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Abstract
Multiplicative Hitchin systems are analogues of Hitchin’s integrable system based
on moduli spaces of G-Higgs bundles on a curve C where the Higgs field is group-
valued, rather than Lie algebra valued. We discuss the relationship between several
occurences of thesemoduli spaces in geometry and supersymmetric gauge theory, with
a particular focus on the case where C = CP

1 with a fixed framing at infinity. In this
casewe prove that the identification betweenmultiplicativeHiggs bundles and periodic
monopoles proved by Charbonneau and Hurtubise can be promoted to an equivalence
of hyperkähler spaces, and analyze the twistor rotation for the multiplicative Hitchin
system.We also discuss quantization of these moduli spaces, yielding the modules for
the Yangian Y (g) discovered by Gerasimov, Kharchev, Lebedev and Oblezin.

Mathematics Subject Classification 14D21 · 53D30

1 Introduction

In this paper,wewill comparefivedifferent perspectives on a singlemoduli space: three
coming from geometry and representation theory, and two coming from supersymmet-
ric gauge theory. By leveraging these multiple perspectives we’ll equip our common
moduli space with the structure of a completely integrable system which we call the
multiplicative Hitchin system. Many of the structures associated with the ordinary
Hitchin system, such as the brane of opers, have parallels in the multiplicative setting.
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Let us begin by presenting these five perspectives, before explaining their inter-
relationships. LetC be a Riemann surface, and letG be a reductive complex Lie group.

1.1 Multiplicative Higgs bundles

We’ll first describe themoduli space thatmotivates the “multiplicativeHitchin system”
terminology. Say that a multiplicative Higgs bundle on C is a principal G-bundle P
on C with a meromorphic automorphism g : P → P , or equivalently, a meromorphic
section of the group-valued adjoint bundle AdP . We refer to these by analogy with
Higgs bundles, which consist of a meromorphic section of the Lie algebra (co)adjoint
bundle, rather than its Lie group valued analogue.1 Just like for ordinaryHiggs bundles,
the space of multiplicative meromorphic Higgs bundles with arbitrary poles is infinite-
dimensional, butwe can cut it down to afinite-dimensional space byfixing the locations
of the singularities, and their local behaviour at each singular point. For example, for
G = GL1 this local behaviour is given by a degree at each puncture: we restrict to
multiplicative Higgs fields g such that, near each singular point zi , g is given by the
product of a local holomorphic function and (z − zi )ni for some integer ni . More
generally the local “degrees” are described by orbits in the affine Grassmannian GrG :
restrict the multiplicative Higgs field to a formal neighborhood of the puncture, to
obtain an element of the algebraic loop group LG = G((z)). This element is well-
defined up to the action of L+G = G[[z]] on the left and right, and so determines
a well-defined double coset in L+G\LG/L+G = L+G\GrG . Orbits in the affine
Grassmannian are in canonical bijection with dominant coweights of g, so fixing a
“degree” at the punctures means fixing a dominant coweight ω∨

zi at each puncture zi .
Fix a curve C and consider the moduli space of multiplicative Higgs bundles on

C with prescribed singularities lying at the points D = {z1, . . . , zk}, with degrees
ω∨
z1 , . . . , ω

∨
zk respectively. We denote this moduli space by mHiggsG(C, D, ω∨).

Moduli spaces of multiplicative Higgs bundles have been studied in the literature
previously, though they’ve more often been referred to simply as “moduli spaces of
G-pairs”. The earliest mathematical descriptions of these moduli spaces that we’re
aware of is in the work of Arutyunov, Frolov, and Medvedev [5,6] in the integrable
systems literature, for G = GL(n)-pairs of zero degree on an elliptic curve, extended
by Braden, Chernyakov, Dolgushev, Levin, Olshanetsky and Zotov [19,29] to GL(n)-
pairs of non-zero degree. For a general reductive group G, moduli spaces of G-pairs
were studied in the work of Hurtubise and Markman [67,68], from a more geometric
perspective. Their workwasmotivated by the desire to understand the elliptic Skylanin
Poisson brackets on loop groups, and to that end they toomainly studied the casewhere
the underlying curveC is elliptic—we’ll refer back to their work throughout the paper.

From a different perspective, the moduli space of multiplicative Higgs bundles was
also studied by Frenkel and Ngô [55, Section 4] as part of their geometrization of the
trace formula. Further work was done following their definition by Bouthier [17,18],
who gave an alternative construction of the moduli space as the space of sections

1 Usually Higgs bundles on a curve are defined to be sections of the coadjoint bundle twisted by the
canonical bundle. There isn’t an obvious replacement for this twist in the multiplicative context, but we’ll
mostly be interested in the case where C is Calabi–Yau, and therefore this twist is trivial.
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of a vector bundle associated to a fixed singuarity datum defined using the Vinberg
semigroup (see Remark 2.29).

The moduli space of multiplicative Higgs bundles admits a version of the Hitchin
fibration, just like the ordinary moduli space of Higgs bundles. Intuitively, this map is
defined using the Chevalley map χ : G → T /W (for instance if G = GLn , the map
sending a matrix to its characteristic polynomial): the multiplicative Higgs field is, in
particular, a meromorphic G-valued function, and the multiplicative Hitchin fibration
post-composes this function with χ . See Sect. 2.2 for a more detailed definition.

While the structure of the multiplicative fibration makes sense for any curve, it
only defines a completely integrable system—in particular there is only a natural
symplectic structure on the total space—in the very special situation where the curve
C is Calabi–Yau. That is,C must be eitherC,C× or an elliptic curve. In this paperwe’ll
be most interested in the “rational” case, where C = C. We use a specific boundary
condition at infinity: we consider multiplicative Higgs bundles on CP

1 with a fixed
framing at infinity. In other words we study the moduli space mHiggsfrG(CP

1, D, ω∨)

of multiplicative Higgs bundles on CP
1 with prescribed singularities lying at the

points D = {z1, . . . , zk}, with local data at the singuarities encoded by ω∨
z1 , . . . , ω

∨
zk

respectively, and with a fixed framing at ∞. This moduli space is a smooth algebraic
variety with dimension depending on the coweights we chose. In order to obtain a
genuine integrable systemwewill need to take theHamiltonian reduction of ourmoduli
spacewith respect to the adjoint actionby themaximal torus T ofG.Untilwedo this the
moduli space has the structure of a Lagrangian fibration where the generic fibers look
like a product of a compact torus and an affine torus—a copy of T itself. We call this
Hamiltonian reduction the “reduced” moduli space of multiplicative Higgs bundles.

In the case where C is Calabi–Yau, the (reduced) moduli space of multiplicative
Higgs bundles admits a one-parameter deformation. That is, because of the com-
pletely integrable system structure coming from the multiplicative Hitchin fibration,
the moduli space is hyperkähler, so we can rotate the complex structure within the
twistor sphere. The result of this deformation also has a natural interpretation in terms
of ε-connections. That is,G-bundles P onC equippedwith an isomorphism P → ε∗P
between P and its translate by ε ∈ C. We can summarize this identification as follows.

Theorem 1.1 (See Theorem 8.2) The moduli space mHiggsredG (CP
1, D, ω∨), given

the complex structure at ε ∈ C ⊆ CP
1 in the twistor sphere is diffeomorphic

(in the limit where an auxiliary parameter is taken to ∞) to the moduli space
ε-ConnredG (CP

1, D, ω∨) of framed ε-connections on CP
1.

1.2 Moduli space of monopoles

If we focus on the example where a real three-dimensional Riemannian manifold
M = C × S1 splits as the product of a compact Riemann surface and a circle, for the
rational case C = C the moduli space of monopoles on M was studied by Cherkis
and Kapustin [26–28] from the perspective of the Coulomb branch of vacua of 4d
N = 2 supersymmetric gauge theory. For general C the moduli space of monopoles
on M = C× S1 was studied by Charbonneau–Hurtubise [23], for GR = U(n), and by
Smith [105] for general G. These moduli spaces were also studied where C = C with
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more general boundary conditions than the framing at infinity which we consider. This
example has also been studied in the mathematics literature by Foscolo [50,51] and by
Mochizuki [81]—note that considering weaker boundary conditions at infinity means
they need to use far more sophisticated analysis in order to work with hyperkähler
structures on their moduli spaces than we’ll consider in this paper.

The connection between periodic monopoles and multiplicative Higgs bundles is
provided by the following theorem.

Theorem 1.2 (Charbonneau–Hurtubise, Smith) There is an analytic isomorphism

H : MonfrG(C × S1, D × {0}, ω∨) → mHiggsfrG(C, D, ω∨)

between the moduli space of (polystable) multiplicative G-Higgs bundles on a com-
pact curve C with singularities at points z1, . . . , zk and residues ω∨

z1 , . . . , ω
∨
zk and

the moduli space of periodic monopoles on C × S1 with Dirac singularities at
(z1, 0), . . . , (zk, 0) with charges ω∨

z1 , . . . , ω
∨
zk

The morphism H , discussed first by Cherkis and Kapustin in [27] and later in
[23,88,105] defines the value of the multiplicative Higgs field at z ∈ C to be equal to
the holonomy of the monopole connection (complexified by the scalar field) along the
fiber circle {z} × S1 ⊂ M .

One of our main goals in this paper is to compare—in the rational case—the sym-
plectic structure on the moduli space of multiplicative Higgs fields analogous to the
symplectic structure defined by Hurtubise and Markman in the elliptic case, and the
hyperkähler structure on the moduli space of periodic monopoles, defined by realizing
the moduli space of periodic monopoles as a hyperkähler quotient. We prove that they
coincide.

Theorem 1.3 (See Theorem 7.3) The holomorphic symplectic structure on
MonfrG(CP

1× S1, D×{0}, ω∨) is isomorphic to the pullback of the natural symplectic
structure onmHiggsfrG(CP

1, D, ω∨) under the holonomymorphism H : MonfrG(CP
1×

S1, D × {0}, ω∨) → mHiggsfrG(CP
1, D, ω∨)

In particular, after Hamiltonian reduction by the centralizer T of the framing value
g∞, the symplectic structure on the multiplicative Higgs moduli space extends to a
hyperkähler structure, as we discussed in point 1 above.

1.3 Poisson–Lie groups

The third perspective that we’ll consider connects our moduli spaces directly to the
theory of Poisson Lie groups and Lie bialgebras, and leads to an interesting connection
to quantumgroups uponquantization.By the rational PoissonLie groupwe’llmean the
groupG1[[z−1]] consisting ofG-valued power series in z−1 with constant term1.More
precisely this is an ind-algebraic group: it is expressed as a direct limit of algebraic
varieties G1[[z−1]]n with an associative multiplication G1[[z−1]]m × G1[[z−1]]n →
G1[[z−1]]m+n . The Poisson structure on this group can be thought of as coming from
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a Manin triple: specifically the triple (G((z−1)),G1[[z−1]],G[z]), where G((z)) is
equipped with the residue pairing (see Sect. 5 for more details).

We claim that our moduli spaces mHiggsfrG(CP
1, D, ω∨) correspond to symplectic

leaves in the rational Poisson Lie group, extending a classification result of Shapiro
[102] for the groups G = SLn and G = GLn . More specifically, we prove the
following.

Theorem 1.4 (See Theorem 4.22) The map mHiggsfrG(CP
1, D, ω∨) → G1[[z−1]],

defined by restricting a multiplicative Higgs field to a formal neighborhood of ∞, is
Poisson. That is, the pullback of the Poisson structure onO(G1[[z−1]]) coincides with
the Poisson bracket on the algebra O(mHiggsfrG(CP

1, D, ω∨)).

From this point of view it’s natural to try to understand how our moduli spaces
behave under deformation quantization. The quantization of the rational Poisson Lie
group is well known: it’s modelled by the Yangian quantum group Y (g). When we
quantize our symplectic leaves, we obtain Y (g)-modules. This follows from the work
of Gerasimov et al. [64] who constructed the Y (g)-modules in question and analyzed
their classical limits.

Remark 1.5 The article [64], as well as its generalizations such as the work of Kam-
nitzer et al. [69], view these Y (g)-modules as quantizing certain moduli spaces of
monopoles on R

3, and not of monopoles on R
2 × S1. These two points of view are

expected to be related in the limit where the radius of S1 is sent to infinity, with the
positions of the singularities in S1 kept fixed (note that while the holomorphic sym-
plectic structure on the moduli space is independent of this radius, the hyperkähler
structurewill be sensitive to it). Themoduli space of periodicmonopoles in the rational
case would in this limit be related to the moduli space of monopoles on R

3 (perhaps
with certain restrictions as in the work of Finkelberg, Kuznetsov and Rybnikov on
trigonometric Zastava spaces [49]).

1.4 Moduli spaces in supersymmetric gauge theory

Having discussed three points of view on our moduli space in geometric representa-
tion theory, let us move on to explain some of the ways in which multiplicative Higgs
bundles / periodic monopoles arise naturally in the world of supersymmetric gauge
theory. The general program relating supersymmetric gauge theory and quantum inte-
grable systems relevant for the present work arose from the work of Nekrasov and
Shatashvili in [90,91].

Concretely, the moduli spaces of periodic monopoles (and implicitly its quantiza-
tion) appeared in work of the second author with Nekrasov and Shatashvili [88,89]
concerning the Seiberg-Witten integrable systems of 4d N = 2 ADE quiver gauge
theories. Let g be a simple Lie algebra of ADE type. One can define anN = 2 super-
conformal 4d gauge theorymodelled on the Dynkin diagram of g. To define this theory
one must specify masses mi, j for fundamental hypermultiplets associated to the ver-
tices of the Dynkin diagram, so i = 1, . . . , r varies over the vertices of the Dynkin
diagram and j = 1, . . . , wi is an index parameterizing the number of hypermultiplets
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at each vertex. Let us assume we’re in the generic situation, where the masses are all
distinct.

The paper [88] studied the Seiberg-Witten integrable system associated to this
theory, so in particular the hyperkähler moduli space P, the Coulomb branch of the
moduli space of vacua, occuring as the target of the N = 4 supersymmetric sigma
model obtained by compactifying the 4d theory on a circle. In particular, it proved the
following.

Theorem 1.6 [88, Section 8.1] Let G be a simple Lie group with ADE Lie algebra
g. The phase space P is isomorphic, as a hyperkähler manifold, to the moduli space
MonredG (R2 × S1, D×{0}, ω∨) of periodic monopoles, where D = {mi, j }, and where
the residue ω∨

mi, j
is the fundamental coweight corresponding to the vertex i of the

Dynkin diagramof g. The notation“red” indicates thatwe fix the value of the holonomy
around S1 at infinity, then perform Hamiltonian reduction by the adjoint action of the
maximal torus.

Remark 1.7 If one considers gauge theories that are not necessarily conformal, but
only asymptotically free, the phase space is modelled by periodic monopoles that are
permitted to have a singularity at infinity. If GR = SU(2) then this moduli space fits
into the framework studied by Cherkis–Kapustin and by Foscolo. We won’t discuss
this more complicated setting further in this paper.

Remark 1.8 (Elliptic fiber version) The analysis of [88] suggests an elliptic fiber gen-
eralization of our multiplicative story, corresponding to the phase space of a theory
modelled on an affineADE quiver. The phase space of these theories is identified with
a moduli space of doubly periodic instantons. In our setting, the idea is the following.
We can think of the moduli space of multiplicative Higgs bundles as a moduli space
of meromorphic functions into the adjoint quotient stack G/G, just like we can think
of the moduli space of ordinary Higgs bundles as a moduli space of meromorphic
functions into the adjoint quotient stack g/G for the Lie algebra. There is a ratio-
nal/trigonometric/elliptic trichotomy extending these two examples: one studies the
moduli stack of semistable G-bundles on a cuspidal, nodal or smooth elliptic curve.
That is:

BunssG(Ecusp) ∼= g/G

BunssG(Enod) ∼= G/G

BunssG(Eq) ∼= LG/q LG.

The last statement is a theorem of Looijenga (see e.g. [77]): LG/q LG denotes
the q-twisted adjoint quotient of the loop group LG: so g(z) acts by h(z) 
→
g(qz)−1h(z)g(z).

Without singularities, therefore, the elliptic analogue of our multiplicative Hitchin
system should be the space ofmaps fromC intoBunssG(Eq): thismoduli space is closely
related to the moduli space of instantons on C × Eq , i.e. doubly periodic instantons.
Moduli spaces of this form for the group SL2, including their hyperkähler structures,
have been studied by Biquard and Jardim [13]. In particular, the relationship between
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the elliptic version of theHitchin system forG = SL2 and the space of doubly periodic
SU(2)-instantons is provided by [13, Theorem 0.2].

1.5 Multiplicative q-geometric langlands correspondence

The final perspective we’ll consider is perhaps the most interesting from our point
of view, because it suggests that the categorical geometric Langlands conjecture of
Beilinson and Drinfeld might admit a multiplicative analogue, built from the multi-
plicative Hitchin system instead of the ordinary Hitchin system. Again, we’ll describe
a moduli space coming from supersymmetric gauge theory, but in a quite different
setting to that of perspective 4 above.

We consider now a five-dimensional N = 2 supersymmetric gauge theory. In
order to extract interesting moduli spaces for geometric representation theory, we
won’t study its moduli space of vacua, but instead we’ll twist the theory, then look at
the entire moduli space of solutions to the equations of motion in the twisted theory.
We’ll review the idea behind twisting at the beginning of Sect. 3, but very informally,
we’ll choose a supersymmetry QHT that squares to zero, and study the derived space
of QHT-invariant solutions to the equations of motion. In Sect. 3 we’ll sketch the
following, which also follows from forthcoming work of Butson [20].

Claim 1.9 The twist by QHT ofN = 2 super Yang–Mills theory with gauge group G,
on the five-manifold C × S1 × R

2 where C is a Calabi–Yau curve,and with monopole
surface operators placed at the points (z1, 0), . . . , (zk, 0) in C × S1 with charges
ω∨
z1 , . . . , ω

∨
zk respectively, has the following stack of solutions to the equations of

motion:

EOM(C × S1 × R
2) = T ∗[1]mHiggs(C, D, ω∨)

where T ∗[1]X denotes the “1-shifted cotangent space” of X .

This story leads us to a “multiplicative” analogue of the approach to geometric
Langlands introduced by Kapustin and Witten [71]. When we take the radius of S1

to zero we recover Kapustin’s partially topological twist [70] of 4d N = 4 super
Yang–Mills, which degenerates to Kapustin–Witten’s A- and B-topologically twisted
theories. By “multiplicative geometric Langlands” wemean a version of the geometric
Langlands conjecture modelled on the multiplicative Hitchin system instead of the
ordinary Hitchin system, where the radius of this circle is kept positive. For more
details on what this means, see Sect. 3.3.

Remark 1.10 (Derived geometry) We’ll use the language of derived algebraic geom-
etry in several places in this paper, mainly in Sects. 2 and 3. While we believe this
perspective provides a clear way of thinking about the moduli spaces we’re interested
in studying, the derived language is not necessary when we state and prove the main
results of this paper. We hope that the majority of the paper is understandable without
a derived geometry background. There are several clear and references explaining the
point of view of derived algebraic geometry, for instance the survey articles of Toën
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[108,109]. A comprehensive account of the theory of derived geometry can be found
in the book of Gaitsgory and Rozenblyum [60,61]. We’ll also refer a few times to the
theory of shifted symplectic structures. This theory was developed by Pantev, Toën,
Vaquié and Vezzosi [92], and we also recommend the explanations in [21]. From the
physical point of view, the ideas of derived geometry appear in classical field theory
through the Batalin–Vilkovisky formalism, and through Pantev, Toën, Vaquié andVez-
zosi’s derived version of the AKSZ construction of symplectic structures on mapping
spaces [2].

1.6 Outline of the paper

The paper is divided into two parts. In Part A we will investigate the symplectic
geometry of the moduli space of multiplicative Higgs bundles, and in Part B we will
study the connection between multiplicative Higgs bundles and periodic monopoles,
and the hyperkähler geometry of these moduli spaces.

We begin in Sect. 2 by introducing and defining the moduli spaces we’ll be study-
ing in this paper: the moduli spaces of multiplicative Higgs bundles. We discuss the
trichotomy of rational, trigonometric and elliptic examples that are most relevant to
us: where the moduli space has the structure of an integrable system. We include a
discussion of how the symplectic structures we’re studying in this paper are expected
to arise from the theory of derived symplectic geometry.

The following section, Sect. 3, stands alone from the rest of the paper. In this section
we explain how the moduli space of multiplicative Higgs bundles appears when one
studies a certain partially topological twist of 5dN = 2 supersymmetric gauge theory.
As a consequence, we can speculate on the existence of a multiplicative version of the
geometric Langlands conjecture, using the work of Kapustin and Witten.

In Sect. 4 we construct a symplectic structure on the moduli space of multiplicative
Higgs bundles in the rational case. We do this by realizing the moduli space as a
symplectic leaf in the infinite-dimensional Poisson Lie group G1[[z−1]] of G-valued
Taylor series with constant leading coefficient.

We conclude Part Awith Sect. 5, in whichwe discuss the quantization of ourmoduli
spaces.We identify themoduli spaces of multiplicative Higgs bundles with symplectic
leaves in the rational Poisson Lie group, and then after quantization we identify the
quantized algebra of functions on our moduli spaces with modules for the Yangian as
first constructed by Gerasimov, Kharchev, Lebedev and Oblezin.

We begin Part B of the paper with Sect. 6, in which we introduce the other main
player of the paper, the moduli space of periodic monopoles. We explain how these
moduli spaces arise as a hyperkähler quotient, and discuss the relationship, following
Charbonneau–Hurtubise [23] and Smith [105] with the multiplicative Higgs moduli
space.

In Sect. 7 we extend this result to an equivalence of holomorphic symplectic man-
ifolds, using the construction of the symplectic structure from the previous part of the
paper. Then in Sect. 8 we investigate the twistor family of holomorphic symplectic
structures on the two equivalent moduli spaces, and prove that twistor rotation of the
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multiplicative Higgs moduli space is equivalent to the deformation from Higgs fields
to q-difference connections.

Finally, in Sect. 9 we discuss the relationship between the multiplicative analogue
of the space of opers and the q-character, motivated by the origin of the multiplicative
Hitchin system in quiver gauge theory.

The preliminary results of this workwere announced by the second author at String-
Math 2017 [94].

Part A: Symplectic structures

2 Multiplicative Higgs bundles and q-connections

We’ll beginwith an abstract definitionofmoduli spaces ofmultiplicativeHiggs bundles
using the language of derived algebraic geometry. We note, however, that once we
specialize to our main, rational, example, the moduli spaces we’ll end up studying are
actually smooth algebraic varieties, not derived stacks. However, the derived point of
view gives us a useful and concise definition of these moduli spaces in full generality.

LetG be a reductive complex algebraic group, letC be a smooth complex algebraic
curve and fix a finite set D = {zi , . . . , zk} of closed points inC .Wewrite BunG(C) for
the moduli stack of G-bundles on C , which we view as a mapping stack Map(C, BG)

into the classifying stack of G.

Definition 2.1 The moduli stack of multiplicative G-Higgs fields on C with singular-
ities at D is the fiber product

mHiggsG(C, D) = BunG(C) ×BunG (C\D) Map(C\D,G/G)

where G/G is the adjoint quotient stack.

Remark 2.2 A closed point of mHiggsG(C, D) consists of a principal G-bundle P on
C along with an automorphism of the restriction P|C\D , i.e. a section of AdP away
from D.

The adjoint quotient stack can also be described as the derived loop space
Map(S1B, BG) of the classifying stack, where S1B is the “Betti stack” of S1, i.e. the con-

stant derived stack at the simplicial set S1. We can therefore view Map(C\D,G/G)

instead as the mapping stack Map((C\D) × S1B, BG), and the moduli stack of multi-
plicative Higgs bundles instead as

mHiggsG(C, D) = Map((C × S1B)\(D × {0}), BG).

The source of this mapping stack can be q-deformed. Indeed, let q denote an auto-
morphism of the curve C . Write C ×q S1B for the mapping torus of q, i.e the derived
fiber product

C ×q S1B = C ×C×C C
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where the two maps C → C ×C are given by the diagonal and the q-twisted diagonal
x 
→ (x, q(x)) respectively.

Definition 2.3 The moduli stack of q-difference connections for the group G on C
with singularities at D is the mapping space

q-ConnG(C, D) = Map((C ×q S1B)\(D × {0}), BG).

In particular when q = 1 this recovers the moduli stack of multiplicative Higgs
bundles.

Remark 2.4 A closed point of q-ConnG(C, D) consists of a principal G-bundle P
on C along with a q difference connection: an isomorphism of G-bundles P|C\D →
q∗P|C\D away from the divisor D. For an introduction and review of the classical
theory of q-difference connections we refer the reader to [98,99].

2.1 Local conditions at the singularities

These moduli stacks are typically of infinite type. In order to obtain finite type stacks,
and later in order to define symplectic rather than only Poisson structures, we can fix
the behaviour of our multiplicative Higgs fields and q-difference connections near the
punctures D ⊆ C .

We’ll write D to denote the formal disk SpecC[[z]]. Likewise we’ll write D
× for

the formal punctured disk SpecC((z)). We’ll then write B for the derived pushout
D �D× D. Let LG = Map(D×,G) and let L+G = Map(D,G).

There is a canonical inclusion B
�k → (C ×q S1B)\(D × {0}), the inclusion of the

formal punctured neighborhood of D×{0}. This induces a restrictionmap onmapping
spaces

resD : q-ConnG(C, D) → BunG(B)k .

One can identify BunG(B) with the double quotient stack L+G\LG/L+G, or
equivalently with the quotient L+G\GrG of the affine Grassmannian. The following
is well-known (see e.g. the expository article [114]).

Lemma 2.5 The set of closed points of BunG(B) is in canonical bijection with the set
of dominant coweights of G.

Definition 2.6 Choose a map from D to the set of dominant coweights and denote it
by ω∨ : zi 
→ ω∨

zi . Write �i for the isotropy group of the point ω∨
zi in BunG(B). The

moduli stack of q difference connections on C with singularities at D and fixed local
data given by ω∨ is defined to be the fiber product

q-ConnG(C, D, ω∨) = q-ConnG(C, D) ×BunG (B)k (B�1 × · · · × B�k).

Remark 2.7 In a similar way we can define a filtration on the moduli stack of q-
connections. Recall that the affine Grassmannian GrG is stratified by dominant
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coweights ω∨, and there is an inclusion Gr
ω∨
1

G ⊆ Gr
ω∨
2

G of one stratum into the clo-
sure of another stratum if and only if ω∨

1 � ω∨
2 with respect to the standard partial

order on dominant coweights (again, this is explained in [114]). We can then define
q-ConnG(C, D,� ω∨) to be the fiber product

q-ConnG(C, D) ×BunG (B)k

(
L+G\Grω∨

1
G × · · · × L+G\Grω∨

k
G

)
.

The full moduli stack q-ConnG(C, D) is the filtered colimit of these moduli spaces.
One can additionally take the filtered colimit over all finite subsets D in order to define
a moduli stack q-ConnsingG (C) of q-connections on C with arbitrary singularities.

Examples 2.8 Themost important examples for our purposes are givenby the following
rational/trigonometric/elliptic trichotomy.

• RationalWe can enhance the definition of ourmoduli space by including a framing
at a point c ∈ C not contained in D. We always assume that such framed points
are fixed by the automorphism q.

Definition 2.9 The moduli space of q-difference connections on C with a framing at
c is defined to be the relative mapping space

q-ConnfrG(C) = Map(C ×q S1B, BG; f )

where f : {c} × S1B → BG (or equivalently f : {c} → G/G) is a choice of adjoint
orbit. We can define the framed mapping space with singularities and fixed local data
in exactly the same way as above.

In this paper we’ll be most interested in the following example. Let C = CP
1 with

framing point c = ∞ and framing given by a fixed element in G/G, and consider
automorphisms of the form z 
→ z + ε for ε ∈ C. Choose a finite subset D ⊆ A

1

and label the points zi ∈ D by dominant coweights ω∨
zi . We can then study the

moduli space ε-ConnfrG(CP
1, D, ω∨). The main object of study in this paper will be

the holomorphic symplectic structure on this moduli space. Note that the motivation
for this definition comes in part from Spaide’s formalism [106] of AKSZ-type derived
symplectic structures (in the sense of [2,92]) on relative mapping spaces—in this
formalismCP

1 with a single framing point is relatively 1-oriented, so mapping spaces
out of it with 1-shifted symplectic targets have AKSZ 0-shifted symplectic structures.

• Trigonometric Alternatively, we can enhance our definition by including a reduc-
tion of structure group at a point c ∈ C not contained in D, again fixed by the
automorphism q.

Definition 2.10 The moduli space of q-difference connections on C with an H -
reduction at c for a subgroup H ⊆ G is defined to be the fiber product

q-ConnH ,c
G (C) = Map(C ×q S1B, BG) ×G/G H/H
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associated to the evaluation at c map Map(C ×q S1B, BG) → G/G. We can define
the moduli space with H -reduction with singularities and fixed local data in the same
way as above.

Again let C = CP
1. Fix a pair of opposite Borel subgroups B+ and B− ⊆ G

with unipotent radicals N± and consider the moduli space of q-connections with B+-
reduction at 0 and N−-reduction at ∞. We’ll now take q to be an automorphism of
the form z 
→ qz for q ∈ C

×. We’ll defer in depth analysis of this example to future
work.

• Elliptic Finally, let C = E be a smooth curve of genus one. In this case
we won’t fix any additional boundary data, but just consider the moduli space
q-ConnG(E, D, ω∨). In the case q = 1 this space—or rather its polystable locus—
was studied by Hurtubise and Markman [67], who proved that it can be given the
structure of an algebraic integrable system with symplectic structure related to the
elliptic R-matrix of Etingof and Varchenko [48].

Remark 2.11 In the rational case, themoduli space of framed q-difference connections
now depends on a new parameter: the value of the framing g∞ ∈ G/G. From the point
of view of the ADE quiver gauge theory, as in Sect. 1.4, this value—or rather its image
in H/W—corresponds to the value of the gauge coupling constants in the quiver gauge
theory.

In a little more detail, for an ADE quiver gauge theory, a physical choice of finite
gauge coupling constants qi = exp(2π iτi ) corresponds to a choice of regular semi-
simple conjugacy class [ginf ] = ∏

i q
−ω̌i
i . So the contribution of an instanton with

second Chern class ki with respect to the i th factor of the gauge group is counted with
weight qkii .

Remark 2.12 In the elliptic case it’s natural to ask to what extent Hurtubise and Mark-
man’s integrable system structure can be extended from the variety of polystable
multiplicative Higgs bundles to the full moduli stack. If D is empty then it’s easy to
see that we have a symplectic structure given by the AKSZ construction of Pantev
et al. [92]. Indeed, E is compact 1-oriented and the quotient stack G/G is 1-shifted
symplectic, so the mapping stack Map(E,G/G) = mHiggsG(E) is equipped with a
0-shifted symplectic structure by [92, Theorem 2.5]. The role of the Hitchin fibration
is played by the Chevalley map χ : G/G → T /W , and therefore

Map(E,G/G) → Map(E, T /W ).

The fibers of this map over regular points in T /W are given by moduli stacks of the
form BunT (Ẽ)W where Ẽ is aW -fold cover of E (the cameral cover). Note that in this
unramified case the curve Ẽ also has genus 1; counting dimensions we see that the
base has dimension r = rk(G) and the generic fibers are r -dimensional (Lagrangian)
tori.

Remark 2.13 While the moduli space of multiplicative Higgs bundles makes sense on
a general curve it’s only after restricting attention to this trichotomy of examples that
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we’ll expect the existence of a Poisson structure. In the non-singular case, such a struc-
ture arises by the AKSZ construction, i.e. by transgressing the 1-shifted symplectic
structure on G/G to the mapping space using a fixed section of the canonical bundle
on C (possibly with a boundary condition).

2.2 Themultiplicative Hitchin system

We can define the global Chevalley map as in Remark 2.12 in the case of non-empty
D as well. We’ll show that in the rational case this defines a completely integrable
system structure. Let T ⊆ G be a maximal torus, and write W for the Weyl group of
G.

Definition 2.14 Fix a curve C , a divisor D and a dominant coweight ω∨
zi at each point

zi in D. The multiplicative Hitchin base is the stack

B(C, D, ω∨) = Sect(C, X(D, ω∨)/W )

of sections of X(D, ω∨)/W , the T /W -bundle on C where X(D, ω∨) is the T -bundle
characterized by the condition that the associated line bundle X(D, ω∨) ×T λ corre-
sponding to a weight λ is given by O(

∑
ω∨
zi (λ) · zi ) (c.f. [67, Section 3.3]).

The multiplicative Hitchin fibration is the map

π : mHiggsG(C, D, ω∨) → B(C, D, ω∨)

given by post-composing a map C\D → G/G with the Chevalley map χ : G/G →
T /W .

Proposition 2.15 The multiplicative Hitchin fibration described above is well-defined.

Proof We need to verify that the image of a point in mHiggsG(C, D, ω∨) under
π , viewed as a section of the trivial T /W -bundle on C\D, extends to a section of
X(D, ω∨)/W . We look locally near a singularity zi ∈ D. Let φ ∈ G((zi )) be a local
representative for a multiplicative Higgs field in mHiggsG(C, D, ω∨), i.e. an element

of the associated G[[zi ]]-adjoint orbit. Since φ is equivalent to z
−ω∨

zi
i under the action

of G[[zi ]]2 by left and right multiplication, without loss of generality we can say that

φ = z
−ω∨

zi
i φ0 for some φ0 ∈ G[[zi ]]. Consider χ(φ) ∈ T ((zi ))—the singular part

of this element is the same as χ(z
−ω∨

zi
i g) for some g ∈ G, which implies the section

extends to a meromorphic T /W -valued function of the required type. �
Remark 2.16 Note that the base stack that we’re defining here is not exactly the same
as the base of the integrable system defined in [67]. The difference comes from the
way in which we treat the Weyl group quotient; the Hurtubise–Markman base is an
algebraic variety defined essentially by taking the part of our space of sections where
W acts freely as an open subset, then constructing a compactification using techniques
from toric geometry.
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We’ll argue in Sect. 4.5 that this fibration defines a completely integrable system
in the rational case where C = CP

1 with a framing at ∞. More specifically, we’ll
describe a non-degenerate pairing on the tangent space of the multiplicative Higgs
moduli space and check that the multiplicative Hitchin fibers are isotropic for this
pairing. We’ll then show in Theorem 4.22 that the pairing was in fact symplectic.

Here, we’ll first observe that the generic fibers are half-dimensional tori, which will
ultimately imply that the multiplicative Hitchin system is generically a Lagrangian
fibration. Computing the fibers of the Hitchin fibration works similarly to the non-
singular case: a point in the base is, in particular, a map C\D → T /W . Suppose this
map lands in the regular locus T reg/W , then an element of the fiber over this point
defines, in particular, a map C\D → BT /W . We would like to argue that the fiber
consists of T -bundles on the cameral cover C̃ : a W -fold cover of C ramified at the
divisor D.

In order to say this a bit more precisely this we’ll compare our moduli space with
the space of abstract Higgs bundles introduced by Donagi and Gaitsgory [37] (see
also [36], where Donagi proposed the applicability of this abstract Higgs theory to the
multiplicative situation and asked for a geometric interpretation). Our argument will
follow the same ideas as the arguments of [67, Section 6].

Definition 2.17 An abstract G-Higgs bundle on a curve C is a principal G-bundle
P along with a sub-bundle c of gP of regular centralizers, meaning that the fibers
are subalgebras of g which arise as the centralizer of a regular element of g. Write
HiggsabsG (C) for the moduli stack of abstract G-Higgs bundles on C .

There’s an algebraic map from the regular part mHiggsG(C, D, ω∨)reg of our mod-
uli space (where the Higgs field is required to take regular values) into HiggsabsG (C)

that sends a multiplicative Higgs bundle (P, g) to the abstract Higgs bundle (P, cg),
where cg is the sub-bundle of gP fixed by the adjoint action of the multiplicative Higgs
field g. What’s more, there is a commutative square relating the Hitchin fibration for
the multiplicative moduli space with a related projection for the abstract moduli stack:

mHiggsG(C, D, ω∨)reg HiggsabsG (C)

B(C, D, ω∨)reg CamG(C),

where CamG(C) is the stack of cameral covers of C , as defined in [37, Section 2.8].
The mapB(C, D, ω∨)reg → CamG(C) is defined by sending a meromorphic function
f : C → T /W to the D-ramified cameral cover C̃ = C ×T /W T . In particular there’s
a map from the multiplicative Hitchin fiber to the corresponding Donagi-Gaitsgory
fiber: the moduli space of abstract G-Higgs bundles with fixed cameral cover. This
map is surjective: having fixed the cameral cover, and therefore the ramification data,
every sub-bundle c ⊆ gP of regular centralizers arises as the centralizer of some regular
multiplicativeHiggs field. Likewise once one restricts to a single genericmultiplicative
Hitchin fiber the map is an unramified W -fold cover.
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To conclude this discussion we’ll discuss dimensions and the geometry of the
multiplicative Hitchin fibers. Firstly, we can compute the dimension of a regular mul-
tiplicative Hitchin fiber by computing the dimension of the base and the dimension
of the total space. The dimension of the base is given by computing the number of
linearly independent sections of the T -bundle X(D, ω∨) onCP

1 vanishing at∞. This
is given by

dimB(C, D, ω∨) =
∑
zi∈D

〈ρ, ω∨
zi 〉,

where ρ is the Weyl vector. On the other hand the dimension of the total space is cal-
culated in Corollary 4.15 to be 2

∑
zi∈D〈ρ, ω∨

zi 〉. The base is indeed half-dimensional,
therefore so is the fiber.

The Donagi-Gaitsgory fiber is, according to the main theorem of [37], equivalent to
the moduli space of W -equivariant T -bundles on the cameral curve C̃ up to a discrete
correction involving the root datum of G. In particular it is generically an abelian
variety. The multiplicative Hitchin fiber is isogenous to this abelian variety, since the
map from the multiplicative Hitchin fiber to the Donagi-Gaitsgory fiber is surjective
and étale.

Remark 2.18 This argument that the fibers are abelian varieties does not apply to
our main case of interest, because it does not account for the data of the framing at
∞ ∈ CP

1. In fact, according to the physical arguments in [88], we do not expect the
fibers in this example to be compact. In order to resolve this we will need to take the
Hamiltonian reduction of mHiggsfr(CP

1, D, ω∨) by the adjoint action of a maximal
torus of G. We’ll discuss this reduction in Sect. 4.5.

Remark 2.19 Like in the case of the ordinary Hitchin system, in good examples the
multiplicative Hitchin system admits a canonical Hitchin section. One can construct
this section using the Steinberg section (the multiplicative analogue of the Kostant
section) [107]. This is a section of the map G/G → T /W , canonical after choosing a
Borel subgroup B with maximal torus T and a basis vector for each simple root space,
and well defined as long asG is simply connected.2 Themultiplicative Hitchin section
is the map σ : B(C, D, ω∨) → mHiggsG(C, D, ω∨) defined by post-composition
with the Steinberg section. One can use this section to define the moduli space of
q-opers for the group G and the curve CP

1 with its framing at infinity. We’ll discuss
the hyperkähler structure on the reduced moduli space of multiplicative Higgs bundles
in Sect. 8. In particular we’ll show that when one rotates to q in the twistor sphere one
obtains the moduli space of q-connections on CP

1. The moduli space of q-opers is
defined to be the Hitchin section, but viewed as a subspace of q-ConnfrG(CP

1, D, ω∨).
For a more detailed discussion of the multiplicative Hitchin section and q-opers see
Sect. 9.

2 By a theorem of Popov [96] this condition is necessary for semisimple G. A section also exists for
G = GLn , but we aren’t aware of a necessary and sufficient condition for general reductive groups.
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2.3 Stability conditions

For comparison to results in the literature it is important that we briefly discuss the role
of stability conditions for difference connections. In ourmain example of interest—the
rational case—these conditions will take a relatively simple form, but they do appear
more generally in the comparison results between q-connections and monopoles in
the literature for more general curves. For definitions for general G we refer to [105],
although see also [3] on polystable G-bundles. In what follows we fix a choice of
vector −→

t with 0 < t1 < · · · < tk < 2πR.

Remark 2.20 There will be a constraint on the allowable values for the ti , as explained
in [23, Section 3.2].

Definition 2.21 Let (P, g) be a q-connection on a curve C , and let χ : G → Gm be a

character of G. The (χ,
−→
t )-degree of (P, g) is defined to be

degχ (P, g) = deg(P ×χ C) − 1

2πR

k∑
i=1

ti deg(χ ◦ ω∨
zi ).

A q-connection (P, g) on C is stable if for every maximal parabolic subgroup
H ⊆ G with Levi decomposition H = LN and every reduction of structure group
(PH , g) to H , we have

degχ (PH , g) < 0

for the character χ = det(AdnL) defined to be the determinant of the adjoint represen-
tation of L on n.

The q-connection (P, g) is polystable if there exists a (not necessarily maximal)
parabolic subgroup H with Levi factor L and a reduction of structure group (PL , g)
to L so that (PL , g) is a stable q-connection and so that the associated H -bundle is
admissible, meaning that for every character χ of H which is trivial on Z(G) the
associated line bundle PH ×χ C has degree zero.

Remark 2.22 The (χ,
−→
t )-degree here, at least in the case where G = GLn , can be

thought of as the average, over S1 of the degree of the holomorphic vector bundle
obtained by restricting P to the slice C × {t} for t ∈ S1. See the argument in [23,
Lemma 4.5].

Below we’ll write q-ConnpsG (C, D, ω∨) ⊆ q-ConnG(C, D, ω∨) for the moduli
space of polystable q-connections. This moduli space is a smooth algebraic variety of
finite type when q is the identity [23,105] (we expect that this is still true for general
C and q, but we are not aware of a reference—we will not use this property below).

Example 2.23 An example of a multiplicative Higgs bundle on CP
1 which is not

polystable, for the group G = SL2, is provided by taking the trivial G-bundle P
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and the constant multiplicative Higgs field with value

g =
(
1 1
0 1

)
.

The multiplicative Higgs field does not fix a maximal torus in G, so the pair (P, g)
cannot be reduced to any non-trivial Levi subgroup. On the other hand, for the upper
triangular Borel subgroup B ⊆ G we have degχ (PB, g) = 0, so (P, g) is not stable.

In our main example of interest—the rational setting where C = CP
1 with a fixed

framing at infinity—we will impose an additional stability condition constraining the
value of the framing. We’ll discuss why this condition is necessary in Sect. 4.5 (from
the point of view of Hamiltonian reduction) and Sect. 6 (when we compare to the
moduli space of periodic monopoles).

Definition 2.24 A q-connection (P, g) on CP
1 with a fixed framing g∞ at ∞ is

polystable if it is polystable as in Definition 2.21, and the chosen framing g∞ is
regular semisimple.

Remark 2.25 We observe that the element g∞ determines an S1-equivariant holo-
morphic G-bundle on an elliptic curve, where S1 acts on T 2 by rotating one of the
two circles. This G-bundle is polystable if g∞ is semisimple, which ensures that the
G-bundle admits a reduction of structure group to a T -bundle for a maximal torus
T ⊆ G.

2.4 Poisson structures from derived geometry

As we mentioned above in Remark 2.12, in the case where C is an elliptic curve and
there are no punctures there is a symplectic structure on mHiggsG(C) given by the
AKSZ formalism. More generally, when we do have punctures, we expect the moduli
space mHiggsG(C, D) to have a Poisson structure with a clear origin story coming
from the theory of derived Poisson geometry. In this section we’ll explain what this
story looks like.However,we emphasise that there are technical obstructions tomaking
this story precise with current technology: this section should be viewed as motivation
for the structures we’ll discuss in the rest of the paper. On the other hand, readers
who aren’t familiar with derived symplectic geometry can freely skip this section. We
refer the reader to [22] for the theory of derived Poisson structures and to [78,79,106]
for that of derived coisotropic structures. We would like to thank Pavel Safronov for
explaining many of the ideas discussed in this section to us.

Here’s the idea. Recall that we can identify the moduli space of singular q-
connections on a curve C as a fiber product:

q-ConnG(C, D) ∼= BunfrG(C) ×BunG (C\D)2 BunG(C\D),

where the map g : BunfrG(C) → BunG(C\D) is defined to send P 
→ (P|C\D, q∗
P|C\D). Consider the following commutative cube:
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q-ConnG(C, D)
f1

res

BunG(C)

BunG(C\D)

f2

g2
BunG(C\D)2

g1

r
BunG(B)k BL+G2k

BLGk BLG2k .

Here the top and bottom faces are homotopy Cartesian squares. What does this setup
buy us? We’ll first answer informally.

Claim First consider the bottom face of the cube. The stack BLG is 2-shifted sym-
plectic because the Lie algebra Lg has a non-degenerate invariant pairing: the residue
pairing. The Lie subalgebra L+g forms part of a Manin triple (Lg, L+g, L− + 0g)
which means that BL+G → BLG is 2-shifted Lagrangian. Therefore the bottom face
of the cube defines a 2-shifted Lagrangian intersection, which means that the pullback
BunG(B)k is 1-shifted symplectic.

Now consider the top face of the cube. If either C is an elliptic curve, or C =
CP

1 and we fix a framing at ∞, then the map BunG(C\D) → BLGk is also 2-
shifted Lagrangian. In particular BunG(C\D) is 1-shifted Poisson. Finally, the map
BunG(C) → BunG(C\D) is 1-shifted coisotropic, or equivalently the canonical map
BunG(C) → BunG(C\D) ×BLGk BL+Gk is 1-shifted Lagrangian. That means that
the top face of the cube defines a 1-shifted coisotropic intersection, which means that
the pullback q-ConnG(C, D) is 0-shifted Poisson.

The restriction map q-ConnG(C, D) → BunG(B)k is 1-shifted Lagrangian, which
means that if we form the intersection with a k-tuple of Lagrangians in BunG(B) then
we obtain a 0-shifted symplectic stack. For example, if ω∨

i is a point in BunG(B)

corresponding to a dominant coweight with stabilizer �i then B�i → BunG(B) is
1-shifted Lagrangian, so the moduli stack q-ConnG(C, D, ω∨) obtained by taking the
derived intersection is ind 0-shifted symplectic.

Now, let us make this claim more precise. The main technical condition that makes
this claim subtle comes from the fact that most of the derived stacks appearing in this
cube, for instance the stack BLG, are not Artin. As such we need to be careful when
we try to, for instance, talk about the tangent complex to such stacks. One can make
careful statements using the formalism of “Tate stacks” developed by Hennion [66].
We can therefore make our claim into a more formal conjecture.

Conjecture 2.26 Suppose C is either an elliptic curve or CP
1 with a fixed framing at

∞.

(1) The stack BLG is Tate 2-shifted symplectic, and both BL+G → BLG and
BunG(C\D) → BLGk are Tate 2-shifted Lagrangian.

(2) The stack BunG(C\D) is ind 1-shifted Poisson, and the map BunG(C) →
BunG(C\D) is ind 1-shifted coisotropic witnessed by the 2-shifted Lagrangian
map BL+Gk → BLGk .



Multiplicative Hitchin systems and supersymmetric gauge… Page 19 of 82 64

(3) The Lagrangian intersection BunG(B) is Tate 1-shifted symplectic, and the map
B�i → BunG(B) associated to the inclusion of the stabilizer of a closed point is
1-shifted Lagrangian.

As a consequence, the moduli stack q-ConnG(C, D) is ind 0-shifted Poisson and the
moduli stack q-ConnG(C, D, ω∨) is 0-shifted symplectic.

Remark 2.27 We should explain heuristically why the Calabi–Yau condition on C is
necessary. This is a consequence of the AKSZ formalism in the case where D is
empty: for the mapping stack Map(C,G/G) to be 0-shifted symplectic, or for the
mapping stack Map(C, BG) to be 1-shifted symplectic, we need C to be compact and
1-oriented. A d-orientation on a smooth complex variety of dimension d is exactly the
same as a Calabi–Yau structure.

More generally we can say the following. Let us consider the rational case where
C = CP

1. Consider the inclusion dr : g− = TBunfrG (CP
1\D)[−1] → r∗

TBLGk [−1] =
g((z))k : a map of ind-pro Lie algebras concentrated in degree zero. The residue pairing
vanishes after pulling back along r since elements of g− are g-valued functions on
CP

1 with at least a simple pole at every puncture in D. So the map r is isotropic with
zero isotropic structure; this structure is unique for degree reasons. We must check
that this structure is non-degenerate. It suffices to check that the sequence

TBunfrG (CP
1\D)[−1] → r∗

TBLGk [−1] → (TBunfrG (CP
1\D)[−1])∨

is an exact sequence of ind-pro vector spaces, and therefore an exact sequence of
quasi-coherent sheaves on the stack BunfrG(CP

1\D). To do this we identify the pair
(g−, g((z))k) as part of a Manin triple, where a complementary isotropic subalgebra
to g− is given by g+ = g[[z]]k . Using the residue pairing we can identify g+ with
(g−)∨ and therefore identify our sequence with the split exact sequence

0 → g− → g((z))k → g+ → 0.

Remark 2.28 Wewill conclude this section with some comments on the multiplicative
Hitchin system described above in Sect. 2.2. In particular, the derived point of view
suggests that both the multiplicative Hitchin fibers and the multiplicative Hitchin
section of Remark 2.19 will be—at least generically—canonically Lagrangian. We
can motivate this directly from the Chevalley map χ : G/G → T /W , by studying
the non-singular example. Generically, i.e. after restricting to the regular semisimple
locus, we can identify Grss/G with (T reg × BT )/W , so that the fibers of the tangent
space to G/G are generically equivalent to t[1] ⊕ t. The directions tangent to the
generic fibers of χ are concentrated in degree −1, meaning that the generic fibers of
χ are canonically 1-shifted Lagrangian for degree reasons. Likewise, the directions
tangent to the Steinberg section σ : T /W → G/G, at regular semisimple points,
are concentrated in degree 0, meaning that after restriction to the regular semisimple
locus is also canonically 1-shifted Lagrangian for degree reasons. Now, if L → X
is n-shifted Lagrangian and M is k-oriented then there is an AKSZ n − k-shifted
Lagrangian structure on themapping spaceMap(M, L) → Map(M, X) [21, Theorem
2.10], which establishes our claim in the non-singular case.
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We should compare this discussion to Corollary 4.8 in the rational case where
C = CP

1, where we prove that, in the rational case, the generic multiplicative Hitchin
fibers are, indeed, Lagrangian.

Remark 2.29 There’s yet another perspective that one might hope to pursue in order
to define our symplectic structures in the language of derived symplectic geometry.
Bouthier [17] gave a description of the multiplicative Hitchin system along the fol-
lowing lines. The Vinberg semigroup VG of G is a family of affine schemes over C

r

whose generic fiber is isomorphic to G but whose fibers lying on coordinate hyper-
planes correspond to various degenerations of G. Bouthier showed that the moduli
space of multiplicative Higgs bundles is equivalent to the moduli space of G-bundles,
along with a section of an associated bundle V ω∨

G built from the Vinberg semigroup
and the data of the coloured divisor (D, ω∨). It’s reasonable to ask whether one can
construct an AKSZ shifted symplectic structure on the moduli space from this point
of view, using the oriented structure on (CP

1,∞) and the results of Ginzburg and
Rozenblyum on shifted symplectic structures on spaces of sections [65].

3 Twisted gauge theory

Before we move on to the main mathematical content of the paper, we’ll digress a
little to talk about one situation where multiplicative Hitchin systems appear in gauge
theory. This story was our original motivation for studying the objects appearing in
this paper, but we should emphasise that it is quite independent from the rest of the
paper. The reader who is only interested in algebraic and symplectic geometry, and
not in gauge theory, can safely skip this section.

We’ll describe our multiplicative Hitchin systems as the moduli spaces of solutions
to the classical equations ofmotion in certain twistedfive-dimensional supersymmetric
gauge theories. This story is distinct from the appearance of the moduli space in [88]
as the Seiberg-Witten integral system of a 4dN = 2 theory. Instead the moduli space
will appear as the moduli space of solutions to the equations of motion in a twisted
5d N = 2 supersymmetric gauge theory, compactified on a circle. This story will be
directly analogous to the occurence of the ordinary moduli stack of Higgs bundles
in a holomorphic twist of 4d N = 4 theory (see [31,45] for a discussion of this
story); we’ll recover that example in the limit where the radius of the circle shrinks to
zero.

3.1 Background on supersymmetry and twisting

We should begin by briefly recalling the idea behind twisting for supersymmetric field
theories. This idea goes back to Witten [111]. Supersymmetric field theories have
odd symmetries coming from odd elements of the supersymmetry algebra. Choose
such an odd element Q with the property that [Q, Q] = 0. Then Q defines an odd
endomorphism ν(Q) of the algebra of observables of the supersymmetric field theory
with the property that ν(Q)2 = 0. The twisted algebra of observables associated to Q
is the cohomology of the operator ν(Q). If Q is chosen appropriately—if the stress-
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energy tensor of the theory is ν(Q)-exact—then the Q-twisted field theory becomes
topological.

Remark 3.1 From a modern perspective, using the language of factorization algebras,
the first author and P. Safronov discussed the formalism behind topological twisting in
[44], and gave criteria for twisted quantum field theories to genuinely be topological.
The supersymmetry algebras and their loci of square zero elements are discussed in
all cases in dimensions up to 10. This classification is also performed in a paper of
Eager et al. [43].

With the basic idea in hand, we’ll focus in on the example we’re interested in. We’ll
be interested in twists by square-zero supercharges Q that are not fully topological.
We’ll begin by describing the supercharges we’ll be interested in in dimensions 5 and
6.

Recall that there is an exceptional isomorphism identifying the groups Spin(5)
and USp(4). The Dirac spinor representation S of Spin(5) is four dimensional: under
the above exceptional isomorphism it is identified with the defining representation of
USp(4). Likewise there is an exceptional isomorphism identifying the groups Spin(6)
and SU(4). The two Weyl spinor representations S± are four dimensional: under the
exceptional isomorphism they are identified with the defining representation of SU(4)
and its dual.

Definition 3.2 The complexifiedN = k supersymmetry algebra in dimension 5 is the
super Lie algebra

A5
k = (sp(4; C) ⊕ sp(2k; C)R ⊕ V ) ⊕ (S ⊗ W ),

where V is the five-dimensional defining representation of so(5; C) ∼= sp(4; C),W is
the 2k-dimensional defining representation of sp(2k; C)R , and where there’s a unique
non-trivial way of defining an additional bracket � : Sym2(S ⊗ W ) → V .

Likewise, the complexified N = (k+, k−) supersymmetry algebra in dimension 6
is the super Lie algebra

A6
(k+,k−)

= (sl(4; C) ⊕ sp(2k+; C)R ⊕ sp(2k−; C)R ⊕ V ) ⊕ (S+ ⊗ W+ ⊕ S− ⊗ W−),

where V is the six-dimensional defining representation of so(6; C) ∼= sl(4; C), W±
is the 2k±-dimensional defining representation of sp(2k±; C)R , and where there’s a
unique non-trivial way of defining an additional bracket �± : Sym2(S± ⊗W±) → V .
Choosing a hyperplane in V defines a super Lie algebra map A5

k++k− → A6
(k+,k−)

which is an isomorphism on the odd summands.

Let us fix some notation for the square-zero supercharges—odd elements Q where
�(Q, Q) = 0—that we will refer to in the discussion below. Fix once and for all an
embedding C

5 ↪→ C
6 and a symplectic embedding W+ ↪→ W (the twisted theories

that we’ll define don’t depend on these choices). Compare to the discussion in [44,
4.2.5–4.2.6].
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• Let Qmin ∈ A5
1 be any non-zero element such that�(Qmin , Qmin) = 0—here “min”

stands for “minimal”. All such elements have rank one, and lie in a single orbit for
the action of so(5; C)⊕ sp(2; C). The image �(Qmin,−) ⊆ C

5 is 3-dimensional.
Using the given embeddings we can view Qmin equally as an element of the larger
supersymmetry algebras A5

2,A
6
(1,0) and A6

(1,1).

• Let QHT = Qmin + Q′ ∈ A5
2 be a non-zero element that squares to zero, and

where the image �(QHT ,−) ⊆ C
5 is 4-dimensional—here “HT” stands for

“holomorphic-topological”. All such elements have rank two and lie in a sin-
gle orbit under the action of so(5; C) ⊕ sp(4; C). Using the given embedding
C
5 ↪→ C

6 we can view QHT equially as an element of A6
(1,1).

3.2 Description of the twist

Having set up our notation, we can state one the way in which the moduli space of
multiplicative Higgs bundles arises from twisted supersymmetric gauge theory. We
will first state the relationship, then explain what exactly the statement is supposed to
mean.

Claim 3.3 If we take the twist of N = 2 super Yang–Mills theory with gauge group
G by QHT, on the five-manifold C × S1 × R

2 where C is a Calabi–Yau curve, with
monopole surface operators placed at the points (z1, 0), . . . , (zk, 0) in C × S1 with
charges ω∨

z1 , . . . , ω
∨
zk respectively, its moduli space of solutions to the equations of

motion can be identified with the shifted cotangent space

EOMHT(C × S1 × R
2) ∼= T ∗[1]mHiggs(C, D, ω∨).

Remark 3.4 The shifted cotangent space of a stack is a natural construction in the
world of derived geometry. In brief, the k-shifted cotangent space of a stack X has a
canonical projection π : T ∗[k]X → X , and the fiber over a point x ∈ X is a derived
affine space (i.e. a cochain complex)—the cotangent space to X at x shifted down in
cohomological degree by k.

So, let us try to unpack the meaning of Claim 3.3. Firstly, what does it mean to
identify “the moduli stack of solutions to the equations of motion” of our twisted
theory? We have the following idea in mind (discussed in more detail, for instance, in
[32,45]).

Construction 3.5 We’ll use the Lagrangian description for the twisted field theory. On
the one hand, we can describe a twisted space of fields and twisted action functional.
This is a fairly standard construction: one factors the action functional into the sum
Stw(φ) + Q�(φ) of a “twisted” action functional and a Q-exact functional. Note that
the action of the group Spin(n) × GR , where GR is the group of R-symmetries, is
broken to a subgroup. Only the subgroup of this product stabilizing Q still acts on the
twisted theory.

Having written down the twisted action functional, we’ll consider its critical locus:
the moduli space of solutions to the equations of motion. However, we can consider a
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finer invariant than only the ordinary critical locus: we can form the critical locus in
the setting of derived geometry. In classical field theory this idea is captured by the
classical BV formalism: for a modern formulation see e.g. [30]. In particular, for each
classical point in the critical locus, we can calculate the classical BV-BRST complex of
the twisted theory—concretely, we calculate the BV-BRST complex of the untwisted
theory, and add the operator Q to the differential. The twisted BV-BRST complex
models the tangent complex to the derived critical locus of the twisted theory.

So, to summarize, the BV formalism gives us a space: the critical locus of the
twisted action functional, equipped with a sheaf of cochain complexes, whose fiber
at a solution is the twisted BV-BRST complex around that solution. This structure is
weaker than a derived stack, but when we say a derived stack X “can be identified
with” the moduli space EOM of solutions to the equations of motion, we mean that we
can identify the space of C-points of X in the analytic topology with the underlying
space of EOM, and we can coherently identify the tangent complex of X at each
C-point x with the twisted BV-BRST complex at the corresponding classical solution.

Remark 3.6 There’s another subtlety that we glossed over in our discussion of the BV-
BRST complex above: a priori when you add Q to the differential of the untwisted
BV-BRST complex the result is only Z/2Z-graded, since Q has ghost number 0 and
superdegree 1, whereas the BV-BRST differential has ghost number 1 and superdegree
0. In order to promote it to a Z-graded complex we need to modify the degrees of our
fields using an action of U(1) inside the R-symmetry group, so that Q has weight 1.
This is possible in all the examples we’ll discuss below, and in our sketch argument
we’ll use this U(1) action to collapse theZ/2Z×Z-grading down to a singleZ-grading
everywhere without further comment.

Now that we know what Claim 3.3 means, why is it true? We’ll only outline an
argument here, since the whole twisted gauge theory story is somewhat orthogonal to
the emphasis of the rest of this paper. The outline we’ll give goes via the minimal twist
of 6d N = (1, 1) super Yang–Mills theory. This calculation was done independently
by Dylan Butson—a detailed version will appear in his forthcoming article [20].

(1) First, compute the twist of N = (1, 0) super Yang–Mills theory in 6-dimensions
by Qmin. This twisted theory is defined on a compact Calabi–Yau threefold X3, and
can be identified, in the sense of Construction 3.5, with the shifted cotangent space
T ∗[−1]BunG(X3). Note: there are at least twoways of doing this calculation. One
can calculate the twist directly using amethod very similar to Baulieu’s calculation
of the minimal twist of 10-dimensional N = 1 super Yang–Mills theory in [11].
Alternatively one can work in a version of the first order formalism where one
introduces an auxiliary 2-form field: this is the approach followed by Butson.

(2) One can extend this calculation to include a hypermultiplet valued in a represen-
tation W of G. One finds that the inclusion of the twisted hypermultiplet couples
the moduli space of holomorphic G-bundles to sections in the associated bundle
corresponding to W . That is, the moduli space of solutions of the twisted theory
can be identified with the shifted cotangent space T ∗[−1]Map(X3,W/G), where
W/G is the quotient stack. This tells us the twist ofN = (1, 1) super Yang–Mills:
this is the case where W = g.
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(3) The twist by the holomorphic-topological supercharge QHT corresponds to a defor-
mation of this moduli space. Specifically, let us set X3 = S × C where S is a
Calabi–Yau surface and � is a Calabi–Yau curve. In this case we can identify the
Qmin-twisted N = (1, 1) theory with

T ∗[−1]Map(S × �, g/G) ∼= T ∗[−1]Map(S × �, T [−1]BG)

∼= T ∗[−1]Map(S × T [1]�, BG).

The deformation to the twist by QHT corresponds to the Hodge deformation,
deforming T [1]� (the Dolbeault stack of �) to �dR (the de Rham stack of �: this
has the property that G-bundles on �dR are the same as G-bundles on � with a
flat connection).

(4) Now, all of these theories can be dimensionally reduced down to 5 dimensions.
Specifically, let us split S as C × Eq , and send the radius of one of the S1 factors
to zero, or equivalently degenerate the smooth elliptic curve Eq to a nodal curve.
We’re left with the identification, for the example we’re interested in:

EOMHT(C × S1 × �) ∼= T ∗[−1]Map(C × �dR,G/G).

Here we have identified Map(Enod, BG) with the adjoint quotient G/G.3 So far,
tn this discussion � was a compact curve. If we want to set � = C instead the
only change is that the −1-shifted tangent space becomes the 1-shifted tangent
complex. There’s a unique flat G-bundle on C, so we can identify

EOMHT(C × S1 × C) ∼= T ∗[1]Map(C,G/G).

(5) Finally, we need to include surface operators. In order to see how to do this,
let us go back to the Lagrangian description of our classical field theory. The
inclusion of monopole operators is usually thought of as modifying the space of
fields in our supersymmetric gauge theory, so that the gauge field is permitted to
be singular along the prescribed surface, with specified residues. If we track the
above calculation where the fields are allowed those prescribed singularities, the
result is that we should replace Map(C × Enod, BG) with the moduli space of
singular multiplicative Higgs fields with local singularity data corresponding to
the choice of charges of the monopole operators. That is we can identify,

EOMHT,mon(C × S1 × R
2) = T ∗[1]mHiggs(C, D, ω∨),

where we have written EOMHT,mon to indicate the moduli space of solutions to the
equations ofmotion in the QHT-twisted theorywithmonopole operators associated
to the colored divisor (D, ω∨).

3 Strictly speaking this is only the semistable part of the moduli space. We get G/G, for instance, by asking
for only those bundles which lift to the trivial bundle on the normalization.
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Remark 3.7 (Reduction to 4-dimensions) If we reduce further, to four dimensions,
by sending the radius of the remaining S1 to zero, then we recover a more familiar
twist first defined by Kapustin [70]. We can interpret this further degeneration as
degenerating the factor Eq not to a nodal, but to a cuspidal curve. The semistable part
of the stack Map(Ecusp, BG) of G-bundles on a cuspidal curve is equivalent the Lie
algebra adjoint quotient stack g/G, so we can identify the QHT-twisted 4d N = 4
theory with

EOMHT(C × �) ∼= T ∗[−1]Map(C × �dR, g/G)

∼= T ∗[−1]Map(T [1]C × �dR, BG).

This is the shifted cotangent space whose base is the moduli space of G-bundles on
C×� with a flat connection on� and a Higgs field onC (note that this twisted theory
is defined where C and � are any curves, not necessarily Calabi–Yau). This agrees
with the calculation performed in [45]. In particular, if we set � = C the result is

EOMHT(C × C) ∼= T ∗[1]HiggsG(C).

Remark 3.8 This supersymmetric gauge theory story should be compared to several
recent twisting calculations in the literature. Firstly, the minimal twist of 5d N = 2
gauge theory was discussed by Qiu and Zabzine [97] on quite general contact five-
manifolds. They described the twisted equations of motion in terms of the Haydys-
Witten equations.

A recent article of Costello and Yagi [35] also described a relationship between
multiplicative Higgs moduli spaces and twisted supersymmetric gauge theory in yet
another context. They calculated the twist of 6d N = (1, 1) gauge theory, but with
respect to yet another twisting supercharge Q with the property that the image of
[Q,−] in C

6 is five-dimensional. They then consider this theory on R
2 ×C × �, and

place it in the �-background in the R
2 directions. They argue that the resulting theory

is a four-dimensional version of Chern–Simons theory on C × � holomorphic on C
and topological in �.

The C-holomorphic �-topological 4d Chern–Simons theory on C × � was intro-
duced for the first time that we’re aware of by Nekrasov in his Ph.D. thesis [85, p. 89],
where it was also speculated that such a Chern–Simons theory would provide a new
geometric origin for quantum affine algebras. The idea was recently independently
discovered and investigated in detail by Costello [33]: the moduli stack of derived
classical solutions of 4d Chern–Simons theory on C × � can be identified with the
mapping stack Map(C × �dR, BG). Costello and Yagi in [35] go on to argue via a
sequence of string dualities that this 4d CS theory is dual to the ADE quiver gauge the-
ories discussed in [88,89]; this approachwas discussed independently by both Costello
[34] and Nekrasov [87] at String Math 2017. From another point of view, dualities of
this form were also discussed by Ashwinkumar, Tan and Zhao [7].

Heuristically speaking, the 4d Chern–Simons theory of [33,85] onCDol×�dR with
�dR = S1dR × Rtime quantizes, in the path formalism, the holomorphic symplectic
phase space of solutions to the Bogomolny monopole equations on CDol × S1dR, in
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the same way that ordinary 3d Cherns-Simons theory on CdR × Rtime quantized the
moduli space of flat connections on the Riemann surface CdR in the work of Witten
[112]. While Costello [33] considers Wilson operators, we consider Dirac singularties
of the monopoles or, equivalently, t’Hooft operators.

3.3 Langlands duality

Our main motivation for describing the multiplicative Hitchin system in terms of
a twist of 5d N = 2 super Yang–Mills theory is to make the first steps towards
a “multiplicative” version of the geometric Langlands conjecture. The description in
terms of supersymmetric gauge theory allows us to use the description of the geometric
Langlands conjecture in terms of S-duality for topological twists of 4d N = 4 super
Yang–Mills theory given by Kapustin and Witten [71]. Better yet, Witten described
S-duality in terms of the 6d N = (2, 0) superconformal field theory compactified on
a torus: one obtains dual theories by compactifying on the two circles in either of the
two possible orders [113]. We can leverage this story in order to describe a conjectural
duality for twisted 5d gauge theories.

The A- and B-twists of 4d N = 4 super Yang–Mills can both be defined by
deforming an intermediate twist sometimes referred to as the Kapustin twist [70] (see
[32,45] for more details). The moduli stack of solutions to the equations of motion
on C × R

2 in the Kapustin twist is the 1-shifted cotangent space of HiggsG(C):
the moduli stack of G-Higgs bundles on C . The A- and B-twists modify this in two
different ways. In the B-twist HiggsG(C) is deformed by a hyperkähler rotation, and it
becomes FlatG(C): the moduli stack of flat G-bundles on C . In the A-twist the shifted
cotangent bundle T ∗[1]HiggsG(C) is deformed to the de Rham stack HiggsG(C)dR—
the de Rham stack of X has the property that quasi-coherent sheaves on XdR are the
same as D-modules on X .

To summarizeKapustin andWitten’s argument therefore, S-duality interchanges the
A- and B-twists of 4d N = 4 super Yang–Mills thory, and provides an equivalence
between their respective categories of boundary conditions on the curve C . These
categories of boundary conditions can be identified on the B-side as the category of
coherent sheaves on FlatG(C), and on the A-side as the category of D-modules on
BunG(C), or equivalently coherent sheaves on BunG(C)dR.

Now, we observe that this family of twists arises as the limit of a family of twisted of
5dN = 2 gauge theory compactified on a circle, where the radius of the circle shrinks
to zero. Thismotivates an analogous five-dimensional story, whichwe summarizewith
the following “pseudo-conjecture”, by which we mean a physical statement whose
correct mathematical formulation remains to be determined.

Pseudo-Conjecture 3.9 (Multiplicative Geometric Langlands) Let G be a Langlands
self-dual group. There is an equivalence of categories

A-Branesq−1(mHiggsG(C, D, ω∨)) ∼= B-Branes(q-ConnG(C, D, ω∨))

where the category on the right-hand side depends on the value q.
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What does this mean, and are there situations in which we can make it pre-
cise? We’ll discuss a few examples where we can say something more concrete.
In each case, by “B-branes” we’ll just mean the category of coherent sheaves
Coh(q-ConnG(C, D, ω∨)). By “A-branes”we’llmean some version of q−1-difference
modules on the stack BunG(C).

Remark 3.10 This equivalence is supposed to interchange objects corresponding to
branes of opers on the two sides, and introduce an analogue of the Feigin-Frenkel iso-
morphism between deformed W-algebras (see [58,99]. This isomorphism only holds
for self-dual groups, which motivates the restriction to the self-dual case here.

Remark 3.11 Even for the ordinary geometric Langlands conjecture there are addi-
tional complications that we aren’t addressing here. For example, the most natural
categorical version of the geometric Langlands conjecture is false for all non-abelian
groups. Arinkin and Gaitsgory [4] explained how to correct the statement to obtain
a believable conjecture: one has to consider not all coherent sheaves on the B-side,
but only those sheaves satisfying a “singular support” condition. In [46] it was argued
that, from the point of view of twistedN = 4 super Yang–Mills theory these singular
support conditions arise when one restricts to only those boundary conditions com-
patible with a choice of vacuum. The same sorts of subtleties should equally occur in
the multiplicative setting.

3.3.1 The Abelian case

Suppose G = GL(1) (more generally we could consider a higher rank abelian gauge
group). In general for an abelian group the moduli spaces we have defined are trivial—
for instance the rational and trigonometric spaces are always discrete. However there
is one interesting non-trivial example: the elliptic case. For simplicity let us consider
the abelian situation with D = ∅: the case with no punctures.

Definition 3.12 Aq-differencemoduleonavariety X with automorphismq is amodule
for the sheaf �q,X of non-commutative rings generated by OX and an invertible
generator � with the relation � · f = q∗( f ) · �. Write Diffq(X) for the category of
q-difference modules on X .

In the abelian case the space q-ConnGL(1)(E) is actually a stack, but one can split
off the stacky part to define difference modules on it. Indeed, for any q one can write

BunGL(1)(E) ∼= BGL(1) × Z × E∨

and so

q-ConnGL(1)(E) ∼= BGL(1) × Z × (E∨ ×q C
×)

which means one can define difference modules on these stacks associated to an
automorphism of E∨ or E∨ ×q C

× respectively.
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Conjecture 3.13 There is an equivalence of categories for any q ∈ CP
1

Diffq(BunGL(1)(E)) ∼= Coh(q−1-ConnGL(1)(E)).

In this abelian case we can go even farther and make a more sensitive 2-parameter
version of the conjecture.

Conjecture 3.14 There is an equivalence of categories for any q1, q2 ∈ CP
1

Diffq1(q2-ConnGL(1)(E)) ∼= Diffq−1
2

(q−1
1 -ConnGL(1)(E)),

where q1 is the automorphism of E∨ ×q2 C
× acting fiberwise over each point of C

×.

This conjecture should be provable using the same techniques as the ordinary geo-
metric Langlands correspondence in the abelian case, i.e. by a (quantum) twisted
Fourier–Mukai transform (as constructed by Polishchuk and Rothstein [95]).

3.3.2 The classical case

Now, let us consider the limit q → 0. This will give a conjectural statement involv-
ing coherent sheaves on both sides analogous to the classical limit of the geometric
Langlands conjecture as conjectured by Donagi and Pantev [38]. The existence of an
equivalence isn’t so interesting in the self-dual case (where both sides are the same),
but the classical multiplicative Langlands functor should be an interesting non-trivial
equivalence. For example we can make the following conjecture

Conjecture 3.15 Let G be a Langlands self-dual group and let E be an elliptic curve.
There is an automorphism of categories (for the rational, trigonometric and elliptic
moduli spaces)

F : Coh(mHiggsG(E)) ∼= Coh(mHiggsG(E))

so that the following square commutes:

Coh(mHiggsT (E))
FM

p∗q !

Coh(mHiggsT (E))

p∗q !

Coh(mHiggsG(E))
F Coh(mHiggsG(E)).

Here we’re using the natural morphisms p : mHiggsB(E) → mHiggsG(E) and
q : mHiggsB(E) → mHiggsT (E), and FM is the Fourier–Mukai transform.

Alternatively, we can say something about classical geometric Langlands duality
in the non-simply-laced case. Recall in the usual geometric Langlands story that non-
simply-laced gauge theories in dimension 4 arise by “folding” the Dynkin diagram.
In other words, one identifies a non-simply laced simple Lie group as the invariants of
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a simply laced self-dual Lie group G̃ with respect to its finite group of outer automor-
phisms (either Z/2Z, or S3 in the case of the exceptional group G2). One obtains a 5d
N = 2 gauge theory with gauge groupG by taking the invariants of the 6dN = (2, 0)
theory reduced on a circle, where Out(G̃) acts simultaneously on G̃ and on the circle
we reduce along.

Putting this together yields the following conjecture.

Conjecture 3.16 Let G and G∨ be Langlands dual simple Lie groups, and say that
G arose by folding the Dynkin diagram of a self-dual group G̃. Then there is an
equivalence of categories

Coh(mHiggsG∨(E) ∼= Coh(mHiggsG̃(E)Out(G̃)),

where Out(G̃) acts simultaneously on G̃ and on the circle S1B , under the identification
mHiggsG̃(E) = BunG̃(E × S1B). As above, this equivalence should be compatible
with the Fourier–Mukai transform relating the categories for the maximal tori.

4 Construction of the symplectic structure

4.1 An example with G = GL2

Let us discuss in detail the geometry of the moduli space of multiplicative Higgs
bundles in some of the simplest examples, for the group G = GL2 and minimal
singularity data. The symplectic structures, and the Hitchin integrable system, which
we’ll analyze for the more general moduli spaces can be described very concretely in
this simple situation.

Fix G = GL2. We’ll work in the rational case, so we’ll work over the curve
C = CP

1 = C ∪ {∞} where C has coordinate z, with fixed framing point z∞ = ∞,
and fixed value g∞ ∈ GL2 for the framing.

Consider the connected component of mHiggsfrG(CP
1, D, ω∨) consisting of those

multiplicative Higgs bundles whose underlying G-bundle is trivializable. Fixing the
framing fixes a trivialization of the underlying G-bundle, which means this connected
component of the moduli space can be identified with the space of G-valued ratio-
nal functions g(z) on C with certain singularity conditions that we can write down
explicitly.

As our first explicit example we will consider the moduli space with two singu-
larities at distinct points z1 and z2 in C. Fix the corresponding coweights to be the
generators ω∨

z1 = (1, 0) and ω∨
z2 = (0,−1) in the defining basis of the coweight

lattice of GL2. We’ll denote the zero connected component in the moduli space of
multiplicative Higgs bundles by M(z1, z2).

The zero connected component of our moduli space mHiggsfrG(C, D, ω∨) can then
be identified with the space of functions g(z) valued in 2 × 2 matrices

g(z) =
(
a(z) b(z)
c(z) d(z)

)
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where a(z), b(z), c(z), d(z) are rational functions on CP
1 satisfying the following

conditions.

(1) The functions a(z), b(z), c(z), d(z) are regular everywhere on CP
1\{z2}, in par-

ticular they are regular at ∞ and z1.
(2) When evaluated at the point at infinity, g(∞) = g∞ where g∞ ∈ GL2 is a

representative of the conjugacy class we fixed by our choice of framing

g∞ =
(
a∞ b∞
c∞ d∞

)
, a∞d∞ − c∞b∞ �= 0

where a∞, b∞, c∞, d∞ ∈ C satisfy the condition
(3)

det g(z) = z − z1
z − z2

det g∞.

Theconditions (1), (2) and (3) together imply that the four functionsa(z), b(z), c(z),
d(z) have the form

a(z) = a∞z − a0
z − z2

, b(z) = b∞z − b0
z − z2

, c(z) = c∞z − c0
z − z2

, d(z) = d∞z − d0
z − z2

,

for an element (a0, b0, c0, d0) ∈ C
4 such that

(a∞z−a0)(d∞z−d0)− (b∞z−b0)(c∞z−c0) = (z− z1)(z− z2)(a∞d∞ −b∞c∞).

The above equation translates into the system of a linear equation and a quadric
equation on (a0, b0, c0, d0) ∈ C

4, so our moduli space is encoded by the following
complex affine variety:

M(z1, z2) = {
(a0, b0, c0, d0) ∈ C

4| − a0d∞ − a∞d0 + b0c∞ + b∞c0
= (−z1 − z2)(a∞d∞ − b∞c∞), a0d0 − b0c0
= z1z2(a∞d∞ − b∞c∞)

}

We conclude that, in this example, our moduli space M(z1, z2) is described by the
complete intersection of a hyperplane and a quadric in C

4, therefore by a quadric on
C
3. For example, say (a∞, b∞, c∞, d∞) = (1, 0, 0, 1), and z1 = −m, z2 = m for

some m ∈ C
×, then the linear equation implies that d0 = − a0, and the quadratic

equation gives a canonical form of the smooth affine quadric surface

a20 + b0c0 = m2

on C
3 = (a0, b0, c0).

Remark 4.1 In the limit when the singularities z1 and z2 collide, that is wherem → 0,
the quadric becomes singular: a20 + b0c0 = 0. The resolved singularity on a quadric
obtained by blowing up the singularity is identified with T ∗

CP
1. The m-deformed
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quadric a20 + b0c0 = m2 can be identified with the total space of an affine line bundle
over CP

1. This base CP
1 is the orbit of the fundamental miniscule weight in the

affine Grassmanian of the group GL2. We see that the moduli space M(z1, z2) of
multiplicative Higgs bundles in the case of two miniscule co-weight singularities for
GL2 is an affine line bundle over the flag varietyCP

1, where, locally, the 1-dimensional
base arises from the insertion of one singularity, and 1-dimensional fiber comes from
the insertion of the other.

Remark 4.2 The canonical coordinates a ∈ C, b ∈ C
× on the quadric (4.1) are given

by
a0 = a, b0 = b(m − a), c0 = b−1(m + a)

with Poisson brackets
{a, b} = b

and symplectic form da ∧ db
b .

Remark 4.3 We can likewise calculate the multiplicative Hitchin section as in
Remark 2.19 in this example. The Steinberg section for the group G = GL2 sends a
pair of eigenvalues (s, t) ∈ T /W to the element

(−s − t st
1 0

)
∈ G.

In order to describe the multiplicative Hitchin section, let us use a framing that lands in
the Steinberg section, say (a∞, b∞, c∞, d∞) = (0,−1, 1, 0). Then the moduli space
M(z1, z2) as above with this framing can be identified with the smooth affine quadric
surface

a0d0 + b20 = m2.

The multiplicative Hitchin section lies within the locus where d0 = 0, i.e. to the pair
of lines b0 = ±m inside our quadric surface. The fixed framing at infinity picks out
the line b0 = −m, or the locus of matrices of the form

g(z) =
( a0

z−m − z+m
z−m

1 0

)
.

In Poisson coordinates a, b as above, the multiplicative Hitchin section is equivalent
to the Lagrangian line a = m: a section of the projection map onto the space C

× on
which b is a coordinate.

For a more general singularity datum, but for the groupG = GL2 the multiplicative
Hitchin section admits a similar description, where now the datum (D, ω∨) is encoded
by a rational function p1(z)/p2(z)where p1 and p2 aremonic polynomials of the same
degree, say d. The multiplicative Hitchin section then can be described as the locus
of all matrices of the form

g(z) =
(

q(z)
p2(z)

− p1(z)
p2(z)

1 0

)
,
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where q(z) is a polynomial of degree less than d (so the section is d-dimensional).
The sections which are in fact SL2-valued are those with p1 = p2.

More general explicit cases ofmHiggsfrG(C)with parametrization byDarboux coor-
dinates for C = CP

1 and G = GLn case are discussed in [53].

4.2 The rational Poisson Lie group

The symplectic structures we’ll build on the rational moduli spaces of multiplicative
Higgs bundles ultimately arise by viewing the moduli spaces, ranging over colored
divisors (D, ω∨), as symplectic leaves in an infinite-dimensional Poisson Lie group.
This connection should be compared to the connection between the elliptic moduli
space and the elliptic quantum group in the work of Hurtubise and Markman [67,
Theorem 9.1].

Consider the infinite-type moduli space mHiggsfr,sing(CP
1) of multiplicative Higgs

bundles with arbitrary singularities. There is a map

r∞ : mHiggsfr,sing(CP
1) → G1[[z−1]],

defined by restricting a multiplicative Higgs bundle to a formal neighborhood of
infinity. In particular we can restrict r∞ to any of the finite-dimensional subspaces
mHiggsfrG(CP

1, D, ω∨) (the symplectic leaves). Here the notation G1[[z−1]] denotes
Taylor series in G with constant term 1. Recall that G1[[z−1]] is a Poisson Lie group,
with Poisson structure defined by the Manin triple (G((z)),G[z],G1[[z−1]]) ([41],
see also [102,110]).

The Poisson Lie group G1[[z−1]] has the structure of an ind-scheme using the
filtration where G1[[z−1]]n consists of G-valued polynomials in z−1 with identity
constant term and where the matrix elements in a fixed faithful representation have
degree at most n. When we talk about the Poisson algebra O(G1[[z−1]]) of regular
functions on G1[[z−1]], we are therefore referring to the colimit over n ∈ Z≥0 of the
finitely generated algebras O(G1[[z−1]]n). Due to the condition on the constant term
the group G1[[z−1]] is nilpotent, which means we can identify its algebra of functions
with the algebra of functions on the Lie algebra. That is:

O(G1[[z−1]]) = colim
n

O(G1[[z−1]]n)
∼= colim

n
Sym(g1[[z−1]]∗n).

The Poisson bracket is compatible with this filtration, in the sense that each
filtered piece O(G1[[z−1]]n) is Poisson, the structure maps O(G1[[z−1]]m) →
O(G1[[z−1]]n) are Poisson maps, and so is the multiplication map

m:O(G1[[z−1]]m) ⊗ O(G1[[z−1]]n) → O(G1[[z−1]]m+n)

for each m and n.
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We can describe the Poisson structure on G1[[z−1]] concretely, using the rational
classical r -matrix (see for instance [41,62], or [102]). Define

r = �

z − w
= �

∞∑
i=0

z−i−1wi ∈ g⊗2[w][[z−1]],

where � is the quadratic Casimir element in g⊗2 associated to a non-degenerate
invariant pairing κ . If f is a function in O(G1[[z−1]]), let ∇L( f ) and ∇R( f ) be the
g[z]-valued functions on G1[[z−1]] obtained from the left- and right-invariant vector
fields respectively on the group. In these terms, the Poisson bracket can be calculated
as

{ f1, f2}(g) = 〈r ,∇L( f1)(g) ⊗ ∇L( f2)(g) − ∇R( f1)(g) ⊗ ∇R( f2)(g)〉,

where here 〈−,−〉 denotes the residue pairing on g((z−1))⊗2. We’ll sometimes call
this the Sklyanin Poisson structure on G1[[z−1]] [104].
Example 4.4 Let’s investigate the Poisson bracket of some specific functions. Let u
and v be points in C, and let φ and ψ : G → C be algebraic functions. Associated to
these pairs we can define evaluation functions φu and ψv on a subgroup of G1[[z−1]]
by setting

φv : {g ∈ G1[[z−1]] : g(v) converges} → C

g 
→ φ(g(v)).

The left and right derivatives ∇L(φv)(g) and ∇R(φv)(g) of the evaluation function at
g can be paired with a vector field X by

(X ,∇L(φu)) := d

dt
φ(eX(u)t g(u))

∣∣∣∣
t=0

, (X ,∇R(φu))〉 := d

dt
φ(g(u)eX(u)t )

∣∣∣∣
t=0

.

(1)
If g is a point in G1[[z−1]] where g(v) and g(u) both converge, we can calculate

the value of the Poisson bracket {φu, ψv} at g, using a choice of basis {Xi } for the Lie
algebra g.

{φu, ψv}(g)
=

〈 �

z − w
,∇L(φu)(g)(z) ⊗ ∇L(ψv)(g)(w)

− ∇R(φu)(g)(z) ⊗ ∇R(ψv)(g)(w)
〉

=
dim g∑
i, j=1

∞∑
k=0

〈
�i j X

i ⊗ X j z−k−1wk,∇L(φu)(g)(z) ⊗ ∇L(ψv)(g)(w)

− ∇R(φu)(g)(z) ⊗ ∇R(ψv)(g)(w)
〉
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=
∑
i, j,k

〈
X j ,

d

dt
φ

(
e�i j u−k−1wk Xi t g(u)

)∣∣∣
t=0

⊗ ∇L(ψv)(g)(w)

− φ
(
g(u)e�i j u−k−1wk Xi t

)∣∣∣
t=0

⊗ ∇R(ψv)(g)(w)
〉

=
∑
i, j

�i j

u − v

(
d

dt
φ(eX

i t g(u))

∣∣∣∣
t=0

d

ds
ψ(eX

i sg(v))

∣∣∣∣
s=0

− d

dt
φ(g(u)eX

i t )

∣∣∣∣
t=0

d

ds
ψ(g(v)eX

i s)

∣∣∣∣
s=0

)

= 1

u − v
(κ(∇0

L(φ)(g(u)),∇0
L(ψ)(g(v))) − κ(∇0

R(φ)(g(u)),∇0
R(ψ)(g(v)))),

where now ∇0
L and ∇0

R denote the left and right derivatives on the finite-dimensional
group G, rather than the infinite-dimensional group G1[[z−1]], and where we’ve used
the canonical identification between g and g∗.

Lemma 4.5 Let g be an element of the subgroup G1(CP
1) ⊆ G1[[z−1]] consisting

of rational functions CP
1 → G framed at ∞. The cotangent space T ∗

g G1(CP
1) is

generated by the set of derivatives of evaluation vector fields {dφu(g)}, where u ranges
over points in C where g is regular, and φ ranges over algebraic functions G → C.

Proof Let g0(CP
1) be the Lie algebra of G1(CP

1), consisting of g-valued rational
functions f on CP

1 with f (∞) = 0. We can first identify the cotangent space
T ∗
g G1(CP

1) with the dual Lie algebra g0(CP
1)∗ ⊆ g0[[z−1]]∗ using the left-invariant

vector field; the image of dφu(g) under this identification is exactly ∇L(φu). We real-
ize the infinite-dimensional Lie algebra as the colimit over n of finite-dimensional Lie
algebras g∗

n as in Sect. 4.2.
We can pair our element∇L(φu)with rational functions f (z) ∈ g0(CP

1), the result
is

(∇Lφu, f (z)) = d

dt
φ(e f (u)t g(u))|t=0.

In particular, for any choice of rational function f we can find some u and φ such
that this pairing is non-vanishing. Since the pairing between g0(CP

1) and its dual is
non-degenerate, the set {∇L(φu)} of covectors must span the entire cotangent space
of the group G1(CP

1). �
We’ll conclude this subsectionwith some observations about vector fields generated

by adjoint invariant evaluation functions φu that will be useful for understanding the
integrable system structure on multiplicative Higgs moduli spaces.

Lemma 4.6 If φ is an adjoint invariant function on the group G, then ∇Lφu = ∇Rφu.

Proof If φ is adjoint invariant then

d

dt
φ(eXt ge−Xt ) = 0
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and consequently ∇Lφu − ∇Rφu = 0. �
Corollary 4.7 If φ and ψ are adjoint invariant functions then the evaluation functions
φu and ψv Poisson commute.

In particular this tells us the following.

Corollary 4.8 The intersection of the image of r∞ : mHiggsfrG(CP
1, D, ω∨) →

G1[[z−1]]with a fiber of the Chevalley map χ : G1[[z−1]] → T [[z−1]]/W is isotropic
for the Sklyanin Poisson structure.

4.3 Deformations of multiplicative Higgs bundles

We’ll begin this section by considering the tangent complex to the moduli space of q-
connections. For the arguments in this article we’ll only need to carefully consider the
case q = id of multiplicative Higgs bundles, but we’ll include some remarks regarding
the more general case. In this case the calculation was performed by Bottacin [15],
see also [67, Section 4]. We begin with an illustrative description of the deformation
complex, then use a more careful description gollowing Hurtubise and Markman. Fix
a multiplicative Higgs bundle (P, g) on C .

Let G = GLn , so we can identify the adjoint bundle gP as the bundle of endomor-
phisms of the rank n vector bundle V , obtained from P as the associated bundle for
the defining representation. We consider the sheaf of cochain complexes on C

F(P,g) = (gP [1] Ag→ gP (D))

in degrees −1 and 0 with differential given by the difference Ag = Lg − Rg of the
left- and right-multiplication maps by the singular section g of P . We can alternatively
phrase this, in a way that avoids analyzing the extension across the singularities, as in
[67, Section 4].

Definition 4.9 Define ad(g) to be the vector bundle

ad(g) = (gP ⊕ gP )/{(X ,−gXg−1) : X ∈ gP }.

Then we can write F as the sheaf of complexes

F(P,g) = (gP [1] Ag→ ad(g))

where now Ag is just the map X 
→ [(X ,−X)]. We will often denote a section of
ad(g) by an equivalence class of pairs [(XL , X R)].

To connect this to the paragraph above, note that there is a surjective bundle map
gP ⊕ gP → gP (D) sending (X ,Y ) to Lg(X) + Rg(Y ), whose kernel is exactly
{(X ,−gXg−1) : X ∈ gP }, and so it induces an isomorphism ad(g) → gP (D). This
isomorphism intertwines the two descriptions of the bundle map Ag .
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Remark 4.10 In [67], the map Ag is denoted by Adg . We are choosing to use slightly
different notation in order to avoid confusion with the adjoint action by g. The map Ag

heuristically sends a section X of gP to a section gX − Xg of gP (D), or equivalently,
after an overall right multiplication by g−1, to gXg−1 − X . Using the notation Adg
risks confusion with the map X 
→ gXg−1.

Remark 4.11 If one introduces a framing at a point c ∈ C then we must correspond-
ingly twist the complex F above by the line bundle O(−c) on C , i.e. we restrict to
deformations that preserve the framing and therefore are zero at the point c. So in that
case we define

F fr
(P,g) = (gP [1] Ag→ ad(g)) ⊗ O(−c).

Remark 4.12 Formore general q we shouldmodify this description by replacing g by a
q-connection. Note that one can still define the (q-twisted) adjoint action X 
→ gXg−1

using a q-connection, and so we can still define the complex

F(P,g) = (gP [1] Ag→ ad(g))

just as in the untwisted case.

This complex defines the deformation theory of the moduli space of multiplicative
Higgs bundles.

Proposition 4.13 [15, Proposition 3.1.3] The tangent space to the moduli space
mHiggsG(C, D, ω∨) at the point (P, g) is quasi-isomorphic to the hypercohomol-
ogy H

0(C;F(P,g)) of the sheaf F .

Remark 4.14 The remaining hypercohomology of the sheaf F(P,g) generically has
dimension dim zg (or 0 if we fix a framing at c ∈ C) in degree −1, and dimension
genus(C) · dim zg in degree 1. However the moduli space mHiggsG(C, D, ω∨) is in
fact a smooth algebraic variety. This follows from a result of Hurtubise and Markman
[67, Theorem 4.13], noting that their argument does not rely on the curve C being of
genus 1.

Corollary 4.15 In the rational case, the moduli space mHiggsfrG(CP
1, D, ω∨) has

dimension

2
∑
zi∈D

〈ρ, ω∨
zi 〉.

Proof One can use the same argument as [67] (see also [23, Proposition 5.6]), with
the additional observation that tensoring by the line bundle O(−c) (where here the
framing point c is the point at infinity) kills the outer cohomology groups (H−1 and
H

1 with our degree conventions, which differ from the conventions of loc. cit. by
one). Indeed, H

−1 consists of sections of gP that are annihilated by Ag (given for
generic g by constant sections valued in zg) while vanish at ∞, which are necessarily



Multiplicative Hitchin systems and supersymmetric gauge… Page 37 of 82 64

0. Likewise we can use the equivalence between the sheaf F(P,g) and its Serre dual to
see that H

1 also vanishes. Finally the Euler characteristic of the two step complex is
unchanged by tensoring by O(−c). �

In the rational case with our framing at infinity, when additionally P is the trivialG-
bundle, we can actually replace hypercohomology with ordinary cohomology. Indeed,
consider the spectral sequence on hypercohomology for our two step complex (gP →
ad(g))(−c). The E2 page of the spectral sequence has the form

H•(CP
1; gP (−c))[1] → H•(CP

1; ad(g)(−c)),

with differential induced from the map Ag . Since the cohomology of the two steps
are concentrated in degrees 0 and 1, there are no further differentials in the spectral
sequence. If P is trivial, the first term, H•(CP

1; gP (−c)), vanishes identically, so in
particular we have the following.

Corollary 4.16 The tangent space tomHiggsfrG(CP
1, D, ω∨) at the point (P, g)with P

trivial is quasi-isomorphic to the space of global sections H0(CP
1; ad(g)(−c)) of the

sheaf ad(g)(−c). In other words, to the space of pairs (XL , X R) of g-valued functions
on CP

1 vanishing at infinity, modulo the equivalence relation (as in Definition 4.9)

(XL , X R) ∼ (XL + X , X R − gXg−1). (2)

Remark 4.17 In what follows we will use a standard atlas for CP
1 associated

to our choice D of divisor. We cover CP
1 by a collection of open subsets

{U0,U1, . . . ,Uk,U∞}, where for i = 1, . . . , k Ui is a small open disk around zi ∈ D,
U∞ is a small open disk around ∞, and U0 is

U0 = CP
1\(V1 ∪ V2 ∪ · · · ∪ Vk ∪ V∞)

for Vi ⊆ Ui closed sub-disks.

4.4 Multiplicative Higgs bundles as symplectic leaves

We’ll now investigate the restriction of the Sklyanin Poisson structure on G1[[z−1]] to
our finite-dimensional moduli spaces of multiplicative Higgs bundles,
mHiggsfrG(CP

1, D, ω∨). Let g be a point in mHiggsfrG(CP
1, D, ω∨); we’ll abuse

notation and also write g for its image under the restriction map r∞ to a formal
neighbourhood of infinity.

Choose u ∈ C\D, and let φu be an evaluation function as in Example 4.4. We
can identify the Hamiltonian vector field associated to φu using the Sklyanin Poisson
structure. In terms of left and right components, it is represented as

Xφu (w) = 1

w − z
(∇Lφu,−∇Rφu), (3)
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where we’ve identified g and g∗ using the Killing form κ . We must first check that this
formula describes a well-defined vector field on the moduli space mHiggsfrG(CP

1, D,

ω∨), not just on the Poisson Lie group.

Lemma 4.18 If φ is an algebraic function on G, and u is a point in C\D, then the
Hamiltonian vector field Xφu onmHiggsfrG(CP

1, D, ω∨) belongs to the tangent space
to mHiggsfrG(CP

1, D, ω∨).

Proof Let us pass to a representative for the Hamiltonian vector field (3) of the form
(XL , 0) using the equivalence relation (2). We get

(XL
φu

(z), 0) = 1

z − u
(∇Lφu − Adg(z)(∇Rφu), 0) (4)

We need to check two points to ensure that (XL
φz

(w), 0) is a deformation of g in tangent

direction to mHiggsfrD

(1) in each chart in CP
1 there exists an equivalence frame in which X(z) ∼

(X̃ L
φu

(z), X̃ R
φu

(z)) are regular sections (as functions of z).
(2) X(z) → 0 as z → ∞.

To check (1) we need to look on the potential singularities as z → u or as z → zi .
There is no singularity as z → u since the representative (4) can be rewritten as

(XL
φu

(z), 0) = 1

z − u
(Adg(u)(∇Rφu) − Adg(z)(∇Rφu), 0) (5)

and since g(z) is regular in the limit z → u the ratio is also regular as z → u.
There is also no singularity as z → zi in the original equivalence frame (3) [or

equivalently, the singularity of (4) near z → zi is in the image under Adg(z) of the
space of regular functions by (3)].

Point (2) is clear since g(z) is regular at z = ∞. �
Write π : T ∗

g G1[[z−1]] → TgG1[[z−1]] for the map induced by the Sklyanin Pois-
son structure. We’ve just shown that the image under π of the space of evaluation
covectors—derivatives of evaluation functions—is contained in the tangent space
Tg mHiggsfrG(CP

1, D, ω∨). In particular, by Lemma 4.5, the image of the cotangent
space T ∗

g G1(CP
1) to the subgroup of G-valued framed rational functions on CP

1

is contained in Tg mHiggsfrG(CP
1, D, ω∨). We’ll now compare the Sklyanin Poisson

structure with the restriction to im(π) of a natural formula for a symplectic structure
on the tangent space Tg mHiggsfrG(CP

1, D, ω∨) given by a sum over residues.
Recall that a symplectic structure � on a subspace S ⊆ M of a Poisson manifold

is compatible with the Poisson structure if, for any two Hamiltonian functions φ,ψ

on M , we have an equality

�(Xψ, Xφ) = π(dφ, dψ), (6)



Multiplicative Hitchin systems and supersymmetric gauge… Page 39 of 82 64

where Xψ, Xφ are Hamiltonian vector fields in TS generated by φ and ψ , i.e.

Xψ = πdψ, Xφ = πdφ. (7)

So, in other words, we want to find an explicit symplectic form � : TS → T ∗
S such

that for any Hamiltonian function φ on M and any vector field X in TS we have

�(X , πdφ) = dXφ (8)

Let X and X ′ be vectors in the tangent space at a point g to our moduli space
mHiggsfrG(CP

1, D, ω∨). Consider the bilinear form �(X , X ′) defined by the sum of
residues over the set D̃ := D ∪ {∞},

�(X , X ′) = 1

2π ı

∑
zi∈D̃

∮
∂Ui

dw(κ(XL
i , XL ′

0 ) − κ(X R
i , X R′

0 )), (9)

where we have choosen equivalence frames in the open subsets Ui and U0 defined in
Remark 4.17 such that XL

i , X R
i are regular in the open subset Ui .

Proposition 4.19 The bilinear form �(X , X ′) is well-defined, i.e. independent of the
choice of representative (XL

i , X R
i ) in each chart Ui , and anti-symmetric.

Proof First we consider the change of equivalence frame in the second argument. So
let X ′ and X̃ ′ be two representatives of the same equivalence class differing by X ′

0 in
the patch U0. The section X ′

0 is regular in U0.

�(X , X̃ ′) − �(X , X ′)

= 1

2π ı

∑
zi∈D̃

∮
∂Ui

dz(κ(XL
i , XL ′

0 + Adg(z)X
′
0) − κ(X R

i , X R′
0 − X ′

0))

− 1

2π ı

∑
zi∈D̃

∮
∂Ui

dz(κ(XL
i , XL ′

0 ) − κ(X R
i , X R′

0 ))

= 1

2π ı

∑
zi∈D̃

∮
∂Ui

dz(κ(XL
i ,Adg(z)X

′
0) + κ(X R

i , X
′
0))

= 1

2π ı

∑
zi∈D̃

∮
∂Ui

dz(κ(Adg(z)−1XL
i + X R

i , X ′
0))

= 1

2π ı

∑
zi∈D̃

∮
∂Ui

dz(κ(Adg(z)−1XL
0 + X R

0 , X ′
0))

= − 1

2π ı

∮
∂U0

dz(κ(Adg(z)−1XL
0 + X R

0 , X ′
0))

= 0
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We used that Adg(z)−1XL
i + X R

i (the right variation of g) is invariant across the
patches, and the fact that the integrand is regular on U0 in the final equality.

Now, since we’ve proven invariance under the change of equivalence frame in the
second argument, let’s set X R′

0 = 0 by a suitable change of equivalence frame. In this
equivalence frame we have XL ′

0 = XL ′
i +Adg X R′

i on the overlap betweenUi andU0,
hence the original formula for the bilinear pairing becomes

�(X , X ′) = 1

2π ı

∑
zi∈D̃

∮
∂Ui

dz(〈XL
i , XL ′

i + Adg X
R′
i 〉

Since 〈XL
i , XL ′

i 〉 is regular on Ui this term vanishes and we get

�(X , X ′) = 1

2π ı

∑
zi∈D̃

∮
∂Ui

dz(〈XL
i ,Adg X

R′
i 〉

= 1

2π ı

∑
zi∈D̃

∮
∂Ui

dz(〈Adg−1XL
i , X R′

i 〉 (10)

On the other hand, we can set XL ′
0 = 0 in the original formula by a suitable

change of framing in the second argument, and in this equivalence frame we have
X R′
0 = X R′

i + Adg−1XL ′
i on the overlaps between Ui and U0, and consequently, the

original formula is transformed into the form

�(X , X ′) = − 1

2π ı

∑
zi∈D̃

∮
∂Ui

dw(〈X R
i ,Adg−1XL ′

i 〉 (11)

Comparing the expression (11) with (10) we have demonstrated that �(X , X ′) is
anti-symmetric.

To conclude, we’ve proven that�(X , X ′) is invariant under a change of equivalence
frame in the second argument, and so by the anti-symmetry we obtain that �(X , X ′)
is also invariant under a change of equivalence frame in the first argument. �
Remark 4.20 Note that we don’t yet assume that� is non-degenerate: we will demon-
strate this as part of Theorem 4.22 below.

Lemma 4.21 The restriction of the bilinear form (9) to the image im(π) ⊆
Tg mHiggsfrG(CP

1, D, ω∨) is compatible with Sklyanin’s Poisson structure π on
G1[[z−1]].
Proof Given two evaluation functions φu and ψv , where u and v are points in C\D,
we’d like to check that Sklyanin’s Poisson bracket is compatible [in the sense of (6)]
with the bilinear form �, so

�(Xψu , Xφv ) = −{ψu, φv}. (12)
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First we’ll choose equivalence frames such that the Hamiltonian vector field Xφu is
regular at D̃, and Xψv is regular in CP

1\D̃. The equivalence frame regular in D̃ can
be taken as in (3), and the equivalence frame regular in C\D̃ can be taken as in (4).
That is, we’ll take

(Xφu )i = ((XL
φu

, X R
φu

))i

= 1

z − u

(
Adg(u)∇Rφu,∇Rφu

)
(Xψv )0 = ((XL

ψv
, X R

ψv
))0

= 1

z − v

((
Adg(v)∇Rψv − Adg(z)∇Rψv

)
, 0

)
.

Then the definition of the bilinear form � in this equivalence frame becomes

�(Xφu , Xψv )

= 1

2π ı

∑
zi∈D̃

∮
∂Ui

dz

(z − u)(z − v)
〈Adg(u)∇Rφu,Adg(v)∇Rψv − Adg(z)∇Rψv〉.

(13)

The integrand is regular everywhere on U0\{u, v}, and since

∑
i∈D̃

∮
∂Ui

f (z)dz = −
∮

∂U0

f (z)dz

the pairing (13) is given as a sum of residues at w = u and w = v. Explicitly:

�(Xφu , Xψv )

= −(resz=u + resz=v)
dz

(z − u)(z − v)
〈Adg(u)∇Rφu,Adg(v)∇Rψv − Adg(z)∇Rψv〉

= −1

u − v
〈Adg(u)∇Rφu,Adg(v)∇Rψv − Adg(u)∇Rψv〉

− −1

u − v
〈Adg(u)∇Rφu,Adg(v)∇Rψv − Adg(v)∇Rψv〉

= −1

u − v
〈Adg(u)∇Rφu,−Adg(u)∇Rψv〉 − −1

u − v
〈Adg(u)∇Rφu,−Adg(v)∇Rψv〉

= 1

u − v
(〈∇Rφu,∇Rψv〉 − 〈∇Lφu,∇Lψv〉)

= −{φu, ψv}.
�

To complete the argument that mHiggsfrG(CP
1, D, ω∨) is a symplectic leaf for the

Sklyanin Poisson structure on G1[[z−1]] we need to show that in fact, we have an
identification
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im(π) = Tg mHiggsfrG(CP
1, D, ω∨).

That means for any tangent vector X ∈ Tg mHiggsfrG(CP
1, D, ω∨) we’d like to find a

Hamiltonian function φ on G1[[z−1]] such that X = Xφ = πdφ.

Theorem 4.22 The restriction map r∞ : mHiggsfrG(CP
1, D, ω∨) → G1[[z−1]] to a

formal neighbourhood of infinity is the inclusion of a symplectic leaf for the group
G1(CP

1) of G-valued framed rational functions on CP
1 under the Sklyanin Poisson

structure.

We’ll show this at the level of tangent spaces at a point g in the moduli space
mHiggsfrG(CP

1, D, ω∨). For any deformation δg of g that preserves the singularity
divisor D of gwewant to find aHamiltonian functionφ for Sklyanin’s bracket such that
the associated Hamiltonian vector field Xφ = δg; we’ve already shown the opposite
inclusion in Lemma 4.18.

First let’s give an explicit basis for the tangent space of mHiggsfrG(CP
1, D, ω∨)

at a point g. Assume that the restriction of g to each punctured open neighbourhood
U×
i of a point in D is regular semi-simple valued. With this assumption, the operator

Adg(z) : g → g is diagonalizable inU×
i .We have a family of Cartan sublagebras hz ⊂

g parameterized by z ∈ U×
i , where hz centralizes the regular semisimple elements

g(z). We then have a (z-dependent) decomposition of g into the Cartan hz and the root
spaces:

g = hz ⊕
∑
α

gα,z .

Since the family g(z) has a singularity of co-weight ω∨
zi in zi with [g(z)] ∼ z−ω∨

zi ,

the operator Adg has eigenvalue (z − zi )
−(α,ω∨

zi
) on gα in leading order. Let eα,z be a

generator of gα,z .
Below we’ll need a technical assumption on g(z) in U×

i : that the splitting hz ⊕∑
α gα,z extends analytically from U×

i to Ui , i.e. that there is a limit

eα,zi = lim
z→zi

eα,z .

We’ll use these conditions to calculate the dimension of the moduli space mHiggsfrG
(CP

1, D, ω∨); they are satisfied for g living in a dense open subset of the moduli
space.

Lemma 4.23 Assuming g(z) has regular semisimple values near each singularity, the
tangent space of mHiggsfrG(CP

1, D, ω∨) at g is isomorphic to the space of meromor-
phic g-valued functions X L of the form

XL =
∑
i

∑
α:〈α,ω∨

zi
〉>0

〈α,ω∨
zi

〉∑
ki,α=1

eα,zi xi,α,ki,α (z − zi )
−〈α,ω∨

zi
〉
, xi,α,ki,α ∈ C (14)
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and consequently the tangent space Tg mHiggsfrG(CP
1, D, ω∨) has dimension

dim Tg mHiggsfrG(CP
1, D, ω∨) =

∑
i

∑
α:〈α,ω∨

zi
〉>0

〈α,ω∨
zi 〉 = 2

∑
i

〈ρ, ω∨
zi 〉 (15)

where ρ = 1
2

∑
α>0 α is the Weyl vector.

Proof In the framing (XL , X R) ∼ (XL + Adg X R, 0), the singular part of XL in
U×
i in the subspace generated by eα,zi is in the image of the operator Adg applied

to a regular section generated by eα,zi . Consequently, there is an equivalence frame
(XL , X R) ∼ (X̃ R, X̃ R) in which X̃ L and X̃ R are both regular in Ui . �

Having described the tangent space to mHiggsfrG(CP
1, D, ω∨) at g, we’d like to

show that for every tangent vector X there is a Hamiltonian function φ on G1[[z−1]]
such that X = Xφ with respect to Sklyanin’s Poisson structure on G1[[z−1]]. Suppose
that is X is represented in the equivalence class by ((XL , X R))i , where (XL , X R)i
are regular in each chartUi around zi ∈ D̃. We’ll describe a Hamiltonian for X in the
following way.

Lemma 4.24 For any X ∈ Tg mHiggsfrG(CP
1, D, ω∨) there is a Hamiltonian potential

φ on G1[[z−1]] such that X = πdφ|g. For g̃ in a local neighborhood of g, a potential
φ is given by the formula

φ(g̃) := −1

2

∑
zi∈D̃

1

2π ıcρ

∮
∂Ui

dz tr ρ(g̃zg
−1
z )ρ(XL

i − Adgz X
R
i ),

where ρ is a faithful representation of G and we use a non-degenerate pairing of the
form tr ρ(X)ρ(X ′) = cρκ(X , X ′).

Proof The left gradient of φ(g̃) under δg̃ = Y L g̃ at g̃ = g is given by

Y L∇Lφ|g̃=g = −1

2

∑
zi∈D̃

1

2π ı

∮
∂Ui

dz〈Y L , (XL
i − Adgz X

R
i )) (16)

so

∇Lφ|g̃=g = −1

2

∑
zi∈D̃

1

2π ı

∮
∂Ui

dz(XL
i − Adgz X

R
i ) (17)

where we’ve identified g and g∗ using the pairing κ .
Now we’ll compute Sklyanin’s Hamiltonian vector field in the left frame (XL

φ , 0)
using the Eq. (4) (and using the fact that ∇Rφ = Adg−1∇Lφ). We find

XL
φ = −1

2

∑
i∈D̃

1

2π ı

∮
∂Ui

dz

w − z
(XL

i − Adgz X
R
i ) − AdgwAd

−1
gz (XL

i − Adgz X
R
i )
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= −1

2

∑
i∈D̃

1

2π ı

∮
∂Ui

dz

w − z
(XL

i + Adgw X
R
i ) − (Adgz X

R
i + Adg(z)Ad

−1
gz X

L
i )

= −1

2

∑
i∈D̃

1

2π ı

∮
∂Ui

dz

w − z
(XL

i + Adgw X
R
i )

− (XL
0 + Adgz X

R
0 − XL

i + Adg(z)(Ad
−1
gz X

L
0 + X R

0 − X R
i ))

= −1

2

∑
i∈D̃

1

2π ı

∮
∂Ui

dz

w − z
2(XL

i + Adgw X
R
i )

− (XL
0 + Adgz X

R
0 + Adg(z)(Ad

−1
gz X

L
0 + X R

0 )).

Now, as a function of z, the first term of the numerator of the integrand is regular
in each chart Ui for I ∈ D̃, and the second term of the numerator is regular in the
remaining chart U0. Therefore the first term evaluates to the residue at z = w while
the second is zero if w ∈ Ui , and the second term evaluates to a residue at z = w

while the first is zero if w ∈ U0. (Assume without loss of generality that w is not on
the integration contour). Either way, if w ∈ Ui we have, from the residue in the first
term,

(XL
φ , 0)(w) = resz=w

dz

z − w
(XL

i + Adgw X
R
i ) = (XL

i + Adgw X
R
i )(w),

and if w ∈ U0 we have, from the residue in the second term,

(XL
φ , 0)(w) = 1

2
resz=w

dz

z − w
(XL

0 + Adgz X
R
0 + Adg(z)(Ad

−1
gz X

L
0 + X R

0 ))

= (XL
0 + Adgw X

R
0 )(w).

Thus Xφ , in the left equivalence frame (XL
φ , 0) in each chart, coincides with the

vector field X that we’ve started in the same left equivalence frame (XL , X R) ∼
(XL + Adg X R, 0). �
Proof of Theorem 4.22 We’ve shown in Lemma 4.18 that

im(π) ⊂ Tg mHiggsfrG(CP
1, D, ω∨),

and in Lemma 4.24 that

Tg mHiggsfrG(CP
1, D, ω∨) ⊂ im(π),

hence im(π) = Tg mHiggsfrG(CP
1, D, ω∨). In combination with Lemma 4.21 prov-

ing the compatibility of the Poisson structure π and the bilinear form �, this implies
that mHiggsfrG(CP

1, D, ω∨) is a symplectic leaf for the Poisson–Lie group G1(CP
1).

In particular, since π is Poisson, the bilinear form � is non-degenerate and closed,
and so the form � actually defines a symplectic structure on the moduli space
mHiggsfrG(CP

1, D, ω∨). �
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Remark 4.25 It’s instructive to compare this calculationwith thework of Shapiro [102]
on symplectic leaves for the rational Poisson Lie group. According to Shapiro, and for
the groupG = SLn , there are symplectic leaves inG1[[z−1]] indexed by Smith normal
forms, i.e. by a sequence d1, . . . , dn of polynomials where di |di+1 for each i . This
data is equivalent to a dominant coweight coloured divisor (D, ω∨) in the following
way. The data of the sequence of polynomials is equivalent to the data of an increasing
sequence (D1, . . . , Dn) of n effective divisors in CP

1 disjoint from ∞: the tuples of
roots of the polynomials di . Let D = {z1, . . . , zk} be the support of the largest divisor
Dn , and for each z j let ω∨

z j = (m1, . . . ,mn) be the dominant coweight where mi is
the order of the root z j in the polynomial di . The dominant coweight Shapiro refers
to as the “type” of a leaf is, therefore, the sum of all these coweights.

To be a little more precise, Shapiro proves that for G = SLn these symplectic
leaves span the Poisson subgroup G ⊆ G1[[z−1]] of elements that can be factorized as
the product of a polynomial element in G1[z−1] and a monic C-valued power series.
In fact, the map r∞ (for any group, not necessarily G = SLn) factors through the
subgroup G: the Taylor expansion of all rational G valued functions can be factorized
in this way. As a consequence, Theorem 4.22 implies that our symplectic leaves for
the group SLn agree with Shapiro’s symplectic leaves.

Remark 4.26 Wecan also compare this description of the symplectic structure� on our
symplectic leaves with the symplectic structure on the moduli space of multiplicative
Higgs bundles on an elliptic curve studied by Hurtubise and Markman [67]. In order
to construct a symplectic structure by a procedure analogous to their construction, we
could describe a pairing induced from the natural equivalence between the tangent and
cotangent spaces of the moduli space of multiplicative Higgs bundles as described in
Sect. 4.3. That is, there’s a map of complexes of sheaves

(F fr
(P,g))

∗[1]
(
g∗
P (−D)[1] ⊗ O(−c)

κ◦A∗
g

A∗
g

g∗
P ⊗ O(−c)

)

Ag◦κ−1

F fr
(P,g)

(
gP [1] ⊗ O(−c)

Ag
gP(D) ⊗ O(−c)

)

where here κ denotes the isomorphism from gP → g∗
P induced by the Killing form.

The top line is the Serre dual complex to the bottom line; note that the incorporation
of the framing was necessary for this to be the case (that is, we’re using the relative
Calabi–Yau structure on the pair (CP

1, c)). Taking 0th hypercohomology we obtain a
map from the cotangent space to the tangent space of ourmoduli space ofmultiplicative
Higgs bundles.

4.5 Hamiltonian reduction

Now, let us assume that we consider the moduli space of framed multiplicative Higgs
bundles onCP

1 where the framing at infinity is a regular semi-simple framing element
g∞ of the group G. Multiplication by the constant function with value g∞ allows us
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to identify the space Gg∞[[z−1]] of G-valued power series with constant term g∞ as
a torsor for the Poisson Lie group G1[[z−1]], so the moduli space of multiplicative
Higgs bundles with framing value g∞ can still be viewed as a symplectic leaf in the
Poisson Lie group.

Let T ⊆ G be the centralizer of the element g∞ ∈ G; since g∞ is a regular
semisimple element, T is a maximal torus in G. Notice that adjoint action Adh by a
constant element h ∈ T on the Higgs field g(z)

Adh : g(z) 
→ hg(z)h−1

preserves the degree of singularities at the divisor D and also preserves the
framing g∞. Therefore, the differential of Adh defines a cotangent vector in
T ∗
g mHiggsfrG(CP

1, D, ω∨).
Recall fromCorollary 4.7 that adjoint invariant functions of g(z) descend to Poisson

commuting functions on the moduli space mHiggsfrG(CP
1, D, ω∨).

Example 4.27 Let ρ be a faithful representation of G, and let u be an element of C.
The evaluation character

ϕρ,v : {g ∈ G1[[z−1]] : g(v) converges} → C

g 
→ trρ g(v)

is an adjoint invariant function.

In this subsection, we’ll show that the T action onmHiggsfrG(CP
1, D, ω∨) by global

conjugation is Hamiltonian, generated by the residues at infinity of adjoint invariant
Hamiltonian functions.

Remark 4.28 More precisely, in the reductive case we won’t have a Hamiltonian T
action but a Hamiltonian action of a subtorus T ′ of rank r , the rank of the semisimple
part of the gauge group.

First we’ll proceed in the reverse direction. That is, we’ll show that the Hamilto-
nian vector field generated by the residue at infinity of an adjoint invariant function
corresponds to the adjoint action by an element h ∈ T .

Lemma 4.29 Let ϕρ,z be the evaluation character of a faithful representation of G
evaluated at the point z. Define

resϕρ,∞ := 1

2π ı

∮
∂U∞

dzϕρ,z (18)

to be the residue of ϕρ,z at z = ∞. Then the Hamiltonian vector field Xρ,∞ =
πd resϕρ,∞ generates a constant adjoint action by h ∈ T onmHiggsfrG(CP

1, D, ω∨)

where T ⊂ G is the centralizer of the framing value g∞.
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Proof From the left frame version of Sklyanin’s formula (5) we have

(XL
ρ,∞(w), 0) = 1

2π ı

∮
∂U∞

dz

w − z
((Adgz∇Rϕρ,z − Adgw∇Rϕρ,z), 0) (19)

Here, as usual, we’ve identified g and g∗ using the Killing form. The numerator of the
integrand is a regular function in the chartU∞ away from the point z = ∞. Therefore
the contour integral can be evaluated as a sum of the residues at z = ∞ and at z = w

if w ∈ U∞. The residue at z = w vanishes because the numerator vanishes at z = w.
Therefore

(XL
ρ,∞(w), 0) = resz=∞

(
dz

z − w
(Adgz∇Rϕρ,z − Adgw∇Rϕρ,z), 0

)

= ((Adg∞ − Adg(w))∇Rϕρ,∞, 0)

∼ (∇Lϕρ,∞,−∇Rϕρ,∞)

where the last operation ∼ indicates equivalence under the relation (2). Conse-
quently we’ve obtained that Xρ,∞ ∼ (∇Lϕρ,∞,−∇Rϕρ,∞) is a constant vector
field, i.e. is independent of w. Moreover, since ϕ is adjoint invariant it follows that
∇Lϕρ,∞ = ∇Rϕρ,∞, and therefore Xρ,∞ generates the constant adjoint action on
mHiggsfrG(CP

1, D, ω∨) generated by the element ∇Lϕρ,∞ of g. It remains to show
that the element ∇Lϕρ,∞ belongs to the Lie algebra of the centralizer T ⊂ G of g∞.
Recall that ϕρ,∞ = tr ρ(g∞). By definition, using the Killing form, X = ∇Lϕρ,∞ is
an element of g such that

trρ(Yg∞) = 〈Y , X〉 for all Y ∈ g,

where we are using the short-hand notation trρ(a1a2 · · · an) to denote the trace
tr(ρ(a1)ρ(a2) · · · ρ(an)).

We want to show that X is in the centralizer of g∞, so X̃ = X where X̃ := Adg∞ X .
We can characterize X̃ by the condition

trρ(Yg∞) = 〈Adg∞Y , X̃〉 for all Y ∈ g (20)

Let Ỹ = Adg∞Y . Since Adg∞ : g → g is an isomorphism, we can equivalently write
this as

trρ(Adg−1∞ Ỹ g∞) = 〈Ỹ , X̃〉 for all Ỹ ∈ g

or trρ(Ỹ g∞) = 〈Ỹ , X̃〉 for all Ỹ ∈ g

by cyclic invariance of the trace. Therefore, X̃ is uniquely determined by the same
relation as X , and hence X̃ = X , i.e. Adg∞ X = X , and hence X is in the centralizer
T ⊂ G of g∞ as required. �
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Now we’d like to find a collection of Hamiltonian functions of the form resϕρi ,∞,
for a set of faithful G-representations {ρi }, which generate the action of the whole
group T . The vector field Xρ generated by resϕρ,∞ as in the previous lemma is
defined by the relation

trρ(Yg∞) = 〈Y , Xρ〉 for all Y ∈ t,

where now we can assume that Xρ,Y lie in the Lie algebra t of T , and that g∞ ∈ H .
Write g∞ in the form

g∞ =
∏
k

q
ω∨
k

k

where ω∨
k are fundamental co-weights ω∨

k : C
× → T and their evaluation is denoted

exponentially, i.e. by ω : q 
→ qω∨
. Assume that |qk | < 1.

Remark 4.30 This form for the framing value g∞ is motivated by the gauge theory
construction in [88], where qi correspond to the exponentiated coupling constants for
an ADE quiver theory.

In this form, Xρ is determined by

∑
w∈weightsρ

(w(Y )w(g∞)) = 〈Y , Xρ〉.

Identified with an element of the dual Lie algebra t∗, the Xρ can then be written as

Xρ =
∑

w∈weightsρ
w

∏
k

qw(ω∨
k ), (21)

where the sum is over weights w ∈ t∗ of the representation ρ. We’ll use this form to
show the following.

Lemma 4.31 Suppose that g∞ = ∏
k q

ω∨
k

k is a regular semi-simple element. There
exists ε > 0 such that if |qk | < ε for all k, then for a collection of highest weight
representations ρw with linearly independent highest weights w in the Lie algebra t∗,
the Hamiltonian functions resϕρw,∞ generate the adjoint action of a subtorus T ′ of
the centralizer T ⊂ G of the element g∞ of dimension r, the rank of the semisimple
part of G.

Proof Assume that ρ is a finite-dimensional irreducible representation with highest
weight wh . We’ll pick the highest weight term and recall that the other weights w′ of
ρ can be related to the highest weight wh by

w′ = wh −
∑

niαi ,
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where ni ≥ 0,
∑

ni ≥ 1, and αi are simple roots dual to coweights ω∨
i . Therefore,

the terms in (21) corresponding to the lower weights w′ in the sum will be suppressed
in the qk → 0 limit by the coefficient

∏
k q

nk
k .

More explicitly, take a collection of highest weight irreducible representations {ρw}
with linearly independent highest weights wρ (for example, a set of fundamental
weights). Then in the leading order in qk , and in the limit qk → 0, the value Xρ is
determined by the first term,with highest weightwρ , and the correction terms are given
by polynomials in qk with zero constant term, therefore by expressions vanishing in
the limit qk → 0. In particular, since the representations {ρw} are linearly independent,
the vector fields Xρw are also linearly independent in the limit where q → 0. Since
linear independence is an open condition, it follows that the Hamiltonian vector fields
Xρw are linearly independent for sufficiently small |qk |. �
Remark 4.32 The limit where the parameters qk become very small is identified the
perturbative limit of a quiver gauge theory in [88]. This limit also appears in Foscolo’s
work [52] on the construction of periodic monopoles, corresponding to the large value
of the Higgs field at infinity (we’ll discuss the connection to periodic monopoles in
Sect. 6.

Remark 4.33 The rank r subtorus T ′ is not generally canonical, but any choice is
canonically isogenous to the quotient T /Z(G) of T by the center of G (by the com-
position of the inclusion T ′ ↪→ T with the projection onto the quotient, which is a
homomorphism between rank r tori with finite stabilizers, therefore surjective). Dif-
ferent choices will give canonically isomorphic Hamiltonian reductions.

We define the reduced moduli space of multiplicative Higgs bundles to be the
Hamiltonian reduction by this adjoint T ′-action.

Corollary 4.34 For a regular semi-simple element g∞ ∈ G, with |qk | sufficiently small,
there is a symplectic spacemHiggsredG (CP

1, D, ω∨) defined to be the symplectic reduc-
tion of mHiggsfrG(CP

1, D, ω∨) by the torus T ′, i.e.

mHiggsredG (CP
1, D, ω∨) := (resϕρw,∞)−1(cw)//T ′

where ρw runs over a collection of irreducible highest weight representations with
linearly independent highest weights w, and fixed cw ∈ C. This reduced moduli space
has dimension

dimC mHiggsredG (CP
1, D, ω∨) = dimC mHiggsfrG(CP

1, D, ω∨) − 2 rank(T ′). (22)

Using the multiplicative Hitchin fibration from Sect. 2.2, this reduction is expected
to resolve the problem mentioned in Remark 2.18. We encapsulate this expectation in
the following conjecture.

Conjecture 4.35 The reduced moduli space mHiggsredG (CP
1, D, ω∨) is the total space

of an algebraic integrable system with generically compact smooth fibers.
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Remark 4.36 We’ve already argued that the total space is algebraic symplectic, and
that the multiplicative Hitchin fibers are generically Lagrangian. It only remains to
verify that the fibers are generically complex tori. When G = GL(r) one can verify
the conjecture directly by computing the genus of the spectral curve with the Newton
polygon.

Example 4.37 Consider the moduli space mHiggsredGL(r)(CP
1, D, ω∨) associated to a

colored divisor (D, ω∨) given by a collection of n points valued inω∨
1 , and a collection

of n points valued in ω∨
r−1. Here ω∨

i denotes the fundamental co-weight associated
to the i th node in the Dynkin diagram of Ar−1, numbered in increasing order from
one end of the diagram. In this case, the corresponding Ar−1 quiver gauge theory in
[88] has gauge group

∏r−1
i=1 SU(ni ) with ni = n, and there are n fundamental matter

multiplets attached to the node 1, and n anti-fundamental matter multiplets attached
to the node r − 1. The spectral curve is a planar curve in C × C of the form (see e.g.
[88])

P(x, t) = 0

where P(x, t) = ∑r
i=0 t

r−i Ti (x), and the Ti (x) all have the same degree n.
The Newton polygon of P(x, t) is a n × r rectangle. By the genus formula for a

generic plane curve [10,72], the genus g(P) of the spectral curve is equal to the number
of integral points in the interior of the Newton polygon: g(P) = (n − 1)(r − 1). The
fibers of the algebraic integrable system are identified with the Jacobian of the spectral
curve, and hence we obtain that the dimension of the fiber is (n − 1)(r − 1).

On the other hand, recall that the dimension formula (22) together with (15) gives

dimmHiggsredG (CP
1, D, ω∨) = dimmHiggsG(CP

1, D, ω∨) − 2 rank(T ′)

=
∑
i

2〈ρ, ω∨
i 〉 − 2(r − 1)

= 2n(r − 1) − 2(r − 1)

= 2(n − 1)(r − 1),

We see that, indeed, the dimension of the fiber of the Hitchin fibration is half of the
dimension of the total reduced moduli space mHiggsredG (CP

1, D, ω∨).

In Part B of the paper, we’ll show that the reduced moduli space carries not only a
symplectic structure, but a hyperkähler structure, and that it can be identified with a
hyperkähler moduli space of periodic monopoles on R

2 with a framing at ∞.

5 Quantization and the Yangian

The description of the moduli spaces of multiplicative Higgs bundles as symplectic
leaves in the rational Poisson Lie group has interesting consequences upon quan-
tization. The Poisson algebra O(G1[[z−1]]) has a well-studied quantization to the
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Yangian Y (g). This is the unique Hopf algebra quantizing the algebra U (g[z]) with
first order correction determined by the Lie bialgebra structure on g[z]. Recall that
(g((z)), g[z], g1[[z−1]]) is a Manin triple, so the residue pairing on g((z)) induces an
isomorphism between g1[[z−1]] and the dual to g[z], and therefore a Lie cobracket on
g[z]. The uniqueness of this quantization is a theorem due to Drinfeld [42, Theorem
2].

Definition 5.1 The Yangian of the Lie algebra g is the unique graded topological
Hopf algebra Y (g) which is a topologically free module over the graded ring C[[�]]
(where � has degree 1), so that when we set � = 0 we recover Y (g) ⊗C[[�]] C ∼=
U (g[z]) as graded rings (where z has degree 1), and where the first order term in the
comultiplication � is determined by the cobracket δ in the sense that

�
−1(�( f ) − σ(�( f ))) mod � = δ( f mod �),

for all elements f ∈ Y (g). Here σ is the braiding automorphism of Y (g)⊗2 (i.e.
σ( f ⊗ g) = g ⊗ f ).

Remark 5.2 We can equivalently identify the classical limit Y (g) ⊗C[[�]] C of the
Yangian with the algebra of functions O(G1[[z−1]]) on the Poisson Lie group. As a
pro-vector space, or equivalently as a graded vector space where z has degree 1, we
can identify

Y (g) ⊗C[[�]] C ∼= U (g[z])
∼= Sym(g[z])
∼= Sym(g0[[z−1]]∨)

∼= O(g0[[z−1]]) ∼= O(G1[[z−1]]).

There is a very extensive literature on the Yangian and related quantum groups.
The general theory for quantization of Poisson Lie groups, including the Yangian, was
developed by Etingof and Kazhdan [47]. For more information we refer the reader to
Chari and Pressley [24], or for the Yangian specifically to the concise introduction in
[33, Section 9].

Likewise, we can study deformation quantization for the algebra of functions
O(mHiggsfrG(CP

1, D, ω∨)) on our symplectic moduli space. This moduli space is,
in particular, a smooth finite-dimensional Poisson manifold, so its algebra of func-
tions can be quantized, for instance using Kontsevich’s results on formality [75].

Definition 5.3 The quantum algebra of functions O�(mHiggsfrG(CP
1, D, ω∨)) is a

choice of deformation quantization of the Poisson algebra of functions O(mHiggsfrG
(CP

1, D, ω∨)). That is, an associative C[[�]]-algebra where the antisymmetrization
of the first order term in � of the product recovers the Poisson bracket.

While we have a Poisson morphism mHiggsfrG(CP
1, D, ω∨) → G1[[z−1]]

by Theorem 4.22, and therefore a map of Poisson algebras O(G1[[z−1]]) →
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O(mHiggsfrG(CP
1, D, ω∨)) there’s no automatic guarantee that we can choose a quan-

tization of the target admitting an algebramap from theYangianquantizing this Poisson
map—one would need to verify the absence of an anomaly obstructing quantization.
There is however a natural model for this quantization, to a Y (g)-module, constructed
by Gerasimov et al. [64] (extending an earlier calculation [63] for g = gln).

Theorem 5.4 For any semisimple group G, and any choice of local singularity data,
the Poisson map O(G1[[z−1]]) → O(mHiggsfrG(CP

1, D, ω∨)) quantizes to a Y (g)-
module structure on O�(mHiggsfrG(CP

1, D, ω∨)), a vector space quantizing the
algebra of functions on the multiplicative Higgs moduli space.

This theorem is a direct consequence of the Gerasimov, Kharchev, Lebedev and
Oblezin (GKLO) construction of Y (g)-modules whose classical limits are symplectic
leaves in the rational Poisson Lie group. Let us briefly recall some relevant results
from [64].

Theorem 5.5 (Gerasimov et al. [64, Theorem3.1, Proposition 4.1])Let g be a semisim-
ple Lie algebra. Let m1, . . . ,mr of non-negative integers, where r is the rank of G,
and let {νi,k : i = 1, . . . , r , j = 1, . . . , �i } be a set of arbitrary complex numbers.
Suppose that we have �i = ∑r

j=1m ja ji , where a is the Cartan matrix of g. Associated
to every such datum, there is a distinct Y (g)-module M(mi ),(νi,k ), whose classical limit
is a symplectic leaf in G1(CP

1) of dimension 2(m1 + · · · + mr ).

The datum {(mi ), (νi,k)} indexing a GKLO module is equivalent to the datum of a
dominant coweight-colored divisor (D, ω∨). To translate from the first description to
the second, the coweight at a point z ∈ D is given by the vector (m1, . . . ,mr ) where
mi = |{νi,k = z}|. Under this translation, the dimension 2(m1 + · · · + mr ) is equal
to the dimension 2

∑〈ρ, ω∨
i 〉 of the multiplicative Higgs moduli space associated to

(D, ω∨).
Now, let us observe how this theorem immediately implies the existence of quan-

tizations for our moduli spaces of multiplicative Higgs bundles.

Proof of Theorem 5.4 We have described two lists of symplectic leaves in the Pois-
son Lie group G1(CP

1). Firstly, the set of symplectic leaves mHiggsfrG(CP
1, D, ω∨)

indexed by colored divisors (D, ω∨). Secondly, the set of symplectic leaves con-
structed by GKLO—the classical limits of the Yangian modules M(mi ),(νi,k ), indexed
by data {(mi ), (νi,k)}. These two sets of symplectic leaves have the same sets of
dimensions, with only finitely many representatives of each dimension. Furthermore,
the union of symplectic leaves given bymoduli spaces of multiplicative Higgs bundles
is the whole Poisson Lie group G1(CP

1). Therefore the two sets of symplectic leaves
coincide. In particular everymoduli spacemHiggsfrG(CP

1, D, ω∨) is the classical limit
of one of the Y (g) modules M(mi ),(νi,k ) constructed by GKLO. �
Example 5.6 One example is given by the case where the only pole lies at 0 ∈ C,
so the map to the Poisson Lie group G1[[z−1]] factors through the polynomial group
G1[z−1]. This example is included in the work of Kamnitzer et al. [69]. They calculate
the quantization of slices in the thick affine Grassmannian G((t−1))/G[t]. The thick



Multiplicative Hitchin systems and supersymmetric gauge… Page 53 of 82 64

affine Grassmannian has an open cell isomorphic to G1[[z−1]]. For each dominant
coweight ω∨ there is a slice defining a symplectic leaf in this open cell: it’s exactly the
leaf corresponding to multiplicative Higgs fields with a single pole at 0 with degree
ω∨. Kamnitzer et al quantize this slice (in particular; they also quantize slices through
to the other cells in the thick affine Grassmannian) to a Y (g)-module of GKLO type.

Remark 5.7 This result should be compared to the conjecture made in [88, Chapter
8.1]. The Poisson Lie group G1[[z−1]] receives a Poisson map from the full moduli
space mHiggsfr,sing(CP

1) of multiplicative Higgs bundles with arbitrary singularities.
Upon deformation quantization therefore, the quantized algebra of functions on this
moduli space is closely related to the Yangian.

Remark 5.8 (q-Opers and Quantization) Finally, let us refer back to Remark 2.19
and discuss the brane of q-opers, and the associated structures that should arise after
quantization. Recall that themultiplicativeHitchin systemhas a natural section defined
by post-compositionwith the Steinberg section T /W → G/G. Themoduli space of q-
opers is the subspace of q-ConnG(C, D, ω∨) defined to be the multiplicative Hitchin
section after rotating to the point q in the twistor sphere of complex structures. A
difference version of the moduli space of opers was studied in the work of Mukhin
and Varchenko [84]; it would be valuable to compare this definition, directly in the
language of difference operators, with our approach to opers via the multiplicative
Hitchin section, paralleling the work of Beilinson and Drinfeld in the additive case
[12, Section 3.1].

Now, we expect that the space of q-opers will, in the rational case, be Lagrangian,
and thereforewill admit a canonicalP0-structure—a−1-shifted Poisson structure—on
its derived algebra of functions. It would be interesting to study the quantization of this
P0-algebra, and to investigate its relationship with the q-W algebras of Sevostyanov
[74,99,101], of Aganagic–Frenkel–Okounkov [1], and of Avan–Frappat–Ragoucy [9].
We’ll discuss some first steps in this direction in Sect. 9.

Part B: Hyperkähler structures

6 Periodic monopoles

6.1 Monopole definitions

Moduli spaces of q-connections on a Riemann surface C are closely related to moduli
spaces of periodic monopoles, i.e. monopoles on three-manifolds that fiber over the
circle (more specifically, with fiber C and monodromy determined by q). Let GR be
a compact Lie group whose complexification is G. The discussion in this section will
mostly follow that of [23,105].

Write M = C ×q S1R for the C-bundle over S1 with monodromy given by the
automorphism q. More precisely, M is the Riemannian three-manifold obtained by
gluing the ends of the productC×[0, 2πR] of Riemannian manifolds by the isometry
(x, 2πR) ∼ (q(x), 0).
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Definition 6.1 A monopole on the Riemannian three-manifold M = C ×q S1R is a
smooth principal GR-bundle P equipped with a connection A and a section � of the
associated bundle gP satisfying the Bogomolny equation

∗FA = dA�.

Remark 6.2 We should emphasise the difference between the Riemannian three-
manifold M = C ×q S1R appearing in this section and the derived stack C ×q S1B
(the mapping torus) appearing in the previous section. These should be thought of
as smooth and algebraic realizations of the same object (justified by the comparison
Theorem 6.20) but they are a priori defined in different mathematical contexts.

We can rephrase the data of a monopole on M as follows. Let C0 = C × {0} be
the fiber over 0 in S1, viewed as a Riemann surface. Let P be the restriction of the
complexified bundle PC to C0. Consider first the restriction of the complexification
of A to a connection Ahol on P overC0. The (0, 1) part of Ahol automatically defines a
holomorphic structure on P . We can introduce an additional piece of structure on this
holomorphic G-bundle. In order to do so we can decompose the Bogomolny equation
into one real and one complex equation as follows.

FA0,1 − ∇t� dvolC0 = 0 (23)

[∂ A0,1 ,∇t − i�dt] = 0 (24)

where ∇t is the component of the covariant derivative dA normal to C0.

Remark 6.3 Note that the complex equation only depends on a complex structure on
the curve C , and only the real equation depends on the full Riemannian metric.

Definition 6.4 From now on we’ll use the notationA for the combination ∇t − i�dt :
an element of the space �0(M, gP )dt of sections of the complex vector bundle gP
which is holomorphic after restriction to the curve C0.

Let us now introduce singularities into the story. We’ll keep the description brief,
referring the reader to [23,105] for details.

Definition 6.5 Let D ⊆ M be a finite subset. Let ω∨ be a choice of coweight for G.
A monopole on M\D has Dirac singularity at z ∈ D with charge ω∨ if locally on a
neighborhood of z in M it is obtained by pulling back under ω∨ the standard Dirac
monopole solution to the Bogomolny equation, where� is spherically symmetric with
a simple pole at z, and the restriction of a connection A to a two-sphere S2 enclosing
the singularity defines a U (1) bundle on this S2 of degree 1 so that

1

2π

∫
S2

F = 1.

See e.g. [23, Section 2.2] for a more detailed description.
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We can also introduce a framing (or a reduction of structure group as in the trigono-
metric example, though we won’t consider the latter in this paper). As usual let c ∈ C
be a point fixed by the automorphism q.

Definition 6.6 A monopole on M with framing at the point c ∈ C is a monopole
(P, A,�) on M (possibly with Dirac singularities at D) along with a trivialization of
the restriction of P to the circle {c} × S1R , with the condition that the holonomy of A
around this circle lies in a fixed conjugacy class f ∈ G/G.

Themoduli theory ofmonopoles on general compact three-manifoldswas described
by Pauly [93]. In this paper we’ll be interested in moduli spaces MonG(M, D, ω∨)

of monopoles on three-manifolds of the form M = C × S1, with prescribed Dirac
singularities and possibly with a fixed framing at a point in C .

6.2 Hyperkähler structures on periodic monopoles

Let us now describe the holomorphic symplectic and hyperkähler structure on the
moduli space of periodic monopoles. We will first recall the idea that the moduli space
of periodic monopoles can be described as a hyperkähler quotient as in the work of
Atiyah and Hitchin [8]. In a context with more general boundary data at ∞ this was
demonstrated by Cherkis and Kapustin [28] for the group SU(2), see also Foscolo [51,
Theorem 7.12]. In the case of CP

1 with a fixed framing the analysis is much easier.

Remark 6.7 In this subsection we’ll define a holomorphic symplectic pairing on the
moduli space of periodic monopoles, but we won’t provide a proof that the pairing
is closed and non-degenerate. This will follow from Theorem 7.3 below: where we
prove that the holomorphic symplectic structure on periodic monopoles is equivalent
to the symplectic structure we constructed in Sect. 4.

Consider the three-manifold M = CP
1 × S1R . Let us fix Dirac singularities at a

divisor D′, and a regular semisimple framing g∞ at ∞.

Definition 6.8 Let V be the infinite-dimensional vector space of pairs (A,�)where A
is a connection on a GR-bundle P on M\D′,� is section of the adjoint bundle (gR)P ,
and where

(1) The pairs (A,�) have a Dirac singularity with charge ω∨
zi at each (zi , ti ) in D′.

(2) The holonomy of A − i�dt around the circle {∞} × S1 at infinity is equal to
g∞ ∈ G.

Let G be the group of sections of P with value 1 on {∞} × S1, acting on V . Let T be
the group of constant functions on M valued in the centralizer of the element g∞ ∈ G,
also acting on V .

The vector space V admits a holomorphic symplectic structure using the complex
structure on CP

1. We write A in coordinates as A0,1 + A1,0 + Atdt , and set A =
(At + i�)dt . One defines the holomorphic symplectic pairing on tangent vectors as

ωhol((δA, δ�), (δA′, δ�′)) =
∫

C×S1R

κ(δA0,1, δA′) − κ(δA, δA′
0,1)dz. (25)
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The holomorphic moment map is defined to be the complex part of the Bogomolny
equations (24). That is, we define

μC : V → Lie(G) ⊗R C

(A,�) 
→ [∂ A0,1 , ∂t + A].

Lemma 6.9 The moduli space MonfrG(CP
1 × S1R, D′, ω∨) of framed monopoles on

CP
1 × S1R is equivalent to the holomorphic symplectic reduction μ−1

C
(0)/GC, and

therefore inherits a holomorphic symplectic pairing from the formula (25).

This holomorphic symplectic structure has been studied in the literature in an
alternative guise: that of the moduli space of GR-instantons on a Calabi–Yau sur-
face, from which our moduli space can be recovered under dimensional reduction
[14,16,67,82,83].

In order to obtain a hyperkähler structure on our moduli space, we will have to
consider a further T -reduction identical to the reduction from Sect. 4.5.

Definition 6.10 Fix a regular element g1 ∈ G. Let Vred be the infinite-dimensional
vector space of pairs (A,�) as above, satisfying the additional condition that there
exists a neighbourhood {|z| > R} of ∞ in CP

1 on which the fields A and � can be
written in the form

A = Re(g1)z
−1dt + a

� = −Im(g1)z
−1 + φ

where the matrix coefficients of a and φ in any faithful representation ρ of G have
decay rate O(|z|−1−τ ) for some τ > 0, i.e. the first order coefficient of the Taylor
expansion around ∞ should be fixed.

We can promote the holomorphic symplectic pairing on the reduced space Vred
to a hyperkähler structure. We choose coordinates x, y on R

2 ⊆ CP
1, and write

A = A1dt + A2dx + A3dy. Then for i = 1, 2, 3 we define a pairing on the space of
fields by

ωi ((δA, δ�), (δA′, δ�′))

=
∫

R2×εS1R

⎛
⎝κ(δAi , δ�

′) − κ(δ�, δA′
i ) +

∑
j,k=1,2,3

εi jkκ(δA j , δA
′
k)

⎞
⎠ dxdydt .

(26)

When we form the complex-valued pairing ω2 + iω3, we recover the holomorphic
symplectic pairing of (25). We need to pass to the reduced space of fields from Def-
inition 6.10 for this hyperkähler pairing to be well-defined—on the full space V the
pairing ω1 will generally involve a divergent integral.
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On the moduli space Vred we can extend the holomorphic symplectic moment map
to a hyperkähler moment map, given by the Bogomolny functional for the flat metric
on R

2 ⊆ CP
1.

μHK : Vred → Lie(G) ⊗ R
3 (27)

(A,�) 
→ ∗flat(FA)|R2×S1 − dA�|R2×S1 ,

where the group G ⊗ R
3 is identified with the subspace of the space of 1-forms

�1(M\(D′); gR) that take value 1 on the circle {∞} × S1 at infinity.
Let T ′ ⊆ T be a subtorus of the centralizer of the framing value g∞ with the same

rank as the semisimple part of G, and define μT = resϕρw,∞ to be the t′∗-valued
moment map as in Lemma 4.31. We also fix c = {ρw(g1)} to be the element of t′ ∼= t′∗
associated to g1 in Definition 6.10.

Lemma 6.11 Suppose that the intersection of T ′ and the centralizer of g1 is trivial.
Then the hyperkähler quotient μ−1

HK(0)/G of Vred is equivalent, as a holomorphic
symplectic manifold, to the following Hamiltonian reduction of the moduli space of
framed monopoles:

MonredG (CP
1 × S1R, D′, ω∨) := MonfrG(CP

1 × S1R, D′, ω∨)//T ′

= μ−1
T ′ (c)/T ′.

Proof There is a map of holomorphic symplectic manifolds ι : μ−1
HK(0)/G →

MonfrG(CP
1 × S1R, D′, ω∨) induced by the inclusion Vred ↪→ V . This map lands

in the locus μ−1
T ′ (c) for the moment map of the Hamiltonian T ′ action, i.e. the map

sending (A0,1,A) to resϕρw,∞(A) by definition of the reduced space Vred of fields.
Therefore, there is a holomorphic symplectic composite map

f : μ−1
HK(0)/G → MonredG (CP

1 × S1R, D′, ω∨)

between holomorphic symplectic manifolds of the same dimension. By looking at the
z−1 terms in the Taylor expansion at ∞, we see that the map ι meets each T ′ orbit in
a single point, so f is an isomorphism. �

6.3 Deformations of periodic monopoles

We will now proceed with an informal description of the deformation complex of
the moduli space of periodic monopoles. The tangent complex to this hyperkähler
quotient at a point (P,A) can be written as �0(M\D; (gR)P )[1] → Tμ−1(0) where
Tμ−1(0) is the tangent complex to the zero locus of the moment map, concentrated in

non-negative degrees. Roughly speaking Tμ−1(0) = TV
dμ→ �1(M; (gR)P )[−1].
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More explicitly, and onC×S1 for a general Riemannian two-manifoldC , following
[51] define Fmon

P,A to be the sheaf of cochain complexes

(
�0(M\D; (gR)P )

d1
�1(M\D; (gR)P ) ⊕ �0(M\D; (gR)P )

d2
�1(M\D; (gR)P )

)
⊗R C

placed in degrees −1, 0 and 1 where d1(g) = −(dA(g), [�, g]) and d2(a, ψ) =
∗dA(a) − dA(ψ) + [�, a]. Write dmon for the total differential.

Remark 6.12 Here we have chosen a point in the twistor sphere, forgetting the hyper-
kähler structure and retaining a holomorphic symplectic structure. In other words we
have identified the target of the hyperkähler moment map—the space of imaginary
quaternions—with R ⊕ C, which is equivalent to choosing a point in the unit sphere
of the imaginary quaternions: the twistor sphere.

Remark 6.13 Ifwe restrict the complexified complexFmon
P,A⊗RC to a sliceCt = C×{t}

in the t-direction we can identify it with a complex of the form

�•(Ct ; gP )[1] [�,−]→ �•(Ct ; gP )

with total differential given by dA on each of the two factors along with the differential
[�,−] mixing the two factors.

These two summands each split up into the sum of a Dolbeault complex on C and
its dual. That is, there’s a natural subcomplex of the form

�0,•(Ct ; gP )[1] [�,−]→ i�0,•(Ct ; gP )dt

where the internal differentials on the two factors are now given by ∂ A0,1 . This complex
is in turn quasi-isomorphic to the complex

�•(S1;�0,•(Ct ; gP ))[1]

with total differential ∂ A0,1 + dA.

Remark 6.14 If one introduces a framing at a point c ∈ C then we must correspond-
ingly twist the complex Fmon above by the line bundleO(c) on C—i.e. we restrict to
sections that vanish at the framing point. So in that case we define

Fmon,fr
(P,A)

= Fmon
P,A ⊗ (CS1 � O(c)).

The following is proved in [51].

Proposition 6.15 The tangent space ofMonG(S1 ×C, D′, ω∨) at the point (P,A) is
quasi-isomorphic to the hypercohomology H

0(C × S1;F ′
(P,A)

) of a subsheaf F ′ ⊆
Fmon where growth conditions are imposed on the degree 0 part of Fmon near the
singularities.
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6.4 Periodic monopoles and q-connections

In this section we will begin to address the relationship between spaces of periodic
monopoles and of q-connections. We will first recall the comparison theorem between
multiplicative Higgs bundles and periodic monopoles proved by Charbonneau–
Hurtubise [23] for GLn , and Smith [105] for general G. This approach was first
suggested by Kapustin–Cherkis [27] under the name ‘spectral data’.

Definition 6.16 Write D′ for the finite subset {(z1, t1), . . . , (zk, tk)} of D× S1, where
D = {z1, . . . , zk} is finite subset of C and 0 < t1 < t2 < · · · < tk < 2π is a sequence
of points in S1 satisfying the condition of Remark 2.20.

Theorem 6.17 (Charbonneau–Hurtubise, Smith) There is an analytic isomorphism
between the moduli space of polystable monopoles on C × S1 with Dirac singularities
at D′ (and a possible framing on {c} × S1) and the moduli space of multiplicative
Higgs bundles on C with singularities at D and framing at {c}. More precisely there
is an analytic isomorphism

H : Mon(fr)
G (C × S1, D′, ω∨) → mHiggsps,(fr)G (C, D, ω∨)

given by the holonomymap around S1, i.e. sending amonopole (P,A) to the holomor-
phic bundle P = (PC)|C0 with multiplicative Higgs field g = HolS1(A) : P → P.

Wewould like to generalize this theorem to cover the twisted productC×q S1 given
by an automorphism q of the curveC . The most important example—for the purposes
of the present paper—is the translation automorphism of CP

1 sending z to z + ε, for
an element ε ∈ C, fixing the framing point ∞. This automorphism is an isometry
for the flat metric on R

2 but not for any smooth metric on the compactification CP
1,

which means that the moduli space of monopoles on the ε-family of twisted products
is only defined for the flat metric, and therefore that we’ll have to generalize slightly
the theorem of Charbonneau–Hurtubise and Smith to include the flat metric, with its
singularity at infinity.

Remark 6.18 Themoduli space of periodicmonopoles onR
2×S1 specifically has been

studied in themathematics literature by Foscolo [51] , applying the analytic techniques
of deformation theory to earlier work on periodic monopoles by Cherkis and Kapustin
[26,27]. This analysis considers a less restrictive boundary condition at infinity in
R
2 than a framing—the Higgs field may admit a regular singularity at infinity—and

therefore requiresmore sophisticated analysis thanwe’ll need to consider in the present
paper.

Definition 6.19 Let D be a finite subset {(z1, t1), . . . , (zk, tk)} of points in R
2 ×ε S1R ,

and letω∨
i be a choice of coweight for each point in D. Themoduli spaceMonfrG(R2×ε

S1R, D, ω∨) is the moduli space of smooth principal GR-bundles P on CP
1 ×ε S1R

equipped with a connection A and a section � of the associated bundle gP , so that the
restriction of (A,�) to the open subset C ×ε S1R satisfyies the Bogomolny equation
for the flat metric.
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Now, in the case of the flat metric we can generalize Theorem 6.17 to include the
ε-deformation. To do so we’ll crucially use results ofMochizuki [80] following earlier
work of Biquard and Jardim [13].

Theorem 6.20 There is an isomorphism between the moduli space of polystable
monopoles on R

2 ×ε S1 with Dirac singularities at D′ and a regular semisimple
framing on {∞} × S1, and the moduli space of polystable ε-connections on CP

1 with
singularities at D and framing at {∞}. More precisely there is an analytic isomor-
phism

H : MonfrG(CP
1 ×ε S1, D′, ω∨) → ε-Connps,frG (CP

1, D, ω∨)

given by the holonomy map around S1, i.e. sending a monopole (P,A) to the holo-
morphic bundle P = (PC)|

CP
1×{0} with ε-connection given by g = HolS1(A) : P →

ε∗(P).

Proof First we’ll establish injectivity. Let (P,A) and (P ′,A′) be a pair of periodic
monopoles on CP

1 ×ε S1 with images (P, g) and (P ′, g′) respectively, and choose
a bundle isomorphism τ : P → P ′ intertwining the ε-connections g and g′. One
observes first that P and P ′ are also isomorphic G-bundles since, firstly, we have an
isomorphism P |

CP
1×{t0} → ε∗P ′|

CP
1×{t0} at a value t0 not equal to any of t1, . . . , tk ,

and because the holomorphic structure on P |
CP

1×{t} varies smoothly in t and the

moduli space of holomorphic G-bundles on CP
1 is discrete, we correspondingly have

an isomorphism P |
CP

1×{t} → P ′|
CP

1×{t} for every t ∈ S1. To match the monopole
structures, we use the same argument as in [105, Proposition 5.6].

For surjectivity, we again use the same argument as Charbonneau–Hurtubise and
Smith, but with an important modification. Charbonneau and Hurtubise use a crucial
result of Simpson [103, Theorem 1] on the existence of Hermitian Yang–Mills metrics
on surfaces. Simpson’s argument only applies to Kähler metrics with finite volume,
which isn’t the case here.We can, however, replace Simpson’s theoremwith a theorem
of Mochizuki [80, Corollary 3.13] in the case of the curve C.

Now, let us consider surjectivity. We extend the argument of Charbonneau–
Hurtubise and Smith in two steps, in order to account for the two new subtleties
described above. We begin by extending a holomorphic G-bundle P on CP

1 × {0}
with ε-connection g to a G-bundle on M\(D′) = (CP

1 ×ε S1R)\(D′). Let M̃ be the
three-manifold

M̃ = ((−2πR, 2πR) × CP
1)\

k⋃
j=1

(A+
j ∪ A−

j )

where A+
j is the line {(t + t0, z j + tε/2πR) : t ∈ (0, 2πR − t0]} and A−

j is the line

{(t + t0 − tπR, z j + 4ε/2πR) : t ∈ [2πR − t0, 2πR)}. Let π : M̃ → CP
1 be the

projection sending (t, z) to z + tε/2πR. The bundle P pulls back to a bundle π∗(P)

on M̃ . We obtain a bundle on M\(D × t0) by applying the identification (t, z) ∼
(t − 2πR, q(z)). This bundle extends to an S1-invariant holomorphic G-bundle on
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M×S1. The remainder of the proof—verifying the existence of themonopole structure
associated to an appropriate choice of hermitian structure—consists of local analysis
which is independent of the value of the parameter ε.

In order to construct the monopole, we will apply Mochizuki’s theorem. It is nec-
essary to verify that the assumptions of [80, Corollary 3.13] hold. We must choose a
hermitian metric on the vector bundle associated to the holomorphic G-bundle con-
structed above under a faithful representation ρ, so that the holonomy around S1

describes the ε-connection g, so that near each singularity the corresponding Chern
connection described a Dirac singularity of the specified charge, and so that the Taylor
expansion at infinity takes the form g(z) = g∞ +g1/z+g2/z̄+g3/zz̄+O(z−3)—i.e.
so that it has the appropriate framing, and so that its Laplacian has leading term of
order |z|−4.

The result of this choice will then be that the quantity |�F(h0)|—where the Lef-
schetz operator

� : �2(C; gP ) → �0(C; gP )

is the adjoint to wedging with the Kähler form—is bounded in a neighbourhood of
infinity by (1 + ‖z‖2)−2, as required by Mochizuki. We build our metric using a
partition of unity, so away from a neighbourhood of ∞, the metric coincides with
the metric described by Charbonneau and Hurtubise. On a neighbourhood U∞ × S1

of infinity in CP
1 ×ε S1R × S1, first let us eliminate the ε parameter by choosing an

analytic isomorphism between U∞ and D × S1R , where D is a disk around infinity in
CP

1. We can describe a hermitian metric on D× × S1R × S1, constant in the second
S1 factor, by the formula

h0(z, t) = (ρ(g(z))†)t/2πRρ(g(z))t/2πR .

Now, to verify the bound on the growth of |�F(h0)|, we’ll use the fact that our
framing g∞ at infinity was regular semisimple. Because the regular semisimple locus
is open inG, the group element g(z) is regular semisimple everywhere in a sufficiently
small disk around infinity. We can, therefore, choose a local gauge transformation on
the disk making g(z) valued in the maximal torus T centralizing g∞ in this neigh-
bourhood. If g(z) is T -valued then �F(h0) vanishes, since in the abelian case log h0
takes the form

log(h0)(z, t) = t

2πR
(log f (z) + log f (z)),

for a holomorphic function f ; if we write s for the coordinate on the other copy of
S1, and w = t + is, then the operator ∂2

∂z∂z + ∂2

∂w∂w
annihilates log(h0). In particular,

�F(h0) has the required decay condition. If A and A′ are related to one another by an
isomorphism of holomorphic vector bundles on D × T 2 then the functions |�F(A)|
and |�F(A′)| are equal, so the bound on T -valued functions implies the same bound
on regular semisimple G-valued functions.
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We must also verify analytic stability of the associated vector bundle to our G-
bundle upon a choice of faithful representation. To do this, we’ll use Charbonneau and
Hurtubise’s result [23, Lemma 4.5], which says that Mochizuki’s definition of degree
coincides with the definition from Sect. 2.3. That is, since |�F(h0)| is integrable in
a neighbourhood of infinity, we can identify its integral with the algebraic definition
of the degree. Therefore, since our bundle is polystable in the sense of Sect. 2.3, it is
analytically polystable, and therefore we can apply Mochizuki’s result.

With this established, we can apply the proof of [105, Proposition 5.2] using
Mochizuki’s theorem in place of Simpson’s. The local analysis at the singularities
is independent of the value of ε. �
Remark 6.21 In [81], Mochizuki establishes a bijection between sets of periodic
monopoles and ε-difference connections in a more general context than the setting
we have studied in this section, in the sense that—rather than having a framing at
infinity—one is allowed to have a regular singularity. Such monopoles are referred to
as “Generalized Cherkis–Kapustin (GCK) monopoles”.

7 Comparison of symplectic structures

In this section, we’ll show that the isomorphism of Theorem 6.20 provides an equiv-
alence of holomorphic symplectic moduli spaces, where on the multiplicative Higgs
side we have a holomorphic (indeed, algebraic) symplectic structure given in Sect. 4.4
[specifically in Eq. (9)], and on the monopole side we have a holomorphic symplectic
form of AKSZ type discussed in Sect. 6.2 [specifically in Eq. (25)].

We’ll begin by describing the derivative of the holonomy map H : MonfrG(CP
1 ×

S1, D, ω∨) → mHiggsfrG(CP
1, D, ω∨). Let {U0,U1, . . . ,Uk,U∞} be the open cover

ofCP
1 defined inRemark 4.17.Given a tangent vector (δA0,1, δA) to themoduli space

of periodic monopoles at a point (A0,1,A), let (δA0,1, δA)i denote its restriction to
the open subset Ui × (0, 2π) ⊆ CP

1 × S1.
Choose a local potential bi ∈ �0(Ui × (0, 2π); gR) for the tangent vector

(δA0,1, δA) on this patch, so that

(δA0,1, δA)i = dmonbi

= (∂ A0,1bi , dAbi ).

Such a local potential exists because the curvature of the connection ∂ A0,1 + dA
vanishes, because (A0,1,A) solves the Bogomolny equations. Below we’ll use the
notation

(XL
i , X R

i ) = ( lim
t→2π

bi (t),− lim
t→0

bi (t)).

Lemma 7.1 The derivative dH of the holonomy map H is given on an open patch
Ui × (0, 2π) by the formula

dH(δA0,1, δA)i = dH(dmonbi ) = (XL
i , X R

i ). (28)
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Proof The value of the derivative dH at a dmon-exact local vector field dmonbi is given
by the derivative of the action of the group of gauge transformations on the holonomy
H(A) of A from t = 0 to 2π , that is, of the map

Bi 
→ Bi (2π)H(A)Bi (0)
−1,

where Bi ∈ �0((Ui × (0, 2π))\{(zi , ti )}; gR). This derivative evaluates to bi (2π)

H(A) − H(A)bi (0), which is identified as section of the bundle ad(g) with the right-
hand side of expression (28). �
Remark 7.2 For the moment, we will only compare holomorphic symplectic struc-
tures on multiplicative Higgs and periodic monopole moduli spaces. As holomorphic
symplectic manifolds, the moduli spaces of periodic monopoles only depend on a con-
formal class of metrics on the curve C . In particular, we can either consider CP

1 with
the round metric—where Charbonneau–Hurtubise and Smith’s theorem applies—or
with the flat metric—and use our Theorem 6.20 using Mochizuki’s growth estimate
theorem. In Sect. 8 we will consider hyperkähler structures: in that case we’ll need to
consider the flat moduli space, and the reduced space Vred of fields.

Theorem 7.3 The symplectic structure onMonfrG(CP
1×S1, D×{0}, ω∨) and the pull-

back of the non-degenerate pairing on mHiggsps,frG (CP
1, D, ω∨) under the holonomy

map H coincide.

Proof Let us begin with the symplectic structure ωhol from Eq. 25. We can write
the integral as the sum over open charts U0 × (0, 2π),U1 × (0, 2π), . . . ,Uk ×
(0, 2π),U∞×(0, 2π) in our atlas.4 We assume that the holomorphic structure defined
by ∂̄A0,1 on the restriction of the G-bundle to CP

1 × {0} is trivial, and therefore, by
a smooth gauge transformation we can gauge away deformations of ∂̄A0,1 along the
slice CP

1 × {0}. Consequently, when t = 0 or t = 2π we have ∂̄A0,1b = 0, so that in
each chart Ui the pair (XL , X R)i = (bi (2π), bi (0)) is holomorphic.

On each open set Ui , we can use Stokes’ theorem to expand the summands of the
symplectic form corresponding to charts. That is, we have

ωhol({dmonbi }, {dmonb
′
i })

=
∑

i=0,1,...,k,∞

∫
Ui×(0,2π)

dz κ(∂ A0,1bi ∧ dAb′
i ) − (b ↔ b′)

=
∑

i=0,1,...,k,∞

∫
Ui×(0,2π)

dz κ((∂ A0,1 + dA)bi , (∂ A0,1 + dA)b′
i )

=
⎛
⎝ ∑

i=0,1,...,k,∞

∫
∂Ui×(0,2π)

κ(bi , dAb′
i )

⎞
⎠

4 More precisely, we should replace the definition ofU0 from Remark 4.17 with the complement of closed
disks CP

1\(U1 ∪ · · · ∪Uk ∪U∞), so that the Ui are disjoint in CP
1 with dense union.
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+
⎛
⎝ ∑

i=0,1,...,k,∞

∫
Ui

κ(∂ A0,1bi , b
′
i (2π) − b′

i (0))

⎞
⎠

=
∑

i=1,...,k,∞

∫
∂Ui×(0,2π)

κ(bi − b0, dAb′
i )

using the fact that dAb′
i and dAb′

0 coincide on ∂Ui × (0, 2π) to simplify the first
summand, and the fact that ∂ A0,1bi (t) = 0 when t = 0 or t = 2π as remarked above
to eliminate the second summand.

Now, taking the summands one-by-one, we can write

∫
∂Ui×(0,2π)

dz κ(bi − b0, dAb′
i )

=
∮

∂Ui

dz
(
κ(XL

i − XL
0 , X ′L

i ) − κ(X R
i − X R

0 , X ′R
i )

)

=
∮

∂Ui

dz
(
−κ(XL

0 , X ′L
i ) + κ(X R

0 , X ′R
i )

)
, (29)

where the κ(XL,R
i , X ′L,R

i ) terms vanish because Xi , X ′
i are holomorphic in each Ui .

To conclude, consider the symplectic pairing on the multiplicative Higgs moduli
space (9), evaluated at a pair of tangent vectors having the form dH(δA0, δA) as in
Lemma 7.1. This takes the form

�(dH(δA0, δA), dH(δA′
0, δA′))

= −
∑

i=1,...,k,∞

1

2π ı

∮
∂Ui

dz(κ(XL
i , XL ′

0 ) + κ(X R
i , X R′

0 )).

This coincides, up to a global rescaling by 2π ı , with the sum of the antisymmetric
expressions (29), as required. �

We conclude this section by describing the relationships between the the further
Hamiltonian reduction by the global torus T ′ on both sides.

Corollary 7.4 The equivalence of Theorem 7.3 induces an equivalence of holomorphic
symplectic manifolds

MonredG (CP
1 × S1, D × {0}, ω∨) → mHiggsredG (CP

1, D, ω∨),

by taking the Hamiltonian reduction by the constant T ′ action on both sides, where T ′
is the centralizer of the framing value g∞ in the semisimple part of the gauge group. In
particular, the holomorphic symplectic structure on the right-hand side is canonically
promoted to a hyperkähler structure.
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8 Comparison of Hyperkähler structures and twistor rotation

Theorem 7.4—giving us an equivalence between the moduli spaces of multiplica-
tive Higgs bundles and periodic monopoles—tells us that the symplectic structure on
mHiggsredG (CP

1, D, ω∨) extends canonically to an R>0-family of hyperkähler struc-
tures, depending on a parameter R, the radius of the circle. In this sectionwe’ll compare
the twistor rotation with the deformation to the moduli space of ε-connections. We’ll
show that in the R → ∞ limit, by passing to a point ε in the twistor sphere we obtain
a complex manifold equivalent to the moduli space of ε-connections as a deformation
of the moduli space of multiplicative Higgs bundles.

Recall from Sect. 6.2 that we inherit a hyperkähler structure on the reduced moduli
space of periodic monopoles on CP

1 × S1R from the hyperkähler structure on the
infinite-dimensional reduced space of fields (26). This description for the hyperkähler
structure also tells us what should happen when we perform a rotation in the twistor
sphere. The following statement follows by identifying the holomorphic symplectic
structure at ε in the twistor sphere by applying the corresponding rotation in SO(3)
to the coordinates x , y and t on R

3 in the expression for the holomorphic symplectic
structure at 0. Note that when we calculate the symplectic form as an integral as above,
it’s enough to take the integral over just R

2 × S1R instead of CP
1 × S1R .

Notationally, from now on we’ll write the holomorphic symplectic pairing in the
abbreviated form κ(A0,1,A′) − κ(A, A′

0,1) = κ(δ(1)A, δ(2)A), and we’ll write dvol

for the volume form dx ∧ dy ∧ dt on C × (0, 2πR) ⊆ CP
1 × S1R .

Proposition 8.1 Let ζ be a point in the twistor sphere. The holomorphic symplectic
form on the moduli space MonfrG(CP

1 × S1R, D, ω∨) of periodic monopoles is given
by the formula

ωε(δ
(1)A, δ(2)A) =

∫
R2×S1R

κ(δ(1)A, δ(2)A)ζ(dvol),

where we identify ζ with an element of SO(3) and apply this rotation to the volume
form dvol. Equivalently we can identify R

2 × CP
1 with the quotient R

3 × L where L
is the rank one lattice {0}2 × 2πRZ and identify the rotated holomorphic symplectic
form with

ωζ (δ
(1)A, δ(2)A) =

∫
R3/(ζ(L))

κ(δ(1)A, δ(2)A) dvol .

Now, we’ll perform our identification of the twistor deformation on the multiplica-
tive Higgs side by rewriting this twistor rotation in a somewhat different way in the
large R limit. In this limit we can identify the twistor rotation with the deformation
obtained by replacing the product CP

1 × S1R with the product twisted by an automor-
phism of R

2. More precisely, the rotated symplectic structure can then be described
in the following way.

Theorem 8.2 Let
(
mHiggsredG (CP

1, D, ω∨)
)
ζ,R be the family of complex manifolds

obtained by pulling back the holomorphic symplectic structureωζ,R onMonredG (CP
1×
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S1R, D, ω∨) at ζ in the twistor sphere to the moduli space of polystable framed mul-
tiplicative Higgs bundles. In the limit where R → ∞ with 2πζ R = ε fixed, the
canonical smooth isomorphism

(
mHiggsredG (CP

1, D, ω∨)
)

ζ,R
→ ε-ConnredG (CP

1, D, ω∨)

becomes holomorphic symplectic, in the sense that the holomorphic symplectic struc-
tures converge pointwise over the tangent bundle to the moduli space of monopoles.

Proof First let us note that the three-manifolds CP
1 ×ε S1R for varying values of R

and ε are all canonically isometric to untwisted products of the form CP
1 × S1R′ . Any

two points in the (ε, R) family of three-manifolds can therefore be identified by a
canonical conformal transformation

f(ε,R),(ε′,R′) : CP
1 ×ε S1R → CP

1 ×ε′ S1R′

Thismeans that we can canonically smoothly identify themoduli spaces ofmonopoles

MonredG (CP
1 ×ε S1R, D, ω∨) ∼= MonredG (CP

1 ×ε′ S1R′, f(ε,R),(ε′,R′)(D), ω∨).

Now, according to Theorem 6.20 it’s enough to show that the complex structure on
MonredG (CP

1 × S1R, D, ω∨) at the point ζ converges to the complex structure on the
ε-deformation MonredG (CP

1 ×ε S1R, D, ω∨). The key observation that we’ll use is that,
fixing 2πζ R = ε we can identify the rotated lattice with a sheared lattice. Namely,
when we rotate the rank one lattice LR,0 = (0, 0, 2πR)Z by ζ we obtain the lattice

ζ(LR,0) = 1

1 + |ζ/2|2 (Re(ε), Im(ε), 2πR(1 − |ζ/2|2))Z.

We can view the quotient of R
3 by the rotated lattice as a sheared lattice with different

radius and shear. Specifically, we identify

R
3/ζ(LR,0) ∼= R

2 × ε

1+|ζ/2|2
S1
R 1−|ζ/2|2

1+|ζ/2|2
.

In order to identify the desired complex structures it’s enough to identify the full
family of symplectic structures on the ε-deformation with the appropriately rotated
family of symplectic structures without deforming. So, if we apply the twistor rotation
by ζ to the holomorphic symplectic structure ω2 + iω3 on MonredG (CP

1 × S1R, D, ω∨)

(the argument will be identical for the other points in the CP
1 family of holomorphic

symplectic structures) we obtain the pairing

ωζ (δ
(1)A, δ(2)A) =

∫
R3/(ζ(LR,0))

κ(δ(1)A, δ(2)A) dvol .
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On the other hand we can identify the holomorphic symplectic structure on
MonredG (CP

1 ×ε S1R, D, ω∨) as

ωζ (δ
(1)A, δ(2)A) =

∫
R3/(LR,ε)

κ(δ(1)A, δ(2)A) dvol .

In particular, by tuning the radius and the shear parameter the above calculation
means there’s a hyperkähler equivalence between the moduli spaces MonredG (CP

1 ×
S1R, D, ω∨)—after rotating the twistor sphere by ζ—and MonredG (CP

1 × ε

1+|ζ/2|2
S1
R 1−|ζ/2|2

1+|ζ/2|2
, f (D), ω∨), where the divisors D and f (D) will coincide in the limit

R → ∞.
Now, let us consider the large R limit.We’d like to note that the following difference

of symplectic pairings converges to zero pointwise as R → ∞.

∣∣∣∣∣∣∣∣
∫

R3/(L
R 1−|ζ/2|2
1+|ζ/2|2 , ε

1+|ζ/2|2
)

κ(δ(1)A, δ(2)A) dvol−
∫

R3/(LR,ε)

κ(δ(1)A, δ(2)A) dvol

∣∣∣∣∣∣∣∣
.

Note that here we’re abusing notation, and using the canonical isomorphism of mod-
uli spaces to identify tangent vectors δA to monopoles on R

3/(LR,ε), and their
images under the canonical isomorphism to the moduli space of monopoles on
R
3/(L

R 1−|ζ/2|2
1+|ζ/2|2

).

Rescaling the radii of the circles only rescales the pairing by an overall constant,
so we can rewrite this as

R

∣∣∣∣∣∣
1 − |ζ/2|2
1 + |ζ/2|2

∫
R3/(L1, ε

1+|ζ/2|2
)

κ(δ(1)A, δ(2)A) dvol−
∫

R3/(L1,ε)

κ(δ(1)A, δ(2)A) dvol

∣∣∣∣∣∣
in which we recall that ζ = ε

2πR . Write δ(i)Aζ for the image of the deformation δ(i)A
under the diffeomorphism induced by identifying the ε

1+|ζ/2|2 -twisted product with

the ε-twisted product, so δ(i)Aζ (z, t) = δ(i)A(z − ε
1+|ζ/2|2 , t). Note that when we

perform the integral the pairing between δ(1)A and δ(2)A and the pairing between
δ(1)Aζ and δ(2)Aζ coincide. In other words, our difference of pairings becomes

R

∣∣∣∣∣
∫

CP
1×εS11

1 − |ζ/2|2
1 + |ζ/2|2 κ(δ(1)Aζ , δ

(2)Aζ ) − κ(δ(1)A, δ(2)A) dvol

∣∣∣∣∣
= R

∣∣∣∣1 − |ζ/2|2
1 + |ζ/2|2 − 1

∣∣∣∣
∣∣∣∣∣
∫

CP
1×εS11

κ(δ(1)A, δ(2)A) dvol

∣∣∣∣∣
=

∣∣∣∣ 2R|ε|2
16π2R2 + |ε|2

∣∣∣∣
∣∣∣∣∣
∫

CP
1×εS11

κ(δ(1)A, δ(2)A) dvol

∣∣∣∣∣ .
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This converges to zero pointwise as R → ∞. The same calculation proves conver-
gence for the other symplectic structures in the hyperkähler family, and therefore
convergence for the difference of the two complex structures. �
Example 8.3 In the case where the group G = GLn it’s possible to describe the mul-
tiplicative Hitchin system on CP

1 in terms of an ordinary Hitchin system on C
×, but

for a different group GLk and with different singularity data. This relationship is given
by the Nahm transform.

Let us give an informal explanation. Froma gauge-theoretic point of view, theNahm
transform arises from the Fourier–Mukai transform for anti-self-dual connections on
a 4-torus T , relating an of ASD connection on a vector bundle to an ASD connection
on the bundle of kernels for the associated Dirac operator, a vector bundle on the
dual torus T∨ (see the book of Donaldson–Kronheimer [39, Section 3.2]). There is a
Nahm transform relating the ordinary Hitchin system to the moduli space of periodic
monopoles obtained in an appropriate limit: consider the torus T = S1r1×S1r2×S1r3×S1R .
The moduli space of periodic monopoles on C arises in the limit where r1 and r2 go
to ∞ and r3 goes to zero. On the other hand, the Hitchin system on C

× arises in the
dual limit where r1 and r2 go to zero and r3 goes to ∞. The Nahm transform in this
setting—i.e. for periodic monopoles—was developed by Cherkis and Kapustin [27],
and worked out in detail in the case n = 2 (they also give a brane description of the
transform: see [27, Section 2]).

One then has to match up the singularity data. In brief, the multiplicative Hitchin
system for the groupGLn with k singularities at z1, . . . , zk is equivalent to the ordinary
Hitchin system on C

× for the group GLk with n regular singularities, which residues
determined by the original positions zi and positions determined by the original local
data ω∨

zi . We refer to [88, Section 7.1] for more details.
In the example where we have the Nahm transform available, we conjecture that

the multiplicative geometric Langlands equivalence recovers the ordinary geometric
Langlands equivalence with tame ramification. That is, we expect the following.

Claim Under the Nahm transform, Pseudo-Conjecture 3.9 in the rational case for the
groupGL(n) becomes the ordinary geometric Langlands conjecture onCP

1 with tame
ramification.

Remark 8.4 The limit R → ∞ with 2πζ R = ε appearing in the hyperkähler rota-
tion Theorem 8.2 was first suggested by Gaiotto [59] on the other side of the Nahm
transform.

9 q-Opers and q-characters

In this final section we will discuss the space of q-opers in more depth. In particular
we will connect the geometric setup described in this paper, in terms of multiplicative
Higgs bundles, to the gauge theoretic story studied by the second author and collab-
orators [73,86,89]. The main goal of this subsection will be to describe and motivate
a connection between q-opers and the q-character maps from the theory of quantum
groups [56–58,99–101]. Preliminary results were announced by the second author at
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String-Math 2017 [94]. In order to make our statements as concrete as possible it will
be useful to first describe the Steinberg section [107] of a semisimple group explicitly.

Throughout this section, assume that G is a simple, simply-laced and simply-
connected Lie group with Lie algebra g. Let � = {α1, . . . , αr } be the set of simple
roots of g. In order to define the Steinberg section uniquely we’ll fix a pinning on G.
That is, choose a Borel subgroup B ⊆ G with maximal torus T and unipotent radical
U , and choose a generator ei for each simple root space gαi .

We’ll also choose an element σi ∈ N (T ) in the normalizer of T representing each
element of the Weyl group W = N (T )/T . The Steinberg section will be independent
of this choice up to conjugation by a unique element of T , and independent of the
ordering on the set of simple roots.

Definition 9.1 The Steinberg section of G associated to a choice of pinning is the
image of the injective map σ : T /W → G defined by

σ(t1, . . . , tr ) =
r∏

i=1

exp(ti ei )σi .

Steinberg proved [107, Theorem 1.4] that, after restriction to the regular locus in G,
the map σ defines a section of the Chevalley map χ : G → T /W .

Definition 9.2 Fix a coloured divisor (D, ω∨)ThemultiplicativeHitchin section of the
map π : mHiggsfrG(CP

1, D, ω∨) → B(D, ω∨) is the image mHitchfrG(CP
1, D, ω∨)

of the map defined by post-composing a meromorphic T /W -valued function on CP
1

with the Steinberg map σ .

Remark 9.3 The multiplicative Hitchin section is indeed a section of the map π after
restricting to the connected component in mHiggsfrG(CP

1, D, ω∨) corresponding to
the trivial bundle, provided one chooses a value for the framing within the Steinberg
section. For example, if we choose the identity framing on the multiplicative Hitchin
basis then themultiplicative Hitchin section lands inmultiplicative Higgs bundles with
framing c = σ(1) at infinity, i.e. framing given by a Coxeter element.

Now, let’s introduce the key idea in this section: the notion of triangularization for
the multiplicative Hitchin section.

Definition 9.4 Let g(z) be an element ofmHitchfrG(CP
1, D, ω∨).We’ll abusively iden-

tify g(z) with its image under the restriction map

r∞ : mHiggsfrG(CP
1, D, ω∨) → Gc[[z−1]]

to a formal neighbourhood of ∞. Say that g(z) has generalized eigenvalues y(z) ∈
T [[z−1]] if there exists an element u(z) of U [[z−1]] such that u(z)g(z)u(z)−1 is an
element of B−[[z−1]], where B− is the opposite Borel subgroup to B, which maps to
y(z) under the canonical projection.

We say that g(z) has q-generalized eigenvalues y(z) ∈ T [[z−1]] if there exists an
element u of U [[z−1]] such that u(q−1z)g(z)u(z)−1 is an element of B−[[z−1]] that
maps to y(z) under the canonical projection.
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Remark 9.5 In this setup q is the automorphism of the formal disk obtained by restrict-
ing an automorphism of C or C

× to its formal punctured neighbourhood. In particular
we’ll use this notation for the additive deformation we denoted by ε in previous sec-
tions, even thoughwe’ll use themultiplicative notation.Wemake this notational choice
in order to allow more direct comparison with the previous gauge theory literature.

It’s sometimes useful to use a slightly different representation of the multiplicative
Hitchin section, packaging the singularity datum in a more uniform way.

Choose a point b(z) in the multiplicative Hitchin base B(D, ω∨). By clearing
denominators, we can identify b(z) with a canonical polynomial t ′(z) in T [z]/W of
fixed degree d, with fixed top degree term. Specifically, one finds

di =
∑
z j∈D

ω∨
z j (λi )

where λi is the i th fundamental weight. We’ll denote the locus of polynomials of this
form by T [z]d .

We define an embedding from T [z]d/W into G[[z−1]] as follows. First, we encode
the data of the coloured divisor (D, ω∨) in terms of a T -valued polynomial. That is,
we set

pi (z) =
∏
z j∈D

(z − z j )
ω∨
z j

(ωi )

where ω j is the j th fundamental weight.

Definition 9.6 The p-twisted multiplicative Hitchin section is the image of the map
σ ′ : T [z]d/W → G(z) defined by

σ ′(t(z)) =
r∏

i=1

exp
(
t ′i (z)ei

)
σi pi (z)

−ω∨
i (30)

where ω∨
i is the i th fundamental coweight.

This p-twisted section is obtained from the ordinary multiplicative Hitchin section
after conjugation by an element of G[z]. The result is no longer directly related to
the multiplicative Hitchin moduli space because this conjugation breaks the fram-
ing at ∞. It is, however, sometimes useful for computation. One can define the
q-triangularization of a point in this p-twisted section exactly as in the ordinary case.

Now, let’s introduce the other main object we’ll be discussing in this section.

Definition 9.7 The q-character is an algebra homomorphism

χq : Rep(Y (g)) → O(T1[[z−1]])

from the ring of finite-dimensional representations of the Yangian to the ring of func-
tions on T1[[z−1]], first defined by Knight [74]. Given a choice of singularity datum
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(D, ω∨) one can define a linear map B(D, ω∨)∗ → Rep(Y (g)) generated by the map
identifying a coordinate functional on the multiplicative Hitchin base space with the
irreducible representation with the given highest weight. We’ll abusively also denote
the composite map B(D, ω∨)∗ → O(T1[[z−1]]) by χq .

The p-twisted fundamental q-characters t ′i (z) are obtained by recursiveWeyl reflec-
tions of the form [86,88,89] (following the conventions from [73] for shifts)

w ·q yi (z)) = yi (zq
−1)−1

⎛
⎝ ∏

e:i→ j

y j (z)

⎞
⎠

⎛
⎝ ∏

e: j→i

y j (q
−1z)

⎞
⎠ pi (q

−1z). (31)

starting from the highest weight monomial t ′i (z) = yi (z) + w ·q yi (z)) + . . . .
These formulae appeared previously in [88,89] and should be interpreted as p-

twisted version of the q-Weyl reflections of [54,56–58].
In the undeformed case, the y(z)-functions have a very geometric meaning: they

are equivalent to a sequence of algebraic functions defining the cameral cover at a
point b(z) in the Hitchin base. The cameral cover associated to a point b(z) in the
multiplicative Hitchin base is, to put it briefly, obtained away from the singular locus
as the fiber product C◦

b = (CP
1
z\D) ×T /W T , where the map CP

1
z\D → T /W is the

meromorphic map corresponding to b(z). In other words, the closed points of C◦
b are

simply pairs (z, y) ∈ (CP
1\D) × T such that b(z) = [y] in T /W . One can obtain

the cameral curve as the graph of a |W |-valued meromorphic function CP
1 → T by

taking all images y under the projection T → T /W , y 
→ [y] where elements of T

are coordinatized as
∏r

i=1 y
α∨
i

i where α∨
i are simple coroots. Then, on a contractible

local patch in the complement of the ramification locus define ti (z) to be the sum

ti (z) =
∑

y over b

ωi (y(z)),

where the sum is over all local lifts y of the T /W -valued function b(z), and where
ωi : T → C

× is the uth fundamental weight. Because of the W -invariance, for each
i these local descriptions glue together to define a global C-valued function on the
curve CP

1
z\D.

In the classical limit q = 1 the procedure of taking generalized eigenvalues and the
character map are closely related, simply because the multiplicative Hitchin section
is a section of the Hitchin fibration. The character map, evaluated in the fundamental
representations associated to the fundamental weights ω1, . . . , ωr , is essentially the
Chevalley map sending a matrix to its characteristic polynomial. In other words it is
essentially the multiplicative Hitchin fibration itself. Therefore, we find that

χ(ti )(σ (b(z))) = ti (z)

up to an affine isomorphism. The same holds when we replace σ(b(z)) by y(z), its
triangularization, because the maps χ(ti ) are adjoint-invariant.
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We conjecture that this relationship survives after q-deformation, yielding the fol-
lowing relationship between q-opers and the q-character. This expectation ismotivated
in part by the multiplicative geometric Langlands Conjecture 3.9 applied to the canon-
ical coisotropic A-brane—quantizing the ring of Poisson commuting functions on the
multiplicative Hitchin system—whose Langlands dual is expected to be precisely the
brane of q-opers.

Conjecture 9.8 (1) For any q, every element of g(z) of mHitchfrG(CP
1, D, ω∨) has a

unique q generalized eigenvalue, and therefore there is a well-defined map

Eq : B(D, ω∨) → T [[z−1]] ⊆ G[[z−1]]

given by applying the multiplicative Hitchin section then computing its q-
generalized eigenvalues.

(2) The composite E∗
q ◦ χq : B(D, ω∨)∗ → O(B(D, ω∨)) is an affine isomor-

phism onto the space of linear functionals B(D, ω∨)∗, viewed as a subspace of
O(B(D, ω∨)).

Let’s demonstrate this conjecture in a few examples. In each case we’ll describe the
multiplicative Hitchin section, and then calculate an inverse to the map sending a point
t(z) in the base space B(D, ω∨) to the corresponding generalized eigenvalue map for
the Hitchin section y(z). If yi (t(z)) is the composite of the q-generalized eigenvalue
map with the i th fundamental weight ωi , we must verify that χq(yi (t)) = ti , the i th
coordinate map (up to an affine isomorphism).

Examples 9.9 (1) In type A1 we can calculate everything very explicitly, and so verify
the conjecture in this example. We’ve already described the multiplicative Hitchin
section in Sect. 4.1: for G = SL2, for instance, it consists of matrices of the form

gt =
(
t −1
1 0

)
,

where t is a rational function with fixed denominator of degree d, and arbitrary
numerator of degree less than d. We would like to triangularize this to obtain a
matrix of the form

gy =
(
y 0
1 y−1

)
.

It’s easy to solve the equation gt = u(q−1z)gy(z)u−1(z) explicitly. One finds a
solution with t(z) = y(z) + y(q−1z)−1, after conjugation by the element u(z) =
−y(z)−1. As the conjecture tells us to expect, t(z) is identified with a q-twisted
Weyl invariant polynomial in C[y, y−1] which starts from the highest weight
monomial y(z). This is enough to identify it with the q-character as required.

(2) Wecan alsomake concrete calculations for type A2, again verifyingConjecture 9.8.
For more direct comparison with the formulae in the literature we’ll use the p-
twisted formulation discussed above involving polynomials pi (z) encoding the
singularity datum (D, ω∨). We label positive roots as α1, α2 and α3 := α1 + α2
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and parametrize aU [[z−1]]-valued gauge transformation u(z) by the collection of
functions (ui (z))αi∈�+

u(z) =
∏
3,2,1

exp(ui (z)eαi )

Then solving the equation

gt (z) = u(q−1z)−1gy(z)u(z)

for u1(z), u2(z), u3(z) and t ′1(z), t ′2(z) we find that

u1(z) = p1(z)u2(q
−1z) − p1(z)y2(z)y1(z)

−1

u2(z) = −p2(z)y2(z)
−1

u3(z) = −p1(z)p2(z)y1(z)
−1

t ′1(z) = y1(z) − u1(q
−1z)

t ′2(z) = y2(z) − y1(z)u2(q
−1z) − u3(q

−1z)

which implies in turn that

t ′1(z) = y1(z) + p1(q−1z)y2(q−1z)

y1(q−1z)
+ p1(q−1z)p2(q−2z)

y2(q−2z)

t ′2(z) = y2(z) + y1(z)p2(q−1z)

y2(q−1z)
+ p1(q−1z)p2(q−1z)

y1(q−1z)

and that indeed coincides with the expression for the q-characters for the A2 quiver
appearing in [73,86,88,89].

(3) The first example for which the condition that the composite map in Conjecture 9.8
is a non-trivial affine isomorphism occurs for the D4 Dynkin diagram, for instance
for the groupG = SO(8). In that case, even for q = 1wefind the composite E∗◦χ ,
i.e. the result of applying the character map in the fundamental representations
given by fundamentalweights (ω1, ω2, ω2, ω4) to the Steinberg section, is not quite
the identity, but rather than map sending (t1, t2, t3, t4) to (t1, t2 + 1, t3, t4). One
sees this by considering theG-modules associated to irreducible finite-dimensional
highestweightmodules of theYangianY (g) in the limitq → 1: the 29-dimensional
module induced in thisway from the fundamental weightω2 splits as the sumof the
28 dimensional adjoint representation associated to the fundamental weightω2 and
the trivial representation. We include some calculations verifying the conjecture
for G = SO(8) in “Appendix A”.

Remark 9.10 After triangularizing, an element of the multiplicative Hitchin section
transforms into a function on CP

1 with apparent singularities (even away from the
divisor D) where the functions yi (z) have zeroes and poles. However, when we apply
the q-character map these singularities are cancelled in pairs between the monomial
summands of Eq. 31, as we sum over the transformation by each element of the Weyl
group. This cancellation property has been called “regularity of the q-character” in
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the quantum group representation theory literature [56,57] as well as in the gauge
theoretic construction of [73,86,88,89].

The meromorphic functions yi (z) can be expressed as ratios of the form yi (z) =
Qi (z)/Qi (q−1z), and the zeroes of the functions denoted Qi are known as Bethe
roots in the context of the Bethe ansatz equations. In this language, the Bethe ansatz
equations are precisely the equations which ensures that poles in ti (z) are cancelled.

Remark 9.11 Some of the results in a recent paper by Koroteev et al. [76] seem to
overlap with the specialization of the main conjecture of this section to the group
G = SL(N ), in the case where the the coweight coloured divisor (D, ω∨) takes a
particular form: where the functions pi (z) encoding (D, ω∨) can be related to the
ratio of Drinfeld polynomials ρi (z)/ρi (q−1z) in the Bethe ansatz equations. This
special form for the singularity datum means that the Yangian module obtained by
quantization of the symplectic leaf mHiggsG(C, D, ω∨) contains (as a quotient) the
finite-dimensional Drinfeld module specified by the Drinfeld polynomials ρi (z). In
the relation to the occurence of the Bethe ansatz equations in quiver gauge theory [89],
this specialization is known as 4d to 2d specialization, and was first studied by Chen
et al. [25,40].
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Appendix A: q-Character calculations for G = SO(8)

We will compute the q-triangulization of the p-twisted multiplicative Hitchin section
in the example of whereG = SO(8).We label the simple roots asαi with i = 1, . . . , 4,
and we fix the Cartan matrix to be

〈α∨
i , α j 〉 =

⎛
⎜⎜⎝

2 −1 0 0
−1 2 −1 −1
0 −1 2 0
0 −1 0 2

⎞
⎟⎟⎠

We then label the positive roots as α1, . . . , α12 where the non-simple roots can be
decomposed as

α5 = α1 + α2 α9 = α1 + α2 + α4
α6 = α2 + α3 α10 = α2 + α3 + α4
α7 = α2 + α4 α11 = α1 + α2 + α3 + α4
α8 = α1 + α2 + α3 α12 = α1 + 2α2 + α3 + α4.
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Solving for the q-adjoint transformation that triangualizes the p-twisted multiplica-
tive Hitchin section (30) to bring it to the B− valued q-connection of the form∏

i exp( fi y
−1
i )y

α∨
i

i p
−ω∨

i
i (where (ei , fi ) label standard Chevalley generators in pos-

itive and negative simple root spaces respectively) we will first identify the element
u(z) ofU [[z−1]] by which we will act. We write it as a sum over Chevalley generators
of elements of the form exp(ui (z)ei ) where the ui (z) are given as follows.

u1 = − p1,−2 p1 p2,−2 p2,−1 p3,−2 p4,−2

y1,−2
− p1 p2,−2 p2,−1 p3,−2 p4,−2y1,−1

y2,−2

− p1 p2,−1 p4,−2y3,−1

y4,−2
− p1 p2,−1 p3,−2 p4,−2y2,−1

y3,−2y4,−2
− p1y2

y1

− p1 p2,−1y3,−1y4,−1

y2,−1
− p1 p2,−1 p3,−2y4,−1

y3,−2

u2 = − p1,−1 p2,−1 p2 p3,−1 p4,−1

y1,−1
− p2,−1 p2 p3,−1 p4,−1y1

y2,−1
− p2 p4,−1y3

y4,−1

− p2 p3,−1 p4,−1y2
y3,−1y4,−1

− p2y3y4
y2

− p2 p3,−1y4
y3,−1

u3 = − p3
y3

, u4 = − p4
y4

u5 = − p1,−1 p1 p2 p3,−1 p4,−1y3,−1y4,−1 p22,−1

y1,−1y2,−1

− p1 p2 p3,−1 p4,−1y1y3,−1y4,−1 p22,−1

y22,−1

− p1,−1 p1 p2 p3,−2 p3,−1 p4,−1y4,−1 p22,−1

y1,−1y3,−2

− p1 p2 p3,−2 p3,−1 p4,−1y1y4,−1 p22,−1

y2,−1y3,−2

− p1,−1 p1 p2,−2 p2 p3,−2 p3,−1 p4,−2 p4,−1 p22,−1

y2,−2

− p1,−1 p1 p2 p3,−1 p4,−2 p4,−1y3,−1 p22,−1

y1,−1y4,−2

− p1 p2 p3,−1 p4,−2 p4,−1y1y3,−1 p22,−1

y2,−1y4,−2

− p1 p2 p3,−2 p3,−1 p4,−2 p4,−1y1 p22,−1

y3,−2y4,−2

− p1,−1 p1 p2 p3,−2 p3,−1 p4,−2 p4,−1y2,−1 p22,−1

y1,−1y3,−2y4,−2

− p1,−1 p1 p2 p3,−1 p4,−1y2 p2,−1

y1,−1y1
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− 2p1 p2 p3,−1 p4,−1y2 p2,−1

y2,−1
− p1 p2 p4,−1y3,−1y3 p2,−1

y2,−1

− p1 p2 p3,−2 p4,−1y3 p2,−1

y3,−2
− p1 p2 p3,−1y4,−1y4 p2,−1

y2,−1

− p1 p2 p3,−1 p4,−2y4 p2,−1

y4,−2
− p1 p2 p3,−2 p3,−1 p4,−1y2 p2,−1

y3,−2y3,−1

− p1 p2 p3,−1 p4,−2 p4,−1y2 p2,−1

y4,−2y4,−1
− p1 p2y3y4

y1

− p1 p2 p3,−1y2y4
y1y3,−1

− p1 p2 p4,−1y2y3
y1y4,−1

− p1 p2 p3,−1 p4,−1y22
y1y3,−1y4,−1

u6 = − p2 p3 p4,−1

y4,−1
− p2 p3y4

y2

u7 = − p2 p4y3
y2

− p2 p3,−1 p4
y3,−1

u8 = − p1 p2,−1 p2 p3 p4,−1y3,−1

y2,−1
− p1 p2,−1 p2 p3,−2 p3 p4,−1

y3,−2

− p1 p2 p3 p4,−1y2
y1y4,−1

− p1 p2 p3y4
y1

u9 = − p1 p2 p4y3
y1

− p1 p2,−1 p2 p3,−1 p4y4,−1

y2,−1

− p1 p2 p3,−1 p4y2
y1y3,−1

− p1 p2,−1 p2 p3,−1 p4,−2 p4
y4,−2

u10 = − p2 p3 p4
y2

u11 = − p1 p2 p3 p4
y1

u12 = − p1 p3 p4 p22 y3y4
y1y2

− p1 p3,−1 p3 p4 p22 y4
y1y3,−1

− p1 p2,−1 p3,−1 p3 p4,−1 p4 p22
y2,−1

− p1 p3 p4,−1 p4 p22 y3
y1y4,−1

− p1 p3,−1 p3 p4,−1 p4 p22 y2
y1y3,−1y4,−1

.

and consequently we can calculate the functions t ′i (z) in terms of the generalized
eigenvalues, to find the following:

t ′1 = p1,−3 p1,−1 p2,−3 p2,−2 p3,−3 p4,−3

y1,−3
+ p1,−1 p2,−3 p2,−2 p3,−3 p4,−3y1,−2

y2,−3

+ p1,−1 p2,−2 p4,−3y3,−2

y4,−3

+ p1,−1 p2,−2 p3,−3 p4,−3y2,−2

y3,−3y4,−3
+ p1,−1y2,−1

y1,−1
+ p1,−1 p2,−2y3,−2y4,−2

y2,−2

+ p1,−1 p2,−2 p3,−3y4,−2

y3,−3
+ y1



Multiplicative Hitchin systems and supersymmetric gauge… Page 77 of 82 64

t ′2 = p1,−2 p1,−1 p2,−1 p3,−2 p4,−2y3,−2y4,−2 p22,−2

y1,−2y2,−2

+ p1,−1 p2,−1 p3,−2 p4,−2y1,−1y3,−2y4,−2 p22,−2

y22,−2

+ p1,−2 p1,−1 p2,−1 p3,−3 p3,−2 p4,−2y4,−2 p22,−2

y1,−2y3,−3

+ p1,−1 p2,−1 p3,−3 p3,−2 p4,−2y1,−1y4,−2 p22,−2

y2,−2y3,−3

+ p1,−2 p1,−1 p2,−3 p2,−1 p3,−3 p3,−2 p4,−3 p4,−2 p22,−2

y2,−3

+ p1,−2 p1,−1 p2,−1 p3,−2 p4,−3 p4,−2y3,−2 p22,−2

y1,−2y4,−3

+ p1,−1 p2,−1 p3,−2 p4,−3 p4,−2y1,−1y3,−2 p22,−2

y2,−2y4,−3

+ p1,−1 p2,−1 p3,−3 p3,−2 p4,−3 p4,−2y1,−1 p22,−2

y3,−3y4,−3

+ p1,−2 p1,−1 p2,−1 p3,−3 p3,−2 p4,−3 p4,−2y2,−2 p22,−2

y1,−2y3,−3y4,−3

+ p1,−2 p2,−1 p3,−2 p4,−2y1 p2,−2

y1,−2

+ p1,−2 p1,−1 p2,−1 p3,−2 p4,−2y2,−1 p2,−2

y1,−2y1,−1
+ 2p1,−1 p2,−1 p3,−2 p4,−2y2,−1 p2,−2

y2,−2

+ p1,−1 p2,−1 p4,−2y3,−2y3,−1 p2,−2

y2,−2
+ p1,−1 p2,−1 p3,−3 p4,−2y3,−1 p2,−2

y3,−3

+ p1,−1 p2,−1 p3,−2y4,−2y4,−1 p2,−2

y2,−2

+ p1,−1 p2,−1 p3,−2 p4,−3y4,−1 p2,−2

y4,−3
+ p2,−1 p3,−2 p4,−2y1,−1y1 p2,−2

y2,−2

+ p1,−1 p2,−1 p3,−3 p3,−2 p4,−2y2,−1 p2,−2

y3,−3y3,−2

+ p1,−1 p2,−1 p3,−2 p4,−3 p4,−2y2,−1 p2,−2

y4,−3y4,−2
+ y2 + p1,−1 p2,−1y3,−1y4,−1

y1,−1

+ p2,−1y1y3,−1y4,−1

y2,−1

+ p2,−1 p3,−2y1y4,−1

y3,−2
+ p1,−1 p2,−1 p3,−2y2,−1y4,−1

y1,−1y3,−2
+ p2,−1 p4,−2y1y3,−1

y4,−2

+ p1,−1 p2,−1 p4,−2y2,−1y3,−1

y1,−1y4,−2
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+ p1,−1 p2,−1 p3,−2 p4,−2y22,−1

y1,−1y3,−2y4,−2
+ p2,−1 p3,−2 p4,−2y1y2,−1

y3,−2y4,−2

t ′3 = p1,−1 p2,−2 p2,−1 p3,−1 p4,−2y3,−2

y2,−2
+ p1,−1 p2,−2 p2,−1 p3,−3 p3,−1 p4,−2

y3,−3

+ p2,−1 p3,−1 p4,−2y1
y4,−2

+ p1,−1 p2,−1 p3,−1 p4,−2y2,−1

y1,−1y4,−2
+ p1,−1 p2,−1 p3,−1y4,−1

y1,−1

+ p2,−1 p3,−1y1y4,−1

y2,−1
+ p3,−1y2

y3,−1
+ y3

t ′4 = p1,−1 p2,−1 p4,−1y3,−1

y1,−1
+ p2,−1 p4,−1y1y3,−1

y2,−1

+ p1,−1 p2,−2 p2,−1 p3,−2 p4,−1y4,−2

y2,−2

+ p2,−1 p3,−2 p4,−1y1
y3,−2

+ p1,−1 p2,−1 p3,−2 p4,−1y2,−1

y1,−1y3,−2

+ p1,−1 p2,−2 p2,−1 p3,−2 p4,−3 p4,−1

y4,−3
+ p4,−1y2

y4,−1
+ y4.

where we use the shorthand notation

yi,k = yi (q
kz)

pi,k = pi (q
kz)

t ′i,k = t ′i (qkz)

with i, k ∈ Z throughout.
The formulae for these t ′i (z) match the formulae for p-twisted q-characters com-

puted in quiver gauge theory [89], see for instance the example of qq-characters in
the q2 → 1 limit calculated in [86].
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