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Abstract In 1979, Lusztig proposed a cohomological construction of supercuspidal
representations of reductive p-adic groups, analogous to Deligne–Lusztig theory for
finite reductive groups. In this paper we establish a new instance of Lusztig’s program.
Precisely, let X be theDeligne–Lusztig (ind-pro-)scheme associated to a division alge-
bra D over a non-Archimedean local field K of positive characteristic. We study the
D×-representations H•(X) by establishing a Deligne–Lusztig theory for families of
finite unipotent groups that arise as subquotients of D×. There is a natural corre-
spondence between quasi-characters of the (multiplicative group of the) unramified
degree-n extension of K and representations of D× given by θ �→ H•(X)[θ ]. For a
broad class of characters θ, we show that the representation H•(X)[θ ] is irreducible
and concentrated in a single degree. After explicitly constructing a Weil represen-
tation from θ using χ -data, we show that the resulting correspondence matches the
bijection given by local Langlands and therefore gives a geometric realization of the
Jacquet–Langlands transfer between representations of division algebras.
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1 Introduction

Deligne–Lusztig theory [8] gives a geometric description of the irreducible repre-
sentations of finite groups of Lie type. In [12], Lusztig suggests an analogue of
Deligne–Lusztig theory for p-adic groups G. For a maximal unramified torus T ⊂ G,
he introduces a certain set which has a natural action of T × G. Conjecturally, this set
has an algebro-geometric structure and one should be able to define �-adic homology
groups functorial for the T ×G action. By [2,12], when G is a division algebra, one can
realize Lusztig’s set X as an (ind-pro-)scheme and define corresponding �-adic homol-
ogy groups Hi (X, Q�). One therefore obtains a correspondence θ �→ Hi (X, Q�)[θ ]
between characters of T and representations of G. In this paper, we study this corre-
spondence and, after describing aWeil representation associated to θ , give a description
from the perspective of the local Langlands and Jacquet–Langlands correspondences.

Let K be a non-Archimedean local field of positive characteristic with ring of
integers OK and residue field Fq = OK /π for a fixed uniformizer π , and let L ⊃ K
be the unramified extension of degree n with ring of integers OL . The level of a
smooth character θ : L× → Q

×
� is the smallest integer h such that θ is trivial on U h

L ,
where U 0

L := O×
L and U h

L := 1 + πhOL for h ≥ 1. We say that θ is primitive if
for all 1 �= γ ∈ Gal(L/K ), the smooth characters θ and θ/θγ have the same level.
Equivalently, the restriction of θ toU h−1

L /U h
L has trivial Gal(Fqn /Fq)-stabilizer. There

is a canonical choice of Langlands–Shelstad χ -datum associated to the maximal torus
L× ↪→ GLK (L) ∼= GLn(K ), and using this, one can associate a smooth irreducible
n-dimensional WK -representation σθ to a primitive character θ : L× → Q

×
� .

1 The
representation σθ corresponds via local Langlands to an irreducible supercuspidal
representation πθ of GLn(K ), which in turn corresponds via Jacquet–Langlands to an
irreducible representation ρθ of D× where D is a division algebra of dimension n2

over K .

Main Theorem Let θ : L× → Q
×
� be a primitive character of level h. Then

Hi (X, Q�)[θ ] =
{

ρθ if i = rθ := (n − 1)(h − 1),

0 otherwise.

1 Let ξ : L× → Q
×
� be the rectifying character determined by ξ(π) = −1 and ξ |O×

L
≡ 1. Viewing θ · ξ

as a character of WL via local class field theory, the representation σθ is isomorphic to IndWK
WL

(θ · ξ).
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Pictorially,

θ θ X

σθ GK (n)

πθ AK (n)

Hrθ (X, Q�)[θ ] ∼= ρθ A′
K (n)

Deligne–Lusztig construction

χ -datum

Local Langlands

Jacquet–Langlands

where

X := {primitive characters L× → Q
×
� }

GK (n) := {smooth irreducible dimension-n representations of the Weil group WK }
AK (n) := {supercuspidal irreducible representations of GLn(K )}
A′

K (n) := {smooth irreducible representations of D×}

1.1 What is known

The only progress on Deligne–Lusztig constructions X is in the context of division
algebras. For two relatively prime integers k, n ≥ 1, let Dk/n denote the division
algebra over K of invariant k/n. (Note that the Brauer group of K is Q/Z, so Dk/n ∼=
Dk′/n if k ≡ k′ modulo n.) In the next two sections, we will pick an embedding
L ↪→ Dk/n and set G = D×

k/n, T = L×.
Let G1 and T 1 denote the norm-1 elements of G and T , and let X1 be the associated

Deligne–Lusztig construction. In [12], Lusztig proves that when k = 1, the virtual
G1-representations

∑
(−1)i Hi (X1, Q�)[θ ] are (up to a sign) irreducible and mutually

nonisomorphic. We remark that his argument can be modified to prove the same
conclusion for

∑
(−1)i Hi (X, Q�)[θ ].

Our paper focuses on the much subtler issue of describing the individual homology
groups Hi (X, Q�)[θ ] and their vanishing behavior. Analogous to the behavior of clas-
sical Deligne–Lusztig varieties, one expects Hi (X, Q�)[θ ] to vanish outside a single
degree, at least for “sufficiently generic” characters θ . Additionally, one hopes to get
a description of the irreducible representations arising from these homology groups.

There exists a unipotent group schemeU n,q
h,k over Fp such thatU n,q

h,k (Fqn ) is isomor-

phic to a subquotient of G. The study of Hi (X, Q�)[θ ] reduces to the study of certain
subschemes Xh ⊂ U n,q

h,k endowed with a left action by U 1
L/U h

L and a right action by

U n,q
h,k (Fqn ). When k = 1, these definitions were established in [4] for h ≤ 2 and in [2]

for h > 2. We remark that U n,q
2,1 (Fqn ) is isomorphic to a subquotient of G even if K

has characteristic zero, but this fails when h > 2 (see Remark 2.2). The definitions of
X , Xh , and U n,q

h,k can be generalized to arbitrary k, and we do so in this paper.
In [4, Sections 4–6], Boyarchenko and Weinstein study the representations

Hi
c (X2, Q�) when k = 1 (see Theorem 4.7 of op. cit.). This comprises one of the
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main ingredients in studying the cohomology of the Lubin–Tate tower. In [3], they
specialize this result to the primitive case to give an explicit and partially geometric
description of local Langlands correspondences. Roughly speaking, the Weil rep-
resentation in classical constructions is replaced by the cohomology of X2. In [2],
Boyarchenko uses the representations Hi

c (X2, Q�) to prove that for any smooth char-

acter θ : T → Q
×
� of level ≤ 2, the representation Hi (X, Q�)[θ ] vanishes outside a

single degree and gives a description of this representation (see Theorem 5.3 of op.
cit.). Moreover, he shows that if θ is primitive, then Hi (X, Q�)[θ ] is irreducible in the
nonvanishing degree.

In contrast to the Lubin–Tate setting, we need to understand the cohomology of
Xh for all h to understand high-depth representations arising in Deligne–Lusztig con-
structions. Outside of the case for k = 1, n = 3, and h = 3 (see [2, Theorem 5.20]),
this was completely open.

In [6], we study Xh for arbitrary h, assuming n = 2 and θ is primitive.We prove that
the representation Hi (X, Q�)[θ ] is irreducible and nonvanishing in a single degree.
In addition we prove a character formula in the form of a branching rule for repre-
sentations of the finite unipotent group U 2,q

h,1 (Fq2), a subquotient of the quaternion
algebra. Using this, we are able to give an explicit description of the representation
Hi (X, Q�)[θ ].

In this paper, we generalize this work to arbitrary n and arbitrary k. We take a more
conceptual approach that allows us to bypass many of the computations needed in [6].
As a corollary, we obtain a geometric realization of the Jacquet–Langlands transfer
between representations of division algebras.

Remark 1.1 In the special case that n = 2, theDeligne–Lusztig constructionswe study
in this paper and its prequel [6] are cut out by equations that resemble the equations
defining certain covers of affine Deligne–Lusztig varieties. This was observed by
Ivanov in [10, Section 3.6]. ♦

1.2 Outline of this paper

Let h, k, n ≥ 1 be integers with (k, n) = 1. In Sect. 2, we introduce the unipotent
group schemeU n,q

h,k together with a certain subgroup scheme H ⊂ U n,q
h,k , both of which

are defined over Fqn . These group schemes have the property that H(Fqn ) ∼= U 1
L/U h

L
and U n,q

h,k (Fqn ) is isomorphic to an analogous finite subquotient of D×
k/n (see Remark

2.2). We then define a certain Fqn -scheme Xh ⊂ U n,q
h,k , whose relation to the Deligne–

Lusztig construction X is as follows: X can be identified with a set X̃ endowed with
an ind-pro-scheme structure

X̃ =
⊔
m∈Z

lim←−
h

X̃ (m)
h ,

where each X̃ (m)
h is isomorphic to the disjoint union of qn − 1 copies of Xh(Fq).

This decomposition naturally realizes X̃ as an increasing union of Fq -(pro-)schemes.
Roughly speaking, the action of T × G on X̃ has two behaviors: there is an action
on each X̃ (m)

h , and there is an action permuting these pieces. In order to understand
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the (T × G)-representations arising from Hi (X, Q�), one must understand these two
actions. The former is captured by the action of H(Fqn )×U n,q

h,k (Fqn ) on Xh ; the latter
was studied by Boyarchenko [2, Proposition 5.19].

Let T denote the set of primitive characters of H(Fqn ). Let G denote the
set of irreducible representations of U n,q

h,k (Fqn ) whose central character has trivial
Gal(L/K )-stabilizer. In Sect. 4, we give a correspondence χ �→ ρχ from T to G. This
construction matches that of [7].

In Sect. 5 we study the geometry of Xh using a combinatorial notion known as
juggling sequences. We prove in Theorem 5.4 and Corollary 5.5 that the varieties Xh

are smooth affine varieties of dimension (n − 1)(h − 1) defined by the vanishing of
polynomials whose monomials are indexed by juggling sequences. By studying the
combinatorics of these objects, we are able to prove structural lemmas crucial to the
analysis of Hi

c (Xh, Q�).
Section 6 is concerned with combining the general algebro-geometric results of

Sect. 3, the representation-theoretic results of Sect. 4, and the combinatorial results of
Sect. 5. The main result of this section is Theorem 6.4, but the heart of its proof is in
Proposition 6.1, where we calculate certain cohomology groups by inducing on linear
fibrations. In Theorem 6.4, we prove that the correspondence χ �→ ρχ is bijective
and that every representation ρ ∈ G appears in Hi

c (Xh, Q�) with multiplicity one.
In addition, we prove a character formula (Proposition 6.2) for the representations
Hi

c (Xh, Q�)[χ ] using the Deligne–Lusztig fixed point formula [8, Theorem 3.2].
Section 7 is devoted to understanding two connections. The first, explained in Sect.

7.1, is to unravel the relationship between the results of Sect. 6 and the representa-
tions of division algebras arising from Deligne–Lusztig constructions X̃ . The second,
explained in Sect. 7.2, is to describe Hi (X, Q�)[θ ] from the perspective of the local
Langlands and Jacquet–Langlands correspondences. We use Theorem 6.4, the trace
formula established in Proposition 6.2, and a criterion of Henniart described in [3,
Proposition 1.5(b)].

Theorem (7.12, 7.13) Let θ : L× → Q
×
� be a primitive character of level h and

let ρθ be the D×
k/n-representation corresponding to θ under the local Langlands and

Jacquet–Langlands correspondences. Then

Hi (X, Q�)[θ ] =
{

ρθ if i = (n − 1)(h − 1),

0 otherwise.

Moreover, if X and X ′ are the Deligne–Lusztig constructions associated to Dk/n and
Dk′/n, then the Jacquet–Langlands transfer of H(n−1)(h−1)(X, Q�)[θ ] is isomorphic
to H(n−1)(h−1)(X ′, Q�)[θ ].

Using the techniques developed in this paper, we have evidence to support that
for nonprimitive characters θ : L× → Q

×
� of level h with restriction χ : U 1

L → Q
×
� ,

the cohomology groups Hi
c (Xh, Q�)[χ ] are irreducible and concentrated in a single

non-middle degree. This implies that the homology groups Hi (X, Q�)[θ ] are also
concentrated in a single degree, though it not expected that these representations are
irreducible in general. We plan to investigate this in a future paper.
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2 Definitions

Fix a non-Archimedean local field K with residue field Fq and fix a uniformizer π .
Fix an integer n ≥ 1 and let L be the unramified degree-n extension of K . For any
integer k ≥ 1 with (k, n) = 1, we denote by D := Dk/n the rank-n division algebra
of Hasse invariant k/n over K . Fix an integer l such that lk ≡ 1 modulo n. Then we
may write D = L〈�〉/(�n − π), where � · a = ϕl(a) · � and ϕ ∈ Gal(L/K ) is the
arithmetic q-Frobenius, and this specifies an embedding L ↪→ D. The ring of integers
(i.e. the unique maximal order) of D is OD = OL〈�〉/(�n − π), where OL is the
ring of integers of L . We write U 0

L := O×
L and U 0

D := O×
D , and for h ∈ Z>0, we write

U h
L := 1 + Ph

L and U h
D := 1 + Ph

D , where PL := π · OL and PD := � · OD .
Fromnowuntil Sect. 7,we assume that K has positive characteristic. In Sect. 2.1,we

construct a ring schemeRh,k,n,q over Fp with the property thatRh,k,n,q(Fqn ) is a quo-
tient ofOD .We then focus our attention on a unipotent group schemeU n,q

h,k ⊂ R×
h,k,n,q

with the property that U n,q
h,k (Fqn ) ∼= U 1

D/U n(h−1)+1
D . In Sect. 2.2, we define a Fqn -

subscheme Xh ⊂ U n,q
h,k endowed with commuting actions of H(Fqn ) and U n,q

h,k (Fqn ).
These actions are described in Sect. 2.3.

2.1 The unipotent group scheme Un,q
h,k

Definition 2.1 If A is an Fp-algebra, let A〈τ 〉 be the twisted polynomial ring with the

commutation relation τ · a = aql · τ , and define

Rh,k,n,q(A) := A〈τ 〉/(τ n(h−1)+1).

The functor A �→ Rh,k,n,q(A) defines a ring scheme representable by A
n(h−1)+1 over

Fp. We write

Rh,k,n,q(A) = {
a0 + a1τ + · · · + an(h−1)τ

n(h−1) : ai ∈ A
}
,

and consider the following subgroup schemes ofR×
h,k,n,q :

U n,q
h,k (A) :=

⎧⎨
⎩1 +

n(h−1)∑
i=1

aiτ
i ∈ Rh,k,n,q(A)

⎫⎬
⎭ ,

H(A) :=
{
1 +

h−1∑
i=1

aniτ
ni ∈ U n,q

h,k (A)

}
.

The q-Frobenius ϕ induces a morphism Rh,k,n,q by acting on the coefficients of τ .
Note that H(Fqn ) is commutative since Fqn = (Fq)ϕ

n
, but H is not a commutative

group scheme.
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Remark 2.2 Note thatR×
h,k,n,q(Fqn ) ∼= F

×
qn �U n,q

h,k (Fqn ) and we have natural isomor-
phisms

R×
h,k,n,q(Fqn ) ∼= O×

D/U n(h−1)+1
D , U n,q

h,k (Fqn ) ∼= U 1
D/U n(h−1)+1

D , H(Fqn ) ∼= U 1
L/U h

L .

(2.1)

These are induced by the ring isomorphism

Rh,k,n,q(Fqn ) → OD/Pn(h−1)+1
D ,

n(h−1)∑
i=0

aiτ
i �→

n(h−1)∑
i=0

ai�
i =

n−1∑
j=0

A j�
j , (2.2)

where we write

A0 := a0 + anπ + · · · + an(h−1)π
h−1,

A j := a j + an+ jπ + · · · + an(h−2)+ jπ
h−2, 1 ≤ j ≤ n − 1.

Note that we crucially used that L = Fqn [[π ]]. We remark that when h ≤ 2, the
morphism in (2.2) defines an isomorphism of multiplicative monoids even when K
has characteristic 0, and therefore the isomorphisms in (2.1) hold regardless of the
characteristic of K .

The center Z(U n,q
h,k (Fqn )) of U n,q

h,k (Fqn ) is a subgroup of H(Fqn ) and can be
described explicitly:

Z
(

U n,q
h,k (Fqn )

)
=
{
1 +

∑
ani τ

ni ∈ H(Fqn ) : an(h−1) ∈ Fqn and ani ∈ Fq for 1 ≤ i ≤ h − 2
}

.

♦

Definition 2.3 We say that a character χ : H(Fqn ) ∼= U 1
L/U h

L → Q
×
� is primitive if

its restriction to U h−1
L /U h

L
∼= Fqn has trivial Gal(Fqn /Fq)-stabilizer.

2.2 The varieties Xh

Definition 2.4 For any Fp-algebra A, let Mh(A) denote the ring of all n × n
matrices (bi j )

n
i, j=1 with bii ∈ A[[π ]]/(πh), bi j ∈ A[[π ]]/(πh−1) for i < j , and

bi j ∈ π A[[π ]]/(πh) for i > j . The determinant can be viewed as a multiplicative map
det : Mh(A) → A[[π ]]/(πh).

For any integer m, let [m] denote the unique integer with 1 ≤ [m] ≤ n such that
m ≡ [m] modulo n. Let A be any Fp-algebra. The q-Frobenius morphism ϕ on A
induces a ring endomorphismon A[[π ]]/(πm)givenby

∑m−1
i=0 aiπ

i �→ ∑m−1
i=0 ϕ(ai )π

i

for any positive integer m. Consider the injective morphism of sets

ιh,k : Rh,k,n,q(A) → Mh(A)
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given by defining ιh,k
(∑

aiτ
i
)
to be

⎛
⎜⎜⎜⎜⎜⎝

A0 A1 A2 · · · An−1

πϕ[l](An−1) ϕ[l](A0) ϕ[l](A1) · · · ϕ[l](An−2)

πϕ[2l](An−2) πϕ[2l](An−1) ϕ[2l](A0) · · · ϕ[2l](A[n−3])
...

...
. . .

. . .
...

πϕ[(n−1)l](A1) πϕ[(n−1)l](A2) · · · πϕ[(n−1)l](An−1) ϕ[(n−1)l](A0)

⎞
⎟⎟⎟⎟⎟⎠

(2.3)
where we write

A0 = a0 + anπ + · · · + an(h−1)π
h−1,

A j = a j + an+ jπ + · · · + an(h−2)+ jπ
h−2, j = 1, . . . , n − 1. (2.4)

Although ιh,k does not preserve the ring structure, it does satisfy a weak multiplicative
property that we explicate in Sect. 2.3.

In Sect. 7.1, we describe how to extend the results of [2, Sects. 4.2, 4.3] to divi-
sion algebras of arbitrary invariant. In particular, we show that the Deligne–Lusztig
construction X described in [12] can be identified with a certain set X̃ which can be
realized as the Fq -points of an ind-pro-scheme

X̃ :=
⊔
m∈Z

lim←−
h

X̃ (m)
h ,

where each X̃ (m)
h is a finite-type Fp-scheme and X̃ (m)

h
∼= X̃ (0)

h for all m ∈ Z. By
Lemma 7.3, for any Fp-algebra A,

X̃ (0)
h (A) ∼= {

x = ιh,k
(∑

aiτ
i
) : ai ∈ A, det(x) is fixed by ϕ

} =: X̃ ′
h
(0)(A).

Definition 2.5 For any Fp-algebra A, define

Xh(A) := U n,q
h,k (A) ∩ ι−1

h,k

(
X̃ ′

h
(0)(A)

)
.

Remark 2.6 Observe that X̃ ′
h
(0) is a disjoint union of qn − 1 copies of Xh . ♦

2.3 Group actions

We first prove the following lemma.

Lemma 2.7 Let A be an Fqn -algebra. The map ιh,k has the following weak multi-
plicativity property:

ιh,k(xy) = ιh,k(x)ιh,k(y) for all x ∈ U n,q
h,k (A) and all y ∈ U n,q

h,k (Fqn ). (2.5)

Moreover, for y ∈ U n,q
h,k (Fqn ), the determinant of ιh,k(y) is fixed by ϕ.
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Proof Observe from Eq. (2.3) that

ιh,k
(∑

aiτ
i
) = ιh,k(A0) + ιh,k(A1)� + · · · + ιh,k(An−1)�

n−1, (2.6)

where we write � =
(

0 1n−1
π 0

)
and

A j =
{

a0 + anτ n + · · · + an(h−1)τ
n(h−1) if j = 0,

a j + an+ jτ
n + · · · + an(h−2)+ jτ

n(h−2) if j > 0.

Note that
∑

aiτ
i = A0 + A1τ + · · · + An−1τ

n−1. For any a ∈ H(A), we have

� · ιh,k(a) = diag
(
ϕ[l](a), . . . , ϕ[(n−1)l](a), a

)
· �,

ιh,k(ϕ
[l](a)) = diag

(
ϕ[l](a), . . . , ϕ[(n−1)l](a), ϕn(a)

)
,

and therefore we see that if a ∈ H(Fqn ), then

� · ιh,k(a) = ιh,k(ϕ
[l](a)) · �.

This proves Eq. (2.5). Using Eq. (2.6) together with the observation that under the
isomorphism H(Fqn ) ∼= U 1

L/U h
L , we have det(ιh,k(a)) = NmL/K (a) for a ∈ H(Fqn ).

The second assertion of the lemma follows. ��
It follows from Lemma 2.7 that after base-changing to Fqn , the variety Xh is stable

under right-multiplication by U n,q
h,k (Fqn ). For this reason, from now on, we consider

Xh as a variety over Fqn . We denote by x · g the action of g ∈ U n,q
h,k (Fqn ) on x ∈ Xh .

The conjugation action of ζ ∈ F
×
qn on U n,q

h,k (A) stabilizes Xh(A). This extends the

rightU n,q
h,k (Fqn )-action on Xh to an action of the semidirect productF×

qn �U n,q
h,k (Fqn ) ∼=

R×
h,k,n,q(Fqn ).
We now describe a left action of H(Fqn ) on Xh . We can identify H(Fqn ) with

the set ιh,k(H(Fqn )). Note that by the weak multiplicativity property, the map ιh,k is
a group homomorphism on H(Fqn ), and since ιh,k is injective, we have H(Fqn ) ∼=
ιh,k(H(Fqn )) as groups. Explicitly, this isomorphism is given by

1 +
h−1∑
i=1

aniτ
ni �→ diag

(
1 +∑

aniπ
i , 1 +∑

aql

ni π
i , . . . , 1 +∑

aq(n−1)l

ni π i
)

.

Observe that we may remove the brackets in the exponent since ϕn(A0) = A0. From
Eq. (2.6), it is clear that the left-multiplication action of ιh,k(H(Fqn )) on Mh(A)

stabilizes ιh,k(Xh(A)), and we therefore obtain an action2 of g ∈ H(Fqn ) ∼= U 1
L/U h

L

2 Warning: This is not the same as the action induced by left-multiplication of H(Fqn ) ⊂ H(A) on

Un,q
h,k (A). For example, if x = ιh,k (x0, . . . , xn−1) ∈ Xh(Fq ) and x0 /∈ Fqn , then for g := 1 + anτn ∈
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on x ∈ Xh , which we denote by g ∗ x . The actions of H(Fqn ) and R×
h,k,n,q(Fqn )

commute.

3 General principles: some algebraic geometry

In this section, we prove some general algebro-geometric results that will allow us
to compute certain cohomology groups via an inductive argument. We generalize the
techniques of [2] from Ga to the group scheme H ⊂ U n,q

h,k defined in Sect. 2.1.
We begin by recalling some results of [2, Section 2.2]. Let G be an algebraic group

over Fqn , suppose that Y ⊂ G is a (locally closed) subvariety defined over Fqn , and
set X = L−1

qn (Y ), where Lqn : G → G is the Lang map g �→ Frqn (g)g−1. Let

G0 ⊂ G be any connected subgroup defined over Fqn and let η : G0(Fqn ) → Q
×
� be

a homomorphism. Write Vη = Ind
G(Fqn )

G0(Fqn )
(η).

Consider the right-multiplication action of G0(Fqn ) on G and form the quotient
Q := G/(G0(Fqn )). The Lang map Lqn : G → G is invariant under right multipli-
cation by G0(Fqn ) and thus it factors through a morphism α : Q → G. On the other
hand, the quotient map G → Q is a right G0(Fqn )-torsor, so the character η yields a
Q�-local system Eη of rank 1 on Q.

Lemma 3.1 [2, Lemma 2.1] There is a natural Frqn -equivariant vector-space iso-
morphism

HomG(Fq )

(
Vη, Hi

c (X, Q�)
) ∼= Hi

c

(
α−1(Y ), Eη|α−1(Y )

)
for all i ≥ 0.

As in [2], we now make two further assumptions under which the right-hand side
of the isomorphism in Lemma 3.1 can be described much more explicitly. This will
allow us to calculate certain cohomology groups via an inductive argument. These two
assumptions are:

1. The quotient morphism G → G/G0 admits a section s : G/G0 → G.
2. There is an algebraic group morphism f : G0 → H defined over Fqn such that

η = χ ◦ f for a character χ : H(Fqn ) → Q
×
� .

Let Lχ be the local system on H defined by χ via the Lang map Lqn : H → H .
The following lemma is proved in [2].

Lemma 3.2 [2, Lemma 2.2] There is an isomorphism γ : (G/G0)× G0
�−→ Q such

that γ ∗Eη
∼= ( f ◦ pr2)

∗Lχ and α ◦ γ = β, where pr2 : (G/G0) × G0 → G0 is the
second projection and β : (G/G0) × G0 → G is given by β(x, h) = s(Frqn (x)) · h ·
s(x)−1.

Combining Lemmas 3.1 and 3.2, we obtain the following proposition.

H(Fqn ) has the property that g ∗ x = ιh,k (x0 + an x0π, . . .) but left-multiplication gives g · x = ιh,k (x0 +
an xqn

0 π, . . .) ∈ Un,q
h,k (Fq ).
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Proposition 3.3 [2, Proposition 2.3] Assume that we are given the following data:

• an algebraic group G with a connected subgroup G0 ⊂ G defined over Fqn ;
• a section s : G/G0 → G of the quotient morphism G → G/G0;
• an algebraic group homomorphism f : G0 → H;
• a character χ : H(Fqn ) → Q

×
� ;

• a locally closed subvariety Y ⊂ G.

Set X = L−1
qn (Y ), where Lqn is the Lang map g �→ Frqn (g)g−1 on G. Then for each

i ≥ 0, we have a Frqn -compatible vector space isomorphism

HomG(Fqn )

(
Ind

G(Fqn )

G0(Fqn )
(χ ◦ f ), Hi

c (X, Q�)
) ∼= Hi

c

(
β−1(Y ), P∗Lχ

)
.

Here, Lχ is the local system on H corresponding to χ , the morphism β : (G/G0) ×
G0 → G is given by β(x, h) = s(Frqn (x)) · h · s(x)−1, and the morphism

P : β−1(Y ) → H is the composition β−1(Y ) ↪→ (G/G0) × G0
pr2−→ G0

f→ H.

Our goal now is to prove the following crucial proposition. This is the proposition
that gives us an inductive technique for calculating the cohomology groups appearing
in Sect. 6.

Proposition 3.4 Let q be a power of p and let n ∈ N. Let S2 be a scheme of finite type
over Fqn , put S = S2 × Ga and suppose that a morphism P : S → H has the form

P(x, y) = g
(

f (x)q j1 yq j2 − f (x)q j3 yq j4
)

· P2(x)

where

• j1, . . . , j4 are non-negative integers,
• j1 − j2 = j3 − j4 and j2 − j4 is not divisible by n,
• f : S2 → Ga, P2 : S2 → H are two morphisms defined over Fqn , and
• g : Ga → H is the morphism z �→ 1 + zτ n(h−1).

Let S3 ⊂ S2 be the subscheme defined by f = 0 and let P3 = P2|S3 : S3 → H. If

χ : H(Fqn ) → Q
×
� is primitive, then for all i ∈ Z,

Hi
c

(
S, P∗Lχ

) ∼= Hi−2
c

(
S3, P∗

3 Lχ

)
(−1)

as vector spaces equipped with an action of Frqn , where the Tate twist (−1) means
that the action of Frqn on Hi−2

c (S3, P∗
3 Lχ ) is multiplied by qn.

Proof Let pr : S = S2 × Ga → S2 be the first projection, let ι : S3 → S2 be the
inclusion map, and let η : S → H be the morphism (x, y) �→ g(η0(x, y)), where
η0 : S → Ga is the morphism (x, y) �→ f (x)q j1 yq j2 − f (x)q j3 yq j4 . We then have
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the following commutative diagram, where (∗) is a Cartesian square

S Ga

S3 × Ga S2 × Ga H

(∗) H × H H

V( f ) S3 S2 H

g
ι

pr pr

η

η0

(−,1)

m

ι P2 (1,−)

The sheaf Lχ is a multiplicative local system on H , and hence

P∗Lχ
∼= (η∗Lχ ) ⊗ pr∗(P∗

2 Lχ ).

Thus, by the projection formula,

R pr!(P∗Lχ ) ∼= P∗
2 Lχ ⊗ R pr!(η∗Lχ ) in Db

c (S2, Q�).

We now claim that

R pr!(η∗Lχ ) ∼= ι!(Q�)[−2](−1) in Db
c (S2, Q�),

where Q� denotes the constant local system of rank 1 on S2. It is clear that once we
have established this, the desired conclusion follows. We therefore spend the rest of
the proof proving this.

The restriction of η to pr−1(S3) ⊂ S2 is constant, so the restriction of the pullback
η∗Lχ to pr−1(S3) is a constant local system of rank 1. Thus, by proper base change
with respect to the Cartesian square (∗), we have the following isomorphisms in
Db

c (S2, Q�):

ι∗ R pr!(η∗Lχ ) ∼= R pr!(ι∗η∗Lχ ) = R pr!(Q�)
∼= Q�[−2](−1).

To complete the proof, we need to show that R pr!(η∗Lχ ) vanishes outside S3 ⊂ S2.
Let ψ denote the restriction of χ to g(Ga)(Fqn ) ∼= Ga(Fqn ) and let Lψ denote the
corresponding Artin–Schreier sheaf on Ga . Since η = g ◦ η0,

η∗Lχ
∼= η∗

0Lψ.

We now calculate the stalk of R pr!(η∗
0Lψ) for any x ∈ S2(Fq) � S3(Fq). By proper

base change,
Ri pr!(η∗

0Lψ)x ∼= Hi
c (Ga, f ∗

x Lψ),

where fx : Ga → Ga is given by y �→ f (x)q j1 yq j2 − f (x)q j3 yq j4
. Fix an auxiliary

nontrivial additive character ψ0 : Fp → Q
×
� , and for any z ∈ Fp, define

Lz := m∗
zLψ0 , where mz : Ga → Ga is the map x �→ xz,
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where Lψ0 is the Artin–Schreier sheaf on Ga corresponding to ψ0. Then there exists a
unique z ∈ Fqn such thatLψ = Lz , and sinceψ has nontrivial Gal(Fqn /Fq)-stabilizer
by assumption, so must z. By [2, Corollary 6.5], we have f ∗

x Lψ
∼= L f ∗

x (z), where

f ∗
x (z) = f (x)q j1/q j2 z1/q j2 − f (x)q j3/q j4 z1/q j4 = f (x)q j1− j2

(zq− j2 − zq− j4
).

But zq− j2 −zq− j4 �= 0 since by assumption z �= 0 and j2− j4 is not divisible by n. Thus
f ∗
x Lψ is a nontrivial local system on Ga and by [1, Lemma 9.4], Hi

c (Ga, f ∗
x Lψ) = 0

for all i ≥ 0. ��
Proposition 3.5 Let j1, . . . , j4, f, g, S, P2, S2, S3, P3 be as in Proposition 3.4 and
suppose that P : S = S2 × A

1 → H has the form

P(x, y) = g
(

f (x)q j1 yq j2 − f (x)q j3 yq j4 + α(x, y)qn − α(x, y)
)

· P2(x)

for some morphism α : S → Ga defined over Fqn . If χ : H(Fqn ) → Q
×
� is primitive,

then for all i ,
Hi

c (S, P∗Lχ ) ∼= Hi−2
c (S3, P∗

3 Lχ )(−1)

as vector spaces equipped with an action of Frqn , where the Tate twist (−1) means
that the action of Frqn on Hi−2

c (S3, P∗
3 Lχ ) is multiplied by qn.

Proof Let P ′(x, y) = g( f (x)q j1 yq j2 − f (x)q j3 yq j4
)·P2(x).Then P∗Lχ and (P ′)∗Lχ

are isomorphic since the pullback of Lχ |g(Ga) by the map 1 + zτ n(h−1) �→ 1 +
zqn

τ n(h−1) is trivial. Then by Proposition 3.4, the desired conclusion holds. ��
The following proposition is extremely useful in the context of applying the induc-

tive argument described by the above propositions. We will use it in several of the
technical lemmas in Sect. 5 and in the proof of the main proposition and theorem of
Sect. 6.

Proposition 3.6 Suppose that S ↪→ R is a finite map of polynomial rings over k = Fq .
Assume that Frac R is finite Galois over Frac S with Galois group G a p-group. Then:

(a) R is stable under G and RG = S.
(b) As multiplicative monoids, ((R � {0})/k×)G = (S � {0})/k×.
(c) If ( f ) ⊂ R is an ideal such that (σ f ) = ( f ) for all σ ∈ G, then f ∈ S.

Proof First observe that since S and R are polynomial rings, they are normal and
therefore integrally closed. Since S ↪→ R is a finite map, R is the integral closure of
S in Frac R. Thus R is G-stable. It is clear that S ⊂ RG and that RG is integral over
S. But since S is integrally closed, we necessarily have S = RG . This proves (a).

To see (b), consider the short exact sequence

1 → k× → Frac R× → Frac R×/k× → 1
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and take G-invariants to get a long exact sequence

1 → k× → Frac S× → (Frac R×/k×)G → H1(G, k×) → · · ·

Since G acts trivially on k×, we have H1(G, k×) = Hom(G, k×), which is trivial
since G is a p-group. Thus (Frac R×/k×)G = Frac S×/k× and ((R � {0})/k×)G =
(S � {0})/k×.

Now we prove (c). If f = 0, then we are done, so for the rest of the proof we
may assume f �= 0. Necessarily σ f = f up to a unit in R, and thus their images in
the quotient (R � {0})/k× are equal. Thus the image of f is in ((R � {0})/k×)G =
(S � {0})/k×, and so f ∈ S. ��

4 Representations of Un,q
h,k (Fqn)

Let T denote the set of all primitive characters of H(Fqn ) and let G be the
set of irreducible representations of U n,q

h,k (Fqn ) whose central character has trivial
Gal(L/K )-stabilizer.

In this section,we show thatG can be parametrized byT and explicitly describe such
a parametrization. There are two main cases of behavior, depending on the parameters
n and h.

Definition 4.1 Given a pair of positive integers (n, h), we say that:

• (n, h) is in Case 1 if (n − 1)(h − 1) is even.
• (n, h) is in Case 2 if (n − 1)(h − 1) is odd.

Consider the subset of Z given by

A′ := {ni : 1 ≤ i ≤ h − 1} ∪
{

i : n � i, n(h−1)
2 < i < n(h − 1)

}
. (4.1)

and define a subgroup scheme H ′ of U n,q
h,k by setting

H ′(A) :=
{
1 +

∑
i∈A′

aiτ
i ∈ U n,q

h,k (A)

}
for any Fqn -algebra A.

We now specialize to the setting where A = Fqn . If (n, h) is in Case 1, set H+(Fqn ) :=
H ′(Fqn ), and if (n, h) is in Case 2, define

H+(Fqn ) :=
{
1 + an(h−1)/2τ

n(h−1)/2 +
∑
i∈A′

aiτ
i ∈ U n,q

h,k (Fqn ) : an(h−1)/2 ∈ Fqn/2

}
.

Notice that

[
H+(Fqn ) : H ′(Fqn )

] =
{
1 if (n, h) is in Case 1,

qn/2 if (n, h) is in Case 2,
(4.2)
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[
U n,q

h,k (Fqn ) : H+(Fqn )
]

= qn(n−1)(h−1)/2. (4.3)

One can think of H ′(Fqn ) and H+(Fqn ) as enlargements of H(Fqn ) by the “deeper
half” of U n,q

h,k (Fqn ). We will also need the analogous enlargements of Z(U n,q
h,k (Fqn )):

H ′
0(Fqn ) :=

⎧⎨
⎩1 +

n(h−1)∑
i=1

aiτ
i ∈ H ′(Fqn ) : 1 +

h−1∑
i=1

aniτ
ni ∈ Z

(
U n,q

h,k (Fqn )
)⎫⎬
⎭ ,

H+
0 (Fqn ) :=

⎧⎨
⎩1 +

n(h−1)∑
i=1

aiτ
i ∈ H+(Fqn ) : 1 +

h−1∑
i=1

aniτ
ni ∈ Z

(
U n,q

h,k (Fqn )
)⎫⎬
⎭ .

These subgroups of U n,q
h,k (Fqn ) fit into the picture

H(Fqn ) H ′(Fqn ) H+(Fqn )

Z
(

U n,q
h,k (Fqn )

)
H ′
0(Fqn ) H+

0 (Fqn )

For χ ∈ T , define an extension χ� of χ to H ′(Fqn ) by setting

χ�

(
1 + ∑

i∈A′
aiτ

i

)
:= χ

(
1 +∑

n|i
aiτ

i

)
.

Fix any extension χ̃ of χ� to H+(Fqn ). Note that in Case 1, necessarily χ̃ = χ�. In
Case 2, there are qn/2 choices of χ̃ .

Lemma 4.2 If ρ ∈ G has central character ω and ω has trivial Gal(L/K )-stabilizer,
then the restriction of ρ to H ′

0(Fqn ) contains the character

ω� : H ′
0(Fqn ) → Q

×
� , 1 +

∑
i∈A′

aiτ
i �→ ω

⎛
⎝1 +

∑
n|i

aiτ
i

⎞
⎠ .

Furthermore, the restriction of ρ to H+
0 (Fqn ) contains every extension of ω� to

H+
0 (Fqn ).

Proof First letψ be the restriction ofω to {1+aτ n(h−1) : a ∈ Fqn } ∼= Fqn and observe
that the assumption on the stabilizer of ω implies that ψ has trivial Gal(Fqn /Fq)-
stabilizer.

We will first show that if the restriction of ρ to H ′
0(Fqn ) contains ω�, then the

restriction of ρ to H+
0 (Fqn ) contains every extension ofω� to H+

0 (Fqn ). This assertion
is trivial if we are in Case 1 since H ′

0(Fqn ) = H+
0 (Fqn ), so let us assume we are in

Case 2.



3190 C. Chan

Let ν := n(h − 1)/2. Let ω̃ be any extension of ω� to H+
0 (Fqn ). To prove that

ρ|H+
0 (Fqn ) contains ω̃, it is enough to prove that the orbit of ω̃ under U n,q

h,k (Fqn )-

conjugacy contains every extension of ω� to H+
0 (Fqn ). Indeed, for any b ∈ Fqn ,

consider the element g := 1 + bτ ν ∈ U n,q
h,k (Fqn ). Then writing h = 1 + aτ ν +∑

i∈A′ aiτ
i ∈ H+

0 (Fqn ), we have

ω̃
(

ghg−1
)

= ω̃

((
1 + bτ ν

) (
1 + aτ ν +

∑
i∈A′

aiτ
i

)(
1 − bτ ν + bqlν+1τ n(h−1)

))

= ω̃

(
1 + aτ ν +

(
baqlν − abqlν

)
τ n(h−1) +

∑
i∈A′

aiτ
i

)

= ω̃

(
1 + aτ ν +

∑
i∈A′

aiτ
i

)
· ψ

(
baqlν − abqlν

)
.

Note that for any m not divisible by n, since ψ has trivial Gal(Fqn /Fq)-stabilizer,

#
{
ψb : Fqn → Q

×
� such that b ∈ Fqn

}
= qn, (4.4)

where ψb(a) := ψ
(

baqn−m − abqm
)
. Indeed, if b �= 0 and ψ(baqn−m − abqm

) = 1

for all a ∈ Fqn , then it follows thatψ(x) = ψ(xqm
) for all x ∈ Fqn , which contradicts

the assumption on the Gal(Fqn /Fq)-stabilizer of ψ . By assumption, a ∈ Fqn/2 and
lν = n/2 modulo n. Since every character of Fqn/2 extends to a character of Fqn , then
by (4.4) in the special case m = n/2, it follows that

#
{
ψb : Fqn/2 → Q

×
� such that b ∈ Fqn

}
= qn/2,

where ψb(a) := ψ
(
a(b − bqn/2

)
)
. Thus the orbit of ω̃ under U n,q

h,k (Fqn )-conjugacy

contains every extension of ω� to H+
0 (Fqn ).

It now remains to show that the restriction of ρ to H ′
0(Fqn ) contains ω�. Define

I := {i : n(h − 1)/2 < i ≤ n(h − 1), n � i}
r1 := max(I ), ri := max(I � {r1, . . . , ri−1}), for 2 < i ≤ #I .

We prove the lemma by extending ω to each step of the chain

Z
(

U n,q
h,k (Fqn )

)
⊂ G1 ⊂ G2 ⊂ · · · ⊂ G#I = H ′

0(Fqn ),
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where

Gd0 :=
⎧⎨
⎩1 +

∑
n|i

aiτ
i +

∑
i≥d0

ari τ
ri ∈ H ′

0(Fqn )

⎫⎬
⎭ , for 1 ≤ d0 ≤ #I .

Consider the following extension of ω to G1:

ω1 : G1 → Q
×
� , 1 +

∑
n|i

aiτ
i + ar1τ

r1 �→ ω

⎛
⎝1 +

∑
n|i

aiτ
i

⎞
⎠ .

For any b ∈ Fqn , consider the element g1 := 1 + bτ n(h−1)−r1 ∈ U n,q
h,k (Fqn ). Then for

any g := 1 +∑
n|i aiτ

i + aτ r1 ∈ G1,

ω�(g1gg−1
1 ) = ω�

⎛
⎝1 +

∑
n|i

aiτ
i +

(
baql(n(h−1)−r1) − abqlr1

)
τ n(h−1)

⎞
⎠

= ω

⎛
⎝1 +

∑
n|i

aiτ
i

⎞
⎠ · ψ

(
baq−lr1 − abqlr1

)
.

Sinceψ has trivial Gal(Fqn /Fq)-stabilizer and lr1 is not divisible by n, it follows from
Eq. (4.4) that the orbit of ω1 under the conjugation action of U n,q

h,k (Fqn ) contains every
extension of ω to G1, and so the restriction of ρ to G1 must contain ω1. Applying the
above argument to each Gd0 inductively proves that the restriction of ρ to H ′

0(Fqn )

contains ω�. ��
Theorem 4.3 For any χ ∈ T , the representation

ρχ := Ind
U n,q

h,k (Fqn )

H+(Fqn )
(χ̃)

is irreducible with dimension qn(n−1)(h−1)/2. Moreover, G = {ρχ : χ ∈ T }.
Proof The dimension follows fromEq. (4.3). To prove irreducibility, we useMackey’s
criterion. First note that it is clear that H ′(Fqn ) centralizes χ� and H+(Fqn ) centralizes
χ̃ . We must show that these are exactly the centralizers of these characters.

Let i be an integer such that n � i and i ≤ n(h − 1)/2. Then for any a, b ∈ Fqn ,

χ̃
(
(1 + bτ i )(1 + aτ n(h−1)−i )(1 + bτ i )−1

)
= χ̃

(
(1 + bτ i )(1 + aτ n(h−1)−i )(1 − bτ i + · · · )−1

)
= χ̃

(
1 + aτ n(h−1)−i +

(
baqli − abql(n(h−1)−i)

)
τ n(h−1)

)
= χ̃

(
1 + aτ n(h−1)−i

)
· ψ
(

baqli − abq−li
)
. (4.5)
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If i < n(h − 1)/2, then since li is not divisible by n and ψ has trivial Gal(Fqn /Fq)-
stabilizer, it follows from (4.5) that if b �= 0, then 1+ bτ i does not centralize χ̃ . Now
assume we are in Case 2 and that i = n(h − 1)/2. If b ∈ Fqn � Fqn/2 and a ∈ Fqn/2 ,
then (4.5) simplifies to

χ̃(1 + aτ i ) · ψ
(

a
(

b − bqli
))

= χ̃ (1 + aτ i ) · ψ
(

a
(

b − bqn/2
))

.

Every character of Fqn/2 has exactly qn/2 extensions to Fqn , and since ψ has trivial

Gal(Fqn /Fq)-stabilizer, it follows that ψ(a(b − bqn/2
)) = 1 for all a ∈ Fqn/2 if and

only if b ∈ Fqn/2 . Hence 1+bτ i does not centralize χ̃ and this completes the proof. ��

5 Juggling sequences and the varieties Xh

We give a description of Xh in terms of juggling sequences that will be crucial in
understanding the cohomology groups Hi

c (Xh, Q�). In this section, we also include
some technical lemmas that will be used in the proof of Theorem 6.4. As usual, for
any integer m, let [m] be the unique integer with 1 ≤ [m] ≤ n such that m ≡ [m]
modulo n.

5.1 Juggling sequences

We recall the combinatorial notion of a juggling sequence [5].

Definition 5.1 A juggling sequence of period n is a sequence ( j1, . . . , jn) of nonneg-
ative integers satisfying the following condition:

The integers i + ji are all distinct modulo n.

For a juggling sequence j = ( j1, . . . , jn), define | j | := ∑n
i=1 ji .

The following lemmas are straightforward.

Lemma 5.2 (Properties of juggling sequences) Let j = ( j1, . . . , jn) be a juggling
sequence.

(a) There exists a unique permutation σ j ∈ Sn such that

( j1, . . . , jn) ≡ (σ j (1) − 1, . . . , σ j (n) − n) mod n.

(b) Let c = (12 · · · n) ∈ Sn and define c · j := ( jc(1), . . . , jc(n)). Then σc· j = c−1σ j c.
In particular, the map j �→ sgn σ j is invariant under the action of the subgroup
〈c〉 ⊂ Sn.

Lemma 5.3 Let m ≥ 1 be an integer, let j be a juggling sequence of period n with
| j | = mn, and let ei ∈ Z

n denote the n-tuple with a 1 in the i th coordinate and 0’s
elsewhere.
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(a) If j has a coordinate labelled mn, then j = (mn) · e1 up to the action of 〈c〉.
(b) Let r ≤ mn be a positive integer with n � r . If j consists of coordinates labelled

only by 0, r , and mn − r , then j = r · e1 + (mn − r) · e[r ]+1 up to the action of
〈c〉.

5.2 The varieties Xh

We coordinatize U n,q
h,k = A

n(h−1) in the following way. Let

A := {0, 1, . . . , n(h − 1)}. (5.1)

Then every element of U n,q
h,k is of the form

∑
i∈A xiτ

i , where we set x0 := 1.

Lemma 5.4 The scheme Xh ⊂ U n,q
h,k is defined by the vanishing of the polynomials

gmn :=
∑

j

(−1)sgn(σ j )xq[l]
j1

xq[2l]
j2

· · · xq[(n−1)l]
jn−1

(
xqn

jn
− x jn

)
, 1 ≤ m ≤ h − 1,

where x0 := 1 and the sum ranges over juggling sequences j = ( j1, . . . , jn) ∈ An

with | j | = mn.

Proof Let A = ιh,k(
∑

xiτ
i ) (see Eq. (2.3)) and let Ar,s denote the (r, s)th entry of

A. Then if we set xi = 0 for i /∈ A,

Ar,s =
∑
i∈Z

xq[(r+k−1)l]−1

ni+s−r π i .

For 1 ≤ m ≤ h − 1, let cm denote the coefficient of πm in

det A =
∑
σ∈Sn

(−1)sgn σ
n∏

r=1

Ar,σ (r).

Then

cm =
∑
σ∈Sn

(−1)sgn σ
∑
|i |=m

n∏
r=1

xq[(r+k−1)l]−1

nir +σ(r)−r ,

where i = (i1, . . . , in) ∈ Z
n≥0. Then setting jr := nir + σ(r) − r defines a juggling

sequence j = ( j1, . . . , jn) ∈ An with

| j | =
n∑

r=1

jr =
n∑

r=1

nir + σ(r) − r = mn.

It is clear that every juggling sequence j ∈ An arises in this way, and we therefore
have

cm =
∑

j

(−1)sgn σ j x j1xq[l]
j2

· · · xq[(n−1)l]
jn

,
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where the sum ranges over juggling sequences j ∈ An with | j | = mn.
Recall that Xh is defined by the equations cq

m − cm for 1 ≤ m ≤ h − 1. Let
c = (12 · · · n) ∈ Sn and let j be any juggling sequence with | j | = mn.By Lemma 5.2,
ck · j is a juggling sequence such that |c · j | = mn and sgn(σck · j ) = sgn(σ ). Moreover,
j ′ := ( j ′1, . . . , j ′n) := ck · j = ( j[k+1], j[k+2], . . . , j[k]) has the property that

(
x j1xq[l]

j2
xq[2l]

j3
· · · xq[(n−1)l]

jn

)q = xqn

j ′1
xq[l]

j ′2
xq[2l]

j ′3
· · · xq[(n−1)l]

j ′n
.

Thus we may arrange the monomials in cq
m − cm so that we obtain:

cq
m − cm =

∑
j

(−1)sgn σ j xq[l]
j1

xq[2l]
j2

· · · xq[(n−1)l]
jn−1

(
xqn

jn
− x jn

)
.

��
Corollary 5.5 Xh is smooth integral affine scheme of pure dimension (n − 1)(h − 1)
over Fp.

Proof By Lemma 5.4, we know that

Xh = Spec
(
Fp[x0, x1, . . . , xn(h−1)]/(g0, gn, g2n, . . . , g(h−1)n)

)
,

where g0 := 1 − x0 and gni for 1 ≤ i ≤ h − 1 is as in the lemma. Let J = dg
dx be the

corresponding Jacobian matrix and consider the h × h square submatrix

M :=
(

∂gnr

∂xns

)
0≤r,s≤h−1

.

Obviously
∂g0
∂xns

=
{

−1 if s = 0,

0 otherwise.

Since we are working in characteristic p, for any 1 ≤ r ≤ h − 1, we have

∂gnr

∂xi
= −

∑
j

(−1)sgn(σ j )xq[l]
j1

xq[2l]
j2

· · · xq[(n−1)l]
jn−1

,

where the sum ranges over juggling sequences j = ( j1, . . . , jn) ∈ An such that
| j | = nr and jn = i . It follows that if h − 1 ≥ s ≥ r ≥ 1, then

∂gnr

∂xns
=
{

−1 if s = r ,

0 if s > r .

This implies that M is lower-triangular with −1 along the diagonal and hence is
invertible at every point in Xh . It follows then that Xh has dimension n(h−1)+1−h =
(n − 1)(h − 1). ��
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5.3 Technical lemmas

This section contains technical lemmas that will be used in the proof of Theorem 6.4.
We recommend the reader to return to this section during or after Sect. 6.

Recall the definitions of A and A′ from Eqs. (5.1) and (4.1). The first two lemmas
are straightforward computations.

Lemma 5.6 For any elements

s(x) :=
∑

i∈A�A′
xiτ

i and y := 1 +
∑
i∈A′

yiτ
i

in U n,q
h,k (Fq), we have s(x) · y = ∑

i∈A aiτ
i where

ai =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xi + ∑
j≡i (mod n)

1< j<i

x j yql j

i− j if i ∈ A � A′,

yi + ∑
j∈A�A′
1≤ j<i

x j yql j

i− j if i ∈ A′.

Lemma 5.7 Suppose 1 +∑
i∈A′ xiτ

i = Lqn (1 +∑
i∈A′ yiτ

i ) ∈ H ′(Fq). Then

xi = yqn

i − yi + δi ,

where δi is some polynomial in y j for j < i .

Lemma 5.8 Let s(x) := ∑
i∈A�A′ xiτ

i ∈ U n,q
h,k and for any integer m with 1 ≤

m ≤ h − 1, let gmn be as in Lemma 5.4. Suppose that for any y, y′ ∈ H ′ with
Lqn (y) = Lqn (y′),

gmn(s(x) · y) = 0 ⇐⇒ gmn(s(x) · y′) = 0.

If Lqn (y) = 1 +∑
i∈A′ xiτ

i , then gmn(s(x) · y) is a polynomial in xi for i ∈ A with
i ≤ mn.

This is a corollary of Proposition 3.6.

Proof For i ∈ A′, let xi be the polynomials determined by Lqn (1 +∑
i∈A′ yiτ

i ) =
1 +∑

i∈A′ xiτ
i . For i ∈ A � A′, define yi := xi . Consider the rings

R = Fq [yi : i ∈ A] ⊃ S = Fq [xi : i ∈ A]

and their fraction fields

E = Frac R = Fq(yi : i ∈ A) ⊃ F = Frac S = Fq(xi : i ∈ A).
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It is clear that S ↪→ R is a finite map of polynomial rings.
We now show that E/F is a Galois extension of degree qn#A′

. For every ζ =
1 +∑

i∈A′ ζiτ
i ∈ H ′(Fqn ), the assignment

yi �→ y′
i , for i ∈ A′, where yζ = 1 +

∑
i∈A′

y′
iτ

i

defines an automorphism of E fixing F . Indeed, Lqn (yζ ) = Frqn (yζ ) · (yζ )−1 =
Lqn (y) since ζ ∈ H ′(Fqn ) = H ′(Fq)Frqn . On the other hand, [E : F] = qn#A′

since by Lemma 5.7, each yi for i ∈ A′ satisfies a separable degree-qn polynomial. It
follows that # Aut(E/F) ≥ |H ′(Fqn )| = qn#A′ = [E : F], and so E/F is Galois.

We are now in a position to apply Proposition 3.6. Fix 1 ≤ m ≤ h − 1. For each
σ ∈ Gal(E/F),

σ(gmn(s(x) · y)) = gmn(s(x) · y′), for some y′ ∈ H ′ with Lqn (y′) = Lqn (y).

Hence by assumption, we know that for each σ ∈ Gal(E/F),

gmn(s(x) · y) = 0 ⇐⇒ σ(gmn(s(x) · y)) = 0.

By the Nullstellensatz, this implies that the ideal generated by gmn(s(x) · y) in R
is equal to the ideal generated by σ(gmn(s(x) · y)) for all σ ∈ Gal(E/F). Thus by
Proposition 3.6, we have that in fact gmn(s(x)· y) ∈ S. Finally, since gmn(s(x)· y) ∈ R
is a polynomial in xi and yi for i ≤ mn by Lemma 5.4, it follows by Lemma 5.7 that
gmn(s(x) · y) ∈ S is a polynomial in xi for i ≤ mn. ��

To prove Proposition 6.1, we will need a more precise result than Lemma 5.8.

Lemma 5.9 Let s(x), y ∈ U n,q
h,k (Fq) be as in Lemma 5.6 and let a = (a0, a1, . . . ,

an(h−1)) where s(x) · y = ∑
i∈A aiτ

i . Let Lqn (y) := 1 + ∑
i∈A′ xiτ

i and assume
that for any y, y′ ∈ H ′(Fq) with Lqn (y) = Lqn (y′), we have gmn(s(x) · y) = 0 if and
only if gmn(s(x) · y′) = 0.

(a) For any 1 ≤ m ≤ h − 1, the polynomial gmn(a) is a polynomial in xi for 1 ≤ i ≤
mn and

gmn(a) = xmn + (polynomial in xi for i < mn).

(b) Let I := {i : n(h − 1)/2 < i ≤ n(h − 1), n � i} and define

r1 := max(I ), ri := max(I � {r1, . . . , ri−1}), for 2 < i ≤ #I .

Pick a positive integer d0 ≤ #I and set

td0(x) := xq
l(n(h−1)−rd0

)−n + xq
l(n(h−1)−rd0

)−2n + · · · + xq
n−[lrd0

]
.
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If xri = x(h−1)n−ri = 0 for 1 ≤ i ≤ d0 − 1, then the contribution of xrd0
to

g(h−1)n(a) occurs in the expression

xqn

n(h−1)−rd0
xq

n−[lrd0
]

rd0
− xq

[lrd0
]

n(h−1)−rd0
xrd0

+
(

xn(h−1)−rd0
td0 (xrd0

)
)qn

− xn(h−1)−rd0
td0 (xrd0

).

Proof We first prove (a). By Lemma 5.4, gmn(a) is a polynomial in ai for i ≤ mn, and
by Lemma 5.6, ymn only appears in ai for i ≥ mn. Therefore by Lemma 5.3(a), the
contribution of ymn to gmn(a) must come from the juggling sequence (0, . . . , 0, mn),
and hence we have

gmn(a) = yqn

mn − ymn + (polynomial in xi , yi for i < mn)

= xmn + (polynomial in xi , yi for i < mn) (by Lemma 5.7)

= xmn + (polynomial in xi for i < mn) (by Lemma 5.8).

Wenowprove (b). ByLemma5.6 and the vanishing assumption, yrd0
only appears in

ai for i = rd0 and i = (h −1)n. Furthermore, any juggling sequence j = ( j1, . . . , jn)

wherein yrd0
contributes to g(h−1)n nontrivially must have the following criteria:

• jn �= 0
• For 1 ≤ i ≤ d0 − 1, the numbers ri and (h − 1)n − ri do not appear in j .

It therefore follows from Lemma 5.3 that the only terms in g(h−1)n involving yrd0
occur exactly in the summands corresponding to the juggling sequences

(h − 1)n · en ←→ 1 ∈ Sn,

rd0 · en−r̄d0
+ ((h − 1)n − rd0) · en ←→ (n − r̄d0 , n) ∈ Sn,

((h − 1)n − rd0) · er̄d0
+ rd0 · en ←→ (r̄d0 , n) ∈ Sn .

By Lemma 5.4, this exactly corresponds to the following summands in g(h−1)n(a):

(
aqn

(h−1)n − a(h−1)n

)
− aq

[l(n−r̄d0
)]

rd0

(
aqn

(h−1)n−rd0
− a(h−1)n−rd0

)
− aq

[lr̄d0
]

(h−1)n−rd0

(
aqn

rd0
− ard0

)
.

Thus by Lemma 5.6, we see that the only terms involving yrd0
occur in the expression

((
xn(h−1)−rd0

yq
l(n(h−1)−rd0

)

rd0

)qn

− xn(h−1)−rd0
yq

l(n(h−1)−rd0
)

rd0

)

− yq
n−[lr̄d0

]
rd0

(
xqn

n(h−1)−rd0
− xn(h−1)−rd0

)
− xq

[lr̄d0
]

n(h−1)−rd0

(
yqn

rd0
− yrd0

)
. (5.2)

By Lemma 5.7, xrd0
= yqn

rd0
− yrd0

+ δrd0
. By Lemma 5.8, the terms in δrd0

will
contribute elsewhere to a polynomial that can be written in terms of xi for i ∈ A with
i < rd0 . (The condition i < rd0 can be seen from the proof of Lemma 5.8, proceeds
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by showing that yi is a polynomial in x j for j ≤ i .) Thus the contribution of xrd0
in

(5.2) simplifies to

xqn

n(h−1)−rd0

(
yq

l((h−1)n−rd0
)+n

rd0
− yq

n−[lrd0
]

rd0

)

− xn(h−1)−rd0

(
yq

l(n(h−1)−rd0
)

rd0
− yq

n−[lrd0
]

rd0

)
− xq

[lrd0
]

n(h−1)−rd0

(
yqn

rd0
− yrd0

)

= xqn

n(h−1)−rd0
td0 (xrd0

)qn + xqn

n(h−1)−rd0
xq

n−[lrd0
]

rd0
− xn(h−1)−rd0

td0 (xrd0
) − xq

[lrd0
]

n(h−1)−rd0
xrd0

,

where the last equality holds modulo terms without xrd0
. ��

6 The representations H•
c (Xh)[χ]

In this section, we prove the irreducibility of Hi
c (Xh, Q�)[χ ] and its vanishing outside

a single degree. The key proposition, which we prove in Sect. 6.1, is:

Proposition 6.1 For any χ ∈ T ,

dimHomU n,q
h,k (Fqn )

(
ρχ , Hi

c

(
Xh, Q�

))
= δi,(n−1)(h−1),

where ρχ ∈ G is the representation described in Theorem 4.3. Moreover, Frqn acts on

the cohomology group H (n−1)(h−1)
c (Xh, Q�)[χ ] via multiplication by (−qn)(n−1)(h−1).

Recall that F
×
qn � U n,q

h,k (Fqn ) ∼= R×
h,k,n,q(Fqn ) and that F

×
qn acts on Xh by conjuga-

tion. For any z ∈ F
×
qn and any g, h ∈ H(Fqn ), let (z, h, g) denote the map Xh → Xh

given by x �→ z(h ∗ x · g)z−1. We prove the following proposition in Sect. 6.2.

Proposition 6.2 If ζ ∈ F
×
qn has trivial Gal(Fqn /Fq)-stabilizer, then for any g ∈

H(Fqn ),

Tr
(
(ζ, 1, g)∗; H (n−1)(h−1)

c

(
Xh, Q�

)
[χ ]
)

= (−1)(n−1)(h−1)χ(g).

From the multiplicity-one statement of Proposition 6.1, the nonvanishing statement
of Proposition 6.2, and a counting argument coming from Theorem 4.3, one obtains
the following two results, which we prove simultaneously in Sect. 6.3.

Proposition 6.3 The parametrization

T → G, χ �→ ρχ

described in Theorem 4.3 is a bijection.

Theorem 6.4 For any χ ∈ T , the U n,q
h,k (Fqn )-representation Hi

c (Xh, Q�)[χ ] is irre-
ducible when i = (n − 1)(h − 1) and vanishes otherwise. Moreover, for χ, χ ′ ∈ T ,
we have H (n−1)(h−1)

c (Xh, Q�)[χ ] ∼= H (n−1)(h−1)
c (Xh, Q�)[χ ′] if and only if χ = χ ′.
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6.1 Proof of Proposition 6.1

Note that from Sect. 4, the representation

Wχ := Ind
U n,q

h,k (Fqn )

H ′(Fqn )
(χ�)

is irreducible and isomorphic to ρχ in Case 1, and is a direct sum of qn/2 copies of ρχ

in Case 2. Thus the statement of the proposition is equivalent to:

dim HomU n,q
h,k (Fqn )

(
Wχ , Hi

c

(
Xh, Q�

))

=
{

δi,(n−1)(h−1) if (n, h) is in Case 1,

qn/2 · δi,(n−1)(h−1) if (n, h) is in Case 2.

We use Proposition 3.3 to reduce the computation of the space of homomorphisms

HomU n,q
h,k (Fqn )

(
Wχ , Hi

c (Xh, Q�)
)
to a computation of the cohomology of a certain

scheme S with coefficients in a certain constructible Q�-sheaf F . Then, to compute
Hi

c (S,F ), we inductively apply Proposition 3.4. This will allow us to reduce the
computation to a computation involving a 0-dimensional scheme in Case 1 and a 1-
dimensional scheme in Case 2. We will treat these cases simultaneously until the final
step.

Step 0 Wefirst establish somenotation.Note the resemblance to the notation inLemma
5.9.

• Let

I := {i : n(h − 1)/2 < i ≤ n(h − 1), n � i}
J := {i : 1 ≤ i ≤ n(h − 1)/2, n � i}

and set d := #I = �(n − 1)(h − 1)/2�. Note that A′ ∪ J = {1, 2, . . . , n(h − 1)}.
• Set I0 := I and J0 := J . For 1 ≤ i ≤ d, let

ri := max Ii−1, Ii := Ii−1 � {ri }, Ji := Ji−1 � {(h − 1)n − ri }.

Note that Id = ∅. In Case 1, Jd = ∅, and in Case 2, Jd = {n(h − 1)/2}.
• For a finite set A, wewill writeA[A] to denote the affine spaceA

#A with coordinates
labelled by A.

• For m ∈ N, we will denote by [m] the unique integer in {1, . . . , n} with m ≡ [m]
modulo n, and denote by m̄ the unique integer in {0, . . . , n−1}withm ≡ m̄ modulo
n.

• For any finite-type scheme S overFqn , we consider H•
c (S, Q�) := ⊕

i∈Z
Hi

c (S, Q�)

as a finite-dimensional graded vector space overQ� equippedwith an action of Frqn .
We write Hi

c (S, Q�)[−1] := Hi−1
c (S, Q�) and we write Hi

c (S, Q�)(−1), to denote
that the action of Frqn on Hi

c (S, Q�) is multiplied by qn .
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Step 1 We apply Proposition 3.3 to the following set-up:

• U n,q
h,k together with the connected subgroup H ′, both of which are defined over Fqn

• a morphism s : U n,q
h,k /H ′ → U n,q

h,k defined by identifyingU n,q
h,k /H ′ with affine space

A[J ] and setting s : (xi )i∈J �→ 1 +∑
i∈J xiτ

i

• the algebraic group morphism f : H ′ → H given by
∑

i∈A′ xiτ
i �→ ∑

n|i xiτ
i

• a character χ : H(Fqn ) → Q
×
�

• Yh := Lqn (Xh), a locally closed subvariety of U n,q
h,k satisfying Xh = L−1

qn (Yh)

Since Xh has a right-multiplication action of U n,q
h,k (Fqn ), the cohomology groups

Hi
c (Xh, Q�) inherit a U n,q

h,k (Fqn )-action. By Proposition 3.3, we have graded vector
space isomorphisms

HomU n,q
h,k (Fqn )

(
Wχ , H•

c

(
Xh, Q�

)) ∼= H•
c (β−1(Yh), P∗Lχ )

compatible with the action of Frqn . Here, Lχ is the local system on H corresponding
to χ , the morphism β : (U n,q

h,k /H ′) × H ′ → U n,q
h,k is given by β(x, g) = s(Frqn (x)) ·

g · s(x)−1, and the morphism P : β−1(Yh) → H is the composition β−1(Yh) ↪→
(U n,q

h,k /H ′) × H ′ pr−→ H ′ f−→ H.

We now work out an explicit description of β−1(Yh) ⊂ A[J ] × H ′. For 1 ≤ m ≤
h − 1, let gmn be the polynomial defined in Lemma 5.4. Write x = (xi )i∈J ∈ A[J ]
and g = 1+∑

i∈A′ xiτ
i ∈ H ′(Fq). For any y = 1+∑

i∈A′ yiτ
i ∈ H ′(Fq) such that

Lqn (y) = g, we have

β(x, g) = Frqn (s(x)) · Lqn (y) · s(x)−1 = Lqn (s(x) · y).

We see that β(x, g) ∈ Yh if and only if s(x) · y ∈ Xh . Let s(x) · y = 1 + ∑
aiτ

i .
By Lemma 5.4, we know that s(x) · y ∈ Xh if and only if gmn(a) = 0 for m =
1, . . . , h −1. Recall from Lemma 5.8 that using the identity Lqn (y) = 1+∑i∈I xiτ

i ,
each polynomial gmn(a), which a priori is a polynomial in x j for j ∈ J and yi for
i ∈ A′, is in fact a polynomial in xi for 1 ≤ i ≤ n(h − 1).

Step 2 By Lemma 5.9(a), for each m = 1, . . . , h − 1, the polynomial gmn(s(x) · y) is
of the form xmn + (stuff with xi for i < mn). Thus the coordinates xmn of β−1(Yh) ⊂
A[A′ ∪ J0] are uniquely determined by the other coordinates. Equivalently, the mor-
phism (xi )i∈A′∪J0 �→ (xi )i∈I0∪J0 gives an isomorphism β−1(Yh) ∼= A[I0 ∪ J0] =:
S(0). Then

H•
c (β−1(Yh), P∗Lχ ) = H•

c (S(0), (P(0))∗Lχ ),

where P(0) : S(0) → H is the morphism determined by P and the isomorphism
β−1(Yh) ∼= S(0); it is the map determined by (xi )i∈I0∪J0 �→ (xn, x2n, . . . , x(h−1)n),
where for m = 1, . . . , h − 1, we view xmn as a polynomial in xi for i ∈ I0 ∪ J0.

Step 3: Base case We now apply Proposition 3.4 to the following set-up:
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• Let S(0) = A[I0 ∪ J0].
• Let S(0)

2 = A[I1 ∪ J0].
• Note that S(0) = S(0)

2 × A[{r1}].
• Let f : S(0)

2 → Ga be the morphism (xi )i∈I1∪J0 �→ xn(h−1)−r1 .

• Set v ∈ S(0)
2 and w = xr1 . By Lemma 5.9, we may write

P(0)(v, w) = g
(

f (v)q[lr1]
w − f (v)qn

wqn−[lr1]

−( f (v)t1(w))qn + f (v)t1(w)
)

· P(0)
2 (v),

where g : Ga → H is the morphism z �→ 1 + zτ n(h−1). Observe that this is the
negative of the expression appearing in Lemma 5.9 since we solved for x(h−1)n in
the equation g(h−1)n(s(x) · y) = 0.

• Let S(0)
3 = A[I1 ∪ J1] so that this is the subscheme of S(0)

2 = A[I1 ∪ J0] defined
by f = 0, and let P(0)

3 := P(0)
2 |

S(0)
3

: S(0)
3 → H .

Then by Proposition 3.4, as graded vector spaces with an action of Frqn , we have

H•
c

(
S(0), (P(0))∗Lχ

) ∼= H•
c

(
S(0)
3 , (P(0)

3 )∗Lχ

)
(−1)[−2].

Step 3: Inductive step We now describe the inductive step for d0 ≤ d. We apply
Proposition 3.5 to the following set-up:

• Let S(d0) := S(d0−1)
3 = A[Id0 ∪ Jd0 ].

• Let S(d0)
2 = A[Id0+1 ∪ Jd0 ].

• Note that S(d0) = S(d0)
2 × A[{rd0}].

• Let f : S(d0)
2 → Ga be the morphism (xi )i∈Id0+1∪Jd0

�→ xn(h−1)−rd0
.

• Set v ∈ S(d0)
2 and w = xrd0

. Let td0(x) be as in Lemma 5.9 so that, by the same

lemma, the morphism P(d0) := P(d0−1)
3 : S(d0) → H has the following form:

P(d0)(v, w) = g

(
f (v)q

[lrd0
]
w − f (v)qn

wq
n−[lrd0

]

−( f (v)td0(w))qn + f (v)td0(w)

)
· P(d0)

2 (v),

where as in Step 3: Base case, the morphism g : Ga → H is z �→ 1 + zτ n(h−1).
• Let S(d0)

3 = A[Id0+1∪ Jd0+1] so that this is the subscheme of S(d0)
2 = A[Id0+1∪ Jd0 ]

defined by f = 0, and let P(d0)
3 := P(d0)

2 |
S

(d0)

3
: S(d0)

3 → H .

Then by Proposition 3.4, as graded vector spaces with an action of Frqn , we have

H•
c

(
S(d0), (P(d0))∗Lχ

) ∼= H•
c

(
S(d0)
3 , (P(d0)

3 )∗Lχ

)
(−1)[−2].
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Step 4: Case 1 Step 3 allows us to reduce the computation about the cohomology of
S(0) to a computation about the cohomology of S(d) := S(d−1)

3 , which is a point. Thus
Frqn acts trivially on the cohomology of S(d) and for all i ∈ Z,

dim Hi
c

(
S(d), (P(d))∗Lχ

)
= δ0,i .

Step 4: Case 2 Step 3 allows us to reduce the computation about the cohomology of
S(0) to a computation about the cohomology of S(d) := S(d−1)

3 = A[{n(h − 1)/2}].
The morphism P(d) is

P(d) : S(d) → H, an(h−1)/2 �→ 1 + aqn/2

n(h−1)/2

(
aqn

n(h−1)/2 − an(h−1)/2

)
τ n(h−1).

Then we claim that for all i ∈ Z

Hi
c

(
Ga, (P(d))∗Lχ

)
= Hi

c (Ga, P∗Lψ),

where ψ is the restriction of χ to Fqn → Q
×
� and P0 is the morphism

P0 : Ga → Ga, x �→ xqn/2
(xqn − x).

We now compute the cohomology groups Hi
c (Ga, P∗Lψ) in the same way as in [4,

Section 6.5.6 and Proposition 6.6.1].Wemaywrite P = f1◦ f2 where f1(x) = xqn/2−
x and f2(x) = xqn/2+1. Since f1 is a group homomorphism, then f ∗

1 Lψ
∼= Lψ◦ f1 . By

assumption ψ has trivial Gal(Fqn /Fq)-stabilizer, so ψ ◦ f1 is nontrivial. Furthermore,

ψ◦ f1 is trivial onFqn/2 . Thus the characterψ◦ f1 : Fqn → Q
×
� satisfies the hypotheses

of [4, Proposition 6.6.1], and thus Frqn acts on H1
c (Ga, P∗

0 Lψ) via multiplication by
−qn/2 and

dim Hi
c

(
Ga, P∗

0 Lψ

) = qn/2 · δ1,i .

Thus for all i ∈ Z,

dim Hi
c

(
S(d), (P(d))∗Lχ

)
= qn/2 · δ1,i .

Step 5 We now put together all of the boxed equations. For all i ∈ Z,

HomU n,q
h,k (Fqn )

(
Wχ , Hi

c

(
Xh, Q�

)) ∼= Hi
c

(
β−1 (Yh) , P∗Lχ

)
= Hi

c

(
S(0), (P(0))∗Lχ

)
∼= Hi−2

c

(
S(0)
3 , (P(0)

3 )∗Lχ

)
(−1)

= Hi−2
c

(
S(1), (P(1))∗Lχ

)
(−1)

∼= Hi−2d
c

(
S(d), (P(d))∗Lχ

)
(−d) .
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Therefore if we are in Case 1, then

dimHomH(Fqn )

(
Wχ , Hi

c

(
Xh, Q�

))
= δ(n−1)(h−1),i .

Moreover, the Frobenius Frqn acts on HomU n,q
h,k (Fqn )

(
Wχ , H (n−1)(h−1)

c (Xh, Q�)
)
via

multiplication by the scalar qn(n−1)(h−1)/2.
If we are in Case 2, then

dimHomU n,q
h,k (Fqn )

(
Wχ , Hi

c

(
Xh, Q�

))
= qn/2 · δ(n−1)(h−1),i .

Moreover, the Frobenius Frqn acts on HomU n,q
h,k (Fqn )

(
Wχ , H (n−1)(h−1)

c (Xh, Q�)
)
via

multiplication by the scalar −qn(n−1)(h−1)/2.
Finally, observe that if we are in Case 1, then (n −1)(h −1) is even and if we are in

Case 2, then (n −1)(h −1) is odd, and therefore Frqn acts on H (n−1)(h−1)
c (Xh, Q�)[χ ]

by multiplication by (−qn)(n−1)(h−1).

6.2 Proof of Proposition 6.2

By Corollary 5.5, Xh is a separated, finite-type scheme over Fqn and the action of
(ζ, h, g) ∈ F

×
qn × H(Fqn ) × U n,q

h,k (Fqn ) on Xh defines a finite-order automorphism.
Moreover, (ζ, h, g) = (1, h, g) ·(ζ, 1, 1), where (1, h, g) is a p-power-order automor-
phism and (ζ, 1, 1) is an automorphismwith prime-to-p order. By theDeligne–Lusztig
fixed point formula [8, Theorem 3.2],

∑
i

(−1)i Tr
(
(ζ, h, g)∗; Hi

c

(
Xh, Q�

))
=
∑

i

(−1)i Tr
(
(1, h, g)∗; Hi

c

(
X ζ

h , Q�

))
.

It is easy to calculate X ζ
h . Indeed, it can be identified with the subvariety of all ele-

ments of U n,q
h,k of the form 1 + ∑

1≤i≤h−1 aniτ
ni . Then the determinant condition

on Xh implies that ani ∈ Fqn and hence X ζ
h is just a discrete set naturally identi-

fied with H(Fqn ) and the left and right actions of H(Fqn ) are given by left and right

multiplication. Therefore Hi
c (X ζ

h , Q�) = 0 for i > 0 so

∑
i

(−1)i Tr
(
(1, h, g)∗; Hi

c

(
X ζ

h , Q�

))
= Tr

(
(1, h, g)∗; H0

c

(
X ζ

h , Q�

))
.

Furthermore, as a (H(Fqn ) × H(Fqn ))-representation, H0
c (X ζ

h , Q�) is the pullback
of the regular representation of H(Fqn ) along the multiplication map H(Fqn ) ×
H(Fqn ) → H(Fqn ). Thus

H0
c

(
X ζ

h , Q�

)
=

⊕
χ0 : H(Fqn )→Q

×
�

χ0 ⊗ χ0
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as representations of H(Fqn ) × H(Fqn ). Therefore

∑
h∈H(Fqn )

χ(h)−1
∑

i

(−1)i Tr
(
(ζ, h, g)∗; Hi

c

(
Xh, Q�

))
= χ(g) · #H(Fqn ).

This is equivalent to

∑
i

(−1)i Tr
(
(ζ, 1, g)∗; Hi

c

(
Xh, Q�

)
[χ ]
)

= χ(g),

and since Hi
c (Xh, Q�)[χ ] = 0 for i �= (n − 1)(h − 1) by Proposition 6.1, the desired

result follows.

6.3 Proof of Proposition 6.3 and Theorem 6.4

By Proposition 6.1, any ρ ∈ G occurs exactly once in H (n−1)(h−1)
c (Xh, Q�). Recalling

that G is the set of irreducible representations of U n,q
h,k (Fqn ) whose central character

has trivial Gal(L/K )-stabilizer, observe that ρ must occur in H (n−1)(h−1)
c (Xh, Q�)[χ ]

for some χ ∈ T . Conversely, each irreducible constituent of H (n−1)(h−1)
c (Xh, Q�)[χ ]

must be in G, and therefore

⊕
ρ∈G

ρ =
⊕
χ∈T

H (n−1)(h−1)
c

(
Xh, Q�

)
[χ ].

By Theorem 4.3, the left-hand side has at most #T irreducible constituents. By Propo-
sition 6.2, each H (n−1)(h−1)

c (Xh, Q�)[χ ] for χ ∈ T is nonzero, and therefore the
right-hand side has at least #T irreducible constituents. Therefore both sidesmust have
exactly #T irreducible constituents, #G = #T , and the U n,q

h,k (Fqn )-representations

H (n−1)(h−1)
c (Xh, Q�)[χ ] for χ ∈ T are irreducible and mutually nonisomorphic.

This proves Proposition 6.3 and Theorem 6.4.

7 Division algebras and Jacquet–Langlands transfers

Our goal in this final section is to understand two connections. The first, explained in
Sect. 7.1, is to unravel the relationship between Theorem 6.4 and the representations
arising fromDeligne–Lusztig constructions of division algebras. BecauseTheorem6.4
proves a conjecture of Boyarchenko (see [2, Conjecture 5.18]) for primitive characters
χ , we can use [2, Proposition 5.19] to explicitly describe this relationship.

The second connection, explained in Sect. 7.2, is to unravel the relationship
between the representations described in Sect. 7.1 with respect to the local Lang-
lands and Jacquet–Langlands correspondences. We prove that the correspondence
θ �→ H•(X̃)[θ ] is consistent with the correspondence given by the composition
of the local Langlands and Jacquet–Langlands correspondences, and therefore the
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homology of Deligne–Lusztig constructions gives a geometric realization of the
Jacquet–Langlands correspondence between division algebras of different invariants.

7.1 Deligne–Lusztig constructions for division algebras

We temporarily drop the assumption on the characteristic of K as the following discus-
sion is not restricted to the positive characteristic setting. Let K̂ nr be the completion of
the maximal unramified extension of K and let ϕ denote the Frobenius automorphism
of K̂ nr (inducing x �→ xq on the residue field).

Consider the following automorphisms of GLn(K̂ nr):

F1(g) = �−1
k ϕ(g)�k, �k =

(
0 1n−1

πk 0

)
,

F2(g) = �−kϕ(g)� k, � =
(
0 1n−1
π 0

)
.

Here, we write ϕ(g) to mean the matrix obtained by applying ϕ to each entry of g.
For i = 1, 2, let Gi be the algebraic group over K with Frobenius Fi . Let Ti ⊂ Gi be
the algebraic group corresponding to the diagonal matrices over K̂ nr. Then we have

G1(K )
∼=−→ G2(K ), T1(K )

∼=−→ T2(K ),

where the isomorphism is given by f : g �→ γ −1 · g · γ , where γ = γ0 ·
diag(πλ1 , . . . , πλn ) for a permutation matrix γ0 and for some λi ∈ Z. Since the
image of � in the Weyl group has order n, we may choose γ0 so that e1 · γ0 = e1,
where e1 is the first elementary row vector.

Let G̃ := Gi (K̂ nr) = GLn(K̂ nr) and T̃ := Ti (K̂ nr). Let B ⊂ Gi ⊗K K̂ nr be
the Borel subgroup consisting of upper triangular matrices and let U be its unipotent
radical. Note that T̃ consists of all diagonal matrices and Ũ := U(K̂ nr) consists
of unipotent upper triangular matrices. Let Ũ− ⊂ GLn(K̂ nr) denote the subgroup
consisting of unipotent lower triangular matrices.

The Deligne–Lusztig construction X associated to the pair (GLn(K̂ nr), F1)

described in [12] is the quotient

X := (Ũ ∩ F−1
1 (Ũ ))\{A ∈ G̃ : F1(A)A−1 ∈ Ũ }.

The quotient X carries an action of T1(K ) × G1(K ) ∼= L× × D× induced by the
action

(t, g) ∗ x := t−1xg, for t ∈ T1(K ), g ∈ G1(K ), and x ∈ G̃.

By [2, Corollary 4.3], X can be identified with the set

X̃ :=
{

A ∈ G̃ : F1(A)A−1 ∈ Ũ ∩ F1(Ũ
−)
}

,
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and this choice of section X → G̃ respects the (T1(K ) × G1(K ))-action. By [2,
Lemma 4.4], a matrix A ∈ G̃ belongs to X̃ if and only if it has the form

A = x(A0, . . . , An−1)

:=

⎛
⎜⎜⎜⎜⎜⎝

A0 A1 A2 · · · An−1

πkϕ(An−1) ϕ(A0) ϕ(A1) · · · ϕ(An−2)

πkϕ2(An−2) πkϕ2(An−1) ϕ2(A0) · · · ϕ2(An−3)
...

...
. . .

. . .
...

πkϕn−1(A1) πkϕn−1(A2) πkϕn−1(A3) · · · ϕn−1(A0)

⎞
⎟⎟⎟⎟⎟⎠ ,

(7.1)

where Ai ∈ K̂ nr for 0 ≤ i ≤ n − 1 and det(A) ∈ K ×. We remark here that in [2], k is
assumed to be 1, but the proofs of [2, Corollary 4.3, Lemma 4.4] work for arbitrary k
by simply replacing π with πk . (In fact, the identification of X with X̃ and the explicit
description in (7.1) hold without our running hypothesis that (k, n) = 1.) We may
therefore write

X̃ =
⊔
m∈Z

X̃ (m),

where X̃ (m) consists of all A ∈ X̃ with det(A) ∈ πmO×
K . Note that the action of

�k takes each X̃ (m) isomorphically onto X̃ (m+k), and the action of π takes each
X̃ (m) isomorphically onto X̃ (m+n). By assumption, (k, n) = 1 and so the X̃ (m) are all
isomorphic. It is therefore sufficient to show that X̃ (0) can be realized as the Fq -points
of a scheme. To do this, we use Lemma 7.1, whose proof is very similar to that of [2,
Lemma 4.5].

Lemma 7.1 [2, Lemma 4.5] If a matrix A of the form 7.1 satisfies det(A) ∈ O×
K , then

A j ∈ π−� jk/n�Ônr
K for 0 ≤ j ≤ n − 1 and A0 ∈ (Ônr

K )×.

Proof Write A = (ai j ) and let v j = ν(A j ) for 0 ≤ j ≤ n − 1. By definition,

det(A) =
∑
σ∈Sn

sgn(σ )

n∏
i=1

ai,σ (i).

Let τ ∈ Sn be the n-cycle given by (123 · · · n). Note that τ j (i) = [i + j] and hence
the summand of det(A) corresponding to τ j only involves A j . It is easy to see that

ν
(∏

ai,τ j (i)

) = n · v j + j · k, for 0 ≤ j ≤ n − 1.

We now calculate the valuation of the summand corresponding to a fixed σ ∈ Sn ,
where σ is not a power of τ . Set

α(i) :=
{

σ(i) − i, if i ≤ σ(i),

σ (i) − i + n, if i > σ(i),
β(i) :=

{
0, if i ≤ σ(i),

k, if i > σ(i).
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Then the valuation of the σ -summand is
∑

(vα(i) + β(i)). Since
∑

(σ (i) − i) = 0,
we have k

n

∑
α(i) = ∑

β(i), and therefore

ν
(∏n

i=1 ai,σ (i)
) = ∑n

i=1(vα(i) + β(i)) = 1
n

∑n
i=1(nvα(i) + kα(i)).

Since (k, n) = 1, the set {nv j + jk : 0 ≤ j ≤ n − 1} consists of n distinct numbers,
and hence

ν(det(A)) = min
0≤ j≤n−1

{nv j + jk}.

By assumption ν(det(A)) = 0, and this implies that

nv j + jk ≥ 0, for 0 ≤ j ≤ n − 1. (7.2)

Conversely, since (k, n) = 1, if (7.2) is satisfied, then ν(det(A)) = 0 only if v0 =
ν(A0) = 0. ��

We have now shown that a matrix of the form (7.1) with determinant in O×
K is of

the form
A(A0, A1, . . . , An−1) := x(A′

0, A′
1, . . . , A′

n−1),

for some A0 ∈ (Ônr
K )× and A j ∈ Ônr

K for 1 ≤ j ≤ n − 1, where we write

A′
j := π−� jk/n� A j , for 0 ≤ j ≤ n − 1.

For any integer h ≥ 1, the set

{
A(A0, A1, . . . , An−1) : A0 ∈ (Ônr

K /πhÔnr
K )×,

A j ∈ Ônr
K /πh−1Ônr

K for 1 ≤ j ≤ n − 1,

det(A(A0, . . . , An−1)) ∈ (OK /πhOK )×
}

can be naturally viewed as the set of Fq -points of a finite-type scheme X̃ (0)
h over Fq .

If R is an Fq -algebra, then for h ≥ 1, let Wh(R) = R[[π ]]/(πh) if K has positive
characteristic and let Wh(R) be the R-points of the truncated ramified Witt vectors
of K if K has characteristic zero. Then determinant of a matrix A(A0, A1 . . . , An−1)

for A0 ∈ Wh(R)× and A1, . . . , An−1 ∈ Wh−1(R) can be viewed as an element of
Wh(R)×, and X̃ (0)

h is then the closed Fq -subscheme of W
×
h × W

n−1
h−1 defined as the

fiber of

W
×
h × W

n−1
h−1 → W

×
h , (A0, A1, . . . , An−1) �→ ϕ(det(A(A0, A1, . . . , An−1)))

det(A(A0, A1, . . . , An−1))

over the identity element of W
×
h . By Lemma 7.1, we have X̃ (0) = lim←−h

X̃ (0)
h (Fq) and

we may define X̃ (m+1)
h := � · X̃ (m)

h for all m ∈ Z so that X̃ (m) = lim←−h
X̃ (m)

h (Fq).

Thus X̃ (m) is the set of Fq -points of a (pro-)scheme.
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Note that X̃ (0)
h has a left-multiplication action ofO×

L /U h
L and a right-multiplication

action ofO×
D/U n(h−1)+1

D , and these actions are defined over Fqn and by the following
subgroups of G1(K ):

O×
L /U h

L
∼=
{

A(A0, 0, . . . , 0) : A0 ∈ (OL/πhOL )×
}

O×
D/U n(h−1)+1

D
∼=
{

A(A0, A1, . . . , An−1) : A0 ∈ (OL/πhOL )×,

A j ∈ OL/πh−1OL for 1 ≤ j ≤ n − 1

}
.

We now define �-adic homology groups of X̃ (0).

Lemma 7.2 (Boyarchenko [2, Lemma 4.7]) Set Wh := ker(Wh(Fqn )× →
Wh−1(Fqn )×) for h ≥ 2. The action of Wh on X̃ (m)

h preserves every fiber of the

natural map X̃ (m)
h → X̃ (m)

h−1, the induced morphism Wh\X̃ (m)
h → X̃ (m)

h−1 is smooth,

and each of its fibers is isomorphic to the affine space A
n−1 over Fq .

Proof The proof of [2, Lemma 4.7] is independent of the invariant k/n of the
division algebra D once replace the matrix Ah(a0, a1, . . . , an−1) by the matrix
A(a0, a1, . . . , an−1) of Eq. (7.1). Note that there is a minor typo in the proof: In
6.11.2, the isomorphism of schemes

O
×
K ,h−1 × O

n−1
K ,h−2 × G

n
a → O×

K ,h × On−1
K ,h−1

should be given by

(a0, a1, . . . , an−1,b0, b1, . . . , bn−1)

�→ (â0 + b0π
h, â1 + b1π

h−1, . . . , ân−1 + bn−1π
h−1).

��
For a smooth scheme S of pure dimension d, set Hi (S, Q�) := H2d−i

c (S, Q�(d)).
By Lemma 7.2, we have an isomorphism

Hi (X̃ (m)
h , Q�) → Hi (X̃ (m)

h , Q�)
Wh .

In particular, we have a natural embedding Hi (X̃ (m)
h−1, Q�) ↪→ Hi (X̃ (m)

h , Q�). We
define

Hi (X̃ (m), Q�) := lim−→
h

Hi (X̃ (m)
h , Q�), Hi

(
X̃ , Q�

)
:=
⊕
m∈Z

Hi

(
X̃ (m), Q�

)
.

The vector space Hi (X̃ , Q�) inherits commuting smooth actions of L× and D×.
Therefore, given a smooth character θ : L× → Q

×
� , we may consider the subspace

Hi (X̃ , Q�)[θ ] ⊂ Hi (X̃ , Q�)wherein L× acts by θ. If θ has level h, then Hi (X̃ , Q�)[θ ]
is a subspace of Hi (X̃h, Q�), where X̃h := ⊔

m∈Z
X̃ (m)

h . One can show that X̃h is equal
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to the translates of X̃ (0)
h under the action of (L×/U h

L )× (D×/U n(h−1)+1
D ). It therefore

follows that if �̃h is the stabilizer of X̃ (0)
h , then

Hi (X̃h, Q�)
∼= Ind

(
L×/U h

L

)×(D×/U n(h−1)+1
D

)
�̃h

(
Hi (X̃ (0)

h , Q�)
)

.

This type of argument is crucial in the proof of Theorem 7.8.

7.1.1 Boyarchenko’s conjectures

Strictly speaking, [2, Conjectures 5.16 and 5.18] require D to be a division algebra
of invariant 1/n over a non-Archimedean local field K of positive characteristic. In
this section, we formulate extensions of Boyarchenko’s conjectures for any division
algebra D of dimension n2 over any non-Archimedean local field K with residue field
Fq .

The morphism f : G1 → G2 given by g �→ γ −1 · g · γ is injective. Set

X̃ ′
h
(0) := f

(
X̃ (0)

h

)

so that if we write A′(A0, . . . , An−1) := γ −1 · A(A0, . . . , An−1) · γ , then

X̃ ′
h
(0)(Fq) =

{
A′(A0, . . . , An−1) : A0 ∈

(
Ônr

K /πhÔnr
K

)×
,

A j ∈ Ônr
K /πh−1Ônr

K for 1 ≤ j ≤ n − 1,

det(A′(A0, . . . , An−1)) ∈
(
OK /πhOK

)×}
.

The group (O×
L /U h

L ) × (O×
D/U n(h−1)+1

D ) acts on X̃ ′
h
(0) via f . Hence we obtain the

lemma:

Lemma 7.3 For all i ≥ 0, as representations of O×
L /U h

L × O×
D/U n(h−1)+1

D ,

Hi
c

(
X̃ (0)

h , Q�

) ∼= Hi
c

(
X̃ ′

h
(0), Q�

)
.

For any Fqn -algebra R, define

Xh(R) :=
{

A′(A0, . . . , An−1) ∈ X̃ (0)
h : A0 ∈ W

(1)
h (R)

}
, (7.3)

where if V : Wh−1 → Wh−1 is the Verschiebung morphism, then W
(1)
h := 1 +

V Wh−1 ⊂ W
×
h . We remark that we have abused notation here in the sense that when

K has positive characteristic, the Xh defined in Eq. (7.3) is the image of the Xh defined
in Definition 2.5 under ιh,k . Since the definition of U n,q

h,k is not available when K has

characteristic 0 and Boyarchenko’s conjectures can be formulated without U n,q
h,k , we

choose to proceed as in Eq. (7.3).
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Let �h denote the stabilizer of Xh in O×
L /U h

L × O×
D/U n(h−1)+1

D . Then by Lemma
7.3,

Hi
c (X̃ (0)

h , Q�)
∼= Ind

O×
L /U h

L ×O×
D/U n(h−1)+1

D
�h

(
Hi

c

(
Xh, Q�

))
.

Boyarchenko’s conjectures concern the cohomology groups Hi
c (Xh, Q�) as represen-

tations of U 1
L/U h

L × U 1
D/U n(h−1)+1

D ⊂ �h .

Conjecture 7.4 (Boyarchenko [2, Conjecture 5.16]) For i ≥ 0, we have Hi
c (Xh, Q�)

= 0 unless i or n is even, and Frqn acts on Hi
c (Xh, Q�) by the scalar (−1)i qni/2.

Conjecture 7.5 (Boyarchenko [2,Conjecture 5.18])Given a characterχ : U 1
L/U h

L →
Q�, there exists r ≥ 0 such that Hi

c (Xh, Q�)[χ ] = 0 for all i �= r . Moreover,

Hr
c (Xh, Q�)[χ ] is an irreducible representation of U1

D/U n(h−1)+1
D .

Remark 7.6 It is useful to have an explicit formula for A′(A0, . . . , An−1). First observe
that

A(A0, . . . , An−1) = D(A′
0) + D(A′

1)�k + · · · + D(A′
n−1)�

n−1
k ,

wherewewrite D(x) = diag(x, ϕ(x), . . . , ϕn−1(x)). Let γ0 be the permutationmatrix
corresponding to the permutation i �→ [(i + l − 1)k]. Then

γ −1
0 · c · γ0 = ck, where c =

(
0 1n−1
1 0

)
.

This implies that

γ −1
0 · D(x) · γ0 = diag

(
x, ϕ[l](x), . . . , ϕ[(n−1)l](x)

)
=: D′(x).

Therefore

A′(A0, . . . , An−1) = D′(A′
0) + D′(A′

1)�
k + · · · + D′(A′

n−1)�
(n−1)k

= D′(A0) + D′(A1)�
[k] + · · · + D′(An−1)�

[(n−1)k],

which, when expanded, is

⎛
⎜⎜⎜⎜⎜⎝

A0 A[l] A[2l] · · · A[(n−1)l]
πϕ[l](A[(n−1)l]) ϕ[l](A0) ϕ[l](A[l]) · · · ϕ[l](A[(n−2)l])
πϕ[2l](A[(n−2)l]) πϕ[2l](A[(n−1)l]) ϕ[2l](A0) · · · ϕ[2l](A[(n−3)l])

.

.

.
.
.
.

. . .
. . .

.

.

.

πϕ[(n−1)l](A[l]) πϕ[(n−1)l](A[2l]) · · · πϕ[(n−1)l](A[(n−1)l]) ϕ[(n−1)l](A0)

⎞
⎟⎟⎟⎟⎟⎠ .

Observe thatwhen K has positive characteristic, after appropriately permuting the ai ’s,
the point x(

∑
aniπ

i ,
∑

ani+1π
i , . . . ,

∑
ani+(n−1)π

i ) is ιh,k(
∑

aiτ
i ) as defined in

Eq. (2.3). ♦

From now on, assume char K > 0. Then Proposition 6.1 gives evidence supporting
Conjecture 7.4, and by Theorem 6.4, we have:
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Theorem 7.7 Let χ : U 1
L/U h

L → Q
×
� be a primitive character. Then Conjecture 7.5

holds.

By [2, Proposition 5.19], we have

Theorem 7.8 Let θ : L× → Q
×
� be a primitive character of level h and let

χ : U 1
L/U h

L → Q
×
� denote the restriction of θ to U 1

L .

(a) Pick any ζ ∈ O×
L /U h−1

L with the property that its image in F
×
qn generates F

×
qn .

The representation H (n−1)(h−1)
c (Xh, Q�)[χ ] extends uniquely to a representation

η◦
θ of the semidirect product R×

h,k,n,q(Fqn ) ∼= O×
D/U n(h−1)+1

D with Tr(η◦
θ (ζ )) =

(−1)(n−1)(h−1)θ(ζ ).
(b) The inflation η̃◦

θ of η◦
θ to O×

D extends to a representation η′
θ of πZ ·O×

D by setting
η′

θ (π) = θ(π). Then

H(n−1)(h−1)(X̃ , Q�)[θ ] ∼= ηθ := IndD×
πZ·O×

D
(η′

θ )

and Hi (X̃ , Q�)[θ ] = 0 for i �= (n − 1)(h − 1).
(c) H(n−1)(h−1)(X̃ , Q�)[θ ] is an irreducible representation of dimension n ·

qn(n−1)(h−1)/2.

Proof We outline the proof given in [2, Section 6.15].
The uniqueness in (a) follows from the irreducibility of H (n−1)(h−1)

c (Xh, Q�)[χ ].
The representation η◦

θ is the tensor product θ◦ ⊗ H (n−1)(h−1)
c (Xh, Q�)[χ ] where

θ◦(z, g) = θ(z) for (z, g) ∈ 〈ζ 〉 � U n,q
h,k (Fqn ) = R×

h,k,n,q(Fqn ). Finally, the trace
identity is a special case of Proposition 6.2.

Let X̃h := ⊔
m∈Z

X̃ (m)
h . The action of L× × D× on X̃ induces an action of the

quotient Gh := (L×/U h
L ) × (D×/U n(h−1)+1

D ) on X̃h . Moreover, H∗(X̃ , Q�)[θ ] ⊂
H∗(X̃h, Q�), so it is enough to understand the cohomology of X̃h . Since X̃ (m+1)

h =
� X̃ (m)

h and � ∈ G1(K ) ∼= D×, we see that X̃h is equal to the Gh-translates of

f (ιh,k(Xh)) ⊂ X̃ (0)
h . One can define an action of

�h = 〈(π, π−1)〉 · 〈(ζ, ζ−1)〉 ·
(

U 1
L/U h

L × U 1
D/U n(h−1)+1

D

)
⊂ Gh

on Xh so that f ◦ιh,k is�h-equivariant.Moreover, the stabilizer of f (ιh,k(Xh)) inGh is
exactly equal to�h . The claim in (b) then follows from an analysis of the θ -eigenspace

of IndGh
�h

(
Hi (Xh, Q�)

)
.

Let ψ := θ |U h−1
L

. For any x ∈ U h−1
L ⊂ U n(h−1)

D , we have η′
θ (x) = ψ(x) and

η′
θ (� · x · �−1) = η′

θ (ϕ(x)) = ψ(xql
).

Since θ is primitive and l is coprime to n, it follows that the normalizer of η′
θ in D×

is equal to πZ ·O×
D . Irreducibility then follows by Mackey’s criterion. The dimension
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of the ηθ is equal to the product of [D× : πZ · O×
D] = n and the dimension of η′

θ , so
the desired result holds by Theorem 4.3 and Proposition 6.1. ��

7.2 Local Langlands correspondences

It is known that automorphic induction is not compatiblewith induction onWeil groups
in the sense that one must often keep track of a rectifying character when constructing
theLanglands parameterσθ of the automorphic induction of a character θ : L× → Q

×
� .

Instead, we recall Langlands–Shelstad’s theory of χ -datum [11, Section 2.5] to give
a canonical construction of σθ : WK → GLn(C). We then recall the statements of the
local Langlands and Jacquet–Langlands correspondences and prove in Theorem 7.12
that the homology of X realizes the composition of these two correspondences. As
always in this paper, L is the degree-n unramified extension of K .

Fix an isomorphismQ�
∼= C. Let T = ResL/K Gm and let G = GLn . Viewing L as

an n-dimensional K -vector space induces an embedding T ↪→ G. Let � = �(G, T )

be the root system of T in G and recall that there is a natural action of the absolute
Galois group �K on �. For each λ ∈ �, let Lλ and L±λ be the extensions of K
corresponding to the subgroups {g ∈ �K : gλ = λ} and {g ∈ �K : gλ = ±λ}. We
note that since L/K is unramified, it is Galois and hence Lλ = L . (In general, one
only has Lλ ⊇ L .) We say that λ ∈ � is symmetric if Lλ �= L±λ and asymmetric
otherwise. Observe that if λ is symmetric, then Lλ is a quadratic extension of L±λ.

Definition 7.9 A χ -datum is a collection of characters {χλ}λ∈� satisfying:

(i) χλ : L×
λ → C

× is a homomorphism.
(ii) For each λ ∈ �, we have χ−λ = χ−1

λ and χwλ = wχλ for all w ∈ WK .
(iii) If λ is symmetric, then χλ|L×

±λ
equals the quadratic character of Lλ/L±λ.

Consider the dual groups of G and T given by Ĝ := GLn(C) and T̂ := (C×)n .
A χ -datum {χλ}λ∈� determines an embedding χ : L T → L G, where L T and L G are
the L-groups L G := Ĝ � WK and L T := T̂ � WK (see [11, Section 2.6]). The local
Langlands correspondence for T gives a natural isomorphism

Hom(L×, C
×) ∼= H1(WK , T̂ ).

Let θ̃ : WK → L T be a 1-cocycle representing the image of θ under the above iso-
morphism. Then by [13, Proposition 6.5], the representation given by the composition

WK
θ̃−→ L T

χ−→ L G
pr−→ GLn(C) (7.4)

is isomorphic to the induced representation

IndWK
WL

(θ · μ), where μ =
∏

[λ]∈WK \�
χλ, (7.5)
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and where we view θ · μ as a character ofWL via local class field theory. Since L/K
is unramified, it is easy to write down a natural choice of χ -datum. It is clear from the
definition that a χ -datum {χλ}λ∈� is determined by {χλ}λ∈A, where A is any choice of
coset representatives of �K \�. The �K -orbits of� are in bijection with the nontrivial
double cosets of �L in �K (see [13, Proposition 3.1]), and we may write

(�L\�K /�L)′ = {[φi ] := �Lφi�L : 1 ≤ i ≤ n − 1},

where φ is the q-power Frobenius. By [13, Proposition 3.3], [φi ] is symmetric if and
only if n is even and i = n/2. It is clear that the following specifies a χ -datum for
T ↪→ G:

(i) If [φi ] is symmetric, we letχ[φi ] be the unramified character withχ[φi ](π) = −1.
(ii) If [φi ] is asymmetric, we let χ[φi ] ≡ 1.

Define σθ to be theWK -representation in Eq. (7.4) corresponding to the above canon-
ical choice of χ -datum. Then by Eq. (7.5),

σθ
∼= IndWK

WL
(θ · μ), (7.6)

where μ : L× → C
× is the character determined by μ|O×

L
≡ 1 and μ(π) = (−1)n−1.

Pick any division algebra D of dimension n2 over K . We now describe the relevant
correspondences between representations of L×, WK , GLn(K ), and D×. Fix a char-
acter ε of K × whose kernel is equal to the image of the norm NL/K : L× → K ×. Let
X denote the set of all characters of L× that have trivial stabilizer in Gal(L/K ) and let
Gε

K (n) denote the set of (isomorphism classes of) smooth irreducible n-dimensional
representations σ of WK that satisfy σ ∼= σ ⊗ (ε ◦ recF ). Then

X /Gal(L/K ) Gε
K (n)

χ -datum

θ σθ

is a bijection.
Now letAε

K (n) denote the set of (isomorphism classes of) irreducible supercuspidal
representations π of GLn(K ) such that π ∼= π ⊗ (ε ◦ det). There exists a canonical
bijection

Gε
K (n) Aε

K (n)
LLC

σθ πθ

known as the local Langlands correspondence.
Finally, let A′ε

K (n) denote the set of (isomorphism classes of) irreducible repre-
sentations ρ of D× such that ρ ∼= ρ ⊗ (ε ◦ NrdD/K ). Then the Jacquet–Langlands
correspondence gives a bijection

Aε
K (n) A′ε

K (n)
JLC

πθ ρθ
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Remark 7.10 Since L/K is unramified, the restriction of ε to O×
K is trivial, and thus

the composition ε ◦NrdD/K is trivial on E× ·O×
D ⊃ πZ ·O×

D . Thus by the construction
of ηθ , we have that ηθ is invariant under twisting by ε ◦ NrdD/K . ♦

Theorem 7.8 describes a correspondence between L×-characters and D×-represen-
tations given by

{primitive characters of L×} {irreducible representations of D×}DL construction

θ ηθ := H•(X̃ , Q�)[θ ]

By Remark 7.10, we see that ηθ ∈ A′ε
K (n). In Theorem 7.12, we prove that this

correspondence matches the composition of the previous three, therefore giving a
geometric realization of the Jacquet–Langlands correspondence.

Remark 7.11 The construction of the local Langlands and Jacquet–Langlands corre-
spondences was already known. See, for example, [9]. Recent work of Boyarchenko
and Weinstein (see [3]) gives a partially geometric construction of these correspon-
dences using the representations Hn−1

c (X2, Q�)[ψ] of U n,q
2 (Fqn ). Note that in [4]

and [3], the scheme X2 is denoted by X and the group U n,q
2 (Fqn ) is denoted by U n,q

(Fqn ). ♦

Theorem 7.12 Let θ : L× → Q
×
� be a primitive character of level h and let ρθ be

the D×-representation corresponding to θ under the local Langlands and Jacquet–
Langlands correspondences. Then Hi (X̃ , Q�)[θ ] = 0 if i �= (n − 1)(h − 1) and

H(n−1)(h−1)(X̃ , Q�)[θ ] ∼= ρθ .

Proof By Eq. (7.6) and [3, Proposition 1.5(b)], we just need to show that ηθ :=
H(n−1)(h−1)(X̃ , Q�)[θ ] satisfies the following two properties:

(i) For any character ε of K × whose kernel is equal to the image of the norm map
NL/K : L× → K ×, we have ηθ

∼= ηθ ⊗ (ε ◦ NrdD/K ).
(ii) There exists a constant c such that tr ηθ (x) = c · ∑γ∈Gal(L/K ) θγ (x) for each

very regular element x ∈ O×
L .

Since L/K is unramified, the restriction of ε to O×
K is trivial, and thus the com-

position ε ◦ NrdD/K is trivial on L× · O×
D ⊃ πZ · O×

D . Thus by construction, ηθ is
invariant under twisting by η ◦ NrdD/K . This proves (i).

We now prove (ii). By the construction of ηθ , since πZ · OD = L× · U 1
D , we have

tr ηθ (x) =
∑

g∈D×/L×·U1
D

gxg−1∈L×·U1
D

tr η′
θ (gxg−1).
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Now let x ∈ O×
L be very regular. By Proposition 6.2, η◦

θ (x) = (−1)(n−1)(h−1)θ(x). By
[3, Lemma 5.1(b)], if g ∈ D× is such that gxg−1 ∈ L× ·U 1

D , then g ∈ ND×(L×) ·U 1
D ,

where N×
D (L×) is the normalizer of L× in D×. Therefore

tr ηθ (x) =
∑

g∈ND× (L×)·U1
D/L×·U1

D

tr η′
θ (gxg−1) =

∑
g

tr(η◦
θ (gxg−1))

=
∑

g

(−1)(n−1)(h−1)θ(gxg−1) = (−1)(n−1)(h−1) ·
∑

γ∈Gal(L/K )

θγ (x).

��
The following corollary shows that the homology of Deligne–Lusztig construc-

tions for division algebras gives a geometric realization of the Jacquet–Langlands
correspondence.

Theorem 7.13 Let D and D′ be division algebras of rank n and let X D and X D′
be their corresponding Deligne–Lusztig constructions. For any primitive character
θ : L → Q

×
� of level h, the Jacquet–Langlands transfer of H(n−1)(h−1)(X D, Q�)[θ ] is

isomorphic to H(n−1)(h−1)(X D′ , Q�)[θ ].
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