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Abstract We propose a derived version of non-archimedean analytic geometry.
Intuitively, a derived non-archimedean analytic space consists of an ordinary non-
archimedean analytic space equipped with a sheaf of derived rings. Such a naive
definition turns out to be insufficient. In this paper, we resort to the theory of prege-
ometries and structured topoi introduced by Jacob Lurie. We prove the following three
fundamental properties of derived non-archimedean analytic spaces:

(1) The category of ordinary non-archimedean analytic spaces embeds fully faithfully
into the ∞-category of derived non-archimedean analytic spaces.

(2) The ∞-category of derived non-archimedean analytic spaces admits fiber prod-
ucts.

(3) The ∞-category of higher non-archimedean analytic Deligne–Mumford stacks
embeds fully faithfully into the ∞-category of derived non-archimedean analytic
spaces. The essential image of this embedding is spanned by n-localic discrete
derived non-archimedean analytic spaces.

We will further develop the theory of derived non-archimedean analytic geometry
in our subsequent works. Our motivations mainly come from intersection theory,
enumerative geometry and mirror symmetry.
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1 Introduction

Motivations Derived algebraic geometry is a far-reaching enhancement of classical
algebraic geometry. We refer to Toën and Vezzosi [37,38] and Lurie [20,23] for
foundational works. The prototypical idea of derived algebraic geometry originated
from intersection theory: Let X be a smooth complex projective variety. Let Y, Z be
two smooth closed subvarieties of complementary dimension. We want to compute
their intersection number. When Y and Z intersect transversally, it suffices to count
the number of points in the set-theoretic intersection Y ∩ Z . When Y and Z intersect
non-transversally, we have two solutions: The first solution is to perturb Y and Z into
transverse intersection; the second solution is to compute the Euler characteristic of
the derived tensor product OY ⊗L

OX
OZ of the structure sheaves. The second solution

can be seen as doing perturbation in a more conceptual and algebraic way. It suggests
us to consider spaces with a structure sheaf of derived rings instead of ordinary rings.
This is one main idea of derived algebraic geometry.

Besides intersection theory, motivations for derived algebraic geometry also come
from deformation theory, cotangent complexes, moduli problems, virtual fundamen-
tal classes, homotopy theory, etc. (see Toën [36] for an excellent introduction). All
these motivations apply not only to algebraic geometry, but also to analytic geometry.
Therefore, a theory of derived analytic geometry is as desirable as derived algebraic
geometry.
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The purpose of this paper is to define a notion of derived space in non-archimedean
analytic geometry and then study their basic properties. A non-archimedean field is a
fieldwith a complete nontrivial non-archimedean absolute value. By non-archimedean
analytic geometry, we mean the theory of analytic geometry over a non-archimedean
field k, initiated by Tate [35], then systematically developed by Raynaud [33],
Berkovich [3,4], Huber [16,17] and othermathematicianswith different levels of gen-
eralizations. The survey [7] byConrad gives a friendly overview of the subject.Wewill
restrict to the category of quasi-paracompact1 quasi-separated rigid k-analytic spaces,
which is the common intersection of the various approaches to non-archimedean ana-
lytic geometry mentioned above. For readers more familiar with Berkovich spaces,
we remark that this category is equivalent to the category of paracompact strictly
k-analytic spaces in the sense of Berkovich (cf. [4, §1.6]).

A more direct motivation of our study comes from mirror symmetry. Mirror sym-
metry is a conjectural duality between Calabi–Yau manifolds (cf. [8,15,39,40]). More
precisely, mirror symmetry concerns degenerating families of Calabi–Yau manifolds
instead of individual manifolds. An algebraic family of Calabi–Yau manifolds over a
punctured disc gives rise naturally to a non-archimedean analytic space over the field
C((t)) of formal Laurent series. In [18, §3.3], Kontsevich and Soibelman suggested that
the theory of Berkovich spaces may shed new light on the study of mirror symmetry.
Progresses along this direction are made by Kontsevich and Soibelman [19] and by
Yu [41–45]. The works by Gross et al. [12–14] are in the same spirit.

More specifically, in [44], a new geometric invariant is constructed for log Calabi–
Yau surfaces, via the enumeration of holomorphic cylinders in non-archimedean
geometry. These invariants are essential to the reconstruction problem in mirror sym-
metry. In order to go beyond the case of log Calabi–Yau surfaces, a general theory
of virtual fundamental classes in non-archimedean geometry must be developed. The
situation here resembles very much the intersection theory discussed above, because
moduli spaces in enumerative geometry can often be represented locally as intersec-
tions of smooth subvarieties in smooth ambient spaces. The virtual fundamental class
is then supposed to be the set-theoretic intersection after perturbation into transverse
situations. However, perturbations do not necessarily exist in analytic geometry. Con-
sequently, we need a more general and more robust way of constructing the virtual
fundamental class, whence the need for derived non-archimedean geometry.

Basic ideas andmain resultsOur previous discussion on intersection numbers suggests
the following definition of a derived scheme:

Definition 1.1 (cf. [36]). A derived scheme is a pair (X,OX ) consisting of a topo-
logical space X and a sheaf OX of commutative simplicial rings on X , satisfying the
following conditions:

(i) The ringed space (X, π0(OX )) is a scheme.
(ii) For each j ≥ 0, the sheaf π j (OX ) is a quasi-coherent sheaf of π0(OX )-modules.

1 A rigid k-analytic space is called quasi-paracompact if it has an admissible affinoid covering of finite
type.
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In order to adapt Definition 1.1 to analytic geometry, we need to impose certain
analytic structures on the sheaf OX . For example, we would like to have a notion
of norm on the sections of OX ; moreover, we would like to be able to compose the
sections ofOX with convergent power series. A practical way to organize such analytic
structures is to use the notions of pregeometry and structured topos introduced by
Lurie [23]. We will review these notions in Sect. 2 (see also the introduction of [29]
for an expository account of these ideas).

We will define a pregeometry Tan(k) which will help us encode the theory of non-
archimedean geometry responsible for our purposes.

After that, we are able to introduce our main object of study: derived k-analytic
spaces. It is a pair (X,OX) consisting of an ∞-topos X and a Tan(k)-structure OX,
satisfying analogs of Definition 1.1 Conditions (i)–(ii).Wewill explainmore intuitions
in Remark 2.6.

The goal of this paper is to study the basic properties of derived k-analytic spaces
and to compare them with ordinary k-analytic spaces. Here are our main results:

Theorem 1.2 (cf. Theorem 4.11). The category of quasi-paracompact
quasi-separated rigid k-analytic spaces embeds fully faithfully into the ∞-category
of derived k-analytic spaces.

Theorem 1.3 (cf. Theorem 6.5). The∞-category of derived k-analytic spaces admits
fiber products.

Let (Ank, τét) denote the étale site of rigid k-analytic spaces (cf. [10, §8.2]) and
let Pét denote the class of étale morphisms. The triple (Ank, τét,Pét) constitutes a
geometric context in the sense of [31]. The associated geometric stacks are called
higher k-analytic Deligne–Mumford stacks.

Theorem 1.4 (cf. Corollary 7.10). The ∞-category of higher k-analytic Deligne–
Mumford stacks embeds fully faithfully into the ∞-category of derived k-analytic
spaces. The essential image of this embedding is spanned by n-localic discrete derived
k-analytic spaces.

Outline of the paper In Sect. 2, we introduce the pregeometry Tan(k) and the notion
of derived k-analytic space.

In Sect. 3, we study the properties of the pregeometry Tan(k). We prove the unram-
ifiedness conditions as well as the compatibility with truncations.

In Sect. 4, we construct a functor � : Ank → dAnk from the category of k-analytic
spaces to the ∞-category of derived k-analytic spaces. We prove that � is a fully
faithful embedding.

In Sect. 5, we study closed immersions and étale morphisms under the embedding
�.

In Sect. 6, we prove the existence of fiber products between derived k-analytic
spaces.

In Sect. 7, we characterize the essential image of the embedding �. Moreover, we
compare derived k-analytic spaces with higher k-analytic stacks in the sense of [31].
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Notations and terminologyWe refer to Bosch et al. [5] and Fresnel and van der Put [10]
for the classical theory of non-archimedean analytic geometry, to Lurie [21,26] for
the theory of ∞-categories, and to Lurie [23] for the theory of structured spaces.

Throughout the paper, by k-analytic spaces, we mean quasi-paracompact quasi-
separated rigid k-analytic spaces.

We denote by Set the category of sets and by S the ∞-category of spaces. For any
small ∞-category C equipped with a Grothendieck topology τ and any presentable
∞-category D, we denote by PShD(C) the ∞-category of D-valued presheaves on
C and by ShD(C, τ ) the ∞-category of D-valued sheaves on the ∞-site (C, τ ). We
will refer to S-valued presheaves (resp. sheaves) simply as presheaves (resp. sheaves),
and denote PSh(C) := PShS(C), Sh(C, τ ) := ShS(C, τ ). We denote the Yoneda
embedding by

h : C → PSh(C), X �→ hX .

Related works and further developments Our approach is very much based on the
foundational works of Lurie [22–25] on derived algebraic geometry and derived
complex analytic geometry.

In [29,30], Mauro Porta studied the theories of analytification and deformation
in derived complex analytic geometry, more specifically, the analytification functor,
relative flatness, derived GAGA theorems, square-zero extensions, analytic modules
and cotangent complexes.

The papers by Ben-Bassat and Kremnitzer [2], by Bambozzi and Ben-Bassat [1],
and by Paugam [27] suggest other approaches to derived analytic geometry.

In order to apply derived non-archimedean analytic geometry to enumerative geom-
etry, mirror symmetry as well as other domains of mathematics, we must show that
derived non-archimedean analytic spaces arise naturally in these contexts. The key to
the construction of derived structures is to prove a representability theorem in derived
non-archimedean geometry. This will be the main goal of our subsequent work [32].

2 Basic definitions

Intuitively, a derived non-archimedean analytic space is a “topological space” X

equipped with a structure sheaf OX of “derived non-archimedean analytic rings”.
In order to give the precise definition, we introduce the notions of pregeometry and
structured topos following [23].

Definition 2.1 ([23, 3.1.1]). A pregeometry is an∞-category T equipped with a class
of admissible morphisms and a Grothendieck topology generated by admissible mor-
phisms, satisfying the following conditions:

(i) The ∞-category T admits finite products.
(ii) The pullback of an admissible morphism along any morphism exists, and is

again admissible.
(iii) For morphisms f, g, if g and g ◦ f are admissible, then f is admissible.
(iv) Every retract of an admissible morphism is admissible.
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We now define two pregeometries responsible for derived non-archimedean geom-
etry.
Construction 2.2 We define a pregeometry Tan(k) as follows:

(i) the underlying category of Tan(k) is the category of smooth k-analytic spaces;
(ii) a morphism in Tan(k) is admissible if and only if it is étale;
(iii) the topology on Tan(k) is the étale topology (cf. [10, §8.2]).

Construction 2.3 We define a pregeometry Tdisc(k) as follows:

(i) the underlying category of Tdisc(k) is the full subcategory of the category of
k-schemes spanned by affine spaces Spec(k[x1, . . . , xn]);

(ii) a morphism in Tdisc(k) is admissible if and only if it is an isomorphism;
(iii) the topology on Tdisc(k) is the trivial topology, i.e. a collection of admissible

morphisms is a covering if and only if it is nonempty.

Definition 2.4 ([23, 3.1.4]). Let T be a pregeometry, and let X be an ∞-topos. A
T-structure on X is a functor O : T → X with the following properties:

(i) The functor O preserves finite products.
(ii) Suppose given a pullback diagram

U ′ U

X ′ X

f

in T, where f is admissible. Then the induced diagram

O(U ′) O(U )

O(X ′) O(X)

is a pullback square in X.
(iii) Let {Uα → X} be a covering in T consisting of admissible morphisms. Then

the induced map

∐

α

O(Uα) → O(X)

is an effective epimorphism in X.

A morphism of T-structures O → O′ on X is local if for every admissible morphism
U → X in T, the resulting diagram

O(U ) O′(U )

O(X) O′(X)
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is a pullback square in X. We denote by StrlocT (X) the ∞-category of T-structures on
X with local morphisms.

A T-structured ∞-topos is a pair (X,OX) consisting of an ∞-topos X and a
T-structure OX on X. We denote by TopR (T) the ∞-category of T-structured ∞-
topoi (cf. [23, Definition 1.4.8]). Note that a 1-morphism f : (X,OX) → (Y,OY) in
TopR (T) consists of a geometric morphism of ∞-topoi f∗ : X � Y : f −1 and a local

morphism of T-structures f � : f −1OY → OX.

Wehave a natural functorTdisc(k) → Tan(k) inducedby analytification.Composing
with this functor, we obtain an “algebraization” functor

(−)alg : StrlocTan(k)
(X) → StrlocTdisc(k)

(X).

In virtue of [23, Example 3.1.6, Remark 4.1.2], we have an equivalence induced by
the evaluation on the affine line

StrlocTdisc(k)
(X)

∼−−→ ShCAlgk (X),

where CAlgk denotes the ∞-category of simplicial commutative algebras over k.
We are now ready to introduce our main object of study: derived k-analytic spaces.

Definition 2.5 A Tan(k)-structured ∞-topos (X,OX) is called a derived k-analytic
space if X is hypercomplete and there exists an effective epimorphism from

∐
i Ui to

the final object of X satisfying the following conditions, for every index i :

(i) The pair (X/Ui , π0(O
alg
X |Ui )) is equivalent to the ringed ∞-topos associated to

the étale site on a k-analytic space Xi .
(ii) For each j ≥ 0, π j (O

alg
X |Ui ) is a coherent sheaf of π0(O

alg
X |Ui )-modules on Xi .

We denote by dAnk the full subcategory of TopR (Tan(k)) spanned by derived k-
analytic spaces.

Remark 2.6 Let us explain the heuristic relation between Definitions 2.5 and 1.1 in
the introduction. Let (X,OX) be a derived k-analytic space as in Definition 2.5. Let
A1
k be the k-analytic affine line and let O := OX(A1

k) ∈ X. We have the sum oper-
ation +: A1

k × A1
k → A1

k and the multiplication operation •: A1
k × A1

k → A1
k . By

Definition 2.4(i), they induce respectively a sum operation +: O × O → O and a
multiplication operation •: O × O → O on O . Therefore, intuitively, we can think
of O as a sheaf of commutative simplicial rings as in Definition 1.1. Moreover, the
sheaf O is also equipped with analytic structures. For example, let D1

k ⊂ A1
k denote

the closed unit disc. By Definition 2.4(ii), we obtain a monomorphismOX(D1
k) ↪→ O .

We can think of OX(D1
k) as the subsheaf of O consisting of functions of norm less

than or equal to one. Furthermore, any holomorphic function f on D1
k induces a mor-

phism fO : OX(D1
k) → O , which we think of as the composition with f (see also the

discussion after Definition 1.1).

Remark 2.7 The hypercompleteness assumption in Definition 2.5 will ensure that the
underlying∞-topos of a derived k-analytic space has enough points (cf. Remark 3.3).
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The goal of this paper is to study the basic properties of derived k-analytic spaces
and to compare them with ordinary k-analytic spaces as well as with the higher k-
analytic stacks introduced in [31].

Before moving on, we stress that the underlying ∞-topos of a derived k-analytic
space is, by definition, hypercomplete. Therefore, using the notations of [23, §2.2], for
X ∈ Tan(k), the Tan(k)-structured ∞-topos SpecTan(k)(X) is not a derived k-analytic
space.We remedy this problemby introducing the hypercomplete spectrum as follows:

Let TopR (resp. TopL ) denote the ∞-category of ∞-topoi where morphisms are
right (resp. left) adjoint geometric morphisms. Denote by HTopR the full subcategory
of TopR spanned by hypercomplete ∞-topoi. Denote by HTopR (Tan(k)) the full
subcategory of TopR (Tan(k)) spanned by Tan(k)-structured ∞-topoi (X,OX) such
thatX is a hypercomplete. It follows from [21, 6.5.2.13] that the inclusion HTopR →
TopR admits a right adjoint, given by hypercompletion. This induces a right adjoint

to the inclusion HTopR (Tan(k)) ↪→ TopR (Tan(k)), as the next lemma shows:

Lemma 2.8 The inclusion HTopR (Tan(k)) ↪→ TopR (Tan(k)) admits a right adjoint,
which we denote by Hyp : TopR (Tan(k)) → HTopR (Tan(k)).

Proof Fix X := (X,OX) ∈ TopR (Tan(k)). Since the hypercompletion L : X → X∧ is
left exact, we obtain a well defined functor StrlocTan(k)

(X) → StrlocTan(k)
(X∧) induced by

composition with L . Let X∧ := (X∧, L(OX)) be the resulting hypercomplete Tan(k)-
structured ∞-topos. In TopR (Tan(k)) there is a natural morphism ϕ : X∧ → X .

Using the dual of [21, 5.2.7.8] it suffices to show that ϕ exhibits X∧ as a colo-
calization of X relative to HTopR (Tan(k)). In order to prove this, let Y := (Y,OY)

be any hypercomplete Tan(k)-structured ∞-topos. Using [21, 6.5.2.13] we obtain an
equivalence

Map TopR (Y,X∧) → Map TopR (Y,X).

Fix a geometric morphism g∗ : Y � X∧ : g−1 and let ( f −1, f∗) denote the induced
geometric morphism Y � X. We remark that f −1 � g−1 ◦ L . Using [21, 2.4.4.2] and
[23, Remark 1.4.10] we obtain a morphism of fiber sequences:

MapStrlocTan(k)(Y)(g
−1L(OX ),OY) Map TopR (Tan(k))(Y, X∧) Map TopR (Y,X∧)

MapStrlocTan(k)(Y)( f
−1OX ,OY) Map TopR (Tan(k))(Y, X) Map TopR (Y,X).

Since f −1 � g−1 ◦ L , we see that the left vertical morphism is an equivalence. Since
this holds for all base points in Map TopR (Y,X), we conclude that the middle vertical
morphism is an equivalence as well, completing the proof. ��
Definition 2.9 Given X ∈ Tan(k), we define its hypercomplete (absolute) spectrum
HSpecTan(k)(X) to be Hyp(SpecTan(k)(X)).
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Lemma 2.10 Let Y := (Y,OY) be a derived k-analytic space and let X ∈ Tan(k).
The natural morphism HSpecTan(k)(X) → SpecTan(k)(X) induces an equivalence

Map HTopR (Tan(k))(Y,HSpecTan(k)(X))
∼−−→ Map TopR (Tan(k))(Y,SpecTan(k)(X)).

Proof SinceY belongs to HTopR (Tan(k)), the statement is an immediate consequence
of Lemma 2.8. ��

3 Properties of the pregeometry

In this section, we study the properties of the pregeometry Tan(k) introduced in Sect. 2.
More specifically, we will prove the unramifiedness of Tan(k), the unramifiedness of
the algebraization and the compatibility of Tan(k) with n-truncations.

3.1 Unramifiedness

In order that the collection of closed immersions behaves well with respect to fiber
products, our pregeometry Tan(k) has to verify a condition of unramifiedness.

Definition 3.1 ([22, 1.3]). A pregeometry T is said to be unramified if for every
morphism f : X → Y in T and every object Z ∈ T, the diagram

X × Z X × Y × Z

X X × Y

induces a pullback square

XX×Z XX×Y×Z

XX XX×Y

in TopR , where the symbol X(−) denotes the associated ∞-topos.

Our first goal is to prove that the pregeometry Tan(k) is unramified (cf. Corol-
lary 3.11). In order to do this, we need to describe explicitly the∞-toposXX associated
to a k-analytic space X and prove that the assignment X �→ XX is well behaved with
respect to closed immersions (cf. Proposition 3.5).

Let Ank denote the category of k-analytic spaces and let Afdk denote the category
of k-affinoid spaces. For X ∈ Ank , let (AnX )ét (resp. (AfdX )ét) denote the category of
étale morphisms from k-analytic spaces (resp. k-affinoid spaces) to X . We equip the
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categories (AnX )ét and (AfdX )ét with the étale topology. By [31, Proposition 2.24],
the inclusion (AfdX )ét ↪→ (AnX )ét induces an equivalence of ∞-topoi

Sh((AfdX )ét)
∼−−→ Sh((AnX )ét). (3.1)

We call the two equivalent ∞-topoi above the étale ∞-topos associated to X , and
denote it by XX . We will denote the site (AfdX )ét by X ét for simplicity.

Remark 3.2 The ∞-topos XX is not hypercomplete in general. In the subsequent
sections we will also consider its hypercompletion X∧

X .

Remark 3.3 Since the site X ét is a 1-category, the ∞-topos XX is 1-localic. It follows
that for any ∞-topos Y one has an equivalence of ∞-categories

Fun∗(Y,XX ) � Fun∗(τ≤0Y, τ≤0XX ),

where Fun∗ denotes the ∞-category of geometric morphisms (taken in TopR ). Put
Y = S and observe that τ≤0XX = ShSet(X ét) and τ≤0(S) � Set. We conclude that the
points of XX correspond bijectively to the points of the classical 1-topos associated to
the site X ét . The latter is classified by the geometric points of the adic space associated
to X in the sense of Huber (cf. [17, Proposition 2.5.17]).

Since the site X ét is finitary, it follows from [24, Corollary 3.22] that the hypercom-
pletion X∧

X is locally coherent. Therefore, by Theorem 4.1 in loc. cit., the ∞-topos
X∧

X has enough points.

Remark 3.4 As we already discussed in Sect. 2, [23, §2.2] assigns to every X ∈
Tan(k) a Tan(k)-structured ∞-topos SpecTan(k)(X), called the spectrum of X . It is
characterized by the following universal property: for any Tan(k)-structured ∞-topos
(Y,OY) there is a natural equivalence

Map TopR (Tan(k))((Y,OY),SpecTan(k)(X)) � MapInd(Gan(k)op)(X, 	G(Y,OY)),

where Gan(k) denotes a geometric envelope of Tan(k) (cf. [23, Theorem 2.2.12]). We
note that the underlying ∞-topos of SpecTan(k)(X) can be identified with XX .

We refer to [21, 7.3.2] for the notion of closed immersion of ∞-topoi.

Proposition 3.5 The functor

Ank −→ h( TopR )

X �−→ XX

preserves closed immersions, where h( TopR ) denotes the homotopy category of TopR .

Remark 3.6 It will follow from the results of Sect. 4 (see in particular Lemma 4.4
and the construction of �) that the functor above can be promoted to an ∞-functor
Ank → TopR .
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Lemma 3.7 Let X,Y be ∞-topoi and let U ∈ X. Let f −1 : X/U � Y : f∗ be a
geometric morphism. Then ( f −1, f∗) is an equivalence if and only if there exists an
effective epimorphism V → 1X such thatX/V /(U×V ) � Y/ f −1(V ) is an equivalence.

Proof To see that the condition is necessary it is enough to take V → 1X to be the
identity of 1X. We now prove the sufficiency. Let us denote by j−1 : X � X/U : j∗
(resp. i−1 : X � X/V : i∗) the given closed (resp. étale) morphism of ∞-topoi. We
claim that

X/V /(U × V ) � (X/U )/j−1(V ).

Indeed, the left hand side can be identified with the pullbackX/V ×XX/U in virtue of
[21, 6.3.5.8]. The right hand side can be identified with the same pullback in virtue of
[21, 7.3.2.13]. At this point, we obtain a commutative square of geometric morphisms
in TopR

Y/ f −1(V ) (X/U )/j−1(V )

Y X/U.
f∗

So the lemma follows from the descent property of ∞-topoi [21, 6.1.3.9(3)]. ��
Lemma 3.8 Let A → B be a surjective morphism of k-affinoid algebras. Let B → B ′
be an étale morphism of k-affinoid A-algebras. Then there exists an étale A-algebra
A′ and a pushout square:

A B

A′ B ′.

Proof Since B → B ′ is étale, by [17, Proposition 1.7.1], we can write

B ′ = B〈y1, . . . , ym〉/( f1, . . . , fm),

such that the Jacobian J := Jac( f1, . . . , fm) is invertible in B ′. So

ρ := min
x∈Sp B′|J (x)|

is positive. Since A → B is surjective, the induced morphism

A〈y1, . . . , ym〉 → B〈y1, . . . , ym〉
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is surjective as well. Therefore we can find elements f1, . . . , fm ∈ A〈y1, . . . , ym〉
lifting f1, . . . , fm . Set

A0 := A〈y1, . . . , ym〉/( f1, . . . , fm).

Let �J := Jac( f1, . . . , fm). Let n be a positive integer such that ρn ∈ |k| and let a be
an element in k such that |a| = ρn . Set A′ := A0〈w〉/(w�Jn − a). We see that the
natural morphism A0 → B ′ factors as

A0 → A′ → B ′.

It follows from the construction that A → A′ is étale, and moreover B ′ � A′ ⊗̂A B,
completing the proof. ��
Proof of Proposition 3.5 Let f : Y → X be a closed immersion in Ank . Let
U : X ét → S be the functor defined by the formula

U (Z) =
{

{∗} if Z ×X Y = ∅,

∅ otherwise.

This is a sheaf and therefore determines a closed subtopos XX/U . The morphism f
induces a geometric morphism

f −1 : XX � XY : f∗.

We claim that f∗ factors through the closed subtopos XX/U . Indeed, it suffices to
check that for every sheaf G ∈ XY and every representable sheaf hZ in XX such
that MapXX

(hZ ,U ) �= ∅, the space MapXX
(hZ , f∗(G)) is contractible. This is true,

because we have

MapXX
(hZ , f∗(G)) � G(Z ×X Y ) = G(∅) � {∗}.

We denote by ( f −1, f∗) again the induced adjunction

f −1 : XX/U � XY : f∗. (3.2)

We conclude our proof by the following lemma. ��
Lemma 3.9 The adjunction in Eq. (3.2) is an equivalence.

Proof By Lemma 3.7, we can assume that both X and Y are affinoid. Note that
XX/U andXY are 1-localic ∞-topoi in virtue of [21, 7.5.4.2] and [25, Lemma 1.2.6].
Therefore it suffices to show that the adjunction ( f −1, f∗) induces an equivalence
when restricted to 1-truncated objects of XX/U and XY .
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Let us prove that the functor f∗ is conservative. Let α : F → F ′ be a morphism in
XY and suppose that f∗(α) is an equivalence. By the equivalence (3.1), it is enough to
show that α induces equivalences F(Y ′) → F ′(Y ′) for every étale morphism Y ′ → Y .
Using Lemma 3.8, we can form a pullback diagram

Y ′ X ′

Y X,

where X ′ → X is étale. It follows that

F(Y ′) = ( f∗F)(X ′) → ( f∗F ′)(X ′) = F(Y ′)

is an equivalence.
We are left to check that the unit of the adjunction ( f −1, f∗) is an equivalence

over 1-truncated objects. For this, it suffices to check that for every 1-truncated sheaf
F ∈ XX , the unit u : F → f∗ f −1F induces an equivalence on sheaves of homotopy
groups. Since both F and f∗ f −1F are 1-truncated, they are hypercomplete objects.
Therefore, it suffices to check that η−1(u) is an equivalence for every geometric
morphism η−1 : XX → S : η∗. Such a geometricmorphism corresponds to a geometric
point x of the adic space associated to X (cf. Remark 3.3). Let {Vα} be a system of
étale neighborhoods of x . We have η−1(G) = colimG(Vα).

If x does not meet Y , we see that η−1(G) is contractible whenever G ∈ XX/U . In
particular η−1(u) is an equivalence for every 1-truncated F ∈ XX/U .

Otherwise, x lifts to a geometric morphism η−1
1 : XY → S, satisfying η−1 =

η−1
1 ◦ f −1. So we have

η−1( f∗ f −1F) � colim( f∗ f −1F)(Vα)

� colim( f −1F)(Vα ×X Y )

� η−1
1 f −1F � η−1F,

completing the proof. ��

Proposition 3.10 Let

W Y

X Z

g

f
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be a pullback square in Ank and assume that f is a closed immersion. The induced
square of ∞-topoi

XW XY

XX XZ

g∗
f∗

is a pullback diagram in TopR .

Proof Let UX be the sheaf on the étale site Z ét of Z defined by

UX (T ) :=
{

{∗} if T ×Z X = ∅
∅ otherwise.

DefineUW to be the sheaf on the étale site Yét of Y in a similar way. Using Lemma 3.9
twice, we can rewrite the induced square of ∞-topoi as

XY /UW XY

XZ/UX XZ .

g∗

In virtue of [21, 7.3.2.13], we only need to show that g−1UX � UW . First of all, let us
observe that there exists a mapUX → g∗UW : indeed, if T → X is étale with T → Z
a smooth morphism such that T ×Z X = ∅, then we also have (T ×Z Y ) ×Y W �
(T ×Z W ) ×Z Y = ∅, and therefore g∗(UW )(T ) = UW (T ×Z Y ) = �0. This allows
to define the desired map, which induces by adjunction a morphism g−1UX → UW .
By construction,UW is (−1)-truncated and [21, 5.5.6.16] shows that g−1UX is (−1)-
truncated too. Therefore they are both hypercomplete. So it suffices to check that
g−1UX → UW is an isomorphism on the stalks ofXY . This is true because a geometric
point η∗ : S → XY factors through XW if and only if g∗ ◦ η∗ factors through XX (cf.
Remark 3.3). ��

Corollary 3.11 The pregeometry Tan(k) is unramified.

Proof We check that Definition 3.1 is satisfied. Let X,Y, Z ∈ Tan(k) and let f : Y →
X be any morphism. The diagram

X Y

X × Y Y × Y

idX× f �
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is a pullback diagram. Since Y is separated, Y is a closed immersion, and therefore
the same goes for X → X × Y . We can therefore use Proposition 3.10 to conclude
that the induced square

XX×Z XX

XX×Y×Z XX×Y .

is a pullback diagram in TopR . ��

3.2 Algebraization

The functor Tdisc(k) → Tan(k) induced by analytification is a transformation of pre-
geometries in the following sense:

Definition 3.12 ([22, 3.2.1]). A transformation of pregeometries from T to T′ is a
functor θ : T → T′ such that

(i) it preserves finite products;
(ii) it sends admissible morphisms in T to admissible morphisms in T′;
(iii) it sends coverings in T to coverings in T′;
(iv) it sends any pullback in T along an admissible morphism to a pullback in T′.

In the following, we study some properties of the transformation of pregeometries
Tdisc(k) → Tan(k).

Lemma 3.13 Let X be an ∞-topos. The algebraization functor

(−)alg : StrlocTan(k)
(X) → StrlocTdisc(k)

(X)

induced by composition with the transformation Tdisc(k) → Tan(k) is conservative.

Proof Let f : O → O′ be a local morphism of Tan(k)-structures on X such that
f alg : Oalg → O′alg is an equivalence. We will show that for every X ∈ Tan(k), the
induced morphism O(X) → O′(X) is an equivalence. Since X is smooth, there exists
an affinoid G-covering {Sp Bi → X} such that every Sp Bi admits an étale morphism
to a k-analytic affine space.

So we obtain a commutative square

∐
O(Sp Bi )

∐
O′(Sp Bi )

O(X) O′(X),
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where the vertical morphisms are effective epimorphisms. Moreover, since admissible
open immersions are étale and f is a local morphism, we see that the above square
is a pullback. We are therefore reduced to show that O(Sp B) → O′(Sp B) is an
equivalence whenever Sp B admits an étale morphism to a k-analytic affine space An

k .
Since f is a local morphism, we have in this case a pullback square

O(Sp B) O(An
k )

O′(Sp B) O′(An
k ).

Let An
k denote the n-dimensional algebraic affine space over k. Since O(An

k ) =
Oalg(An

k ) → O′alg(An
k ) = O′(An

k ) is an equivalence by our assumption, we deduce
that O(Sp B) → O′(Sp B) is an equivalence as well, completing the proof. ��
Proposition 3.14 Let X be an ∞-topos and let f : O → O′ be a morphism in
StrlocTan(k)

(X). The following conditions are equivalent:

(i) The morphism f is an effective epimorphism, i.e. for every U ∈ Tan(k) the
morphism O(U ) → O′(U ) is an effective epimorphism in X.

(ii) The morphism f alg : Oalg → O′alg is an effective epimorphism.
(iii) The morphism O(A1

k) → O′(A1
k) is an effective epimorphism.

Proof It follows directly from the definition of effective epimorphism of Tan(k)-
structures that (i) implies (ii) and (ii) implies (iii). Let us show that (iii) implies (i).
Let X ∈ Tan(k). Choose an étale covering {Ui → X} such that each Ui admits an
étale morphism to An

k . Since f is a local morphism, we have the following pullback
square:

∐
O(Ui )

∐
O′(Ui )

O(X) O′(X).

The vertical arrows are effective epimorphisms, and therefore it suffices to check that
the upper horizontal map is an effective epimorphism. Since f is a local morphism,
we see that the diagram

O(Ui ) O′(Ui )

O(An
k ) O′(An

k )

is a pullback diagram. So it suffices to show that O(An
k ) → O′(An

k ) is an effective epi-
morphism. This follows from the hypothesis and the fact that both O and O′ commute
with products. ��
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Definition 3.15 ([22, 10.1]). Let θ : T′ → T be a transformation of pregeometries,
and � : Top(T) → Top(T′) the induced functor given by composition with θ . We say
that θ is unramified if the following conditions hold:

(i) The pregeometries T and T′ are unramified.
(ii) For every morphism f : X → Y in T and every object Z ∈ T, the diagram

�SpecT(X × Z) �SpecT(X)

�SpecT(X × Y × Z) �SpecT(X × Y )

is a pullback square in Top(T′).

Proposition 3.16 The transformation of pregeometries Tdisc(k) → Tan(k) is unram-
ified.

Proof For X ∈ Tan(k), we denote the spectrum SpecTan(k)(X) by (XX ,OX ). For a
morphism X → Y inTan(k), we denote byO

alg
Y |X the image ofOalg

Y under the pullback
functor StrlocTdisc(k)

(XY ) → StrlocTdisc(k)
(XX ). We have to show that for every morphism

f : X → Y in Tan(k) and every Z ∈ Tan(k), the commutative square

O
alg
X×Y |(X × Z) O

alg
X |(X × Z)

O
alg
X×Y×Z |(X × Z) O

alg
X×Z

(3.3)

is a pushout in StrlocTdisc(k)
(XX×Z ) � ShCAlgk (XX×Z ).

Form the pushout

O
alg
X×Y |(X × Z) O

alg
X |(X × Z)

O
alg
X×Y×Z |(X × Z) A

in ShCAlgk (XX×Z ). Let A∧ be the hypercompletion of A. We will prove below that

A∧ is equivalent toOalg
X×Z . Assuming this, we see thatA∧ is discrete. It follows thatA

is discrete as well, and therefore it is hypercomplete. We thus conclude that the square
(3.3) is a pushout.

So we are reduced to show that the map A∧ → O
alg
X×Z is an equivalence. Both

sheaves are hypercomplete andRemark 3.3 shows thatX∧
X×Z has enough points. Thus,
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it suffices to show that for every geometric point (x, z) of the adic space associated to
X × Z in the sense of Huber, the diagram

O
alg
(x,y) O

alg
x

O
alg
(x,y,z) O

alg
(x,z)

(3.4)

is a pushout square, where we set y := f (x). Choose a fundamental system of étale
affinoid neighborhoods {Vα} of (x, y) in X × Y . Set Uα := Vα ×X×Y X and observe
that {Uα} forms a fundamental system of étale affinoid neighborhoods of x in X .
Choose moreover a fundamental system {Wβ} of étale affinoid neighborhoods of z in
Z . We have pullback squares

Uα × Wβ Uα

Vα × Wβ Vα.

(3.5)

Assume Uα = Sp Aα , Vα = Sp Bα and Wβ = SpCβ . Since Uα → Vα is a closed
immersion, the pullback above corresponds to a pushout in the category of k-algebras

Bα Bα ⊗̂k Cβ

Aα Aα ⊗̂k Cβ

(3.6)

Taking limit in Diagram 3.5 (or equivalently, taking colimit in Diagram 3.6), we
observe that Diagram 3.4 is a pushout diagram in the category of k-algebras. Since
the projections Vα ×Wβ → Vα are flat, we see that every morphism Bα → Bα ⊗̂k Cβ

is flat. As a consequence, Oalg
(x,y) → O

alg
(x,y,z) is flat. The pushout (3.4) is therefore a

derived pushout square, completing the proof. ��
Intuitively, the pregeometry Tan(k) enables us to consider structure sheaves with

“non-archimedean analytic structures” in addition to the usual algebraic structures.
The unramifiedness of the transformation Tdisc(k) → Tan(k) in Proposition 3.16 will
imply that for certain purposes, this additional analytic structure can be ignored.Here is
a simple example illustrating this phenomenon: Consider the completed tensor product
A ⊗̂B C of three k-affinoid algebras. When C is finitely presented as a B-module, we
have an isomorphism A ⊗̂B C � A⊗BC . That is, in this case, for the purpose of tensor
product, the analytic structure on affinoid algebras can be ignored. The proposition
below elaborates on this idea:
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Proposition 3.17 Let f : (Y,OY) → (X,OX) and g : (X′,OX′) → (X,OX) be mor-
phisms in TopR (Tan(k)). Assume that the induced map θ : f −1O

alg
X → O

alg
Y is an

effective epimorphism. Then:

(i) There exists a pullback diagram

(Y′,OY′) (X′,OX′)

(Y,OY) (X,OX)

f ′

g′ g

f

in TopR (Tan(k)). If moreover (X,OX), (X′,OX′), (Y,OY) ∈ HTopR (Tan(k)),
then Hyp(Y′,OY′) is equivalent to the pullback computed in HTopR (Tan(k)).

(ii) The underlying diagram of ∞-topoi

Y′ X′

Y X

is a pullback square in TopR . If moreover

(X,OX), (X′,OX′), (Y,OY) ∈ HTopR (Tan(k)),

then (Y′)∧ is equivalent to the pullback computed in HTopR .
(iii) The diagram

f ′−1g−1O
alg
X f ′−1O

alg
Y

g′−1O
alg
Y O

alg
Y′

is a pushout square in ShCAlgk (Y
′). If moreover (X,OX), (X′,OX′), (Y,OY) ∈

HTopR (Tan(k)), the same holds after applying the hypercompletion functor
L : Y′ → (Y′)∧.

(iv) The map θ ′ : f ′−1OX′ → OY′ is an effective epimorphism. If moreover
(X,OX), (X′,OX′), (Y,OY) ∈ HTopR (Tan(k)), the same holds after applying
the hypercompletion functor L : Y′ → (Y′)∧

Proof We first deal with the non-hypercomplete case. Proposition 3.14 shows that the
morphism f −1OX → OY is an effective epimorphism. Moreover, Tan(k) is unram-
ified in virtue of Corollary 3.11. Therefore [22, Theorem 1.6] implies the first two
statements. Combining Propositions 3.16, 3.14 and [22, Proposition 10.3], we deduce
the other two statements.
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We now assume that (X,OX), (X′,OX′), (Y,OY) ∈ HTopR (Tan(k)). Then (i) and
(ii) follow from what we already proved and the fact that Hyp commutes with limits,
being a right adjoint by Lemma 2.8. On the other side, (iii) and (iv) follow from the
fact that the hypercompletion functor L : Y′ → (Y′)∧ commutes with colimits and
finite limits. ��

3.3 Truncations

Now we discuss the compatibility of the pregeometry Tan(k) with n-truncations.

Definition 3.18 ([23, 3.3.2]). Let T be a pregeometry and let n ≥ −1 be an integer.
The pregeometry T is said to be compatible with n-truncations if for every ∞-topos
X, every T-structure O : T → X and every admissible morphism U → V in T, the
induced square

O(U ) τ≤n(O(U ))

O(V ) τ≤n(O(V ))

is a pullback in X.

This definition is equivalent to say that for every T-structure O : T → X the com-
position τ≤n ◦ O is again a T-structure and the canonical morphism O → τ≤n ◦ O is
a local morphism of T-structures, where τ≤n : X → X denotes the truncation functor
of the ∞-topos X.

In order to prove that Tan(k) is compatible with n-truncations for every n ≥ 0, it
will be convenient to introduce a pregeometry slightly different from Tan(k).

Construction 3.19 We define a pregeometry TG
an(k) as follows:

(1) the underlying category of TG
an(k) is the category of smooth k-analytic spaces;

(2) a morphism in TG
an(k) is admissible if and only if it is an admissible open embed-

ding;
(3) the topology on TG

an(k) is the G-topology.

Lemma 3.20 The pregeometry TG
an(k) is compatible with n-truncations for every

n ≥ 0.

Proof Since admissible open immersions are monomorphisms, the lemma is a direct
consequence of [23, 3.3.5]. ��
Lemma 3.21 Let U → V be an étale morphism in Tan(k). There exists a G-covering
{Vi → V }i∈I , G-coverings {Ui j → U ×V Vi } j∈Ji for every i ∈ I , smooth algebraic
k-varieties Yi and Xi j , étale morphisms Xi j → Yi , admissible open immersions
Vi ↪→ Y an

i and Ui j ↪→ X an
i j such that the morphism Ui j → Vi equals the restriction

of the morphism X an
i j → Y an

i to Vi for every i ∈ I and j ∈ Ji .
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Proof Since V is smooth, there exists an affinoid G-covering {Vi → V }i∈I such that
every Vi admits an étale morphism to a polydisc Dni . By [17, Proposition 1.7.1], the
affinoid algebra associated to Vi has a presentation of the form

k〈T1, . . . , Tni , T ′
1, . . . , T

′
mi

〉/( f1, . . . , fmi )

such that the determinant det
( ∂ fα

∂T ′
β

)
α,β=1,...,mi

is invertible in k〈T1, . . . , Tni 〉. By [9,

Chap. III Theorem7 andRemark 2], there exists a smooth affine schemeYi and an étale
morphism Yi → A

ni
k such that Vi is isomorphic to the fiber product Y an

i ×
(A

ni
k )an

Dni .

We now fix i ∈ I . Since the morphism U → V is étale, by base change, the
morphism U ×V Vi → Vi is étale. So the composition

U ×V Vi → Vi → Dni

is étale. Let {Ui j → U ×V Vi } j∈Ji be an affinoid G-covering. For every j ∈ Ji , by
[17, Proposition 1.7.1], the affinoid algebra associated toUi j has a presentation of the
form

k〈T1, . . . , Tni , T ′
1, . . . , T

′
mi j

〉/( f1, . . . , fmi j )

such that the determinant det
( ∂ fα

∂T ′
β

)
α,β=1,...,mi j

is invertible in k〈T1, . . . , Tni 〉. By [9,

Chap. III Theorem 7] again, there exists a smooth affine scheme Zi j and an étale
morphism Zi j → A

ni
k such thatUi j is isomorphic to the fiber product Z an

i ×
(A

ni
k )an

Dni .

Let Xi j := Yi ×
A
ni
k

Zi j . By the universal property of the fiber product, there exists a

unique map r : Ui j → X an
i j making the following diagram commutative:

Ui j

U ×V Vi X an
i j Z an

i j

Vi Y an
i (A

ni
k )an

r
t

s

The map t is an admissible open immersion, so it is in particular étale. The map s is
étale by base change, so it is étale. Since t = s ◦ r , we deduce that the map r is étale.
Moreover, the map t is a monomorphism, so the map r is also a monomorphism. Since
the map r is étale, we deduce that it is an admissible open immersion. ��
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Lemma 3.22 Let X be an ∞-topos and let

U W Z

V Y X
p

be a diagram in X. Assume that the left and the outer squares are pullbacks and that
p is an effective epimorphism. Then the right square is a pullback as well.

Proof Let W ′ := Y ×X Z . We obtain a commutative diagram

U W ′ Z

V Y X.
p

Since the outer square is a pullback by our assumption, the left square is a pullback
as well. The universal property of pullbacks induces a morphism α : W → W ′. By
hypothesis, the induced map α ×Y V : W ×Y V → W ′ ×Y V is an equivalence. Since
p is an effective epimorphism, the pullback functor p−1 : X/Y → X/V is conservative
(cf. [21, 6.2.3.16]). We conclude that α is an equivalence, completing the proof. ��
Theorem 3.23 The pregeometry Tan(k) is compatible with n-truncations for every
n ≥ 0.

Proof When n ≥ 1, the statement is a direct consequence of [23, 3.3.5].We now prove
the case n = 0. Let X be an ∞-topos and let O ∈ StrlocTan(k)

(X).
For the purpose of this proof, we will say that a morphism f : U → V in Tan(k) is

compatible if the induced diagram

O(U ) τ≤0O(U )

O(V ) τ≤0O(V )

(3.7)

is a pullback square. We need to show that every étale morphism is compatible.
Let us start by observing the following properties of compatible morphisms:

(1) Admissible open immersions are compatible. This follows from Lemma 3.20.
(2) If f : X → Y is an étale morphism of smooth k-varieties, then the analytification

f an : X an → Y an is compatible. Indeed, let Tét(k) be the pregeometry of [23,
Definition 4.3.1]. The analytification functor induces amorphismof pregeometries
ϕ : Tét(k) → Tan(k). We have O(X an) = (O ◦ ϕ)(X) and O(Y an) = (O ◦ ϕ)(Y ).
Since O ◦ ϕ is a Tét(k)-structure on X, the statement follows from the fact that
Tét(k) is compatible with 0-truncations (cf. [23, Proposition 4.3.28]).
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(3) Compatible morphisms are stable under composition. This follows from the com-
position property of pullback squares (cf. [21, 4.4.2.1]).

(4) Suppose given a pullback square

U V

X Y

g

f ′ j

f

where f is compatible and j is an admissible open immersion. Then f ′ is com-
patible. To see this, consider the commutative diagram

O(U ) O(X) τ≤0O(X)

O(V ) O(Y ) τ≤0O(Y ).

Since admissible open immersions are in particular étale morphisms and since O
is a Tan(k)-structure, we see that the left square is a pullback diagram. On the
other side, the right square is a pullback because f is compatible by assumption.
We conclude that the outer square in the commutative diagram

O(U ) τ≤0O(U ) τ≤0O(X)

O(V ) τ≤0O(V ) τ≤0O(Y )

is a pullback square. We remark that τ≤0 ◦ O is a TG
an(k)-structure in virtue of

Lemma 3.20. So by [23, Proposition 3.3.3], the right square is a pullback as well.
It follows that the left square is also a pullback, completing the proof of the claim.

(5) Being compatible is G-local on the source. Indeed, let f : X → Y be a morphism
inTan(k) and assume there exists a G-covering {Xi } of X such that each composite
fi : Xi → X → Y is compatible. We want to prove that f is compatible as well.
Consider the commutative diagram

∐
O(Xi ) O(X) O(Y )

∐
τ≤0O(Xi ) τ≤0O(X) τ≤0O(Y ).

Since G-coverings are étale coverings, it follows from the properties of Tan(k)-
structures that the total morphism

∐
O(Ui ) → O(U ) is an effective epimorphism.
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Since τ≤0 commutes with coproducts (being a left adjoint) and with effec-
tive epimorphisms (cf. [21, 7.2.1.14]), we conclude that the total morphism∐

τ≤0O(Ui ) → τ≤0O(U ) is an effective epimorphism as well. Since each
Xi → X is an admissible open immersion, Property (1) implies that the left
square is a pullback. Moreover, the outer square is a pullback by hypothesis.
Thus, Lemma 3.22 shows that the right square is a pullback as well, completing
the proof of this property.

Let now f : U → V be an étale morphism in Tan(k). We will prove that f is
compatible. Using Lemma 3.21 we obtain a G-covering {Vi → V }i∈I , G-coverings
{Ui j → U ×V Vi } j∈Ji for every i ∈ I , smooth algebraic k-varieties Yi and Xi j , étale
morphisms Xi j → Yi , admissible open immersions Vi ↪→ Y an

i and Ui j ↪→ X an
i j such

that the morphism Ui j → Vi equals to restriction of the morphism X an
i j → Y an

i . In
particular we can factor Ui j → Vi as the composition

Ui j Xan
i j ×Y an

i
Vi Vi

where thefirstmorphism is an admissible open immersion and the second is compatible
by Property (4) of compatible morphisms. Therefore, Property (3) implies thatUi j →
Vi is compatible. Finally, using Property (5) we conclude that the morphisms U ×V

Vi → Vi are compatible.
We are therefore reduced to prove the following statement: given a morphism

f : U → V , suppose that there exists a G-covering {vi : Vi → V } such that each
base change fi : Ui := U ×V Vi → Vi is compatible, then f is compatible. We
consider the commutative diagram

∐
O(Ui ) O(U ) τ≤0O(U )

∐
O(Vi ) O(V ) τ≤0O(V ).

Since O is a Tan(k)-structure, the total morphism
∐

O(Ui ) → O(U ) is an effective
epimorphism. Moreover, since each Vi → V is an admissible open immersion, so
in particular étale, we see that the left square is a pullback. By hypothesis, the outer
square is a pullback as well, so we conclude the proof using Lemma 3.22. ��
Corollary 3.24 Let (X,OX) be a derived k-analytic space. Then (X, π0(OX)) is also
a derived k-analytic space. Moreover, we have (π0(OX))alg � π0(O

alg
X ).

Proof It follows from Theorem 3.23 that π0(OX) is a Tan(k)-structure on X. Let
ϕ : Tdisc(k) → Tan(k) be the transformation of pregeometries induced by the analyti-
fication functor. Then we have by definition

(π0(OX))alg = (πX
0 ◦ OX) ◦ ϕ � πX

0 ◦ (OX ◦ ϕ) = π0(O
alg
X ),
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where πX
0 denotes the truncation functor of the ∞-topos X. In particular, we see that

(X, π0(OX)alg) is a derived k-analytic space. ��
Definition 3.25 A Tan(k)-structured ∞-topos (X,OX) is said to be discrete if OX is
a discrete object in StrlocTan(k)

(X). We denote by TopR 0(Tan(k)) the full subcategory of

TopR (Tan(k)) spanned by discrete Tan(k)-structured ∞-topoi.
We say that a derived k-analytic space (X,OX) is discrete if it is discrete as a

Tan(k)-structured∞-topos. We denote by dAn0k the full subcategory of dAnk spanned
by discrete derived k-analytic spaces.

Choose a geometric envelope Gan(k) for Tan(k) and let Gan(k) → G≤0
an (k) be a

0-stub for Gan(k) (cf. [23, Definition 1.5.10]). It follows from [23, Proposition 1.5.14]
that

TopR (G≤0
an (k)) � TopR 0(Tan(k)).

The relative spectrum (cf. [23, § 2.1]) is a functor

SpecG
≤0
an (k)

Gan(k)
: TopR (Gan(k)) → TopR (G≤0

an (k)) � TopR 0(Tan(k)),

which we refer to as the truncation functor. Using Theorem 3.23, we can identify the
action of this functor on objects with the assignment

(X,OX) �→ (X, π0(OX)).

The following proposition is an analogue of [29, Proposition 3.13] and of [38,
Proposition 2.2.4.4]:

Proposition 3.26 Let i : dAn0k → dAnk denote the natural inclusion functor. Then:

(i) The functor SpecG
≤0
an (k)

Gan(k)
: Top(Tan(k)) → Top0(Tan(k)) restricts to a functor

t0 : dAnk → dAn0k .
(ii) The functor i is left adjoint to the functor t0.
(iii) The functor i is fully faithful.

Proof The statement (iii) holds by definition of the functor i . It follows from Corol-

lary 3.24 that the functor SpecG
≤0
an (k)

Gan(k)
respects the ∞-category of derived k-analytic

spaces. Therefore the statements (i) and (ii) follow immediately. ��

4 Fully faithful embedding of k-analytic spaces

In this section,we construct a functor� : Ank → dAnk from the category of k-analytic
spaces to the category of derived k-analytic spaces. We will prove that � is a fully
faithful embedding.

First we will define the functor � on objects, then we will define it on morphisms.
Let dAn1,0k be the full subcategory of dAnk spanned by derived k-analytic spaces

(X,OX) such that X is 1-localic and OX is 0-truncated.
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Definition 4.1 Let X be a k-analytic space and letXX be the étale∞-topos associated
to X . We define a functor OX : Tan(k) → XX by the formula

OX (M)(U ) = HomAnk (U, M).

Lemma 4.2 Let X be a k-analytic space. Then OX is a 0-truncated Tan(k)-structure
on the ∞-topos XX . Let X∧

X denote the hypercompletion of XX and let �(X) denote
the pair (X∧

X ,OX ). Then �(X) is a derived k-analytic space.

Proof In order to prove thatOX is a Tan(k)-structure onXX , it suffices to verify that if
{Mi → M} is an étale covering of M ∈ Tan(k), then the induced map

∐
i OX (Mi ) →

OX (M) is an effective epimorphism in XX . Observe that for anyU in the étale site on
X and any morphismU → M , there exists an étale covering {Uj → U } such that the
composite morphisms Uj → M factor though

∐
Mi → M . So we conclude using

[31, Corollary 2.9].
Since OX is 0-truncated by construction, it is hypercomplete. Therefore the second

statement follows from the first. ��
In order to define the functor � on morphisms, our strategy is to prove that the

mapping spaces MapdAnk (�(X),�(Y )) are discrete for all X,Y ∈ Ank (cf. Proposi-
tion 4.10). In this way we can promote � to an ∞-functor without the need to specify
higher homotopies.

We begin by introducing an auxiliary functor ϒ . Let LRT denote the 2-category of
locally ringed 1-topoi and letϒ : Ank → LRT be the functor sending every k-analytic
space to the associated locally ringed étale 1-topos. For X ∈ Ank , we denote by O

alg
X

the structure sheaf of k-algebras of ϒ(X).

Lemma 4.3 Let X be a k-affinoid space, Y a k-analytic space and α : X → Y a
morphism. Then there exists a positive integer N and a monomorphism β : X ↪→ DN

Y
over Y , where DN

Y denotes the unit polydisc over Y .

Proof Let A := 	(OX ). Write A = k〈x1, . . . , xn〉/I as a quotient of a Tate algebra.
Denote by a1, . . . , an the images of x1, . . . , xn in A. We cover X by finitely many
rational domainsUi such that α(Ui ) is contained in an affinoid domain Vi ⊂ Y . Write

	(OUi ) = A
〈bi1
bi0

, . . . ,
bini
bi0

〉
,

where bi0, . . . , bini is a collection of elements in A with no common zero. Let
ci0, . . . , cini be elements in k such that |ci j | ≥ ρ(bi j ) for j = 0, . . . , ni , where
ρ(·) denotes the spectral radius. Consider the morphism

	(OVi )〈y1, . . . , yn, yi0, . . . , yini 〉 → 	(OUi )

that sends y j to a j and yi j to bi j/ci j . It induces a monomorphism Ui ↪→ Dn+ni+1
Vi

.

Let N := n + ∑m
i=1(ni + 1). Consider the unit polydisc DN

Y over Y . We denote
by yi , yi j for i = 1, . . . ,m, j = 0, . . . , ni the coordinate functions on DN

Y . Let
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β : X → DN
Y be themorphism that sends yi to ai and yi j to bi j/ci j for all i = 1, . . . ,m,

j = 0, . . . , ni . Let Zi be the admissible open subset in DN
Y given by the inequalities

|ci0 · yi j | ≤ |ci0 · yi0| for j = 1, . . . , ni . Let Z ′
i := Zi ×Y Vi .We see that β−1(Z ′

i ) isUi .
By construction, β|Ui : Ui → Z ′

i is a monomorphism. We conclude that β : X → DN
Y

is a monomorphism. ��
Lemma 4.4 Let f : X → Y be a morphism of k-analytic spaces. Let

( f, f #) : (
ShSet(X ét),O

alg
X

) → (
ShSet(Yét),O

alg
Y

)

denote the induced morphism of locally ringed 1-topoi. Let t be a 2-morphism from
( f, f #) to itself. Then t equals the identity.

Proof Using Lemma 4.3, the same proof of [34, Tag 04IJ] applies. ��
Lemma 4.5 The functor

ϒ : Ank −→ LRT

X �−→ (ShSet(X ét),O
alg
X )

is fully faithful.

Proof Let X,Y be two k-analytic spaces. Let

(g, g#) : (
ShSet(X ét),O

alg
X

) → (
ShSet(Yét),O

alg
Y

)

be a morphism of locally ringed 1-topoi. We would like to show that there exists a
unique morphism of k-analytic spaces f : X → Y which induces (g, g#). We proceed
along the same lines as [34, Tag 04JH].

Let g−1 : ShSet(Yét) � ShSet(X ét) : g∗ denote the morphism of 1-topoi.
First, we assume that X = Sp A, Y = Sp B for some k-affinoid algebras A and

B. Since B = 	(Yét,O
alg
Y ) and A = 	(X ét,O

alg
X ), we see that g# induces a map of

affinoid algebras ϕ : B → A. Let f = Spϕ : X → Y . Let us show that f induces
(g, g#).

Let V → Y be an affinoid space étale over Y . Assume V = SpC . By [17, Propo-
sition 1.7.1], we can write

C = B〈x1, . . . , xn〉/(r1, . . . , rn),

where r1, . . . , rn ∈ B〈x1, . . . , xn〉 and the determinant Jac(r1, . . . , rn) is invertible in
C . Now the sheaf hV on Yét is the equalizer of the two maps

∏n
i=1 O

alg
Y

a

b

∏n
j=1 O

alg
Y
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where b = 0 and a(h1, . . . , hn) = (
r1(h1, . . . , hn), . . . , rn(h1, . . . , hn)

)
. We have

the following commutative diagram

g−1hV

α

∏n
i=1 g

−1O
alg
Y

∏
g#

g−1a

g−1b

∏n
j=1 g

−1O
alg
Y

∏
g#

hX×Y V
∏n

i=1 O
alg
X

a′

b′
∏n

j=1 O
alg
X ,

(4.1)

where b′ = 0, a′(h1, . . . , hn) = (
ϕ(r1)(h1, . . . , hn), . . . , ϕ(rn)(h1, . . . , hn)

)
, the

two horizontal lines are equalizer diagrams and the dotted arrow α is obtained by the
universal property of equalizers.

We claim that the map α : g−1hV → hX×Y V is an isomorphism. Let us check this
on the stalks. Let x̄ be a geometric point of the adic space X ad associated to X in
the sense of Huber. Denote by p the associated point of the 1-topos ShSet(X ét) (cf.
Remark 3.3). Applying localization at p to Diagram (4.1), we would like to show that
αp : (g−1hV )p → (hX×Y V )p is an isomorphism. Set q := g ◦ p. This is a point of
the 1-topos ShSet(Yét). We denote by ȳ the corresponding geometric point of the adic
space Y ad associated to Y . Then the localization of the map g# at p has the following
description

(g#)p : Oalg
Y,ȳ = O

alg
Y,q = (g−1O

alg
Y )p −→ O

alg
X,p = O

alg
X,x̄ .

It suffices to treat the two cases: either V → Y is finite étale, or V → Y is an
affinoid domain embedding. In the first case, there exists an étale neighborhood U of
ȳ in Y ad such that the pullback morphism V ×Y U → U splits. Then the equalizer of

∏n
i=1 O

alg
Y (U )

a

b

∏n
j=1 O

alg
Y (U ) (4.2)

is isomorphic to the equalizer of

∏n
i=1 k(ȳ)

a

b

∏n
j=1 k(ȳ), (4.3)

where k(ȳ) denotes the residue field of ȳ. Similarly, there exists an étale neighborhood
U ′ of x̄ in X ad such that the pullback morphism X ×Y V ×X U ′ � V ×Y U ′ → U ′
splits. Then the equalizer of

∏n
i=1 O

alg
X (U ′)

a′

b′

∏n
j=1 O

alg
X (U ′) (4.4)
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is isomorphic to the equalizer of

∏n
i=1 k(x̄)

a′

b′
∏n

j=1 k(x̄). (4.5)

Since the equalizer of Eq. (4.3) and the equalizer of Eq. (4.5) are isomorphic by
construction, we deduce that the equalizer of Eq. (4.2) and the equalizer of Eq. (4.4)
are isomorphic. Taking colimits over all such étale neighborhoods, we conclude that
αp : (g−1hV )p → (hX×Y V )p is an isomorphism. Then let us consider the second case
where V → Y is an affinoid domain embedding. If the geometric point ȳ can be lifted
to a geometric point in V , then for any étale neighborhood U of ȳ in Y ad refining V ,
the equalizer of Eq. (4.2) consists of a single element. The same goes for the equalizer
of Eq. (4.4). If the geometric point cannot be lifted to a geometric point in V , then
the equalizer of Eq. (4.2) is empty, so is the equalizer of Eq. (4.4). We conclude that
αp : (g−1hV )p → (hX×Y V )p is an isomorphism.

Now the same argument in [34, Tag 04I6] shows that the isomorphisms g−1hV →
hX×Y V are functorial with respect to V and that the map f : X → Y indeed induces
the morphism of locally ringed 1-topoi (g, g#) we started with. Finally, the argument
in [34, Tag 04I7] allows us to deduce the general case from the affinoid case considered
above. ��
Lemma 4.6 Let X be an ∞-topos. The induced functor

StrlocTan(k)
(τ≤0X) → StrlocTdisc(k)

(τ≤0X)

is faithful.

Proof We can factor the functor StrlocTan(k)
(τ≤0X) → StrlocTdisc(k)

(τ≤0X) as

StrlocTan(k)
(τ≤0X) StrlocTét(k)

(τ≤0X) StrlocTdisc(k)
(τ≤0X),

U

where Tét(k) is the pregeometry introduced in [23, Definition 4.3.1]. Combining [23,
Propositions 4.3.16, 2.6.16 and Remark 2.5.13] we see that the functor U is faithful.
So we are reduced to prove the same statement for

StrlocTan(k)
(τ≤0X) → StrlocTét(k)

(τ≤0X).

Themapping spaces of τ≤0X are discrete by definition. It follows from [21, 2.3.4.18]
that we can find a minimal 1-category D and a categorical equivalence τ≤0X � D.
Let F,G ∈ StrlocTan(k)

(D). We want to show that the natural morphism

MapStrlocTan(k)(D)(F,G) → MapStrlocTét (k)
(D)(F

alg,Galg)

is a homotopy monomorphism. Since F and G take values in the 1-category D,
both mapping spaces above are sets. We want to prove that the given map is a
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monomorphism. Since StrlocTét(k)
(D) is a 1-category, two natural transformations ϕ

and ψ represent the same object in MapStrlocTét (k)
(D)(F

alg,Galg) if and only if they are

equal, in the sense that

Falg(X) Galg(X)

Falg(X) Galg(X)

ϕ
alg
X

idFalg(X)
idGalg(X)

ψ
alg
X

commutes for every X ∈ Tét(k). FixU ∈ Tan(k). We first assume thatU is isomorphic
to an affinoid domain in X an for a smooth k-variety X .

Since U → X an is a monomorphism, we have a pullback square

U U

U X an.

SinceU → X is an affinoid embedding, it is étale, so it is an admissible morphism in
Tan(k). Applying the functor F , we obtain another pullback square

F(U ) F(U )

F(U ) F(X an).

So F(U ) → F(X an) is a monomorphism in the category D.
We have a commutative cube

F(U ) F(X an)

G(U ) G(X an)

F(U ) F(X an)

G(U ) G(X an)

where the dotted arrow exists by the universal property of the pullbacks. Since
F(U ) → F(X an) is a monomorphism, the dotted arrow is in fact the identity of
F(U ).

Let us now consider a general U ∈ Tan(k). Choose a G-covering of U by affinoid
domains {Ui → U } such that each Ui is isomorphic to an affinoid domain in X an

i for
some smooth k-variety Xi . Set U 0 := ∐

Ui and consider the Čech nerve U • → U .



Derived non-archimedean analytic spaces 639

Observe that both F(U •) and G(U •) are groupoid objects in the 1-topos D and that
their realizations are respectively F(U ) and G(U ). Since we have a commutative
square of groupoids

F(U •) G(U •)

F(U •) G(U •),

ϕU•

ψU•

the square

F(U ) G(U )

F(U ) G(U )

ϕU

ψU

commutes as well. Since the identity is functorial, the proof is now complete. ��
Lemma 4.7 LetT beapregeometry and let (X,OX), (Y,OY)beT-structured∞-topoi
such that X and Y are 1-localic and the structure sheaves OX, OY are discrete. Then
Map TopR (T)((X,OX), (Y,OY)) is 1-truncated. Moreover, the canonical morphism

Map TopR (T)((X,OX), (Y,OY)) → Map TopR
1(T)((τ≤0X,OX), (τ≤0Y,OY))

is an equivalence, where TopR
1 denotes the ∞-category of 1-topoi with morphisms

being right adjoint geometric morphisms.

Proof Consider the coCartesian fibration TopL (T) → TopL . We know from [23,
Remark 1.4.10] that the fiber over an ∞-topos X is equivalent to StrlocT (X). Let
f −1 : X � Y : f∗ be a geometric morphism between X and Y. Using [21, 2.4.4.2]
and [23, Remark 1.4.10] we obtain a fiber sequence

MapStrlocTan(k)(X)( f
−1OY,OX) Map TopR (T)((X,OX), (Y,OY)) Fun∗(X,Y),

where the fiber is taken at the geometric morphism ( f −1, f∗). Since both X and Y are
1-localic, there is an equivalence

Fun∗(X,Y) � Fun∗(τ≤0X, τ≤0Y).

Therefore Fun∗(X,Y) is 1-truncated. On the other side, OX is 0-truncated, so
MapStrlocT (X)( f

−1OY,OX) is discrete. The second statement follows as well. ��
Lemma 4.8 Let X = (X,OX) and Y = (Y,OY) be two Tan(k)-structured ∞-topoi.
Let X alg := (X,O

alg
X ) and Y alg := (Y,O

alg
Y ) be the underlying Tdisc(k)-structured
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∞-topoi. Assume that X and Y are 1-localic and that OX and OY are 0-truncated.
Then the canonical map

Map TopR (Tan(k))(X,Y ) → Map TopR (Tdisc(k))(X
alg,Y alg)

induces monomorphisms on π0 and on π1 (for every choice of base point).

Proof Let f∗ : X � Y : f −1 be a geometric morphism in TopR . We have a commu-
tative diagram in S:

MapStrlocTan(k)(X)( f
−1OY,OX) Map TopR (Tan(k))(X,Y ) Fun∗(X,Y)

MapStrlocTdisc(k)
(X)( f

−1O
alg
Y ,O

alg
X ) Map TopR (Tdisc(k))(X

alg,Y alg) Fun∗(X,Y).

Using [21, 2.4.4.2] and [23, Remark 1.4.10] we see that the two horizontal lines are
fiber sequences. Moreover, since OX and OY are 0-truncated, we can use Lemma 4.6
to deduce that the first vertical map is a homotopy monomorphism. Passing to the
long exact sequences of homotopy groups and applying the five lemma, we obtain
monomorphisms

π0 Map TopR (Tan(k))(X,Y ) → π0 Map TopR (Tdisc(k))(X
alg,Y alg),

π1 Map TopR (Tan(k))(X,Y ) → π1 Map TopR (Tdisc(k))(X
alg,Y alg),

completing the proof. ��
Lemma 4.9 Let Y be an n-localic ∞-topos and let X be any ∞-topos. Then there is
a canonical equivalence in the homotopy category of spaces H:

Map TopR (X∧,Y∧) � Map TopR (X,Y).

Proof Using [21, 6.5.2.13] we see that the canonical morphism

Map TopR (X∧,Y∧) → Map TopR (X∧,Y)

is an equivalence. Since Y is n-localic, the restriction

Map TopR (X∧,Y) → Map TopR
n
(τ≤n−1(X

∧), τ≤n−1Y)

is an equivalence as well. On the other side, the restriction

Map TopR (X,Y) → Map TopR
n
(τ≤n−1X, τ≤n−1Y)

is also an equivalence. We now conclude by observing that τ≤n−1X � τ≤n−1(X
∧). ��
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Proposition 4.10 Let X,Y ∈ Ank . Then Map TopR (Tan(k))(�(X),�(Y )) is discrete.

Proof It follows from Lemma 4.9 that

MapdAnk (�(X),�(Y )) � Map TopR (Tan(k))((XX ,OX ), (XY ,OY )). (4.6)

On the other side, Lemma 4.7 shows that the right hand side is 1-truncated and

Map TopR (Tan(k))((XX ,OX ), (XY ,OY ))

� Map TopR
1(Tan(k))((τ≤0XX ,OX ), (τ≤0XY ,OY )) (4.7)

We can now apply Lemma 4.8 to conclude that the canonical map

Map TopR
1(Tan(k))((τ≤0XX ,OX ), (τ≤0XY ,OY )) →

Map TopR
1(Tdisc(k))((τ≤0XX ,O

alg
X ), (τ≤0XY ,O

alg
Y ))

induces monomorphisms on π0 and on π1.
It follows from Lemma 4.5 that the canonical map

HomAnk (X,Y ) → π0 Map TopR
1(Tdisc(k))((τ≤0XX ,O

alg
X ), (τ≤0XY ,O

alg
Y ))

is an isomorphism. At this point, we can invoke Lemma 4.4 to deduce that, for every
choice of base point, we have

π1 Map TopR
1(Tdisc(k))((τ≤0XX ,O

alg
X ), (τ≤0XY ,O

alg
Y )) = 0.

Thus, we conclude that

π1 Map TopR
1(Tan(k))((τ≤0XX ,OX ), (τ≤0XY ,OY )) = 0

for every choice of base point. It follows from the equivalences (4.6) and (4.7) that
MapdAnk (�(X),�(Y )) is discrete, completing the proof. ��

We can now promote X �→ �(X) to an ∞-functor.
LetC temporarily denote the full subcategory of dAnk spanned by the objects which

are equivalent to�(X) for some X ∈ Ank . Proposition 4.10 shows thatmapping spaces
in C are discrete, hence C is equivalent to a 1-category. Fix a morphism f : X → Y
in Ank . It induces a morphism of sites

ϕ : Yét → X ét

given by base change along f . Since all the morphisms in X ét and Yét are étale, it
follows that X ét and Yét have fiber products. Moreover, ϕ is left exact. Therefore, it
follows from [31, Lemma 2.16] that the induced adjunction

ϕs : XY � : XX : ϕs
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is a geometric morphism of ∞-topoi. In particular, we obtain an induced geometric
morphism X∧

Y � X∧
X , which we denote by

f −1 : X∧ � X∧
X : f∗.

Weobtain in thisway awell definedmorphism (X∧
X ,OX ) → (X∧

Y ,OY ). Sincemapping
spaces in C are discrete, we see that this assignment is functorial. We denote the
resulting ∞-functor by

� : Ank → dAnk .

Theorem 4.11 The functor � : Ank → dAnk is fully faithful.

Proof Let X,Y ∈ Ank . We want to show that

HomAnk (X,Y ) → MapdAnk (�(X),�(Y ))

is an equivalence. Lemma 4.7 allows us to identify MapdAnk (�(X),�(Y )) with

Map TopR
1(Tan(k))

(
(ShSet(X ét),OX ), (ShSet(Yét),OY )

)
.

Let us first prove the faithfulness. Let f, g : X → Y be two morphisms and assume
that �( f ) = �(g). Since the question of f being equal to g is local on both X and
Y , we can assume that both X and Y are affinoid. In this case, f (resp. g) can be
recovered as global section of the natural transformation�( f )(A1

k) (resp.�(g)(A1
k)),

where A1
k denote the k-analytic affine line. Therefore we have f = g.

Let us now turn to the fullness. Let

( f, f �) : (ShSet(X ét),OX ) → (ShSet(Yét),OY )

be a morphism in TopR (Tan(k)). After forgetting along the morphism Tdisc(k) →
Tan(k), we get a morphism of locally ringed 1-topoi. Lemma 4.5 implies that this
morphism comes from a map ϕ : X → Y . This means that �(ϕ)alg and ( f, f �)alg

coincide. Lemma 4.6 implies that �(ϕ) and ( f, f �) coincide as well, completing the
proof. ��

5 Closed immersions and étale morphisms

In this section, we study closed immersions and étale morphisms under the fully
faithful embedding � : Ank → dAnk .

Definition 5.1 ([22, 1.1], [23, 2.3.1]). Let T be a pregeometry and X, Y two ∞-topoi.
A morphism O → O′ in StrlocT (X) is said to be an effective epimorphism if for every
object X ∈ T, the induced map O(X) → O′(X) is an effective epimorphism in X. A
morphism f : (X,OX) → (Y,OY) in TopR (T) is called a closed immersion (resp. an
étale morphism) if the following conditions are satisfied:
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(i) the underlying geometric morphism f∗ : X → Y is a closed immersion (resp.
an étale morphism) of ∞-topoi;

(ii) the morphism of structure sheaves f −1OY → OX is an effective epimorphism
(resp. an equivalence) in StrlocT (Y).

Lemma 5.2 The hypercompletion functor TopR → HTopR preserves closed immer-
sions.

Proof Let f∗ : X � Y : f −1 be a closed immersion of ∞-topoi. By definition we
can find a (−1)-truncated object U ∈ Y such that the geometric morphism f∗ is
equivalent to the induced geometric morphism j∗ : Y/U � Y : j−1. SinceU is (−1)-
truncated, it belongs to Y∧. It is therefore enough to prove that (Y/U )∧ � Y∧/U . The
geometric morphism Y/U → Y induces by passing to hypercompletions a morphism
(Y/U )∧ → Y∧ which by construction fits in the commutative diagram

Y/U Y

(Y/U )∧ Y∧.

j∗

iU∗
j∧∗

i∗

Since j∗, i∗ and iU∗ are fully faithful, the same goes for j∧∗ . Observe that by [21,
7.3.2.5], an object V ∈ Y∧ belongs to Y∧/U if and only if V ×U � U . Since both i∗
and j∗ commute with products, we conclude that j∧∗ factors through Y∧/U .

This provides us a fully faithful functor (Y/U )∧ → Y∧/U . In order to complete
the proof, it is enough to prove that it is essentially surjective. The canonical map
Y∧/U → Y∧ → Y factors through Y/U . Now it suffices to prove that this functor
can be further factored through (Y/U )∧. This follows from the fact that j∗ respects
the collection of ∞-connected morphisms. To see this, let V ∈ Y/U . Since U is
(−1)-truncated, we see that for every n ≥ 0 one has:

τ≤n(V ) ×U � τ≤n(V ) × τ≤n(U ) � τ≤n(V ×U ) � τ≤n(U ) � U.

In particular, τ≤n(V ) belongs to Y/U as well. It follows that j∗ commutes with trun-
cations, and therefore with ∞-connected morphisms. ��
Lemma 5.3 Let f −1 : X � Y : f∗ be a closed immersion of ∞-topoi. Let F ∈ X,
G ∈ Y and let f −1F → G be a morphism in Y. If the morphism F → f∗G is an
effective epimorphism, then so is the morphism f −1F → G.

Proof Since f −1 is left exact, it commutes with effective epimorphisms. Therefore,
f −1F → f −1 f∗G is an effective epimorphism. Since f∗ is fully faithful, we see that
f −1 f∗G � G, hence completing the proof. ��
Theorem 5.4 Let f : X → Y be a morphism in Ank . Then:

(i) The morphism f is an étale morphism if and only if �( f ) is an étale morphism.
(ii) Themorphism f is a closed immersion if and only if�( f ) is a closed immersion.
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Proof We start by dealing with étale morphisms. Assume first that f is an étale
morphism. If X is affinoid, it determines an object in the site Yét . Let us denote by
U this object. It follows from [21, 5.1.6.12] that the adjunction f∗ : XX � XY : f −1

induced by f can be identified with the étale morphism (XY )/U � XY . Since X is
an ordinary k-analytic space, U is 0-truncated and therefore it is hypercomplete. It
follows that we can identify the adjunction

f∗ : X∧
X � X∧

Y : f −1

with the étale morphism j∗ : (X∧
Y )/U � X∧

Y : j−1. Moreover, since f is étale, we see
that ( f −1OY )(V ) = OY (V ). In particular, we deduce that f −1OY = OX . In other
words, �( f ) is étale. If now X is arbitrary, we choose an étale covering {Xi → X}
such that every Xi is affinoid. The above argument shows that the induced morphisms
XXi � XX and XXi � XY are étale. It follows that f∗ : XX � XY : f −1 is étale as
well.

Let us now assume that �( f ) is étale. We will prove that f is étale. The question
being local on X andY , we can assume that they are affinoid, say X = Sp B,Y = Sp A.
By hypothesis, f −1OY → OX is an equivalence. Since the morphism of ∞-topoi
f∗ : X∧

X � X∧
Y : f −1 is étale, we see that, for every U → X étale, one has

f −1(OY )(U ) = OY (U ).

Consider the sheaf LOX / f −1OY
on X∧

X defined by

C �→ L
an
OX (C)/ f −1OY (C)

= L
an
C/ f −1OY (C)

,

where the symbol Lan denotes the analytic cotangent complex (cf. [11, §7.2]). Since
f −1OY � OX , this sheaf is identically zero. On the other side, if η−1 : X∧

X → S is a
geometric point, then

η−1(Lan
OA/ f −1OB

) � L
an
η−1OA/η−1 f −1OB

.

We can identify η−1 f −1OB with a strictly henselian B-algebra B ′. Since the map
B → B ′ is formally étale, we conclude that

L
an
η−1OA/η−1 f −1OB

� L
an
η−1OA/B .

This is also the stalk of the sheaf on X∧
X defined by

C �→ L
an
C/B .

Therefore, this sheaf vanishes as well. In particular, Lan
A/B � 0, completing the proof.

We now turn to closed immersions. Assume first that f is a closed immersion
in Ank . Proposition 3.5 and Lemma 5.2 show that the induced geometric morphism
f∗ : X∧

Y � X∧
X : f −1 is a closed immersion of ∞-topoi. We are left to show that the
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morphism f −1OX → OY is an effective epimorphism. In virtue of Proposition 3.14, it
suffices to show that ( f −1(OX ))(A1

k) → OY (A1
k) is an effective epimorphism, where

A1
k denote the k-analytic affine line. Observe that ( f −1(OX ))(A1

k) � f −1(OX (A1
k)).

Since ( f −1, f∗) is a closed immersion of∞-topoi, Lemma5.3 shows that it is sufficient
to check that

OX (A1
k) → f∗(OY (A1

k)) (5.1)

is an effective epimorphism inX∧
X . This question is local onX

∧
X , so we can assume that

X is an affinoid space. Observe now that OX (A1
k) is the underlying sheaf of (discrete)

spaces associated to the structure sheaf of X . In the same way, f∗(OY (A1
k)) is the

underlying sheaf of spaces associated to the pushforward of the structure sheaf of Y .
Both are coherent on X , and f∗(OY (A1

k)) is the quotient of OX (A1
k) by some coherent

sheaf of ideals. In particular, the map (5.1) is an effective epimorphism.
Assume now that �( f ) is a closed immersion. We want to prove that f is a closed

immersion as well. The question is local both on the source and on the target, so we
can assume that X and Y are affinoid, say X = Sp A and Y = Sp B. In this case, it
follows from the proof of Theorem 4.11 that f corresponds to the morphism

A = OX (A1
k)(X) → B = OY (A1

k)(Y ).

Therefore, we only have to show that this morphism is surjective. LetU = SpC → X
be an étale morphism. Then it follows again from the proof of Theorem 4.11 that

f∗OY (A1
k)(U ) = OY (A1

k)(Y ×X U ) = B⊗̂AC

= f∗OY (A1
k)(X)⊗̂OX (A1

k )(X)OX (A1
k)(U ).

In particular, f∗OY (A1
k) is a coherent sheaf of OX (A1

k)-modules. We can thus apply
Tate’s acyclicity theorem to conclude that A → B is surjective, completing the proof.

��

6 Existence of fiber products

The goal of this section is to prove the existence of fiber products of derived k-analytic
spaces.

First wewill prove the existence of fiber products along a closed immersion (Propo-
sition 6.2). Then we will prove the existence of products over a point (Lemma 6.4).
We will deduce the existence of fiber products in the general case from the two spe-
cial cases above, plus Lemma 6.3, which shows that any derived k-analytic space can
locally be embedded into a non-derived smooth k-analytic space.

Lemma 6.1 Let f : (X,OX) → (Y,OY) be a map of derived k-analytic spaces such
that (X, π0OX) � �(X) and (Y, π0OY) � �(Y ) for two k-analytic spaces X,Y ∈
Ank . Assume that F is a connective sheaf ofOalg

Y -modules on Y and that each πnF is a

coherent sheaf of π0O
alg
Y -modules. Then the tensor product F′ := f −1F⊗

f −1O
alg
Y
O
alg
X

is connective, and each πnF
′ is a coherent sheaf of π0(O

alg
X )-modules.
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Proof The connectivity of F′ := f −1F⊗ f −1OY
OX follows from the compatibility of

the tensor product with the t-structure (cf. [25, Proposition 2.1.3(6)].) In order to prove
that the homotopy groups πkF

′ are coherent π0O
alg
X -modules, we first remark that the

question is local both on X and on Y. so we can assume that X and Y are affinoid,
say X = Sp A and Y = Sp B. We follow closely the proof of [22, Lemma 12.11].
Thus, we start by proving that for every integer m ≥ −1 there exists a sequence of
morphisms

0 = F(−1) → F(0) → F(1) → · · · → F(m) → F

of Oalg
Y -modules with the following properties:

(i) For 0 ≤ i ≤ m, the fiber of F(i − 1) → F(i) is equivalent to a direct sum of
finitely many copies of Oalg

Y [i].
(ii) For 0 ≤ i ≤ m, the fiber of F(i) → F is i-connective.
(iii) For−1 ≤ i ≤ m, the homotopy groups π jF(i) are coherent π0(O

alg
Y )-modules,

which vanish for j < 0.

We proceed by induction on m. If m = −1, we simply take F(−1) = 0. The fiber of
F(−1) → F is then F[1], which is (−1)-connective because F is connective. Assume
now that we are given a sequence

0 = F(−1) → F(0) → · · · → F(m) → F

satisfying the conditions above. Let G be the fiber of the map F(m) → F, so G is
m-connective. We have an exact sequence

πm+1F(m) → πm+1F → πmF
′ → πmF(m) → πmF,

fromwhichwededuce thatπmF
′ is a coherent sheaf ofπ0(O

alg
X )-modules. In particular,

there exists a positive integer l and a surjection Bl → G(Y ). This induces an epimor-
phism (π0O

alg
Y )l → G[−m]. Composing with the canonical map (O

alg
Y )l → (π0O

alg
Y )l ,

we obtain a map

(O
alg
Y )l [m] → G.

Let F(m + 1) be the cofiber of the composite map (O
alg
Y )l [m] → G → F(m). Then

the property (i) is satisfied by construction and the property (iii) follows from the long
exact sequence associated to the cofiber sequence (O

alg
Y )l [m] → F(m) → F(m + 1).

Let G′ denote the fiber of the map F(m + 1) → F, so we have a fiber sequence

(O
alg
Y )l [m] → G → G′.

Passing to the long exact sequence, we deduce that G′ is (m + 1)-connective, proving
the property (ii).
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Let us now prove that the homotopy groups of F′ := f −1F ⊗
f −1O

alg
Y

O
alg
X are

coherent sheaves of π0(O
alg
X )-modules. Fix an integer n ≥ 0. Choose a sequence

0 → F(−1) → F(0) → · · · → F(n + 1) → F

satisfying the properties (i), (ii) and (iii) above. In particular, the fiber ofF(n+1) → F

is (n + 1)-connective and therefore the same goes for the map

f −1F(n + 1) ⊗
f −1O

alg
Y

O
alg
X → f −1F ⊗

f −1O
alg
Y

O
alg
X .

So we obtain an isomorphism

πn

(
f −1F(n + 1) ⊗

f −1O
alg
Y

O
alg
X

)
→ πn

(
f −1F ⊗

f −1O
alg
Y

O
alg
X

)
.

We can therefore replace F by F(n + 1). We will now prove that for −1 ≤ i ≤ n + 1,

πn

(
f −1F(i) ⊗

f −1O
alg
Y

O
alg
X

)
is a coherent sheaf of π0(O

alg
X )-modules. We proceed by

induction on i . The case i = −1 is trivial. To deal with the inductive step, we note
that the property (i) implies the existence of a fiber sequence

(O
alg
Y )l [i] → F(i) → F(i + 1).

We therefore obtain a long exact sequence

· · · → (πn−iO
alg
X )l → πn( f

−1F(i) ⊗
f −1O

alg
Y

O
alg
X ) →

πn( f
−1F(i + 1) ⊗

f −1O
alg
Y

O
alg
X ) → (πn−i−1O

alg
X )l → · · ·

We conclude that πn

(
f −1F(i + 1) ⊗

f −1O
alg
Y

O
alg
X

)
is a coherent sheaf of π0(O

alg
X )-

modules. ��
Proposition 6.2 Assume we are given maps of derived k-analytic spaces f : (Y,OY)

→ (X,OX) and (X′,OX′) → (Y,OY). Assume moreover that f is a closed immer-
sion. Then we have the following statements:

(i) There exists a pullback diagram σ :

(Y′,OY′) (X′,OX′)

(Y,OY) (X,OX)

f ′

f

in the ∞-category HTopR (Tan(k)).
(ii) The image of σ in HTopR is a pullback diagram of hypercomplete ∞-topoi.
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(iii) The map f ′ is a closed immersion.
(iv) The structured ∞-topos (Y′,OY′) is a derived k-analytic space.
(v) Assume that (Y, π0OY) = �(Y ), (X, π0OX) = �(X) and (X′, π0OX′) =

�(X ′). Then (Y′, π0OY′) can be identified with �(Y ×X X ′).

Proof The statements (i), (ii) and (iii) follow from Proposition 3.17. We now prove
(v). Observe that the map f induces a closed immersion (Y, π0OY) → (X, π0OX).
So by Theorem 5.4, it corresponds to a closed immersion ϕ : Y → X of k-analytic
spaces. On the other side, the map �(X ′) → �(X) corresponds to a map X ′ → X
by Theorem 4.11. Let Y ′ := Y ×X X ′ be the fiber product computed in Ank . Then
Proposition 3.10 allows us to identify XY ′ := Sh(Y ′

ét)
∧ with Y′. It follows from the

universal property of the fiber product that there exists a map in HTopR (Tan(k))

(Y′,OY ′) → (Y′,OY′)

Moreover, it follows from Proposition 3.17(iii) that we have an identification

O
alg
Y′ � f ′−1O

alg
X ′ ⊗ f ′−1g−1OX

g′−1OY .

Using [26, 7.2.1.22], we obtain an equivalence

π0(O
alg
Y′ ) � Tor

f ′−1g−1(π0O
alg
X )

0 ( f ′−1π0(O
alg
X ′ ), g′−1(π0O

alg
Y )).

As π0(OX) → f∗π0(OY) is surjective, we see that the same formula can be used to
describe OY ′ . Hence π0(OY′) � OY ′ . This proves (v).

We are left to prove the statement (iv). The assertion is local on Y′, so we can
assume that (X, π0OX) = �(X), (Y, π0OY) = �(Y ) and (X′, π0OY) = �(X ′) for
k-analytic spaces X, X ′ and Y . It follows from (v) that (Y′, π0O

alg
Y′ ) is a k-analytic

space. Moreover, since f is a closed immersion, we see that for each n ≥ 0 the
pushforward f∗πnO

alg
Y is a coherent sheaf of π0O

alg
X -modules on X . Using Lemma 6.1

and Proposition 3.17, we conclude that for each n ≥ 0, the pushforward f ′∗πnO
alg
Y′ is

a coherent sheaf of π0O
alg
X′ -modules. Then each πnO

alg
Y′ is a coherent sheaf of π0O

alg
Y′ -

modules. This completes the proof. ��
Lemma 6.3 Let (X,OX) be a derived k-analytic space and let 1X be the final object of
X. Then there exists an effective epimorphism

∐
Ui → 1X and a collection of closed

immersions (X/Ui ,OX|Ui ) → HSpecTan(k)(Vi ), where Vi is a smooth k-analytic
space.

Proof We can assume without loss of generality that (X, π0OX) � �(X) for a k-
affinoid space X . So we have a closed immersion into a k-analytic polydisc X ↪→ Dn

k .
Composing with the affinoid domain embedding Dn

k ↪→ An
k , we obtain an embedding

X ↪→ An
k . This embedding is givenbyn global sections f1, . . . , fn ∈ π0(O

alg
X )(X). Let

{ui : Ui → X}i∈I be an étale covering such that each restriction f j ◦ ui is represented
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by some f̃i j ∈ OX(A1
k)(Ui ). Combining Lemma 2.10 and [23, Theorem 2.2.12], we

deduce that these global sections determine a morphism of derived k-analytic spaces

ϕi : (X/Ui ,OX|Ui ) → HSpecTan(k)(An
k ).

Choose a factorization of Ui → X → Dn
k as Ui

p−→ Vi
g−→ Dn

k , where p is a
closed immersion and g is étale. The composite map Vi → Dn

k → An
k is étale

and therefore by Theorem 5.4(i) the induced morphism of derived k-analytic spaces
HSpecTan(k)(Vi ) → HSpecTan(k)(An

k ) is étale. Then [23, Remark 2.3.4] shows that the
map ϕi factors through HSpecTan(k)(Vi ) if and only if the underlying morphism of∞-
topoi factors through XVi . The latter holds by construction. Moreover, the truncation
of ψi : (X/Ui ,OX|Ui ) → HSpecTan(k)(Vi ) corresponds to the mapUi → Vi , which is
a closed immersion. It follows that ψi is a closed immersion as well, completing the
proof. ��
Lemma 6.4 Let (X,OX) and (Y,OY) be derived k-analytic spaces. We have the
following statements:

(i) There exists a product (Z,OZ) � (X,OX) × (Y,OY) in TopR (Tan(k)).
(ii) The structured ∞-topos (Z,OZ) is a derived k-analytic space.
(iii) Assume that (X, π0OX) � �(X) and (Y, π0OY) � �(Y ). Then (Z, π0OZ) is

equivalent to �(X × Y ).
(iv) Assume that (X, π0OX) � �(X)where X is a separated k-analytic space. Then

the diagonal map δ : (X,OX) → (X,OX) × (X,OX) is a closed immersion.

Proof The statements (i) and (ii) are local on (X,OX) and (Y,OY), sowe can assume in
virtue of Lemma 6.3 that there exists closed immersions (X,OX) → HSpecTan(k)(V )

and (Y,OY) → HSpecTan(k)(W ), where V and W are smooth k-analytic spaces.
Proposition 6.2 allows us to reduce to the case (X,OX) � HSpecTan(k)(V ) and
(Y,OY) � HSpecTan(k)(W ). In this case, we have

(Z,OZ) � HSpecTan(k)(V × W ).

The statement (iii) follows from the construction of (Z,OZ) we described and Propo-
sition 6.2(v). We are left to prove the statement (iv). The statement (ii) shows that the
induced map

π0(δ) : (X, π0O
alg
X ) → (X, π0O

alg
X ) × (X, π0O

alg
X )

corresponds to�(�) : �(X) → �(X×X). Since X is separated,� : X → X×X is a
closed immersion and therefore Theorem 5.4 implies that�(�) is a closed immersion.
Now, the assertion follows from Proposition 3.14. ��

Now we can deduce the main result of this section:

Theorem 6.5 The ∞-category dAnk admits fiber products.
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Proof Let (Y,OY) → (X,OX) ← (X′,OX′) be maps of derived k-analytic
spaces. We would like to construct the fiber product. Working locally on X, we
can assume that (X, π0O

alg
X ) � υ(X) for a separated k-analytic space X . Using

Lemma6.4(i),wededuce the existenceof twoproducts (Z,OZ) := (X′,O′
X)×(Y,OY)

and (X,OX) × (X,OX) in Top(Tan(k)). By Lemma 6.4(iv), the diagonal map
δ : (X,OX) → (X,OX) × (X,OX) is a closed immersion. We now apply Propo-
sition 6.2 to produce a fiber product

(Y′,OY′) (Z,OZ)

(X,OX) (X,OX) × (X,OX).

Note that (Y′,OY′) is the fiber product of (Y,OY) → (X,OX) ← (X′,OX′), com-
pleting the proof. ��

7 Comparison between derived spaces and non-derived stacks

In this section, we will characterize the essential image of the embedding � : Ank →
dAnk constructed in Sect. 4. Moreover, we will compare derived k-analytic spaces
with higher k-analytic stacks in the sense of [31].

7.1 Construction of the comparison functor

On the ∞-category dAnk of derived k-analytic spaces, we define the étale topology
τét to be the Grothendieck topology generated by collections of étale morphisms
{Ui → U } such that

∐
Ui → U is an effective epimorphism (cf. Definition 5.1).

Remark 7.1 The restriction of τét to the full subcategory Ank of dAnk coincides with
the étale topology τét .

Lemma 7.2 Every representable presheaf on dAnk is a hypercomplete sheaf for the
topology τét.

Proof Let X := (X,OX) be a derived k-analytic space. The universal property of
étale morphisms (cf. [23, Remark 2.3.4]) shows that a τét-hypercovering of X can be
identified with a hypercoveringU • of 1X in the∞-toposX. Given such a hypercover-
ing, the associated τét-hypercovering X• of X is described by Xn := (X/Un ,OX|Un ).
Therefore, we have to prove that

colim�(X/U• ,OX|U•) � (X,OX)

in the ∞-category dAnk . Using the statement (3’) in the proof of [23, Proposition
2.3.5], we see that it is enough to prove that X � colimX/U• in TopR . Since X is
hypercomplete, this follows from the descent theory of∞-topoi (cf. [21, 6.1.3.9]) and
from the fact that |U •| � 1X (cf. [21, 6.5.3.12]). ��
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Definition 7.3 A derived k-affinoid space is a derived k-analytic space (X,OX) such
that (X, π0(OX)) � �(X) for some k-affinoid space X . We denote by dAfdk the full
subcategory of dAnk spanned by derived k-affinoid spaces.

The Grothendieck topology τét on dAnk induces by restriction a Grothendieck
topology on dAfdk which we denote again by τét . We define the functor φ̃ as the
composition

dAnk Fun(dAnopk , S) Fun((dAfdk)op, S),

where the first functor is the Yoneda embedding and the second one is the restriction
along dAfdk ⊂ dAnk . Since the Grothendieck topology τét on dAnk is subcanonical,
the functor φ̃ factors through Sh(dAfdk, τét). We denote by

φ : dAnk → Sh(dAfdk, τét)

the induced functor. Our first goal is to show that φ is fully faithful.

Lemma 7.4 Let X = (X,OX) be a derived k-analytic space and let p : U → 1X
be an effective epimorphism. Let U • be the Čech nerve of p and put Xn :=
(X/Un ,OX|Un ). Then in Sh(dAfdk, τét) we have

φ(X) � colim� φ(X•).

Proof Let j : dAfdk ↪→ dAnk denote the inclusion functor. It is continuous and cocon-
tinuous in the sense of [31, §2.4]. It induces a pair of adjoint functors

js : Sh(dAnk, τét) � Sh(dAfdk, τét) : j s .

Since the Grothendieck topology τét on dAnk is subcanonical, we can factor φ as

dAnk
ψ−−→ Sh(dAnk, τét)

js−−→ Sh(dAfdk, τét).

Moreover, we have

ψ(X) � colim� ψ(X•).

Since the functor js is a left adjoint, it commutes with colimits, completing the proof.
��

Lemma 7.5 Let X = (X,OX) be a derived k-analytic space. Then there exists a
hypercovering X• of X in dAnk such that each Xn is a disjoint union of derived
k-affinoid spaces.

Proof It follows directly from Definitions 2.5 and 7.3. ��
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Proposition 7.6 The functor φ : dAnk → Sh(dAfdk, τét) is fully faithful.

Proof Let X,Y ∈ dAnk and consider the natural map

ψX,Y : MapdAnk (X,Y ) → MapSh(dAfdk ,τét)(φ(X), φ(Y )).

Keeping Y fixed, let C be the full subcategory of dAnk spanned by those X such that
ψX,Y is an equivalence. Since C is stable under colimits, combining Lemmas 7.4 and
7.5, we are reduced to the case where X belongs to dAfdk . In this case, the statement
follows entirely from the Yoneda lemma. ��

Our second goal is to identify the essential image of the functor φ. For this, we
need to introduce some notations.

Definition 7.7 Let Pét denote the class of étale morphisms in dAnk . The triple
(dAfdk, τét,Pét) constitutes a geometric context in the sense of [31]. We call the
associated geometric stacks derived k-analytic Deligne–Mumford stacks. We denote
by DM the ∞-category of derived k-analytic Deligne–Mumford stacks.

Definition 7.8 Let F ∈ DM. We say that F is n-truncated if F(X) is n-truncated for
every X = (X,OX) ∈ dAfdk such that OX is discrete. We denote by DMn the full
subcategory of DM spanned by n-truncated k-analytic Deligne–Mumford stacks.

We denote by dAn≤n
k the full subcategory of dAnk spanned by those derived k-

analytic spaces (X,OX) such that X is n-localic (cf. [21, 6.4.5.8]).
With these notations we can now state our main comparison theorem, which is an

analogue of [29, Theorem 3.7] and [28, Theorem 1.7].

Theorem 7.9 For every integer n ≥ 1, the functor φ : dAnk → Sh(dAfdk, τét)
restricts to an equivalence of ∞-categories dAn≤n

k � DMn.

The proof will occupy the rest of this section. Before plunging ourselves into the
details, let us deduce from this theorem an important application.

Let (Ank, τét,Pét) be the geometric context consisting of the category of k-analytic
spaces, the étale topology and the class of étale morphisms. The associated geometric
stacks are called higher k-analytic Deligne–Mumford stacks. They are in particular
higher k-analytic stacks considered in [31]. So all the results in loc. cit. apply.

Corollary 7.10 Let Geom(Ank, τét,Pét) denote the ∞-category of higher k-analytic
Deligne–Mumford stacks. There is a fully faithful embedding Geom(Ank, τét,Pét) →
dAnk whose essential image is spanned by those derived k-analytic spaces (X,OX)

such that X is n-localic for some n and OX is discrete.

Proof Let (Afdk, τét,Pét) be the geometric context consisting of the category
of k-affinoid spaces, the étale topology and the class of étale morphisms. Let
Geom(Afdk, τét,Pét) denote the ∞-category of geometric stacks associated to this
geometric context. By [31, §2.5], we have an equivalence

Geom(Ank, τét,Pét) � Geom(Afdk, τét,Pét).
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It follows fromTheoremTheorem4.11 that the natural inclusion j : Afdk → dAfdk
is fully faithful. So the induced functor

js : Sh(Afdk, τét) → Sh(dAfdk, τét)

is fully faithful as well. We know moreover that js preserves geometric stacks. There-
fore js factors through the full subcategory DM = ⋃

DMn . Applying Theorem 7.9,
we obtain the desired fully faithful functor Geom(Afdk, τét,Pét) → dAnk .

Now it suffices to observe that if a geometric stack X ∈ dAn≤n
k is discrete, then

φ(X) lies in the essential image of js . Indeed, if X is discrete, then

MapdAnk (Y, X) = MapdAnk (t0(Y ), X).

Therefore φ(X) coincides with the left Kan extension of its restriction along j , com-
pleting the proof. ��

7.2 The case of algebraic spaces

Given a derived k-analytic space X , we denote by dAfdX the overcategory (dAfdk)/X .
The Grothendieck topology τét on dAnk induces a Grothendieck topology on dAfdX ,
which we still denote by τét . Let Xbig,ét denote the Grothendieck site (dAfdX , τét).

Let (dAfdX )ét be the full subcategory of the overcategory dAfdX spanned by étale
morphisms Y → X . The étale topology τét on dAfdX restricts to a Grothendieck
topology on (dAfdX )ét , which we still denote by τét . Let X ét denote the Grothendieck
site ((dAfdX )ét, τét).

Remark 7.11 Let X be an ordinary k-analytic space. Let f : (Y,OY) → �(X) be an
étale morphism in dAnk . Since the morphism f −1OX → OY is an equivalence, we
see that OY is discrete. In particular, if (Y,OY) is a derived k-affinoid space, then it
belongs to the essential image of �. This shows that there is a canonical equivalence
X ét � �(X)ét .

We have continuous functors between the sites

(X ét, τét) (Xbig,ét, τét) (dAfdk, τét).
u v

By [31, §2.4], they induce adjunctions on the ∞-categories of sheaves

us : Sh(X ét, τét) � Sh(Xbig,ét, τét) : us,
vs : Sh(Xbig,ét, τét) � Sh(dAfdk, τét) : vs .

Moreover, since u is left exact, (us, us) is a geometric morphism of ∞-topoi. In
particular, us takes n-truncated objects to n-truncated objects. On the other side, we
can identify the adjunction (vs, v

s) with the canonical adjunction

Sh(dAfdk, τét)/φ(X) � Sh(dAfdk, τét),
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where the right arrow is the forgetful functor.

Definition 7.12 Let X ∈ dAfdk , Y ∈ Sh(dAfdk, τét) and α : Y → φ(X) a natural
transformation. We say that α exhibits Y as an étale derived algebraic space over X if
there exists a 0-truncated sheaf F ∈ Sh(X ét, τét) and an equivalence Y � vs(us(F))

in Sh(dAfdk, τét)/φ(X).

Proposition 7.13 Let X ∈ dAfdk , Y ∈ Sh(dAfdk, τét) and α : Y → φ(X) a natural
transformation. The following statements are equivalent:

(i) The natural transformation α exhibits Y as an étale derived algebraic space
over X.

(ii) There exists a discrete object U ∈ X such that φ( j) is equivalent to α, where
j : (X/U ,OX|U ) → (X,OX) is the induced étale morphism.

(iii) The natural transformation α is 0-truncated and 0-representable by étale mor-
phisms.

Proof We first prove the equivalence between (i) and (ii). If α exhibits Y as an étale
derived algebraic space over X , we can find a 0-truncated sheaf U ∈ Sh(X ét, τét) and
an equivalence Y � vs(us(U )) in Sh(dAfdk, τét)/φ(X). Consider XU := (X/U ,OX|U )

and let j : XU → X be the induced étalemap.Wewant to prove thatφ( j) is equivalent
to α. For any Z = (Z,OZ) ∈ dAfdk and any map f : φ(Z) → φ(X), we have a fiber
sequence

MapSh(dAfdk ,τét)/φ(X)
(φ(Z) f , us(U )) MapSh(dAfdk ,τét)(φ(Z), vs(us(U )))

{ f } MapSh(dAfdk ,τét)(φ(Z), φ(X)),

where φ(Z) f denotes the object f : φ(Z) → φ(X) in Sh(dAfdk, τét)/φ(X). Since φ

is fully faithful by Proposition 7.6, we can view φ(Z) f as a representable object in
Sh(Xbig,ét, τét) � Sh(dAfdk, τét)/φ(X). Therefore, the Yoneda lemma combined with
[21, 4.3.2.15] implies that

MapSh(dAfdk ,τét)/φ(X)
(φ(Z) f , us(U )) � 	(Z, f −1(U )).

In particular, taking Z to be an atlas for XU and choosing f to be j , we obtain a
canonical map φ(XU ) → vs(us(U )). For any Z ∈ dAfdk , we obtain in this way a
commutative square

MapSh(dAfdk ,τét)(φ(Z), φ(XU )) MapSh(dAfdk ,τét)(φ(Z), φ(X))

MapSh(dAfdk ,τét)(φ(Z), vs(us(U ))) MapSh(dAfdk ,τét)(φ(Z), φ(X)).
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For any morphism f : φ(Z) → φ(X), we can combine the fully faithfulness of φ

and [23, Remark 2.3.4] to identify the fiber of the top horizontal morphism with
	(Z, f −1(U )). The same holds for the lower horizontal morphism in virtue of the
above discussion. Therefore, there is a canonical identification of φ(XU ) with Y =
vs(us(U )) in Sh(dAfdk, τét), and a canonical identification of φ( j) with α. On the
other side, if (ii) is satisfied, thenU defines an étale derived algebraic space vs(us(U ))

over X , which can be identified with Y using the same argument as above.
Let us now prove the equivalence between (i) and (iii). First, assume that (iii) is

satisfied. In this case, we can define a sheaf U : X ét → S by sending an étale map
f : Z → X to the fiber product

U (Z) Y (Z)

{∗} φ(X)(Z).

αZ

f

Since α is 0-truncated, we see that U takes values in Set. Since both φ(X) and Y
are sheaves, the same goes for U . It follows that U defines a 0-truncated object in
Sh(X ét, τét). Since α is 0-representable by étale maps we obtain a canonical map
Y → vs(us(Y )), and [23, Remark 2.3.4] shows that this map is an equivalence.

Finally, let us prove that (i) implies (iii). Choose a 0-truncated sheaf U ∈
Sh(X ét, τét) such that Y � vs(us(U )). We already remarked that in this case α is
0-truncated. Choose Vi ∈ X ét and sections ηi ∈ U (Vi ) which generate U , we obtain
an effective epimorphism

∐
φ(Vi ) =

∐
vs(us(Vi )) → vs(us(U ))

in Sh(dAfdk, τét). Suppose there is a (−1)-truncated morphism vs(us(U )) → φ(Z)

for some Z ∈ X ét . In this case, we see that

φ(Vi ) ×vs (us (U )) φ(Vj ) � φ(Vi ) ×φ(Z) φ(Vj )

and therefore the maps φ(Vi ) → vs(us(U )) � Y is (−1)-representable by étale maps.
In the general case, the fiber product Yi, j := φ(Vi )×vs(us (U )) φ(Vj ) is again a derived
algebraic space étale over X . We claim that the canonical map Yi, j → φ(Vi ×X Vj )

is (−1)-truncated. Indeed, we have a pullback diagram

Yi, j vs(us(U ))

φ(Vi ) ×φ(X) φ(Vj ) vs(us(U )) ×φ(X) vs(us(U )).

Since the map α : Y → φ(X) is 0-truncated, we conclude the proof of the claim by
[21, 5.5.6.15]. At this point, we deduce that Yi, j → X is (−1)-representable by étale
maps, and therefore that each φ(Vi ) → Y is 0-representable by étale maps. ��
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7.3 Proof of Theorem 7.9

We begin with the following analogue of [28, Lemma 2.7].

Lemma 7.14 Let n ≥ 0 be an integer. Fix X = (X,OX) ∈ dAn≤n+1
k and let V ∈ X

be an object such that XV := (X/V ,OX|V ) is a derived k-affinoid space. Then V is
n-truncated.

Proof We have to prove that for every object U ∈ X, the space

MapX(U, V ) � MapX/U
(U,U × V )

is n-truncated. This property is local onU , so we can restrict ourselves to the situation
where XU := (X/U ,OX|U ) is a derived k-affinoid space. Using [23, Remark 2.3.4],
we see that this space fits into a fiber sequence

MapX(U, V ) → MapdAnk (XU , XV ) → MapdAnk (XU , X).

Since a derived k-analytic space (Y,OY) belongs to dAfdk if and only if its trun-
cation (Y, π0(OY)) does, we can replace X with its truncation. Let us denote by
FX : Afdk → S the functor of points associated to X and by FV : Afdk → S the func-
tor of points associated to (X/V ,OX|V ). The arguments above show that it is enough
to prove that for every ordinary k-affinoid space Z , the fibers of FX (Z) → FV (Z) are
n-truncated. By hypothesis, FV is the functor of points associated to some k-affinoid
space, so it takes values in Set. Since FV (Z) is discrete, it suffices to show that FX (Z)

is (n + 1)-truncated. This follows directly from [23, Lemma 2.6.19]. ��
Proposition 7.15 Let n ≥ 1 and let X = (X,OX) ∈ dAnk be a derived k-analytic
space such that X is n-localic. Then φ(X) belongs to DMn.

Proof LetY = (Y,OY) ∈ dAfdk be a derived k-affinoid space such thatOY is discrete.
For every geometric morphism f −1 : X � Y : f∗ we can use [21, 2.4.4.2] to obtain a
fiber sequence

MapStrlocTan(k)(Y)( f
−1OX,OY) → MapdAnk (Y, X) → Map TopR (Y,X),

where the fiber is taken at ( f −1, f∗).
Since Y is 1-localic and n ≥ 1, it is also n-localic. Therefore, [28, Lemma

2.2] shows that Map TopR (Y,X) is n-truncated. Since OY is discrete, we see that

MapStrlocTan(k)(Y)( f
−1OX,OY) is 0-truncated, hence n-truncated. So

φ(X)(Y ) = MapdAnk (Y, X)

is n-truncated as well.
Let us now prove that φ(X) is geometric. Combining Corollaries 8.6 and 8.8, we

see that it is enough to prove that φ(X) admits an atlas. Choose objects Ui ∈ X
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such that (X/Ui ,OX|Ui ) is a derived k-affinoid space and that the joint morphism∐
Ui → 1X is an effective epimorphism. Put Xi := (X/Ui ,OX|Ui ). By functoriality

we obtain maps φ(Xi ) → φ(X). It follows from Lemma 7.4 that the total morphism∐
φ(Xi ) → φ(X) is an effective epimorphism. We are therefore left to prove that

φ(Xi ) → φ(X) are (n − 1)-representable by étale maps.
First of all, we remark that if Z ∈ dAfdk , then for any map φ(Z) → φ(X), using

full faithfulness of φ, we obtain

φ(Z) ×φ(X) φ(Xi ) � φ(Z ×X Xi ),

and Z ×X Xi is étale over Z . Therefore we are reduced to prove that the stacks
φ(X) ×φ(Z) φ(Xi ) are (n − 1)-geometric.

We prove this by induction on n. If n = 1, Lemma 7.14 shows that the objects Ui

are discrete. It follows from Proposition 7.13 that φ(Z) ×φ(X) φ(Xi ) is 0-geometric.
Now suppose that X is n-localic and n > 1. Lemma 7.14 shows again that the objects
Ui are (n − 1)-truncated. Therefore [23, Lemma 2.3.16] shows that the underlying
∞-topos of Z ×X Xi is (n − 1)-localic. We conclude by the inductive hypothesis. ��

As a consequence of Proposition 7.15, the functor φ : dAnk → Sh(dAfdk, τét)
induces a well defined functor

φn : dAn≤n
k → DMn .

In order to achieve the proof of Theorem 7.9, we are left to show that φn is essentially
surjective.

We will need the following elementary observation:

Lemma 7.16 Let X be a geometric stack for the geometric context (dAfdk, τét,Pét).
The functor t0 : X ét → (t0(X))ét is an equivalence of sites.

Proof We prove this by induction on the geometric level of X . If X is (−1)-geometric
we can find Y = (Y,OY) ∈ dAfdk such that X � φ(Y ). Consider the chain of
equivalences

( TopR (Tan(k))/Y )ét � ( TopR
/Y )ét � ( TopR (Tan(k))/t0(Y ))ét.

We now remark that, if X → Y is an étale map in TopR (Tan(k)), then X is a derived
k-analytic space. Moreover, a derived k-analytic space belongs to dAfdk if and only
if its truncation does. These observations imply that the above equivalence restricts to
an equivalence

Yét � (t0(Y ))ét,

thus achieving the proof of the base step of the induction.
Suppose now that X is n-geometric and that the statement holds for (n − 1)-

geometric stacks. Choose an étale n-groupoid presentation U • for X . This means
that U • is a groupoid object in the ∞-category Sh(dAfdk, τét) such that each Um is
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(n − 1)-geometric and that the map U 0 → X is (n − 1)-representable by étale maps.
Since t0 commutes with products in virtue of Proposition 3.26 and it takes effective
epimorphisms to effective epimorphisms by [21, 7.2.1.14], we see that V • := t0(U •)
is a groupoid presentation for t0(X).

Now, let Y → t0(X) be an étale map. We see that Y ×t0(X) V • → V • is an étale
map (i.e. it is a map of groupoids which is étale in each degree). By the inductive
hypothesis, we obtain a map of simplicial objects Z• → U •, such that

t0(Z
•) = Y ×t0(X) V

•.

SinceY×t0(X)V • is a groupoid, so is Z• (herewe use again the equivalence guaranteed
by the inductive hypothesis). The geometric realization of Z• provides us with an étale
map Z → X . Since t0 preserves effective epimorphisms, we conclude that t0(Z) = Y .
This construction is functorial in Y , and it provides the inverse to the functor t0. ��
Proposition 7.17 The functor φn : dAn≤n

k → DMn is essentially surjective.

Proof Let X ∈ DMn . By Lemma 7.16, X ét is equivalent to (t0(X))ét . By hypothesis,
t0(X) is n-truncated. Therefore, Proposition 8.2 shows that the mapping spaces in
(t0(X))ét are (n−1)-truncated. In other words, (t0(X))ét is equivalent to an n-category
(cf. [21, 2.3.4.18]). As a consequence, Sh(X ét, τét) is n-localic.

Put X := Sh(X ét, τét)
∧. Consider the composition

Tan(k) × Xop
ét → dAfdk × dAfdopk

y−→ S,

where the last functor classifies the Yoneda embedding (cf. [26, §5.2.1]). This induces
a well defined functor

OX : Tan(k) → PSh(X ét),

which factors through Sh(X ét, τét). Let OX be its hypercompletion. Since the functor
Tan(k) → dAfdk preserves products and admissible pullbacks, the same holds forOX.
Moreover, Lemma 7.4 implies that OX takes τét-coverings to effective epimorphisms.
In other words, OX defines a Tan(k)-structure on X.

If {Ui → X} is an étale n-atlas of X , eachUi defines an object Vi in X. Unraveling
the definitions, we see that theTan(k)-structured∞-topos (X/Vi ,OX |Vi ) is canonically
isomorphic toUi ∈ dAnk itself. Therefore X ′ := (X,OX ) is a derived k-analytic space.

We are left to prove that φ(X ′) � X . We can proceed by induction on the geometric
level n of X . If n = −1, φ(X ′) is the functor represented by X ′, and the same holds for
X . Let now n ≥ 0. Choose an étale n-atlas {Ui → X} for X . Set U := ∐

Ui and let
U • denote the Čech nerve of U → X . Every map Un → X is étale. In particular, the
functor X ét → S sending Y to MapX ét

(Y,Un) defines an element V n ∈ Sh(X ét, τét).
Using Lemma 7.16, we see that

MapX ét
(Y,Un) � Mapt0(X)ét

(t0(Y ), t0(U
n)).
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Since t0(Un) is a geometric stack, we conclude that the above space is truncated. In
particular, the object V n is a truncated object in Sh(X ét, τét), so it is hypercomplete.
In other words, V n belongs to X. We can therefore identify Sh(Un

ét, τét)
∧ with X/V n .

The universal property of étale morphisms (cf. [23, Remark 2.3.4]) shows that we
can arrange the V ns into a simplicial object V • in X, whose geometrical realization
coincides with 1X. The inductive hypothesis shows that φ(X/V • ,OX |•V ) � U • as
simplicial objects in Sh(dAfdk, τét). Since φ commutes with Čech nerves of étale
maps and their realizations (in virtue of Lemma 7.4), we conclude that φ(X ′) is
equivalent to X itself. ��

The proof of Theorem 7.9 is now achieved.
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8 Appendix

8.1 Complements on overcategories

The goal of this subsection is to provide a proof of the following basic result, for which
we do not know a reference: if (C, τ ) is a Grothendieck site and C is a 1-category, then
for every n-truncated sheaf X ∈ PSh(C), the overcategory C/X is an (n−1)-category.
The proof relies on the following lemma:

Lemma 8.1 Let C be an ∞-category. Let X ∈ C be an object and let f : U → X,
g : V → X be two 1-morphisms of C viewed as objects of C/X . For every morphism
h : U → V in C, choose a 2-simplex σ : �2 → C extending the morphism �2

1 → C

classified by h and g. Put f ′ := d1(σ ). Then we have a fiber sequence

PathMapC(U,X)( f, f ′) → MapC/X
( f, g) → MapC(U, V ).

Proof It follows from [21, Proposition 2.1.2.1] that the canonical map p : C/X → C

is a right fibration. In particular, it is a Cartesian fibration where every edge of C/X is
p-Cartesian. The 2-simplex σ : �2 → C can be viewed as an edge of C/X . Reviewing
the Kan complex MapC(U, X) as an ∞-category, we have a canonical equivalence
PathMapC(U,X)( f, f ′) � MapMapC(U,X)( f, f ′). The conclusion follows at this point
from [21, Proposition 2.4.4.2]. ��
Proposition 8.2 Let C be an ∞-category. Let X ∈ C be an n-truncated object. Let
f : U → X and g : V → X be two morphisms viewed as objects in C/X . If V is
m-truncated with m < n, then MapC/X

(U, V ) is (n − 1)-truncated.
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Proof Choosing f ′ as in Lemma 8.1, we obtain a fiber sequence

PathMapC(U,X)( f, f ′) → MapC/X
( f, g) → MapC(U, V ).

Now,MapC(U, V ) ism-truncated byhypothesis.On the other hand,wehave a pullback
diagram

PathMapC(U,X)( f, f ′) {∗}

{∗} MapC(U, X).

f ′

f

Therefore PathMapC(U,X)( f, f ′) fits in the pullback diagram

PathMapC(U,X)( f, f ′) MapC(U, X)

{∗} MapC(U, X) × MapC(U, X).

�

( f, f ′)

Since X is n-truncated, it follows that MapC(U, X) is n-truncated. Therefore, [21,
5.5.6.15] shows that � is (n − 1)-truncated. We deduce that PathMapC(U,X)( f, f ′) is
(n − 1)-truncated. Thus the fiber sequence of Lemma 8.1 implies that MapC/X

( f, g)
is (n − 1)-truncated as well, completing the proof. ��

8.2 Complements on geometric stacks

Definition 8.3 Let (C, τ ) be an∞-site. The∞-categoryC is said to be closed under τ -
descent if for any morphism from a sheaf X to a representable sheaf Y , any τ -covering
{Yi → Y }, the representability of X ×Y Yi for every i implies the representability of
X .

We need the following converse to [31, Corollary 2.12]:

Lemma 8.4 Let (C, τ ) be a subcanonical∞-site. Let F → G be an effective epimor-
phism in Sh(C, τ ). For any object X ∈ C and any morphism hX → G, there exists a
τ -covering {Ui → X} such that the composite morphisms hUi → hX → G factor as

F

hUi hX G.

Proof Using [31, Proposition 2.11] we see that the morphism π0(F) → π0(G) is an
effective epimorphism of sheaves of sets. In particular, there exists a covering {Vj →
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X} such that the composite morphisms π0(hVj ) → π0(hX ) → π0(G) factor through
π0(F). Since π0(F) is by definition the sheafification of the presheaf Y �→ π0(F(Y ))

and since

MapSh(C,τ )(π0(hVj ), π0(F)) � MapSh(C,τ )(hVj , π0(F)) � π0(F)(Vj ),

we can find a τ -covering {Ui j → Vj } such that every composite morphism hUi j →
hVj → π0(F) factors through F → π0(F). Finally, again since π0(G) is the sheafi-
fication of the presheaf Y �→ π0(G(Y )), we can further refine the covering such that
the morphisms hUi j → F are homotopic to the compositions hUi j → hX → G. This
completes the proof. ��
Proposition 8.5 Let (C, τ,P) be a geometric context in the sense of [31]. Assume that
C is closed under τ -descent. Then the class of n-representable morphisms is closed
under τ -descent, in the sense that for any morphism f : X → Y with Y a n-geometric
stack, if there exists an n-atlas {Ui } of Y such that X ×Y Ui is n-geometric for every
i , then F is n-geometric as well.

Proof The proof goes by induction on the geometric level n. When n = −1, this holds
because C is closed under τ -descent. Let now n ≥ 0. Let {Ui } be an n-atlas of Y such
that Xi := X ×Y Ui is n-geometric for every i . Choose an n-atlas {Vi j } of X ×Y Ui .
The compositions Vi j → Xi → X provide an n-atlas of X . We are therefore left to
prove that the diagonal of X is (n − 1)-representable. Let V := ∐

Vi j be the n-atlas
of X introduced above. By construction, the map V → X is (n − 1)-representable. It
follows that the induced map V ×X V → V is (n − 1)-representable as well. Since
V is a disjoint union of (−1)-representable stacks, it follows that V ×X V is (n − 1)-
geometric. Observe now that V ×V → X × X is an effective epimorphism. Therefore
for every morphism S → X × X from a (−1)-representable stack S, by Lemma 8.4,
we can choose a τ -covering Si → S such that the composite map Si → S → X × X
factors as

V × V

Si S X × X.

In order to prove that the diagonal �X : X → X × X is (n − 1)-representable, we
have to show that S ×X×X X is (n − 1)-geometric. Using the induction hypothesis, it
suffices to show that each stack Si ×X×X X is (n − 1)-geometric. Note that this stack
fits in the following diagram of cartesian squares:

Si ×X×X X V ×X V X

Si V × V X × X.
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Since V × V , V ×X V and Si are (n − 1)-geometric, it follows that the same goes for
Si ×X×X X , thus completing the proof. ��

Corollary 8.6 Let (C, τ,P) be a geometric context and assume that C is closed under
τ -descent. If X ∈ Sh(C, τ ) admits an n-atlas, then it is n-geometric.

Proof We have to prove that the diagonal of X is (n−1)-representable. Let V → X be
an n-atlas. Then V ×V → X×X is an n-atlas for X×X . By Lemma 8.4, for any map
S → X × X , with S being representable, we can find a τ -covering {Si → S} such that
the composite maps Si → S → X × X factor through V × V . Using Proposition 8.5,
we are reduced to prove that each Si ×X×X X is (n − 1)-geometric. Consider the
diagram

Si ×X×X X V ×X V X

Si V × V X × X.

The right and the outer squares are pullback diagrams by construction. Therefore, so
is the left square. Now we conclude from the fact that V ×X V is (n − 1)-geometric.

��

Proposition 8.7 The category Afdk of k-affinoid spaces is closed under τét-descent.

Proof Let Y be a k-affinoid space and let f : F → hY be amorphism in Sh(Afdk, τét).
Let {Yi → Y }i∈I be a finite étale covering in the category Afdk . Assume that for every
index i , the fiber product hYi ×hY F is representable by Xi ∈ Afdk . Put Y 0 := ∐

i∈I Yi
and let Y • be the Čech nerve of Y 0 → Y . By assumption, we see that for every integer
n, hYn ×hY F is representable. Choose Xn ∈ Afdk such that hYn ×hY F � hXn . Fully
faithfulness of the Yoneda embedding implies that we can arrange the objects Xn into
a simplicial object X• in Afdk . Let �s be the semisimplicial category. It follows from
[21, 6.5.3.7] that the inclusion�

op
s ⊂ �op is cofinal. Let�s,≤2 be the full subcategory

of �s spanned by the objects [0], [1] and [2]. The inclusion �
op
s,≤2 ⊂ �

op
s is 1-cofinal,

in the sense that for every [n] ∈ �s , the undercategory (�
op
s,≤2)[n]/ is nonempty and

connected. Let j : �
op
s,≤2 ↪→ � be the composite functor. Since Afdk is a 1-category,

we see that X• admits a colimit if and only if X•
s,≤2 := X•◦ j does. The latter statement

is true because Afdk admits finite colimits.
Let X be the colimit of X• and let g : X → Y be the canonical map. We claim that

Xn � Yn ×Y X . To prove this, it is enough to show that X0 � Y 0 ×Y X . We first
remark that if the map X0 → Y 0 is a closed immersion, then the statement follows
directly from the fpqc descent of coherent sheaves (cf. [6]). In the general case, we
factor X0 → Y 0 as X0 ↪→ DN

Y 0 → Y 0, where DN
Y 0 denotes the N -dimensional unit

polydisc over Y 0 and the first arrow is a closed immersion. Observe that the colimit
of DN

Y • is DN
Y , and that DN

Y 0 � Y 0 ×Y DN
Y . Consider the following diagram:
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X0 X

DN
Y 0 DN

Y

Y 0 Y.

Since X0 ↪→ DN
Y 0 is a closed immersion, we see that the top square is a pullback.

Moreover, we remarked that the bottom square is also a pullback. Hence so is the
outer square, completing the proof of the claim.

As a consequence, we see that X• is the Čech nerve of the étale covering X0 → X .
In particular, in Sh(Afdk, τét) we have

hX � |hX• |,

where |·| denotes the geometric realization. Finally, since Sh(Afdk, τét) is an∞-topos,
we obtain:

hX � |hX• | � |hY • ×hY F | � |hY • | ×hY F � F.

This shows that F is representable, thus completing the proof. ��
Corollary 8.8 The category dAfdk of derived k-affinoid spaces is closed under τét-
descent.

Proof Let Y = (Y,OY) be a derived k-affinoid space. Let F → hY be a morphism
in Sh(dAfdk, τét). Assume there exists an étale covering Yi → Y such that each base
change hYi ×hY F is representable by a derived k-affinoid space Xi . In particular,
t0(hYi ×hY F) � t0(hYi )×t0(hY ) t0(F) is representable by an ordinary k-affinoid space
t0(Xi ). It follows from Proposition 8.7 that t0(F) is representable by an ordinary
k-affinoid space Z .

Form the Čech nerve G• of
∐

hYi ×hY F → F . By hypothesis, each Gn is a
disjoint union of derived k-affinoid spaces. Since φ is fully faithful, we obtain in this
way a simplicial object X• in dAnk , such that all the face maps are étale morphisms.
It follows from [23, Proposition 2.3.5] that this simplicial object admits a colimit Y in
TopR (Tan(k)) and that the canonical maps Xn → X are étale. This shows that we can

cover X with derived k-affinoid spaces. In particular, X is a derived k-analytic space.
We are left to prove that X is a derived k-affinoid space. Observe that the maps

t0(Xn) → t0(X) are étale. Since X (resp. Xn) and t0(X) (resp. t0(Xn)) share the same
underlying ∞-topos, we can use the statement (3’) in the proof of [23, Proposition
2.3.5] to conclude that the colimit of t0(X•) in TopR (Tan(k)) is t0(X). On the other
hand, since t0 commutes with limits, we can further identify φ(t0(X•)) with the Čech
nerve of the map

∐
t0(hYi ×hY F) → t0(F) � φ(Z). It follows that t0(X) � Z in

dAnk . This shows that X is a derived k-affinoid space, and φ(X) � F . The proof is
thus complete. ��
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