex-stable FI-graphs, then wemay define the FI2-graphG•×H•
by the assignments

(G• × H•)n1,n2 = Gn1 × Hn2 .

It is clear that this family is vertex-stable as an FI2-graph. Note that a similar statement
will hold for many of the other common graph products such as strong products and
Cartesian products (see any standard reference on algebraic graph theory for definitions
of these products such as [3]).

Turning our attention to VI(q), one is immediately reminded of the Grassmann
graphs Jq(n, k). The vertices of Jq(n, k) are k-dimensional subspaces of Fn

q , and two
vertices form an edge if and only if the intersection of the corresponding subspaces is
non-trivial. Note that one may think of Jq(n, k) is a “q-version” of the Johnson graph
J (n, k). In fact, many of the FI-graphs we previously studied will have associated
VI(q)-graphs. For instance, we may define KGq(n, k) to be the graph whose vertices
are subspaces of Fn

q of dimension k, and for which two vertices are connected if and
only if their corresponding subspaces have trivial intersection.

5.2 FI-simplicial-complexes

In this section, we generalize the work of the previous sections to higher dimensional
simplicial complexes.

Definition 5.6 Let X be a (compact) simplicial complex. We will write Vi (X) for the
set of i-simplices of X . A simplicial map between simplicial complexes X ,Y is a
continuous morphism f : X → Y such that f (Vi (X)) ⊆ Vi (Y ).

An FI-simplicial-complex is a (covariant) functor from FI to the category of sim-
plicial complexes and simplicial maps. Given an FI-simplicial complex X•, we write
RV0(X•) for the FI-module whose evaluation at [n] is the vector space with basis
indexed by RV0(Xn). We similarly define the FI-modules RVi (X•), and

(Vi (X•)
r

)
for

all i, r ≥ 0.
We say that an FI-simplicial complex X• is vertex-stable with stable degree ≤ d

if the FI-module RV0(X•) is finitely generated in degree ≤ d.

The following theorem is proven in the exact same way as Theorem 3.18.

Theorem 5.7 Let X• be a vertex-stable FI-simplicial-complex with stable degree≤ d.
Then:
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1. For all i the FI-modules RVi (X•) are (d(i + 1))-small;
2. For all i, r the FI-modules

(Vi (X•)
r

)
are (rd(i + 1))-small;

From the perspective of representation stability, the above reveals something a bit
striking about FI-simplicial-complexes. Note that the following was also true about
graphs, though in that case it is less interesting.

Corollary 5.8 Let X• be a vertex-stable FI-simplicial-complex with stable degree≤ d.
Then for all i ≥ 0 the FI-module over Z

Hi (X•)

is d(i + 1)-small.

Proof This follows from the first part of Theorem 5.7, as well as the usual complex
for computing simplicial homology and the Noetherian property of FI-modules. �

Another interesting corollary of Theorem 5.7 relates to counting colorings of a
simplicial complex T . Just as in the graph case, the colorings we will consider are
intimately linked with simplicial maps into a certain FI-simplicial-complex. To begin,
we therefore note the following.

Theorem 5.9 Let X• denote a vertex-stable FI-simplicial-complex. Then for any sim-
plicial complex T , the FI-module,

RHom(T , X•),

whose evaluation on [n] is the real vector space with basis indexed by Hom(T , Xn),
is finitely generated. In particular, for n � 0, the function

n �→ |Hom(T , Xn)|

agrees with a polynomial of degree ≤ |V0(T )| · d, where d is the vertex degree of X•.

Proof The FI-module RHom(T , X•) can be realized as a submodule of
(RV0(X•))⊗|V0(T )|. This module is finitely generated by Proposition 2.17, so the
Noetherian property implies our result. The bound on the degree of the polynomial
follows immediately from the fact that we have embedded our FI-module into the
vector space (RV0(Xn))

⊗|V0(T )|, whose dimension agrees with a polynomial of the
required degree. �
Definition 5.10 Let (r , s) be a pair of positive integers. An (r , s)-coloring of a sim-
plicial complex T is a map of sets f : V0(T ) → [r ] such that if {v0, . . . , vi } ∈ Vi (T ),
then at most s of the vertices v0, . . . , vi share the same color.

Colorings of simplicial complexes have recently seen interest in the literature, and
seem to have deep connections with Stanley–Reisner theory [6,18].
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Corollary 5.11 Let T be a simplicial complex, and let s ≥ 1 be an integer. If we write
V T ,s• to denote the FI-module whose evaluation on [r ] is the real vector space with
basis indexed by (r , s)-colorings of T , then V T ,s• is finitely generated and |V0(T )|-
small. In particular, for r � 0, the function

r �→ |{(r , s)-colorings of T}|

agrees with a polynomial of degree ≤ |V0(T )|.
Proof Let X• denote the FI-simplicial-complex for which V0(Xr ) = [r ] × V0(T ),
and for which the i-cells are given by all possible collections of pairs of size i . It is
clear that X• is vertex-stable with vertex degree 1, whence RHom(T , X•) is finitely
generated. Given an element of V T ,s

r , we may associate a morphism f ∈ Hom(T , Xr )

by assigning

f (v) = (iv, v)

where iv is the color of the vertex v ∈ V0(T ). This defines an injective map of FI-
modules

V T ,s• ↪→ RHom(T , X•)

as desired. From the proof of Theorem 5.9, we see that RHom(T , X•) is |V0(T )|-
small, and so we conclude the same about V T ,s• . �
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