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Abstract
A major open problem in the theory of twisted commutative algebras (tca’s) is
proving noetherianity of finitely generated tca’s. For bounded tca’s this is easy;
in the unbounded case, noetherianity is only known for Sym(Sym2(C∞)) and
Sym(

∧2
(C∞)). In this paper, we establish noetherianity for the skew-commutative

versions of these two algebras, namely
∧

(Sym2(C∞)) and
∧

(
∧2

(C∞)). The result
depends on work of Serganova on the representation theory of the infinite periplectic
Lie superalgebra, and has found application in the work of Miller–Wilson on “sec-
ondary representation stability” in the cohomology of configuration spaces.
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1 Introduction

1.1 Statement of results

This paper is a sequel to [7]. Recall that a twisted commutative algebra (tca) is a
commutative C-algebra equipped with an action of the infinite general linear group
GL∞ by algebra homomorphisms under which it forms a polynomial representation.
A major open problem in tca theory is proving noetherianity of finitely generated
tca’s. For so-called bounded tca’s, this is straightforward [10, Prop. 9.1.6]. The main
result of [7] states that the unbounded tca’s Sym(Sym2(C∞)) and Sym(

∧2
(C∞))

are noetherian. Currently, these are the only known examples of noetherianity for
unbounded tca’s.

One can also consider skew-commutative analogues of tca’s, the typical examples
being exterior (rather than symmetric) algebras. The main theorem of this paper is a
skew analogue of [7] (see Sect. 2 for the precise definitions of the terms):

Theorem 1.1 The twisted skew-commutative algebras
∧

(Sym2(C∞)) and
∧

(
∧2

(C∞)) are noetherian.

Remark 1.2 The two algebras are “transposes” of each other (see Remark 2.2), and
so the noetherianity of one of them implies it for the other. For this reason, we work
exclusively with

∧
(Sym2(C∞)) in this paper.

1.2 Idea of proof

The proof of Theorem 1.1 follows the proof of [7] closely, so we start by recalling
how it goes. Let B = Sym(Sym2(C∞)), and let ModB denote the category of B-
modules. Define ModgenB (the “generic category”) to be the quotient of ModB by the
Serre subcategory ModtorsB of modules with proper support (i.e., every element has
non-zero annihilator). The approach of [7] is to understand the categories ModtorsB and
ModgenB separately, and then understand something about how they glue together to
form ModB , and finally use all of this to deduce the noetherianity result. We pursue
a similar approach to prove Theorem 1.1. The main conceptual difficulty (at least for
us) is carrying out the analysis of the generic category, so we focus on that here.

We start by recalling the analysis of ModgenB . Geometrically, Spec(B) is the space
of symmetric bilinear forms on C∞. An object of ModB is aGL∞-equivariant quasi-
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coherent sheaf on this space, and an object of ModgenB is an equivariant sheaf on the
“open orbit” of non-degenerate forms. (There is not literally such an open orbit, but
this is a useful picture to have in mind.) Since the stabilizer of a non-degenerate form
is the infinite orthogonal group O∞, we expect an equivalence between ModgenB and
some category of representations of O∞. In fact, we show

ModgenB = Rep(O∞), (1.3)

where the right side is the category of algebraic representations of the infinite orthog-
onal groupO∞ as studied in [11]. To be a little more precise, we fix a non-degenerate
symmetric bilinear form Sym2(C∞) → C. This gives us an O∞-equivariant map of
algebras B → C. Base change under this map defines a functor ModB → Rep(O∞)

which induces the equivalence (1.3). The theory of algebraic representations ofO∞ is
well-understood, and so this equivalence tells us all we need to know about ModgenB .

We now explain the analogue of the above picture in the present setting. Initially, it
is not clear how one should proceed: every positive degree element of

∧
(Sym2(C∞))

is nilpotent, so there is not a geometric picture to work with, and thus not even a
clear guess for how to describe the generic category. Our main insight is that by
systematically working with super objects these difficulties disappear. First, we note
that there is little difference between the polynomial representation theories of GL∞
and GL∞|∞, and so it suffices to prove noetherianity of the “twisted super skew-
commutative algebra”

∧
(Sym2(C∞|∞)). Next, we note that there is little difference

between
∧

(Sym2(C∞|∞)) and A = Sym(Sym2(C∞|∞)[1]), where [1] denotes shift
in super degree, and so it suffices to prove noetherianity of A, which is (super) commu-
tative. We are now in a situation reminiscent of [7]: Spec(A) is the space of periplectic
forms on C∞|∞, and so we expect an equivalence

ModgenA = Rep(Pe∞), (1.4)

where Rep(Pe∞) is the category of algebraic representations of the infinite periplec-
tic supergroup. (It is easier to work with the Lie superalgebra pe∞, so we will
do that instead.) More explicitly, by fixing a non-degenerate periplectic form
Sym2(C∞|∞)[1] → C, we obtain a pe-equivariant algebra homomorphism A → C.
Base change along this map defines a functor ModA → Rep(pe∞), and we show that
this induces an equivalence as in (1.4). The algebraic representation theory of pe∞ has
been worked out by Serganova [12], and is quite similar to the theory for O∞. Thus
(1.4) supplies us with all the information we need about ModgenA .

1.3 Motivation

A-modules appear in recent work of Miller–Wilson [6] on “secondary representation
stability” of the rational homology of connected non-compact manifolds (of finite
type and dimension ≥ 2). More specifically, work of Church–Ellenberg–Farb [2]
shows that each homology group of such a manifold is finitely generated as an “FI-
module” (rationally, FI-modules are equivalent to modules over the tca Sym(V), see
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[9, Proposition 1.3.5]), and secondary stability can be phrased as saying that the set
of minimal generators of these homology groups (as the homological degree varies)
carries an A-module structure, and are graded in such a way that each graded piece is
a finitely generated A-module. Their proof crucially depends upon Theorem 1.1.

Another motivation for our work comes from Koszul duality. Given a finitely gen-
erated Sym(Sym2 V)-module M , the results of our previous paper [7] shows that M
has a finitely generated free resolution. Standard properties of Koszul duality imply
that the space of minimal generators of the resolution can be given the structure of an
A-module, and in fact, it is a direct sum of its “linear strands”. In [9, §6], we studied
the Sym(V[1])-module structure provided by Koszul duality for finitely generated
Sym(V)-modules and used to construct an interesting auto-equivalence on the derived
category of finitely generated Sym(V)-modules. The noetherianity result proved here
is a starting point for the Koszul duality between Sym(Sym2 V)-modules and A-
modules. One subtlety is that in general, the number of linear strands need not be
finite (i.e., Castelnuovo–Mumford regularity need not be finite), in contrast with the
case of Sym(V)-modules.

1.4 Outline

In Sect. 2 we recall some background material on tca’s and their super analogs. In
Sect. 3 we introduce the category Rep(pe) of algebraic representations of the infinite
periplectic Lie superalgebra, and recall Serganova’s work on this category. In Sect. 2.5,
we analyze some subgroups of GL(V) that are needed in the subsequent sections. In
Sect. 4 we introduce the notion of a torsion A-module, and define the Serre quotient
category ModK = ModA /ModtorsA . In Sects. 5 and 6, we show that these two cate-
gories are equivalent; this is where the meat of the paper lies. Finally, in Sect. 7 we
prove Theorem 1.1.

1.5 Notation

We now fix some notation that will be in effect for the entire paper.

• For a super vector space V , we write 0V and 1V for the graded pieces of V . We
refer to this as the super grading. Most super vector spaces we consider will
be endowed with an additional grading (indexed by Z or Z/2), compatible with
the super grading, called the central grading. We write Vn for the central degree
n piece. We write (−)[1] for shift in super grading, so that 0(V [1]) = 1V and
1(V [1]) = 0V .

• We let V be the super vector space C∞|∞ = ⋃
n≥0 C

n|n . We let e1, e2, . . . be a
basis for the even part 0V and let f1, f2, . . . be a basis for the odd part 1V. We let
GL∞|∞ = ⋃

n≥0 GLn|n . We think of this as acting on V.
• We let ε be a basis vector for C[1], and write εn for the resulting basis vector of
C[n] = C[1]⊗n .

• Let xi, j = ei f jε, let yi, j = ei e jε, and let zi, j = fi f jε, regarded as elements
of Sym2(V)[1]. Note that xi, j has super degree 0 while yi, j and zi, j have super
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degree 1. These form a basis of Sym2(V)[1], assuming one takes into account the
identifications yi, j = y j,i and zi, j = −z j,i .

• We let A be the symmetric algebra Sym(Sym2(V)[1]). This is the (super) polyno-
mial ring in the variables xi, j , yi, j , and zi, j . In particular, the variables xi, j are in
the center of A and we have the following relations

yi, j yk,l = −yk,l yi, j ,

zi, j zk,l = −zk,l zi, j ,

yi, j zk,l = −zk,l yi, j .

As explained in Sect. 2, we regard A as a super tca.
• Let ω : Sym2(V)[1] → C be the linear map defined by ω(xi, j ) = δi, j and

ω(yi, j ) = ω(zi, j ) = 0. This is an odd symmetric form on V. We let Pe ⊂ GL(V)

be the stabilizer of ω, the infinite periplectic group. The Lie superalgebra of Pe is
pe.

• We let m be the ideal of A generated by the following elements: (i) the xi, j with
i �= j ; (ii) the xi,i −1; (iii) the yi, j ; and (iv) the zi, j . Of course,m is just the kernel
of the algebra homomorphism A → C induced by ω, and is therefore pe-stable.
(Note: m is not GL∞|∞ stable. In the notation and terminology introduced in
Sect. 2, we should really say thatm is an ideal of |A|.) We let S be the set of super
homogeneous elements of A not belonging to m (they all have super degree 0).
This is a multiplicative subset of A.

• Greek letters such as λ,μ, ν, . . . will often denote integer partitions, which are
finite weakly decreasing sequences of non-negative integers. These are used to
index Schur functors Sλ. We will identify integer partitions with Young diagrams.
We will denote the sum of parts of a partition λ by |λ|. The notation n × k will
denote the partition (k, k, . . . , k)with k repeated n times, and∅ denotes the unique
partition of 0.

2 Preliminaries

2.1 Polynomial representations of GL∞ and tca’s

In this section, we recall some background material. We refer to [10] for more details.
Let GL∞ be the group

⋃
n≥1GLn and let C∞ = ⋃

n≥1 C
n . A representation of

GL∞ is polynomial if it decomposes as a (perhaps infinite) direct sum of Schur
functors Sλ(C∞). We let V◦ denote the category of such representations. It is a semi-
simple abelian category. Furthermore, it is closed under tensor product. A twisted
commutative algebra (tca) is a commutative algebra object in this tensor category.
Concretely, a tca is a commutative associative unital C-algebra B equipped with an
action ofGL∞ by algebra homomorphisms under which, as a linear representation, it
is polynomial. We write |B| when we want to refer to the algebra B without thinking
of it as a tca.
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Let B be a tca. By a B-module we will always mean a module object in V◦. (We
use the term |B|-module for a module over the algebra |B| with no extra structure.)
Concretely, a B-module is aGL∞-equivariant module over |B|which, as a linear rep-
resentation, is polynomial. There is an obvious notion of finite generation for modules.
We say that B is noetherian if every submodule of a finitely generated B-module is
again finitely generated.

Remark 2.1 If B is noetherian then every ideal of B is finitely generated. It is unknown
if the converse of this statement holds. We note that it is relatively easy to classify all
of the ideals of B = Sym(Sym2(C∞)) and prove their finite generation “by hand,”
but the proof of noetherianity of B (at least the one from [7]) is much more involved.

In this paper we will primarily be concerned with the algebra
∧

(Sym2(C∞)). This
is an algebra object in V◦, but it is not commutative, so it is not a tca. However, it is
quite close to being one. We define the notion of module and noetherianity just as for
tca’s.

Remark 2.2 The category V◦ admits a transpose functor (−)† (see [10, §7.4] for a
discussion). On simple objects, it is given by Sλ(C∞)† = Sλ†(C

∞), where λ† is the
transposed partition. The transpose functor is a tensor functor, but not a symmetric ten-
sor functor: it interchanges the natural symmetry of the tensor functor with the graded
symmetry. In fact, the transpose functor is induced by precomposing with the functor
V 
→ V [1] which shifts the super degree by 1. It is clear that Sλ(C∞[1]) = Sλ†(C

∞)

up to a possible shift in super degree which (−)† takes into account. From this descrip-
tion, one can see that

∧
(Sym2(C∞))† = ∧

(Sym2(C∞[1])) = ∧
(
∧2

(C∞)). And
so, as stated in Remark 1.2, it suffices to prove the main theorem for

∧
(Sym2(C∞)).

2.2 Polynomial representations of GL∞|∞ and super tca’s

A polynomial representation of GL∞|∞ is one that decomposes as a direct sum of
Sλ(V)’s and Sλ(V)[1]’s. We let V be the category of such representations. We let V0
be the subcategory of representations that decompose as a direct sum of just Sλ(V)’s.
These are both semi-simple abelian categories and closed under tensor product. (To
see this, it suffices to note that Sλ(V) is an irreducible representation ofGL∞|∞. This
can be deduced from the fact that Sλ(Cn|m) is an irreducible representation of GLn|m
for all n,m, which follows from the discussion in [1, §3.2].) We can consider algebra
objects in this category, the commutative ones being super analogues of tca’s, and
modules for them. We define noetherianity as for tca’s.

The category V◦ can equivalently be thought of as the category of Schur functors,
and one can evaluate a Schur functor on an object of any symmetric tensor category.
We therefore have a functor

V◦ → V0, Sλ(C∞) 
→ Sλ(V).

This is easily seen to be an equivalence of abelian tensor categories. It follows that
an algebra object in V◦ is noetherian if and only if the corresponding object in V0 is.
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Thus to prove Theorem 1.1, it suffices to show that
∧

(Sym2(V)) is noetherian, as an
algebra in V0 or V. (Proving the result in V is a priori stronger, as it allows for more
modules, but is easily seen to be equivalent.)

Every object of V is a super vector space, and therefore has a super grading. Every
object of V also admits a central grading from the action of the “center” of GL∞|∞.
(This group does not contain the scalar matrices, so does not actually have a center.
However, for any given element of a representation one can mimic the action of what
should be the center by taking a matrix that is approximately scalar. See [11, §2.2.2]
for details.) Explicitly, the simple objects Sλ(V) and Sλ(V)[1] are concentrated in
central degree |λ|.

Recall that A = Sym(Sym2(V)[1]). This is an algebra object in V. Let A′ =∧
(Sym2(V)); this is also an algebra in V.

Proposition 2.3 The module categoriesModA andModA′ are equivalent. In particu-
lar, A is noetherian if and only if A′ is.

Proof Since A is concentrated in even central degrees, any A-module decomposes, as
an A-module, as the direct sum of its even and odd central degree pieces. The same
is true for A′. We first show that the two categories of modules concentrated in even
central degrees are equivalent.

Let T (C[1]) denote the tensor algebra on C[1]. Recall that ε is a basis vector of
C[1]. We first observe that A can be identified with the subalgebra

⊕
n≥0 A

′
2nε

n of
A′ ⊗ T (C[1]) via A2n = Symn(Sym2(V)[1]) = ∧n

(Sym2(V))[n] = A′
2nε

n . Now
let M ′ be an A′-module concentrated in even central degrees. Put

M =
⊕

n≥0

M ′
2nε

n ⊂ M ′ ⊗ T (C[1]).

The ambient space M ′ ⊗T (C[1]) is an A′ ⊗T (C[1]) module, and one readily verifies
that M is an A-submodule. The construction M ′ 
→ M is reversible, with exactly the
same construction for the reverse. This gives the desired equivalence.

The equivalence for modules in odd central degrees is similar. If M ′ is such a
module, then

M =
⊕

n≥0

M ′
2n+1ε

n

is an A-module, and M ′ 
→ M is the equivalence. �

2.3 A result aboutm

Let Q1 be the set of partitions so that for each box in the main diagonal, the number
of boxes in the same row and to the right of it is exactly 1 more than the number of
boxes in the same column and below it. By [5, Ex. I.8.6(d)], we have the following
decomposition:
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A =
⊕

λ∈Q1

Sλ(V)[|λ|/2]

where the shifts are in superdegree. Let pn ⊂ A be the ideal generated by
Sn×(n+1)(V)[n(n + 1)/2].
Lemma 2.4

∏
1≤i≤ j≤n yi, j generates pn.

Proof Let N = (n+1
2

)
. We have

An(n+1)(Cn|0) = ∧N
(Sym2(Cn))[N ] = Sn×(n+1)(Cn)[N ].

This is 1-dimensional and spanned by the element under discussion, so
∏

1≤i≤ j≤n yi, j∈ pn . Since pn is generated by the Schur functor Sn×(n+1)[N ], we conclude that pn is
generated by this element. �
Proposition 2.5 We have m + pn = A for all n ≥ 1.

Proof Let Xi, j ∈ gl∞ be the element sending ei to f j and killing the ek with k �= i
and the f�. Consider the element

v = X1,1X1,2X2,2 · · · X1,n · · · Xn−1,n Xn,n

∏

1≤i≤ j≤n

yi, j .

Expanding this, we find a term of the form

v0 = ±
∏

1≤i≤ j≤n

x j, j ,

and all other terms have the property that they contain a factor of the form xi, j where
i �= j , yi, j , or zi, j . Thus v ≡ v0 ≡ ±1 (mod m). Since pn is closed under gl∞, we
have v ∈ pn . Since ±v − 1 ∈ m, it follows that 1 ∈ m + pn . �

For n > 0, let y(n) = ∏
1≤i≤ j≤n yi, j .

Corollary 2.6 If a is a non-zero ideal of A, then a ⊇ pn for some n. In particular,
a + m = A.

Proof Pick n so that a(Cn) �= 0. Then a(Cn) is a nonzero homogeneous ideal in
the exterior algebra

∧
(Sym2(Cn)). In particular, it contains its top degree piece

∧n(n+1)/2
(Sym2(Cn)) which is spanned by y(n), so by Lemma 2.4, a ⊇ pn . Now use

Proposition 2.5. �

2.4 More on ideals

The subalgebra of A generated by the xi, j is the commutative algebra Sym(0V⊗ 1V).
Given a partition λ, let xλ be a nonzero vector in Sλ(0V) ⊗ Sλ(1V) which is a highest
weight vector with respect to the upper triangular matrices in gl(0V) × gl(1V).

If �(λ) ≤ n, write λ{n} for the partition (λ1 + n + 1, . . . , λn + n + 1, λ†).
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Lemma 2.7 The gl(V)-subrepresentation of A generated by y(n)xλ is Sλ{n}(V).

Proof Replace V with Cn|n . Consider the upper-triangular matrices in gln|n where we
have ordered the even variables before the odd ones. We claim that y(n)xλ is a highest
weight vector for this choice of Borel. Both y(n) and xλ are eigenvectors for the upper-
triangular matrices in gln × gln , so the same is true for y(n)xλ. The remainder of the
Borel is the upper-right block, which consists of maps from 1V to 0V. However, the
action of any such matrix replaces xi, j with some yk,�; since y(n) contains the product
of all of the y variables, the action is 0 on y(n)xλ, so we conclude it is a highest weight
vector. The even part of its weight is (λ1 + n + 1, . . . , λn + n + 1) and the odd part
of its weight is λ, so we conclude that it generates the Schur functor Sλ{n}(V) (see [1,
§3.2.2] for this last statement). �
Corollary 2.8 Suppose λ ∈ Q1. If n × (n + 1) ⊆ λ then pn contains Sλ(V).

Proof If n × (n + 1) ⊆ λ, then λ = μ{n′} for some n′ ≥ n and some partition μ.
From Lemma 2.7, we see that Sn′×(n′+1)(V) generates Sλ(V), and from Lemma 2.4,
we see that Sn×(n+1)(V) generates Sn′×(n′+1)(V). �

2.5 The Borel subgroup and themaximal torus

Ordering our basis of V as e1, e2, . . . , and f1, f2, . . ., we can think of elements of
GL(V) as block matrices

(
a b
c d

)

.

Let B ⊂ GL(V) be the subgroup where a, c, and d are upper-triangular, and b is
strictly upper triangular. The determinant of such a matrix is simply the product of
the determinants of a and d. Let b be the Lie algebra of B. Note that B is a Borel
subgroup since it is the subgroup of upper-triangular matrices with respect to the
ordering f1 < e1 < f2 < e2 < · · ·

Let Gm denote the multiplicative group, and let T = G∞
m where all but finitely

many coordinates are 1. We denote elements of T as (α1, α2, . . .). We regard T as a
subgroup of GL(V) by

α 
→
(

α 0
0 α−1

)

.

In other words, α · ei = αi ei and α · fi = α−1
i fi . This T is the maximal torus of Pe,

and is the intersection of B and Pe.

Lemma 2.9 b + pe = gl and b ∩ pe is the Lie algebra of T .

Proof It suffices to prove that bn + pen = gln|n for all n where gln|n = End(Cn|n)
and bn and pen are subalgebras of gln|n defined in an analogous way as b and pe. We
can do this by a dimension count. First, we remark that pen consists of matrices of the
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form
(
a b
c −aT

)
where a, b, c are n × n matrices with b = bT and c = −cT [1, §1.1.5,

equation (1.14)]. So bn ∩ pen consists of matrices of the form
(
a 0
0 −a

)
where a is a

diagonal matrix. We see that

dim(pen + bn) = dim(pen) + dim(bn) − n = 2n2 + (2n2 + n)

− n = 4n2 = dim(gln|n),

so pen + bn = gln|n . �
Corollary 2.10 Let V be a gl-representation. Let {xi } be a complete set of highest
weight vectors for V with respect to the Borel subalgebra b. Then {xi } generate V as
a pe-representation.

Proof Every v ∈ V is a linear combination of a1 · · · ar xi where ai ∈ gl. By induction
on r , we will show that this belongs to U(pe)xi . If r = 0, there is nothing to show; if
r > 0, write a2 · · · ar xi as a linear combination of p1 · · · psxi with pi ∈ pe. It suffices
to show that a1 p1 · · · psxi ∈ U(pe)xi , which we will do by induction on s. Write
a1 = b + p where b ∈ b and p ∈ pe. If s = 0, then we have a1xi = bxi + pxi ; the
second term is in U(pe)xi by definition, and the first term is a scalar multiple of xi
since it is a highest weight vector, so a1xi ∈ U(pe)xi . If s > 0, write [b, p1] = b′ + p′
where b′ ∈ b and p′ ∈ pe. Then we have

bp1 · · · psxi = p1bp2 · · · psxi + b′ p2 · · · psxi + p′ p2 · · · psxi .

Now the first and second terms are in U(pe)xi by induction on s, and the last term is
in U(pe)xi by definition, so we are done. �

3 Stable representation theory of the periplectic group

We say that a representation of pe is algebraic if it appears as a subquotient of a finite
direct sum of the spaces Tn = V⊗n and Tn[1].1 We write Rep(pe) for the category
of algebraic representations. The category Rep(pe) is closed under tensor products.
Serganova [12] has determined the structure of this category, and in this section we
summarize the results and recast them in the style of [11]. We remark that one of the
conclusions of [12], namely that Rep(pe) is equivalent to Rep(O), is incorrect, see
Remark 3.4.

In [11, (4.2.5)], we defined the downwards Brauer category, and in [11, (4.2.11)] we
defined a signed variant. Here we introduce a different signed variant of this category,
which we simply denote by C. It is defined as follows:

1 The “restricted dual” V∗ is isomorphic to V as a representation of pe, so one does not get anything new
by considering mixed tensors.
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• The objects of C are finite sets.
• The space of morphisms HomC(L, L ′) is the super vector space spanned by pairs

(	, f ), where 	 is a matching on L equipped with an orientation on its edge set
(i.e., a total ordering modulo the action of even permutations) and f is a bijection
L\V (	) → L ′, modulo the relations (	, f ) = −(	′, f ) if 	′ is obtained from 	

by reversing the orientation on the edge set. The (super) degree of (	, f ) is the
number of edges in 	.

• The composition of (	, f ) : L → L ′ and (	′, f ′) : L ′ → L ′′ is (	∪ f −1(	′), f ′ ◦
f ), where the orientation on the edge set of 	 ∪ f −1(	′) is the one obtained by
putting the edges of 	 before those of f −1(	′).

We write ModC for the category of enriched functors M : C → SVec.
We now define an object K of ModC. For a finite set L , we put KL = V⊗L . For

a morphism (	, f ) : L → L ′, we define KL → KL ′ by applying the pairing ω to
the tensor factors paired by 	 and using f on the remaining tensor factors. Each KL

belongs to Rep(pe), and the maps KL → KL ′ are maps of pe-representations, so K

can be considered as a representation ofC in the category Rep(pe).We therefore obtain
a functor


 : ModfC → Rep(pe), 
(M) = HomC(M,K)

and a functor

� : Rep(pe)f → ModC, �(N ) = Hompe(N ,K),

as in [11, (2.1.10)]. Here (−)f denotes the full subcategory of finite length objects.

Theorem 3.1 The functors 
 and � are mutually quasi-inverse contravariant equiv-
alences between ModfC and Rep(pe)f .

Proof We apply the criterion of [11, (2.1.11)]. (We are not exactly in the situation
discussed there, but the same criterion and proof still apply.) Part (a) follows from
[12, Proposition 3(d)] and [12, Lemma 17]. For Part (b), consider a simple object V λ

of Rep(pe), in the notation of [12]. Suppose that the partition λ is of size n. Then
Hompe(V λ,K[n]) is the Specht module Mλ by [12, Proposition 3(d)]. Furthermore,
if m �= n then Hompe(V λ,K[m]) = 0 by [12, Proposition 3(d)], since then the socle
of K[m] has no copy of V λ in it. �
Proposition 3.2 We have the following:

(a) The Sλ(V) are finite length representations of pe.
(b) The Sλ(V) are exactly the indecomposable injective objects of Rep(pe)f .
(c) Every object of Rep(pe)f has a finite length resolution by finite length injective

objects (i.e., finite sums of indecomposable injectives).

Proof One can deduce from [12, Lemma 17] that the quotient of Sλ(V) by its socle
injects into a finite sum of Sμ(V)’s withμ smaller than λ. An easy inductive argument
using this proves (a). (b) follows from [12, Theorem 8], which states that Sλ(V) is the
injective envelope of the simple corresponding to λ. (c) follows from Theorem 3.1, as
the corresponding statement for ModC is clear from the simple form of C. �
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Proposition 3.3 The category of finite length supermodules over Sym(Sym2(V)[1])
and ModfC are equivalent. In particular, it is also equivalent to Rep(pe)f .

Proof This follows from a signed variant of [11, (2.4.1)]. �
Remark 3.4 Serganova claims in [12, Theorem 9] (without proof) that there is an
equivalence between Rep(pe) and Rep(O) (both are categories of supermodules). In
this remark, we explain that no such equivalence exists (even ignoring the tensor
structure).

First, the existence of such an equivalence implies that the subcategories of finite
length objects are also equivalent. By Proposition 3.3, Rep(pe)f is equivalent to the
category of finite length supermodules over

∧
(Sym2 V) and by [11, Theorem 4.3.1],

Rep(O)f is equivalent to the category of finite length supermodules of Sym(Sym2 V).
So in our language, this would be an equivalence between the categories of finite
length supermodules of the tca Sym(Sym2 V) and the skew tca

∧
(Sym2 V). Using

the Koszul complex, we find

Exti
Sym(Sym2)

(Sλ,Sμ) ∼= HomGL(Sμ,Sλ ⊗
i∧

(Sym2))

Exti∧
(Sym2)

(Sλ,Sμ) ∼= HomGL(Sμ,Sλ ⊗ Symi (Sym2)).

We claim that any equivalence has to send S∅ either to itself or its parity shift S∅[1].
First, if μ is a partition with the property that Ext•

Sym(Sym2)
(Sλ,Sμ) = 0 for all λ,

then μ is a single column partition of the form (1d) for some d ≥ 0. Hence any
simple solution M to Ext•

Sym(Sym2)
(Sλ, M) = 0 for all Sλ must be either S(1d ) or

S(1d )[1]. If d > 0, then there are two solutions to Ext2
Sym(Sym2)

(Sλ,S1d ) �= 0, namely

λ ∈ {(3, 1d−1), (2, 1d)}, and if d = 0 there is only one solution. Similarly, any simple
solution M to Ext•∧

(Sym2)
(Sλ, M) = 0 for all λ must be Sd or Sd [1] for some d ≥ 0.

If d > 0, then Ext2∧
(Sym2)

(Sλ,Sd) �= 0 has two solutions, and if d = 0 there is only

one solution. In particular, S∅ is either sent to itself or S∅[1]. Since the parity change
functor is an equivalence in Serganova’s setup, we may as well compose with it if
needed to assume that the proposed equivalence sends S∅ to itself.

Next, notice that there are exactly two simple solutions M to Ext2
Sym(Sym2)

(S∅, M)

�= 0, namely
∧2

(Sym2) ∼= S2,1,1 or its parity shift. On the other hand, there are
exactly four simple solutions M to Ext2∧

(Sym2)
(S∅, M) �= 0, namely those appearing

in Sym2(Sym2) ∼= S4⊕S2,2 or their parity shifts. As we just said, the equivalence pre-
serves S∅, and since it takes simple objects to simple objects, and preserves extension
groups, we conclude that no equivalence between Sym(Sym2) and

∧
(Sym2) exists.

4 The generic category

We now define a notion of “torsion” for A-modules. We begin with a variant of
Nakayama’s lemma. Recall that S is the set of super homogeneous elements of A\m.
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Lemma 4.1 Let M be a finitely generated A-module such that M = mM (with equality
as |A|-modules). Then S−1M = 0.

Proof Let V ⊂ M be a finite length GL-subrepresentation generating M as an
A-module. Pick m1, . . . ,mk ∈ V such that the mi generate V (CN |N ) as a peN -
representation for all N � 0 (they exist by Corollary 2.10). Write mi = ∑

i ai, j ni, j
where ai, j ∈ m and ni, j ∈ M . Let N � 0 be large enough so that the mi and the ni, j
belong to M ′ = M(CN |N ) and the ai, j belong to A′ = A(CN |N ). Let V ′ = V (CN |N ),
letm′ = m(CN |N ), and let S′ be the super homogeneous elements of A′ not inm′ (they
all have super degree 0). Then M ′ is an A′-module and generated (ignoring any group
action) by V ′. We have mi ∈ m′M ′ for all i , and so gmi ∈ m′M ′ for any g ∈ peN ,
since m′ is peN -stable. Thus V ′ ⊂ m′M ′ and so M ′ = m′M ′. Thus, by the usual
version of Nakayama’s lemma [4, (4.22)], we have (S′)−1M ′ = 0. Therefore, for each
1 ≤ i ≤ k there exists si ∈ S′ ⊂ S such that simi = 0, which implies S−1M = 0. �
Proposition 4.2 Let M be an A-module. The following conditions are equivalent:

(a) For every finitely generated submodule M ′ of M there is a non-zero ideal a of A
such that aM ′ = 0.

(b) We have S−1M = 0.
(c) For every m ∈ M there exists a ∈ A with non-zero image in C[xi, j ] =

A/(yi, j , zi, j ) such that am = 0.

Proof Suppose (a) holds, and let us prove (b). Let M ′ ⊂ M be finitely generated, and
let a be a non-zero ideal of A annihilating the submodule M ′. Since a + m = A by
Lemma 2.6, we have mM ′ = M ′, and so S−1M ′ = 0 by Lemma 4.1. Since this holds
for all finitely generated M ′ ⊂ M , it follows that S−1M = 0.

Now suppose (b) holds. So given m ∈ M , there exists s ∈ S such that sm = 0. As
s has non-zero reduction in C[xi, j ], one can take a = s in (c). Thus (c) holds.

Finally, suppose (c) holds. Let M ′ be a submodule of M generated by m1, . . . ,mk .
Let aimi = 0 with ai as in (c). Let a = a1 · · · ak ; this still has non-zero image in
A/(yi, j , zi, j ), sinceC[xi, j ] is a domain, and annihilates eachmi . Following the proof
of [7, Prop. 2.2], we see that there exists n, depending only on the mi , such that
an(gmi ) = 0 for all g ∈ GL∞|∞. Note that an �= 0, again since C[xi, j ] is a domain.
It follows that the (non-zero) ideal of A generated by an annihilates M ′, and so (a)
holds. �

We say that an A-module is torsion if it satisfies the equivalent conditions of
Proposition 4.2. We write ModtorsA for the category of torsion modules. It is clear
that this is a Serre subcategory of ModA. We denote by ModK the Serre quotient
ModA /ModtorsA , and write T : ModA → ModK for the localization functor.

5 Local structure of A-modules atm

In this section, we analyze the local structure of A-modules at the ideal m. The main
result (Proposition 5.9) shows that if M is an A-module then the localization S−1M
can be functorially recovered from the pe-representation M/mM . As an important
corollary, we find that S−1M is free over S−1A.
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5.1 Construction of�

Following the notation from Sect. 2.5, let C[B] be the super polynomial ring in even
variables ai, j with i ≤ j , odd variables bi, j with i < j , odd variables ci, j with i ≤ j
and even variables di, j with i ≤ j . Then C[B] is C[B] with the variables ai,i and di,i
inverted. We let T act on C[B] as follows:

α · ai, j = α−1
i ai, j , α · bi, j = α−1

i bi, j , α · ci, j = αi ci, j , α · di, j = αi di, j .

Let V be a polynomial representation of GL(V). Then V is naturally a comodule
over C[B] (see [7, §3.2]). The image of the comultiplication map V → V ⊗ C[B]
is elementwise T -invariant. Let M be an A-module. Taking V = M in the previous
comment and using that mM is T -invariant, we thus obtain a map

ϕM : M → (M/mM ⊗ C[B])T .

In the remainder of this section, we study this map.

5.2 Themap�A

We now study the map ϕA:

ϕA : A → C[B]T = A′.

This is an algebra homomorphism. The ring A′ is easy to describe:

A′ = C[ai, j ci,k, ai, j di,k, bi, j ci,k, bi, j di,k].

We now compute ϕA explicitly. Under comultiplication, we have

ei 
→
∑

k≤i

ekak,i +
∑

k≤i

fkck,i , fi 
→
∑

k≤i

ekbk,i +
∑

k≤i

fkdk,i ,

using the convention bi,i = 0. We thus have

xi, j 
→
⎛

⎝
∑

k≤i

ekak,i +
∑

k≤i

fkck,i

⎞

⎠ ·
⎛

⎝
∑

�< j

e�b�, j +
∑

�≤ j

f�d�, j

⎞

⎠ · ε

under comultiplication. Passing to A/m, only the ei fiε terms survive, and they all
become 1. We thus find

ϕ(xi, j ) =
∑

k≤i, j

(ak,i dk, j + ck,i bk, j ) = Xi, j .
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Similar computations give

ϕ(yi, j ) =
∑

k≤i, j

(ak,i ck, j + ak, j ck,i ) = Yi, j ,

ϕ(zi, j ) =
∑

k≤i, j

(dk,i bk, j − bk,i dk, j ) = Zi, j .

Define an ordering on the variables a, b, c, d as follows: for p, q ∈ {a, b, c, d}, first
we define pi j > qk� if ( j, i) > (�, k) in the lexicographic order, and then to compare
pi, j and qi, j , we use the ordering d > c > a > b. Extend this to order monomials
using the graded lexicographic ordering. The leading term of an element in A′ is the
largest monomial appearing in it with nonzero coefficient. So when i ≤ j , we have

• the leading term of Xi, j is ai,i di, j ,
• the leading term of X j,i is ai, j di,i ,
• the leading term of Yi, j is ai,i ci, j , and
• the leading term of Zi, j is di,i bi, j (note that bii = 0 and that Zi,i = 0 since

zi,i = 0).

The leading term of amonomial in X ,Y , Z is the product of the corresponding leading
terms. (Note: in a non-zero monomial, Yi, j and Zi, j can only appear once, since they
square to zero, and so the product of leading terms is non-zero.)

Proposition 5.1 ϕA is injective.

Proof It suffices to show that distinct monomials in the X ,Y , Z (where each Yi, j
and Zi, j appear at most once) have distinct leading terms. If we have a product of
the a, b, c, d which is the leading term of some monomial in X ,Y , Z , we just need
to show that this monomial can be uniquely reconstructed. First, any instances of
ci, j must have an accompanying ai,i and this corresponds to an instance of Yi, j , and
similarly for bi, j . After removing these, we are left with a leading term in a, d. But
again, any instance of di, j with i < j has an accompanying ai,i and this corresponds
to Xi, j , and similarly for ai, j . �
Lemma 5.2 Let I be the ideal of |A| generated by elements of the form yi, j and zi, j .
An element s ∈ A is a nonzerodivisor if and only if s /∈ I .

Proof Clearly every element of I is a zero divisor. Now suppose s /∈ I and pick
a ∈ A\{0}. To a monomial m in variables of the form xi, j , yi, j and zi, j , we say that
deg(m) = n if n is the largest integer such that m ∈ I n [this notion of degree only
satisfies deg(m1m2) ≥ deg(m1) + deg(m2)]. Since the monomials form a basis for
A, this defines a direct sum decomposition A = ⊕

n≥0 An which we will use for the
rest of this proof (but nowhere else in the paper). Clearly, the degree 0 piece m of
s is nonzero (and m is a polynomial in the xi, j with coefficients in C, and hence a
nonzerodivisor). Let e be the piece of a of minimal degree. Then me is nonzero, and
the minimal degree piece of as is me. This shows that as �= 0 and proves that s is a
nonzerodivisor. �
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Recall that S is the set of super degree 0 elements of A not belonging to m. By
Lemma 5.2, every element of S is a nonzerodivisor (since I ⊂ m).

Proposition 5.3 The localization of ϕA at S is an isomorphism.

Proof Injectivity of S−1ϕA follows from Proposition 5.1 because localization is exact.
Let x be a nonzero element of the form ak,i dk, j , ak,i ck, j , bk,i ck, j or bk,i dk, j in S−1A′.
In a similar manner as in Proposition 5.1, we define a total quasiorder on the variables
a, b, c, d as follows: for p, q ∈ {a, b, c, d}, first we define pi j > qk� if ( j, i) > (�, k)
in the lexicographic order. Then we extend it to a total quasiorder on monomials using
the graded lexicographic ordering. We show by induction on this quasiorder (which
is clearly well-founded) that:

• if x is of type ad, bc, ac, or bd, then it is in the image of S−1ϕA,
• if x is not of the form ai,i di,i then it is in the image of S−1m,
• if x is of the form ai,i di,i then it is in the image of S and hence is a unit in S−1A′.

The base case is clear because by definition ϕA(x1,1) = X1,1 = a1,1d1,1, Y1,1 =
2a1,1c1,1 are in the image and x1,1 ∈ S. Also note that bi,i = 0, so b1,1c1,1 =
b1,1d1,1 = 0.

For the case k < i, j , the following expressions and the induction hypothesis proves
the hypothesis at hand:

ak,i dk, j = (ak,kdk,k)
−1(ak,i dk,k)(ak,kdk, j )

ak,i ck, j = (ak,kdk,k)
−1(ak,i dk,k)(ak,kck, j )

bk,i ck, j = (ak,kdk,k)
−1(bk,i dk,k)(ak,kck, j )

bk,i dk, j = (ak,kdk,k)
−1(bk,i dk,k)(ak,kdk, j ).

Next we consider the case k = i < j . Then the equations

X j,i = ai, j di,i + lower terms of type ad or bc

Zi, j = di,i bi, j + lower terms of type ac or bd

imply that ai, j di,i and di,i bi, j satisfy the hypothesis. Next the equations

bi, j ci,i = (ai,i di,i )
−1(bi, j di,i )(ai,i ci,i )

ai, j ci,i = (ai,i di,i )
−1(ai, j di,i )(ai,i ci,i )

show that bi, j ci,i and ai, j ci,i satisfy the hypothesis. Finally, the equations

Xi, j = ai,i di, j + ci,i bi, j + lower terms of type ad or bc

Yi, j = ai,i ci, j + ai, j ci,i + lower terms of type ac or bd

show that ai,i di, j and ai,i ci, j satisfy the hypothesis.
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The case k = j < i follows from the last case. Finally, the case k = i = j follows
immediately from the equations

X j, j = a j, j d j, j + lower terms of type ad or bc

Y j, j = 2a j, j c j, j + lower terms of type ac or bd

and the fact that ϕA(x j, j ) = X j, j is in the image of S. �

Proposition 5.4 Let n ⊂ S−1C[B] be the ideal generated by ai,i − 1, di,i − 1, and the
remaining variables (i.e., ai, j for i �= j , di, j for i �= j , the bi, j , and the ci, j ). Then
the extension of m to S−1A′ is the contraction of n to A′.

Proof From the formulas for ϕ(xi, j ), ϕ(yi, j ), and ϕ(zi, j ), one easily sees that the
kernel of the homomorphism A → C[B] → C[B]/n is m. It follows that the kernel
of A → A′ → A′/nc is also m. Thus the extension of m to A′ is contained in nc. But
this extension is maximal, since S−1ϕA is an isomorphism, and so we have equality.

�

5.3 Themap�M in general

A monomial character of T is a homomorphism T → C× of the form

χn : (α1, α2, . . .) 
→ α
n1
1 α

n2
2 · · ·

where the ni are integers and ni = 0 for i � 0. An admissible representation of T is
a representation V of T that decomposes as a direct sum of monomial characters. We
note that if V is an algebraic representation of pe, V is a representation of its Cartan
subalgebra which integrates to an action of T ; then V |T is an admissible representation
of T : it suffices to check this for tensor powers of V and V[1] in which case it is clear.
Proposition 5.5 Let V be an admissible representation of T . Then N = S−1(V ⊗
C[B])T is free over |S−1A|.
Proof It suffices to treat the case when V is one dimensional, say with basis v. Suppose
that T acts on V through the character χn. Define pi to be ai,i if ni > 0 and di,i if
ni < 0 (and 1 if ni = 0), and define p(n) = pn11 pn22 . . .. The element v ⊗ p(n) is
T -invariant, and an argument similar to the one in the proof of Proposition 5.3 shows
that S−1(V ⊗ C[B])T is a free |S−1A|-module generated by this element. �

Now let M be an A-module, and consider the map

ϕM : M → (M/mM ⊗ C[B])T

The target is naturally a module over the ring A′, which is itself an |A|-algebra, and
one easily verifies that ϕM is a map of |A|-modules.
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Lemma 5.6 The reduction of ϕM modulo m is an isomorphism.

Proof Let N = (M/mM ⊗C[B])T and let ψ : N → M/mM be the map induced by
C[B] → C[B]/n = C, where n is as in Proposition 5.4. Write ϕ and ψ for the mod
m reductions of ϕ = ϕM and ψ . Consider the diagram

M (M ⊗ C[B])T M

M/mM
ϕ

N/mN
ψ

M/mM

The top right map is induced by C[B] → C[B]/n. By definition, the composition of
the top row is the action of 1 ∈ B on M , and is thus the identity. The diagram is easily
seen to commute, and so ψ ◦ ϕ is the identity.

Now, let {mi } be a basis of M/mM consisting of T weight vectors, where mi

has weight ni . Then it follows from the proof of Proposition 5.5 that the elements
mi ⊗ p(ni ) form a basis of N/mN . Since p(ni ) = 1 (mod n), we have ψ(mi ⊗
p(ni )) = mi . Thusψ takes a basis of N/mN to one of M/mM , and is thus a bijection.
Since ϕ is a right inverse to ψ , it too is a bijection. �
Lemma 5.7 The kernel of ϕM is GL-stable, and thus an A-submodule of M.

Proof By definition, the kernel of ϕM consists of those m ∈ M such that the B-
submodule of M generated by m is contained inmM . In other words, m ∈ ker(ϕM ) if
and only if m ∈ mM and am ∈ mM for all a ∈ U(b). Clearly, ker(ϕM ) is b-stable. It
suffices to show that it is also pe-stable, since gl = pe+b (Lemma 2.9). Let Y ∈ pe and
let m ∈ ker(ϕM ), and let us show Ym ∈ ker(ϕM ). Since m ∈ mM and m is pe-stable,
it follows that Ym ∈ mM . Now let X ∈ b. We have XYm = Y Xm + [X ,Y ]m. Now,
Xm ∈ mM and so Y Xm ∈ mM . Since [X ,Y ] belongs to gl = b + pe, we can write
it as X ′ + Y ′ with X ′ ∈ b and Y ′ ∈ pe. Since m ∈ ker(ϕM ), we have X ′m ∈ mM and
since m ∈ mM we have Y ′m ∈ mM . The result follows. �

Since m is pe-stable, so is S, and so pe acts on S−1A. We say that a pe-equivariant
S−1A-module is algebraic if it is generated, as an S−1A-module, by an algebraic
pe-subrepresentation.

Lemma 5.8 Suppose that

0 → R → M → N → 0

is an exact sequence of algebraic pe-equivariant S−1A-modules such that M is
equivariantly finitely generated and N is free as an |S−1A|-module. Then R is also
equivariantly finitely generated.

Proof We first treat the case where M is also |S−1A|-free. Since R is a summand of
M as an |S−1A|-module, it follows that R is projective and thus (since S−1A is local)
free. Consider the sequence

0 → R/mR → M/mM → N/mN → 0
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which is exact by the freeness hypothesis on N . Since M is finitely generated and alge-
braic, M/mM is a finite length algebraic pe-representation, and so R/mR is as well.
Let V ⊂ R be a finite length algebraic pe-representation surjecting onto R/mR. Then
Nakayama’s lemma shows that V generates R as an |S−1A|-module, which shows
that R is equivariantly finitely generated. (Note: we can apply Nakayama without an
a priori finiteness condition on R since we know R is free.)

We now treat the general case. Let V ⊂ M be a finite length algebraic representation
surjecting onto N/mN . Let N ′ = S−1A ⊗ V , let N ′′ be the kernel of the surjection
N ′ → N , and let M ′ be the fiber product of M and N ′ over N . We have the following
commutative diagram

0 0

0 R M N 0

0 R M ′ N ′ 0

N ′′ N ′′

0 0

The two rows and two columns are exact. Applying the previous paragraph to the right
column, we see that N ′′ is equivariantly finitely generated. The middle column now
shows that M ′ is an extension of equivariantly finitely generated modules, and thus
equivariantly finitely generated. Now, the surjection M ′ → N ′ splits equivariantly
(this is why we introduced M ′), and so there is an equivariant surjection M ′ → R,
proving that R is equivariantly finitely generated. �

Proposition 5.9 Let M be an A-module. The localization S−1ϕM is an isomorphism.

Proof The assignment M 
→ ϕM commutes with filtered colimits, and so it suffices
to treat the case where M is finitely generated. Let R be the kernel of ϕM , which is
an A-submodule of M by Lemma 5.8, and let N = S−1(M/mM ⊗ C[B])T . Since
M/mM is an admissible representation of T (being an algebraic representation of
pe), Proposition 5.5 shows that N is a free S−1A-module. By Lemma 5.6, the map
M/mM → N/mN is an isomorphism. It follows that S−1ϕM is a surjection, since it
is a surjection mod m (which is the Jacobson radical of S−1A) and N is free. Since
localization is exact, we have an exact sequence of algebraic pe-equivariant S−1A-
modules

0 → S−1R → S−1M → N → 0 (5.9a)
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From Lemma 5.8, we conclude that S−1R is equivariantly finitely generated. Let
V ⊂ R be a finite length algebraic representation generating R as an |S−1A|-module,
and let R0 be the A-submodule of R generated by V . Note that R0 is finitely generated
as an A-module and S−1R0 = S−1R. Now, the modm reduction of (5.9a) is exact, by
the freeness of N , and the reduction of S−1M → N is an isomorphism. We conclude
that R/mR = R0/mR0 = 0. Lemma 4.1 thus shows that 0 = S−1R0 = S−1R, and
the proposition is proved. �

Corollary 5.10 Let M be an A-module. Then S−1M is a free |S−1A|-module.

Remark 5.11 Proposition 5.9 is the analog of [7, Prop. 3.6]. The proof of Prop. 3.6
given in [7] contains two gaps. First, the justification that ϕM is an isomorphism
modulo m is incomplete. Second, and more seriously, the application of Nakayama’s
lemma to R is inadequately justified. The above proof fills in these gaps in the present
case, and can be easily adapted to fill in the gaps of [7].

6 ModK and algebraic representations

For an A-module M , define 
̃(M) = M/mM . This is naturally a representation of
pe. The main result of this section is the following theorem:

Theorem 6.1 The functor 
̃ induces an equivalence of categories


 : ModK → Rep(pe).

Lemma 6.2 Let V be a polynomial representation of GL∞|∞. Then 
̃(A ⊗ V ) is
isomorphic, as a pe-representation, to V . For any A-module M, 
̃(M) is in Rep(pe).

Proof The first part is clear. For the second part, pick a surjection A ⊗ V → M of
A-modules. Since 
̃ is right exact, there is an induced surjection V → 
̃(M). As
any quotient of an algebraic representation is algebraic, we conclude that 
̃(M) is
algebraic. �

Lemma 6.3 The functor 
̃ is exact and killsModtorsA .

Proof Exactness follows fromCorollary 5.10. Let M be a finitely generated torsion A-
module. Then aM = 0 for some non-zero ideal I of A. As a+m = A byCorollary 2.6,
we seeM = mM , and so 
̃(M) = M/mM = 0.Thus 
̃kills finitely generated torsion
modules. Since 
̃ commutes with colimits, it thus kills all torsion A-modules. �

Lemma 6.2 shows that 
̃ takes values in Rep(pe). Lemma 6.3 shows that 
̃ fac-
tors uniquely as 
 ◦ T, where T : ModA → ModK is the localization functor, and

 : ModK → Rep(pe) is an exact functor. We have thus defined 
. In the remainder
of this section, we prove that 
 is an equivalence.
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Lemma 6.4 
 is faithful.

Proof Let f : M → N be a map of A-modules such that the induced map
f : M/mM → N/mN vanishes. The square

M
ϕM

f

(M/mM ⊗ C[B])T

f⊗1

N ′ ϕN ′
(N ′/mN ′ ⊗ C[B])T

commutes. Since ϕM and ϕN ′ are isomorphisms after localizing at S (Proposition 5.9),
we see that the induced map f : S−1M → S−1N is 0, and so T( f ) = 0. We have
thus shown that if f is any morphism in ModA such that 
̃( f ) = 0 then T( f ) = 0.
Since every morphism in ModK has the form T( f ) for some morphism f in ModA,
it follows that 
 is faithful. �

We now begin the proof of fullness. Let M and N be torsion-free A-modules and let
f : M/mM → N/mN be a map of pe-representations. In what follows, a bar denotes
reduction mod m. We write U for the unipotent radical of B and C for the maximal
torus, so that B = CU . In the notation of Sect. 2.5,U consists of matrices in B where
a and d are strictly upper-triangular, while C consists of matrices where a and d are
diagonal and b and c vanish.

Lemma 6.5 Let m ∈ M and let n ∈ N. Let H ∈ {U ,C, B} and let h be its Lie algebra.
Then hn = f (hm) as algebraic functions H → N/mN if and only if an = f (am)

as elements of N , for all a ∈ U(h).

Proof We first prove the result for H = U . Let R be a commutative super C-algebra.
We treat elements of h = u as matrices in the usual way. If X is a super degree 0
element of u ⊗ R, the exponential exp(X) = ∑

n≥0
Xn

n! is a finite sum and defines
an element of U (R), and the map exp : 0(u ⊗ R) → U (R) is a bijection of sets.
Furthermore, if v is a vector in an algebraic representation of GL then Xnv = 0 for
n � 0 and exp(X)v is equal to the finite sum

∑
n≥0

Xn

n! v, where Xn ∈ U(h) ⊗ R.

Suppose now that an = f (am) for all a ∈ U(u). Taking a = ∑
n≥0

Xn

n! , we see that
hn = f (hm) for h = exp(X) ∈ U (R). Since every element of U (R) has this form,
we conclude that hn = f (hm) as functions H → N/mN . The reverse direction is
similar.

We now treat the case H = C . Any algebraic representation of GL breaks up as a
sum of weight spaces for C , and the result follows by decomposing m and n. Indeed,
suppose an = f (am) for all a ∈ U(c), and write m = ∑

mi and n = ∑
ni where

mi and ni have weight χi . We have am = ∑
χi (a)mi for a ∈ U(c), and similarly for

n. We thus see that
∑

χi (a)ni = ∑
χi (a) f (mi ) for all a ∈ U(c). We conclude that

ni = f (mi ) holds for all i (this uses the fact that characters are linearly independent
on U(c), which requires characteristic 0). Since S acts on ni and mi through the same
character, it follows that hni = f (hmi ) for all h ∈ S, and so, summing over i , we
conclude hn = f (hm).

The case H = B follows from the previous two cases, since B = CU . �
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The diagram in Lemma 6.4 allows us to define a map f : S−1M → S−1N which
is |S−1A|-linear. The map f is characterized by the following lemma.

Lemma 6.6 Let m ∈ M and n ∈ N. Then the following are equivalent:

(a) n = f (m)

(b) hn = f (hm) as functions H → N/mN.
(c) an = f (am) for all a ∈ U(b).

Proof By definition, ϕM (x) is the function B → M/mM given by b 
→ bx , and so (a)
and (b) are equivalent by definition. Lemma 6.5 (with H = B) gives the equivalence
of (b) and (c). �
Lemma 6.7 Suppose m ∈ M, n ∈ N and n = f (m). Then Xn = f (Xm) for all
X ∈ b.

Proof By Lemma 6.6, we must show aXn = f (aXm) for all a ∈ U(b). But aX ∈
U(b) since X ∈ b, and so the identity holds by Lemma 6.6. �
Lemma 6.8 Suppose m ∈ M, n ∈ N and n = f (m). Then Yn = f (Ym) for all
Y ∈ pe.

Proof For a ∈ U(b), let S(a) be the following statement:

For every m ∈ M and n ∈ N and Y ∈ pe such that n = f (m) we have
aYn = f (aYm).

The statement S(1) holds. Indeed, if n = f (m) then n = f (m) and soYn = Y f (m) =
f (Ym) since f is pe-equivariant. Now suppose S(a) holds, and let us prove S(aX)

for X ∈ b. Write [X ,Y ] = X ′ + Y ′ with X ′ ∈ b and Y ′ ∈ pe. Then

f (aXYm) = f (aY Xm) + f (aX ′m) + f (aY ′m)

= aY Xn + aX ′n + aY ′n
= aXYn

The first line and third lines are clear. Let us explain the second. By Lemma 6.7,
f (Xm) = Xn. Thus f (aY Xm) = aY Xn by S(a). We have f (aX ′m) = aX ′n by
Lemma 6.6. And we have f (aY ′m) = aY ′n by S(a). We have thus shown that if S(a)

holds then S(aX) holds for all X ∈ b. It follows that S(a) holds for all a ∈ U(b),
which (by Lemma 6.6) proves the lemma. �
Lemma 6.9 There exists an A-submodule M ′ of M such that S−1M ′ = S−1M and
for which f : M ′ → N is a map of A-modules.

Proof Let M ′ = M ∩ f −1(N ). Since f is |A|-linear, M ′ is a |A|-submodule of M .
Furthermore, for every m ∈ M there exists s ∈ S such that s f (m) ∈ N , and so
sm ∈ M ′. Thus S−1M ′ = S−1M . Finally, it follows from Lemmas 6.7 and 6.8 that
M ′ is gl-stable and f is gl-equivariant on M ′, and so the lemma follows. �
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Lemma 6.10 The functor 
 is full.

Proof Let f : M/mM → N/mN be a given map of pe-representations. From
Lemma6.9,we obtain amap f : M ′ → N of A-modules,whereM ′ is an A-submodule
of M with S−1M ′ = S−1M . Since S−1(M/M ′) = 0, it follows that M/M ′ is torsion,
and so the inclusion M ′ → M becomes an isomorphism in ModK . Thus f defines a
map M → N in ModK , and it induces f after applying 
. (Reason: applying 
 is
just reducing modulo m, and f modulo m is f by Lemma 6.6.) �
Lemma 6.11 
 is essentially surjective.

Proof Since 
 is full and compatible with direct limits, it suffices to show that all
finitely generated objects of Rep(pe) are in the essential image of 
. Thus let M
be such an object. By Proposition 3.2(c), we can realize M as the kernel of a map
f : I → J , where I and J are injective objects of Rep(pe). By Proposition 3.2(b),
every injective object of Rep(pe) is the restriction to pe of a polynomial representation
of GL(V). Thus, by Lemma 6.2, I = 
(M) and J = 
(N ) for some M and N in
ModK , and (by fullness) f = 
( f ′) for some f ′ : M → N in ModK . The exactness
of 
 shows that M ∼= 
(ker( f ′)), and so 
 is essentially surjective. �

7 Proof of themain theorem

In this section, we use the ideas from [7] to finish the proof that A is noetherian. LetW
be another copy ofVwith an action of a separateGL∞|∞. The algebra Sym(V⊗W[1])
has a natural GL(V) × GL(W) action which turns it into a bivariate twisted skew-
commutative algebra.

Proposition 7.1 Sym(V ⊗ W[1]) is noetherian.
Proof If we apply transpose duality (Remark 2.2) with respect to the GL(W)-action,
then we see that the category of modules over Sym(V ⊗ W[1]) is equivalent to the
category of modules over Sym(V⊗W). The latter is noetherian by [7, Theorem 1.2],
and so the same holds for Sym(V ⊗ W[1]). �

Recall from [7, §2.3] that a polynomial representation V is essentially bounded if
there exist integers r and s such that for any Sλ appearing in V we have λr ≤ s.

Proposition 7.2 If I is a nonzero ideal of A, then A/I is essentially bounded, and in
particular, noetherian.

Proof It follows from Corollary 2.8 that A/pn is essentially bounded for all n, so the
same is true for A/I by Corollary 2.6. The second part follows from [7, Proposition
2.4]. �

We will need the following fact about the rectangular partitions:

Lemma 7.3 We have Sn×k ⊂ Sλ⊗Sμ if and only if λ andμ are complementary shapes
in the n × k rectangle, i.e., �(λ), �(μ) ≤ n and λi + μn+1−i = k for i = 1, . . . , n.
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Proof This is a statement about Littlewood–Richardson numbers which is more trans-
parent in the context of Schubert calculus, see [3, §9.4, eqn. (11)]. �

Recall the notion of (FT) from [7, §4.2]: if B is a twisted (skew-)commutative
algebra, and M is a B-module, then M satisfies (FT) over B if TorBi (M,C) is a finite
lengthGL(V)-module for all i ≥ 0. While the definitions and results were stated only
in the commutative case, they work perfectly well in the skew-commutative case.

Lemma 7.4 If I is a nonzero ideal of A, then A/I satisfies (FT) over A.

Proof We will follow the proof of [7, Lemma 4.6].2 By Corollary 2.6, there exists
n such that I ⊇ pn (recall that pn is the ideal generated by Sn×(n+1)). Let Jn ⊂
Sym(V⊗W[1]) be the ideal generated by Sn×(n+1)(V)⊗S(n+1)×n(W). Let C̃ be the
tca Sym(V ⊗ V[1]) with the diagonal action of GL(V). Then there is a surjection of
tca’s ϕ : C̃ → A induced by the natural map V⊗2 → Sym2(V). By Corollary 2.8, we
have ϕ(Jn) ⊆ pn ⊆ I .

We claim that ϕ(Jn) �= 0. To see this, write C̃ = Sym(Sym2(V)[1]) ⊗
Sym(

∧2
(V)[1]). It suffices to show that Sn×(n+1) is not in the ideal generated

by
∧2

(V)[1], and for that, we will show that if Sn×(n+1) ⊂ Sλ ⊗ Sμ where
Sλ ⊂ Sym(Sym2(V)[1]) and Sμ ⊂ Sym(

∧2
(V)[1]), then μ = ∅. We prove this

by induction on n; when n = 1, this is clear. By Lemma 7.3, this happens if and
only if �(λ), �(μ) ≤ n and λi + μn+1−i = n + 1 for i = 1, . . . , n, i.e., λ and μ

are complementary shapes inside of the n × (n + 1) rectangle. Now, λ ∈ Q1 (see
Sect. 2.3) which implies that λ1 = �(λ) + 1. Furthermore, μ† ∈ Q1, which implies
that μ1 = �(μ)− 1. If �(λ) < n, then we must have μ1 = n+ 1 and �(μ) = n, which
is a contradiction, so �(λ) = n. In this case, remove the first row and column from λ

to get a new shape λ′ with complementary shape μ inside of the (n−1)×n rectangle.
By Lemma 7.3, we have S(n−1)×n ⊂ Sλ′ ⊗ Sμ. So by induction on n, we conclude
that λ′ = (n − 1) × n and hence μ = ∅. We conclude that ϕ(Jn) ⊃ Sn×(n+1) and
hence ϕ(Jn) �= 0.

Now we can finish using the arguments from [7, Lemma 4.6]. Some final points:
C̃/Jn is (FT) over C̃ since we can apply transpose duality (Remark 2.2) to [7, Lemma
4.5], and A/ϕ(Jn) is noetherian by Proposition 7.2. �
Corollary 7.5 If M is a finitely generated A-module with nonzero annihilator, then M
satisfies (FT) over A.

Proof The proof follows as in [7, Proposition 4.3]. �
Recall that T : ModA → ModK is the localization functor, where ModK =

ModA /ModtorsA . Let S : ModK → ModA be the section functor, which is the right
adjoint to localization. An object M ∈ ModA is saturated if ExtiA(N , M) = 0
for i = 0, 1 and all N ∈ ModtorsA . This is equivalent to the unit of the adjunction
M → S(T(M)) being an isomorphism.

2 There is a typo in the published version: Jλ should be the ideal generated by S2λ ⊗ S2λ when B =
Sym(Sym2 C∞), or S(2λ)† ⊗ S(2λ)† when B = Sym(

∧2 C∞).
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Proposition 7.6 Given a finite length representation V of GL(V), we have S(T(V ⊗
A)) = V ⊗ A, i.e., V ⊗ A is saturated.

Proof Pick N ∈ ModtorsA . It is clear that HomA(N , V ⊗ A) = 0 since no submodule
of V ⊗ A is annihilated by a nonzero ideal. Now we show that Ext1A(N , V ⊗ A) = 0.
First we assume that N is finitely generated.

Pick a minimal A-free resolution F• → N → 0 of N . Since N is (FT) over A
(Corollary 7.5), each Fi is finitely generated. Pick n larger than the number of rows
of any minimal generator Sλ of Fi for i ≤ 2. Then the natural map

HomA(Fi , V ⊗ A) → HomA(Cn)(Fi (Cn), (V ⊗ A)(Cn))GLn(C)

is an isomorphism for i ≤ 2. Each of these Hom groups is an algebraic representation
of GLn(C), so taking invariants is exact. We conclude that the map

Ext1A(N , V ⊗ A) → Ext1A(Cn)(Fi (Cn), (V ⊗ A)(Cn))GLn(C)

is also an isomorphism. Now note that (V ⊗ A)(Cn) = V (Cn)⊗ A(Cn) is a finite rank
free module over an exterior algebra in a finite number of variables. Since the exterior
algebra in finitely many variables is self-injective, we conclude that (V ⊗ A)(Cn) is
an injective A(Cn)-module. In particular, the desired Ext1 group vanishes.

Now suppose N is not finitely generated. Then N can be written as a countable col-
imit N = lim−→ Nα of finitely generated submodules. Since Hom(−, V ⊗ A) commutes

with colimit, we have a spectral sequencewith E2 term lim←−i Ext j (Nα, V⊗A) converg-

ing to Exti+ j (N , V ⊗ A). Since the colimit is countable we have lim←−i = 0 for i > 1.

By the previous paragraph, lim←−1 Ext0(Nα, V ⊗ A) = lim←−0 Ext1(Nα, V ⊗ A) = 0.

Thus we have Ext1(N , V ⊗ A) = 0, as required. �
Proposition 7.7 If M is a finite length S−1A-module, then S(M) satisfies (FT) over A.

Proof The proof is the same as [7, Proposition 4.8] using the results from Sect. 3 and
Proposition 7.6. �
Theorem 7.8 The tca A = Sym(Sym2(V)[1]) is noetherian.
Proof The proof is the same as [7, Theorem 4.9]. �
Remark 7.9 To get the same result for

∧•
(
∧2

), we can apply transpose duality to
A. Alternatively, we could follow the proof outlined above; the point is that an odd
skew-symmetric bilinear form on V is exactly the same thing as an odd symmetric
bilinear form on V.
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