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Abstract For every commutative ring A, one has a functorial commutative ring W (A)

of p-typical Witt vectors of A, an iterated extension of A by itself. If A is not commu-
tative, it has been known since the pioneering work of L. Hesselholt that W (A) is only
an abelian group, not a ring, and it is an iterated extension of the Hochschild homol-
ogy group H H0(A) by itself. It is natural to expect that this construction generalizes
to higher degrees and arbitrary coefficients, so that one can define “Hochschild–Witt
homology” W H H∗(A, M) for any bimodule M over an associative algebra A over a
field k. Moreover, if one want the resulting theory to be a trace theory, then it suffices
to define it for A = k. This is what we do in this paper, for a perfect field k of positive
characteristic p. Namely, we construct a sequence of polynomial functors Wm , m ≥ 1
from k-vector spaces to abelian groups, related by restriction maps, we prove their
basic properties such as the existence of Frobenius and Verschiebung maps, and we
show that Wm are trace functors. The construction is very simple, and it only depends
on elementary properties of finite cyclic groups.
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Introduction

Recall that to any commutative ring A, one canonically associates the ring W (A) of
p-typical Witt vectors of A (a reader not familiar with the subject can find a great
overview for example in [12, Section 0.1]). Witt vectors are functorial in A, and W (A)

is the inverse limit of rings Wm(A) of m-truncated p-typical Witt vectors numbered
by integers m ≥ 1. We have W1(A) ∼= A, and for any m, Wm+1(A) is an extension of
A by Wm(A).

If A is annihilated by a prime p and perfect—that is, the Frobenius endomorphism
F : A → A is bijective—then one has Wm(A) ∼= W (A)/pm , and in particular, A ∼=
W (A)/p. If A is not perfect, this is usually not true. However, if A is sufficiently nice—
for example, if it is the algebra of functions on a smooth affine algebraic variety—then
W (A) has no p-torsion. Thus roughly speaking, theWitt vectors construction provides
a functorial way to associate a ring of characteristic 0 to a ring of characteristic p.

Historically, this motivated a lot of interest in the construction. In particular, one
of the earliest attempts to construct a Weil cohomology theory, due to Serre [23], was
to consider H

�

(X, W (OX )), where X is an algebraic variety over a finite field k of
positive characteristic p, and W (OX ) is the sheaf obtained by taking the Witt vectors
of its structure sheaf OX .

This attempt did not quite work, and the focus of attention switched to other coho-
mology theories discovered by A. Grothendieck: étale cohomology first of all, but also
cristalline cohomology introduced slightly later. Much later, Illusie [12] discovered
what could be thought of as a vindication of Serre’s original approach. They proved
that any smooth algebraic variety X over a perfect field k of positive characteristic
can be equipped with a functorial de Rham–Witt complex W�

�

X , an extension of the
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usual de Rham complex �
�

X . In degree 0, one has W�0
X

∼= W (OX ), but in higher
degrees, one needs a new construction. The resulting complex computes cristalline
cohomology H

�

cris(X) of X , in the sense that for proper X , one has a canonical iso-
morphism H

�

cris(X) ∼= H
�

(X, W�
�

X ), and cristalline cohomology is known to be a
Weil cohomology theory.

Yet another breakthrough in our understanding of Witt vectors happenned in 1995,
and it was due to Hesselholt [9]. What he did was to construct Witt vectors W (A)

for an arbitrary associative ring A. Hesselholt’s W (A) is also the inverse limit of its
truncated version Wm(A), and if A is commutative and unital, then it coincides with
the classicalWitt vectors ring. But if A is not commutative, W (A) is not even a ring—it
is only an abelian group. We have W1(A) = A/[A, A], the quotient of the algebra A
by the subgroup spanned by commutators of its elements, and for any m, Wm+1(A) is
an extension of A/[A, A] by a quotient of Wm(A).

In the context of non-commutative algebra and non-commutative algebraic geome-
try, one common theme of the two constructions is immediately obvious: Hochschild
homology. On one hand, for any associative ring, A/[A, A] is the 0-th Hochschild
homology group H H0(A). On the other hand, for a smooth affine algebraic variety
X = Spec A, the spaces H0(X,�i

X ) of differential forms on X are identified with
the Hochshchild homology groups H Hi (A) by the famous theorem of Hochschild,
Kostant and Rosenberg. Thus one is lead to expect that a unifying theory would
use an associative unital k-algebra A as an input, and product what one could call
“Hochschild–Witt homology groups” W H H �(A) such that in degree 0, W H H0(A)

coincideswithHesselholt’sWitt vectors, while for a commutative Awith smooth spec-
trum X = Spec A,wewouldhavenatural identificationsW H Hi (A) ∼= H0(X, W�i

X ).
But “expect” is perhaps a wrong word here, since this relation to Hochschild

homology is already made abundantly clear in Hesselholt’s work. In fact, while the
main construction in [9] is purely algebraic, its origins are in algebraic topology—
specificaly, the theory of Topological Cyclic Homology and cyclotomic trace of
Bokstedt et al. [3,11], itself a development of Topological Hochschild Homology
of Bokstedt [2]. Among other things, [3] associates a certain spectrum T R(A, p)

to any ring spectrum A. If A is a k-algebra, char k = p, then T R(A, p) is an
Eilenberg-Mac Lane spectrum, thus essentially a chain complex. The Witt vectors
group W (A) constructed explicitly by Hesselholt is the homology group of this
complex in degree 0. He also proved [8,10] that for a commutative k-algebra A
with smooth spectrum X , all the homotopy groups of the spectrum T R(A, p) coin-
cide with the de Rham–Witt forms H0(X, W�

�

X ). Thus the homotopy groups of
T R(A, p) are already perfectly good candidates for hypothetical Hochschild–Witt
homology groups.What we lack is an algebraic construction of these groups in degrees
> 0.

However, while the relevance of Hochschild homology for Witt vectors has been
well-understood by topologists from the very beginning, one of its features has been
somewhat overlooked. Namely, Hochschild homology is in fact a theory with two
variables—an algebra A and an A-bimodule M (that is, a module over the product
Ao ⊗ A of A with its opposite algebra Ao). To obtain H H �(A), one takes as M the
diagonal bimodule A, but the groups H H �(A, M) are well-defined for any bimodule.
Moreover, Hochschld homology has the following trace-like property: for any two
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algebras A, B, a left module M over Ao ⊗ B, and a left module N over Bo ⊗ A, we
have a canonical isomorphism

H H �(A, M
L⊗B N ) ∼= H H �(B, N

L⊗A M),

subject to some natural compatibility conditions. This was axiomatized and studied
in the recent work of Ponto [22], with references to even earlier work. It has also been
observed and axiomatized under the name of “trace theory” and “trace functor” in
[15]. The essential point is this: if one wants to have a generalization of Hochschild
homology that is a functor of two variables A, M and has trace isomorphisms, then it
suffices to define it for A = k—there is general machine that automatically produces
the rest. Thus one can trade the first variable for the second one: instead of constructing
W H H �(A) for an arbitrary A, one can construct W H H �(k, M) for an arbitrary k-
vector space M . This is hopefully simpler. In particular, it is reasonable to expect that
W H Hi (k, M) = 0 for i ≥ 1, so that the problem reduces to constructing a single
functor from k-vector spaces to abelian groups.

One possible approach to this is to go back to the original paper [1] of Bloch
that motivated [8,12], and use algebraic K -theory. It seems that this approach indeed
works; in fact, a definition along these lines has been sketched by the author a couple
of years ago and presented in several talks. The main technical ingredient of the
definition is a certain completed version of K1 of free non-commutative algebras in
several variables. The construction works over an arbitrary commutative ring, not just
over a perfect field, and provides a version of “universal”, or “big” Witt vectors; the
p-typical Witt vectors that we discuss here are then extracted by a separate procedure.
Unfortunately, the complete construction turns out to be longer than one would wish,
and the rather elementary nature of the resulting Witt vectors functor is somewhat
obscured by the machinery needed to define it. This is one of the reasons why despite
many promises, the story has not been yet written down.

The goal of the present paper is to alleviate the situation by presenting a very simple
and direct alternative construction motivated by recent work of V. Vologodsky. In a
nutshell, here is the basic idea: instead of trying to associate an abelian group to a
k-vector space M directly, one should lift M to a free W (k)-module in some way,
use it for the construction, and then prove that the result does not depend on the
lifting. The resulting definition only works over a perfect field k of characteristic p
and assumes that we already know the classical Witt vectors ring W (k). However,
it produces directly an inverse system of p-typical Witt vectors functors Wm , and it
only uses elementary properties of cyclic groups Z/pn

Z, n ≥ 0. The functors Wm are
polynomial, thus the “polynomial functor” of the title.

The paper is organized as follows. The longish Sect. 1 contains the necessary
preliminaries. Most of the material is standard, and we include it mostly to set up
notation. We also give a short recollection on the theory of Mackey functors, the only
piece of relatively high technology required in the body of the paper. In principle, even
this could have been avoided. However, Mackey functors do help—in particular, they
provide for free some very useful canonical filtrations on ourWitt vectors, and explain
the origin of the projection formula relating the Frobenius and the Verschiebungmaps.
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Sections 1.3 and 1.4 give an overview of Mackey functors, Sect. 1.5 contains some
less standard material specifically adapted to our needs, and Sect. 1.6 shows how
things work for cyclic groups. We should mention that an intimate relation between
Z/pm

Z-Mackey functors and m-truncated p-typical Witt vectors is very well known
and documented in the literature.

Having finished with the preliminaries, we give our two main definitions, those of
Witt vectors and of restriction maps between them. This, together with the proof of
correctness, is the subject of Sect. 2. Section 3 explores the basic structure of the Witt
vectors functors Wm constructed in Sect. 2. We also prove that Wm are pseudotensor
functors (this is Sect. 3.3), and give a slightly more explicit inductive description of
Wm that is closer to [9] and to the original construction of Witt (this is Sect. 3.4).
Then in the last Sect. 4, we recall the definition of a trace functor from [15], and prove
that our Witt vectors Wm are trace functors in a natural way. We finish the paper with
some results on compatibility between all the structures we have on Wm , namely, the
pseudotensor structure of Sect. 3.3, the trace functor structure of Sect. 4.2, and some
remnants of the Mackey functors structure that they carry by definition.

As mentioned above, after we define Witt vectors functors on k-vector spaces and
equip themwith trace isomorphisms, constructing a Hochschild–Witt complex for any
k-algebra A with coefficients in an A-bimodule M becomes automatic. However, in
the present paper, we do not do this. We feel that exploring the resulting Hochschild–
Witt complex deserves a separate treatment, and we relegate it to a companion paper
[18]. The same goes for the comparison results with Hesselholt’sWitt vectors and with
the de Rham–Witt complex. Any possible comparison results with T R(A, p) would
require much more technology than we presently have, so will return to it elsewhere.
Another very interesting subject for comparison is a version of non-commutative Witt
vectors given recently by Cuntz and Deninger [4]. At the moment, we do not know
what is the relation between the two constructions, and we feel that it deserves further
research.

1 Preliminaries

1.1 Small categories

For any category C, we will denote by Co the opposite category. We will denote by
pt the point category (one object, one morphism). For any group G, we will denote
by ptG the groupoid with one object with automorphism group G. For any integer
l ≥ 1, we will simplify notation by letting ptl = ptZ/ lZ. We note that for any functor
F : C1 → C2 between categories C1, C2, giving a G-action on F is equivalent to
extending it to a functor

˜F : ptG × C1 → ptG × C2 (1.1)

that commutes with projections to ptG . If the functor F admits a left resp. right-adjoint
functor F ′, then G acts on F ′ by adjunction, and ˜F is left resp. right-adjoint to ˜F ′.

For any small category I and any category C, we will denote by Fun(I, C) the
category of functors from I to C. For any ring A, we denote by A-mod the cate-
gory of left A-modules, and for any small category I , we will simplify notation by
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letting Fun(I, A) = Fun(I, A-mod). This is an abelian category; we will denote by
D(I, A) its derived category. In particular, for anygroupG, Fun(ptG, A) is the category
A[G]-mod of left modules over the group algebra A[G]. For any functor γ : I → I ′
between small categories, we denote by γ ∗ : Fun(I ′, A) → Fun(I, A) the pullback
functor, and we denote by γ!, γ∗ : Fun(I, A) → Fun(I ′, A) its left and right adjoint
(the left and right Kan extensions along γ ). The functor γ ∗ is exact, hence descends
to derived categories, and the derived functors L

�

γ!, R
�

γ∗ : D(I, A) → D(I ′, A) are
left and right adjoint to γ ∗ : D(I ′, A) → D(I, A).

If the ring A is commutative, then the category Fun(I, A) is a symmetric unital
tensor category with respect to the pointwise tensor product. For any functor γ : I ′ →
I , the pullback functor γ ∗ is a tensor functor. Recall that a functor F : C1 → C2
between unital symmetric monoidal categories is pseudotensor if it is equipped with
functorial maps

ε : 1 → F(1), μ : F(M) ⊗ F(N ) → F(M ⊗ N ), M, N ∈ C1, (1.2)

where 1 stands for the unit object, and these maps are associative and unital in the
obvious sense. A pseudotensor functor is symmetric if the maps μ are also commu-
tative. Then a right-adjoint to a symmetric tensor functor is automatically symmetric
pseudotensor by adjunction. In particular, for any functor γ : I ′ → I , the functor
γ∗ : Fun(I ′, A) → Fun(I, A) is symmetric pseudotensor.

We will assume known the notions of a fibration, a cofibration and a bifibration
of small categories originally introduced in [7]. We also assume known the following
useful base change lemma: if we are given a cartesian square

I ′
1

f1−−−−→ I1

π ′
⏐

⏐

�

⏐

⏐

�
π

I ′ f−−−−→ I

of small categories, and π is a cofibration, then π ′ is a cofibration, and the base change
map L

�

π ′
! ◦ f ∗

1 → f ∗ ◦ L
�

π! is an isomorphism. Dually, if π is a fibration, then π ′ is
a fibration, and f ∗ ◦ R

�

π∗ ∼= R
�

π ′∗ ◦ f ∗
1 . For a proof, see e.g. [13, Lemma 1.7].

1.2 Trace maps

One specific example of a base change situation is a bifibration π : I ′ → I whose
fiber is equivalent to a groupoid ptG . In this case, for any E ∈ Fun(I ′, A) and any
object i ′ ∈ I ′ with image i = π(i ′) ∈ I , the A-module E(i ′) carries a natural action
of the group G, and we have base change isomorphisms

π!E(i) ∼= E(i ′)G , π∗E(i) ∼= E(i ′)G,

where in the right-hand side, we have coinvariants and invariants with respect to G. If
the group G is finite, then for any A[G]-module V , we have a natural trace map
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trG =
∑

g∈G

g : VG → V G (1.3)

whose cokernel is the Tate cohomology group Ȟ0(G, V ). Taken together, these maps
then define a natural trace map

trπ : π!E → π∗E . (1.4)

This map is functorial in E and compatible with the base change. If E = π∗E ′ for
some E ′ ∈ Fun(I, A), then

trπ = |G| id : π!π∗E ′ → π∗π∗E ′, (1.5)

where |G| is the order of the finite group G. In the general case, we denote by tr†π :
E → E the composition

E
l−−−−→ π∗π!E

π∗(trπ )−−−−→ π∗π∗E
r−−−−→ E, (1.6)

where l and r are the adjunction maps, and we denote by

π̌∗ : Fun(I ′, A) → Fun(I, A) (1.7)

the functor sending E to the cokernel of the map (1.4). For any i ′ ∈ I ′ with i = π(i ′),
we have a natural identification π̌∗(E)(i) ∼= Ȟ0(G, E(i ′)). We note that even if the
categories I , I ′ are not small, the map tr†π : E → E of (1.6) is perfectly well-defined
for every functor E : I ′ → k-mod.

Lemma 1.1 Assume that the ring A is commutative. Then the functor π̌∗ of (1.7) is
pseudotensor.

Proof Since by definition, π̌∗ is a quotient of a pseudotensor functor π∗, it suffices to
check that themapsμ of (1.2) for the functorπ∗ descend tomaps π̌∗(M)⊗A π̌∗(N ) →
π̌∗(M ⊗A N ), M, N ∈ Fun(I ′, A). This can be checked pointwise on I . Thus we may
assume that I = pt is a point, M and N are A[G]-modules, and π̌∗ is the Tate
cohomogy functor Ȟ0(G,−). Then the claim is well-known (and easily follows from
the obvious equality trG(m ⊗ n) = trG(m) ⊗ n, m ∈ M , n ∈ N G ⊂ N ). ��

Finally, assume that we have a normal subgroup N ⊂ G with the quotient W =
G/N , and a bifibration π : I ′′ → I with fiber ptG factors as π = π ′ ◦ π ′′, where
π ′′ : I ′′ → I ′ is a bifibration with fiber ptN , and π ′ : I ′ → I is a bifibration with
fiber W . Then we have a commutative diagram

π ′
! ◦ π ′′

!
∼−−−−→ π!

trπ ′−−−−→ π ′∗ ◦ π ′′
!

π ′! (trπ ′′ )
⏐

⏐

�

⏐

⏐

�
trπ

⏐

⏐

�
π ′∗(trπ ′′ )

π ′
! ◦ π ′′∗

trπ ′−−−−→ π∗
∼−−−−→ π ′∗ ◦ π ′′∗ .

(1.8)
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In particular, we have

trπ = π ′∗(trπ ′′) ◦ trπ ′ = trπ ′ ◦π ′
! (trπ ′′). (1.9)

Moreover, taking cokernels of the vertical maps in (1.8), we obtain natural maps

lπ :π ′
! ◦ π̌ ′′∗ = π ′

! (Coker(trπ ′′)) ∼= Coker(π ′
! (trπ ′′)) → π̌∗,

rπ :π̌∗ → Coker(π ′∗(trπ ′′)) → π ′∗(Coker(trπ ′′)) = π ′∗ ◦ π̌ ′′∗ ,

such that rπ ◦ lπ = trπ ′ . By adjunction, these maps induce maps

l†π : π̌ ′′∗ → π
′∗ ◦ π̌∗, r†π : π

′∗ ◦ π̌∗ → π̌ ′′∗ , (1.10)

and we have

r†π ◦ l†π = tr†
π ′ : π̌ ′′∗ → π̌∗. (1.11)

1.3 Mackey functors

Mackey functors were introduced by Dress [5], with current definition due to Lindner
[20]. Good expositions of the theory can be found e.g. [21,24]. We only give a brief
overview following [16, Section 2].

Assume given a group G and a ring A. Denote by�G the category of finite G-sets—
that is, finite sets equipped with a left G-action. Denote by Q�G the category with
the same objects, and with morphisms from S1 to S2 given by isomorphism classes of
diagrams

S1
p1←−−−− S

p2−−−−→ S2 (1.12)

in �G , with composition given by pullbacks. Any map f : S1 → S2 between G-set
defines two maps f∗ : S1 → S2, f ∗ : S2 → S1 in the category Q�G , one by letting
p1 = id, p2 = f in (1.12), and the other by letting p1 = f , p2 = id. Sending f to
f∗ resp. f ∗ gives inclusions �G, �o

G ⊂ Q�G . Say that a functor E ∈ Fun(�o
G, A) is

additive if for any S, S′ ∈ �G with disjoint union S
∐

S′, the natural map

E(S
∐

S′) → E(S) ⊕ E(S′)

is an isomorphism. An A-valued G-Mackey functor is a functor M from Q�G to left
A-modules whose restriction to �o

G is additive. Mackey functors form a full abelian
subcategory M(G, A) ⊂ Fun(Q�G, A). The embedding functor M(G, A) →
Fun(Q�G, A) admits a left-adjoint additivization functor Add : Fun(Q�G, A) →
M(G, A).

If G = {e} is the trivial group consisting only of its unity element e, so that�G = �

is the category of finite sets, then the category Q� is in fact equivalent to the category
of free finitely generated commutative monoids, andM(G, A) is naturally equivalent
to A-mod. The functor ˜M : Q� → A-mod corresponding to an A-module M under
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the equivalence sends a finite set S to M[S], the sum of copies of the module M
numbered by elements of the set S.

In general, any finite G-set S decomposes into a disjoint union of G-orbits: we have

S =
∐

s∈G\S

[G/Hs], (1.13)

where Hs ⊂ G are cofinite subgroups, and [G/H ], H ⊂ G a cofinite subgroup denotes
the quotient G/H considered as a G-set via the action by left shifts. Then by additivity,
the values of a G-Mackey functor M at all finite G-sets are completely determined by
its values M([G/H ]), H ⊂ G a cofinite subgroup. To determine M itself, one needs
to specify also the maps f∗ : M([G/H1]) → M([G/H2]), f ∗ : M([G/H2]) →
M([G/H1]) for any G-equivariant map f : [G/H1] → [G/H2]. For any composable
pair of maps f , g, we must have f∗ ◦ g∗ = ( f ◦ g)∗, g∗ ◦ f ∗ = ( f ◦ g)∗. In addition,
given two maps f : [G/H1] → [G/H ], g : [G/H2] → [G/H ], we must have

g∗ ◦ f∗ =
∑

s

fs∗ ◦ g∗
s , (1.14)

where the sum is over all the terms [G/Hs] in the orbit decomposition (1.13) of
the fibered product S = [G/H1] ×[G/H ] [G/H2], and fs : [G/Hs] → [G/H2],
gs : [G/Hs] → [G/H1] are the natural projections. We note that the existences of the
maps f , g implies that H1, H2 ⊂ G can be conjugated to a subgroup in H ⊂ G. If
we do the conjugation, then we have a natural identification

G\S = G\([G/H1] ×[G/H ] [G/H2]) ∼= H\([H/H1] × [H/H2]) ∼= H1\H/H2.

Because of this, (1.14) is known as the double coset formula.

1.4 Fixed points and products

For any subgroup H ⊂ G, a finite G-set S is also an H -set by restriction, so that
we have a natural functor ψ H : �G → �H . This functor preserves pullbacks, thus
induces a functor Qψ H : Q�G → Q�H . The Kan extension Qψ H

! then sends
additive functors to additive functors, so that we obtain a functor

�H = Qψ H
! : M(G, A) → M(H, A).

This is known as the categorical fixed points functor. Note that the centralizer Z H ⊂ G
of the group H ⊂ G acts onψ H , thus on�H , so that�H can be promoted to a functor

˜�H : M(G, A) → M(H, A[Z H ]). (1.15)

If H ⊂ G is cofinite, then ψ H admits a left-adjoint functor γ H : �H → �G that
sends a finite H -set S to (G × S)/H , where H acts on G by right shifts. This functor
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also preserves pullbacks, and moreover, the induced functor Qγ H Q�H → Q�G : is
also adjoint to Qψ H (both on the left and on the right). Then by adjunction, we have

�H ∼= Qγ H∗. (1.16)

On the other hand, assume given a normal subgroup N ⊂ G, and let W = G/N be
the quotient group. Then every finite W -set is by restriction a finite G-set, so that we
obtain a functor �W → �G . This has a right-adjoint ϕN : �G → �W sending a G-set
S to the fixed points subset SN . The functor ϕN preserves pullbacks, and the induced
functor QϕN

! preserves additivity, so that we obtain the geometric fixed points functor


N = QϕN
! : M(G, A) → M(W, A).

The functor 
N has a right-adjoint inflation functor

InflN = ϕN∗ : M(W, A) → M(G, A).

The inflation functor is fully faithful. Its essential image consists ofG-Mackey functors
that are supported at N in the sense that M([G/H ]) = 0 unless H contains N .

Assume now that the ring A is commutative. The Cartesian product preserves
pullbacks in each variable, this gives a functor

m : Q�G × Q�G → Q�G . (1.17)

The Kan extension m! does not in any sense preserve additivity; however, one can still
define a product on the category M(G, A) by setting

M1 ◦ M2 = Add(m!(M1 �A M2)). (1.18)

This is a symmetric unital tensor product. It is right-exact in each variable. If G = {e}
is the trivial group, so thatM(G, A) ∼= A-mod, then M1 ◦ M2 ∼= M1 ⊗A M2, and the
unit object is the free module A. In general, the unit object is the so-called Burnside
Mackey functor A given by

A = Add(Qp! A), (1.19)

where p : � → �G is the tautological embedding sending a finite set to itself with
the trivial G-action.

Since ψ H ◦ m ∼= m ◦ (ψ H × ψ H ) and ϕH ◦ m ∼= m ◦ (ϕH × ϕH ), both fixed
points functors �H , 
H are tensor functors with respect to the product (1.18). Since
the isomorphism ψ H ◦ m ∼= m ◦ (ψ H × ψ H ) is Z H -equivariant, the extended fixed
points functor ˜�H of (1.15) is also a tensor functor.

While the product M1 ◦ M2 of two G-Mackey functors M1, M2 does not admit a
simple description, such a description is possible for the spaces of maps from M1 ◦
M2 → M3 to a third G-Mackey functor M3. Namely, we have the following useful
result.
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Lemma 1.2 Assume given a commutative ring A, a group G, and three G-Mackey
functors M1, M2, M3 ∈ M(G, A). Then giving a map

μ : M1 ◦ M2 → M3

is equivalent to giving a map μ : M1([G/H ]) ⊗A M2([G/H ]) → M3([G/H ]) for
any cofinite subgroup H ⊂ G such that for any map f : [G/H ′] → [G/H ] of G-sets,
we have

μ ◦ ( f ∗
1 × f ∗

2 ) = f ∗
3 ◦ μ,

μ ◦ ( f 1∗ × id) = f 3∗ ◦ μ ◦ (id× f ∗
2 ),

μ ◦ (id× f 2∗ ) = f 3∗ ◦ μ ◦ ( f ∗
1 × id),

(1.20)

where f ∗
1 , f ∗

2 , f ∗
3 , resp. f 1∗ , f 2∗ , f 3∗ are the maps f ∗ resp. f∗ for the Mackey functors

M1, M2, M3.

Proof This is a reformulation of [16, Lemma 2.6]. ��
Informally, the first equation in (1.20) means that the maps f ∗ are multiplicative,

and the other two equations say that f∗ satisfies a version of the projection formula
with respect to f ∗. Note that among other things, Lemma 1.2 implies that for any
cofinite H ⊂ G, the evaluation functor M �→ M([G/H ]) has a natural pseudotensor
structure. This can also been seens explicitly as follows. For H = G, we have a
functorial identification

M([G/G]) ∼= Qp∗(M),

where p : � → �G is the tautological embedding of (1.19), so that evaluation at
[G/G] is right-adjoint to the functor Qp!. Since Qp commutes with the product
functor (1.17), Qp! is tensor, and Qp∗ is pseudotensor by adjunction. For a general
cofinite H , precompose with the tensor functor �H .

1.5 The functor Q

If the group G is finite, then the trivial subgroup {e} ⊂ G is cofinite, and the centralizer
Z{e} ⊂ G is the whole G. Denote by

U = ˜�{e} : M(G, A) → M({e}, A[G]) ∼= A[G]-mod (1.21)

the corresponding extended fixed points functor (1.15). By (1.16), U sends a Mackey
functor M ∈ M(G, A) to its value M([G/{e}]) at the biggest G-orbit [G/{e}], and G
acts on M[G/{e}] via its action on G = [G/{e}] by right shifts. The functor U has a
left and a right-adjoint L , R : A[G]-mod ∼= M({e}, A[G]) → M(G, A) given by

L(E) = (ψ∗(E))G, R(E) = (ψ∗(E))G, E ∈ A[G]-mod, (1.22)
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where we simplify notation by writing ψ = ψ {e}, and G acts both on E and on ψ .
Explicitly, for any A[G]-module E and any subgroup H ⊂ G, we have

L(E)([G/H ]) ∼= (E[G/H ])G ∼= EH ,

R(E)([G/H ]) ∼= (E[G/H ])G ∼= E H .
(1.23)

We note that E H , EH only depend on H and not on G. In fact, for any subgroup
H ⊂ G, the isomorphisms (1.16) and (1.22) provide canonical identifications

�H L(E) ∼= L ′(E ′), �H R(E) ∼= R′(E ′), E ∈ A[G]-mod, (1.24)

where L ′, R′ : R[H ]-mod → M(H, A) are the functors L , R for the group H , and
E ′ is E treated as an A[H ]-module by restriction. In particular, taking H = {e}, we
see that U ◦ L ∼= U ◦ R ∼= Id, so that both L and R are fully faithful. By adjunction,
we then have a natural trace map

tr : L → R. (1.25)

For any subgroup H ⊂ G, it is compatible with the identification (1.24).

Definition 1.3 For any A[G]-module E , the G-Mackey functor Q(E) is the cokernel
of the trace map (1.25).

It is clear that Q(E) is functorial in E , so that we obtain a functor

Q : A[G]-mod → M(G, A).

Explicitly, for any subgroup H ⊂ G, the map L(E)([G/H ]) → R(E)([G/H ])
induced by the trace map (1.25) is the trace map trH of (1.3), and we have the identi-
fication

Q(E)([G/H ]) ∼= Ȟ0(G, E[G/H ]) ∼= Ȟ0(H, E), (1.26)

where as in Sect. 1.1, Ȟ
�

(−,−) stands for Tate cohomology. The maps f∗, f ∗ asso-
ciated to a G-equivariant map f : [G/H ′] → [G/H ] can aslo be described explicitly,
but we will need it only in one case: H = G, H ′ = N is a normal subgroup with the
quotient W = G/N , f : [G/H ] → [G/G] is the only map. Then

f∗ = l†π , f ∗ = r†π , (1.27)

where l†π , r†π are the natural maps (1.10) for the projection π : ptG → pt. We also
note that for any subgroup H ⊂ G, (1.24) provides an identification

�H Q(E) ∼= Q′(E ′), E ∈ A[G]-mod, (1.28)

where E ′ is as in (1.24), and Q′ is the functor Q for the group H .
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We will also need the following slightly more elaborate description of the functor
Q. Let Q˜ψ be the functor (1.1) associated to the action of G on Qψ , and consider the
full embedding

A[G]-mod ∼= M({e}, A[G]) ⊂ Fun(Q�, A[G]) ∼= Fun(ptG × Q�G, A).

Then for any E ∈ A[G]-mod ⊂ Fun(ptG × Q�, A), we have

L(E) = π!Q˜ψ∗E, R(E) = π∗Q˜ψ∗E, (1.29)

where π : ptG × QγG → Q�G is the projection, and the trace map (1.25) coincides
with the trace map trπ of (1.4). Therefore Q(E) ∼= π̌∗Q˜ψ∗E .

Lemma 1.4 For any finite group G and commutative ring A, the functor Q :
A[G]-mod → M(G, A) of Definition 1.3 is symmetric pseudotensor, and for any
subgroup H ⊂ G, the functorial isomorphism (1.26) is compatible with the pseu-
dotensor structures.

Proof Since the functor U is tensor, its right-adjoint R is symmetric pseudotensor by
adjunction. Then as in Lemma 1.1, since Q is a quotient of R, the map ε of (1.2) for
the functor R induces a map ε for Q, and to prove that Q is pseudotensor, it suffices
to show that the maps μ descend to the corresponding maps for Q—the associativity,
commutivity and unitality are then automatic. Moreover, compatibility of (1.26) with
the pseudotensor structures is also automatic, since the second of the isomorphisms
(1.23) is compatible with the pseudotensor structures by adjunction.

Since the product (1.18) is right-exact, Q(M) ◦ Q(N ) is the cokernel of the map

(L(M) ◦ R(N )) ⊕ (R(M) ◦ L(N ))
(tr ◦ id)⊕(id ◦ tr)−−−−−−−−−→ R(M) ◦ R(N )

for any M, N ∈ A[G]-mod, and since R is symmetric, it suffices to show that there
exists a functorial map

L(M) ◦ R(N ) → L(M ⊗ N ) (1.30)

that fits into a commutative diagram

L(M) ◦ L(N )
tr ◦ id−−−−→ R(M) ◦ R(N )

⏐

⏐

�

⏐

⏐

�

μ

L(M ⊗ N )
tr−−−−→ R(M ⊗ N ).

To see this, use (1.29). Denote γ = γ {e}, and let Qγ̃ be the functor (1.1) associated to
the G-action on Qγ . Since the product of a free G-set and an arbitrary G-set is free,
we have a commutative diagram
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Q� × ptG × Q�G
(Qγ̃×id)◦(t×id)−−−−−−−−−→ ptG × Q�G × Q�G

id×m−−−−→ ptG × Q�G

id×Q˜ψ

⏐

⏐

�

∥

∥

∥

Q� × ptG × Q�
(id×m)◦(t×id)−−−−−−−−→ ptG × Q�

Qγ̃−−−−→ ptG × Q�G,

where t : Q� × ptG → ptG × Q� is the transposition, and since Q˜ψ∗ ∼= Qγ̃!, this
diagram together with (1.29) induces a functorial projection formula isomorphism

L(E ⊗A U (M)) ∼= L(E) ◦ M, E ∈ A[G]-mod, M ∈ M(G, A).

By adjunction, this isomorphism is compatible with the trace maps, and the inverse
isomorphism yields the map (1.30). ��

1.6 Cyclic groups

Now fix a prime p, and let G = Zp be the group of p-adic integers. Then the lattice of
cofinite subgroups H ⊂ G is very simple—they are all of the form pm G ⊂ G, m ≥ 0.
In particular, finite G-orbits are numbered by non-negative integers, and it turns out
that the category M(G, A) admits a simple explicit description.

Namely, denote by I the groupoid of G-orbits and their isomorphisms, with [pm] ∈
I being the orbit [G/pm G]. Explicitly, Aut([pm]) = Z/pm

Z, so that I is the disjoint
union of groupoids ptpm , m ≥ 0. Let Ip ⊂ I be the full subcategory spanned by orbits
other than the point (in other words, Ip is the union of groupoids ptpm with m ≥ 1).
Denote by i : Ip → I the natural embedding. On the other hand, for any m ≥ 1,
we have a natural quotient map Z/pm

Z → Z/pm−1
Z and the corresponding functor

ptpm → ptpm−1 . Taking all these functors together, we obtain a functor

π : Ip → I.

The functor π is a bifibration with fiber ptp, so that in particular, we have the trace
map trπ of (1.4).

Lemma 1.5 (i) For any ring A, the categoryM(Zp, A) is equivalent to the category
of triples 〈E, V, F〉 of a object E ∈ Fun(I, A) and two maps

i∗E
V−−−−→ π∗E

F−−−−→ i∗E

such that F ◦ V : i∗E → i∗E is equal to the natural map tr†π of (1.6).
(ii) Assume that the ring A is commutative, and assume given G-Mackey functors

M1, M2, M3 ∈ M(G, A) corresponding to triples 〈E1, V1, F1〉, 〈E2, V2, F2〉,
〈E3, V3, F3〉. Then maps M1 ◦ M2 → M3 are in a natural one-to-one corre-
spondence with maps μ : E1 ⊗A E2 → E3 such that μ ◦ (F1 × F2) = F3 ◦ μ

and

μ ◦ (V1 × id) = V3 ◦ μ ◦ (id×F2), μ ◦ (id×V2) = V3 ◦ μ ◦ (F1 × id).
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Proof By definition, we have a natural embedding e : I → �G that extends further
to an embedding ẽ : I → Q�G . Fix a map ρ : [G/pm+1G] → [G/pm G] for every
m ≥ 0. Then any morphism f : [G/pnG] → [G/pm G] in �G uniquely decomposes
as

f = f ◦ ρn−m, f ∈ Aut([G/pm G]), (1.31)

and all the maps ρ together define a map of functors ρ : e◦ i → e◦π . In one direction,
the equivalence of (i) sends a G-Mackey functor M ∈ M(G, A) to ẽ∗M ∈ Fun(I, A),
with V = ρ∗, F = ρ∗; the equality F ◦ V = tr†π follows from the double coset
formula (1.14). In the other direction, 〈E, V, F〉 gives a G-Mackey functor M such
that M([G/pm G]) = E([pm]), m ≥ 0, and for any map f : [G/pnG] → [G/pm G],
we have

f∗ = E( f )−1 ◦ V n−m, f ∗ = Fn−m ◦ E( f ),

where f ∈ Aut([pm]) is given by (1.31). The double coset formula (1.14) then follows
from the equality F ◦ V = tr†π . Finally, (ii) immediately follows from Lemma 1.2. ��

We note that if for any integer m ≥ 0 we denote Gm = G/pm G ∼= Z/pm
Z, then

for any n ≥ m, we have a fully faithful inflation functor

Infln
m : M(Gm, A) → M(Gn, A), (1.32)

and for any m ≥ 0, we have the fully faithful inflation functor

Inflm : M(Gm, A) → M(G, A). (1.33)

Therefore Lemma 1.5 also describes the categoryM(Gm, A) for any integer m ≥ 0—
this is the full subcategory spanned by triples 〈E, V, F〉 such that E([pn]) = 0 for
n > m.

Apart from Lemma 1.5, one can also study Gm-Mackey functors by induction on
m. Namely, for any m ≥ 1 and M ∈ M(Gm, A), we have adjunction maps

l : L(U (M)) → M, r : M → R(U (M)), (1.34)

and we note that since U (l) and U (r) are isomorphisms, both the kernel Ker r and
the cokernel Coker l are supported at pm−1G1 ⊂ Gm , so that both are effectively
Gm−1-Mackey functors. We then introduce the following inductive definition.

Definition 1.6 1. A Gm-Mackey functor M ∈ M(Gm, A) is perfect if either m = 0,
or themap l of (1.34) is injective, themap r is surjective, and bothKer r andCoker l
are perfect Gm−1-Mackey functors.

2. Assume given a perfect Gm-Mackey functor M . Then the co-standard filtration
F � on M is the increasing filtration such that Fm M = M and Fi M = Fi (Ker r),
0 ≤ i ≤ m − 1, and the standard filtration F

�

on M is the decreasing filtration
such that Fm M = Im l, and Fi M = q−1(Fi Coker l), 0 ≤ i ≤ m − 1, where
q : M → Coker l is the quotient map.
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Example 1.7 Already for m = 1, Definition 1.6 (i) is not vacuous. Indeed, let k be
a field of characteristic p = char k, and take E ∈ Fun(I, k) with E([pm]) = 0,
m �= 1, and E([p]) = k with the trivial action of G1 = Z/pZ. Then the trace map
trZ/pZ : k → k vanishes, so that V = F = 0 satisfies the condition of Lemma 1.5 (i).
The resulting G1-Mackey functor is not perfect.

As we see from Example 1.7, not all Gm-Mackey functors are perfect. However,
those of interest to us in the rest of the paper will be, and the standard and co-standart
filtrations will prove useful.

2 Witt vectors

2.1 Preliminaries on cyclic groups

Fix a perfect field k of positive characteristic p = char k. Let W (k) be the ring of
p-typical Witt vectors of the field k. Since k is perfect, we have W (k)/p ∼= k, and
for any integer n ≥ 1, we have the truncated Witt vectors ring Wn(k) = W (k)/pn .
We also have the Frobenius automorphism F : W (k) → W (k) lifting the absolute
Frobenius automorphism of the field k.

As in Sect. 1.6, let G = Zp be the group of p-adic integers, and for any integer
m ≥ 0, let Gm = Z/pm

Z = G/pm G. Any finite G-set S decomposes as

S =
∐

i≥0

S[i], (2.1)

where S[i] ⊂ S is the union of elements s ∈ S whose stabilizer is exactly pi G ⊂
G. Any finite Gm-set S is canonically a G-set via the quotient map G → Gm ; its
decomposition (2.1) only contains terms X[i] with i ≤ m.

Lemma 2.1 Assume given integers m ≥ 0, n ≥ 1 and a finite Gm-set S, and consider
the free Wn(k)-module E = Wn(k)[S] spanned by S, with the Gm-action induced
from S.

(i) We have a natural identification EGm = Wn(k)[S/Gm].
(ii) Moreover, assume that n ≥ m. Then we have a natural identification

Ȟ0(Gm, E) =
⊕

0≤i<m

Wm−i (k)[S[i]/Gm],

where S[i] ⊂ S are the components of the decomposition (2.1).

Proof (i) is obvious. For (ii), note that (2.1) induces a Gm-invariant direct sum decom-
position of E , so that it suffices to consider the case S = S[i], 0 ≤ i ≤ m. In this case,
S is actually a Gi -set, and the Gi -action on S is free. Therefore the trace map trGm is
equal to pm−i trGi by (1.5), and the trace map trGi is a bijection. ��
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Note that for any integers m ≥ 0, n ≥ 1, the quotient map Wn+1(k) → Wn(k)

induces a natural map

Ȟ0(Gm, Wn+1(k)[S]) → Ȟ0(Gm, Wn(k)[S]).

Lemma 2.1 (ii) then implies that this map is an isomorphism if n ≥ m.
Now assume given a free finitely generated Wn(k)-module E , and denote by

E(m) = E⊗Wn (k) pm
(2.2)

its pm-th tensor power with the Wn(k)-module structure given by

a · e = Fm(a)e, a ∈ Wn(k), e ∈ E⊗Wn (k) pm
. (2.3)

Let the group Gm act on E(m) by permutations. Moreover, let E ′
(m) be the same Wn(k)-

module considered as a representation of Gm+1 via the quotient map Gm+1 → Gm ,
and denote

Qm(E) = Ȟ0(Gm, E(m)), Q′
m(E) = Ȟ0(Gm+1, E ′

(m)). (2.4)

Then we have

EGm
(m)

∼= (E ′
(m))

Gm+1 ,

and trGm+1 = p trGm on E(m)
∼= E ′

(m) by (1.9) and (1.5), so that we obtain a natural
map

r : Q′
m(E) → Qm(E). (2.5)

Every element e ∈ E gives an element e⊗pm ∈ E ′
(m); this element is Gm+1-invariant

and descends to elements

e′
(m) ∈ Q′

m(E), e(m) = r(e′
(m)) ∈ Qm(E). (2.6)

Lemma 2.2 Assume that n ≥ m, and assume given two elements a, b ∈ E such that
a = b mod p. Then a′

(m) = b′
(m) and a(m) = b(m).

Proof Since e(m) = r(e′
(m)), it suffices to prove the first claim. By functoriality, it

suffices to consider the universal situation: E = Wn(k)[S] is the freemodule generated
by a set S with two elements, s0 and s1, and we have a = s0, b = s0 + ps1. Then
elements s̃ of the set S pm

are of the form

s̃ = s f (1) × s f (2) × · · · × s f (pm ), (2.7)

where f is a function that assigns 0 or 1 to any integer 1 ≤ j ≤ pm . For such an
element, denote

|̃s| =
∑

1≤ j≤pm

f ( j),
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so that |̃s| is the number of integers j with f ( j) = 1. Then we have

b⊗pm − a⊗pm =
∑

s̃

p|̃s |̃s ∈ E (m) = Wn(k)[S pm ]Gm , (2.8)

where the sum is over all elements s̃ ∈ S pm
not equal to s pm

0 —that is, with |̃s| ≥ 1.

Moreover, if s̃ lies in S pm

(i) for some integer i , then |̃s| must be divisible by pm−i , and

since |̃s| ≥ 1, we actually have |̃s| ≥ pm−i . Since pm−i ≥ m − i + 1 for any i ≤ m,
Lemma 2.1 (ii) implies that every term in the right-hand side of (2.8) vanishes after
projecting to Ȟ0(Gm+1, E ′

(m)). ��

2.2 Polynomial Witt vectors

Now fix integers n ≥ m ≥ 1, let E be a free Wn(k)-module, and consider the corre-
sponding Wn(k)[Gm]-modules E(m), E ′

(m−1) of (2.2). Denote

˜Qm(E) = Q(E(m)), ˜Q′
m−1(E) = Q(E ′

(m−1)) ∈ M(Gm, Wn(k)),

where Q(−) is as in Definition 1.3. Note that by (1.26), this notation is consistent with
(2.4)—theMackey functor ˜Qm(E)gives Qm(E) after evaluation at the trivialGm -orbit
[Gm/Gm], and similarly for ˜Q′

m(E). Note also that since n ≥ m, every Wm(k)-module
is automatically a Wn(k)-module by virtue of the map Wn(k) → Wm(k), so that we
have a full embedding Wm(k)-mod ⊂ Wn(k)-mod.

Proposition 2.3 For any integer m ≥ 1, there exists functors

˜Wm, ˜W ′
m−1 : k-mod → M(Gm−1, Wm(k))

such that for any free Wn(k)-module E, we have functorial isomorphisms

˜Qm(E) ∼= Inflm
m−1

˜Wm(E/p), ˜Q′
m−1(E) ∼= Inflm

m−1
˜W ′

m−1(E/p),

where Infl are the inflation functors (1.32).

Proof The proofs of both claims are the same, so let us start with ˜Wm . By (1.26), we
know that Q(E(m))([Gm/{e}]) = 0, so that ˜Qm(E) is supported at pm−1G1 ⊂ Gm ,
thus lies in the image of the fully faithful inlfation functor Inflm

m−1. Denote by q the
functor from free Wn(k)-modules to k-vector spaces that sends E to E/p. We have
to show that ˜Qm canonically factors through q. Since q is essentially surjective, the
issue is the morphisms: we have to show that for two free Wn(k)-modules M , N , and
two maps a, b : M → N with q(a) = q(b), we have ˜Qm(a) = ˜Qm(b). Moreover,
since the functor ˜Qm obviously commutes with filtered colimits, it suffices to consider
finitely generated free Wn(k)-modules.
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Let E = HomWn(k)(M, N ). This is also a free finitely generated Wn(k)-module,
we have the action map

α : M ⊗Wn(k) E → N ,

and the map a : M → N decomposes as

M = M ⊗Wn(k) Wn(k)
id⊗ã−−−−→ N ⊗Wn(k) E

α−−−−→ N ,

where ã : Wn(k) → E is the map sending 1 to a.
Now, the pm-th tensor power functor is tensor, and the functor Q is pseudotensor by

Lemma 1.4. Therefore ˜Qm is pseudotensor, and the map ˜Qm(a) can be decomposed
as

˜Qm(M) ∼= ˜Qm(M) ◦ A id ◦˜Qm (̃a)−−−−−→ ˜Qm(M) ◦ ˜Qm(E)
μ−−−−→

μ−−−−→ ˜Qm(M ⊗Wn(k) E)
˜Qm (α)−−−−→ ˜Qm(N ),

where A ∈ M(Gm, Wn(k)) is the Burnside Mackey functor, and μ comes from the
pseudotensor structure on ˜Qm . We also have an analogous decomposition for b, so
that in the end, it suffices to prove that

˜Qm (̃a) = ˜Qm(˜b) : A → ˜Qm(E).

But by (1.19) and (1.26), we have Hom(A, ˜Qm(E)) ∼= Ȟ0(Gm, E(m)), and in terms
of this identification, we obviously have ˜Qm (̃a) = a(m), ˜Qm(˜b) = b(m). Then we are
done by the second claim of Lemma 2.2.

For ˜W ′
m−1, the argument is exactly the same, except that we need to invoke the first

claim of Lemma 2.2. ��
Definition 2.4 For any k-vector space E and integerm ≥ 1, them-truncated extended
polynomial Witt vectors Mackey functor ˜Wm(E) is the Wm(k)-valued Gm−1-Mackey
functor provided by Proposition 2.3, and the Wm(k)-module of m-truncated polyno-
mial Witt vectors

Wm(E) = ˜Wm(E/k)[Gm/Gm]

is its value at the trivial Gm-orbit [Gm/Gm].
We note that by (1.26), m-truncated polynomial Witt vectors Wm(E) can be also

described as follows: we have

Wm(E) ∼= Qm(˜E) = Ȟ0(Gm, ˜E(m)), (2.9)

where ˜E is any flat Wm(k)-module equipped with an isomorphism ˜E/p ∼= E , and Qm

is the functor (2.4).
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2.3 Restriction maps

The reader will notice immediately that Definition 2.4 only uses the functor ˜Wm of
Proposition 2.3. The role of the functor ˜W ′

m is that it allows one to relate m-truncated
Witt vectors for different m.

Namely, we have natural maps r of (2.5), and taken together, they provide a canon-
ical map

r : ˜W ′
m(E) → Inflm

m−1
˜Wm(E) (2.10)

for any m ≥ 1 and any k-vector space E .
On the other hand, if we take m = 0, so that Gm+1 = G1 = Z/pZ, then we

tautologically have Ȟ0(G1, ˜E) ∼= ˜E/p for any n and any Wn(k)-module ˜E with
the trivial G1-action, so that we have a canonical identification ˜W ′

0(E) ∼= E (since
G0 = {e}, we have M(G0, W1(k)) ∼= k-mod, so that ˜W ′(E) is simply a k-vector
space). But then, there also exists a canonical Frobenius-semilinear identification

Ȟ0(Z/pZ, E⊗p) ∼= E

constructed e.g. in [13, Lemma 2.3]. Thus for m = 0, we have an isomorphism of
functors

˜Wm+1 ∼= ˜W ′
m . (2.11)

It turns out that the same is true for m ≥ 1, and we will now prove it.

Definition 2.5 For n ≥ 1 and any free Wn(k)-module E , a Z/pZ-equivariant
Frobenius-semilinear map c : E → E⊗Wn (k) p is admissible if the induced map

Q(c) : ˜W ′
0(E/p) → ˜W1(E/p)

is the standard isomorphism (2.11).

At this point, we do not need to know the precise form of the identification (2.11).
It suffices to say that if E = Wn(k)[S] is the free module spanned by a set S, then the
diagonal map δ : S → S p induces a Frobenius-semilinear map

cS : E → E⊗Wn (k) p,
∑

s

as · s �→
∑

s

a p
s · δ(s), (2.12)

and this map is admissible.

Proposition 2.6 Assume given integers n ≥ m ≥ 1, a free Wn(k)-module E, and two
admissible maps c1, c2 : E → E⊗Wn (k) p. Then the corresponding maps

Q(c⊗pm

1 ), Q(c⊗pm

2 ) : ˜W ′
m(E/p) → ˜Wm+1(E/p)

coincide, and both are isomorphisms.
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Proof As in the proof of Proposition 2.3, it suffices to consider finitely generated
modules. Moreover, it clearly suffices to consider the case when E = Wn(k)[S] for
some set S, and c1 is the standard map cS of (2.12). In this case, at least Q(c⊗pm

1 )

is certainly an isomorphism by Lemma 2.1. We have the decomposition (2.1) of the
product S p, and it induces the decomposition

S pm+1 = (

S p)pm =
∐

f

S p
[ f (1)] × · · · × S p

[ f (pm )], (2.13)

where f is as in (2.7). However, if an element s̃ ∈ S pm+1
is fixed by some non-

trivial subgroup in Gm+1, it must also be fixed by the smallest non-trivial subgroup
Z/pZ ⊂ Gm+1, the kernel of the quotient map Gm+1 → Gm . Therefore in the

decomposition (2.1) for the Gm+1-set S pm+1
, all the terms except for S pm+1

[m+1] lie in the
component of (2.13) corresponding to the constant function f = 0. By Lemma 2.1,
this means that if we decompose

E(m+1) = Wn(k)[S pm+1 ] ∼= E ′
(m) ⊕ E0, (2.14)

where E0 is spanned by all the other components in (2.13), then any element e ∈
E0 invariant under Gm+1 vanishes after projection to the quotient Wm+1(E/p) ∼=
Ȟ0(Gm+1, E(m+1)). The same is also true if we project to Ȟ0(H, E(m+1)) for some
subgroup H ⊂ Gm+1, so that Q(E0) = 0 by (1.26).

Now decompose

c2 = b0 + b1,

withbi takingvalues inWn(k)[S p
(i)], i = 0, 1, and consider the binomial decomposition

c⊗pm

2 =
∑

f

b f (1) ⊗ · · · ⊗ b f (pm ), (2.15)

with the samemeaning of f as in (2.13). Then all the terms except for b⊗pm

0 take values
in E0 of (2.14), thus vanish after we apply the functor Q. Therefore we may assume
right away that b1 = 0, so that c2 = a ◦ cS for some endomorphism a : E → E of
the module E . Since c2 is admissible, we must have a = id modulo p, and then we
are done by Proposition 2.3. ��
Corollary 2.7 For any integer m ≥ 1, the standard isomorphism of Proposition rm
2.6 provides a functorial isomorphism (2.11), so that the morphisms (2.10) provide
functorial maps

R : ˜Wm+1 → Inflm
m−1

˜Wm, R : Wm+1 → Wm . (2.16)

Proof For the first claim, it suffices to prove that the standard isomorphism of
Proposition 2.6 commutes with W �( f ) for any morphism f : E1 → E2 of free
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Wn(k)-modules. If f is a split injection, so that E2 ∼= E1 ⊕ E ′
1, then the claim is

obvious—we can choose bases in E1 and E ′
1, consider the corresponding base in E2,

and notice that the already themaps (2.12) commutewith f . If f is surjective, the same
argument works. A general map is a composition of a split injection and a surjection
(say, via its graph decomposition). ��

By virtue of Corollary 2.7, for any k-vector space E , we can consider the inverse
limit

˜W (E) = lim
R←

Inflm−1 ˜Wm(E) ∈ M(G, W (k)), (2.17)

where Infl � are the inflation functors (1.33). We call it the extended polynomial Witt
vectors G-Mackey functor of the vector space E . Evaluating at the trivial orbit [G/G],
we obtain the W (k)-module

W (E) = ˜W (E/k)([G/G]) = lim
R←

Wm(E). (2.18)

We call it the polynomial Witt vectors module of the vector space E .

3 Basic properties

3.1 Exact sequences and filtrations

Let us now prove some elementary properties of the truncated Witt vectors functors
of Definition 2.4. We start with the following.

Lemma 3.1 For any integer m ≥ 1, the map ˜Wm+1 → ˜Wm+1 given by multiplication
by p factors as

˜Wm+1
R−−−−→ Inflm

m−1
˜Wm

C−−−−→ ˜Wm+1,

where R is the restriction map (2.16), and C is a certain functorial map. Moreover, R
is surjective, and C is injective.

Proof Identify ˜W ′
m

∼= ˜Wm+1 as in Corollary 2.7, and let E be an arbitrary free Wm(k)-
module. Then by (1.9), (1.5) and (1.29), we have a commutative diagram

R(E ′
(m))

id−−−−→ R(E(m))
p id−−−−→ R(E ′

(m))

tr

�

⏐

⏐

�

⏐

⏐tr

�

⏐

⏐tr

L(E ′
(m))

p id−−−−→ L(E(m))
id−−−−→ L(E ′

(m)),

where tr are the trace maps (1.25). Taking the cokernels of these maps, we obtain the
desired factorization. The fact that R is surjective and C is injective then immediately
follows from Lemma 2.1. ��
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Now for any k-vector space E and integer l ≥ 1, denote

Cl(E) =
(

E⊗l
)

Z/ lZ
, Cl(E) =

(

E⊗l
)Z/ lZ

, (3.1)

where the cyclic group Z/ lZ acts by permutations, and for any m ≥ 0, let C(m)(E) =
C pm (E),C (m)(E) = C pm

(E), with the k-vector space structure twisted by the absolute
Frobenius of k as in (2.3). Note that C(m)(E) and C (m)(E) canonically extend to Gm-
Mackey functors

˜C(m)(E) = L(E(m)), ˜C (m)(E) = R(E(m)),

in the sense that we have natural identifications

˜C(m)(E)([Gm/Gm]) ∼= C(m)(E), ˜C (m)(E)([Gm/Gm]) ∼= C (m)(E) (3.2)

for any k-vector space E .

Lemma 3.2 For any integer m ≥ 1, the natural maps R, C of Lemma 3.1 fit into
functorial short exact sequences

0 −−−−→ ˜C(m)
l−−−−→ ˜Wm+1

R−−−−→ Inflm
m−1

˜Wm −−−−→ 0,

0 −−−−→ Inflm
m−1

˜Wm
C−−−−→ ˜Wm+1

r−−−−→ ˜C (m) −−−−→ 0.
(3.3)

Proof As in Lemma 3.1, identify ˜Wm+1 ∼= ˜W ′
m . Then by definition and (1.26), we

have U ( ˜W ′
m(E)) ∼= Ȟ0(Z/pZ, ˜E ′

(m))
∼= E(m) for any free Wm(k)-module ˜E with

reduction E = ˜E/p. Therefore we can take the adjunctions maps (1.34) as l and r in
(3.3). Then since U ◦ Inflm

m−1 = 0, R ◦ l = r ◦ C = 0 by adjunction, and it suffices
to prove that the sequences are exact after evaluation at an arbitrary k-vector space E .
This immediately follows from Lemma 2.1 (choose a basis S in E , and use the explicit
decompositions of Lemma 2.1 (ii) to compute ˜W �). ��

Corollary 3.3 For any integer m ≥ 1and k-vector space E, the Gm−1-Mackey functor
˜Wm(E) is perfect in the sense of Definition 1.6 (i), and its assosiated graded quotients
gri , gri with respect to the standard and co-standard filtrations of Definition 1.6 (ii)
are given by

gri ˜Wm(E) ∼= Inflm−1
i

˜C(i)(E), gri ˜Wm(E) ∼= Inflm−1
i

˜C (i)(E)

for any 0 ≤ i ≤ m − 1.

Proof Clear. ��
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Let us now evaluate our G-Mackey functors at the trivial G-orbit [G/G]. Then
(3.2) and (3.3) yield functorial short exact sequences

0 −−−−→ C(m)(E)
l−−−−→ Wm+1(E)

R−−−−→ Wm(E) −−−−→ 0,

0 −−−−→ Wm(E)
C−−−−→ Wm+1(E)

r−−−−→ C (m)(E) −−−−→ 0.

In fact, we can say more. Namely, for any m ≥ 0 and k-vector space E , denote by

m(E) the image of the trace map

trGm : C(m)(E) → C (m)(E).

Then for any m ≥ 0, sending e ∈ E(m) to e⊗p ∈ E(m+1) gives a functorial k-linear
map

C : C(m)(E) → C(m+1)(E).

If the vector space E is finite-dimensional, then we can dualize this map to obtain a
functorial map

R : C (m+1)(E) → C (m)(E),

and since both sides commute with filtered colimits in E , we can extend this map to
arbitrary k-vector spaces.

Lemma 3.4 For any m ≥ 0 and any k-vector space E, we have functorial short exact
sequences

0 −−−−→ C(m)(E)
C−−−−→ C(m+1)(E) −−−−→ 
m+1(E) −−−−→ 0,

0 −−−−→ 
(m+1)(E) −−−−→ C (m+1) R−−−−→ C (m)(E) −−−−→ 0,
(3.4)

and commutative diagrams

Wm+1(E)
r−−−−→ C (m+1)(E)

R

⏐

⏐

�

⏐

⏐

�R

Wm(E)
r−−−−→ C (m)(E)

C(m)
l−−−−→ Wm(E)

C

⏐

⏐

�

⏐

⏐

�C

C(m+1)
l−−−−→ Wm+1(E).

(3.5)

Proof Note that we have a functorial four-term sequence

0 −−−−→ C(m)
C−−−−→ C(m+1)

trGm+1−−−−→ C (m+1) R−−−−→ C (m) −−−−→ 0.

and Lemma 2.1 immediately shows that the sequence is exact (indeed, for any vector
space E = k[S] with a basis S, the cokernel of the map trGm+1 : C(m+1)(E) →
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C (m+1)(E) is Ȟo(Gm+1, E⊗pm+1
), this coincides with C (m+1)(E) by Lemma 2.1 (ii),

and dually for the kernel Ker trGm+1 ). Together with the definition of the functor

 �, this yields the exact sequences (3.4). As for (3.5), then since all the maps are
functorial, it suffices to check commutativity after choosing a basis S in E . Then the
first claim immediately follows from Lemma 2.1 and the definition of the restriction
map R : Wm+1 → Wm , and the second then follows by Lemma 3.1. ��

By induction, Lemma 3.4 shows that the functor C(m) has a natural increasing “co-
standard” F � filtration with gri C(m)

∼= 
i , 0 ≤ i ≤ m − 1, and the functor C (m) has
a natural descreasing “standard” filtration F

�

with gr j C (m) ∼= 
 j , 0 ≤ j ≤ m − 1.
The Witt vectors functor Wm has both filtrations, and they are transversal. Here is a
picture of the associated graded quotient gr

�

�
Wm = gr

�

gr
�
Wm = gr

�
gr

�

Wm :


0

0 
1


0 
1 
2
. . . . . . . . . . . . . . . . . . . . .


0 . . . . . . . . . . . . . . . 
m−3

0 
1 . . . . . . . . . 
m−3 
m−2


0 
1 
2 . . . 
m−3 
m−2 
m−1

(3.6)

The indices i , j correspond to rows and columns of the table that we number starting
from 0, and we have gr j

i Wm ∼= 
i+ j+1−m , or 0 if i + j + 1 < m. Multplication by p

acts diagonally and induces an isomorphism grij
∼= gri−1

j+1, or vanishes if j = m − 1.
The bottom row is the subfunctor C(m−1) ⊂ Wm , and the rightmost column is the
quotient functor C (m−1).

When we pass to the inverse limit (2.18), only the standard filtration F
�

survives—
we have gri W (E) ∼= C(i), i ≥ 0, and W (E)/Fi W (E) ∼= Wi (E) for i ≥ 1. We can
also consider the inverse limit

C (∞)(E) = lim
R←

C (m)(E),

and it also carries the standard filtration. The second exact sequence of (3.3) then
provides a functorial isomorphism

W (E)/p ∼= C (∞)(E), (3.7)

and Lemma 3.1 shows that the W (k)-module W (E) is torsion-free.

3.2 Frobenius and Verschiebung

All the cofinite subgroups pnG ⊂ G, n ≥ 0 in the group G = Zp are abstractly
isomorphic to G itself. For any integer n ≥ 0 and coefficient ring A, denote by

�n = � pn G : M(G, A) → M(G, A)
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the categorical fixed points functor with respect to the subgroup pnG ⊂ G, and
moreover, for any m ≥ n, denote

�n = � pn Gm−n : M(Gm, A) → M(Gm−n, A).

Since by (1.16)weobviously have�n◦Inflm ∼= Inflm−n ◦�n , the notation is consistent.
In fact, it is even consistent in the sense that �n1 ◦ �n2 ∼= �n1+n2 for any n1, n2 ≥ 0.

Lemma 3.5 For any k-vector space E and integers m ≥ n ≥ 1, we have a functorial
isomorphism

�n
˜Wm+1(E) ∼= ˜Wm−n+1(E(n)),

where E(n) is the k-vector space (2.2). These isomorphisms commute with restriction
maps R and induce a functorial isomorphism

�n
˜W (E) ∼= ˜W (E(n)).

Proof For ˜Wm , the statement immediately follows from its definition and (1.28), and
compatibility with the restriction maps is clear from their construction. For ˜W , pass
to the limit. ��

Lemma 3.5 allows us to evaluate G-Mackey functors Inflm ˜Wm+1(E), m ≥ 0 and
their inverse limit ˜W (E) at non-trivial G-orbits [G/pnG], n ≥ 1. Namely, for any
integer n ≥ 1, denote

W n(E) = ˜W (E)([G/pnG]),
W n

m(E) = ˜Wm(E)([Gm−1/pnGm−n−1]), m > n,

with W 0(E) = W (E) and W 0
m(E) = Wm(E). By (1.26), we have a natural isomor-

phism
W n

m(E) ∼= Ȟ0(Gm−n, ˜E(m)), (3.8)

with the samemeaning of ˜E as in (2.9). On the other hand, Lemma 3.5 provides natural
isomorphisms

W n(E) ∼= W (E(n)), W n
m(E) ∼= Wm−n(E(n)), m > n. (3.9)

By definition, W n(E) and W n
m(E),m > n carry actions of the group Gn . Ifm = n+1,

then (3.9) reduces to an isomorphism

W n
n+1(E) ∼= W1(E(n)

∼= E(n). (3.10)

Effectively, W n
n+1(E) is simplyU ( ˜Wn+1(E/k)), so that in particular, the isomorphism

(3.10) is Gn-equivariant. To see what happens for m ≥ m + 2, equip W n
m(E) with

the standard and co-standard filtrations induced by those of Definition 1.6 (ii). Both
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filtrations are indexed by integers i , n ≤ i ≤ m −1, and preserved by Gn . Then (1.24)
provides isomorphisms

�n
˜C(i)(E) ∼= ˜C(i−n)(E(n)), �n

˜C (i)(E) ∼= ˜C (i−n)(E(n)), i ≥ n,

and Corollary 3.3 then shows that we have

gri W n
m(E) ∼= C(i−n)(E(n)), gri W n

m(E) ∼= C(i−n)(E(n)) (3.11)

for any i , n ≤ i < m. The Gn-action in both cases is the residual action of
Gn = Gi/pnGi−n on C(i−n)(E(n)) = (E(i))Gi−n resp. C(i−n)(E(n)) = (E(i))Gi−n .
In particular, we have

gri W n
m(E)Gn

∼= C(i)(E) ∼= gri Wm(E),

gri W n
m(E)Gn ∼= C (i)(E) ∼= gri Wm(E)

(3.12)

for any m > i ≥ n ≥ 0.

Remark 3.6 As soon as i > n, the residual Gn-action on C(i−n)(E(n)), C (i−n)(E(n))

does not coincide with action induced by the natural action on E(n). Explicitly, the
action of the generator 1 ∈ Z/pn

Z = Gn is induced by the map

σi = σ
⊗pi−n

n ◦ (σi−n ⊗ id⊗pn−1) : E(i) → E(i),

whereσn : E(n) → E(n) resp.σi−n : E(i−n) → E(i−n) are the actions of the generators
of the groups Gn resp. Gi−n , and we use the identifications E(i) ∼= (E(n))(i−n)

∼=
(E(i−n))(n). In fact,σi is not even conjugate toσ

⊗pi−n

n . To see this, it suffices to consider
the case when E is finite-dimensional, choose a basis, and compute the dimensions
of the space of invariants and coinvariants with respect to the two Gn-action, e.g. by
Lemma 2.1.

Consider now the maps V and F provided by Lemma 1.5. Explicitly, these can be
described in terms of the isomorphisms (2.9) and (3.8)—by (1.27), we have

V = l†π : W 1
m(E) → Wm(E), F = r†π : Wm(E) → W 1

m(E), (3.13)

where l†π , r†π are the maps (1.10), π : ptm → pt is the natural projection, and we
factorize it as

ptm
π ′′−−−−→ pt1

π ′−−−−→ pt.

Iterating the maps V and F , we obtain natural Gn-invariant maps

V n : W n(E) → W (E), Fn : W (E) → W n(E),
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and similarly for W n
m(E), m > n. Being Gn-invariant, these maps factor throughmaps

V
n : W n(E)Gn → W (E), F

n : W (E) → W n(E)Gn , (3.14)

and again similarly for W n
m(E), m > n.

Lemma 3.7 For any k-vector space E and positive integers m > n ≥ 1, the maps
(3.14) fit into short exact sequences

0 −−−−→ W n
m(E)Gn

V
n

−−−−→ Wm(E)
Rm−n−−−−→ Wm−n(E) −−−−→ 0,

0 −−−−→ Wm−n(E)
Cm−n−−−−→ Wm(E)

F
n

−−−−→ W n
m(E)Gn −−−−→ 0,

where R and C are the maps of Lemma 3.1.

Proof Since R and C are maps of Mackey functors, they commute with V and F , and
this immediately implies that Rn−m ◦ V n = V n ◦ Rn−m = 0 on W n

m and Fn ◦Cm−n =
Cm−n◦Fn = 0 onWm−n . To prove that the sequences are exact, use induction onm−n.
If m = n, we let W m

m (E) = 0, and the statement is trivially true. For m > n, the lowest
non-trivial term in the standard filtration on W n

m(E) is Fm W n
m(E) = grm W n

m(E),
and by (3.11), we have W n

m(E)/grm W n
m(E) ∼= W n

m−1(E). Then since taking Gn-
coinvariants is a right-exact functor, the sequence

grm W n
m(E)Gn −−−−→ W n

m(E)Gn −−−−→ W n
m−1(E)Gn −−−−→ 0

is exact on the right. However, by (3.12), the map grm W n
m(E)Gn → Wm(E)

induced by V
n
is injective, so that the sequence is also exact on the left. Then

W n
m(E)/grm W n

m(E)Gn
∼= W n

m−1(E)Gn and Wm(E)/grm W n
m(E)Gn

∼= Wm/grm Wm

(E) ∼= Wm−1(E), so that proving that the first one of our two sequences is exact for
Wm is equivalent to proving it for Wm−1. By a dual argument, exactly the same holds
for the second sequence; this gives the induction step. ��
Example 3.8 If E = k is one-dimensional, then it is immediately obvious from (2.9)
that Wm(k) is the free Wm(k)-module of rank 1, so that our notation is consistent. Then
V : Wm−1(k) → Wm(k), F : Wm(k) → Wm−1(k) are the standard Verschiebung and
Frobenius maps of the Witt vectors ring Wm(k). Lemma 3.7 simply states that for any
n < m, V n : Wm−n(k) → Wm(k) is injective, with image pm−nWm(k) ⊂ Wm(k),
and Fn : Wm(k) → Wm−n(k) is surjective, with kernel pnWm(k) ⊂ Wm(k).

Corollary 3.9 On W n(E), the map F
n

is an isomorphism, while the map V
n

fits into
a short exact sequence

0 −−−−→ (W n(E))Gn

V
n

−−−−→ W (E)
R−−−−→ Wn(E) −−−−→ 0.

Moreover, for any integer i , we have Ȟ2i+1(Gn, W n(E)) = 0, while the group
Ȟ2i (Gn, W n(E)) is canonically isomorphic to Wn(E).
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Proof The first statement follows from Lemma 3.7 by taking the inverse limit. For
the second statement, compute Tate cohomology Ȟ

�

(Gn,−) by the standard periodic
complex, and note that by Lemma 1.5, Fn ◦ V n is the trace map trGn . ��

3.3 Multiplication

Since both k and theWitt vectors rings Wm(k), m ≥ 1 are commutative, the categories
k-mod andM(Gm−1, Wm(k)), m ≥ 1 are symmetric tensor categories. We then have
the following result.

Proposition 3.10 For every integer m ≥ 1, the extended Witt vectors functor ˜Wm

of Definition 2.4 is symmetric pseudotensor, and the restriction map (2.16) of Corol-
lary 2.7 is compatible with the pseudotensor structures.

Proof Since ˜Wm commutes with filtered colimits, it suffices to prove both claims after
restricting it to finite-dimensional vector spaces. As in the proof of Proposition 2.3, let
q be the essentially surjective reduction functor from the category Wm(k)-mod f f ⊂
Wm(k)-mod of free finitely generated Wm(k)-modules to the category k-mod f ⊂
k-mod of finite dimensional k-vector spaces. Then for any target category C, the
pullback functor q∗ : Fun(k-mod f , C) → Fun(Wm(k)-mod f f , C) is fully faithful,
and the same is true for the pullback functor

(q × q)∗ : Fun(k-mod f × k-mod f , C)

→ Fun(Wm(k)-mod f f × Wm(k)-mod f f , C).

Therefore to construct the maps (1.2) for the functor ˜Wm , it suffices to construct them
for the functor ˜Wm ◦ q ∼= ˜Qm . But we have ˜Qm(E) = Q(E(m)), the pm-th tensor
power functor is symmetric and tensor, and the functor Q is symmetric pseudotensor
by Lemma 1.4.

As for the restriction maps (2.16), what we need to prove is that they commute
with the structure maps ε, μ of (1.2), and this can be checked pointwise, that is, after
evaluating at arbitrary M, N ∈ k-mod f . Then it suffices to choose bases in M and N ,
and notice that the standard map cS of (2.12) is obviously multiplicative. ��

As an immediate corollary of Proposition 3.10, we can pass to the inverse limit
with respect to the restriction maps (2.16) and obtain a natural symmeric pseudoten-
sor functors structure on the extended Witt vectors functor ˜W of (2.17). Another
immediate corollary is a symmetric pseudotensor structure on the polynomial Witt
vectors functors Wm , m ≥ 1 and their inverse limit W obtained by evaluating at the
trivial G-orbit [G/G]. Since by Lemma 1.4, the pseudotensor structure on the functor
Q is compatible with the isomorphism (1.26), the pseudotensor structures on Wm ,
m ≥ 1 can also be characterized directly—these are the only pseudotensor structures
compatible with the isomorphism (2.9) and the obvious pseudotensor structure on the
functor Qm .

We observe that the unit object in k-mod is the one-dimensional vector space k, and
the unit object inWm(k)-mod is the freemoduleWm(k)of rank1.ThenbyExample 3.8,
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the map ε of the pseudotensor structure on the functor Wm is an isomorphism. For any
k-vector space E , applying the map μ to the tautological isomorphism k ⊗ E ∼= E
gives a map Wm(k) ⊗Wm (k) Wm(E) → Wm(E), and this map is also tautologically an
isomorphisms. As it happens, these tautologies already give one thing essentially for
free.

Lemma 3.11 For any k-vector space E and integer m ≥ 1, we have

V ◦ F = p id : Wm(E) → Wm(E).

Proof Applying Lemma 1.5 (ii) to the tautological isomorphism k ⊗ E ∼= E , we see
that it suffices to prove the claim for E = k. But then F and V obviously commute,
so that V F = FV = trZ/pZ, and the Z/pZ-action on Wm(k) is trivial. ��

Another immediate corollary of the tautological isomoprhism Wm(k) ∼= Wm(k) is
the existence of a functorial map

T : E = Homk(k, E) → Wm(E) = HomWm (k)(Wm(k), Wm(E)) (3.15)

induced by the functor Wm . The map T is not additive—it is only a map of sets, a
version of the Teichmüller representative map for our polynomial Witt vectors Wm .
However, it is obviously multiplicative, in the the sense that

T (e ⊗ e′) = μ(T (e) ⊗ T (e′)), e, e′ ∈ E, (3.16)

and compatible with restriction maps (2.16), in that R ◦ T = T . Passing to the limit,
we obtain a functorial map of sets

T : E → W (E), E ∈ k-mod. (3.17)

Spelling out the definition of the functor Wm , we see that one can describe the
Teichmüller map (3.15) as follows. For any e ∈ E , choose a free Wm(k)-module
˜E so that E ∼= ˜E/p, lift e to an element ẽ ∈ E , and consider the elements
ẽ(m) ∈ Qm(˜E) = Wm(E), ẽ′

(m−1) ∈ Q′
m−1(

˜E) = W ′
m−1(E) of (2.6). Then both

these elements only depend on e by Lemma 2.2, the canonical isomorphism of Propo-
sition 2.6 sends ẽ′

(m−1) to ẽ(m), and we have

T (e) = ẽ(m) = ẽ′
(m−1) ∈ Wm(E) ∼= W ′

m−1(E). (3.18)

For a more non-trivial application of Proposition 3.10, note that for any finite-
dimensional k-vector space E with the dual vector space E∗, we have the natural
pairing map E ⊗ E∗ → k. Together with the pseudotensor structure on Wm , it induces
a natural pairing

Wm(E) ⊗Wm (k) Wm(E∗) μ−−−−→ Wm(E ⊗ E∗) −−−−→ Wm(k). (3.19)
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We observe that by Lemma 1.5 (ii), this pairing must be compatible with the maps F
and V in the following sense: we have

〈V (a), b〉 = V (〈a, F(b)〉) ∈ Wm(k) (3.20)

for any a ∈ Wm−1(E(1)), b ∈ Wm(E∗).

Lemma 3.12 For any m ≥ 1 and finite-dimensional k-vector space E, (3.19) is a
perfect pairing, so that Wm(E) and Wm(E∗) are dual modules over the Gorenstein
ring Wm(k).

Proof Let Wm(E)∗ = HomWm (k)(Wm(E), Wm(k)) be the Wm(k)-module dual to
Wm(E). Then the pairing (3.19) induces a map

ρ : Wm(E∗) → Wm(E)∗,

and we have to prove that this map is an isomorphism. If m = 1, we have W1(E∗) ∼=
E∗, W1(E) ∼= E , so the claim is clear. In the general case, we note that by Lemma 2.1
and (2.9), the source and the target of the map ρ are Wm(k)-modules of the same finite
length, so that it suffices to prove that ρ is injective. Assume by induction that this
is proved for Wm−1. Then since the Verschiebung map V : Wm−1(k) → Wm(k) is
injective, (3.20) implies that for any a ∈ Ker ρ, we have F(a) = 0. By Lemma 3.7,
this means that a lies in the image of the map Cm−1, and by induction, we have a = 0.

��

We note by Lemma 3.7 and (3.20), the perfect pairing (3.19) interchanges the
standard and costandard filtrations on Wm . In terms of the diagram (3.6), one notes
that the functors 
i are obviously self-dual, that is, we have 
i (E)∗ ∼= 
i (E∗), and
the pairing (3.19) then corresponds to flipping the table along the main diagonal.

Assume now given an algebra A over k. Then since Wm is symmetric pseudotensor,
Wm(A), m ≥ 1 and W (A) are rings, and if the algebra A is commutative, these rings
are also commutative.

Unfortunately, at this point our notation stops being consistent: for any commuta-
tive k-algebra A different from k itself, our ring Wm(A) is definitely not isomorphic
to the standard m-truncated p-typical Witt vectors ring W st

m (A) of A, and W (A) is
not isomorphic to the standard Witt vectors ring W st (A). Indeed, already the asso-
ciated graded quotients with respect to the standard filtration are different: we have
gri W (A) ∼= C(i)(A) and gri W st (A) ∼= A. In fact, our construction is by its nature
relative over the field k, so that W (E/k) would have been perhaps better notation for
our polynomial Witt vectors. In this sense, the standard Witt vectors ring ought to cor-
respond to W (A/A). Unfortunately, under our present definition of polynomial Witt
vectors this makes no sense, since the constrution crucially depends on the identifica-
tion (2.11), and it only holds for perfect k. As we have mentioned in the Introduction,
it is possible to give a competely different definition that does not require this assump-
tion, but this is much more difficult technically, and we will return to it elsewhere.
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3.4 Explicit descriptions

Let us now give some more explicit descriptions of the functors Wm . First of all, for
any set S and integer m ≥ 0, denote

C(m)(S) = S pm
/Gm, C (m) = S pm

[m]/Gm = C(m)(S)\C(m−1)(S),

where the embedding C(m−1)(S) ⊂ C(m)(S) is induced by the diagonal embed-

ding S pm−1 ⊂ S pm
. Note that this is consistent with our earlier notation, in that we

have C(m)(k[S]) ∼= k[C(m)(S)]. Then the Witt vectors Wm(E) of the k-vector space
E = k[S] spanned by S are immediately given by Lemma 2.1—we have a natural
identification

Wm(E) ∼=
⊕

0≤i<m

Wm−i (k)[C (i)(S)].

Now more generally, assume given a k-vector space E graded by S, that is, assume
that we have

E =
⊕

s∈S

Es

for some k-vector spaces Es , s ∈ S.

Lemma 3.13 For any S-graded vector space E, and for any choice of splittings τ :
C(i)(S) → S pi

[i] of the quotient maps S pi

[i] → C(i)(S), 0 ≤ i < m, we have a natural
identification

Wm(E) ∼=
⊕

0≤i<m

⊕

f ∈C(i)(S)

Wm−i (Eτ( f )(1) ⊗ · · · ⊗ Eτ( f )(pi )). (3.21)

Proof For any i ≥ 0, we have a natural decomposition

E(i) = E⊗pi ∼=
⊕

f ∈S pi

E f (1) ⊗ · · · ⊗ E f (pi ),

so that the map V i : Wm−i (E(i)) → Wm(E) induces a map

V i : Wm−i (Eτ( f )(1) ⊗ · · · ⊗ Eτ( f )(pi )) → Wm(E)

for any f ∈ C (i)(S). To prove that the direct sum of these maps is an isomorphism, it
suffices to prove that it becomes an isomorphism after we pass to the associated graded
quotients with respect to the standard filtration. This immediately follows from (3.12)
and an obvious computation for the cyclic power functors C(i)(−), 0 ≤ i < m. ��
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Remark 3.14 The independence of the choice of τ in Lemma 3.13 is not surprising.
In fact, as we will see in Sect. 4, Wm has a natural structure of a trace functor in the
sense of [15]. In particular, this provides a natural identification

Wm(E1 ⊗ · · · ⊗ En) ∼= Wm(Eσ(1) ⊗ · · · ⊗ Eσ(n))

for any k-vector spaces E1, . . . , En and any cyclic permutation σ of the set of indices
{1, . . . , n}.

If a k-vector space is graded by integers, then we can lift it to a Z-graded flat
Wm(k)-module ˜E , and then by (2.9), Wm(E) inherits a natural grading. However, the
restriction maps R : Wm+1(E) → Wm(E) do not preserve this grading—conversely,
they multiply it by p. To make the graded consistent with the restriction maps, we
need to rescale it by pm . Thus a natural grading on Wm(E), m ≥ 1 and on the limit
W (E) is indexed not by integers but by elements a ∈ Z[p−1] in the localization at p
of the ring Z. To see this grading in terms of the decomposition (3.21), denote

| f | =
pi

∑

j=1

τ( f )( j)

for any i ≥ 0 and f ∈ C (i)(Z). Then the component Wm(E)a ⊂ Wm(E) of degree a
is given by

Wm(E)a =
⊕

0≤i<m

⊕

| f |=pi a

Wm−i (Eτ( f )(1) ⊗ · · · ⊗ Eτ( f )(pi )). (3.22)

Passing to the limit, one obtains an obvious version of (3.21) and (3.22) for the limit
Witt vectors functor W .

We now observe that even if a k-vector space E has no distinguished basis or
grading, we still have the Teichmüller representative maps (3.17), (3.15). We recall
that these maps are not additive. Nevertheless, combining them with the powers V m

of the Verschiebung map V , we can still obtain a functorial surjective map of sets

˜T :
∏

m≥0

E(m) → W (E) (3.23)

given by

˜T (〈e0, e1, . . . 〉) =
∑

m≥0

V m(T (em)),

where the sum is convergent with respect to the limit topology on W (E).
In principle, one can use the map (3.23) to obtain an alternative description of

the functor W (E) that is closer to the classical construction of Witt vectors. We will
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not do it completely. However, let us show how one can describe the first non-trivial
extension

0 −−−−→ W 1(E)
V−−−−→ W (E)

R−−−−→ E −−−−→ 0

in the standard filtration on W (E). The Teichmüller map (3.17) gives a set-theoretic
section of the restriction map R, so that we obtain a functorial isomorphism of sets

W (E) ∼= W 1(E) × E,

and in terms of this isomorphism, the abelian group structure on W (E) is given by

(e′
0 × e0) + (e′

1 × e1) = (e′
0 + e′

1 − c(e0, e1)) × (e0 × e1), (3.24)

where c(−,−) is a certain functorial symmetric 2-cocycle of the group E with coef-
ficients in W 1(E) ⊂ W (E). For any m ≥ 2, we can project the cocycle c to Wm(E)

and obtain a cocycle
c : E × E → W 1

m(E) (3.25)

that gives the group Wm(E).

Lemma 3.15 (i) Let M = Z[S] be the free abelian group generated by the set S =
{s0, s1} with two elements, and for any integer n ≥ 1, let σ : Sn → Sn be the
cyclic permutation of order n. Then there exist elements ci ∈ M⊗pi

, i ≥ 1 such
that for any n ≥ 1, we have

(s0 + s1)
⊗pn = s⊗pn

0 + s⊗pn

1 +
n

∑

i=1

pi −1
∑

j=0

σ j (c⊗pn−i

i ) ∈ M⊗pn
. (3.26)

(ii) Moreover, for any such set of elements ci , 1 ≤ i < m satisfying (3.26) for n < m,
the cocycle (3.25) is given by

c(e0, e1) = ˜T (0 × c1(e0, e1) × c2(e0, e1) × cm−1(e0, e1), e0, e1 ∈ E,

where ˜T is the map (3.23), and ci (e0, e1) stands for the image of ci under the map
M → E sending s0 to e1 and s1 to e1.

Proof For (ii), it suffices to use the interpretation (3.18) of the Teichmüller map in
terms of the element ẽ′

(m−1), and recall that for any i such that 0 < i < m, the map

V i : Q′
m−1−i (

˜E(i)) → Q′
m−1(

˜E) is induced by the trace map

trGi : H0(Gm−i , ˜E ′
(m−1)) → H0(Gm, ˜E ′

(m−1)).
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For (i), assume by induction that we already have elements ci , 1 ≤ i < m satisfying
(3.26) for n < m. Then the difference

cm = (s0 + s1)
⊗pm − s⊗pm−1

0 − s⊗pm−1

1 −
m−1
∑

i=1

pi −1
∑

j=0

σ j (c⊗pm−i

i )

is invariant under σ , thus gives an element in H0(Gm, M⊗pm
). An element cm satisfies

(3.26) for n = m if and only if

cm =
pm−1
∑

j=0

σ j (cm),

thus to show that it exists, it suffices to check that cm projects to 0 in the Tate coho-
mology group Ȟ0(Gm, M⊗pm

). This cohomology group is certainly annihilated by
pm = |Gm |, thus it does not change if we replace M with M ⊗ Zp, and then (2.9)
provides an identification

Ȟ0(Gm, M⊗pm
) ∼= Wm(E),

where E = M/p is treated as a vector space over the prime field Z/pZ. To see that
cm projects to 0 in this group, it suffices to use the interpretation (3.18) of the map T
in terms of the element ẽ(m), and apply (ii). ��
Remark 3.16 Lemma 3.15 (i) has a priori nothing to do with the functors Wm , and
might admit an explicit combinatorial proof [for example, certain explicit polynomials
δi are introduced in [9], and the proof of [9, Proposition 1.2.3] seems to also prove
that they satisfy (3.26)]. Having obtained the universal polynomials ci in whatever
fashion, one might try to reconstruct the functors Wm by induction on m via (3.24).
However, one would then also need a Z/pZ-action on Wm−1(E⊗p) that produces the
quotient W 1

m(E) = Wm−1(E⊗p)Z/pZ, and this requires a structure of a trace functor
that we explore in Sect. 4. One might be able to reconstruct this structure explicitly as
well, but we did not pursue this.

4 Trace functors

4.1 Definitions and examples

A trace functor from a unital monoidal category E to a category C is a functor P :
E → C equipped with functorial isomorphisms

τM,N : P(M ⊗ N ) → P(N ⊗ M), M, N ∈ E

such that for any object M ∈ E , we have τ1,M = τM,1 = id, and for any three objects
M, N , L ∈ E , we have
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τL ,M,N ◦ τN ,L ,M ◦ τM,N ,L = id, (4.1)

where 1 ∈ E denotes the unit object, we identify 1 ⊗ M ∼= M ∼= M ⊗ 1 by means of
the unitality isomorphism of the category E , and τA,B,C for any A, B, C ∈ E is the
composition of themap τA,B⊗C and themap induced by the associativity isomorphism
(B ⊗ C) ⊗ A ∼= B ⊗ (C ⊗ A).

It seems that the notion of a trace functor has been around in some form at least
since 1960-ies. This particular definition is taken from [15], and it admits a conve-
nient repackaging using A. Connes’ cyclic category �. We recall (see e.g. [19] for
[6]) that objects in � correspond to cellular decompositions of a circle S1. For any
positive integer n ≥ 1, we have a natural object [n] ∈ � corresponding to the unique
decomposition with n 0-cells, called vertices, and n 1-cells. We denote the set of
vertices by V ([n]). Morphisms in � are homotopy classes of cellular maps satisfy-
ing certain condition. In particular, any morphism f : [n′] → [n] induces a map
f : V ([n′]) → V ([n]); moreover, it is known that for any v ∈ V ([n]), the preimage
f −1(v) ⊂ V ([n′]) carries a natural total order.
Now, for any monoidal category E , one constructs a category E� as follows:

(i) Objects in E� are pairs 〈[l], E �〉 of an object [l] ∈ � and a collection Ev ∈ E ,
v ∈ V ([l]) of objects in E numbered by vertices of [l].

(ii) Morphisms from 〈[l ′], E ′
�
〉 to 〈[l], E �〉 are given by a map f : [l ′] → [l] in � and

a collection of morphisms

fv :
⊗

v′∈ f −1(v)

E ′
v′ → Ev, v ∈ V ([n]),

where the product is taken in the order prescribed by the total order on f −1(v).

We have a natural projection ρ : E� → � sending 〈[l], E �〉 to [l]. This projection is
a cofibration whose fiber over [l] ∈ � is the product EV ([l]) of copies of E numbered
by vertices v ∈ V ([l]). A map in E� is cocartesian with respect to ρ if and only if all
its components fv are invertible.

To avoid size issues, assume that the monoidal category E is small. Then trace
functors from E to C form a category Tr(E, C) in an obvious way, and we have the
following result.

Lemma 4.1 The categoryTr(E, C) is equivalent to the category of functors P� : E� →
E such that P�( f ) is invertible for any map f in E� cocartesian with respect to the
projection ρ.

The proof is in [15, Lemma 2.5]; let us just say that the correspondence P� �→ P
simply restricts P� to the fiber E�

[1] ∼= E of the projection ρ : E� → � over the object
[1] ∈ �.

Remark 4.2 Lemma 4.1 has one immediate corollary. Note that the forgetful functor
Tr(E, C) → Fun(E, C) is faithful. Thus if we have two functors P�

1 , P�
2 : E� → C

corresponding to trace functors P1, P2 ∈ Tr(E, C), and two maps a, a′ : P�
1 → P�

2

such that a = a′ on E�
[1] ⊂ E�, then Lemma 4.1 shows that a = a′ on the whole E�.
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If a monoidal category E is symmetric, for example if E is the category of vector
spaces over a field k, then any functor P : E → C is tautologically a trace functor, with
themaps τ �, � provided by the commutativity isomorphism of the category E . However,
even in this case, there could be some non-trivial trace functor structures. The basic
example of such considered in detail in [15] concern the cyclic power functorCl , l ≥ 1
of (3.1), and an explanation of how it works in terms of the eqivalence of Lemma 4.1
has been given in [17, Subsection 4.1]. Let us reproduce it.

Recall (e.g. from [6, Appendix]) that for any integer l ≥ 1, the category � has a
cousin �l described as follows. For any [n] ∈ �, the automorphism group Aut([n]) is
the cyclic groupZ/nZ generated by the clockwise rotation σ of the circle. If n = ml is
divisible by l, then τ = σm generates the cyclic subgroupZ/ lZ ⊂ Z/nZ. Then objects
in [m] ∈ �l are numbered by positive integers m ≥ 1, and morphisms from [m′] to
[m] are τ -equivariant morphisms from [m′l] to [ml] in the category �. Sending [m]
to [ml] gives a functor il : �l → �. On the other hand, taking the quotient of a circle
S1 by the automorphism τ and equipping it with the induced cellular decomposition
gives a functor πl : �l → �, πl([m]) = [m]. The functor πl is a bifibration with fiber
ptl . For any m, it also induces the natural quotient map πl : V (il([m])) → V ([m]).

Now, it was observed in [17] that for any monoidal category E and integer l ≥ 1,
we can construct a canonical commutative diagram

E�
iEl←−−−− E�

l

πE
l−−−−→ E�

ρ

⏐

⏐

�

⏐

⏐

�

ρ

⏐

⏐

�

ρ

�
il←−−−− �l

πl−−−−→ E�,

(4.2)

where the square on the right-hand side is cartesian, and the functor iEl sends 〈[m], c �〉
to 〈il([m]), cl

�
〉, with the collection cl

�
given by cl

v = cπl (v), v ∈ V (il([m])). Both πE
l

and iEl are cocartesian functors with respect to the cofibrations ρ.
Assume now that E is the category of finite-dimensional k-vector spaces, so that

the category Fun(E�, k) is well-defined, and consider the object

C�
l = πE

l! iE∗
l T ∈ Fun(E�, k),

where T ∈ Fun(E�, k) is the object corresponding to the tautological trace functor
E → k-mod, V �→ V . Then for any V ∈ E ∼= E�

[1] ⊂ E�, we have C�
l (V ) ∼= Cl(V )

by base change. Also by base change, C�
l : E� → k-mod satisfies the conditions of

Lemma 4.1, and corresponds to a non-trivial trace functor structure on Cl .

4.2 Constructions

We now observe that exactly the same construction as for the cyclic power functor
can be used to make the polynomial Witt vectors W into a trace functor. Namely, let
k be a perfect field of characteristic p > 0, fix integers n ≥ m ≥ 1, and denote by
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E(n) = Wn(k)-mod f f ⊂ Wn(k)-mod the category of finitely generated free modules
over the Witt vectors ring Wn(k). We have the quotient functor E(n) → E , V �→ V/p,
where E = k-mod f is the category of finite-dimensional k-vector spaces. Since the
quotient functor is monoidal, it induces a functor q : E�

(n) → E�. Consider the diagram
(4.2) with l = pm , and to simplify notation, let

i (n)
pm = i

E(n)

pm , π
(n)
pm = π

E(n)

pm .

Then π
(n)
pm is a bifibration with fiber ptpm , so that we have the functor π̌

(n)
pm∗ of (1.7).

Denote
Q�

m = π̌
(n)
pm∗i (n)∗

pm T (m) ∈ Fun(E�

(n), Wn(k)), (4.3)

where T ∈ Fun(E�

(n), Wn(k)) is the tautological functor corresponding to the embed-

ding E(n) ⊂ Wn(k)-mod, and T (m) is T with the Wn(k)-module structure twisted by

Fm as in (2.3). Note that by base change, Q�
m satisfies the conditions of Lemma 4.1.

Moreover, for any E ∈ E(n) = E�

(n)[1] ⊂ E�

(n), we have Q�
m(E) ∼= Ȟ0(Gm, E(m)),

where E(m) is as in Proposition 2.3.

Proposition 4.3 (i) For any integer m ≥ 1, there exists an object W �
m ∈

Fun(E�, Wm(k)) such that Q�
m

∼= q∗W �
m, independently of the choice of an integer

n ≥ m, and we have W �
m(E) ∼= Wm(E) for any E ∈ E ∼= E�

[1] ⊂ E�.
(ii) Moreover, for any m ≥ 1, the restriction map R of (2.16) extends to a map

W �
m+1 → W �

m, and the Teichmüller representative map (3.15) extends to a map

T : W �
1 → W �

m.

Proof For (i), note that q is essentially surjective, so that as in Proposition 2.3, the
issue is the morphisms: we have to check that for two morphisms a, b in E�

(n) with

q(a) = q(b), we have Q�
m(a) = Q�

m(b). Every morphism f in E�

(n) decomposes as

fv ◦ fc, where fc is cocartesian with respect to the projection ρ : E�

(n) → �, and fv is
contained in a fiber of this projection. If q(a) = q(b), then in particular ρ(a) = ρ(b),
so that we may assume that ac = bc, and it suffices to check that Q�

m(av) = Q�
m(bm).

Moreover, every object [n] ∈ � admits a morphism f : [n] → [1], so that for any
object ˜E ∈ E�, we have a cocartesian map ˜E → ˜E0 with ρ(˜E0) = [1]. Therefore we
may further assume that av and bv lie in the fiber E ∼= E�

[1]) ⊂ E� of the cofibration ρ.
Then the claim immediately follows from Proposition 2.3.

For (ii), the claim about the Teichmüller map T is clear from its explicit description
given in the proof of Lemma 3.15, so what we need to construct is the restriction map
R. To do this, we imitate the construction of the restriction map R of Corollary 2.7.
Note that the functors i pm+1 , resp. πpm+1 factor through i pm , resp. πpm—we have
natural functors

˜i, π̃ : �pm+1 → �pm
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such that i pm+1 ∼= i pm ◦˜i and πpm+1 ∼= πpm ◦ π̃ . The functor π̃ is a bifibration with
fiber ptp; over an object of �, it is the fibration ptpm+1 → ptpm corresponding to the
quotient map Gm+1 → Gm . Moreover, both π̃ and˜i lift to functors

˜i (n), π̃ (n) : E�

(n)pm+1 → E�

(n)pm

so that we have the same factorization, and π̃ (n) is also a bifibration with fiber ptp.
Denote

Q
′�
m = π̌

(n)

pm+1∗π̃
(n)∗i (n)∗

pm T (m).

Then for any E ∈ E(n) = E�

(n)[1] ⊂ E�

(n), we have Q
′�
m(E) ∼= Ȟ0(Gm, E ′

(m)), where
E ′

(m) is as in Proposition 2.3, so that by the same argument as in (i), we have

Q
′�
m = q∗W

′�
m

for some W
′�
m ∈ Fun(E�, Wn(k)). Moreover, as in (2.5), we have a natural map

r : W
′�
m → W �

m,

so that it suffices to construct an isomorphism W
′�
m

∼= W �
m+1. By Lemma 4.1, this is

equivalent to proving that the isomorphism (2.11) of Corollary 2.7 is compatible with
the trace functor structures—that is, commutes with the maps τ �, �.

However, the category� of finite sets is also amonoidal category, with themonoidal
structure given by cartesian product, and we have a natural monoidal functor ν : � →
E sending a finite set S to the vector space k[S]. Then ν∗W �

m+1, ν
∗W

′�
m correspond to

trace functors from � to W (k)-mod, and since ν is essentially surjective, it suffices
to check that (2.11) commutes with τ �, � after restricting to �. In other words, it

suffices to prove that it extends to an isomorphism ν∗W
′�
m

∼= ν∗W �
m+1. Moreover, the

pullback functor q∗ is fully faithful, and ν factors through q by means of a monoidal
functor ν̃ : � → E(n). Therefore it suffices to extend (2.11) to an isomorphism

ε : ν̃∗Q
′�
m → ν̃∗Q�

m+1. But by base change, ν̃∗Q
′�
m and ν̃∗Q�

m+1 are given by

ν̃∗Q
′�
m = π̌�

pm+1!π̃
�∗

˜T (m), ν̃∗Q�
m+1 = π̌�

pm+1!˜i
�∗

˜T (m),

where we denote ˜T (m) = i�∗
pn ν̃∗T (m). The canonical maps cS , S ∈ � of (2.12) together

give a map
π̃�∗

˜T (m) →˜i�∗
˜T (m). (4.4)

This map induces a map ε : ν̃∗Q
′�
m → ν̃∗Q�

m+1 whose restriction to � = �
�
[1] ⊂ �� is

exactly the isomorphism (2.11). Since both Q
′�
m and Q�

m+1 send cocartesian maps in
E� to invertible maps, and every object in �� admits a cocartesian map to an object in
�

�
[1], the map ε must be an isomorphism everywhere. ��
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As a corollary of Proposition 4.3, we see that the m-truncated polynomial Witt
vectors functors Wm , m ≥ 1 have natural trace functors structures at least if we restrict
them to finite-dimensional k-vector spaces, and the restrictionmaps R : Wm+1 → Wm

together with the Teichmüller maps T : W1 → Wm are trace functor maps. Since there
functors commute with filtered colimits, both statements immediately extend to all k-
vector spacs. The inverse limit W = lim R← Wm then also has a structure of a trace
functor, and the Teichmüller map (3.17) is a trace functor map.

4.3 Extensions

Let us now prove that the trace functor structure on W is compatible with the two other
structures it has—namely, the structure of a G-Mackey functor, and the pseudotensor
structure of Proposition 3.10. As it happens, the proofs are quite straightforward, and
the main issue is formulating the exact meaning of compatibility.

For the pseudotensor structure, this is also straightforward. For any unital monoidal
category E , the category E2 = E × E is also unital monoidal with respect to the
coordinatewise monoidal structure. For any trace functor P from E to a category C,
we have a natural trace functor P2 : E2 → C2. If E is symmetric, then the product
functor mE : E2 → E is a monoidal functor, so that it defines a natural functor

m�

E : E2� → E�

cocartesian over �. Moreover, the unit object 1 ∈ E extends to a natural cocartesian
section 1� : � → E� of the projection ρE : E� → � such that 1�([n]) = 1V ([n]) ∈
EV ([n]), [n] ∈ �.

Definition 4.4 A pseudotensor structure on a trace functor P from a symmetric
monoidal category E to a monoidal category C with the product functor mC : C2 → C
is given by functorial maps

ε : 1 → P�(1�), μ : mC ◦ P2� → P� ◦ m�

E (4.5)

that are associative, commutative and unital in the obvious sense.

As for the G-Mackey structure, one immediate observation is that finite G-orbits
and objects [n] ∈ � have one thing in common: their automorphisms form finite cyclic
groups. We emphasize this similarity by using the notation [pm], m ≥ 0 for finite G-
orbits in Sect. 1.6. In fact, we have a natural functor δ : I → �, δ([pm]) = [pm],
where as in Sect. 1.6, I is the groupoid of finite G-orbits and their isomorphisms.
Moreover, this functor fits into a commutative diagram

I
π←−−−− Ip

i−−−−→ I

δ

⏐

⏐

�

⏐

⏐

�

⏐

⏐

�δ

�
πp←−−−− �p

i p−−−−→ �,

(4.6)
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where the squares are cartesian, and Ip, i , π are as in Sect. 1.6. One is tempted to think
that one can add morphisms of G-orbits to morphisms already in � to obtain a bigger
category �R ⊃ �, and then try to imitate the definition of Mackey functors to obtain
some sort of a category Q�R. This is indeed possible; the resulting category is the
cyclotomic category that appeared e.g. in [14], andwhen the theory is fully developed, it
provides a notion of a “cyclotomic Mackey functor”. However, doing all this properly
requires a lot of work and a lot of space, and we will return to it elsewhere. For
the purposes of the present paper, we simply use an explicit description of G-Mackey
functors given in Lemma 1.5, and introduce the following somewhat ad hoc definition.

Definition 4.5 An FV -structure on a trace functor P from a monoidal category E to
the category A-mod of modules over a ring A is a pair of maps

P� ◦ iEp
V−−−−→ P� ◦ πE

p
F−−−−→ P� ◦ iEp

such that F ◦ V : P� ◦ i E
p → P� ◦ iEp is equal to the natural map tr†

πE
p
of (1.6).

Here iEp , πE
p : E�

p → E� are the functors of (4.2), and we recall that the trace

map tr†
π E

p
is well-defined even if the category E is not small. Note that for any object

E ∈ E = E�
[1] ⊂ E�, we have a natural functor E� : I → E� given by

E�([pm]) = iEpm (˜E), (4.7)

and we have ρE ◦ E� ∼= δ. Therefore by (4.6), for any trace functor P� : E → A-mod
equipped with an FV -structure, and for any object E ∈ E , the composition P� ◦ E�

with the induced maps V , F satisfies the conditions of Lemma 1.5 (i) and defines an
A-valued G-Mackey functor.

Finally, assume that the monoidal category E is symmetric, the ring A is commuta-
tive, and we are given a trace functor P from E to A-mod that has both a pseudotensor
structure 〈ε, μ〉 in the sense of Definition 4.4 and an FV -structure 〈V, F〉 in the sense
of Definition 4.5.

Definition 4.6 The structures 〈ε, μ〉 and 〈V, F〉 on a trace functor P from E to A-mod
are compatible if we have

μ ◦ (F × F) = F ◦ μ, (4.8)

μ ◦ (V × id) = V ◦ μ ◦ (id×F), (4.9)

μ ◦ (id×V ) = V ◦ μ ◦ (F × id). (4.10)

We can now formulate our result about Witt vectors. Note that a pseudotensor
structure on a trace functor P from E to C gives a pseudotensor structure on the
underlying functor P : E → C by restriction to the fiber E = E�

[1] ⊂ E . Let E =
k-mod, the category of vector spaces over our perfect ring k of characteristic p, and
let C = W (k)-mod, the category of modules over the Witt vectors ring W (k).
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Proposition 4.7 The Witt vectors trace functor W from E = k-mod to abelian groups
of Sect. 4.2 has a natural W (k)-linear pseudotensor structure 〈ε, μ〉 and an FV -
structure 〈V, F〉 such that

(i) the two structures are compatible in the sense of Definition 4.6,
(ii) 〈ε, μ〉 restricts to the pseudotensor structure of Proposition 3.10 on the fiber

k-mod = k-mod�
[1] ⊂ k-mod�, and

(iii) for any object E ∈ E , the functor W � ◦ E� : I → W (k)-mod with the maps V , F
corresponds to the extended Witt vectors Mackey functor ˜W (E) of (2.17) under
the equivalence of Lemma 1.5.

Moreover, for any integer n ≥ 1, the maps V , F of the FV -structure induce Wn+1(k)-
linear functorial maps

W (1)�
n ◦ i k-mod

p
V−−−−→ W �

n+1 ◦ πk-mod
p

F−−−−→ W (1)�
n ◦ i k-mod

p , (4.11)

and the pseudotensor structure 〈ε, μ〉 induces a pseudotensor structure on the quotient
Wn of the trace functor W .

Proof As in the proofs of Propositions 3.10 and 4.3, it suffices to prove everything after
replacing E with the category k-mod f of finite-dimensional k-vector spaces, and then
passing to the categories E(n) = Wn(k)-mod f f , n ≥ 1 by means of the fully faithful
pullback functor q∗. Thus to construct a pseudotensor structure on W , it suffices to
construct a system of pseudotensor structures on trace functors Qn = q∗Wn , n ≥ 1
compatible with the restrictionmaps R. Fix such an integer n, and to simplify notation,

let m� = m�

E(n)
, i pn = i

E(n)

pn , πpn = π
E(n)

pn . Then since the tautological embedding
E(n) ⊂ Wn(k)-mod is a tensor functor, we have

m�∗T (n) ∼= T (n) � T (n),

and since i pn ◦ m� ∼= m� ◦ i pn , this gives an isomorphism

m�∗i∗pn T (n) ∼= i∗pn T (n) � i∗pn T (n).

Therefore to obtain a pseudotensor structure on Q�
n = π̌pn∗i∗pn T (n), it suffices to recall

that the functor π̌pn∗ is pseudotensor by Lemma 1.1. On the fiber E = E�
[1] ⊂ E�, Q�

n
restricts to the functor Qm , so that the compatibility statement (ii) immediately follows
from the characterisation of the pseudotensor structure on Wn given in Sect. 3.3. Then
Proposition 3.10 implies that our pseudotensor structures agree with the restriction
maps on E�

[1] ⊂ E�, and as explained in Remark 4.2, Lemma 4.1 shows that they agree
everywhere.

To obtain the FV -structure, note that for every n ≥ 1, we have

i∗p Q�
n

∼= π̌pn∗i∗pn+1T (n)
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by base change. Simplify notation further by writing ˜T = i∗
pn+1T (n+1), π = πpn+1 ,

and let π ′ = πp, π ′′ = πpn . Then (1.10) provides natural maps l†π , r†π , and evaluating
them at ˜T , we obtain morphisms

V = l†π (˜T ) : i∗p Q(1)�
n → π∗

p Q�
n+1, F = r†π (˜T ) : π∗

p Q�
n+1 → i∗p Q(1)�

n

whose composition F ◦ V is exactly as required in Definition 4.5 by virtue of (1.11).
Moreover, since q∗ is fully faithful, the maps F and V descend to Witt vectors trace
functors W �

�
and give the diagram (4.11).

Nowobserve that if choose anobject E ∈ E and restrictW �
n andW �

n+1 to the category
I via the functor (4.7), then by (3.13), our maps V and F restrict exactly to the maps
V and F corresponding to the Mackey functor ˜Wn+1(E) under the equivalence of
Lemma 1.5. This implies in particular that the maps V and F for different integers
n agree with the restriction maps R on E = E�

[1] ⊂ E�, and then by Lemma 4.1,
they must agree everywhere. Therefore we can pass to the inverse limit and obtain
an FV -structure on the trace functor W �. Moreover, this FV -structure satisfies the
compatibility condition (iii).

To finish the proof, it remains to notice that the remaining condition (i) amounts to
checking (4.8), and this can be done pointwise, that is, after evaluation at an arbitrary
object ˜E ∈ E�. Moreover, by Lemma 4.1, it suffices to consider objects ˜E ∈ E�

[1] ⊂ E�,
and by (iii), the statement then immediately follows from Lemma 1.5 (ii). ��
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