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Abstract In this short paper, we construct a unipotent nearby cycle functor and show
a p-adic analogue of Beilinson’s equivalence comparing two derived categories: the
derived category of holonomic arithmetic D-modules and the derived category of
arithmetic D-modules whose cohomologies are holonomic.
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Introduction

In the theory of p-adic cohomology, the lack of a nearby cycle functor has been a big
technical obstruction for proving important results. For example, [4,16] are few of
such examples. In this short paper, we establish the theory of unipotent nearby cycle
functor, and as an application, we prove a p-adic analogue of Beilinson’s equivalence:
for a smooth variety X over C, we have an equivalence of categories (see [5])

Db(Hol(X))
∼−→ Db

hol(X).

B Daniel Caro
daniel.caro@unicaen.fr

Tomoyuki Abe
tomoyuki.abe@ipmu.jp

1 Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo,
5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan

2 Laboratoire de Mathématiques Nicolas Oresme (LMNO), Université de Caen, Campus 2, 14032
Caen Cedex, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s00029-017-0370-2&domain=pdf


592 T. Abe, D. Caro

For the construction of the unipotent nearby cycle functor, we follow the idea of
[6]. The original construction of Beilinson’s unipotent nearby cycles in the context of
algebraic D-modules is based on a key lemma whose proof is a consequence of the
existence of b-functions. However, in our p-adic context, the definition of b-functions
is problematic. To remedy this, we can use successfully another powerful tool, namely,
Kedlaya’s semistable reduction theorem, applied to overconvergent isocrystals with
Frobenius structure.

Now, even though the proof of Beilinson’s equivalence is written in a way that it
can be adopted for many cohomology theories, we still need to figure out what the
suitable definition of “holonomic modules” is in the p-adic context. A naive answer
might be to consider overholonomic complexes (without Frobenius structure), namely
Ovhol(X/K ) in 1.4, introduced by the second author. However, we do not know if this
category is closed under taking tensor products when modules do not admit Frobenius
structure. Thus, the category does not seem appropriate for the equivalence because
Beilinson’s original proof uses the stability under Grothendieck six operations. More-
over, the full subcategory of overholonomic modules whose objects are endowed with
some Frobenius structure is not thick. To resolve these issues, in this paper, we con-
struct some kind of smallest triangulated subcategory of the category of overholonomic
complexes which contains modules with Frobenius structure. Its construction allows
us to come down by “devissage” to the case of modules with Frobenius structure.

Finally, we point out that techniques developed in this paper are crucial tools to
construct the theory of arithmetic D-modules for general schemes in [2], and we also
expect more applications: unification of the rigid cohomology theory into arithmetic
D-modules (cf. [2, 1.3.11]), p-adic analogue of Fujiwara’s trace formula, etc..

The first section is devoted to construct the good triangulated category, and the
unipotent nearby cycle functors is treated in the second section. Finally, as an appli-
cation, in the third section we give a comparison of Euler characteristics as Laumon
in l-adic cohomology in [25] with the remark that the use of unipotent nearby cycles
theory is enough for the proof.

In this paper, we fix a complete discrete valuation ring R of mixed characteristic.
Its residue field is denoted by k, and we assume it to be perfect and of characteristic
p. Let q be a power of p, and we suppose that there exists a lifting R

∼−→ R of the
q-Frobenius automorphism of k, and fix one. We put K := Frac(R). If there is no
ambiguity with K , we sometimes omit “/K ” in the notation of some categories.

1 Overholonomic D†
X ,Q

-modules

1.1 On the stability under base change

Let P be a smooth formal scheme over R. Let E be an object of Db
ovhol(D

†
P,Q

),

i.e. an overholonomic complex of D†
P,Q

-modules (see Definition [13, 3.1]). For the
reader, we recall (see [18, Definition 3.2.1] or maybe also [20, 1.3.3]) the complex
E is said to be overholonomic after any base change if for any morphism R → R′
of complete discrete valuation rings of unequal characteristic with perfect residue
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fields, putting S := Spf(R), S ′ := Spf(R′), f : P ′ := P ×S S ′ → P the canonical
morphism, then the object f ∗(E) := D†

P ′/S ′,Q ⊗ f −1D†
P/S,Q

f −1E remains to be an

overholonomic complex of D†
P ′/S ′,Q-modules. When E is a module, we say that E is

an overholonomic after any base change D†
P ′/S ′,Q-module.

We remark that the base change functor f ∗ is exact, commutes with push-forwards,
pull-backs, dual functors, local cohomological functors and preserves the coherence
and the holonomicity (useVirrion’s characterization of the holonomicity of [27, III.4]).
For instance, if Y is a subvariety of the special fiber of P and Y ′ := f −1(Y ), for any
overholonomic complex E of D†

P/S,Q
-modules, we get the isomorphism of coherent

complexes R�
†
Y ′( f ∗E)

∼−→ f ∗
R�

†
Y (E) of D†

P ′/S ′,Q-modules.

Lemma 1.2 Let P be a proper smooth formal scheme over R, and E be an object
of F-Db

ovhol(D
†
P,Q

), i.e. an overholonomic complex of D†
P,Q

-modules endowed with
Frobenius structure. Then E is overholonomic after any base change.

Proof Let R → R′ be a morphism of complete discrete valuation rings of unequal
characteristic with perfect residue fields, S := Spf(R), S ′ := Spf(R′), f : P ′ :=
P ×S S ′ → P be the canonical morphism. We have to prove that f ∗(E) is overholo-
nomic. By devissage, we can suppose that there exists a quasi-projective subvariety
Y of the special fiber of P such that E ∈ F-Db

ovhol(Y,P), i.e. by definition of this

category such that R�
†
Y (E)

∼−→ E . There exists an immersion of the form Y ↪→ Q,
where Q is a projective formal scheme over R. We get an immersion Y ↪→ P × Q
and two projections p1 : P ×Q → P , p2 : P ×Q → Q. We recall that the categories
F-Db

ovhol(Y,P) and F-Db
ovhol(Y,Q) are canonically equivalent. Let F be the object

of F-Db
ovhol(Y,Q) corresponding to E , i.e. E ∼−→ p1+R�

†
Y p

!
2(F). Let Y ′, Q′, p′

1,
p′
2 be the base change of Y , Q, p1, p2 by f . The complex f ∗(F) is endowed with a

Frobenius structure by using [10, 2.1.6] and is holonomic because f ∗ preserves the
holonomicity. Therefore f ∗(F) is overholonomic by [15] sinceQ′ is projective. Since
f ∗(E)

∼−→ p′
1+R�

†
Y ′ p′!

2 ( f
∗F), the stability of overholonomicity implies that f ∗(E)

is also overholonomic. �	
Lemma 1.3 Let P be a smooth formal scheme over R. The category consisting of
overholonomic after any base change D†

P,Q
-modules is a thick abelian subcategory

of Mod(D†
P,Q

).

Proof Since the other properties are easy, wewill only prove the stability under kernels
and cokernels. Let φ be a homomorphism of overholonomic after base changeD†

P,Q
-

modules. Then these are holonomic by [14, 4.3]. Thus the kernel and cokernel of φ are
holonomic by [ibid., 2.14]. Since the functor D is exact on the category of holonomic
modules, we get the overholonomicity of the kernel and cokernel of φ, and then their
overholonomicity after any base change. �	
1.4 A variety (i.e. a reduced scheme of finite type over k) X is said to be realizable if
there exists a smooth proper formal scheme P over R such that X can be embedded
intoP . Since the cohomology theory does not change if we take the associated reduced
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scheme, in the following, we assume that schemes are always reduced. For any realiz-
able variety X , choose X ↪→ P an immersion with P a smooth proper formal scheme
over R. By replacing “overholonomic” by “overholonomic after any base change” in
[13, 4.16], the full subcategory of Db

ovhol(D
†
P,Q

) consisting of overholonomic after

any base change D†
P,Q

-complexes E which are supported on the closure X of X in

P and which satisfy R�
†
X\X (E) = 0 does not depend on the choice of P and of the

embedding of X in P . Hence, the objects of this category will be called “overholo-
nomic after any base change complexes over X/K (or simply X )”. This category is
denoted by Db

ovhol,bc(X/K )

Now, for � ∈ {≥ 0,≤ 0}, we define a full subcategory D� ⊂ Db
ovhol,bc(X/K ) in

a following way: We take an embedding X ↪→ P as above. Let U ⊂ P be an open
subscheme which contains X as a closed subscheme. Then E ∈ Db

ovhol,bc(X/K ) ⊂
Db(D†

P,Q
) is in D� if and only if E |U is in D�(D†

U ,Q
), where we used the standard t-

structure for the derived categoryofD†
U ,Q

-complexes.As in [3, 1.2.1], this construction

does not depend on the auxiliary choices, and defines a t-structure on Db
ovhol,bc(X/K ).

The objects of its heart is called “overholonomic after any base change modules over
X/K (or simply X )”, and denoted by Ovholbc(X/K ) or Ovholbc(X).

Assume X is smooth and realizable. Recall the category Isoc††(X) (see [3, 1.2.14]
and references therein), which is aD†-module theoretic interpretation of the category
of overconvergent isocrystals on X .

Remark In the construction of the t-structure, if we can take a divisor Z of P such
that U = P\Z , then the t-structure is nothing but the one induced by the standard
t-structure on Db(D†

P,Q
). However, objects of Ovholbc(X) realized in Db(D†

P,Q
) are

complexes unless we can take such a divisor Z . See [3, 1.2.2].

Lemma 1.5 For a realizable variety X, any object of the abelian categoryOvholbc(X)

satisfies the ascending and descending chain condition.

Proof By base change, we can suppose that k is uncountable.We prove the claim using
the induction on the dimension of the support. From [14, 3.7]1 there exists an open
dense subscheme j : U ↪→ X such that X\U is a divisor and G := E |U ∈ Isoc††(U ).
By induction hypothesis, we are reduced to checking that j+(G) satisfies the ascending
(resp. descending) chain condition. Take an irreducible submodule G′ ⊂ G in the
category of overholonomic after any base change modules on U . Using [3, 1.4.7],
we check that since G′ is irreducible then so is j!+(G′) (:= Im( j!(G′) → j+(G′))).
Thus by induction hypothesis, j+(G′) satisfies the ascending (resp. descending) chain
condition. Since j+ is exact, if G is not irreducible then we conclude by using a second
induction on the generic rank of G. �	
Remark For a smooth formal schemeP (whichmay not be proper), wemay also show
that any overholonomic module on P satisfies the ascending and descending chain
conditions. The proof is similar.

1 In the statement of [14, 3.7], we need to add that k is uncountable or that the property to have finite fibers
is stable under base change.
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Corollary 1.6 Let X be a realizable variety. Let E be an overholonomic after any base
change module on X. Assume that E can be endowed with a qs-Frobenius structure for
an integer s > 0. Then any constituents of E in the category overholonomic after any
base change module on X can be endowed with a qs

′
-Frobenius structure for some s′

a multiple of s.

Proof The verification is similar to [21, 6.0–15]. Let us recall the argument. Let
A be an abelian category which consists of objects whose lengths are finite, and
F be an endo-functor on A. For an object X ∈ A, assume given an isomorphism
α : X ∼= F(X). To show the corollary, it suffices to check that for any constituent Y of
X , there exists an integer s > 0 such that Y ∼= Fs(Y ). Indeed, let I be the multiset of
isomorphism classes of irreducible constituents of X . The isomorphism α induces an
automorphism α∗ : I ∼−→ I . Since I is a finite multiset, for any [Y ] ∈ I , there exists an
integer n > 0 such that αn∗([Y ]) = [Y ], which by definition implies that Y ∼= Fs′(Y )

where s′ = ns. �	
1.7Let X be a realizable variety. LetHolF (X/K )′ be the subcategory of the category of
overholonomic after any base changemodule on X whose objects can be endowedwith
qs-Frobenius structure for some integer s > 0, and let HolF (X/K ) be the thick abelian
subcategory generated by HolF (X/K )′ in the category consisting of overholonomic
after any base change modules on X . We denote by Db

hol,F (X/K ) the triangulated full
subcategory of the category of overholonomic after any base change complexes on
X/K consisting of complexes whose cohomologies are in HolF (X/K ). Recall that in
this paper, if there is no ambiguity with K , we sometimes omit “/K ” in the notation
of some categories. By Lemma 1.3 and Corollary 1.6, we have:

Corollary Any object ofHolF (X) can be written as successive extensions of modules
in HolF (X)′.

This corollary has the following consequences:

Theorem 1.8 Let f : X → Y be a morphism between realizable varieties.

1. The functor f+ induces Db
hol,F (X) → Db

hol,F (Y ).

2. The functor f ! induces Db
hol,F (Y ) → Db

hol,F (X).

3. The dual functor D ([3, 1.1.6 (i)]) induces the functor Db
hol,F (X)◦ → Db

hol,F (X)

such that D ◦ D ∼= id.
4. We have the bifunctor ˜⊗: Db

hol,F (X) × Db
hol,F (X) → Db

hol,F (X).

Moreover, these functors satisfy the properties listed in [3, 1.3.14].

Remark Even if we replace Db
hol,F by Db

ovhol,bc, the theorem holds except for 4, which
has been checked by the second author. For detailed references, we refer to [3, 1.1].

Proof Let us check the first three claims. As noted in the remark, the three functors
are known to be defined if we replace Db

hol,F by Db
ovhol,bc. Since Db

hol,F is a full

subcategory of Db
ovhol,bc, it suffices to check that these functors send Db

hol,F to itself.
Since Corollary 1.7 tells us that the latter category is generated by overholonomic
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moduleswith Frobenius structure, it suffices to verify the stability just for these objects.
Since the functors commute with Frobenius pull-backs, the stability follows.

Let us check the last one. First, let us suppose that X can be lifted to a proper smooth
formal scheme X . Then we have the functor

�†
OX ,Q

: Db
coh(D

†
X ,Q

) × Db
coh(D

†
X ,Q

) → Db
coh(D

†
X×X ,Q

).

as in [17, (2.3.3.2)]. As in the case of the first three functors, �†
OX ,Q

induces a functor

between Db
hol,F . Indeed, similarly to the argument above using Corollary 1.7, the

verification is reduced to the stability for overholonomic modules with Frobenius
structure, and this case is verified in [17, Thm 4.2.3]. As in [17, Thm 4.2.7], we
may check that the functor does not depend on the choice of lifting up to canonical
equivalence, and defines a functor

�†
X : Db

hol,F (X) × Db
hol,F (X) → Db

hol,F (X × X).

when X is proper smooth and liftable. Now, for a general realizable scheme X , we
take an immersion i : X ↪→ P to a proper smooth liftable variety P , and define

˜⊗ := �!
X (i × i)!

(

i+(−) �†
P i+(−)

)

where �X : X → X × X is the diagonal immersion. We leave the reader to check that
this is independent of the choice of auxiliary choices. Verification of properties in [3,
1.3.14] is similar, so we leave it to the reader. �	

We recall that for a realizable variety X , we define

⊗ := D
(

D(−)˜⊗D(−)
) : Db

hol,F (X) × Db
hol,F (X) → Db

hol,F (X)

as in [3, 1.1.6 (iii)]. We point out that [17, (2.3.9.2)]2 shows that the definition of ˜⊗ is
compatible with that defined in [3, 1.1.6], in the sense that if we forget the Frobenius
structure from [3], then the functor coincides with the one defined here. Thus the
functors ⊗ is also compatible.

Remark Similarly to [3, 1.1.6(ii)], we can construct directly the bifunctor ˜⊗: Db
hol,F

(X) × Db
hol,F (X) → Db

hol,F (X). In the proof of Theorem 1.8.4, we first construct the

bifunctor �†
X . By using the other functors, as showed in this proof, we notice that this

is equivalent to the construction of ˜⊗. The advantage to construct directly �†
X is that

we can avoid speaking of Berthelot’s categories of the form LD−→ (see [11, 4.2]), even if
these Berthelot’s categories of the form LD−→ are fundamental to check the transitivity
of our functors.

1.9 Using this category, we can state our main theorem as follows:

2 Here a shift is missing, or in other words, δ! should be replaced by δ∗. The same for [ibid., (2.3.9.1)].
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Theorem Let X be a realizable variety. Then the canonical functor

Db(HolF (X/K )) → Db
hol,F (X/K )

is an equivalence of categories.

Proof With the aid of the six formalism as we constructed in Theorem 1.8 and the
next section, the proof of [5] can be adapted without any difficulties, so we only sketch
the outline. We put D(X) := Db

hol,F (X/K ), which is endowed with t-structure whose

heart is M(X) := HolF (X/K ) by construction. For the derived category Db(M(X)),
we consider the standard t-structure, so the heart is M(X) as well. The first task is
to define the functor realX : Db(M(X)) → D(X) which induces an identity on the
hearts of the t-structures. This can be defined using the abstract non-sense presented
in the appendix of [5].

1) In this first part, we prove Theorem 1.9 generically. For a generic point η ∈ X ,
we put D(η) := 2- lim−→η∈U D(U ), and M(η) := 2- lim−→η∈U M(U ). We prove that the

functor
realη : Db(M(η)) → D(η) (1.9.1)

is an equivalence. Let η ∈ U ⊂ X be an open subscheme, and MU , NU are in M(U ).
Since D(η) has canonically a t-structure whose heart is M(η) it suffices to show the

existence of an open subscheme η ∈ V
j−→ U , OV ∈ M(V ) and NV := j+NU ↪→ OV

such that the induced homomorphism ExtiD(U )(MU , NU ) → ExtiD(V )(MV , OV ) is
zero for any i > 0. Now, we prove this latter property by induction on the dimension
of X .

Since k is perfect, by shrinking U , we may assume that U is connected and
smooth of dimension d, and MU and NU are contained in Isoc††(U ) (use [14, 3.7]).
Recall that by definition Hom(MU , NU ) := DMU˜⊗NU (see [3, A.1]) and we have
Hom(MU , NU )[d] ∈ Isoc††(U ). By shrinking U further, we may assume that there
exists a smooth affine morphism ¶ : U → Z with 1-dimensional fibers such that Z is
smooth (notice that we can choose Z as a dense open of Ad−1 since, shrinking U if
necessary, U is affine and étale over Ad and then use [14, 3.7]), and even assume that
Lq := H q+(d−1)¶+Hom(MU , NU ) are in Isoc††(Z) for any q by shrinking Z . Note3

that since ¶ is affine then Lq = 0 for q �= 0, 1 (use Proposition [3, 1.3.13.(i)] and Defi-
nition [3, 1.1.2]).We refer to [3, A.5] for the relation betweenHom and HomD(X). For
an open subscheme Y ⊂ Z , let UY := ¶−1(Y ) and ¶Y : UY → Y is the one induced
by ¶. Since ¶ is assumed to be affine and the dimension of each fiber is 1, we see that
the Leray spectral sequence E p,q

2 = H p−(d−1) pY+(Lq
Y ) ⇒ Ext p+q

D(UY )(MUY , NUY )

degenerates at E3, where pY denotes the structural morphism of Y and Lq
Y denotes the

restriction of Lq to Y . For simplicity, we denote H p−(d−1) pZ+(−) by H p(Z ,−).
Using this degeneration, Beilinson splits the construction problem of OV into two: one

3 One might wonder why we have the funny degree H q+(d−1) in the definition of Lq . This is because
our category Hol corresponds to the category of perverse sheaves in the 
-adic situation. However, since
the objects appearing in this argument are in Isoc††, everything works as in Beilinson except that we need
suitable shifts of degrees.
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is to find an open subscheme Y ⊂ Z and NUY ↪→ PUY such that PUY ∈ Isoc††(UY )

and H d¶Y+Hom(MUY , NUY ) → H d¶Y+Hom(MUY , PUY ) is zero, and the other is
to find an open subscheme Y ′ ⊂ Z and NUY ′ ↪→ QUY ′ such that QUY ′ ∈ Isoc††(UY ′)
and H p(Z ,H d−1¶+Hom(MU , NU )) → H p(Y ′,H d−1¶Y ′+Hom(MUY ′ , QUY ′ )) is
zero for all p ≥ 1. The construction is written in [5, 2.1], but we recall briefly for the
reader.

Let us construct PUY . We put H := Hom(¶+L1 ⊗ M[1 − d], N ), where

¶+L1 ⊗ M[1 − d] ∈ Isoc††(U ). Using [3, (A.1.1), A.8], we get ¶+H
∼−→

Hom(L1[1 − d], ¶+Hom(M, N )). Since, the functor Hom(L1[1 − d],−) is exact,
we getH i¶+H

∼−→ Hom(L1[1 − d],H i¶+Hom(M, N )). This yields the vertical
isomorphisms of the following diagram:

Ext1(¶+L1 ⊗ M[1 − d], N ) H0(Z ,H d¶+H)
∂

∼

H2(Z ,H d−1¶+H)

∼

H0(Z ,DL1
˜⊗L1[d − 1]) H2(Z ,DL1

˜⊗L0[d − 1]),

where the horizontal exact sequence comes from Leray spectral exact sequence
(see also [3, A.4]). Let α ∈ H0(Z ,DL1

˜⊗L1[d − 1]) = Ext0D(Z)(L
1, L1) (see

[3, A.5]) be the canonical element. Now, it is the time to use the induction
hypothesis, to DL0 and DL1. Since DDL0 ∼−→ L0, this implies that there exist
Y ⊂ Z , KY ∈ Isoc††(Y ), and ϕ : (DL1)Y ↪→ KY such that the induced arrow
ϕ∗ : H2(Z ,DL1

˜⊗L0[d − 1]) → H2(Y, KY ˜⊗L0
Y [d − 1]) is 0. Thus, ϕ∗∂(α) = 0.

By diagram chase, ϕ∗(α) ∈ H0(Y, KY ˜⊗L1
Y [d − 1]) is the image of some (ϕ(α))∼ ∈

Ext1(¶+KY ⊗ MUY [1 − d], NUY ). Now define PUY to be the object in the extension
0 → NUY → PUY → ¶+KY ⊗ MUY [1− d] → 0 corresponding to (ϕ(α))∼, and one
shows that this meets the demand.

Let us construct QUY ′ . By applying the induction hypothesis to the constant isocrys-
tal on Z and L0 (remark that, using [3, A.5] we get Hi (Z , L0) = ExtiD(Z)(OZ , L0)

where OZ is the constant isocrystal on Z ) we get Y ′ ⊂ Z , RY ′ (the corresponding
object in [5] is denoted by QY ′), and an injection L0

Y ′ ↪→ RY ′ such that the induced
map Hi (Z , L0) → Hi (Z , RY ′) is 0 for i > 0. Define QUY ′ (the corresponding object
in [5] is denoted by OUY ′ ) by the cocartesian square:

¶+RY ′ ⊗ MUY ′ [1 − d] QUY ′

¶+L0
Y ′ ⊗ MUY ′ [1 − d] NUY ′ ,

where the bottom horizontal arrow is the canonical arrow. Using [3, (A.1.1),
A.5, A.8]), we get the first equality Hom(¶+L0

Y ′ ⊗ MUY ′ [1 − d], NUY ′ ) =
Hom(L0

Y ′, ¶+Hom(MUY ′ , NUY ′ )[d−1]) = Hom(L0
Y ′,H d−1¶+Hom(MUY ′ , NUY ′ )).
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Hence, we get

RY ′ H d−1¶+Hom(MUY ′ , QUY ′ )

L0
Y ′ H d−1¶+Hom(MUY ′ , NUY ′ ).

(2) Using the generic case of part 1), let us prove Theorem 1.9 by induction on
the dimension of X . Since X is separated, any open immersion j : U → X with U
affine is affine, and in particular, j+ sends M(U ) to M(X) by [3, 1.3.13]. Thus, by
standard argument, the claim is Zariski local, and we may assume X to be affine.
It suffices to show that for any M , N in M(X), and k ≥ 0, the homomorphism
ExtkM(X)(M, N ) → ExtkD(X)(M, N ), where Extk denotes the Yoneda’s Ext functor,
is an isomorphism. Using the equivalence of (1.9.1) and the formal properties of
cohomological functors, it is a standard devissage argument to reduce to the case
where the supports of M and N have dimension less than that of X (cf. [5, 2.2.2–
2.2.4]). Take a morphism f : X → A

1 such that Y := f −1(0) contains the support of
M and N . Let i : Y ↪→ X be the immersion. Using the induction hypothesis, we have

ExtkD(X)(M, N )
∼−→
i !

ExtkD(Y )(M, N ) ∼= ExtiM(Y )(M, N ),

where the inverse of the first isomorphism is i+. It remains to show that the canonical
homomorphism induced by i+

I : ExtkM(Y )(M, N ) → ExtkM(X)(M, N ),

is a bijection for any k. For this we need the existence of the functors 
 f and � f .
These functors are defined and basic properties are shown in the next section (cf.
Proposition 2.7). In fact, the inverse of I can be constructed as


 f ∗ : ExtkM(X)(M, N )

 f−−→ ExtkM(Y )(
 f (M),
 f (N )) ∼= ExtkM(Y )(M, N )

where we used the exactness of 
 f in the first homomorphism, and the isomorphism
holds since M and N are supported on Y . Since 
 f ∗ ◦ I = id, it remains to show that
I ◦ 
 f ∗ = id. To check this, for an extension class 0 → N → C1 → · · · → Ci →
M → 0 in M(X), we need to show that the class of 0 → N → 
 f (C1) → · · · →

 f (Ci ) → M → 0 is the same. For this, Beilinson constructs an ingenious sequence
of homomorphisms connecting the two using � f as follows:

C• → C• ⊕ � f (C
•
U ) → (

C• ⊕ � f (C
•
U )

)

/j!(C•
U ) ← 
 f (C

•),

where we refer to (2.5.1) for the last arrow. �	
Remark This theorem is a generalization of [3, A.4]. In fact, Hom’s in the category
Db(HolF (X/K )) can be computed by Yoneda extensions.
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2 Unipotent nearby cycle functor

2.1 For the convenience of the reader, we start by recalling some generalities on
Beilinson’s limit construction. Nothing is new in this paragraph, and the construction
is explained in [6], even though it would not be easy to check the details. One can also
refer to [26, 3.2] where Lichtenstein explains Beilinson’s construction in more details.

Let � := {(a, b) ∈ Z
2 ; a ≤ b} be the partially ordered set4 such that (a, b) ≤

(a′, b′) ⇔ a ≥ a′, b ≥ b′, whichwe consider as a category. For an abelian categoryA,
wedenotedbyA� the categoryof�-shapeddiagrams inA, in otherwords, the category
of functors Funct(�,A). Concretely, objects of A� are E•,• = (Ea,b, α(a,b),(a′,b′)),
where (a, b), (a′, b′) runs through elements of� so that (a′, b′) ≤ (a, b), Ea,b belong
to A, and α(a,b),(a′,b′) : Ea′,b′ → Ea,b are morphisms of A, transitive with respect to
the composition. We denoted by A�

a the full subcategory of A� of objects E•,• =
(Ea,b, α(a,b),(a′,b′)) such that, for any a ≤ b ≤ c, the sequence 0 → Eb,c → Ea,c →
Ea,b → 0 is exact. These objects are called admissible. Since this subcategory is closed
under extension, this is an exact category so that the canonical functor A�

a → A� is
exact.

Let M be the set of maps φ : Z → Z which are order-preserving (i.e. φ(a) ≤ φ(b)
for any a ≤ b) and limi→±∞ φ(i) = ±∞. For any φ ∈ M , we put ˜φ(E•,•) :=
(Eφ(a),φ(b))(a,b)∈�. Let S be the set of the canonical morphisms of the form˜φ(E•,•) →
˜ψ(E•,•), whereφ,ψ ∈ M satisfyφ ≥ ψ andE•,• ∈ A�.Wedenote by Sa the elements
of S which are morphisms of A�

a as well. The sets S and Sa are multiplicative5.

1. Following [6, Appendix], we put lim←→A := S−1
a A�

a and lim←→abA := S−1A�. For

any E•,•
a ,F•,•

a ∈ lim←→A and for any E•,•,F•,• ∈ lim←→ab A we have the equalities

Homlim←→A(E•,•
a ,F•,•

a ) = lim−→
φ∈M

HomA�
a
(˜φE•,•

a ,F•,•
a ),

Homlim←→ab A(E•,•,F•,•) = lim−→
φ∈M

HomA�(˜φE•,•,F•,•). (2.1.1)

We get from (2.1.1) that the canonical functor lim←→A → lim←→abA is fully faithful.

This enables us to denote by lim←→: A�
a → lim←→A and lim←→: A� → lim←→abA the

canonical functors. By definition of the exact structure, lim←→ is exact (cf. [26, Prop
A.3]).

2. Let N (A) be the full subcategory of A� whose objects are null in lim←→ab A. Then,

the category N (A) is a Serre subcategory of A�. Moreover, we have the equality
A�/N (A) = lim←→ab A. In particular, lim←→ab A is an abelian category. The proof is
identical to [19, 1.2.4].

4 The order is opposite to Beilinson’s one in [6, A.3], and we followed that of Lichtenstein’s in [26, 3.2.1].
5 We remark that in [26], Lichtenstein calls a function φ to be order-preserving if φ(a) < φ(b) for any
a < b unlike our convention. This prevents him to verify the multiplicativity without assuming further
condition (see [ibid., Footnote 5]). In our setting, it is straightforward to check this multiplicativity.
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3. Let E ∈ A. For any c ∈ R, we pose Ec = E if c < 0 and Ec = 0 otherwise. For
any (a, b) ∈ �, we set Ea,b := Ea/Eb. We get canonically the object E•,• ∈ A�

a .
By sending E to E•,•, we get the fully faithful exact functor A → A�

a .

2.2 This paragraph will be useful in the proof of Lemma 2.4. Let V ↪→ U ↪→
Y ↪→ X be open immersions of realizable varieties. We have the abelian categories
F-Ovhol(U, X/K ) and F-Ovhol(V,Y/K ) (see [3, 1.2.13]). Since the functor |(V,Y )

(see notation [3, 1.2.9.(iii)]) is exact, it preserves admissible objects and yields the
functor

|(V,Y ) : lim←→
ab F-Ovhol(U, X/K ) → lim←→

ab F-Ovhol(V,Y/K ).

Let E•,• ∈ lim←→ab F-Ovhol(U, X/K ). We remark that E•,• = 0 if and only if
E•,•|(U,Y ) = 0. Let {Ui } be an open covering of U . We notice that E•,• = 0 if
and only if E•,•|(Ui ,Ui ) = 0 for any i .
2.3 For a smooth formal scheme X and a divisor Z of the special fiber of X , recall
that OX (†Z)Q is the ring of overconvergent functions with poles at Z on X , and that
D†
X (†Z)Q is the ring of differential operatorswith poles along Z onX andwith suitable

convergence condition. See [9, 4.2.4, 4.2.5] for details. SetOGm,k := O
̂P1V

(†{0,∞})Q,
DGm,k := O

̂P1V
(†{0,∞})Q ⊗O

̂P1V
D

̂P1V
and D†

Gm,k
:= D†

̂P1V
(†{0,∞})Q and let t be the

coordinate of ̂P
1
V . We denote by OGm,k [s, s−1] · t s the free OGm,k [s, s−1]-module of

rank one generated by t s . For any integer a ∈ Z, the freeOGm,k [s]-submodule of rank
one generated by sats is denoted by saOGm,k [s] · t s or by Ia

Gm,k
. Following Beilinson’s

notation, for integers a ≤ b, we get a free OGm,k -module of finite type by putting

Ia,b
Gm,k

:= Ia
Gm,k

/Ib
Gm,k

.

We define a structure ofDGm,k -module onOGm,k [s, s−1] · t s so that for g ∈ OGm,k and
l ∈ Z, we have

∂t (s
l g · t s) = sl∂t (g) · t s + sl+1g/t · t s . (2.3.1)

Hence, we get a canonical structure ofDGm,k -module on Ia,b
Gm,k

. Moreover, we have an
isomorphism

Ia,b
Gm,k

∼−→ F∗Ia,b
Gm,k

; sl g · t s �→ qlg ⊗ (sl · t s).

It is straightforward to check that this is an isomorphism of DGm,k -modules. Because
of the existence of Frobenius structure, it follows by [9, 4.4.5] and [8, Thm 2.5.7]
that theDGm,k -module structure naturally extends to aD†

Gm,k
-module structure, and in

particular Ia,b
Gm,k

is an object of F-Isoc††(Gm,k/K ).

The multiplication by sn induces the isomorphism in F-Isoc††(Gm,k/K ):

σ n : Ia,b
Gm,k

∼−→ Ia+n,b+n
Gm,k

(−n), (2.3.2)
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where (−) denotes the Tate twist (cf. [1, 2.7]). Moreover, there is a non-degenerate
pairing

Ia,b
Gm,k

⊗OGm,k
I−b,−a
Gm,k

→ OGm,k (−1); (x(s), g(s)) �→ Ress=0 f (s) · g(−s).

We can check easily that this pairing is compatible with Frobenius structure. By using
[1, Prop 3.12], the pairing induces an isomorphism

D(Ia,b
Gm,k

)
∼−→ I−b,−a

Gm,k
. (2.3.3)

Here, recall that D denotes the dual functor (cf. Theorem 1.8 (1.8)). As a variant, we
put Ia,b

Gm,k,log
:= saO

̂A1
V
[s]t s/sbO

̂A1
V
[s]t s . Then Ia,b

Gm,k,log
is a convergent isocrystal on

the formal log-scheme (̂A1
V , {0}).

2.4 In the rest of this section, we will keep the following notation. Let X be a realizable

variety, f ∈ �(X,OX ) be a fixed function. Put Z := f −1(0)
i

↪→ X
j←↩ Y := X\Z .

Let f |Y : Y → Gm,k be the morphism induced by f and put

Ia,b
f := ( f |Y )+(Ia,b

Gm,k
)[dim Y − 1] ∈ F-Db

ovhol(Y/K ).

For E ∈ HolF (Y/K ), put Ea,b := E ⊗ Ia,b
f [− dim(Y )] (see the notation of ⊗ after

Theorem 1.8). Since the functor − ⊗ Ia,b
f [− dim(Y )] is exact, we get that Ea,b ∈

HolF (Y/K ) and then the object E•,• ∈ HolF (Y/K )�a . We note that since j!, j+ are
exact functors by [3, 1.3.13], these functors preserve admissible objects.

Lemma Let E ∈ HolF (Y/K ). The canonical morphism of lim←→HolF (X/K )

lim←→ j!(E•,•) → lim←→ j+(E•,•)

is an isomorphism.

Proof We put d := dim(Y ). Using the five lemma, we may assume that E ∈
F-Ovhol(Y/K ). The proof is divided into several steps.

(0)By2.2, it is sufficient to check that the canonical homomorphism is an isomorphism
after applying the functor |(X,X), i.e. that the morphism lim←→ ( j, id)!(E•,•|(Y,X)) →
lim←→ ( j, id)+(E•,•|(Y,X)) is an isomorphism, where ( j, id) : (Y, X) → (X, X) is the
morphism of couples induced by j (see notation [3, 1.1.6]). By abuse of notation in
this proof, we simply denote by E := E |(Y,X) (see notation [3, 1.2.9.(iii)]), Ea,b :=
E |(Y,X) ⊗(Y,X) Ia,b

f |(Y,X)[− dim Y ] = Ea,b|(Y,X) (see notation [3, 1.1.6.(iii)]), and
write j : (Y, X) → (X, X) instead of ( j, id).

(1)Weprove the lemma under the following hypotheses: “LetX be a smooth formalV-
scheme with local coordinates denoted by t1, . . . , td whose special fiber is X . For any
i = 1, . . . , d, we putZi = V (ti ).We suppose that there exist an open immersionU ↪→
Y such that T := X\U is a strict normal crossing divisor of X and an overconvergent
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F-isocrystal G on (U, X)/K unipotent along T so that E = ι!(G), where ι : (U, X) →
(Y, X) is the induced morphism of couples (see below in the proof for a concrete
description of the notion of unipotence). We fix 0 ≤ r ′ ≤ r ≤ d. We suppose that the
special fiber of T := ∪1≤n≤rZn (resp. Z := ∪1≤n′≤r ′Zn′ ) is T (resp. Z ).”

We check the step 1) by induction on the integer r ′ (in the induction, the scheme
X can vary and so can f , Y , E , X etc.). Where r ′ = 0, this is obvious. Suppose
r ′ ≥ 1. Recall the functor H†i

Z1
:= R

i�
†
Z1

using the notation of [3, 1.1.8], and

(†Z1) is defined in the same place. Consider the following localization sequence of
F-Ovhol(X, X/K )�

0 H†0
Z1

j!(E•,•) j!(E•,•) (†Z1) j!(E•,•) H†1
Z1

j!(E•,•)

0 H†0
Z1

j+(E•,•) j+(E•,•) (†Z1) j+(E•,•) H†1
Z1

j+(E•,•)

whose horizontal sequences are exact. Put X ′ := X\Z1. By 2.2, the morphism
lim←→ (†Z1) j!(E•,•) → lim←→ (†Z1) j+(E•,•) of lim←→ab F-Ovhol(X ′, X/K ) is an isomor-
phism if and only if so is after applying |(X ′,X ′). By using the induction hypothesis,
this latter is an isomorphism and then the homomorphism lim←→ (†Z1) j!(E•,•) →
lim←→ (†Z1) j+(E•,•) is an isomorphism. Since Z1 ⊂ X\Y , we get R�

†
Z1

j+(E•,•) = 0.

Hence, it is sufficient to check that lim←→H†i
Z1

j!(E•,•) = 0, for any i = 0, 1 by the
exactness of lim←→.

We have a strict normal crossing divisor of Z1 defined by D1 := ⋃r
i=2 Z1 ∩ Zi .

We put U := X \T , and let i1 : Z1 ↪→ X be the canonical closed immersion. Since G
is unipotent, following [23], this is equivalent to saying that there exists a convergent
isocrystal F on the log scheme (X , MT ), where MT means the log structure induced
by T (we keep the same kind of notation below), so that G ∼−→ (†T )(F). By abuse
of notation, we denote by f (which can be written in the form of uta11 · · · tar ′r ′ ∈ OX ,
with ai ∈ N and u ∈ O∗

X ), a lifting of f . We put

Ia,b
f,log := ( f �)∗(Ia,b

Gm,k,log
),

where f � is the composition morphism of formal log-schemes f � : (X , MT ) →
(X , MZ ) → (̂A1

V , M{0}) where the last morphism is induced by f . Since Ia,b
f,log is a

convergent isocrystal on the formal log scheme (X , MT )with nilpotent residues, then
so is

Fa,b := F ⊗OX ,Q
Ia,b
f,log.

Notice that we have the isomorphism in F-Isoc††(Y, X/K ) of the form (†Z)(Ia,b
f,log)

∼−→ Ia,b
f |(Y,X) = sa OX (†Z)Q[s] · f s/sb OX (†Z)Q[s] · f s , which clarifies the nota-

tion.
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We put U1 := Z1\D1, and let ι1 := (�, id, id) : (U1, Z1,Z1) → (Z1, Z1,Z1)

be the canonical morphism of frames. Let N1,Fa,b be the action induced by t1∂1 on
i∗1 (Fa,b) (following the terminology of [3, 3.2.11], this is the residue morphism). We
put

Ga,b := G ⊗(U,X) Ia,b
f |(U,X)[−d] ∈ F-Isoc††(U, X/K ),

where ⊗(U,X) is the functor defined in [3, 1.1.6(iii)]. Since (†T )(Ia,b
f,log)

∼−→
Ia,b
f |(U,X), we have (†T )(Fa,b)

∼−→ Ga,b. By Theorem [3, 3.4.19], we get the iso-
morphisms

H†1
Z1

( j!ι!(Ga,b))
∼−→ i1+ ◦ ι1! ◦ (†D1)

(

coker N1,Fa,b

)

,

H†0
Z1

( j!ι!(Ga,b))
∼−→ i1+ ◦ ι1! ◦ (†D1)

(

ker N1,Fa,b

)

.

Since Ea,b = ι!(G) ⊗(Y,X) Ia,b
f |(Y,X)[−d] ∼−→[3,A6] ι!

(

G ⊗(U,X) Ia,b
f |(U,X)

)[−d] =
ι!(Ga,b), then we get H†i

Z1
j!(Ea,b)

∼−→ H†i
Z1

(ι!(Ga,b)). Hence, by functoriality and

by exactness of the functor i1+ ◦ ι1! ◦ (†D1), we reduce to check that lim←→ N1,Fa,b is an
isomorphism. Since N1,Fa,b = N1,F ⊗ id + id ⊗ N1,Ia,b

f,log
, and since there exists an

integer n (independent of a, b) such that Nn
1,F = 0, then we reduce to checking that

lim←→ N1,Ia,b
f,log

is an isomorphism, which is obvious since N1,Ia,b
f,log

is the multiplication

by s.

(2) Finally, let us reduce the lemma to 1). We proceed by induction on dim X . We can
suppose that j is dominant. Recalling that Y being reduced, there exists a dominant
open immersionU → Y such thatU is smooth andG := ι+(E) ∈ F-Isoc††(U, X/K ),
where ι : (U, X) → (Y, X). By the induction hypothesis, we can suppose that E =
ι!(G). Put T := X\U . Then,we can suppose thatU,Y, X are integral and that ι is affine.
Let α : ˜X → X be a proper surjective generically finite and étale morphism, such that
˜X is smooth and quasi-projective, ˜T := α−1(T ) is a strict normal crossing divisor of
˜X . We put α : (˜X , ˜X) → (X, X) (by abuse of notation), ˜Z := α−1(Z), ˜Y := α−1(Y ),
˜U := α−1(U ), β : (˜Y , ˜X) → (Y, X), γ : (˜U , ˜X) → (U, X), ι̃ : (˜U , ˜X) ↪→ (˜Y , ˜X),
˜j : (˜Y , ˜X) ↪→ (˜X , ˜X), ˜G := γ !(G), ˜E := ι̃!(˜G). Notice that since ˜Z := ( f ◦ α−1(0) is
a divisor included in ˜T , then ˜Z is also a strict normal crossing divisor. By Kedlaya’s
semistable reduction theorem [24], there exists such amorphismα satisfyingmoreover
the following property: the object ˜G ∈ F-Isoc††(˜U , ˜X/K ) is unipotent. We know that
G is a direct factor of H 0γ+(˜G) (see the proof of [12, 6.1.4] at the beginning of
p.433). Then E = ι!(G) is a direct factor of ι!H 0γ!(˜G)

∼−→ H 0β! ◦ ι̃!(˜G). Thus we
are reduced to checking the lemma forH 0β! ◦ ι̃!(˜G). We have

H −dβ! ◦ ι̃!(˜G) ⊗(Y,X) (Ia,b
f |(Y,X))

∼−→ H −dβ!
(

ι̃!(˜G) ⊗(˜Y ,˜X) β+(Ia,b
f |(Y,X))

)

= H −dβ!(˜E ⊗(˜Y ,˜X) I
a,b
˜f

|(˜Y ,˜X)) (�)
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where ˜f = f ◦ α (the equality comes from ι̃!(˜G) = ˜E and β+(Ia,b
f |(Y,X)) =

Ia,b
˜f

|(˜Y ,˜X)). By applying the exact functor j! (resp. j+) to the composition isomor-
phism of (�), we get the first isomorphisms of the following ones:

j!(H −dβ! ◦ ι̃!(˜G) ⊗(Y,X) (Ia,b
f |(Y,X)))

∼−→ j! ◦ H −dβ!(˜E ⊗(˜Y ,˜X) I
a,b
˜f

|(˜Y ,˜X))

∼−→ H −dα! ◦ ˜j!(˜E ⊗(˜Y ,˜X) I
a,b
˜f

|(˜Y ,˜X))

j+(H −dβ! ◦ ι̃!(˜G) ⊗(Y,X) (Ia,b
f |(Y,X)))

∼−→ j+ ◦ H −dβ!(˜E ⊗(˜Y ,˜X) I
a,b
˜f

|(˜Y ,˜X))

∼−→ H −dα! ◦ ˜j+(˜E ⊗(˜Y ,˜X) I
a,b
˜f

|(˜Y ,˜X)).

From 1), The fact that the canonical morphism lim←→˜j!(˜E ⊗(˜Y ,˜X) I
a,b
˜f

|(˜Y ,˜X)[−d]) →
lim←→˜j+(˜E ⊗ Ia,b

˜f
|(˜Y ,˜X)[−d]) is an isomorphism is local in ˜X . Hence, we reduce to the

case where ˜X , ˜T , and ˜Z satisfy the conditions of the part 1) of the proof in place of
respectively X , T , and Z . Hence, from part 1), lim←→˜j!(˜E ⊗(˜Y ,˜X) I

a,b
˜f

|(˜Y ,˜X)[−d]) →
lim←→˜j+(˜E ⊗ Ia,b

˜f
|(˜Y ,˜X)[−d]) is an isomorphism. Then so is lim←→H −dα! ◦ ˜j!(˜E ⊗(˜Y ,˜X)

Ia,b
˜f

|(˜Y ,˜X)) → lim←→H −dα! ◦ ˜j+(˜E ⊗(˜Y ,˜X) I
a,b
˜f

|(˜Y ,˜X)). �	

2.5 Let E ∈ HolF (Y/K ). With the notation of 2.4, we put Ea,b
k := Emax{a,k},max{b,k}

for any integer k ∈ Z. We get E•,•
k ∈ lim←→HolF (Y/K ). Now, for E ∈ HolF (Y/K ), we

put
�

a,b
!+ (E) := lim←→ j+(E•,•

a )/lim←→ j!(E•,•
b )

in lim←→HolF (X/K ). By Lemma 2.4, this is in fact6 in HolF (X/K ), which yields a

functor �
a,b
!+ : HolF (Y/K ) → HolF (X/K ). The following properties can be checked

easily:

1. By (2.3.3), we have D ◦ �
a,b
!+ ∼= (�

−b,−a
!+ ◦ D)(1).

2. The isomorphism σ n of 2.3.2 induces an isomorphism �
a,b
!+

∼−→ �
a+n,b+n
!+ (−n).

6 Since this deduction is formal and not explained in [5], further explanations might be needless for
experts, but we point out that the details are written down in Lichtenstein’s thesis [26, Prop 3.21]. However,
there is a small mistake in Lichtenstein’s argument, as well as some obvious typos: he claims that there

exists an isomorphism of diagrams ϕ̃Fa,b
!

∼−→ ϕ̃Fa,b∗ for some ϕ ≥ 1Z using the notation in ibid.,

but this is wrong in general. This issue can be resolved as follows: Since α : lim←→Fa,b
! → lim←→Fa,b∗ is

assumed to be an isomorphism, (2.1.1) tells us that there exist ϕ ≥ 1Z and a homomorphism of diagram

β : ϕ̃Fa,b∗ → Fa,b
! which induces the inverse of α if we pass to the pro-ind category. Now, we consider

the last big diagram in the proof of ibid.. Because of the mistake, we do not have the isomorphism #,

but just the canonical homomorphism lim←→Fa,b
!,ϕ


→ lim←→Fa,b
∗,ϕ


. However, we do have the homomorphism

#′ : lim←→Fa,b
∗,ϕ


→ lim←→Fa,b
!,
 (from the target of # to the target of (1)), induced by β, making the diagram

commutative. Other homomorphisms or isomorphisms remain to be the same: since the isomorphism # is
used only to show the existence of the isomorphism cokerk,
 = coker(�), the existence of #′ is enough to
show the equality.
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We put �
(i)
f := �

i,i
!+, �

(i)
f := �

i,i+1
!+ , and put � f := �

(0)
f , � f := �

(0)
f . The functor

� f is called the unipotent nearby cycle functor. The isomorphisms

lim←→ j!(E•,•
i )/lim←→ j!(E•,•

i+1)
∼= j!(E)(i), lim←→ j+(E•,•

i )/lim←→ j+(E•,•
i+1)

∼= j+(E)(i)

induce exact sequences

0 → j!(E)(i)
α−−→ �

(i)
f (E)

β−−→ �
(i)
f (E) → 0,

0 → �
(i+1)
f (E)

β+−→ �
(i)
f (E)

α+−→ j+(E)(i) → 0.

We define a functor 
 f : HolF (X/K ) → HolF (Z/K ) as follows. Let E ∈
HolF (X/K ), and put EY := j+(E). Let γ− : j!(EY ) → E and γ+ : E → j+(EY )

be the adjunction homomorphisms. Consider the sequence

j!EY
(α−,γ−)−−−−→ � f (EY ) ⊕ E (α+,−γ+)−−−−−→ j+(EY ). (2.5.1)

The cohomology of this sequence is
 f (E), and the functor
 f is called the unipotent
vanishing cycle functor.

Remark 2.6 (i) In fact we have checked in the key lemma 2.4 that the canonical
morphism α•,• : j!(E•,•) → j+(E•,•) of HolF (X/K )�a becomes an isomorphism in

(S f
a )−1HolF (X/K )�a . We remark that this is equivalent to saying that there exist

an integer N large enough and a morphism β•,• : j+(E•+N ,•+N ) → j!(E•,•) of
HolF (X/K )�a so that the morphisms α•,• ◦ β•,• and β•,• ◦ α•+N ,•+N are the canon-

ical morphisms. Since the multiplication by sN factors through j+(E•,•)(N )
∼−→

j+(E•+N ,•+N ) → j+(E•,•), we get that coker αa,b and ker αa,b are killed by sN . For
any integer i ≥ 0, this implies that the projective system coker (siαa,b(i)) stabilizes
for b large enough (with a and i fixed). We remark that this limit is isomorphic to
�

a,a+i
!+ , which is the analogue of the remark by Beilinson and Bernstein in [7, 4.2].
(ii) Crew constructed in [22] nearby and vanishing cycle functors in the local sit-

uation. These functors should be closely related to what we defined here. Let us take
X = A

1, and f = 1. Let S the formal disk around 0 ∈ X , and let M be a Dan
S -

module with Frobenius structure using the notation of [ibid., (4.1.10)]. Let Mcan be
the canonical extension ofM (cf. [ibid., 8.2]), which is in HolF (X). Then we should
have

� f (Mcan) ⊗ K ur ∼= V(D(M))I , 
 f (Mcan) ⊗ K ur ∼= W(D(M))I ,

where V and W are nearby and vanishing cycle functor defined in [22, (6.1.7)], K ur

denotes the maximal unramified extension of K , and I is the inertia subgroup of the
Galois group of k((t)). We did not work out in detail to check this. The computation
[3, 1.5.9 (iii)] might be used to show this.

Proposition 2.7 The functors�
a,b
!+ and
 f are exact. When E is inHolF (Z/K ), then

E ∼= 
 f (E) canonically.



On Beilinson’s equivalence for p-adic cohomology 607

Proof The exactness of�a,b
!+ follows by that of j! and j+. The exactness of
 f follows

since α− is injective and α+ is surjective. The last claim follows by definition. �	

Remark Since we do not use it in the proof of the main theorem, we do not go into the
details, but it is straightforward to get an analogue of [6, Prop 3.1], a gluing theorem
of holonomic modules.

3 Comparison of Euler characteristics

Let X be a realizable k-variety, pX : X → Spec k be the structural morphism and
E ∈ Db

hol,F (X/K ). We put χ(E) := ∑

i∈Z(−1)i dimK Hi pX+(E) and χc(E) :=
∑

i∈Z(−1)i dimK Hi pX !(E).We denote by K (Db
hol,F (X/K )) theGrothendieck group

of the triangulated category Db
hol,F (X/K ). We put K (X) := K (Db

hol,F (X/K )). We

simply denote by [ ] : Db
hol,F (X/K ) → K (X) the additive universal function.

If E ′ → E → E ′′ → E[1] is an exact triangle of Db
hol,F (X/K ) then we have

the equalities χ(E) = χ(E ′) + χ(E ′′) and χc(E) = χc(E ′) + χc(E ′′). Hence, by
the universal property, χ and χc factors respectively as homomorphisms of groups
χ : K (X) → Z and χc : K (X) → Z.

Let f : X → Y be amorphism of realizable k-varieties. Similarly, the push-forward
f+ and the extraordinary push-forward f! factors respectively as homomorphisms of
groups [ f ]+ : K (X) → K (Y ) and [ f ]! : K (X) → K (Y ).

Lemma 3.1 Let f : X → A
1
k be a morphism of realizable k-varieties. Let Y :=

f −1(Gm,k) j : Y ⊂ X be the open immersion. We have the equality [ j]+ = [ j]!, i.e.
[ j]+ commutes with dual homomorphisms.

Proof From 2.5 for any E ∈ Db
hol,F (X/K ), we have the exact sequences

0→ j!(E)
α−−→ � f (E)

β−−→ � f (E) → 0, 0 → � f (E)(1)
β+−→ � f (E)

α+−→ j+(E)→ 0,

which yield the lemma. �	

Theorem 3.2 Let f : X → Y be a morphism of realizable k-varieties. We have the
equality [ f ]+ = [ f ]!.

Proof Using 3.1, we can follow the (beginning of the) proof of [25, 1.1]. �	

Corollary 3.3 Let X be a realizable k-variety. Let E ∈ Db
hol,F (X/K ). We have the

equality χ(E) = χc(E). In other words, χ(E) = χ(DX (E)).
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