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Abstract
Given a log canonical pair (X ,�), we show that KX + � is nef assuming there is no
non-constant map from the affine line with values in the open strata of the stratification
induced by the non-klt locus of (X ,�). This implies a generalization of the Cone
Theorem where each KX + �-negative extremal ray is spanned by a rational curve
that is the closure of a copy of the affine line contained in one of the open strata of
Nklt(X ,�). Moreover, we give a criterion of Nakai type to determine when under the
above condition KX + � is ample and we prove some partial results in the case of
arbitrary singularities.
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1 Introduction

Understanding the existence and distribution of curves on a given algebraic variety is a
classical problem in algebraic geometry. For example, its significance in understanding
the birational structure of algebraic varieties geometry—in particular, for the case of
rational curves—has been evident since the early days of the subject, when the Italian
School started the classification of algebraic surfaces.

In the past 30 years, with the emergence and development of the so-called minimal
model program (in short, MMP) such aspect has been investigated and understood
in birational geometry in far greater generality, thanks to the work of many different
people. The main realization has been that the existence of rational curves on a mildly
singular normal variety is strictly related to the positivity properties of the cotangent
bundle.

On the other hand, rational curves on varieties have been object of study long
before the MMP was even imagined. Many authors turned their attention to the study
of the existence/absence of rational curves and their distribution on a given variety,
providing some interesting discoveries and conjectures. There are a number of famous
open questions due to several authors that similarly predict a strong link between the
positivity of the curvature of the cotangent bundle of a variety X and the absence or
bounded distribution of non-trivial holomorphic maps f : C → X . The interested
reader can consult [4] for a survey of classical and more recent questions and results
in this direction.

The main result of this paper is inscribed in this line of thought: we show that
there is a clear connection between positivity properties of pairs given by algebraic
varieties together with an effective divisor and the hyperbolicity of a stratification that
is naturally induced by the singularities of the divisor and the ambient variety.

Theorem 1.1 Let X be a smooth projective variety and D = ∑
j∈J D j be a reduced

simple normal crossing divisor on X. Assume that

• there is no non-constant morphism f : A
1 → X\D

• for any intersection of components of D, DI = ∩i∈I Di , I ⊂ J there is no
non-constant morphism f : A

1 → (DI \∪ j∈(J\I ) Dj ).

Then KX + D is nef.
More generally, let (X ,�) be a log canonical pair. Assume that there is no non-

constant morphism

f : A
1 → X\{x ∈ X | (X ,�) is not Kawamata log terminal at x}

and the same holds for all the open strata of the non-klt locus.
Then KX + � is nef.

Following Lu and Zhang [19], we say that a pair (X ,�) is Mori hyperbolic if it
satisfies the assumptions in the above theorem on the non-existence of copies of A

1

in the (open) stratification induced by the non-klt locus of (X ,�). We generalize this
definition to any normal singularity in Definition 5.1. When (X ,�) is a simple normal
crossing pair, then the non-klt locus of �, denoted Nklt(X ,�), is the union of the
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components of coefficients ≥ 1 in �. If the pair is not simple normal crossing, the
non-klt locus is the image of the components of coefficient ≥ 1 of the pullback of
KX + � to a log resolution, cf. Sect. 2.1.

Lu and Zhang proved a version of Theorem 1.1 for divisorial log terminal pairs
assuming some factoriality conditions on the components, [19, Thm. 3.1]. Similar
results, in the context of algebraic stacks—and hence coarse moduli with quo-
tient singularities—were obtained by McQuillan and Pacienza in [21]. Theorem 1.1
reproves these results and moreover shows it can be extended to the category of log
canonical pairs: this is a much larger class of pairs that do not necessarily have ratio-
nal singularities. Hence, a priori it is not clear why the stratification described in the
statement of the theorem should contain rational curves at all. Theorem 1.1 has also
been extended to the category of rank 2 foliations on algebraic threefolds in [23].

The starting point for the MMP in the 1980s, was the discovery, due to Mori—later
improved by Kollár, Reid, Shokurov, Kawamata, Ambro and Fujino—that the portion
of the effective cone of curves on a normal mildly singular variety X generated by
classes of negative intersection with the canonical divisor KX is actually spanned by
countably many classes of rational curves. This is a now classical result that goes
under the name of Cone Theorem, cf. [15, Thm. 1.24]. It has been generalized to
divisors of the form KX + �, when the pair (X ,�) has suitably nice singularities. It
immediately implies that the absence of rational curves on a variety X guarantees the
nefness of KX + �. Nonetheless, that is an extremely strong assumption. In order to
obtain statements that apply to a wider class of cases, one is lead to wonder what kind
of hyperbolicity-like assumptions a pair (X ,�) could satisfy for KX + � to be nef.
Moreover, in case such assumptions are not satisfied, one could then try to investigate
how rational curves are distributed with respect to �.

For example, let us consider a smooth quasi-projective varietyU and a compactify-
ing simple normal crossing pair (X ,�), U = X\�. In such context, these questions
make even more sense in view of Iitaka’s principle, see [20, pg. 112]. Iitaka’s princi-
ple is just predicting a correspondence between theorems about non-singular varieties
and regular differential forms, and theorems about quasi-projective varieties and their
regular differential forms which extend to the boundary of a compactification with at
worst poles of order 1.

Using Theorem 1.1, we are able to establish a version of the Cone Theorem describ-
ing the distribution of rational curves spanning (KX +�)-negative extremal rays with
respect to the boundary�. The Cone Theorem for lc pairs, [1,10] is a natural extension
of the classical version of the cone theorem, [15, Thm. 3.7]. Part of the difficulty lies
in controlling what happens along the non-klt locus, as that is the most delicate locus
where some of the classical results of the MMP may fail. Using the techniques of
Theorem 1.1, we can improve the classical version of the Cone Theorem by providing
precise information about the position of the rational curves that span the (KX + �)-
negative extremal rays, with respect to the non-klt locus of (X ,�). More precisely,
we can show that copies of either the affine or the projective naturally appear in the
open strata of the stratification induced by lc centers on the non-klt locus.

We shall use NE1(X) to denote the closure of the cone spanned by effective curves
inside the group of curves with real coefficients modulo numerical equivalence.
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Theorem 1.2 (cf. Theorem 6.5) Let (X ,�) be a log canonical pair.
There exists countably many KX + �-negative rational curves Ci such that

NE1(X) = NE1(X)KX+�≥0 +
∑

i∈I
R>0[Ci ].

Moreover, one of the two following conditions hold:

• Ci ∩ (X\Nklt(X ,�)) contains the image of a non-constant morphism f : A
1 →

X;
• there exists an open stratum W ofNklt(X ,�) such that Ci ∩W contains the image
of a non-constant morphism f : A

1 → W.

When (X ,�) is a simple normal crossing pair, then the appearance of morphisms
f : A

1 → X\D should be thought as the realization the Iitaka principle for the Cone
Theorem.

Finally, for a Mori hyperbolic pair (X ,�), we prove that the classical Nakai–
Moishezon–Kleiman criterion, [17, Thm. 1.2.23], can be restated in a much simpler
form: namely, it is enough to test ampleness only along the (finitely many) lc centers
of � rather than having to check positivity of the self-intersection numbers along all
subvarieties of X .

Theorem 1.3 (cf. Corollary 7.5) Let (X ,�) be a dlt pair. Assume that the pair is Mori
hyperbolic.

Then the following are equivalent:

(i) KX + � is ample;
(ii) (KX + �)dim X > 0 and (KX + �)dimW · W > 0 for every log canonical center

W ⊂ X of (X ,�).

Sketch of the proof

We explain now the structure of the proof of Theorem 1.1.
The notion of Mori hyperbolicity for a log pair (X ,�) has an inherently inductive

nature. Hence, it is fair to expect that some sort of inductive approach could possibly
lead to the above theorem. Indeed, this is the philosophy that we adopt in the course
of the proof. A fundamental step in this sense is represented by the following result
which makes clear the connection between the positivity of a Mori hyperbolic pair
and its positivity along the non-klt locus of (X ,�). That is in fact a general guiding
principle in the study of purely lc pairs.

Theorem 1.4 Let (X ,�) be a log pair. Assume that (X ,�) is Mori hyperbolic. Then
KX + � is nef if it is nef when restricted to the non-klt locus of (X ,�).

To be able to use this result, we are actually forced to deal with singularities worse
than log canonical. In the simple normal crossing case, in fact, Theorem 1.4 immedi-
ately implies Theorem 1.1 simply by performing adjunction along the components of
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� of coefficient 1 and by using Kawamata’s estimates on the length of extremal rays,
[13].

In the log canonical case, instead, the strata of the non-klt locus of (X ,�) are not
as well behaved as in the simple normal crossing. It is just not possible to perform
adjunction along a divisorial component, as there may not be any. Because of this, one
tries to construct a new log pair (X ′,�′)with positive coefficients and nice singularities
(of dlt type) together with a birational morphism π : X ′ → X such that KX ′ + �′ =
π∗(KX + �), cf. Theorem 3.4. The proof is then carried out by conducting a careful
analysis of adjunction along lc centers of codimension greater than 1 with respect to
the morphism π , by means of the canonical bundle formula. It is in the course of this
last part of the proof that we have to consider also log pairs with singularities worse
then log canonical. This is the truly new insight which is needed to generalize the
whole result to the log canonical case and for which Theorem 1.4 has been developed.

The paper is structured as follows: in Sects. 2 and 4, we recall some preliminaries
about singularities of the minimal model program and adjunction theory for lc centers
of codimension higher than one. In Sect. 3, we prove a special version of the existence
of dlt modifications that will be needed in the proof of the Theorem 1.1. In Sect. 5, we
define Mori hyperbolicity and describe some of its properties. Section 6 is devoted to
the proof of Theorems 1.1 and 1.2, while in Sect. 7 we prove Theorem 1.3.

Notation and conventions By the term variety, we will always mean an integral,
separated, projective scheme over an algebraically closed field k. Unless otherwise
stated, it will be understood that k = C.

Unless otherwise specified, we adopt the same notations and conventions as in [15].
If D = ∑

di Di is an R-divisor on a normal variety X , where the Di ’s are the
distinct prime components of D, then we define D∗c := ∑

di ∗ c di Di , c ∈ R, where
∗ is any of =,≥,≤,>,<.

The support of an R-divisor � = ∑
i∈I di Di is the union of the prime divisors

appearing in the formal sum, Supp(D) = ⋃
{i∈I | di �=0} Di .

A sub-log pair (X ,�) consists of a normal variety X and a WeilR-divisor � such
that KX + � is R-Cartier. If � is effective then we say that the sub-log pair (X ,�) is
a log pair.

A log pair (X ,� = ∑
i∈I Di ), where � is an effective reduced divisor, is simple

normal crossing (in short, snc) if X as well as every component of � are smooth and,
moreover, all components Di of D intersect as transversally as possible, i.e. for every
p ∈ X one can choose a neighborhood U � p (in the Zariski topology) and local
coordinates x j s.t. for every i there is an index c(i) for which Di ∩ U = (xc(i) = 0).
If (X ,�) is snc a stratum of (X ,�) is either X or an irreducible component of the
intersection ∩{i∈I | di=1}Dj . Given a (closed) stratum, W , the corresponding open
stratum is obtained from W by removing all the strata contained in W .

Given a normal variety X , a K-b-divisor is a (possibly infinite) sum of geometric
valuations of k(X) with coefficients in K,

D =
∑

i∈I
bi Vi , Vi ⊂ k(X) and bi ∈ K, ∀i ∈ I ,



67 Page 6 of 23 R. Svaldi

such that for every normal variety X ′ birational to X , only a finite number of the Vi
can be realized by divisors on X ′. The trace of D on X ′, DX ′ , is defined as

DX ′ =
∑

i∈I
cX ′ (Vi )=Di
Di is a divisor

bi Di .

2 Pairs and their singularities

Definition 2.1 A log resolution for a sub-log pair (X ,�) is a projective birational
morphism π : X ′ → X such that the exceptional divisor E supports a π -ample divisor
and the support of Supp(E + π−1∗ �) is a simple normal crossing divisor.

Given a log resolution of (X ,�) as above, we can write

KX ′ + π−1∗ � +
∑

bi Ei = π∗(KX + �), (1)

where the Ei are the irreducible components of E .

Definition 2.2 The log discrepancy of Ei with respect to (X ,�) is a(Ei ; X ,�) :=
1 − bi .

Given a sub-log pair (X ,�) and a geometric valuation V , we say that the valuation
is exceptional if V is not associated to any divisor on X . In this case, it is possible
to find a log resolution π : X ′ → X such that V is realized on X ′ as the valuation
associated to an exceptional prime Cartier divisor D ⊂ X ′ (cf. [15, Lemma 2.45]).

Definition 2.3 The log discrepancy of V is a(V ; X ,�) := a(D; X ,�).

It is easy to verify that the definition of log discrepancy does not depend on the
choice of the log resolution.

The center of V on X , denoted cX (V ) or cX (D), is defined as π(D). This notion
is independent of the choice of the log resolution, too.

Definition 2.4 The discrepancy of a sub-log pair (X ,�) is

discrep(X ,�) := inf{a(V ; X ,�) |V divisorial valuation, exceptional over X}.

For Z ⊂ X an integral subvariety and ηZ its generic point, we define

a(Z; X ,�) = inf
V , cX (V )⊆Z

a(V ; X ,�)

a(ηZ ; X ,�) = inf
V , cX (V )=Z

a(V ; X ,�).
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The log discrepancy of a divisorial valuations is the central object in the study of
singularities of pairs. It is a well known fact (cf. [15]), that

0 ≤ discrep(X ,�) ≤ dimC X or discrep(X ,�) = −∞.

The minimal model program mainly focuses on studying those pairs whose log
discrepancy is non-negative.

Definition 2.5 A sub-log pair (X ,�) is sub-kawamata log terminal (in short, sub-
klt) (respectively sub-log canonical (sub-lc); sub-divisorial log terminal (sub-dlt)) if
discrep(X ,�) > 0 and ��� ≤ 0 (resp. if discrep(X ,�) ≥ 0; if there exists a log
resolution π : X ′ → X such that all exceptional divisors have log discrepancy < 1).

If (X ,�) is a log pair then we highlight this property by removing the prefix sub-
from all the notions of singularities defined in 2.5.

2.1 The non-klt locus

Definition 2.6 Let (X ,�) be a sub-log pair and Z ⊂ X an integral subvariety. Then, Z
is a non-kawamata log terminal center (in short, a non-klt center) if a(ηZ ; X ,�) ≤ 0.

The non-kawamata log terminal locus (non-klt locus) of the pair (X ,�),
Nklt(X ,�), is the union of all the non-klt centers of X ,

Nklt(X ,�) :=
⋃

{Z |a(ηZ ;X ,�)≤0}
Z .

The non-log canonical locus (non-lc locus) of the pair (X ,�), Nlc(X ,�), is

Nlc(X ,�) := {X � p closed point |a(p; X ,�) = −∞}.

Z is a log canonical center (lc center) if a(ηZ ; X ,�) = 0 and for a generic point
p ∈ Z , a(p; X ,�) ≥ 0, i.e. Z � Nlc(X ,�).

Remark 2.7 Given a subvariety Z ⊂ X for which a(ηZ ; X ,�) < 0, then for every
point p ∈ Z , a(p; X ,�) = −∞, as it is easy to verify by passing to a log resolution.
Hence, the above definition of Nlc(X ,�) is equivalent to the following alternative
definition

Nlc(X ,�) :=
⋃

{Z⊂X | a(ηZ ;X ,�)<0}
Z .

If we pass to a log resolution of (X ,�), π : X ′ → X and write as in (1)

KX ′ + �X ′ = KX ′ + π−1∗ � +
∑

bi Ei = π∗(KX + �) = KX ′ +
∑

i

bi�
′
i ,

then Nklt(X ,�) = π(Supp(
∑

bi≥1 �′
i )) and Nlc(X ,�) = π(Supp(

∑
bi>1 �′

i )).
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The complement in X of Nklt(X ,�) is the biggest open set on which � has just
sub-klt singularities and, analogously, the complement of Nlc(X ,�) is the biggest
open set of X on which � has sub-lc singularities.

The divisor �=1
X ′ is the source of lc centers of �. It is easy to see (cf. [15, Lemma

2.29]) that all valuations of log discrepancy 0 with respect to (X ,�), not contained
in Nlc(X ,�), are given either by the components of �=1

X ′ or by blowing up the strata
of �=1

X ′ and repeating the same procedure. Hence, the lc centers are nothing but the
closures of the lc centers for the pair (X\Nklt(X ,�),�|X\Nklt(X ,�)).

The union of the lc centers of (X ,�) is a subvariety of X (or a subscheme), but it
carries a richer structure. It is in fact a subvariety stratified by the lc centers and it will
be important for us to keep track of the strata.

Definition 2.8 Let (X ,�) be a log pair. Given a lc centerW for (X ,�), the total space
of the stratification associated to (X ,�) on W is given by

Strat(W ,�) :=
⋃

W ′
�W

W ′ lc center

W ′,

the union of the log canonical centers contained in W .

An important result about the structure of the non-klt locus, that we will need in the
next sections of the paper, is the following connectedness theorem for negative maps,
originally due to Shokurov.

Theorem 2.9 [12, Theorem 17.4] Let (X ,�) be a lc pair and let φ : X → Y be a
contraction of quasi-projective varieties. Assume that−(KX +�) is π -nef and π -big.
Then, every fiber of π has a neighborhood (in the classical topology) in which the
Nklt(X ,�) is connected.

An extension of this theorem to the case of an lc pair (X ,�) together with a
contraction of quasi-projective varieties φ : X → Y such that −(KX + �) π -nef (but
not necessarily π -big)—and more generally in the context of generalized pairs—has
been announced in [8].

3 Dlt modifications

3.1 Adjunction: the different

When dealingwith a pair (X ,�) that is not snc easy examples show that the adjunction
formula might need the introduction of a correction term. That is, given a component
D of � of coefficient 1, it could happen that in the adjunction formula

(KX + D)|D �= KD.

For more details on this, see [12, §16].
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When (X ,�) is dlt, it is possible to modify the theory and obtain something analo-
gous to the classical adjunction setting, that furthermore behaves well when restricting
to higher codimension lc centers.

Theorem 3.1 Let (X ,�) be a dlt pair and W ⊂ X be a lc center. There exists on W
a naturally defined R-divisor Diff∗W� ≥ 0 such that

(KX + �)|W ∼Q KW + Diff∗W�

and the pair (W ,Diff∗W�) has dlt singularities. Moreover, the non-klt locus of
(W ,Diff∗W�) is equal to the union of the lc centers of � strictly contained in W.

The divisor Diff∗W� can be defined inductively starting as in [12, Sec.16] from the
case in which W = D is a divisor. Then

(KX + D + (� − D))|D ∼Q KD + Diff∗D�.

Working inductively, when (X ,�) is dlt, Diff∗W� is constructed analogouslywhenever
W is an lc center of (X ,�); that is simply because the generic point of W is an
irreducible component of a complete intersection of components of ���.
Definition 3.2 The divisor Diff∗W� from Theorem 3.1 is called the different of � on
W .

In general it is hard to obtain analogous adjunction results for higher codimensional
lc centers. Nonetheless, for an lc center which is minimal with respect to inclusion we
have an analogous form of adjunction, originally due to Kawamata.

Theorem 3.3 (Kawamata subadjunction) [2,5,13] Let (X ,�) be a log canonical pair
andW aminimal lc center. Then there exists an effective divisor�W onWs.t. (W ,�W )

is klt and

(KX + �)|W ∼R KW + �W .

We refer the reader to Sect. 4 for a more detailed discussion of adjunction along lc
centers of codimension higher than one.

3.2 Existence of special dlt modifications

An important fact, that will be needed multiple times in the following sections is that,
starting with an lc pair, there always exists a crepant resolution giving a dlt pair. While
this type of result has now been known for the past decade, see, for example, [22], in
the case of Theorem 1.1, we need a more refined resolution result that allows us to
fully control not just the discrepancies of the codimension one part of the exceptional
locus of the resolution.

Theorem 3.4 Let (X ,� = ∑
i bi Di ) be a log pair, 0 < bi ≤ 1. Then there exists a

Q-factorial pair (Y ,�Y = ∑
i bi�i ≥ 0) and a birational map π : Y → X with the

following properties:
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(i) KY + �Y = π∗(KX + �);
(ii) the pair (Y ,�′

Y := ∑
bi<1 bi�i + ∑

bi≥1 �i ) is dlt;
(iii) every divisorial component of Exc(π) appears in �′

Y with coefficient 1;
(iv) π−1(Nklt(X ,�)) = Nklt(Y ,�Y ) = Nklt(Y ,�′

Y ).

Proof For the proof of (i), (ii), (iii) one can refer to [14, 3.10]. Let πZ : (Z ,�Z ) → X
be a modification satisfying these properties. Then

�Z = �<1
Z + �

≥1
Z =

∑

i |bi<1

bi Di +
∑

i |bi≥1

bi Di (2)

and (Z ,�<1
Z ) is a klt pair. Moreover, as KZ + �Z = π∗

Z (KX + �),

KZ + �<1
Z ∼πZ ,R −�

≥1
Z . (3)

Therefore, we can run a relative (KZ + �<1
Z )-MMP over X , as (Z ,�<1

Z ) is klt by
construction; this run of the MMP must terminate with a relatively minimal model
ψ : (Z ,�<1

Z ) ��� (Z ′,�<1
Z ′ := ψ∗�<1

Z ), as KZ + �<1
Z is big/X , since Z → X is

birational; on the model Z ′ the following conditions hold true:

(a) (Z ′,�<1
Z ′ ) is a Q-factorial, klt pair;

(b) KZ ′ + �<1
Z ′ + �

≥1
Z ′ = π∗

Z ′(KX + �), where �
≥1
Z ′ := ψ∗�≥1

Z and πZ ′ : Z ′ → X
is the structural map;

(c) KZ ′ + �<1
Z ′ is πZ ′ -nef and by (3) the same holds for −�

≥1
Z ′ .

Properties (a) and (b) imply that Nklt(X ′,�<1
Z ′ + �

≥1
Z ′ ) = Supp(�≥1

Z ′ ). In fact, the

inclusion Nklt(Z ′,�<1
Z ′ + �

≥1
Z ′ ) � Supp(�≥1

Z ′ ) follows form Definition 2.6. To prove

the other inclusion, let W be a non-klt center not contained in Supp(�≥1
Z ′ ). There

exists a log resolution r : (S,�S) → (Z ′,�<1
Z ′ + �

≥1
Z ′ ) and a component F1 of �S

whose coefficient is ≥ 1 and cZ ′(F1) = W . As cZ ′(F1) � �
≥1
Z ′ , it follows that

a(F1; Z ′,�<1
Z ′ ) ≤ 0 as well, which is impossible as (Z ′,�<1

Z ′ ) is klt.
Finally, take another dlt modification

ψ : (Y ,�Y ) → (Z ′,�<1
Z ′ +

∑

Fi⊂Supp(�≥1
Z ′ )

Fi )

with properties (1), (2), (3) from the statement of the theorem. The divisor−ψ∗(�≥1
Z ′ )

will be aπ -nef divisor, whereπ = πZ ′ ◦ψ . The support of−ψ∗(�≥1
Z ′ ) contains all and

only those components of �Y of coefficient ≥ 1. By negativity lemma, [15, Lemma
3.39], π : Y → X satisfies condition (4) of the theorem. ��
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4 Adjunction for higher codimensional lc centers

4.1 Crepant log structures

Definition 4.1 [16, Def. 4.28] Let Z be a normal variety. A crepant log structure
(respectively, dlt crepant log structure) on Z is the datum of a normal log canonical
(resp. dlt) pair (Y ,�Y ) together with a contraction f : Y → Z such that KY +
�Y ∼ f ,Q 0.

An irreducible subvariety W ⊂ Z is a log canonical center (in short, lc center) of
a crepant log structure f : (Y ,�Y ) → Z if it is the image of an lc center WY ⊂ Y of
(Y ,�Y ).

Crepant log structures are very useful when studying adjunction for lc centers of
codimension strictly greater than one for lc pairs.

Given an lc pair (X ,�), let us fix a dlt modification π : X ′ → X of (X ,�),
KX ′ + �′ = π∗(KX + �). We also fix an lc center W ⊂ X with respect to (X ,�)

and denote by W ν the normalization of W . We choose S ⊂ X ′ to be an lc center for
(X ′,�′) that dominates W . We consider the Stein factorization

π|S : S
πS−→ WS

sprWν−→ W ν .

By adjunction, the morphism πS : S → WS is a dlt crepant log structure overWS with
datum (S,�S), where �S := Diff∗S�X ′ .

The following theorem, due to Kollár, shows that the contraction πS : S → WS

already contains all the relevant information in terms of the stratification of the non-klt
locus of (X ,�).

Theorem 4.2 [16, Cor. 4.42] Let π : (X ′,�′) → Z be a dlt crepant log structure and
S ⊂ X ′ be an lc center, with π(S) = W. We denote by W ν the normalization of W.
We consider the Stein factorization

π |S : S
πS−→ WS

sprW−→ W

and let �S : = Diff∗S�′ be the different of �′ on S. Then:

(1) πS : (S,�S) → WS is a dlt, crepant log structure;
(2) Given an lc center ZS ⊂ WS for πS, sprW (ZW ) ⊂ W is an lc center for

π : (X ′,�′) → Z. Every minimal lc center of (S,�S) dominating ZS is also
a minimal lc center of (X ′,�′) that dominates π(ZW ).

(3) For Z ⊂ W an lc center of π |S : (S,�S) → W, every irreducible component of
spr−1

W (Z) is an lc center of πS : (S,�S) → WS.

With the notation adopted in Theorem 4.2, we will denote the total space of the
stratification, induced on the lc center WS by the lc centers of (WS,�S) with

Strat(WS,�S) :=
⋃

W ′
�W ,

W ′ lc center

⋃

V irreducible
component of
spr−1(W )

V .
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4.2 Canonical bundle formula

Definition 4.3 [6] An lc-trivial fibration is the datum of a contraction of normal vari-
eties π : Y → Z and a pair (Y ,�Y ) s.t.

(i) (Y ,�Y ) has sub-lc singularities over the generic point ofY , i.e., Nlc(�Y ) does not
dominate Z and �Y could possibly contain components of negative coefficient;

(ii) rank π̃∗OỸ (�A∗(Y ,�)�) = 1, where π̃ = π ◦ l and l : Ỹ → Y is a log resolution
of (Y ,�Y ).A∗(Y ,�) is the b-divisor whose trace on Ỹ is defined by the following
equality

KỸ = π̃∗(KY + �Y ) +
∑

ai≤−1

ai Di + A
∗(Y ,�)Ỹ .

(iii) there exist r ∈ N, a rational function φ ∈ k(Y ) and a Q-Cartier divisor D on Y
s.t.

KY + �Y + 1

r
(φ) = π∗D, i.e. KY + �Y ∼π,Q 0. (4)

At times, we will denote an lc-trivial structure by π : (Y ,�Y ) → Z .

Remark 4.4 A sufficient condition for (2) in definition 4.3 to hold is that �Y is log
canonical, in which case,

�A∗(Y ,�Y )Ỹ � = �KỸ − π∗(KY + �Y ) +
∑

a(E,Y ,�Y )=1

E�

is always exceptional over Y . Under this hypothesis, an lc-trivial fibration is also a
crepant log structure.

When working with lc-trivial fibrations, we are often interested in studying the
relation between lc centers of the pair (Y ,�Y ) and their images on Z , e.g., when
working in the context of adjunction theory introduced in the previous section.

Definition 4.5 An integral subvariety W ⊂ Z is an lc center of an lc-trivial fibration
π : Y → Z , if it is the image of an lc center WY ⊂ Y for (Y ,�Y ).

We now introduce the main definitions and results related to the canonical bundle
formula, that will be an essential tool in the proof of Theorem 1.1.

Definition 4.6 Given an lc-trivial fibration π : (Y ,�Y ) → Z as above, let T ⊆ Z be
a prime divisor in Z . The log canonical threshold of π∗(T ) with respect to the pair
(X ,�) is

aT = sup{t ∈ R|(Y ,�Y + tπ∗(T )) is lc over T }.
We define the discriminant of π : (Y ,�Y ) → Z to be the divisor

BZ :=
∑

T

(1 − aT )T .
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It is easy to verify that the above sum is finite: a necessary condition for a prime
divisor to have non-zero coefficient is to be dominated by some component of BZ

of non-zero coefficient. There finitely many such components on Y . Hence, BZ is an
R-Weil divisor.

Definition 4.7 Let π : (Y ,�Y ) → Z be an lc-trivial fibration. With the same notation
as in equation (4), fix φ ∈ k(Y ) for which KY + �Y + 1

r (φ) = π∗D. Then there is a
unique divisor MZ for which the following equality holds

KY + �Y + 1

r
(φ) = π∗(KZ + BZ + MZ ). (5)

The Q-Weil divisor MZ is called the moduli part.

When dealing with an lc-trivial fibration π : (Y ,�Y ) → Z , we can pass to a higher
birational model Z ′ of Z and take a resolution Y ′ of the normalization of the main
component of the fibre product Y×Z Z ′ and form the corresponding cartesian diagram,

Y

π

��

Y ′rY��

π ′
��

Z Z ′.r��

By base change, we get a new pair, (Y ′,�Y ′), from the formula

KY ′ + �Y ′ = r∗
Y ′(KY + �Y ).

It follows from the definition that, under these hypotheses, π ′ : (Y ′,�Y ′) → Z ′
will be an lc-trivial fibration as well, allowing to compute BZ ′ and MZ ′ .

The discriminant and themoduli divisor have a birational nature: they are b-divisors,
as their definition immediately implies that

r∗BZ ′ = BZ , and r∗MZ ′ = MZ .

As they are b-divisors, we will denote them using the symbols B and M, respectively.
Fujino and Gongyo proved, generalizing results of Ambro, that these divisors have

interesting features.

Theorem 4.8 [2,6] Let π : (Y ,�Y ) → Z be an lc-trivial fibration. There exists a
birational model Z ′ of Z on which the following properties are satisfied:

(i) KZ ′ +BZ ′ isQ-Cartier, andμ∗(KZ ′ +BZ ′) = KZ ′′ +BZ ′′ for every higher model
μ : Z ′′ → Z ′.

(ii) MZ ′ is nef and Q-Cartier. Moreover, μ∗(MZ ′) = MZ ′′ for every higher model
μ : Z ′′ → Z ′. More precisely, it is b-nef and good, i.e., there is a contraction
h : Z ′ → T and MZ ′ = h∗H, for some H big and nef on Z ′.

When the model Z ′ satisfies both conditions in the theorem, we say that B and M

descend to Z ′.
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4.3 Springs and sources

One of the main reasons to study crepant log structures and lc-trivial fibrations comes
from resolutions and adjunction. Let (X ,�) be an lc pair and W ⊂ X an lc center. In
the purely lc case, when (X ,�) is not dlt, the adjunction theory along Nklt(X ,�) is
not as easily determined as in Theorem 3.1. Nonetheless, Theorem 3.4 shows that it
is always possible to pass to a dlt pair crepant to the original one. Let π : X ′ → X be
a dlt modification as in the Theorem 3.4, with KX ′ + �′ = π∗(KX + �X ).

Let S be a log canonical center of�X ′ , i.e., an irreducible component of intersections
of components of coefficient 1 such that W is the image of S on X . As we saw in
Theorem 4.2, the datum of the Stein factorization of the map S → W ,

π |S : S
πS−→ WS

sprW−→ W (6)

yields a dlt crepant log structure which is also an lc-trivial fibration. If the lc cen-
ter S is chosen to be minimal among those dominating W , then the singularities of
(S,Diff∗S�′) are actually of klt type over the generic point of W .

Under this minimality condition on the lc center S, Kollár, cf. [16, §4.5], proved
that the isomorphism class of the varietyWS overW in (6) is independent of the choice
of S. Moreover, he also showed that for any two pairs (S1,�S1), (S2,�S2) of minimal
lc centers dominating W the pairs (Si ,�Si ) are crepant birational, that is, S1 and S2
are birational and there exists a common resolution pi : T → Si ,, i = 1, 2 such that

p∗
1(KS1 + �S1) = p∗

2(KS2 + �S2).

This prompts the following definition.

Definition 4.9 [16, Thm./Def. 4.45] With the notation of this section, let S be an lc
center of (X ′,�′) minimal with respect to inclusion among the lc centers T with
π(T ) = W . We call the pair (S,�S = Diff∗S�Y ) a source of W .

The normal variety WS appearing in the Stein factorization of the morphism
π |S : S → W , (6), is called the spring of W .

5 Mori hyperbolicity

The following is a generalization of the definition ofMori hyperbolicity that originally
appeared in [19].

Definition 5.1 Let (X ,� = ∑
i bi Di ), 0 < bi ≤ 1 be a log pair. We say that (X ,�)

is a Mori hyperbolic pair if

(1) there is no non-constant morphism f : A
1 → X\Nklt(X ,�);

(2) for any W ⊂ X lc center, there is no non-constant morphism

f : A
1 → W\{(W ∩ Nlc(X ,�)) ∪ Strat(W ,�)}.
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The following inductive result is already implicitly contained in [19, §4]: it will be
the starting point of our approach to the proof of Theorem 1.1. We restate it here for
the reader’s convenience since it does not appear in [19] in this generality.

Proposition 5.2 Let (X ,� = ∑
i bi Di ≥ 0) be a normal, projective, Q-factorial log

pair such that (X ,�′ = ∑
i |bi<1 bi Di + ∑

i |bi≥1 Di ) is dlt.

Suppose that KX + � is nef when restricted to Supp(�≥1). Then,

(i) either KX + � is nef or
(ii) there exists a non-constant morphism f : A

1 → (X\Nklt(X ,�)).

Proof Suppose KX + � is not nef. Then there exists a (KX + �)-negative extremal
ray R in the cone of effective curves NE1(X). Since KX +� is nef along Nklt(X ,�),
R is both a (KX + �′)-negative and a (KX + �<1)-negative extremal ray, as
Nklt(X ,�) = Supp(�≥1), by the assumptions of the proposition. In particular, there
exists an extremal contraction μ : X → S associated to R.

As R does not contain classes of curves laying in Nklt(X ,�), μ induces a finite
morphism when restricted to Nklt(X ,�). Thus, the Q-factoriality of X implies that
we are in either of these three cases:

(1) μ is a Mori fibre space and all the fibres are one dimensional;
(2) μ is birational and the exceptional locus does not intersect Nklt(X ,�);
(3) μ is birational and the exceptional locus intersects Nklt(X ,�).

As μ is a (KX + �<1)-negative fibration and KX + �<1 is klt, then all of its fibres
are rational chain connected, by [11, Corollary 1.5]. Moreover,

R1μ∗OW = 0, (7)

by relative Kawamata–Viehweg vanishing [18, p. 150]. Thus, Theorem 2.9 implies
that Nklt(X ,�′) = Nklt(X ,�) is connected in a neighborhood of every fibre.

In case (1), the generic fibre ofμ is a smooth projective rational curve. Theorem 2.9
implies that the generic fibre intersectsNklt(X ,�) in atmost one point. This concludes
the proof in case 1).

In case (2), as the fibres of μ are rationally chain connected, there exists a rational
projective curve contained in X\Nklt(X ,�). This concludes the proof in case 2).

In case (3), we claim that the positive dimensional fibres are chains of rational
curves. To prove this claim, it suffices to show that each positive dimensional fiber is
one-dimensional; rationality then follows as above from the results of [11]. Assume
that there is a positive dimensional fibre F of dimension> 1. By [11, Corollary 1.5], F
is covered by (KX +�)-negative rational curves. Hence, F must intersect Nklt(X ,�)

or, else, we are in case (i i) of the statement of the proposition. As X is Q-factorial
and dim F > 1, then dim(F ∩ Nklt(X ,�)) = dim F − 1 ≥ 1. Hence, Nklt(X ,�)

contains curves that are contracted byμ, but such curves are (KX +�)-negative since
ρ(X/S) = 1, contradicting the nefness of KX +� along Nklt(X ,�). Therefore, from
this claim it follows that, by the vanishing in (7) above, the positive dimensional fibers
are trees of smooth rational curves. By Theorem 2.9, Nklt(X ,�) intersects this chain
in at most one point. In particular, there exists a complete rational curve C such that
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C ∩ (X\Nklt(X ,�)) = f (A1), where f is a non-constant morphism. This concludes
the proof in case (3). ��

In the case of a general log pair, using dlt modifications we get the following
criterion, which will be fundamental in the proof of Theorem 1.1.

Corollary 5.3 Let (X ,� = ∑
i bi Di ≥ 0), 0 < bi ≤ 1 be a log pair. Assume that

there is no non-constant morphism f : A
1 → X\Nklt(X ,�).

Then KX + � is nef if and only if KX + � is nef when restricted to Nklt(X ,�).

Proof Nefness of KX + � immediately implies nefness of its restriction to every
subscheme of X . Hence, we just have to prove the converse implication.

Let π : (X ′,�X ′) → (X ,�) be a dlt modification for (X ,�) as in Theorem 3.4.
We can reduce to proving nefness for KX ′ +�X ′ . Asπ(Nklt(X ′,�X ′)) = Nklt(X ,�),
KX ′ + �X ′ is nef when restricted to Nklt(X ′,�X ′).

Suppose KX ′ + �′ is not nef. By the proposition, there exists a non-constant mor-
phism f : A

1 → (X ′\Nklt(X ′,�′)). This contradicts the assumption in the statement
of the corollary, as the properties of dlt modifications imply that the image of π ◦ f
lies in X\Nklt(X ,�). ��

Let us notice that in the above corollary, we did not impose any condition on the
singularities of �, besides the coefficients being in [0, 1].

6 Proof of Theorem 1.1

We will work inductively on the strata of Nklt(X ,�). Namely, we will prove that
KX +� is nef when restricted to every stratum of Nklt(X ,�). As the union of all the
strata is the non-klt locus itself, the theorem will follow from Corollary 5.3.

Step 1. Start of the induction: the case of minimal lc centers
WhenW is aminimal lc centerwith respect to inclusion, thennefness of (KX+�)|W

follows from Theorem 3.3. Recall that by that result there exists an effective divisor
�W onW such that (W ,�W ) is klt and (KX +�)|W ∼R KW +�W . By definition of
Mori hyperbolicityW does not contain rational curves; hence, it follows that KW +�W

must be nef by the Cone theorem.

Step 2. Moving the computation to the spring of W
We assume now thatW is no longer minimal and that KX +� is nef when restricted

to any other stratum W ′ strictly contained in W . Recall the following notation

Strat(W ,�) =
⋃

W ′
�W ,

W ′ lc center

W ′

to indicate the union of all substrata contained in W .
Let us fix a dlt modification of (X ,�), π : (X ′,�′) → (X ,�). We also fix a non-

klt center W ⊂ X and let S ⊂ X ′ be an lc center, minimal among those dominating
W . Let us consider the Stein factorization

π|S : S
πS−→ WS

sprW−→ W .



Hyperbolicity for log canonical pairs and the cone theorem Page 17 of 23 67

The variety WS is normal, projective and it is naturally equipped with the R-divisor

L : = spr∗W (KX + �).

The morphism πS : S → WS is an lc-trivial fibration with respect to �S = Diff∗S�X ′
on S, as we saw in Sect. 4.3; it is a dlt log crepant structure, too. Proving nefness of
(KX + �)|W is equivalent to proving nefness of L; therefore, we can assume that L
is nef on Strat(WS,�S) since

Strat(WS,�S) = sprW
−1(Strat(W ,�)),

by (3) in Theorem 4.2.
Hence, without loss of generality, we could substitute the triple (W , (KX +

�)|W ,Strat(W ,�))with the triple (WS, L,Strat(WS,�S)). In fact, if L is not nef, then
wewill show that there exists a non-constantmorphism f : A

1 → WS\Strat(WS,�S).
By Theorem 4.2, it follows that there exists a non-constant morphism f ′ : A

1 →
W\Strat(W ,�), violating the Mori hyperbolicity assumption for W .

To simplify the notation, we will denote WS by W , and Strat(WS,�S) by
Strat(W ,�S).

Step 3. Constructing a good approximation for L on W
By the results of Sect. 4, there exist sufficiently high birational models S′ of S and

W ′ of W together with a commutative diagram

S

πS

��

S′rS′��

πS′
��

W W ′r��

(8)

having the following properties:

(1) r∗(L) = KW ′ + BW ′ + MW ′ ;
(2) (W ′, BW ′) is snc and sublc, i.e., BW ′ is not necessarily effective;
(3) KW ′ + BW ′ descends to W ′ and MW ′ is nef and abundant.
(4) (S′,�S′) is a sublc pair, where K ′

S + �S′ = r∗
S′(KS + �S);

In this context, we compare singularities of (W ′, BW ′ ) with those of the original pair
(W ,�).

Lemma 6.1 With theabovenotationandhypotheses,wehave that r(Nklt(W ′, BW ′)) =
Strat(W ,�S).

Proof We know that rS′(Nklt(X ′,�S′)) = Nklt(S,�S) and πS(Nklt(S,�S)) =
Strat(W ,�).As thediagram in (8) commutes,weneed toprove thatπS′(Nklt(S′,�S′))
= Nklt(W ′, BW ′). ThedefinitionofBW ′ implies that every stratumofNklt(W ′, BW ′) ⊂
W ′ is dominated by a stratum of Nklt(S′,�S′), hence Nklt(W ′, BW ′) ⊂ πS′(Nklt(S′,
�S′)). The opposite inclusion is also true, as given a stratum of Nklt(S′,�S′), up to
going to higher models ofW ′ and S′, we can suppose that D is a divisor whose image
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D′ on W ′ is a divisor, too. In this case, by the definition of BW ′ and since it descends
to W ′, D′ ⊂ Nklt(W ′, BW ′). Thus, Nklt(W ′, BW ′) ⊃ πS′(Nklt(S′,�S′)). ��
As proving that L is nef is equivalent to proving that, for any given ample Cartier
divisor A on W and any given ε > 0, L + εA is nef, we focus on the divisor

r∗(L + εA) = KW ′ + BW ′ + MW ′ + r∗(εA). (9)

By construction, we can assume that there exists an effective divisor E supported on
the exceptional locus of r and −E is relatively ample over W . Hence, there exists a
positive number θε � ε, such that for any 0 < δ ≤ θε , MW ′ + r∗(εA) − δE is an
ample divisor on W ′.

Lemma 6.2 For every ε > 0, there is a suitable choice of δ and of an effectiveR-divisor
Qε ∼R MW ′ + r∗(εA) − δE for which the following equalities hold

Nklt(W ′, BW ′ + δE + Qε) = Nklt(W ′, BW ′ + δE) = Nklt(W ′, BW ′).

With this notation,

r∗(L + εA) ∼R KW ′ + BW ′ + δE + Qε . (10)

Proof The first equality is a consequence of [18, Proposition 9.2.26], once we choose
δ small enough so that Qε is ample. The second equality follows immediately from
the fact that we can choose δ to be arbitrarily small, since (W ′, BW ′) is snc and sublc.

��
Step 4. End of the proof

Using Lemma 6.2, we define a new divisor on W

�ε := r∗(BW ′ + δE + Qε).

The pair (W , �ε) is a log pair and its coefficients are real numbers in [0, 1]. By
construction, those coefficients in BW ′ + δεE + Qε that are strictly larger than 1 were
those of components that are exceptional over W . Also, L + εA ∼R KW + �ε and
we are reduced to proving nefness for KW + �ε, for ε � 1. The pair (W , �ε) fails
to be lc but Nklt(W , �ε) = Strat(W ,�S), by Lemma 6.1 and Lemma 6.2. Moreover,
KW + �ε is nef, more precisely ample, when restricted to its non-klt locus. Hence, it
is nef on W by Corollary 5.3. Since this holds for arbitrary choice of ε > 0, it follows
that L is nef on W , terminating the proof of the inductive step and of the theorem. ��
Remark 6.3 In the course of the proof of 1.1, we have shown the following (very) weak
version of (quasi log canonical) subadjunction. Surely, this is not the most desirable
version of subadjunction that is expected to hold, as we explain below.

Theorem 6.4 Let (Y ,�) be a log canonical pair and π : Y → Z be an lc trivial
fibration. Let A be an ample divisor on Z.
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Then for all ε, δ > 0, there exists an effective divisor �ε,δ , with coefficients in [0, 1]
satisfying the linear equivalence relation

KZ + BZ + MZ + εA ∼R KZ + �ε,δ.

The pair (Z , �ε,δ) is not log canonical, but there exists a log resolutionπ : Z ′ → Z
such that the log discrepancy of the π -exceptional divisors is bounded below by −δ,
i.e.

a(E; Z , �ε,δ) > −δ, for every E ⊂ Z ′ prime divisor exceptional over Z .

It was conjectured in [3] and later proved in [7] that an analogous of the canonical
bundle formula holds in the category of generalized pairs. The moduli b-divisor, M,
is expected to be semi-ample on a sufficiently high birational model of Z . That would
easily imply that, for a certain choice of MZ , (Z , BZ + MZ ) is log canonical. If that
were to be true, the proof of Theorem 1.1 could be considerably simplified. In fact, L
would be linearly equivalent to the lc divisor KZ + BZ + MZ and

Nklt(Z , BZ + MZ ) = Nklt(Z , BZ ) = Strat(W ,�).

In the proof of the Theorem 1.1 we showed that if KX + � is not nef, there is a
non-constant morphism f : A

1 → X whose image is contained in an lc centerW ⊂ X
and it does not intersect the lc centers strictly contained in W . In particular, from the
inductive procedure used in the proof, we see that it is possible to select W to be a
minimal lc center among those on which the restriction of KX + � is not nef. Hence,
we obtain as a consequence we obtain the following generalized version of the Cone
Theorem.

Theorem 6.5 Let (X ,�) be a log canonical pair. Then there exist countably many
(KX + �)-negative rational curves Ci such that

NE1(X) = NE1(X)KX+�≥0 +
∑

i∈I
R≥0[Ci ].

Moreover, one of the two following conditions hold:

• Ci ∩ (X\Nklt(X ,�)) contains the image of a non-constant morphism
f : A

1 → X\Nklt(X ,�);
• there exists an lc center W ⊂ X such that Ci ∩ (W\Strat(W ,�)) contains the
image of a non-constant morphism f : A

1 → (W\Strat(W ,�)).

In an attempt to expand the above results to arbitrary singularities, the following
questions appear quite natural.

Question 6.6 Let (X ,� = ∑
bi Di ≥ 0), 0 < bi ≤ 1, be a Mori hyperbolic log pair.

Assume KX + � is nef when restricted to Nlc(X ,�). Is KX + � nef? Is it possible to
drop the assumption 0 < bi ≤ 1?
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Most of the proof of Theorem 1.1 applies to the case of varieties with worse singu-
larities than log canonical, through the language and techniques of quasi log varieties
introduced in [1]. It seems that, in order to finish the proof, one would have to prove
a stronger version of the Bend and Break Lemma. Assuming that the pair (X ,�)

has dlt support as in Theorem 3.4, one would need not just to be able to deform a
(KX + �)-negative curve, but to do so while also keeping fixed the support of the
intersection of the curve the support of the non-klt locus of (X ,�). In this way, by
iterating this procedure, one should eventually arrive to create a copy of the affine
line that is contained in the complement of the non-klt locus or in some strata of it.
Unfortunately, we are not able to prove such a result at this time, hence the above
question remains still open. Some results in this direction were recently proved by
McQuillan and Pacienza in [21], for quotient singularities.

To address Question 6.6, one could mimic the same proof as for Theorem 1.1.
Namely, starting with a log pair (X ,�) such that the coefficients of � are in [0, 1],
no matter what the singularities of � are, it is sufficient to prove that KX + � is
nef on Nklt(X ,�), by Corollary 5.3. As there is very little control on the non lc
locus of � (cf. [1, Theorem 0.2]), it seems inevitable to assume the nefness for the
restriction of KX + �. In this setting, the formalism of the canonical bundle for-
mula is not available anymore, but in order to study adjunction or just the restriction
of KX + � to lc centers of �, the formalism of log varieties can be used (cf. [1]
and [9]). Again, working by induction, one can restrict to a given stratum, W , and
assume that nefness is known for the smaller strata and the intersection with the
non-lc locus. Assuming by contradiction that (KX + �)|W is not nef, then we can
find a contraction morphism π : W → S which contracts curves with (KX + �)-
negative class in a given extremal ray contained in NE1(X). It is not hard to prove
that the fibres of π will contain rational curves. The hard part is to prove that it
is possible to deform one of these curves to a rational curve whose normaliza-
tion supports the pull-back of � at most one point. The classical tool to deform
curves is surely the Bend and Break Lemma, although in this case, we need not
only to be able to deform a curve, but also we would like to be able to control its
intersection with the components of �. Hence, ideally, one would like to prove a
stronger version of the Bend and Break Lemma that makes the above construction
possible.

7 Ampleness and pseudoeffectiveness for Mori hyperbolic pairs

When dealing with Mori hyperbolic pairs, in the dlt case, one can actually go fur-
ther and give criteria for the ampleness of KX + � as described in Theorem 1.3 in
the Introduction. Such criteria are modeled along the lines of the classical Nakai–
Moishezon–Kleiman criterion which we recall here in the version for R-divisors due
to Campana and Peternell.

Theorem 7.1 (Campana–Peternell) [17, Thm. 2.3.18] Let X be a proper variety and
let D be an R-Cartier R-divisor on X.
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Then D is ample on X if and only if for every proper subvariety variety Y � X

∫

Y
Ddim Y > 0.

We will also need the following definition.

Definition 7.2 Let (X ,�) a log canonical pair. AnR-divisor D is log big (with respect
to (X ,�)) if D is big and D|W is big for any lc center W of �.

Proposition 7.3 Let (X ,�) be a log canonical pair. Then the following are equivalent:

(1) the divisor KX + � is ample;
(2) the divisor KX +� is big, its restriction toNklt(X ,�) is ample and KX +� has

strictly positive degree on every rational curve intersecting X\Nklt(X ,�).

If (X ,�) is dlt, then the above conditions are also equivalent to:

(3) the divisor KX + � is nef and log big and it has strictly positive degree on every
rational curve.

Remark 7.4 The assumption on the bigness of KX +� in the proposition is necessary
as the following example shows.

Let E be a curve of genus 0. Then KE ∼ 0 and the pair (E, 0) is terminal (hence,
log canonical) with empty non-klt locus. The curve E clearly does not contain rational
curves, nonetheless KE is not ample.

Proof of Proposition 7.3. Clearly condition (1) implies conditions (2) and (3).
Condition (2) implies that KX +� is nef. In fact, by the Cone Theorem, an extremal

ray contained in NE1(X) on which KX + � is negative is spanned by the class of
a rational curve C ⊂ X . As KX + � is ample along Nklt(�), C must intersect
X\Nklt(X ,�), which gives a contradiction.
Thus, KX +� is big and nef and it is ample along Nklt(X ,�). It follows that KX +�

is semiample, by [9, Thm. 4.1]. The correspondingmorphism is either an isomorphism
or it has to contract some rational curves intersecting X\Nklt(X ,�) as implied by
[11, Thm. 1.2]. But this also gives a contradiction, as the intersection of KX +� with
such curves must be strictly positive. Then (2) implies (1).

Let us prove that (3) implies (2). Since KX + � is nef and log big, it is also
semiample. By induction on the dimension and using Theorem 3.1, it follows that
KX + � is ample along ���, which concludes the proof. ��
Theorem 7.5 Let (X ,�) be a Mori hyperbolic log canonical pair.

Then the following are equivalent:

(1) KX + � is ample;
(2) KX + � is big and its restriction to ��� is ample.
If (X ,�) is dlt, then the above conditions are also equivalent to:

(3) KX + � is log big.
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Remark 7.6 As (X ,�) being Mori hyperbolic implies that KX + � is nef, condition
(2) in the corollary is equivalent to the condition stated in Theorem 1.3:

(KX + �)dim X > 0 and (KX + �)dimW · W > 0, for any lc center W .

Remark 7.7 The assumption on the bigness of KX + � in the theorem is necessary.
In fact, the pair (P1, {0} + {∞}) is log canonical and its lc centers are the points 0

and ∞. The divisor KP1 + {0} + {∞} is clearly ample along the two lc centers, yet
the divisor is linearly equivalent to 0.

Proof of Theorem 7.5. Again, (1) implies (2) and (3). Moreover, as (X ,�) is Mori
hyperbolic, it is nef by Theorem 1.1.

Let us prove that (2) implies (1). As KX + � is big and ample along ���, to prove
its ampleness on X , it suffices to prove that KX + � intersects all rational curves on
X with strictly positive degree. Let us assume there exists a rational curve C such that
(KX + �) · C = 0. We can assume that KX + (� − ε���) · C < 0, for any ε > 0.
Let us notice that KX + (� − ε���) is ample along ��� for 0 < ε � 1. Passing to a
dlt modification as in Theorem 3.4, we can assume that X is Q-factorial and the proof
is the same as that of Proposition 5.2.

If (3) holds, then by induction on dim X it follows immediately that KX + � is
ample along ���. Moreover, the definition of log bigness implies that KX +� is also
big, which terminates the proof. ��
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