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Abstract In 1979, Lusztig proposed a cohomological construction of supercuspidal
representations of reductive p-adic groups, analogous to Deligne-Lusztig theory for
finite reductive groups. In this paper we establish a new instance of Lusztig’s program.
Precisely, let X be the Deligne—Lusztig (ind-pro-)scheme associated to a division alge-
bra D over a non-Archimedean local field K of positive characteristic. We study the
D> -representations H,(X) by establishing a Deligne-Lusztig theory for families of
finite unipotent groups that arise as subquotients of D*. There is a natural corre-
spondence between quasi-characters of the (multiplicative group of the) unramified
degree-n extension of K and representations of D* given by 6 +— H,(X)[6]. For a
broad class of characters 6, we show that the representation H,(X)[#] is irreducible
and concentrated in a single degree. After explicitly constructing a Weil represen-
tation from 6 using x-data, we show that the resulting correspondence matches the
bijection given by local Langlands and therefore gives a geometric realization of the
Jacquet-Langlands transfer between representations of division algebras.
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1 Introduction

Deligne-Lusztig theory [8] gives a geometric description of the irreducible repre-
sentations of finite groups of Lie type. In [12], Lusztig suggests an analogue of
Deligne-Lusztig theory for p-adic groups G. For a maximal unramified torus T C G,
he introduces a certain set which has a natural action of 7 x G. Conjecturally, this set
has an algebro-geometric structure and one should be able to define £-adic homology
groups functorial for the T x G action. By [2,12], when G is adivision algebra, one can
realize Lusztig’s set X as an (ind-pro-)scheme and define corresponding £-adic homol-
ogy groups H; (X, Q,). One therefore obtains a correspondence 6 — H; (X, Q,)[6]
between characters of T and representations of G. In this paper, we study this corre-
spondence and, after describing a Weil representation associated to 6, give a description
from the perspective of the local Langlands and Jacquet—Langlands correspondences.

Let K be a non-Archimedean local field of positive characteristic with ring of
integers Ok and residue field F, = Ok /7 for a fixed uniformizer 7, and let L D K
be the unramified extension of degree n with ring of integers Op. The level of a
smooth character : L* — @gx is the smallest integer 4 such that 6 is trivial on U 2,
where Ug = (’)2< and UZ =14+ 7"Op forh > 1. We say that 0 is primitive if
forall 1 # y € Gal(L/K), the smooth characters 6 and /6" have the same level.
Equivalently, the restriction of 6 to U f_l /U £’ has trivial Gal(IF4n /I, )-stabilizer. There
is a canonical choice of Langlands—Shelstad x -datum associated to the maximal torus
L* — GLg (L) = GL,(K), and using this, one can associate a smooth irreducible
n-dimensional Wk -representation oy to a primitive character 6: L* — @Z . The
representation oy corresponds via local Langlands to an irreducible supercuspidal
representation 7y of GL, (K), which in turn corresponds via Jacquet—Langlands to an
irreducible representation pg of D* where D is a division algebra of dimension n?
over K.

Main Theorem Let6: L™ — @EX be a primitive character of level h. Then

po ifi=rg:=(n—D(h—-1),
0 otherwise.

Hi(X,Qp[0] = !

I Let £: L% - @; be the rectifying character determined by £(7) = —1 and SIOX = 1. Viewing 0 - &
L

as a character of Wy, via local class field theory, the representation oy is isomorphic to Indwf ©@-£).
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Pictorially,
0 0 X
l 4 x-datum
ofd gk (n)
Deligne-Lusztig construction l 4 Local Langlands

g Ag(n)
l J-Jacquet-Langlands

Hyy (X, Q01 = pg  Ak(n)

where

X := {primitive characters L™ — @Z }
Gk (n) := {smooth irreducible dimension-n representations of the Weil group Wk}
Ak (n) := {supercuspidal irreducible representations of GL, (K)}

A’ (n) := {smooth irreducible representations of D*}

1.1 What is known

The only progress on Deligne-Lusztig constructions X is in the context of division
algebras. For two relatively prime integers k,n > 1, let Dy, denote the division
algebra over K of invariant k/n. (Note that the Brauer group of K is Q/Z, so Dy, =
Dy, if k = k" modulo n.) In the next two sections, we will pick an embedding
L — Dy, andset G = Dkx/n, T =L*.

Let G! and T denote the norm-1 elements of G and T, and let X ! be the associated
Deligne—Lusztig construction. In [12], Lusztig proves that when k = 1, the virtual
G'-representations >(— DiH; (X1, @g)[@] are (up to a sign) irreducible and mutually
nonisomorphic. We remark that his argument can be modified to prove the same
conclusion for Y (—1)" H; (X, Q,)[6].

Our paper focuses on the much subtler issue of describing the individual homology
groups H; (X, Q,)[0] and their vanishing behavior. Analogous to the behavior of clas-
sical Deligne—Lusztig varieties, one expects H; (X, Q,)[0] to vanish outside a single
degree, at least for “sufficiently generic” characters 8. Additionally, one hopes to get
a description of the irreducible representations arising from these homology groups.

There exists a unipotent group scheme U ;ll ,f over I, such that U, Z Z (Fyn) is isomor-

phic to a subquotient of G. The study of H; (X, Q,)[6] reduces to the study of certain
subschemes X, C U, ,':Z endowed with a left action by U Ll /U f and a right action by
U, L (Fgn). When k = 1, these definitions were established in [4] for 2 < 2 and in [2]
for h > 2. We remark that Uy (Fgn) is isomorphic to a subquotient of G even if K
has characteristic zero, but this fails when 4 > 2 (see Remark 2.2). The definitions of
X, Xp,and U Z,f can be generalized to arbitrary k, and we do so in this paper.

In [4, Sections 4-6], Boyarchenko and Weinstein study the representations
Hé (X>, @Z) when k = 1 (see Theorem 4.7 of op. cit.). This comprises one of the
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main ingredients in studying the cohomology of the Lubin-Tate tower. In [3], they
specialize this result to the primitive case to give an explicit and partially geometric
description of local Langlands correspondences. Roughly speaking, the Weil rep-
resentation in classical constructions is replaced by the cohomology of X»,. In [2],
Boyarchenko uses the representations H! (X2, Q) to prove that for any smooth char-

acter6: T — @Z of level < 2, the representation H; (X, Qy)[6] vanishes outside a
single degree and gives a description of this representation (see Theorem 5.3 of op.
cit.). Moreover, he shows that if 6 is primitive, then H; (X, @g) [6] is irreducible in the
nonvanishing degree.

In contrast to the Lubin-Tate setting, we need to understand the cohomology of
Xy, for all i to understand high-depth representations arising in Deligne—Lusztig con-
structions. Outside of the case for k = 1, n = 3, and 7 = 3 (see [2, Theorem 5.20]),
this was completely open.

In [6], we study X, for arbitrary /&, assuming n = 2 and 6 is primitive. We prove that
the representation H; (X, Q,)[6] is irreducible and nonvanishing in a single degree.
In addition we prove a character formula in the form of a branching rule for repre-
sentations of the finite unipotent group U, }i’f(]qu), a subquotient of the quaternion
algebra. Using this, we are able to give an explicit description of the representation
H; (X, Qp)[0].

In this paper, we generalize this work to arbitrary n and arbitrary k. We take a more
conceptual approach that allows us to bypass many of the computations needed in [6].
As a corollary, we obtain a geometric realization of the Jacquet-Langlands transfer
between representations of division algebras.

Remark 1.1 Inthe special case thatn = 2, the Deligne—Lusztig constructions we study
in this paper and its prequel [6] are cut out by equations that resemble the equations
defining certain covers of affine Deligne—Lusztig varieties. This was observed by
Ivanov in [10, Section 3.6]. O

1.2 Outline of this paper

Let h, k,n > 1 be integers with (k, n) = 1. In Sect. 2, we introduce the unipotent
group scheme U ;: 7’,? together with a certain subgroup scheme H C U ;:f , both of which

are defined over IF;». These group schemes have the property that H (Fyn) = U i /U f
and U ;lqu (F4n) is isomorphic to an analogous finite subquotient of D,f/n (see Remark
2.2). We then define a certain Fyn-scheme X, C U, ;ll ,’Z , whose relation to the Deligne—

Lusztig construction X is as follows: X can be identified with a set X endowed with
an ind-pro-scheme structure

X =] [timX™,
L
where each il(zm) is isomorphic to the disjoint union of ¢" — 1 copies of X}, (Fq).
This decomposition naturally realizes X as an increasing union of Fq—(pro—)schemes.
Roughly speaking, the action of 7 x G on X has two behaviors: there is an action
on each X ;lm), and there is an action permuting these pieces. In order to understand
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the (T x G)-representations arising from H; (X, @@), one must understand these two
actions. The former is captured by the action of H (F;») x U, Z,? (Fgn) on X; the latter
was studied by Boyarchenko [2, Proposition 5.19].

Let 7 denote the set of primitive characters of H(IFy). Let G denote the
set of irreducible representations of U ;lqu (F4n) whose central character has trivial
Gal(L/K)-stabilizer. In Sect. 4, we give a correspondence x +— o, from 7 to G. This
construction matches that of [7].

In Sect. 5 we study the geometry of X; using a combinatorial notion known as
Jjuggling sequences. We prove in Theorem 5.4 and Corollary 5.5 that the varieties X},
are smooth affine varieties of dimension (n — 1)(h — 1) defined by the vanishing of
polynomials whose monomials are indexed by juggling sequences. By studying the
combinatorics of these objects, we are able to prove structural lemmas crucial to the
analysis of Hci (X, @5).

Section 6 is concerned with combining the general algebro-geometric results of
Sect. 3, the representation-theoretic results of Sect. 4, and the combinatorial results of
Sect. 5. The main result of this section is Theorem 6.4, but the heart of its proof is in
Proposition 6.1, where we calculate certain cohomology groups by inducing on linear
fibrations. In Theorem 6.4, we prove that the correspondence x + p, is bijective
and that every representation p € G appears in H! (X}, Q) with multiplicity one.
In addition, we prove a character formula (Proposition 6.2) for the representations
Hj (Xn, Qp)[x] using the Deligne—Lusztig fixed point formula [8, Theorem 3.2].

Section 7 is devoted to understanding two connections. The first, explained in Sect.
7.1, is to unravel the relationship between the results of Sect. 6 and the representa-
tions of division algebras arising from Deligne-Lusztig constructions X. The second,
explained in Sect. 7.2, is to describe H;(X, Q,)[0] from the perspective of the local
Langlands and Jacquet—Langlands correspondences. We use Theorem 6.4, the trace
formula established in Proposition 6.2, and a criterion of Henniart described in [3,
Proposition 1.5(b)].

Theorem (7.12, 7.13) Let 6: L™ — @; be a primitive character of level h and
let pg be the Dkx/n-representation corresponding to 0 under the local Langlands and
Jacquet—Langlands correspondences. Then

= po ifi=n—1h-1),
H; (X, Qpl0] = J .
0 otherwise.
Moreover, if X and X' are the Deligne—Lusztig constructions associated to Dy, and
Dy, then the Jacquet-Langlands transfer of H,—1yn—1)(X, Qg)[0] is isomorphic
to Hp—1y(in—1)(X’, Q) [0].

Using the techniques developed in this paper, we have evidence to support that
for nonprimitive characters 8: L* — @, of level h with restriction x : U L Q.
the cohomology groups HZ (Xn, Qp)[x] are irreducible and concentrated in a single
non-middle degree. This implies that the homology groups H;(X, Q,)[6] are also
concentrated in a single degree, though it not expected that these representations are
irreducible in general. We plan to investigate this in a future paper.
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2 Definitions

Fix a non-Archimedean local field K with residue field IF,; and fix a uniformizer 7.
Fix an integer n > 1 and let L be the unramified degree-n extension of K. For any
integer k > 1 with (k, n) = 1, we denote by D := Dy, the rank-n division algebra
of Hasse invariant k/n over K. Fix an integer / such that /k = 1 modulo n. Then we
may write D = L(IT)/(IT" — x), where I1 - a = <pl(a) -ITand ¢ € Gal(L/K) is the
arithmetic g-Frobenius, and this specifies an embedding L < D. The ring of integers
(i.e. the unique maximal order) of D is Op = Op(I1)/(I1" — ), where O is the
ring of integers of L. We write Ug := O and Ug := O, and for h € Z-, we write
Uf =14+ Pf and Ug =1+ P, where P, :=7 -Op and Pp :=I1- Op.

From now until Sect. 7, we assume that K has positive characteristic. In Sect. 2.1, we
construct aring scheme Ry, k n,q over IF,, with the property that Ry, . u, 4 (Fgn) is a quo-
tient of O p. We then focus our attention on a unipotent group scheme U ,’Z ,’kq CR ; kong
with the property that UZ",? (Fyn) = U},/Ug(h_])ﬂ. In Sect. 2.2, we define a [Fyn-
subscheme X;, C U, endowed with commuting actions of H (Fn) and U} (Fgn).
These actions are described in Sect. 2.3.

2.1 The unipotent group scheme U ,': ’Z

Definition 2.1 If A is an F ,-algebra, let A(t) be the twisted polynomial ring with the

commutation relation 7 - a = ¥ - v, and define
'Rh,k,n,q(A) = A<T>/(Tn(hfl)+1).

The functor A — Ry ,n,4(A) defines a ring scheme representable by AM=DFL gyer
F,. We write

Rh,k,n,q(A) = {a() +at+---+ an(h_l)tn(hil) 1a; € A}7
and consider the following subgroup schemes of R; kg
n(h—1)
Upd(A) =114+ D at’ € Ripng(A) ¢,

i=1
h—1
H(A) = {1+ ant" e Uyl(A)}.
i=1
The g-Frobenius ¢ induces a morphism Ry, x »,4 by acting on the coefficients of .

Note that H (IFyn) is commutative since Fyn = (Fq)‘pn, but H is not a commutative
group scheme.
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Remark 2.2 Note that R, (Fgn) ZF, x U, Z,f (F,») and we have natural isomor-
phisms

~ h— , ~ h— ~
Ry g @) = O3 U i @y = Ul UV HE) = UL/ UL
2.1)

These are induced by the ring isomorphism

n(h—1)+1 n(h—1) ) n(h—1) . n—1 .
'Rh,k,n,q(Fqn) — OD/PD s Z a,-rl = Z a,-l'[’ = Z Ajl_[], (2.2)
i=0 i=0 j=0

where we write

Ao i=ap+apyw + -+ apg-nm" L,

Aj =aj + apyjm +-~-+an(h_2)+jnh72, 1<j<n-—1.

Note that we crucially used that L = Fyn[[7]. We remark that when i < 2, the
morphism in (2.2) defines an isomorphism of multiplicative monoids even when K
has characteristic 0, and therefore the isomorphisms in (2.1) hold regardless of the
characteristic of K.

The center Z(U;ll”,? (Fgn)) of UZ,’,?(Fqn) is a subgroup of H(Fyn) and can be
described explicitly:

z (U,’j;,f(qu)) = {1 + Y awt" € HEgr) s ango1y € Fgr and ay; € Fy for 1 <i < h — 2} .
%

Definition 2.3 We say that a character x: H(Fyn) = U i /U 1{1 — @; is primitive if
its restriction to U 2_1 /UM = Fyn has trivial Gal(Fn /F,)-stabilizer.

2.2 The varieties X,

Definition 2.4 For any [F,-algebra A, let M;(A) denote the ring of all n x n
matrices (b;))! ;_, with b;; € Allxl/(x"), bij € Allxll/(x"~") fori < j, and
bjj e mAllr]/ (nh) fori > j. The determinant can be viewed as a multiplicative map
det: My(A) — Allx]/(x").

For any integer m, let [m] denote the unique integer with 1 < [m] < n such that
m = [m] modulo n. Let A be any F,-algebra. The g-Frobenius morphism ¢ on A

induces aring endomorphismon A[[z ]|/ (x™) given by Z;”;O] aml > Zf";ol p(a)m!
for any positive integer m. Consider the injective morphism of sets

thik: Rikng(A) — Mp(A)
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given by defining v 1 (3" a;t’) to be

Ao Al Ar e Apnq
el (A1) o1(Ag) o(Ay) e o(A,—2)
meP(A)  wel(A,r)  @P(Ag) S P (Ap—3))
ael=DU(A)  7elr=DI(Ay) ael=DlU(A,_1)  l=DI(Ap)
2.3)

where we write

Agy=ao+aym+---+ an(hfl)ﬂ'h_l,

Aj=aj +api w4+ a7 j=1,...,n—1. (2.4)

Although ¢, 1 does not preserve the ring structure, it does satisfy a weak multiplicative
property that we explicate in Sect. 2.3.

In Sect. 7.1, we describe how to extend the results of [2, Sects. 4.2, 4.3] to divi-
sion algebras of arbitrary invariant. In particular, we show that the Deligne—Lusztig

construction X _described in [12] can be identified with a certain set X which can be
realized as the IF;-points of an ind-pro-scheme

Yoo s Y m)
X :=| | lim X",
meZ h

where each X" is a finite-type F,-scheme and X" = )N(,(lo) for all m € Z. By
Lemma 7.3, for any [F,-algebra A,

X0A) = [x = up (Xaith)  a; € A, det(x) is fixed by ¢} =: X, (A).
Definition 2.5 For any IF,-algebra A, define
Xhuu:::Uif(A)mL;;(igka)).
Remark 2.6 Observe that X " ) is a disjoint union of ¢ — 1 copies of Xj. O

2.3 Group actions

We first prove the following lemma.

Lemma 2.7 Let A be an Fyn-algebra. The map . has the following weak multi-
plicativity property:

i (xy) = th () tn k() ﬁnaﬂx:eLﬁf(A)andau)»ecqf(Fw). 2.5)

Moreover, for y € UZ’,? (Fyn), the determinant of uy 1 (y) is fixed by ¢.
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Proof Observe from Eq. (2.3) that

i (ait’) = ik (Ap) + ik (AN + -+ up(Ap—D" L, (2.6)

where we write w = (2 1"61 ) and

A= ap+ a,t" + - -- —i—an(h_l)l’"(h71) if j =0,
! aj +an+jfn+'~~+an(h_2)+j‘tn(h72) if j > 0.

Note that Za,-ri =Ao+Ait+---+ A,_1" L. For any a € H(A), we have

@ - k(a) = diag (w[” @), ..., M(a), a) @,

i (@@) = diag (¢ @, ... '@, ¢" @),
and therefore we see thatif a € H (IF;), then

@ (@) = (@) - @

This proves Eq. (2.5). Using Eq. (2.6) together with the observation that under the
isomorphism H (Fyn) = Ui/Uh, we have det(t; 1 (a)) = Nmy g (a) fora € H(Fyn).
The second assertion of the lemma follows. O

It follows from Lemma 2.7 that after base-changing to IFn, the variety X}, is stable
under right-multiplication by U,"{ (F4»). For this reason, from now on, we consider
X}, as a variety over Fn. We denote by x - ¢ the action of g € U,/ (Fgn) on x € Xj,.

The conjugation action of ¢ € ]F;,l on U, Zf (A) stabilizes X (A). This extends the
right U, (F 4n)-action on X, to an action of the semidirect product FuxU pd Fgn) =
R;,k,n,q (]Fqn).

We now describe a left action of H(Fyn) on X;,. We can identify H (IFy») with
the set ¢,k (H (Fyn)). Note that by the weak multiplicativity property, the map tj x is
a group homomorphism on H (IF,»), and since ¢, is injective, we have H (Fyn) =
thk(H(Fyn)) as groups. Explicitly, this isomorphism is given by

h—1 . . I (=1l .
14+ Y apyt™ — diag (1 + > apint, 1+ Zalzin’, o1+ Z“Zi n‘) .
i=1

Observe that we may remove the brackets in the exponent since ¢”" (Ag) = Ag. From
Eq. (2.6), it is clear that the left-multiplication action of ¢y x (H (F4n)) on My (A)
stabilizes ¢j x (X, (A)), and we therefore obtain an action® of g € H Fm)y=U Ll /U Z

2 Warning: This is not the same as the action induced by left-multiplication of H(Fyn) C H(A) on
UZ!’}?(A). For example, if x =t ¢ (xo, ..., Xp—1) € Xh(Fq) and xo ¢ Fyn, then for g := 1+ apt" €
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on x € X, which we denote by g * x. The actions of H (F;») and R;,k,n,q(Fqn)
commute.

3 General principles: some algebraic geometry

In this section, we prove some general algebro-geometric results that will allow us
to compute certain cohomology groups via an inductive argument We generalize the
techniques of [2] from G, to the group scheme H C U, n ,? defined in Sect. 2.1.

We begin by recalling some results of [2, Section 2.2]. Let G be an algebraic group
over I n, suppose that Y C G is a (locally closed) subvariety defined over Fyn, and
set X = L;,ll (Y), where Lyn: G — G is the Lang map g — Fryn (9)g~ . Let

Go C G be any connected subgroup defined over IF;» and let n: Go(Fyn) — @(X be

G(Fyn
a homomorphism. Write V,, = IndG(()(]F j y ().

Consider the right-multiplication action of Go(F4») on G and form the quotient
0 = G/(Go(Fyn)). The Lang map Ly»: G — G is invariant under right multipli-
cation by Go(IF4») and thus it factors through a morphism e: O — G. On the other
hand, the quotient map G — Q is a right Go(IF,»)-torsor, so the character 7 yields a
Qy-local system &, of rank 1 on Q.

Lemma 3.1 [2, Lemma 2.1] There is a natural Fryn-equivariant vector-space iso-
morphism

Homgw,) (Vi HLX, @) = HE (a7 (), Elym1r)) foralli = 0.

As in [2], we now make two further assumptions under which the right-hand side
of the isomorphism in Lemma 3.1 can be described much more explicitly. This will
allow us to calculate certain cohomology groups via an inductive argument. These two
assumptions are:

1. The quotient morphism G — G/G admits a section s: G/ Gy — G.
2. There is an algebraic group morphism f: Go — H defined over F » such that
n = x o f for acharacter x: H(Fyn) — @gx

Let £, be the local system on H defined by x via the Lang map Lyn: H — H.
The following lemma is proved in [2].

Lemma 3.2 [2, Lemma 2.2] There is an isomorphism y : (G/Go) x G = 0 such
that y*E; = (f opry)*L, and a oy = B, where pry: (G/Go) x Go — Gy is the
second projection and B: (G/Go) x Go — G is given by B(x, h) = s(Fryn(x)) - h -
s(x)’l.

Combining Lemmas 3.1 and 3.2, we obtain the following proposition.

H (F4n) has the property that g * x = t x (x0 +anxom, .. .) but left-multiplication gives g - x = ¢  (xo +
n —
anxg 7,...) € Ul ).
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Proposition 3.3 [2, Proposition 2.3] Assume that we are given the following data:

e an algebraic group G with a connected subgroup Go C G defined over Fyn;
e asections: G/Go — G of the quotient morphism G — G/Gy;

e an algebraic group homomorphism f: Go — H;

o acharacter x : H(Fyn) — @Z ;

e alocally closed subvariety Y C G.

Set X = L;,ll (Y), where Lyn is the Lang map g > Fryn (9)g~" on G. Then for each
i > 0, we have a Fryn-compatible vector space isomorphism

G(F n) i — ~ i _
Homa e, (Indg ¢/ (0 £, HE(X. Qo)) = HE (871 (0), PPLy ).

Here, Ly is the local system on H corresponding to x, the morphism f: (G/Gg) X
Go — G is given by B(x,h) = s(Fryn(x)) - h - s(x)~Y, and the morphism

P: B~N(Y) = H is the composition B~ (Y) < (G/Go) x Go > Go > H.

Our goal now is to prove the following crucial proposition. This is the proposition
that gives us an inductive technique for calculating the cohomology groups appearing
in Sect. 6.

Proposition 3.4 Let g be a power of p and letn € N. Let S be a scheme of finite type
over Fyn, put S = S5 x G, and suppose that a morphism P: S — H has the form

Pery) =g (F@7 7" = F0T° ) - Pato)

where

J1, ..., j4 are non-negative integers,

J1 — j» = ja — jaand j» — ja is not divisible by n,

f:8 — Gg, P,: S» — H are two morphisms defined over Fyn, and
g: Gy — H is the morphism z +— 1 4 zg""=1D,

Let S3 C Sy be the subscheme defined by f = 0 and let P3 = P2lsy: S3 — H. If
x: HEgn) — @; is primitive, then for alli € Z,

H! (S, P*Ly) = HI 7 (S5, PfLy) (1)

as vector spaces equipped with an action of Fryn, where the Tate twist (—1) means
that the action of Fryn on HC’_2(S3, Py L) is multiplied by q".

Proof Let pr: S = S, x G, — S, be the first projection, let ¢: S3 — S, be the
inclusion map, and let n: S — H be the morphism (x,y) — g(no(x, y)), where

0: S = Gy is the morphism (x, y) > f(x)?" y4* — £(x)?" y9"*. We then have
n p y y y
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the following commutative diagram, where () is a Cartesian square

S no Ga
I 2" e

S3XGu—L>S2XGa—n>H N

(
lpr (%) lpr HxH -2+ H
/

V(f) =—= $3 : > S P > H 1.0

The sheaf £, is a multiplicative local system on H, and hence
P*Ly = (n"Ly) @ pr(PyLy).
Thus, by the projection formula,
Rpr,(P*Ly) = P3Ly ® Rpri(n*Ly) in D2(S2, Qp).
We now claim that
Rpr,(n*Ly) = u(@[-21(=1) in DY(S2, Qp),

where Q, denotes the constant local system of rank 1 on S,. It is clear that once we
have established this, the desired conclusion follows. We therefore spend the rest of
the proof proving this.

The restriction of 1 to pr_l (83) C 7 is constant, so the restriction of the pullback
n*Ly, to pr=!(S3) is a constant local system of rank 1. Thus, by proper base change
with respect to the Cartesian square (x), we have the following isomorphisms in
D2(S2, Qp):

FRpry(n*Ly) = Rpr,("n*Ly) = Rpr,(Qp) = Qp[—21(—1).

To complete the proof, we need to show that R pr,(n*L,) vanishes outside S3 C 5.
Let v denote the restriction of x to g(G,)(Fyn) = G, (Fyn) and let Ly denote the
corresponding Artin—Schreier sheaf on G,. Since n = g o 7o,

n*ﬁx = n(’;ﬁ]p.

We now calculate the stalk of R pr,(n;Ly) for any x € Sz(Fq) N S3 (Fq). By proper
base change,

Ripry(nLy)x = H Gy, f1Ly),

where fi: G, — G is given by y > f£(x)7" y7> — £(x)4” y™*. Fix an auxiliary
nontrivial additive character y: F, — @Z , and for any z € F »» define

L, = m;“ﬁv,o, where m,: G, — G is the map x — xz,
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where Ly, is the Artin—Schreier sheaf on G, corresponding to ¥o. Then there exists a
unique z € Fyn suchthat £ = £, and since ¥ has nontrivial Gal(IF;» /I, )-stabilizer
by assumption, so must z. By [2, Corollary 6.5], we have f Ly = Lx(;), where

f: (2) = f(x)qj] /q./zzl/q./z . f(x)qj3 /qj4Z1/qj4 _ f(x)q.il—jz (Zq—.iz . Zq_j4).

Butzd 2 —za7" # Osince by assumption z # O and j, — js is not divisible by n. Thus
f¥ Ly is a nontrivial local system on G, and by [1, Lemma 9.4], H (G, ffLy) =0
foralli > 0. O

Proposition 3.5 Let ji, ..., ja, f, g, S, P>, S2, S3, P3 be as in Proposition 3.4 and
suppose that P: S = Sy x A' — H has the form

Pery) =g (FOT V2 = FOT T a0 —aty) - P2

or some morphism «: S — G, defined over Fyn. If x : H(F n) — @X is primitive,
fe P q q ¢ ISP
then for all i, _ '

HI(S, P*L,) = H!72(S3, PFLy)(—1)

as vector spaces equipped with an action of Fryn, where the Tate twist (—1) means
that the action of Fryn on Hclfz(S3, P35 Ly) is multiplied by q".

Proof Let P'(x, y) = g(f(x)4" y?”> — f(x)4” y7*). Py (x). Then P* L, and (P')*L,
are isomorphic since the pullback of £, |¢G,) by the map 1 + 22D s 4
72" £""=1 is trivial. Then by Proposition 3.4, the desired conclusion holds. O

The following proposition is extremely useful in the context of applying the induc-
tive argument described by the above propositions. We will use it in several of the
technical lemmas in Sect. 5 and in the proof of the main proposition and theorem of
Sect. 6.

Proposition 3.6 Suppose that S <~ R is afinite map of polynomial rings overk = .
Assume that Frac R is finite Galois over Frac S with Galois group G a p-group. Then:

(@) R is stable under G and R® = S.
(b) As multiplicative monoids, (R ~ {0})/ k)¢ = (S~ {0})/k*.
(©) If (f) C R isanideal such that (cf) = (f) forall o € G, then f € S.

Proof First observe that since S and R are polynomial rings, they are normal and
therefore integrally closed. Since S < R is a finite map, R is the integral closure of
S in Frac R. Thus R is G-stable. It is clear that S C RY and that RC is integral over
S. But since S is integrally closed, we necessarily have S = RS . This proves (a).

To see (b), consider the short exact sequence

1 — k* — Frac R* — Frac R*/k* — 1
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and take G-invariants to get a long exact sequence
1 — k* — Frac §* — (Frac R*/k*)% — H'(G,k*) — ---

Since G acts trivially on k*, we have H'(G, k*) = Hom(G, k*), which is trivial
since G is a p-group. Thus (Frac R*/k*)¢ = Frac S*/k* and (R ~ {0})/k*)¢ =
(S~ {0hH/k*.

Now we prove (c). If f = 0, then we are done, so for the rest of the proof we
may assume f 7# 0. Necessarily o f = f up to a unit in R, and thus their images in
the quotient (R ~. {0})/k* are equal. Thus the image of f is in (R ~ {0})/k*)¢ =
(S~ {0})/k*,andso f € S. O

4 Representations of U,/ (Fy»)

Let 7 denote the set of all primitive characters of H(Fyn) and let G be the
set of irreducible representations of U ;:f (F4n) whose central character has trivial
Gal(L /K )-stabilizer.

In this section, we show that G can be parametrized by 7 and explicitly describe such
a parametrization. There are two main cases of behavior, depending on the parameters
n and h.

Definition 4.1 Given a pair of positive integers (n, i), we say that:

e (n, h)isin Case I if (n — 1)(h — 1) is even.
e (n,h)isin Case 2 if (n — 1)(h — 1) is odd.

Consider the subset of Z given by
A’::{nizlgigh—l}u[i:nh,@m«n(h—l)}. @.1)

and define a subgroup scheme H' of U ,;’f by setting

H'(A) = {1 + Z ajtt € Uyt (A)} for any IF n-algebra A.
icA

We now specialize to the setting where A = Fn.If (n, h) isin Case 1, set H +(]Fqn) =
H'(Fgn), and if (n, h) is in Case 2, define

H+(Fqn) = {1 +an(h_1)/2‘l,'n(h_l)/2 + Z a,“L'i S U;::]?(Fqn) San(h-1))2 € ]Fqn/Z .
ie Al

Notice that

1 if (n, h) is in Case 1,
H+ F n) H/ F n = 4.2
[ Eqr) Fg)] {q"/z if (n, h) is in Case 2, 4.2)
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(Ui By - HE B )| = "= DO=D12, 4.3)

One can think of H’ (Fyn) and H +(IF,1n) as enlargements of H (F,n) by the “deeper
half” of U ,'Z g (F4n). We will also need the analogous enlargements of Z (U, ;: ,? (Fyn)):

n(h—1) h—1
HiEg) =11+ Y at' e H'Ep) 1+ ant" ¢ Z(U;j;,f(Fqn)) ,
i=1 i=1
n(h—1) h—1
Hyf @) =41+ > ait' e H'Fg): 1+ ) ant" € Z(U;;;,j’(Fqn))
i=1 i=1

These subgroups of U,/ () fit into the picture

H(Fqn) (SN H/(]Fqn) N H+(Fqn)
’ 7 0
Z(Uf,’f(Fq”)> < H{EFqg) < Hy Fyn)

For x € 7, define an extension x? of x to H’ (IF4n) by setting

l1+ Y at ) =x 1+ at ).
icA nli

Fix any extension ¥ of x* to H +(IE‘qn). Note that in Case 1, necessarily ¥ = x*. In
Case 2, there are q"/ 2 choices of X.

Lemma 4.2 If p € G has central character w and w has trivial Gal(L /K )-stabilizer,
then the restriction of p to H\(Fyn) contains the character

o Hé(Fqn) — @Z, 1+ Z aiti = o]l —i—Za,-ri
ieA ni

Furthermore, the restriction of p to H(;r (Fyn) contains every extension of o 10
H Fgn).

Proof Firstlet y be the restriction of w to {1 +ar"®=D g € Fyn} = F4n and observe
that the assumption on the stabilizer of w implies that v has trivial Gal(Fyn /F,)-
stabilizer.

We will first show that if the restriction of p to Hj(IF,n) contains ot then the
restriction of p to H(;r (F4n) contains every extension of of to H(;r (Fgn). This assertion
is trivial if we are in Case 1 since Hé (Fgn) = H(T (Fgn), so let us assume we are in
Case 2.
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Let v := n(h — 1)/2. Let & be any extension of »* to H, (F,»). To prove that
ol H (Fyn) contains @, it is enough to prove that the orbit of @ under U ;Z Z (Fyn)-

conjugacy contains every extension of w’ to HO+ (Fyn). Indeed, for any b € Fyn,
consider the element g := 1 + bt" € U,/ (Fyn). Then writing h = 1 + at” +
Yiea aitt € Hy (Fyn), we have

) (ghg_l) —_— ((1 + bt") (1 +at’ + Z aiti> (1 —bt' + bqlVHr”(h_l)))

iceA
=o (1 +at’ + (baqlv - abqlu) "= 4 Z aiti>
ie A
= (1 +at’ + Z aiti> Y (baq"’ B abql”) )
ieA

Note that for any m not divisible by n, since ¥ has trivial Gal(Fn /I, )-stabilizer,

#[l/fbi F,» — Q, such that b € ]Fqn] =q", (4.4)

where ¥, (a) := ¥ (baq""" - ab"m). Indeed, if b # 0 and ¥ (bad" ™" — ab?") = 1

forall a € Fyn, then it follows that ¥ (x) = xp(xq'") forall x € Fyn, which contradicts
the assumption on the Gal(Fy»/F,)-stabilizer of ¢. By assumption, a € Fgn> and
lv = n/2 modulo n. Since every character of ]Fqn/Z extends to a character of Fn, then
by (4.4) in the special case m = n/2, it follows that

#{Wb: Fqn/z — @Z such that b € Fqn} = qn/Z’

where v, (a) = 1//(a(b — bqn/z)). Thus the orbit of @ under U;Z’f (IF4n)-conjugacy
contains every extension of w” to Hy (Fyn).
It now remains to show that the restriction of p to Hé (Fgn) contains w*. Define

I'={i:nh—1)/2<i<nh-1),nti}

r1:=max(l), ri:=max(I ~{ry,...,ri—1}), for2 <i <#I.

We prove the lemma by extending w to each step of the chain

Z <U;::]?(Fqn)) - Gl C G2 c---C G#[ = H(;(]Fqn)7
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where

Gy, = I+Zaiti+2anrr"EH6(Fqn) , forl <dy<#I.

nli i>do

Consider the following extension of w to G:

w1 : Gy —>@ZX 1+Zaiti+arlrr1 ) 1+Zairi

nli nli

For any b € Fn, consider the element g; := 1 + br"("=D="1 ¢ UZ:Z (F4»). Then for
any g := 1+, a;t' +at’" € Gy,

wﬁ(glggl_l) —ot 1+ Zaifi n (baql(n(h—l)frl) B aqur,> Ln(h=1)

nli

w1+ Zaifi . w (baq—ln _ abqlfl) )

nli

Since  has trivial Gal(IF;» /IF;)-stabilizer and /r; is not divisible by n, it follows from
Eq. (4.4) that the orbit of @ under the conjugation action of U ;Z 7’,? (IF4n) contains every
extension of w to G, and so the restriction of p to G| must contain w;. Applying the
above argument to each G4, inductively proves that the restriction of p to Hj(Fyn)
contains o O

Theorem 4.3 For any x € 7, the representation

Uyl @gn)
Py = IndHthk(Fq)’l) 0

n(n—1)(h—1)/2

is irreducible with dimension q . Moreover, G = {py : x € T}.

Proof The dimension follows from Eq. (4.3). To prove irreducibility, we use Mackey’s
criterion. First note that it is clear that H'(F») centralizes x%and HY (Fyn) centralizes
X . We must show that these are exactly the centralizers of these characters.

Let i be an integer such that n { i and i < n(h — 1)/2. Then for any a, b € Fyn,

5(((1 + bt (1 + ar"BD=1) (1 + bri)_1>
)?((1 b)Y+ at™ D1 = bri 4 - .- )—‘)
(1 +ar"tD= (baqli - abql(n(hfl)fi)) t”(h*])>

5((1 +ar"<h—1>—f> : w(mﬂ” — abq"”). (4.5)

I
<
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If i < n(h — 1)/2, then since /i is not divisible by n and v has trivial Gal(F» /F)-
stabilizer, it follows from (4.5) that if b # 0, then 1 + bz’ does not centralize x. Now
assume we are in Case 2 and thati =n(h — 1)/2.1f b € Fyn ]Fqn/z anda € ]Fqn/z,
then (4.5) simplifies to

(1 +at’y - (a (b _ Jﬂ”)) — 7 +at) ¥ (a (b - bq”/z)) .
Every character of F /> has exactly q"’?
Gal(F,» /F,)-stabilizer, it follows that ¥ (a(b — b4"")) = 1 for all @ € Fup if and
onlyifb € F n/2. Hence 1 +bt' does not centralize ¥ and this completes the proof. O

extensions to IF,», and since ¥ has trivial

5 Juggling sequences and the varieties X

We give a description of X}, in terms of juggling sequences that will be crucial in
understanding the cohomology groups H! (X, Qy). In this section, we also include
some technical lemmas that will be used in the proof of Theorem 6.4. As usual, for
any integer m, let [m] be the unique integer with 1 < [m] < n such that m = [m]
modulo 7.

5.1 Juggling sequences

We recall the combinatorial notion of a juggling sequence [5].

Definition 5.1 A juggling sequence of period n is a sequence (j, ..., j,) of nonneg-
ative integers satisfying the following condition:

The integers i + j; are all distinct modulo 7.

For a juggling sequence j = (ji, ..., ju), define |j| := >/, ji.
The following lemmas are straightforward.

Lemma 5.2 (Properties of juggling sequences) Let j = (ji, ..., jn) be a juggling
sequence.

(a) There exists a unique permutation o € S, such that

(J1s-- s jn)=(0;(1)—=1,...,0j(n) —n) mod n.
(b) Letc =(12---n) € Sy anddefinec- j := (je1y, - - -» jen))- Thenoc.j = cilajc.
In particular, the map j +— sgno; is invariant under the action of the subgroup
(c) C S,.

Lemma 5.3 Let m > 1 be an integer; let j be a juggling sequence of period n with
|j| = mn, and let e; € 7" denote the n-tuple with a 1 in the ith coordinate and 0’s
elsewhere.
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(a) If j has a coordinate labelled mn, then j = (mn) - e1 up to the action of (c).
(b) Let r < mn be a positive integer with n { r. If j consists of coordinates labelled
only by 0, r, and mn —r, then j =r - ey + (mn —r) - e[;141 up to the action of

(c).

5.2 The varieties X,

nq

We coordinatize U),’ = A""=D in the following way. Let

—{0.1,....n(h— D). (5.1)
Then every element of U,/ is of the form )~; 4 x;7', where we set xo := 1.

Lemma 5.4 The scheme X, C U ,;’f is defined by the vanishing of the polynomials

[71 [27] [(n—=1)] n
— __1ysen(o;) .9 q ) q9 _ . < < h—
Smn E (=1 Xj X X X =X, ) l<m<h-1,

where xo := 1 and the sum ranges over juggling sequences j = (ji, ..., ju) € A"
with | j| = mn.

Proof Let A = 1, (> x;t') (see Eq. (2.3)) and let A, s denote the (r, s)th entry of
A. Then if we set x; = 0 fori ¢ A,

qu[(r+k DI—1 i
"3 - ni+s—r .

i€eZ

For1 <m < h — 1, let ¢,, denote the coefficient of 7" in

detA = Z( l)sgna l_[ Aro(r)

ogesS,
Then
n
[(r+k—1)1]1—1
=3 U7 Y [t oerr s
oeS, lil=mr=1
where i = (i1, ..., i) € ZL,. Then setting j, := ni, + o (r) — r defines a juggling
sequence j = (ji, ..., ju) € A" with

n n
1= Jr =D niy+0o () —r=mn.
r=1

r=1

It is clear that every juggling sequence j € A" arises in this way, and we therefore

have
Pl ql<n 1]

Cm—D DIy,
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where the sum ranges over juggling sequences j € A" with |j| = mn.

Recall that X, is defined by the equations cg, —cpy forl <m < h—1. Let
¢ =(12---n) € S, andlet j be any juggling sequence with | j| = mn. By Lemma 5.2,
c*. j is ajuggling sequence such that |c- j| = mn and sgn(og. ;) = sgn(o). Moreover,

. N . koo . . .
= (]1 N ]n) =c -] = (j[k+1]’ JIk+2]s +++» J[k]) has the property that
[ [21] [(n—=DIN\ 9 n 4l [21] [('1 il
g g _a"aY
(le sz xj3 x]n ) )C]l/ xjé xj3/ x./I;

Thus we may arrange the monomials in ¢}, — c,, so that we obtain:
gl gl2n (=11} n
q _2: sgnoj - .4 a _ .
Cm m = ( 1) /1 .sz x.infl (xjn xj") ’
J
O

Corollary 5.5 X, is smooth integral affine scheme of pure dimension (n — 1)(h — 1)
over IFp.

Proof By Lemma 5.4, we know that
Xy = Spec (Fplxo, X1, ..., Xa(h=1)1/(80, &n- &2ns - - -+ &h—1n)) »

where go := 1 — xp and g,; for | <i < h — 11is as in the lemma. Let J = j—)g( be the
corresponding Jacobian matrix and consider the & x h square submatrix

0
ax”»“ 0<r,s<h—1

dgo |—1 ifs =0,
dx,s |0 otherwise.

Obviously

Since we are working in characteristic p, forany 1 <r < h — 1, we have

8gnr . ( l)sgn((r]) (1] (1[21 Cgtn
i i K1

where the sum ranges over juggling sequences j = (ji,...,j,) € A" such that
|j| = nr and j, =i. It follows thatif h — 1 > s > r > 1, then

Bgnr_ -1 ifs=r,

axps |0 ifs >

This implies that M is lower-triangular with —1 along the diagonal and hence is
invertible at every point in Xj,. It follows then that X, has dimensionn(h—1)+1—h =
(n—10h-1). O
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5.3 Technical lemmas

This section contains technical lemmas that will be used in the proof of Theorem 6.4.
We recommend the reader to return to this section during or after Sect. 6.

Recall the definitions of A and A’ from Egs. (5.1) and (4.1). The first two lemmas
are straightforward computations.

Lemma 5.6 For any elements

s(x) = Z x,-ri and y: =1+ Z yiti
ie ANA ieA

in UZ",?(F(,), we have s(x) -y = ZieA a;t! where

lj
x+ Y xjyf_j ifie AN A,
j=i (mod n)
I<j<i
lj pe
vit X xpyl o ifie Al
jeEANA ’

1<j<i

a; =

Lemma 5.7 Suppose 1 +3 ;. xitl = Lon(L+Y e yit) € H’(Fq). Then
xi =yl —yi+éi,
where §; is some polynomial in y; for j <1i.

Lemma 5.8 Let s(x) = ) ,c s u xitl e UZ,? and for any integer m with 1 <
m < h — 1, let gmu be as in Lemma 5.4. Suppose that for any y,y € H' with
Ly = Lgn ",

gmn(s(x) - y) =0 = guu(s(x) - y') =0.

IfLpn(y) =1+ e x; T, then gun(s(x) - y) is a polynomial in x; fori € A with
1 < mn.

This is a corollary of Proposition 3.6.

Proof Fori € A’, let x; be the polynomials determined by Lgn (1 + > ;c 4/ yith) =
1+ cqxit'.Fori € A~ A, define y; := x;. Consider the rings

R:Fq[yi :ieA]DS:Fq[xi 11 e A
and their fraction fields

E:FracR:Fq(yi ie A DF:FracS:Fq(xi i e A).
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It is clear that S < R is a finite map of polynomial rings.
We now show that E/F is a Galois extension of degree q”#A . For every ¢ =
1+ cnit' € H(Fyn), the assignment

yi = yi, fori e A, where yt =1+ Z yitl
ie A

defines an automorphism of E fixing F. Indeed, Lyn(y¢) = Fryn(y¢) - (yg“)_1 =
Lgn(y) since § € H' (Fyn) = H’(Fq)ﬁq”. On the other hand, [E : F] = ¢"*A
since by Lemma 5.7, each y; fori € A’ satisfies a separable degree-¢™ polynomial. It
follows that # Aut(E/F) > |H'(F )| = ¢"™** = [E : F], and so E/F is Galois.

We are now in a position to apply Proposition 3.6. Fix 1 < m < h — 1. For each
o € Gal(E/F),

o (gmn(s(x) - ¥)) = gmn(s(x) - y), forsome y’ € H' with Lyn(y') = Lgn ().
Hence by assumption, we know that for each o € Gal(E/F),

gnn(s(x) - y) =0 <= 0(gun(s(x)-y)) =0.

By the Nullstellensatz, this implies that the ideal generated by g, (s(x) - y) in R
is equal to the ideal generated by o (g, (s(x) - y)) for all 0 € Gal(E/F). Thus by
Proposition 3.6, we have that in fact g;,,, (s (x) - y) € S. Finally, since g,,,,(s(x)-y) € R
is a polynomial in x; and y; for i < mn by Lemma 5.4, it follows by Lemma 5.7 that
gmn(s(x) - y) € Sis apolynomial in x; fori < mn. m]

To prove Proposition 6.1, we will need a more precise result than Lemma 5.8.

Lemma 5.9 Let s(x),y € U;”’,f(Fq) be as in Lemma 5.6 and let a = (ag, ay, ...,
An(h—1y) where s(x) -y = ZieA a;t'. Let Lyp(y) =1+ Zie.A’ x;it! and assume
that forany v, y' € H/(Fq) with Lgn(y) = Lgn(y"), we have g (s(x) - y) = 0 ifand
only if gun(s(x)-y") =0.
(a) Forany 1 <m < h — 1, the polynomial g, (a) is a polynomial in x; for 1 <i <
mn and
gmn (@) = xmn + (polynomial in x; fori < mn).

(b) Let I :=={i :n(h —1)/2 <i <n(h—1), nti} and define
r1:=max(l), r;:=max({ ~{r1,...,ri—1}), for2 <i <#I.

Pick a positive integer dy < #1 and set

[(n(h—l)—rdo)—n I(n(h—l)—rdo)—2n n—[lrdOJ
tgy(X) == x + x4 + o xf
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If x;; = X(h—1yn—r;, = 0 for 1 < i < dy — 1, then the contribution ofxrdo to
&(h—1yn(a) occurs in the expression

n n—[lrdO] q[lrdol n

q
q
xn(II*')*rdo Ardy - xn(hfl)frd[] Ardq + (xn(h—l)—rdo Tdy (xrdo )) — Xn(h—1)—rq, Tdy (xrdo )-

Proof We first prove (a). By Lemma 5.4, g,,,, (@) is a polynomial in @; fori < mn, and
by Lemma 5.6, y;,,, only appears in a; for i > mn. Therefore by Lemma 5.3(a), the
contribution of yy,;;, to g, (a) must come from the juggling sequence (0, ..., 0, mn),
and hence we have

&mn(a) = yg; — Ymn + (polynomial in x;, y; for i < mn)
= Xmn + (polynomial in x;, y; fori < mn) (by Lemma 5.7)

= Xmn + (polynomial in x; for i < mn) (by Lemma 5.8).

We now prove (b). By Lemma 5.6 and the vanishing assumption, y,, only appears in

a; fori =rg, and i = (h — 1)n. Furthermore, any juggling sequence j = (ji, ..., ja)
wherein Yrao contributes to g(,—1), nontrivially must have the following criteria:
o jn#0

e For 1 <i <dy— 1, the numbers r; and (h — 1)n — r; do not appear in j.

It therefore follows from Lemma 5.3 that the only terms in g¢,—1), involving yr,
occur exactly in the summands corresponding to the juggling sequences

(h—1Dn-e, «<—1¢€S8,,
rdy - en—igy + (h = Dn —rgy) - en <— (1 =74y, 1) € Sy,

((h - l)n - rd()) : e;do +rd0 sl <> (fdo’n) € Sn-
By Lemma 5.4, this exactly corresponds to the following summands in g,—1,(a):

p Un—ig)l , n (17 gy ] e
(a(h—l)n - “(h—l)n) — ry, (a(h—l)n—rdo - “(h—l)n—rdo) = Ah—n—ry, (“mo - ardo> .

Thus by Lemma 5.6, we see that the only terms involving y, 4 Occur in the expression

4/ "=D=rdg) q" £ =D rag)
Xn(h—1)~ray Vra, = Xn(h—1)~ray Yrq,

n—[leOJ (1" U;‘IOJ qn
= Yrq, (xn(h—l)—rdo - xn(h—l)—rdo) - xn(h—l)—rdo (}’rdo - Yrd0>~ (5.2)

By Lemma 5.7, Xrgy = y;’do — Yrq, + 8%. By Lemma 5.8, the terms in 8% will
contribute elsewhere to a polynomial that can be written in terms of x; fori € A with
i < rq,. (The condition i < rg4, can be seen from the proof of Lemma 5.8, proceeds
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by showing that y; is a polynomial in x; for j < i.) Thus the contribution of x;. o in
(5.2) simplifies to

1((h—Vn—ry )+n n—[lrg.1
an q dg _q )
n(h—1)—rgy \ Vrdy Yray

ql(n(h—l)frdo) q"’U’doJ ql/rdol q"
n(h—1)=rq Td d n(h—1)—r, q T4
= Xn(h—1)—rgy | Yra, = Yray T Xt =1)=rgy \Yray T Yrag

n—[lrg.1 [rg,]
q" q" q" g q"do
= xn(hfl)frdotdo(x’do) +xn(h71)—rd0xrdo - xn(hfl)frdotdo(xrdo) _xn(hfl)frdox’do’
where the last equality holds modulo terms without x;. o O

6 The representations H? (X)[x]
In this section, we prove the irreducibility of H! (X, Qy)[x] and its vanishing outside
a single degree. The key proposition, which we prove in Sect. 6.1, is:

Proposition 6.1 Forany x € 7,

dim Homyna ., (,OX, H} (Xh, @e)) = 8i.(i-1)(h—1)»

where p, € G is the representation described in Theorem 4.3. Moreover, Fryn acts on
the cohomology group Hén_l)(h_ b (X1, Q[ x1viamultiplication by (—q™)*~D"=1,

Recall that Fj;, U;;,? (Fgn) = Rjy 4. Fgn) and that Fy5, acts on X, by conjuga-
tion. For any z € IF;,Z and any g, h € H(IF;n), let (z, h, g) denote the map X; — X,
given by x > z(h % x - g)z~'. We prove the following proposition in Sect. 6.2.

Proposition 6.2 If ¢ € ]qun has trivial Gal(Fyn /F)-stabilizer, then for any g €
H(Fq"),

Tr (@ 190 HO 7D (X, @) 1) = (DD e).

From the multiplicity-one statement of Proposition 6.1, the nonvanishing statement
of Proposition 6.2, and a counting argument coming from Theorem 4.3, one obtains
the following two results, which we prove simultaneously in Sect. 6.3.

Proposition 6.3 The parametrization
T—G, x> py

described in Theorem 4.3 is a bijection.

Theorem 6.4 For any x € 7T, the UZ:,? (Fyn)-representation HL’: (X, @4)[)(] is irre-
ducible when i = (n — 1)(h — 1) and vanishes otherwise. Moreover, for x, x' € T,
we have H" V"D (X, Qulx1 = BV X0, Qo if and only if x = ¥
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6.1 Proof of Proposition 6.1

Note that from Sect. 4, the representation

. U;ll,f Fyn) ft
W, = IndH,(]Fqn) x"
is irreducible and isomorphic to p, in Case 1, and is a direct sum of q"?
in Case 2. Thus the statement of the proposition is equivalent to:

copies of py

dim Homma i ) (WX, H! (Xh, @z))

I LR, if (n, h) is in Case 1,
| ¢"* - Siwtyw—1) if (n, h)is in Case 2.

We use Proposition 3.3 to reduce the computation of the space of homomorphisms
HomU:’.Z F ) (WX, Hi(Xp, @g)) to a computation of the cohomology of a certain
scheme S with coefficients in a certain constructible Q,-sheaf .%. Then, to compute
H!(S,.#), we inductively apply Proposition 3.4. This will allow us to reduce the
computation to a computation involving a O-dimensional scheme in Case 1 and a 1-

dimensional scheme in Case 2. We will treat these cases simultaneously until the final
step.

Step 0 We first establish some notation. Note the resemblance to the notation in Lemma
5.9.

o Let

[={i:nth—1)/2<i<nth—1),nti}
Ji={i:1<i<nth—1)/2, nti)

andsetd :=#I = |(n — 1)(h — 1)/2]. Note that A’ U J = {1,2, ..., n(h — 1)}.
e Setlp:=1Iand Jp:=J.Forl <i <d,let

ri=max iy, Ii:=1L 1~{r}, Ji=Ji1~{(h—Dn—r}
Note that I; = @.In Case 1, J; = @, and in Case 2, J; = {n(h — 1)/2}.

e For afinite set A, we will write A[A] to denote the affine space A*A with coordinates
labelled by A.

e For m € N, we will denote by [m] the unique integer in {1, ..., n} with m = [m]
modulo 7, and denote by m the unique integerin {0, . .., n — 1} withm = m modulo
n

e For any finite-type scheme S over IF,», we consider H? (S, Q) := Dicz HCi (S, Qp)
as a finite-dimensional graded vector space over Q, equipped with an action of Fryn.
We write HL(S, Qp)[—1] := H.~'(S, Q,) and we write H! (S, Q;)(—1), to denote
that the action of Fry» on H: (S, Q) is multiplied by ¢".
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Step I We apply Proposition 3.3 to the following set-up:

o U ,'Z,f together with the connected subgroup H’, both of which are defined over [

e amorphisms: U wi/H — Uyl defined by 1dent1fy1ng Uy¢ /H' with affine space
A[J] and setting s : (x;)jes H> 1 + D e Xt

e the algebraic group morphism f: H" — H givenby } ;. 4/ Xt > anl

e acharacter x : H(Fyn) — Qe

o Y, := Ly (Xp), alocally closed subvariety of U,/ satisfying X = L;nl(Yh)

Since X has a right-multiplication action of U,"! (F4), the cohomology groups

H! (X}, Qp) inherit a Uy ¢ (Fgn)-action. By Proposition 3.3, we have graded vector
space isomorphisms

Hom g, (W HE (X0 @) ) = H2B™ ), PRLy)

compatible with the action of Fry». Here, £, is the local system on H corresponding
to x, the morphism 8: (U,"{ /H') x H' — U,"{ is given by B(x, &) = s (Fryn (x)) -
g - s(x)7!, and the morphism P: 8~ Y(Y,) — H is the composition B (Y)) —
Wty x H 2 1 L .

We now work out an explicit description of ,3’1 (Yp) CA[J]1x H.Forl <m <
h — 1, let g, be the polynomial defined in Lemma 5.4. Write x = (x;)iey € A[J]
andg =1+ ;.4 xitl e H’(Fq). Forany y =1+ ;. 4 yith e H’(Fq) such that
Lgn(y) = g, we have

B(x, g) = Fryn(s(x)) - Lgn(y) - s(x) ™" = Lgn(s(x) - y).

We see that 8(x, g) € Y, ifand only if s(x) -y € X;,. Lets(x) -y =1+ Zairi
By Lemma 5.4, we know that s(x) - y € Xj, if and only if g,,(a) = 0 for m =
1,..., h—1.Recall from Lemma 5.8 that using the identity L, (y) = 14+, ., x;T’,
each polynomlal gmn(a), which a priori is a polynomial in x; for j € J and y; for
i € A, isin fact a polynomial in x; for 1 <i < n(h — 1).

Step 2 By Lemma 5.9(a), foreachm = 1, ..., h — 1, the polynomial g, (s(x) - y) is
of the form x,,,,, + (stuff with x; for i < mn). Thus the coordinates x,,,,, of ,3_1 (Yn) C
A[A’ U Jy] are uniquely determined by the other coordinates. Equivalently, the mor-
phism (x;);c aug, = (Xi)ielul, gives an isomorphism BL(Yy) = Ally U Jo] =
SO Then

H2(B~N(Yy), P*Ly) = H (SO, (PO)*L,),

where P©@: §@ . H is the morphism determined by P and the isomorphism
B=1(Yy) = SO it is the map determined by (x;)icr,usy F> (Xns X205 - - - » X(h—1)n)s
where form = 1,...,h — 1, we view x;,, as a polynomial in x; fori € Iy U Jp.

Step 3: Base case We now apply Proposition 3.4 to the following set-up:
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o Let SO = Ay U Jp].
o Let S = A[L; U Jy.

Note that S© = Séo) x A[{r}].
Let f: Séo) — G, be the morphism (x;)ier,ujy > Xn(h=1)—r, -
Setv e Séo) and w = x,,. By Lemma 5.9, we may write

n—[lry]

PO@w) =g (£ w = f)" w!

~(f@n@)” + f@nw) - P ),

where g: G, — H is the morphism z — 1 + zt""~D_ Observe that this is the
negative of the expression appearing in Lemma 5.9 since we solved for x(;—1), in
the equation g(,—1),(s(x) - y) = 0.

Let Séo) = A[I1 U Ji] so that this is the subscheme of Séo) = A[I1 U Jy] defined
by f =0, andlet P := Py o 857 — H.

Then by Proposition 3.4, as graded vector spaces with an action of Fryn, we have

He (s<°>, (P(O))*LX) ~ H° (s§°>, <P3(°))*z:x) (—D[-2].

Step 3: Inductive step We now describe the inductive step for dy < d. We apply
Proposition 3.5 to the following set-up:

Let $@0) .= 5“0 — A1 U Ty 1.

Let S0 = Allg41 U Jgp.

Note that S@ = %) x A[{ry 1.

Let f: Sédo) — G, be the morphism (x;)ier,,,1UJy, F> Xn(h—1)—ry, -

Setv € S;dO) and w = X, . Let 74,(x) be as in Lemma 5.9 so that, by the same
lemma, the morphism P@) := P3(d°_1): §() _ H has the following form:

"7[]rd0]

P (), w) = g (f W~ F )" w
—(f )tz w))?" + f(U)fdo(w)> . Py (),

where as in Step 3: Base case, the morphism g: G, — H is z — 1 + zz" D,

Let SédO) = A[lgy+1Y Jgy+11 so that this is the subscheme of Séd(’) = Ally+1U Jg,]
defined by f =0, and let Py’ := P2(d0)|s<do>: SY > H.
3

Then by Proposition 3.4, as graded vector spaces with an action of Fryn, we have

He (S(do)’ (P(do))*ﬁx) ~ He (s§d°>, (P3(d°))*ﬁx) (—=D[=2].
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Step 4: Case 1 Step 3 allows us to reduce the computation about the cohomology of
SO to a computation about the cohomology of §@ := Séd_l), which is a point. Thus
Fryn acts trivially on the cohomology of S @ and for all i € Z,

dim H! (s<d>, (P(d))*ﬁx> = S0,

Step 4: Case 2 Step 3 allows us to reduce the computation about the cohomology of
SO toa computation about the cohomology of §@ .= Séd_l) = Al{n(h — 1)/2}].
The morphism P@ is

n/2 n _
P@:SD — H, ayg-np > L+ agy ) (aZ<h_1>/z _an<h71)/2> b,

Then we claim that foralli € Z

H (Gu, (P(d))*/jx) = H!(Gq, P*Ly).

where ¥ is the restriction of x to Fyn — @Z and Py is the morphism

n/2

Py: Gy — Gy, x> x4 x4 = x).

We now compute the cohomology groups H/ (G,, P*Ly) in the same way as in [4,
Section 6.5.6 and Proposition 6.6.1]. We may write P = fjo f> where fi(x) = xd"? —
x and fr(x) = x9"?+1_Since f11is a group homomorphism, then f*Ly = Ly r . By
assumption v has trivial Gal(IF; /I, )-stabilizer, so ¥ o f1 is nontrivial. Furthermore,
Yo fiistrivialonF n/2. Thus the character o fi : Fyn — @; satisfies the hypotheses
of [4, Proposition 6.6.1], and thus Fr,» acts on Hc1 (G, P(;" Ly) via multiplication by
—g"'* and

dim Hcl (Ga, Po*ﬁlp) = qn/2 . 81,,'.

Thus foralli € Z,

dim H! (S<d>, (P(d))*ﬁx) —q"? .5,

Step 5 We now put together all of the boxed equations. For all i € Z,

Homyra e,y (W i (X0, T2)) = HE (871 (), PLy )
= H! (S<0>, (P<o>)*ﬁx)
= 172 (s, () Ly ) (=)
= H2 (50, (POYL, ) (=)

= 17 (SO, POy L) (—d).
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Therefore if we are in Case 1, then
dlm HOmH(Fqn) (ny HLZ‘ (X]’h @Z)) = S(n—l)(h—l),l"

Moreover, the Frobenius Frg» acts on Homgna g ) (WX, HODE=D (x @£)> via
multiplication by the scalar g”*—D("=1/2,

If we are in Case 2, then
dimHomU:.,g(Fq") (WX, H (Xh,@e» =q"*  Su-1yh-1).i-

Moreover, the Frobenius Fry» acts on HomUZ,,g Fn) (WX, 2 VED (g, @U) via
multiplication by the scalar —g”*~D(=1)/2

Finally, observe that if we are in Case 1, then (n — 1)(h — 1) is even and if we are in
Case 2, then (n — 1)(h — 1) is odd, and therefore Fr » acts on Hg"_l)(h_l)(Xh, Qlix]
by multiplication by (—g™)"~ D=1,

6.2 Proof of Proposition 6.2

By Corollary 5.5, X}, is a separated, finite-type scheme over F » and the action of
(&, h,g) € Foy x H(Fgn) x Uy ¢ (Fgn) on X, defines a finite-order automorphism.
Moreover, (¢, h, g) = (1, h, g)-(¢, 1, 1), where (1, h, g) is a p-power-order automor-
phismand (¢, 1, 1) is an automorphism with prime-to- p order. By the Deligne—Lusztig
fixed point formula [8, Theorem 3.2],

S0 T (@ o0 HE (X0 Te)) = S0 T (k0% B (X T))

It is easy to calculate Xi Indeed, it can be identified with the subvariety of all ele-
ments of U, of the form 1 + > _;_, | @,t™. Then the determinant condition

on X implies that a,; € F,» and hence X,i is just a discrete set naturally identi-
fied with H (IF;») and the left and right actions of H (IF4») are given by left and right

multiplication. Therefore Hci (Xfl, Q) =0fori > 0so
ST (% HE(XE Q) =T (9% HO (X5, Q).
i

Furthermore, as a (H (IF;n) x H (Fy4n))-representation, Hc0 (Xg, @@) is the pullback
of the regular representation of H (F;») along the multiplication map H (Fyn) x
H(Fqn) — H(Fqn). Thus

H? (Xz,@() = P  wex

X0: H(IF,fz)—)@Z<
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as representations of H (Fyn) x H (F4n). Therefore

> a3 T (@) HE (X0 Q) ) = x () - #HEg).

heHFn)

This is equivalent to

S0 T (@ 1) HE (X0 Q) 1) = x(e).

and since H(f (Xn, Q)x1=0fori # (n—1)(h—1) by Proposition 6.1, the desired
result follows.

6.3 Proof of Proposition 6.3 and Theorem 6.4

By Proposition 6.1, any p € G occurs exactly once in H" V"~V (x,, @,). Recalling
that G is the set of irreducible representations of U Z ’,f (Fyn) whose central character

has trivial Gal(L / K)-stabilizer, observe that p must occur in Hf"_l)(h_l) (Xn, Qpx]
for some y € 7. Conversely, each irreducible constituent of H,;("_l)(h_l)(X n Qo)x]
must be in G, and therefore

Do =@ H D (X0,T) Ix1

peg xeT

By Theorem 4.3, the left-hand side has at most #7 irreducible constituents. By Propo-
sition 6.2, each H;"_l)(h_l)(Xh, Qp)[x] for x € T is nonzero, and therefore the
right-hand side has at least #7 irreducible constituents. Therefore both sides must have
exactly #7 irreducible constituents, #G = #7, and the U;,”’,? (F4n)-representations

HC("_I)(h_l)(Xh,@g)[X] for x € 7 are irreducible and mutually nonisomorphic.
This proves Proposition 6.3 and Theorem 6.4.

7 Division algebras and Jacquet-Langlands transfers

Our goal in this final section is to understand two connections. The first, explained in
Sect. 7.1, is to unravel the relationship between Theorem 6.4 and the representations
arising from Deligne—Lusztig constructions of division algebras. Because Theorem 6.4
proves a conjecture of Boyarchenko (see [2, Conjecture 5.18]) for primitive characters
X, we can use [2, Proposition 5.19] to explicitly describe this relationship.

The second connection, explained in Sect. 7.2, is to unravel the relationship
between the representations described in Sect. 7.1 with respect to the local Lang-
lands and Jacquet-Langlands correspondences. We prove that the correspondence
0 — H.(f)[@] is consistent with the correspondence given by the composition
of the local Langlands and Jacquet-Langlands correspondences, and therefore the
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homology of Deligne-Lusztig constructions gives a geometric realization of the
Jacquet-Langlands correspondence between division algebras of different invariants.

7.1 Deligne-Lusztig constructions for division algebras

We temporarily drop the assumption on the characteristic of K as the following discus-
sion is not restricted to the positive characteristic setting. Let K™ be the completion of
the maximal unramified extension of K and let ¢ denote the Frobenius automorphism
of K™ (inducing x + x? on the residue field).

Consider the following automorphisms of GL,, (I’(\ nry.

_ 0 1,_
Fi(g) = oy 'o(@)my, @i = (nk no 1)’

F(g) = o Fp(9)o*, w = <2 1"0_1>-

Here, we write ¢(g) to mean the matrix obtained by applying ¢ to each entry of g.
Fori =1, 2, let G; be the algebraic group over K with FrobeniusAFi. LetT; C G; be
the algebraic group corresponding to the diagonal matrices over K™. Then we have

~

G1(K) => Gy(K), Ty(K) —> Ta(K).

where the isomorphism is given by f: g +— y~!.g .y, where y = pp -
diag(n)‘l, e, nk") for a permutation matrix yp and for some A; € Z. Since the
image of @ in the Weyl group has order n, we may choose yy so that eq - Yo = ey,
where e is the first elementary row vector.

Let G := G;(K™) = GL,(K™) and T := T;(K™). Let B C G; ®k K™ be
the Borel subgroup consisting of upper triangular matrices and let U be its unipotent
radical. Note that 7' consists of all diagonal matrices and U = U(K ) consists
of unipotent upper triangular matrices. Let U~ C GL,(K Ilr) denote the subgroup
consisting of unipotent lower triangular matrices.

The Deligne—Lusztig construction X associated to the pair (GL, (I’(\ myFp)
described in [12] is the quotient

X:=UnNF ' (OU)\{AeG: Fi(A)A™ e U).

The quotient X carries an action of T{(K) x G{(K) = L* x D* induced by the
action ~
(t,g)*x:=1"'xg, fort € T|(K),g e G(K), andx € G.

By [2, Corollary 4.3], X can be identified with the set

X = {A eG: WA elUn Fl(ﬁ’)},
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and this choice of section X — G respects the (T (K) x G1(K))-action. By [2,
Lemma 4.4], a matrix A € G belongs to X if and only if it has the form

A = X(A(), R} Al’l*])

Ao Ay Ar An—1
5 Q(An—1) @(Ao) @(A1) o 9(Anm2)
ko2 (An—a) k@ (Anc)  @*(A0) - @*(Ap—3)
kor=l(A))  7ke"1(Ar) mFe"l(A3) - " (Ap)

(7.1)

where A; € K" for0 <i <n—1and det(A) € K*. We remark here that in [2], & is
assumed to be 1, but the proofs of [2, Corollary 4.3, Lemma 4.4] work for arbitrary &
by simply replacing 7 with 77%. (In fact, the identification of X with X and the explicit
description in (7.1) hold without our running hypothesis that (k, n) = 1.) We may

therefore write
R=|]&m,
meZ
where X consists of all A € X with det(A) € 7™Of. Note that the action of
@y takes each X (m) isomorphically onto X (m+k) “and the action of 7 takes each
X isomorphically onto X "+ By assumption, (k, n) = 1 and so the X (i") are all
isomorphic. It is therefore sufficient to show that X ¥ can be realized as the F,-points

of a scheme. To do this, we use Lemma 7.1, whose proof is very similar to that of [2,
Lemma 4.5].

Lemma 7.1 [2, Lemma 4.5] If a matrix A of the form 7.1 satisfies det(A) € O, then
Aj e nUKMOM for0 < j < n—1and Ay € (OF)*.

Proof Write A = (a;;) andletv; = v(A;) for 0 < j < n — 1. By definition,
n
det(A) = Y sgn(@) [ [ dio)-
€S, i=1

Let T € S, be the n-cycle given by (123 - - n). Note that ©/(i) = [i + j] and hence
the summand of det(A) corresponding to T/ only involves A ;. It is easy to see that

v([Taj i) =n-vj+j-k, for0<j<n-1

We now calculate the valuation of the summand corresponding to a fixed o € S,
where o is not a power of 7. Set

BG) =

i) i o) —i, ifi <o), o ifi e,
" oG)—i+n, ifi >o(), k, ifi > o).
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Then the valuation of the o-summand is Y (vq ) + B()). Since Y (o (i) —i) =0,
we have % > a(i) =Y B(i), and therefore

v ([T @iom) = i1 ey + BD) = £ 1 (1vaq) + k().

Since (k, n) = 1, the set {nv; + jk : 0 < j < n — 1} consists of n distinct numbers,
and hence
v(det(A)) = min {nv; + jk}.
0<j<n—1

By assumption v(det(A)) = 0, and this implies that
nvj+ jk>0, forO0<j<n-—1. (7.2)

Conversely, since (k,n) = 1, if (7.2) is satisfied, then v(det(A)) = 0 only if vy =
v(Ag) = 0. O

We have now shown that a matrix of the form (7.1) with determinant in O is of
the form
A(Ao, Al ... Apm) == x(Ag, AL L AL,

for some Ag € ((/Q\Ill(r)>< and A; € (/Q\I[‘(r for 1 < j <n — 1, where we write
A/j = n_Uk/"JAj, for0<j<n-—1.
For any integer & > 1, the set

[A0. v A1) A € O /2" O,
Aj e O%/n"1O0% for1 < j<n—1,

det(A(Ag, ..., Ap_1)) € (OK/nhOK)X]

can be naturally viewed as the set of Fq -points of a finite-type scheme X ;(lo) over .
If R is an [F,-algebra, then for 1 > 1, let W;(R) = R0/ (") if K has positive
characteristic and let Wj (R) be the R-points of the truncated ramified Witt vectors
of K if K has characteristic zero. Then determinant of a matrix A(Ag, A1..., Ay—1)
for Ag € Wy (R)* and Ay, ..., Ay—1 € Wj,_1(R) can be viewed as an element of
Wi (R)*, and 55}(10) is then the closed IF,;-subscheme of W; X WZ:} defined as the
fiber of

@(det(A(Ag, A1, ..., Ay—1)))
det(A(Ag, A1, ..., An_1))

WX x Wi—1— WX, (Ao, A1, ..., Ay_1) >

over the identity element of W*. By Lemma 7.1, we have XO = jim X (F,) and
h <—hh q
we may define X}(lmﬂ) =w - X;lm) for all m € Z so that X" = lim, X,(lm)(Fq).

Thus X ™ is the set of Fq -points of a (pro-)scheme.
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Note that X ,(10) has a left-multiplication action of O} /U 2 and a right-multiplication

action of O/ U’Z)(h_ D+l

subgroups of G (K):

, and these actions are defined over Fy» and by the following

ox /Ul = {A(Ao,o, L 0):Ag e (OL/n”OL)X}
. Ag € (O /n" O,
CAjeop/at o forl < j<n—1

We now define ¢-adic homology groups of X(©.

Lemma 7.2 (Boyarchenko [2, Lemma 4.7]) Set W, = ker(W,(Fsn)* —
Wy_1Fgn)*) for h = 2. The action of Wy on X}(lm) preserves every fiber of the
natural map X,(qm) — X}(l )1, the induced morphism Wh\X,(lm) — X,(Zf)l is smooth,
and each of its fibers is isomorphic to the affine space A"~ over Fq.

Proof The proof of [2, Lemma 4.7] is independent of the invariant k/n of the
division algebra D once replace the matrix Ap(ag, ai, ..., a,—1) by the matrix
A(ag, ay, ...,an,—1) of Eq. (7.1). Note that there is a minor typo in the proof: In
6.11.2, the isomorphism of schemes

@}yh_lx@)" _,xGj —>(’)Xh><OKh 1
should be given by

(a()?al’ "'9an—17b01b19 ~'-1bn—1)

1

> (a0 + bort", a1 + by L apy by,

O

For a smooth scheme S of pure dimension d, set H; (S, @5) = HCM_"(S, @g @)).
By Lemma 7.2, we have an isomorphism

H X", Q) — H; X", Q"

In particular, we have a natural embedding H; (X,(Im_)l, Q) — H; (X}(lm), Q). We
define

H(R™, Q) = lim H(X, Qo). H; (X.Q) = P H (X7, Tr).

h mez

The vector space H; (X Q) inherits commuting smooth actions of L* and D*.

Therefore, given a smooth character 6: L* — @z , we may consider the subspace
H; (X Qg)[@ C H; (X Qg) wherein L™ acts by 6. If 6 has level &, then H; (X Qg)[e
is a subspace of H; (Xh, @(), where Xh = UmeZ X,(lm). One can show that Xh is equal
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to the translates of X ,(10) under the action of (L* /U f) x (D*/U In)(hfl)ﬂ ). It therefore
follows that if f’h is the stabilizer of )?}(lo), then

( X/Uh) (DX/UZI)('I—I)'H)

H; (%, Q) = Indy, (#X. Q).

This type of argument is crucial in the proof of Theorem 7.8.
7.1.1 Boyarchenko’s conjectures

Strictly speaking, [2, Conjectures 5.16 and 5.18] require D to be a division algebra
of invariant 1/n over a non-Archimedean local field K of positive characteristic. In
this section, we formulate extensions of Boyarchenko’s conjectures for any division
algebra D of dimension n? over any non-Archimedean local field K with residue field
F,.

The morphism f: G; — G, givenby g —> y~

%0 =1 (%)

. g -y is injective. Set

so that if we write A’(Ag, ..., Au_1) =y ' - A(Aq, ..., An_1) - v, then

v Oy — ’ . Anr b Anr <
X, OF,) = A" (Ao, ... Au_1) 1 Ag € (O /" O™
Aj e O%/a"1O% for1 < j<n—1,
X
det(A (A, ..., An_1)) € <(9K/nh(91<> }
The group (O} /U x (Og/Ugh_l)H) acts on f;l © via f. Hence we obtain the
lemma:

Lemma 7.3 Foralli > 0, as representations ofOZ/UZ X OIX)/UZ’)(h_I)H,
0 ~ i (Vv ray
H (X0, Q) = 1 (%,0.Q).
For any [Fn-algebra R, define
— A v . O]
X (R) = {4 (Ao, ... Ag) € R : a9 e WV (B, (7.3)

where if V: W;,_; — Wj_; is the Verschiebung morphism, then Wzl) =1+
VW1 C W; ‘We remark that we have abused notation here in the sense that when
K has positive characteristic, the X, defined in Eq. (7.3) is the image of the X, defined
in Definition 2.5 under ¢, . Since the definition of U ;:Z is not available when K has
characteristic 0 and Boyarchenko’s conjectures can be formulated without U :Z , We
choose to proceed as in Eq. (7.3).
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Let I'j, denote the stabilizer of X, in O /U x O}/ Ug(h71)+]. Then by Lemma
7.3,

L ~0) = ~ Ox/UhXOx/Un(h—l)-H . _
HI(XY, Q) = Indp -/ X0/ (H; (Xh, (@4)) .
Boyarchenko’s conjectures concern the cohomology groups H(f: (X1, Q) as represen-
tations of ULI/UZ X Ull,/UZ(h_l)+1 c Iy.

Conjecture 7.4 (Boyarchenko [2, Conjecturg 5.16]) Fori > 0, we have HZ (X I @g)
= O unless i or n is even, and Fryn acts on H. (X, Q) by the scalar (=1)igM/2,

Conjecture 7.5 (Boyarchenko [2, Conjecture 5.18]) Given a character y : U i /U 2’ —
@Z’ there exists r > 0 such that HCi (Xh,@g)[x] = 0 for all i # r. Moreover,
H!(Xp, @5)[)(] is an irreducible representation of Ué/ Ug(h71)+l.

Remark 7.6 Ttis useful to have an explicit formulafor A’(Ag, ..., A,,_1).Firstobserve
that
A(Ao, ..., An_1) = D(AY) + D(ADwy + -+ D(A,_ D,

where we write D(x) = diag(x, ¢(x), ..., (p”’l (x)). Let o be the permutation matrix
corresponding to the permutation i — [(i + [ — 1)k]. Then

-1 _ K _ (0 la
Yo "¢ Yo=c", wherec—(1 0 >
This implies that

vy D(x) - yo = diag <x, oy, ..., <p[("—1>”(x)) —: D'(x).
Therefore

A'(Ag, ..., Apoy) = D/(Aé)) + D/(A/l)wk 4t D/(A;,,l)w("_l)k
= D'(Ag) + D'(Apa™ 4 .. + D'(A,_p DK,

which, when expanded, is

Ag A Api e Afn-1)1]
7o (Af—1yy) o"(Ag) (A e o (Ay—2y1)
moP N Aoy TP A—nn)  @1(Ap) e N (Au—3y))
mel DA el =D (Ay) ml Ay @l D(Ag)

Observe that when K has positive characteristic, after appropriately permuting the ; s,
the point x(}_ aniw’, Y aniv17', ..., Y Anit(u—1)7") is tpx (O a;t') as defined in
Eq. (2.3). O

From now on, assume char K > 0. Then Proposition 6.1 gives evidence supporting
Conjecture 7.4, and by Theorem 6.4, we have:
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Theorem 7.7 Let x: U z /U f — @Z be a primitive character. Then Conjecture 7.5
holds.

By [2, Proposition 5.19], we have

Theorem 7.8 Let 6: L* — @Z be a primitive character of level h and let

X: Ui/Uz‘ — @Z denote the restriction of 0 to Ui.

(a) Pickany ¢ € OZ/UIil_l with the property that its image in F;n generates F;n.
The representation Hf"_l)(h_l) (X1, Qp)[x] extends uniquely to a representation
ng of the semidirect product R;;,k,n,q(Fqn) = (QE/UZ(h*D+1 with Tr(ng(£)) =
(=D~ De=De(g).

(b) The inflation 7, of ng to O}, extends to a representation nj, of . O}, by setting
n, () = 60(x). Then

He1yin-1)(X, Q0] = ng = Indfgog (my)

and Hi()?,@L)[Q_] =0fori # n—1)(h —1).
©) Hu—1y;m-1)(X, Q0] is an irreducible representation of dimension n -
qn(n—l)(h—l)/Z.

Proof We outline the proof given in [2, Section 6.15].

The uniqueness in (a) follows from the irreducibility of Hc(”fl)(hfl)(X hs @l)[ X
The representation 7 is the tensor product 6° ® an_l)(h_l)(X I @g)[)(] where
0°(z,g) = 0(z) for (z,g) € (¢) X U;,’,?(Fqn) = R;;,k,n,q(]F‘I”)' Finally, the trace
identity is a special case of Proposition 6.2.

Let X, == |,z )N(,gm). The action of L* x D* on X induces an action of the
quotient G = (LX/UZ) X (DX/Ug(h_l)'H) on X),. Moreover, H*()?,@g)[e] -
H (X, Qy), so it is enough to understand the cohomology of X). Since flgmﬂ) =
w)?,(lm) and o € G(K) = DX, we see that )?h is equal to the Gj-translates of
fni(Xp)) C )?}(10). One can define an action of

D= () - (@ e - (uh/uf < ub U4 € G

on X, sothat f oty  is I'p-equivariant. Moreover, the stabilizer of f(t5,x(Xp)) in Gp is
exactly equal to I';,. The claim in (b) then follows from an analysis of the 8-eigenspace
of IndZ" (Hi (X, @)) .

Let y := 6] 5-1. For any x € Uit c Ug(h_l), we have nj,(x) = ¥ (x) and

(I x - T 1) = g (p(x) = Yr(x?).

Since 6 is primitive and [ is coprime to n, it follows that the normalizer of 7; in D*
is equal to % - O} Irreducibility then follows by Mackey’s criterion. The dimension
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of the g is equal to the product of [D* : 7% . O] = n and the dimension of 7, so
the desired result holds by Theorem 4.3 and Proposition 6.1. O

7.2 Local Langlands correspondences

Itis known that automorphic induction is not compatible with induction on Weil groups
in the sense that one must often keep track of a rectifying character when constructing
the Langlands parameter oy of the automorphic induction of a character6: L* — @Z .
Instead, we recall Langlands—Shelstad’s theory of y-datum [11, Section 2.5] to give
a canonical construction of og : Wx — GL,,(C). We then recall the statements of the
local Langlands and Jacquet—Langlands correspondences and prove in Theorem 7.12
that the homology of X realizes the composition of these two correspondences. As
always in this paper, L is the degree-n unramified extension of K.

Fix an isomorphism @g = C.LetT =Resy/kx G,, andlet G = GL,,. Viewing L as
an n-dimensional K -vector space induces an embedding 7 < G.Let ® = &(G, T)
be the root system of 7 in G and recall that there is a natural action of the absolute
Galois group 'k on ®. For each A € &, let L, and Ly, be the extensions of K
corresponding to the subgroups {g € 'k : A = A} and {g € 'k : 84 = £A}. We
note that since L/K is unramified, it is Galois and hence L, = L. (In general, one
only has L, 2 L.) We say that A € & is symmetric if L, # L, and asymmetric
otherwise. Observe that if A is symmetric, then L, is a quadratic extension of L.

Definition 7.9 A x-datum is a collection of characters {x, },c satisfying:

(i) xa: Ly — C* is a homomorphism.
(i) For each A € @, we have x_) = X;I and yw) = "y, forall w € Wk.
(iii) If 1 is symmetric, then ;| L, equals the quadratic character of L) /L.

Consider the dual groups of G and T given by G := GL,(C) and T := (C*)".
A x-datum {x;};.co determines an embedding x : “T — *G, where “T and *G are
the L-groups LG := G x Wk and LT := T x Wk (see [11, Section 2.6]). The local
Langlands correspondence for T gives a natural isomorphism

Hom(L*,C*) = H' Wk, T).

Let6: Wx — LT be a 1-cocycle representing the image of 6 under the above iso-
morphism. Then by [13, Proposition 6.5], the representation given by the composition

Wi - L1 X5 L 2 GL,(C) (7.4)

is isomorphic to the induced representation

Ind%f @ -w), where = l_[ Ais (7.5)
[AleEWk \ @
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and where we view 6 - i as a character of Wy, via local class field theory. Since L/K
is unramified, it is easy to write down a natural choice of x-datum. It is clear from the
definition that a y -datum {x, },ce is determined by { x;},c4, Where A is any choice of
coset representatives of I'g \ ®@. The I" g -orbits of ® are in bijection with the nontrivial
double cosets of 'y, in I'x (see [13, Proposition 3.1]), and we may write

(C\Ck /T ={[¢'1:=Tr¢p'T: 1 <i<n-—1},

where ¢ is the g-power Frobenius. By [13, Proposition 3.3], [¢'] is symmetric if and
only if n is even and i = n/2. It is clear that the following specifies a x-datum for
T — G:

(i) If[¢']is symmetric, we let X[4i1 be the unramified character with x4 () = —1.
(1) If [¢i] is asymmetric, we let Xi¢i1 = 1.

Define oy to be the W -representation in Eq. (7.4) corresponding to the above canon-
ical choice of y-datum. Then by Eq. (7.5),

o = Indm( © - ), (7.6)

where p: L™ — C* is the character determined by Mlof = land u(n) = (=" L.

Pick any division algebra D of dimension n* over K. We now describe the relevant

correspondences between representations of L*, Wk, GL,, (K ), and D*. Fix a char-
acter € of K> whose kernel is equal to the image of the norm Nz /g : L* — K*. Let
Z denote the set of all characters of L* that have trivial stabilizer in Gal(L /K ) and let
G% (n) denote the set of (isomorphism classes of) smooth irreducible n-dimensional
representations o of Wy that satisfy 0 = o ® (€ orecr). Then

2/ Gal(L/K) — XM Ge (n)

A o)

is a bijection.
Now let A% (n) denote the set of (isomorphism classes of) irreducible supercuspidal

representations = of GL, (K) such that # = 7 ® (€ o det). There exists a canonical

bijection

LLC

Gx (n) Ak (n)

09 | T

known as the local Langlands correspondence.

Finally, let A%¢ (n) denote the set of (isomorphism classes of) irreducible repre-
sentations p of D> such that p = p ® (¢ o Nrdp,k). Then the Jacquet-Langlands
correspondence gives a bijection

JLC

A (n) K (1)

T+ Lo
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Remark 7.10 Since L/K is unramified, the restriction of € to (’)IX< is trivial, and thus
the composition € oNrd p / is trivialon EX-OF D 7t. O}, Thus by the construction
of ng, we have that 7y is invariant under twisting by € o Nrdp, ¢ O

Theorem 7.8 describes a correspondence between L -characters and D> -represen-
tations given by

s DL construction . . .
{primitive characters of L*} ————————— {irreducible representations of D>}

61 N6 = He(X, Qy)[6]

By Remark 7.10, we see that ny € A’Ig (n). In Theorem 7.12, we prove that this
correspondence matches the composition of the previous three, therefore giving a
geometric realization of the Jacquet-Langlands correspondence.

Remark 7.11 The construction of the local Langlands and Jacquet-Langlands corre-
spondences was already known. See, for example, [9]. Recent work of Boyarchenko
and Weinstein (see [3]) gives a partially geometric construction of these correspon-
dences using the representations HL’?_I(XQ, @[)[W] of U; 4 (Fyn). Note that in [4]
and [3], the scheme X is denoted by X and the group U, ? (F,») is denoted by U™4
(Fq")o O

Theorem 7.12 Let 6: L* — @Z be a primitive character of level h and let pg be
the D* -representation corresponding to 0 under the local Langlands and Jacquet—
Langlands correspondences. Then H; (X, Q)[0] = 0ifi # (n — 1)(h — 1) and

Hi—1yin—1) (X, Qp)[0] = pg.

Proof By Eq. (7.6) and [3, Proposition 1.5(b)], we just need to show that ny :=
Hu—1yi—1) (X, Qp)[6] satisfies the following two properties:

(i) For any character € of K* whose kernel is equal to the image of the norm map
Np/x: L* — K>, wehave g = ng ® (€ oNrdp,).

(ii) There exists a constant ¢ such that trne(x) = ¢ - }_, cgar/ k) 07 (x) for each
very regular element x € O}

Since L/K is unramified, the restriction of € to O; is trivial, and thus the com-
position € o Nrdp, g is trivial on L* - le) >l (’)g. Thus by construction, 7g is
invariant under twisting by 7 o Nrdp, g . This proves (i).

We now prove (ii). By the construction of 7y, since 7l . Op=L*-U 11), we have

()= Y trop(gxg).
geD*/L*-U},
gxg’leLX-Ub
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Now let x € (92 be very regular. By Proposition 6.2, ng (x) = (—1)=DC=Dg(x). By
[3, Lemma5.1(b)], if g € D> issuch that gxg~! € L* U}, theng € Npx(L*)-U},,
where N5 (L*) is the normalizer of L* in D*. Therefore

tr 9 (x) = > trp(gxg™) = u(i(exg™")
gENpx (LX)-UL/L*-U}, g
=2 (=D e(gxg™h = (—)TVETDL R T Y ().
g yeGal(L/K)

m}

The following corollary shows that the homology of Deligne-Lusztig construc-
tions for division algebras gives a geometric realization of the Jacquet-Langlands
correspondence.

Theorem 7.13 Let D and D' be division algebras of rank n and let Xp and X p/
be their corresponding Deligne—Lusztig constructions. For any primitive character

6: L — @Z of level h, the Jacquet—Langlands transfer of H,—1yn—1)(Xp, @g)[@] is
isomorphic to Hp—1y(n—1)(X pr, Qp)[0].
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