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1 Introduction

1.1 Context and motivation

This paper introduces and addresses new quantitative questions about Lagrangian
cobordisms between Legendrian submanifolds. The cobordisms under consideration
are exact, orientable Lagrangian submanifolds of the symplectization R × Y of a
contact manifold Y that in the complement of [s−, s+] × Y coincide with cylinders
over Legendrians �±. This type of Lagrangian cobordism has come under increasing
scrutiny in recent years, especially as a part of the TQFT package for a relative version
of symplectic field theory (SFT); see, among others, [5,11,13,14,19].

Prior research intoLagrangian cobordisms investigated qualitative questions: fixing
the Legendrians at the ends, when does such a cobordism exist? What restrictions are
there on the topology of such a cobordism? Is the Lagrangian cobordism relation a
partial order on the set of Legendrian submanifolds (up to isotopy)?

For another viewpoint on the rigidity and flexibility of Lagrangian cobordisms, we
introduce a new quantitative question: given two Legendrians, what is the shortest
length of all Lagrangian cobordisms between them? Here, the length of a Lagrangian
cobordism L , �(L), is the infimum of the lengths of the intervals [s−, s+] such that
the Lagrangian is cylindrical in the complement of [s−, s+] × Y . In Sect. 1.2, we
will describe examples that show that for some pairs of Legendrian submanifolds,
Lagrangian cobordisms are flexible in the sense that they can be arbitrarily short; for
other pairs of Legendrians submanifolds, Lagrangian cobordisms are rigid in that there
is a positive lower bound to their length.

Rigidity of length brings to mind non-squeezing and more general symplectic
embedding phenomena. That is, even when topological and volume obstructions to
embedding one symplectic domain into another vanish, the embedding may still be
impossible. The original example was of embedding a ball into a cylinder as in [29],
though other classic problems involve ellipsoids and polydisks, and, more generally,
embeddings of one Liouville domain into another as in [30]. In the last case, an embed-
ding induces a symplectic cobordism between contact boundaries of the domains in
question, and the question of measuring Lagrangian cobordisms between Legendrians
can be thought of as a relative version of this question. The notion of length, however,
does not seem to have an analogue in the non-relative case. In fact, an interesting
feature of the length is that it arises from a 1-dimensional measurement rather than
the usual 2-dimensional measurements that appear in non-squeezing theorems, even
in the case of Lagrangian cobordisms [39].

There is one more aspect of our results that is reminiscent of non-squeezing: Gro-
mov’s use of pseudo-holomorphic curves has been refined andgiven algebraic structure
in several contexts, themost relevant for our purposes beingLegendrian contact homol-
ogy (LCH) and SFT [21]. Using a framework reminiscent of, though independent of,
Hutchings’ definition of Embedded Contact Homology capacities [30], our main tool
for measuring rigidity in the length of a Lagrangian cobordism is a notion of a capacity
for a Legendrian submanifold, which is based on a filtered version of LCH, and which
we will begin to describe in Sect. 1.3, below.
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Fig. 1 A front diagram of the
Legendrian unknot U (1), which
has a single Reeb chord of
height 1. By spinning this front
around its central axis, one
obtains similar “flying saucers”
Un(1) ⊂ R

2n+1

1

1.2 Results

To build intuition for the length of a Lagrangian cobordism, we introduce a series
of examples, each of which will be explored in more detail in Sects. 3 and 6. First,
consider the Legendrian unknot U (1) ⊂ R

3 depicted in Fig. 1; for this knot, the
unique Reeb chord has height 1. LetU (v) denote the image ofU (1) under the contact
diffeomorphism (x, y, z) �→ (x, vy, vz). Through spinning constructions, we can
produce n-dimensional flying saucers Un(v).

Theorem 1.1 For v ≥ 1, there exist arbitrarily short Lagrangian cobordisms from
�− = Un(1) to �+ = Un(v). For v < 1, any such cobordism must have length at
least ln 1

v
, and the bound is the best possible.

This theorem points to some initial intuition about the length of a cobordism:
“expanding” a Legendrian can be done with a cobordism of arbitrarily short length,
while “shrinking” a Legendrian requires nontrivial length. In fact, the lower bound in
Theorem 1.1 can be generalized to give a lower bound to the length of a Lagrangian
cobordism in terms of the lengths of Reeb chords of �− and �+; see Proposition 6.1.

Second, it is easy to show that a vertical shift of a Legendrian unknot—or any
Legendrian submanifold of J 1M—can be achieved by arbitrarily short Lagrangian
cobordisms; see Corollary 3.4. On the other hand, simultaneous shifts of two compo-
nents cannot necessarily be achieved by disjoint Lagrangian cobordisms of arbitrarily
short length. For example, if H(v) is the Hopf link of Legendrian unknots U (1) with
the top component shifted up by 0 < v < 1 from the bottom component as in Fig. 2,
then we obtain:

Theorem 1.2 A Lagrangian cobordism from �− = H(u) to �+ = H(v) composed
of two disjoint Lagrangian cylinders that join the upper (resp. lower) component of
H(u) to the upper (resp. lower) component of H(v) has length at least

• ln 1−u
1−v

if u ≤ v and
• ln u

v
if u ≥ v,

and the bounds are the best possible.

See Fig. 2b for a visualization of these bounds for u = 1
2 . In fact, this statement holds

for n-dimensional Hopf links; see Theorem 6.3.
Theorem 1.2 hints at a boundary-value problem for Lagrangian cobordisms. Gen-

eralizing the notation for the Hopf link, let H(v1, . . . , vk) denote the (k + 1)-copy of
U (1), with components numbered from 0 to k, with the i th component shifted up by
a height vi from the bottom, and with the shifts satisfying 0 < v1 < · · · < vk < 1.

We call H
(

1
k+1 , . . . ,

k
k+1

)
the evenly shifted (k + 1)-copy of U (1).
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Fig. 2 a A schematic picture of a Lagrangian cobordism between �− = H(u) and �+ = H(v), and b a
plot of the lower bounds on the length of such a cobordism for u = 1

2 and 0 < v < 1
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Fig. 3 The setup for the boundary value problem introduced in Question 1.3

Question 1.3 Let H denote the evenly shifted (k+1)-copy of U (1). For which vectors
(v1, . . . , vk) is there a Lagrangian cobordism from �− = H to �+ = H(v1, . . . , vk)

of length at most 1?

See Fig. 3. We will answer this question in Theorem 6.4 by showing that a Lagrangian
cobordism exists for (v1, . . . , vk) if and only if the following system of linear inequal-
ities are satisfied:

i − j

(k + 1)e
≤ vi − v j ≤ 1 − (k + 1) − (i − j)

(k + 1)e
, (1.1)
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Fig. 4 The shaded region
depicts the realizable shifts v1,
v2 of the top two components of
a 3-copy as specified by
Inequalities (1.1)
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where i ∈ {1, . . . , k}, j ∈ {0, . . . , k−1}, i > j , and v0 = 0. In the case of the 3-copy,
these inequalities are visualized in Fig. 4.

Finally, it is well known (see [5] and also [4,19,22,27]) that a Legendrian isotopy
induces a Lagrangian cobordism. We consider Lagrangian cobordisms derived from
loops of Legendrian submanifolds, i.e. isotopies that begin and end at the same Leg-
endrian submanifold. Unlike in the previous examples, we will now restrict attention
to a given isotopy class of Lagrangian cobordisms: for a Lagrangian cobordism Lγ

derived from a loop of Legendrian submanifolds γ , we denote the set of Lagrangian
cobordisms that are Lagrangian isotopic to Lγ through compactly supported isotopies
by [Lγ ]. Clearly if the loop γ is trivial, then there will be Lagrangian cobordisms of
arbitrarily short length in [Lγ ]. If the loop is non-trivial, the corresponding isotopy
class of Lagrangian cobordisms may or may not contain short representatives:

Theorem 1.4 For any b > 0, there exists a non-trivial loop γ b of Legendrian subman-
ifolds with induced Lagrangian cobordism Lγ b such that the length of any Lagrangian
cobordism in

[
Lγ b

]
is bounded below by b. On the other hand, there exists a non-

trivial loop of Legendrian submanifolds γ ′ with induced Lagrangian cobordism Lγ ′
such that [Lγ ′ ] contains arbitrarily short cobordisms.
The non-trivial loop γ that leads to long cobordisms comes from a loop of Legendrian
trefoil knots constructed by Kálmán [32]. The non-trivial loop γ ′ that leads to short
cobordisms comes from a loop of Legendrian spheres in R

2n+1 constructed by the
first author and Sullivan [38].

1.3 Tools

The results above require two types of tools: those that allowus to construct Lagrangian
cobordisms and examine their lengths, and those that allow us to obstruct the existence
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of a short Lagrangian cobordism. To prove upper bounds on the length of a Lagrangian
cobordism, we re-examine existing constructions of Lagrangian cobordisms using
Legendrian isotopies as in [19], slightly refined with the notion of length in mind.
To obtain the lower bounds on length, we develop a framework for capacities of
Legendrian submanifolds, and showhow those capacities are related under Lagrangian
cobordism.

Our capacities are derived from a filtered version of Legendrian Contact Cohomol-
ogy, linearized by an augmentation ε; these capacities are, in a sense, monotonic
under Lagrangian cobordism. Note that this framework—though not the actual
construction—is similar to that used for slices of “flat-at-infinity” Lagrangians [39]
and to Hutchings’ ECH capacities [30]. More specifically, for each linearized Legen-
drian Contact Cohomology class θ ∈ LCH∗(�, ε), we define a quantity c(�, ε, θ) ∈
(0,+∞] that, essentially, measures the Reeb height of the class θ . Ekholm showed
that a Lagrangian cobordism L from �− to �+ with an augmentation ε− for �−
induces an augmentation ε+ of �+ and a map

�
L ,ε−
1 : LCH∗(�−, ε−) → LCH∗(�+, ε+).

We show that this map is actually a filtered map, and prove the following inequality:

Theorem 1.5 Given a Lagrangian cobordism L from �− to �+ that is cylindrical
outside [s−, s+], an augmentation ε− of �−, and the augmentation ε+ of �+ induced
by L, the following inequality holds for any θ ∈ LCH∗(�−, ε−):

es−c(�−, ε−, θ) ≤ es+c(�+, ε+, �
L ,ε−
1 (θ)). (1.2)

Thus, for any augmentation ε− of �− and any θ ∈ LCH∗(�−, ε−) not in ker�L ,ε−
1 ,

we may bound the length of L by

�(L) ≥ ln c(�−, ε−, θ) − ln c(�+, ε+, �
L ,ε−
1 (θ)). (1.3)

As hinted by the subscript 1 in the notation for the cobordism map, there is actually
a full A∞ map between the Legendrian Contact Cohomology A∞ algebras of �±.
A more general version of Theorem 1.5 holds for the components �

L ,ε−
k of the A∞

map; see Theorem 5.5.

Remark 1.6 The capacity framework may also be developed using Generating Family
Homology using the tools in [40], but we chose to focus on the Legendrian Contact
Homology tools in this paper.

The remainder of the paper is structured as follows: in Sect. 2, we set down precise
definitions, and in Sect. 3, we describe several constructions of Lagrangian cobordisms
that will prove useful in later sections. In Sect. 4, we establish the framework for
capacities from LCH, culminating in a proof of Theorem 1.5 and its generalization to
A∞ maps. Applications of the capacities, including proofs of Theorems 1.1, 1.2, and
1.4, are then given in Sect. 6.
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2 Legendrian submanifolds and Lagrangian cobordisms

In this section, we set notation and specify the precise definition of a Lagrangian
cobordism between two Legendrian submanifolds. Throughout the paper, we assume
familiarity with basic ideas in contact and symplectic topology, especially with regards
to Legendrian and (exact) Lagrangian submanifolds. See, for example, Etnyre [23] for
background on Legendrian submanifolds and Audin et al. [1] on Lagrangian subman-
ifolds.

2.1 Notation for Legendrian submanifolds

We will work primarily in the 1-jet space of a smooth manifold Mm where M is
either compact or equal to R

m . Topologically, we have J 1M = T ∗M × R with local
coordinates (x, y, z). A 1-jet space is naturally a contact manifold with contact form
α = dz − y · dx.

A Legendrian submanifold � ⊂ J 1Mm is an m-dimensional submanifold that
is everywhere tangent to the contact structure ξ = ker α. A Legendrian submanifold
has two important projections: the front projection to M × R and the Lagrangian
projection to T ∗M . Note that the image of a Legendrian submanifold under the
Lagrangian projection is an exact and possibly immersed Lagrangian submanifold.

A Reeb chord of a Legendrian submanifold � is an integral curve of the Reeb
vector field, which is ∂

∂z in our setting, whose endpoints both lie on �. In particular, a
Reeb chord will have constant T ∗M coordinates and will go from a lesser to a greater
z value. Denote the collection of Reeb chords of � by R�. The height of a Reeb
chord b is:

h(b) =
∫

b
α =

∫

b
dz > 0. (2.1)

Reeb chords are clearly in bijective correspondence with double points of the
Lagrangian projection of �. A Legendrian submanifold is chord generic if the cor-
responding double points of the Lagrangian projection of � are transverse.

2.2 Exact cobordisms, primitives, and lengths

We next discuss the formal definition of the Lagrangian cobordisms we consider in
this paper. Let Y be an odd-dimensional manifold with contact form α. We work in
the symplectization (R × Y, d(esα)) of Y , where s denotes the coordinate on the R
factor.

Definition 2.1 An (exact, orientable, cylindrical-at-infinity) Lagrangian cobor-
dism is an exact, orientable Lagrangian submanifold L ⊂ (R × Y, d(esα)) such that
there exist Legendrian submanifolds �± of Y and real numbers s− ≤ s+ satisfying:

(1) L ∩ ((−∞, s−] × Y ) = (−∞, s−] × �−,
(2) L ∩ ([s+,∞) × Y ) = [s+,∞) × �+, and
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(3) The primitive of esα along L is constant for s < s− and for s > s+.1

We say that L is cylindrical outside of [s−, s+]. We will say such a Lagrangian is a
Lagrangian cobordism from �− to �+.

For succinctness, we will henceforth drop the qualifiers “exact, orientable,
cylindrical-at-infinity” when referring to Lagrangian cobordisms, though they are still
understood to hold.

The primary object of study in this paper is:

Definition 2.2 The length of a Lagrangian cobordism L is

�(L) = inf{s+ − s− : L is cylindrical outside of [s−, s+]}.

3 Constructions of Lagrangian cobordisms

In recent years, several methods for constructing Lagrangian cobordisms have been
developed, yielding constructions based on Legendrian isotopy [4,5,19,22,27], spin-
ning [4,28], and Lagrangian handle attachment [4,11,19]. In this section, we will
review a method to construct a Lagrangian cobordism from a Legendrian isotopy
and will then apply this construction to give upper bounds on lengths of Lagrangian
cobordisms induced by Legendrian isotopies.

We begin by reviewing the construction of a Lagrangian cobordism induced by
a Legendrian isotopy from [19, §6]. Note that the original construction in [19] was
performed for Legendrian links in the standard contactR3, but the proof goes through
almost word-for-word in the more general setting.

Let �s , with s ∈ R, be a smooth 1-parameter family of closed, but not necessarily
connected, Legendrian submanifolds of J 1M , where �s = �− for s ≤ s− and
�s = �+ for s ≥ s+. Parametrize the Legendrians in this isotopy by λs : � → J 1M ,
where we write λs(t) = (x(s, t), y(s, t), z(s, t)). While the trace of the isotopy in
R × J 1M is not necessarily Lagrangian, we may use the function

η(s, t) = α(∂sλs(t)) (3.1)

to perturb the trace into a (potentially immersed) exact Lagrangian cobordism.

Lemma 3.1 ([19]) The map � : R × � → R × J 1M defined by

�(s, t) = (s, x(s, t), y(s, t), z(s, t) + η(s, t)) (3.2)

is an exact Lagrangian immersion. If η(s, t) is sufficiently small, then the image of �
is an exact Lagrangian cobordism from �− to �+.

1 See [6] for an explanation of the third condition. It is easy to check that the third condition is automatically
satisfied if the Legendrians at the ends are connected. In general, the primitive of esα along L is constant
on each component of �±.
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The proof is a direct calculation that makes essential use of the fact that λs(t) is
Legendrian for each s, yielding a primitive esη(s, t) for the pullback �∗(esα). Since
∂sλs(t) has compact support, the primitive vanishes at both ends of the cobordism.

Observe that by “spreading out” the Legendrian isotopy, we can guarantee that
η(s, t) is sufficiently small, and hence isotopic Legendrians can always be connected
by a long Lagrangian cobordism. We may, however, analyze when the immersion �

is an embedding more precisely:

Lemma 3.2 The exact Lagrangian immersion � from (3.2) is an embedding if for all
s ∈ R, no Reeb chord of �s (from λs(t) to λs(t ′)) has height η(s, t) − η(s, t ′).

Proof Adouble point of the image of� comes from points (s, t) and (s′, t ′) that satisfy
s = s′, x(s, t) = x(s, t ′), and y(s, t) = y(s, t ′) — in particular, λs(t) and λs(t ′) must
be endpoints of a Reeb chord of �s . Equality of the last coordinate of the immersion
� shows that z(s, t) + η(s, t) = z(s, t ′) + η(s, t ′). Assume without loss of generality
that z(s, t) < z(s, t ′). We then see that double points occur when the height of that
Reeb chord from λs(t) to λs(t ′) equals η(s, t) − η(s, t ′). �

From this, we see that two Legendrians related by a strict contact isotopy can be
connected by an arbitrarily short Lagrangian cobordism:

Proposition 3.3 Let � ⊂ J 1M be a Legendrian submanifold. If � : J 1M × R →
J 1M is a contact isotopy such that �s = id for s ≤ 0, �s = �1 for s ≥ 1, and
each �s preserves the contact form α, then there exist arbitrarily short Lagrangian
cobordisms from �− = � to �+ = �1(�).

Proof Let Xs be the contact vector field generating�s and note that η is the restriction
of α(Xs) to the trace of � under �s . Since �s preserves the contact form, we may
compute:

0 = LXsα = d(α(Xs)) + ιXs dα. (3.3)

Plugging the Reeb field ∂z into both sides of Eq. (3.3) and using the fact dα(∂z, ·) = 0
tells us that 0 = d(α(Xs))(∂z) = ∂z(α(Xs)). That is, η is constant along Reeb chords,
hence η(s, t) − η(s, t ′) = 0 at the endpoints of any Reeb chord. Since the height
of a Reeb chord is never 0, Lemma 3.2 implies that the Lagrangian induced by the
Legendrian isotopy �s is always embedded. �

As an immediate application, we see that any two Legendrians that are related by
a “vertical shift” can be connected by an arbitrarily short Lagrangian cobordism.

Corollary 3.4 Given a Legendrian � ⊂ J 1M, for any ν ∈ R, let �ν denote the
Legendrian that is a vertical translation of � by ν: if � is parameterized by λ(t) =
(x(t), y(t), z(t)), �ν is parameterized by λ(t) = (x(t), y(t), z(t) + ν). Then, for any
ν ∈ R, there exist arbitrarily short cobordisms from �− = � to �+ = �ν .

Remark 3.5 For later purposes, it will be useful to more carefully examine the
Lagrangian generated in the proof of Corollary 3.4. By construction, the Lagrangian
cobordism is the image of

�(s, t) = (s, x(t), y(t), z(t) + ρ(s) + ρ′(s)).
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For any fixed ν �= 0, as the cobordism gets shorter, ‖ρ′‖∞ must get larger. Thus, the
Lagrangian will be quite different than the trace of the isotopy.

In addition to being able to realize vertical displacements by arbitrarily short cobor-
disms, Legendrians related by a horizontal displacement or other changes that result
from transformations of the base coordinates can be connected by arbitrarily short
cobordisms.

Corollary 3.6 Let � ⊂ J 1M be parametrized by λ(t) = (x(t), y(t), z(t)) and sup-
pose � is a diffeomorphism of M that is isotopic to the identity. Let �� denote the
corresponding Legendrian that is parameterized by

λ�(t) =
(
�(x(t)), [D�(x(t))−1]T y(t), z(t)

)
.

Then there are arbitrarily short Lagrangian cobordisms from �− = � to �+ = ��.

It is also natural to consider Legendrians whose fronts differ by vertical expansions
and contractions. Explicit constructions show that vertical expansions can be achieved
by arbitrarily short cobordisms, while vertical contractions require some length using
these constructions:

Proposition 3.7 Let � ⊂ J 1M be a Legendrian submanifold. Let �σ denote the
image of � under the yz scaling contact diffeomorphism (x, y, z) �→ (x, σ y, σ z).

(1) If σ > 1, then there are arbitrarily short Lagrangian cobordisms from �− = �

to �+ = �σ .
(2) If σ < 1, then there exists a Lagrangian cobordism from �− = � to �+ = �σ

of length arbitrarily close to ln 1
σ
.

Proof Parametrize the Legendrian � by λ(t) = (x(t), y(t), z(t)), and suppose � has
k Reeb chords of heights 0 < h1 ≤ h2 ≤ · · · ≤ hk . Let ρ : R → R be a smooth
function that is equal to 1 for s ≤ 0 and is equal to σ for s ≥ A. Consider the
Legendrian isotopy

λs(t) = (x(t), ρ(s)y(t), ρ(s)z(t)).

It follows that η(s, t) = ρ′(s)z(t). The Legendrian �s given as the image of λs will
again have k Reeb chords, now of heights 0 < ρ(s)h1 ≤ ρ(s)h2 ≤ · · · ≤ ρ(s)hk .
For every Reeb chord of �s of height ρ(s)hi , there will be a pair of points t, t ′
with η(s, t) − η(s, t ′) = ρ′(s)(−hi ). Thus we see that the embedding condition in
Lemma 3.2 is guaranteed when ρ(s) �= −ρ′(s), for all s; equivalently, the condition
is

d

ds
(esρ(s)) �= 0. (3.4)

Since ρ(s) = 1 when s ≤ 0, this equation is satisfied if and only if esρ(s) is a strictly
increasing function.

It is possible to choose ρ(s) that satisfies the boundary conditions ρ(0) = 1 and
ρ(A) = σ in addition to Eq. (3.4) whenever

1 = esρ(s)|s=0 < esρ(s)|s=A = eAσ. (3.5)
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For an expansion, i.e. when σ > 1, Eq. (3.5) is satisfied for any A > 0; statement (1)
follows. For a contraction, i.e. when σ < 1, we can construct ρ(s) so that esρ(s) is
strictly increasing as long as ln 1

σ
< A; statement (2) follows. �

Are the cobordisms constructed in the proof of Proposition 3.7(2) the shortest
possible? We will return to this question in Sect. 6 after developing tools to bound the
length of a cobordism.

4 Capacities from Legendrian contact homology

In this section, we will define a set of elements from (0,∞] that can be associated
to a Legendrian submanifold that is equipped with an augmentation ε of its DGA.
These capacities, defined using a filtered version of Linearized Legendrian Contact
Cohomology, will not be Legendrian isotopy invariants; however, as will be shown in
Sect. 5, these capacities can give lower bounds to the length of aLagrangian cobordism.

4.1 Legendrian contact homology

The definition of the LCH differential graded algebra is motivated by the infinite-
dimensional Morse–Floer theory of the action functional on the relative path space
of a Legendrian submanifold �. The analytic framework for LCH was developed
by Eliashberg [20,21] and was first made rigorous for 1-dimensional Legendrians
using combinatorial methods by Chekanov [9]. The theory was established for higher
dimensional Legendrian submanifolds in 1-jet spaces by Ekholm et al. [16–18]. Our
description below owes more to [21] and to Dimitroglou Rizell’s translation between
the two perspectives [12].

We begin our brief synopsis with a chord-generic Legendrian submanifold � of
J 1M with its standard contact structure ξ = ker α, where M is either a compact
manifold or Rn for n ≥ 1. As LCH takes the form of a differential graded algebra,
we first define A� to be the vector space generated by the set of Reeb chords R�

over the field F2 of two elements. We then define A� to be the unital tensor algebra
T A� = ⊕∞

i=0 A
⊗i
� . The generators of A� are graded by a Conley–Zehnder index,

with the grading extended to all of A� by letting the grading of a word be the sum
of the gradings of its constituent generators. The gradings are well-defined up to the
Maslov number of the Lagrangian projection of �. If � has n components, then the
gradings of Reeb chords between different components are defined up to a shift that
is constant for all Reeb chords between the same two components.

The differential ∂� : A� → A� comes from a count of rigid moduli spaces of J -
holomorphic disks. More specifically, first choose a sufficiently generic, compatible,
andR-invariant almost complex structure J on the symplectization (R×J 1M, d(esα))

satisfying J (ξ) = ξ and J (∂s) = ∂z . Let Dk denote the closed unit disk inCwith k+1
punctures {z0, . . . , zk} on its boundary. Given a Reeb chord a ∈ R� and a monomial
b = b1 · · · bk in A�, consider the set of J -holomorphic maps u : Dk → R × J 1M
that satisfy:

(1) The boundary of Dk maps to R × �;
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z1 z2

Fig. 5 Schematic pictures of a disk in the moduli space MJ
R×�

(a; b) (on left), and a disk in the moduli

space MJ
L (a;b) (on right)

(2) Near the puncture z0, the R coordinate of u approaches +∞ and the J 1M coor-
dinate is asymptotic to R × a; and

(3) Near the puncture zl , for 1 ≤ l ≤ k, the R coordinate of u approaches −∞ and
the J 1M coordinate is asymptotic to R × bl .

See Fig. 5a. The moduli space MJ
R×�

(a;b) is the set of such maps up to repara-
metrization. Generically, the moduli space is a manifold that is invariant under the
R-action induced by translation in the symplectization [16,18].

The differential of a Reeb chord a ∈ R� counts 1-dimensional moduli spaces, with
that one dimension coming from translation invariance:

∂�(a) =
∑

dimMJ
R×�

(a;b)=1

#(MJ
R×�(a;b)/R)b. (4.1)

The differential is then extended to all of A� via the Leibniz rule and linearity.
That the sum in Eq. (4.1) is finite follows from the compactness of the moduli space

and from an estimate on the �-energy of an element u ∈ MJ
R×�

, defined to be

E�(u) =
∫

D2
u∗dα.

The compatibility of J with d(etα) and Stokes’ Theorem imply:

Lemma 4.1 For a J-holomorphic disk u ∈ MJ
R×�

(a;b), the �-energy satisfies

0 ≤ E�(u) = h(a) −
∑

h(bi ).

The facts that the differential satisfies ∂2� and that the homology of the DGA is
invariant under Legendrian isotopy follows from a compactification and gluing argu-
ment [16,18].
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4.2 Linearized LCH and its A∞ structure

In order to extract readily computable information from the LCH DGA, we use
Chekanov’s technique of linearization from [9], enhanced to a full A∞ algebra as
in [10]. Note that linearization is not always possible [24,25,36] and that different
linearizations may lead to different linearized (co)homologies [33].

We begin the linearization process by introducing some notation for the differential.
The differential is determined by its action on A�, and its restriction to A� may
be written as a sum ∂� = ∑∞

i=0 ∂i with ∂i mapping A� to A⊗i
� . In particular, the

obstruction to the linear part of the differential, ∂1, being a differential on A� is ∂0.
The goal of the linearization technique is to change coordinates so that ∂0 = 0.

The key idea in Chekanov’s linearization technique is an augmentation, a unital
DGAmap ε : (A�, ∂�) → (F2, 0) supported in degree 0. Given an augmentation ε of
(A�, ∂�), one can construct a change of coordinates onA� by ηε(a) = a+ε(a) and a
newdifferential ∂ε = ηε∂�(ηε)−1. It is easy to check that ∂ε

0 = 0.Weuse the adjoint dε

of ∂ε
1 to define a differential on the the dual vector space A∗

�. The cohomology groups
of (A∗

�, dε) are denoted LCH∗(�, ε) and referred to as the Linearized Legendrian
ContactCohomology (with respect to ε). Onemay similarly define homology groups
LCH∗(�, ε) using the differential ∂ε

1 , though we will not use these groups except in
Example 4.9, below.

At least some of the non-linear information of ∂� may be recovered in the linearized
setting by introducing an A∞ algebra structure on A∗

�. That is, we define a sequence
of degree 1, linear maps

mε = {mε
k : (A∗

�)⊗k → A∗
�}k≥1

to be the adjoints of the maps ∂ε
k .

As shown in [10], the fact that ∂2� = 0 implies that the sequence mε satisfies the
A∞ relations

∑
i+ j+k=n

mε
i+1+k ◦ (1⊗i ⊗ mε

j ⊗ 1⊗k) = 0,

for all n ∈ N. In particular, mε
1 is a differential on A∗

� (in fact, it is dε). It is a standard
fact that mε descends to an A∞ structure με on the cohomology LCH∗(�, ε) with
με
1 = 0 and with με

2 giving an associative product; see [31].

Remark 4.2 One can also define the codifferential operator dε directly on the gener-
ators by:

dε(c) =
∑

dimMJ
R×�

(a;bcd)=1

#(MJ
R×�(a;bcd)/R) ε(b)ε(d)a. (4.2)

Note, in particular, that the codifferential goes “up” the symplectization, while the
differential ∂� goes “down.”
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Similarly, one may define the A∞ operations directly:

mε
k(c1, . . . , ck)

=
∑

dimMJ
R×�

(··· )=1

#(MJ
R×�(a;b0c1b1 · · ·bk−1ckbk)/R) ε(b0) · · · ε(bk)a.

Remark 4.3 The grading convention in the definition of A∞ algebra above is not
standard: one usually wants mk to be a map of degree 2 − k. As remarked in [10]
and as carried out in [2], one could fix this by working with the grading-shifted
complex A∗

�[1]. Further, we avoid the usual sign conventions for the A∞ relation as
we are working over F2. See [26,41] for a discussion of the standard grading and sign
conventions for A∞ algebras.

Remark 4.4 Following [2], one can use two augmentations ε1 and ε2 to define the
Bilinearized Legendrian Contact (Co)homology. The underlying vector space is
the same as above, but the definition of the codifferential in Eq. (4.2) replaces the
terms ε(b)ε(d)with ε1(b)ε2(d). Bourgeois and Chantraine show that the Bilinearized
LCH may be enriched into an A∞ category called the Augmentation Category.

All of the constructions developed later in this section also apply to the Bilinearized
Legendrian Contact Cohomology and the Augmentation Category without significant
change, though we stay in the A∞ algebra context for ease of notation. The definition
of the augmentation category may be adjusted to a unital augmentation category [35],
but the original augmentation category is more suitable for the capacities to be defined
below as it has a fundamental class instead of a unit.

4.3 Capacities for Legendrian submanifolds

In this subsection, we will associate to a fixed Legendrian submanifold � and an
augmentation ε of its LCH DGA a set of elements from (0,∞] called capacities.
These quantities are similar to capacities defined by Viterbo [42] for a Lagrangian
submanifold and by the authors [39] for slices of a “flat at infinity” Lagrangian. Keep
in mind that these capacities are attached to a fixed Legendrian submanifold and are
not invariant under Legendrian isotopy.

The first step is to define a filtration on A�. For any w ∈ R, define the sets

Rw
� = {γ ∈ R� : h(γ ) ≥ w},

where, as in (2.1), h(γ ) = ∫
γ

α. Let FwA∗
� be the graded vector space with basisRw

�.
By Lemma 4.1, FwA∗

� is a subcomplex of A∗
� with respect to the differential dε for

any augmentation ε. Hence the filtration descends to the Linearized Legendrian Con-
tact Cohomology to define Filtered Linearized Legendrian Contact Cohomology,
LCH∗

w(�, ε), the cohomology groups of the quotient A∗
�/FwA∗

�.

Remark 4.5 The filtration FwA∗
� is different from the one defined on the A∞ alge-

bra associated to a Lagrangian in [26, §3.2], as we have no need for Novikov ring
coefficients.
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Consider the projection pw : A∗
� → A∗

�/FwA∗
�. We may use pw to calculate the

height of a Reeb chord b:

h(b) = sup{w : pw(b) = 0}.

The capacity of a cohomology class is simply an extension of this idea of height. Let
Pw : LCH∗(�, ε) → LCH∗

w(�, ε) denote the map induced by pw. For w close to
zero, Pw is the zero map, while for sufficiently large w, Pw is an isomorphism. Thus,
for nonzero θ , the set {w : Pw(θ) = 0} is non-empty and bounded above.

Definition 4.6 Given a Legendrian submanifold � ⊂ J 1M , an augmentation ε of its
Legendrian Contact Homology DGA, and θ ∈ LCH∗(�, ε), the capacity c(�, ε, θ)

is defined to be:

c(�, ε, θ) =
{
sup{w : Pw(θ) = 0}, θ �= 0

∞, θ = 0.

A key fact for computing capacities is the following:

Lemma 4.7 For nonzero θ , c(�, ε, θ) is always the height of some Reeb chord.

The proof of this lemma is analogous to the proof of Lemma 4.5 in [39].

Example 4.8 Let us compute capacities for theLegendrian unknotU (v) and its higher-
dimensional generalizations Un(v) ⊂ R

2n+1. The submanifold Un(v) has a single
Reeb chord γ of grading n and height v. For n ≥ 2, it follows for grading reasons that
∂γ = 0, and the same result holds for n = 1 if one computes as in [9]. Thus, we may
use the trivial augmentation ε, and we can see that LCH∗(Un(v), ε) is generated by
[γ ] in degree n. Since pw(γ ) vanishes for w < h(γ ) = v and is nonzero for w > v,
we see that

c(Un(v), ε, [γ ]) = v.

Example 4.9 For a connectedLegendrian submanifold� ⊂ R
2n+1 with augmentation

ε, there is a distinguished class λ ∈ LCHn(�, ε) called the fundamental class.2 To
define λ, we use the duality exact sequence of [15]:

· · · LCH0(�, ε)
ρ∗

H0(�)
σ∗

LCHn(�, ε) · · ·

Theorem 5.5 of [15] shows that ρ∗ is trivial in degree 0, and hence σ∗ is injective.
Define the fundamental class λ ∈ LCHn(�, ε) to be the image of the generator [pt]
of H0(�) (remember that we are using F2 coefficients, so there is only one generator).
The usual definition of a fundamental class η ∈ LCHn(�, ε) is similar: the map ρ∗
is onto in degree n, and η has the property that ρ∗(η) = [�], where the latter is the

2 The fundamental class in this paper is hom-dual to the usual definition of the fundamental class of [15,37].
See below.
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fundamental class in Hn(�); note that this is equivalent to the definition in [19, §7.4]
once one unwinds the definition of ρ∗. Using Theorem 1.1 of [15], we see that

〈λ, η〉 = 〈PD[pt], [�]〉 = 1, (4.3)

where 〈, 〉 is the usual pairing between homology and cohomology and PD is Poincaré
duality on �.

We define the fundamental capacity of�with respect to the augmentation ε to be
c(�, ε, λ). The computation in Example 4.8, above, is an example of a fundamental
capacity.

5 Induced maps from Lagrangian cobordism

In this section,wewill establish a lower bound for the length of aLagrangian cobordism
between two fixed Legendrians. The bound arises from understanding induced maps
between the filtered Linearized Legendrian Contact Cohomology of the Legendrians
at the ends. In particular, we establish the lower bounds for a Lagrangian cobordism
stated in Theorem 1.5, which is generalized to an A∞ version in Theorem 5.5.

5.1 DGA cobordism maps

That LCH has the structure of a field theory with respect to Lagrangian cobordism
goes back to its initial conception [21]; the analytic details were eventually worked out
in [13, §B] and [3, §11] and gathered together in [19, §3]. While the theory described
in [19, §3] specifies R

3 as the ambient contact manifold, the analysis underlying
the results holds in the more general case of J 1M . In this section, we sketch the
constructions of maps induced by a Lagrangian cobordism; summarizing sketches of
the theory with goals similar to ours appear in [7,12,19].

To fit LCH into a field theory,wemust define aDGAmap associated to a Lagrangian
cobordism L from �− to �+:

φL : (A�+ , ∂�+) → (A�− , ∂�−).

To define the map φL , we introduce a new moduli space of J -holomorphic disks,
where J is an almost complex structure on the symplectization that is sufficiently
generic, compatible, and cylindrical at the ends. Given a ∈ R�+ and a monomial
b = b1 · · · bk in A�− , consider the set of J -holomorphic maps u : Dk → R × J 1M
that map the boundary of Dk to L and that satisfy asymptotic conditions similar to
those in Sect. 4; see Fig. 5 (right). The moduli spaceMJ

L(a;b) is the set of such maps
up to reparametrization, and it is, generically, a compact manifold [16,18]. The map
φL may now be defined on the generators of A�+ by:

φL(a) =
∑

dimMJ
L (a;b)=0

#MJ
L(a;b)b. (5.1)
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In Sect. 4, we explained that the finiteness of the sum in ∂�(a) follows from com-
pactness and an examination of the �-energy of a J -holomorphic disk. To prove that
the sum in Eq. (5.1) is finite, we use a notion of “Lagrangian energy,” which is a close
relative to an energy introduced in [7]. Given a Lagrangian cobordism L that is cylin-
drical outside [s−, s+], consider the piecewise smooth function ϕ : R → [es− , es+]
defined by

ϕ(t) =

⎧
⎪⎨
⎪⎩

es− , t ≤ s−
et , t ∈ [s−, s+]
es+ , t ≥ s+.

The L-energy of a J -holomorphic disk u : (Dk, ∂Dk) → (R × J 1M, L) is defined
to be:

E(u) =
∫

D
u∗d(ϕα).

The L-energy depends on the choice of s±, though this will not matter in applications.
To better understand the relationship between the L-energy and the cobordismmap

φL , we introduce the “cobordism action” of a Reeb chord γ . Suppose that a Lagrangian
cobordism L is cylindrical outside of [s−, s+], where s± are the same constants chosen
for the definition of the L-energy. We then define the cobordism action of a Reeb
chord of �± to be scaled heights:

a(γ ) =
{
es+h(γ ), γ ∈ R�+
es−h(γ ), γ ∈ R�− .

(5.2)

As in Lemma 4.1, we may relate the L-energy of a J -holomorphic disk in MJ
L to

the cobordism actions of the Reeb chords at its ends.

Lemma 5.1 ([7]) Given a Lagrangian cobordism L from�− to�+ that is cylindrical
outside of [s−, s+], the L-energy of u ∈ MJ

L(a;b) satisfies

0 ≤ E(u) = a(a) −
∑
i

a(bi ).

The finiteness of the sum in Eq. (5.1) follows. That the map φL is, indeed, a chain
map follows from compactness and gluing arguments in [13, §B] or in [3, §11]. In all
of our examples, the Lagrangian cobordisms will be diffeomorphic to cylinders over
Legendrians with vanishing rotation number, and hence will have Maslov number
zero. Thus, we find ourselves in the setting of [13], and the cobordism map has degree
0. Finally, if the cobordisms L and L ′ differ by an exact Lagrangian isotopy, then φL

and φL ′ differ by a chain homotopy [13,19].
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5.2 A∞ cobordism maps

Thematerial in this sectionhas not beenwrittendownexplicitly before, but its existence
should be clear to those familiar with the theory.

In the presence of a Lagrangian cobordism L from �− to �+, we simplify
notation by writing A± for A�± , etc. Given an augmentation ε− of (A−, ∂−), the
Lagrangian cobordism induces an augmentation ε+ = ε− ◦ φL on (A+, ∂+). We
may use these augmentations to change coordinates and define a new cobordism map
φL ,ε− : (A+, ∂ε+) → (A−, ∂ε−). If we decompose the restriction of φL ,ε− to A+
by components of T A− = ⊕∞

i=0 A
⊗i− , it is straightforward to check that the con-

stant term vanishes.3 By taking the adjoints of the components of φL ,ε− , we obtain
a (degree 0) A∞ map ψ L ,ε− : (A∗−,m−) → (A∗+,m+). Recall that an A∞ map is

really a sequence of maps ψ
L ,ε−
k : (A∗−)⊗k → A∗+ that satisfy:

∑
i+ j+k=n

ψ
L ,ε−
i+1+k ◦(1⊗i ⊗m−

j ⊗1⊗k) =
∑

1≤r≤n
i1+···+ir=n

m+
r ◦(ψ

L ,ε−
i1

⊗· · ·⊗ψ
L ,ε−
ir

). (5.3)

Remark 5.2 As in Remark 4.2, we may directly define the sequence of maps making
up the A∞ map ψ L ,ε− as follows:

ψ
ε−
k (c1, . . . , ck) =∑

dimMJ
L (··· )=0

#MJ
L(a;b0c1b1 · · ·bk−1ckbk) ε−(b0) · · · ε−(bk)a.

The A∞ map ψ L ,ε− induces a map on cohomology denoted �L ,ε− . In particular,
we have a sequence of maps:

�
L ,ε−
k : LCH∗(�−, ε−)⊗k → LCH∗(�+, ε+). (5.4)

5.3 Non-triviality of the cobordism map

In our applications in Sect. 6, we will need use classes in LCH∗(�−, ε−) that are not
in the kernel of�L ,ε−

k . The following proposition, which essentially re-contextualizes
results from [8] and [19], will be used in Sect. 6.

Proposition 5.3 Suppose L is a Lagrangian cobordism from �− to �+ that is cylin-
drical outside [s−, s+] and�− has augmentation ε−. Let�L ,ε−

1 : LCH∗(�−, ε−) →
LCH∗(�+, ε+) be the associated cobordism map.

(1) If �± are connected and λ− ∈ LCH∗(�−, ε−) is the fundamental class, then
�

L ,ε−
1 (λ−) �= 0.

3 This is dual to the results of [26, §5.2] on removing obstructions to A∞ maps being “strict” using bounding
cochains.
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(2) If L̄ denotes L ∩ {s ∈ [s−, s+]} and the pair (L̄,�−) is acyclic, then �
L ,ε−
1 is an

isomorphism.

Proof Let �1
L ,ε− : LCH∗(�+, ε+) → LCH∗(�−, ε−) denote the adjoint of �

L ,ε−
1 .

Under the hypothesis that �+ is connected, we can consider its (homology) funda-
mental class, η+ ∈ LCHn(�−, ε−). As shown in [19, Theorem 7.7], �1

L ,ε−(η+) is
the homology fundamental class in LCHn(�−, ε−). Using Eq. (4.3), we have:

1 = 〈λ−,�1
L ,ε−(η+)〉

= 〈�L ,ε−
1 (λ−), η+〉.

In particular, the fundamental class λ− is not in the kernel of �
L ,ε−
1 .

Statement (2) follows immediately from a long exact sequence of [8, Theorem 1.6],
which relates relative homology groups of a Lagrangian cobordism to the linearized
Legendrian Contact Cohomology groups of its ends:

· · · Hn+1−k
(
L̄,�−

)
LCHk(�−, ε−)

�
L ,ε−
1

LCHk(�+, ε+) · · · .

�
5.4 Cobordisms maps on filtered complexes

We now have the tools to relate the capacities at the top and bottom of a Lagrangian
cobordism. We will prove Theorem 5.5, from which Theorem 1.5 will follow as an
immediate corollary.

The first step in the proof is to show that the A∞ cobordism maps ψ L ,ε− respect
the filtrations on A∗±.

Lemma 5.4 Suppose L is a Lagrangian cobordism from�− to�+ that is cylindrical
outside of [s−, s+]; let ψ

L ,ε−
k : (A∗−)⊗k → A∗+ be the associated A∞ maps. The

image of Fw1/es− A∗− ⊗ · · · ⊗ Fwk/es− A∗− under ψ
L ,ε−
k lies in F (w1+···+wk )/es+ A∗+.

Proof Recall that Fwi /es− A∗− is generated by the Reeb chords b satisfying h(b) ≥
wi/es− . Thus it suffices to show that given a set of Reeb chords {b1, . . . , bk} with
bi ∈ Fwi /es− A∗−, if a appears as a term in ψ

L ,ε−
k (b1, . . . , bk), then h(a) ≥ (w1 +

· · · + wk)/es+ . Given such {b1, . . . , bk} and a, Lemma 5.1 and the formula for the
map ψ

L ,ε−
k in Remark 5.2 show that

a(a) ≥
∑
i

a(bi ). (5.5)

We now use the definition of the cobordism action a, Eq. (5.5), and the fact that
h(bi ) ≥ wi/es− to see that:

h(a) = e−s+a(a)

≥ e−s+
∑
i

a(bi )
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= es−−s+
∑
i

h(bi )

≥ e−s+
∑
i

wi .

It follows that each summand of ψ
L ,ε−
k (b1, . . . , bk) lies in F (w1+···+wk )/es+ A∗+, as

desired. �
We are now ready to state and prove a more general form of Theorem 1.5.

Theorem 5.5 Suppose L is a Lagrangian cobordism from �− to �+ that is cylin-
drical outside of [s−, s+]. For any augmentation ε− of (A−, ∂−), let ε+ = ε− ◦ φL

denote the corresponding augmentation of (A+, ∂+). Then, for any {θ1, . . . , θk} ⊂
LCH∗(�−, ε−),

es−
∑
i

c (�−, ε−, θi ) ≤ es+c
(
�+, ε+, �

L ,ε−
k (θ1, . . . , θk)

)
.

In particular, for any augmentation ε− of �− and any θ1, . . . , θk ∈ LCH∗(�−, ε−)

with �
L ,ε−
k (θ1, . . . , θk) �= 0, a lower bound to the length of L is given by:

�(L) ≥
k∑

i=1

ln c (�−, ε−, θi ) − ln c
(
�+, ε+, �

L ,ε−
k (θ1, . . . , θk)

)
. (5.6)

Proof We first consider the following commutative diagram, where the right-hand
vertical arrow exists by Lemma 5.4:

LCH∗(�+, ε+)
P(w1+···+wk )/es+

LCH∗
(w1+···+wk )/es+ (�+, ε+)

⊗k
i=1 LCH∗(�−, ε−)

�
L ,ε−
k ⊗

Pwi /e
s− ⊗k

i=1 LCH∗
wi /es− (�−, ε−)

�
L ,ε−
k

Next, we rewrite the definition of capacity to help take the cobordism action into
account:

esc(�, ε, θ) = es sup{w/es : Pw/es (θ) = 0}
= sup{w : Pw/es (θ) = 0}. (5.7)

Fix {θ1, . . . , θk} ⊂ LCH∗(�−, ε−). The commutativity of the diagram above
shows that if Pwi /es− (θi ) = 0 for each i ∈ {1, . . . , k}, then we have

P(w1+···+wk )/es+
(
�

L ,ε−
k (θ1, . . . , θk)

)
= 0.
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Equation (5.7) then implies that

es+c
(
�+, ε+, �

L ,ε−
k (θ1, . . . , θk)

)
≥

∑
wi ,

for any wi with the property that Pwi /es− (θi ) = 0, and the theorem follows.

6 Applications

Having established constructions of Lagrangian cobordisms in Sect. 3 and lower
bounds to the length of a Lagrangian cobordism in Theorem 5.5, we proceed to exam-
ine the examples outlined in the Introduction: the vertical contractions of Theorem 1.1
in Sect. 6.1, the Hopf links of Theorem 1.2 in Sect. 6.2, the boundary value problem
of Question 1.3 in Sect. 6.3, and the loops of Legendrians of Theorem 1.4 in Sect. 6.4.

6.1 Reeb chord contractions

We begin by re-examining the vertical contraction of a Legendrian �σ from Proposi-
tion 3.7 in light of Theorem 1.5. In Proposition 3.7, we saw that when σ < 1, there
exist Lagrangian cobordisms from �− = � to �+ = �σ of length arbitrarily close
to ln(1/σ). We will apply Theorem 1.5 to give lower bounds on the length of such a
cobordism:

Proposition 6.1 Suppose �− is a connected Legendrian submanifold with an aug-
mentation with the property that all its Reeb chords have length at least u, and �+
is a connected Legendrian submanifold such that all its Reeb chords have length at
most v. If L is a Lagrangian cobordism from �− to �+, then

�(L) ≥ ln
u

v
.

Proof By Theorem 1.5 (i.e. Theorem 5.5 with k = 1), we know that for any θ ∈
LCH∗(�−, ε−) that is not in ker�L ,ε−

1 ,

�(L) ≥ ln c (�−, ε−, θ) − ln c
(
�+, ε+, �

L ,ε−
1 (θ)

)
.

We also know, by Lemma 4.7, that as long as �
L ,ε−
1 (θ) is nonzero,

u ≤ c(�−, ε−, θ) and c(�+, ε+, �
L ,ε−
1 (θ)) ≤ v.

By Proposition 5.3, our result follows by taking θ to be the fundamental class. �
Theorem 1.1 follows immediately from Propositions 3.7 and 6.1.
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Remark 6.2 For a connected Legendrian � with an augmentation and with Reeb
chords of lengths h1 ≤ h2 ≤ · · · ≤ hn , for sufficiently small σ , namely σhn < h1,
Proposition 6.1 will give an obstruction to arbitrarily short Lagrangian cobordisms
from � to �σ . However, there is a gap between the upper and lower bounds to the
length of a Lagrangian cobordism given by, respectively, Proposition 3.7 and Propo-
sition 6.1. The challenge to getting better lower bounds is to understand properties of
the cobordism map �

L ,ε−
1 and the induced augmentation ε+ = ε− ◦ φL .

6.2 Lagrangians with linked boundaries

For our secondapplication,we show that the lengthof aLagrangian cobordismbetween
two 2-component links can differ significantly from the lengths of cobordisms between
individual pairs of components.

More specifically, let Un(1) denote a Legendrian submanifold with precisely one
Reeb chord of height 1. Form the Hopf link H(ν) of two components from this
Legendrian sphere and a vertical translate:

H(ν) = Un(1) ∪ (Un(1))νε , 0 < ν < 1,

where (Un(1))νε is a small horizontal dilation of the vertical translate so as to make
the link chord generic. We now consider Lagrangian cobordisms between H(u) and
H(v), 0 < u, v < 1. Recall that in Corollary 3.4, we showed that there always
exists an arbitrarily short Lagrangian cobordism between �− = (Un(1))uε and its
vertical translate �+ = (Un(1))vε , for any u, v. In particular, the vertical shifting
between individual components of the Hopf links can be achieved with arbitrarily
short cobordisms. When considering cobordisms between links, however, Remark 3.5
hints that realizing vertical shifts in the presence of another cobordism could require
a longer cobordism. We will apply the the obstruction given by Theorem 1.5 and the
constructions from Sect. 3 to show a higher dimensional version of Theorem 1.2:

Theorem 6.3 AnyLagrangian cobordism from�− = H(u) to�+ = H(v) composed
of two Lagrangian cylinders that join the upper (resp. lower) component of H(u) to
the upper (resp. lower) component of H(v) has length at least

• ln 1−u
1−v

if u ≤ v and
• ln u

v
if u ≥ v,

and the bounds are the best possible.

Proof We begin by proving the claimed lower bound on the length of a cobordism
L from �− = H(u) to �+ = H(v). To do so, we find nontrivial classes in the
Legendrian Contact Cohomology of H(u) and compute their associated capacities.

We may assume that H(u) has exactly six Reeb chords, one between each pair
of strands at the midpoint of the (spun) front diagram in Fig. 6. As discussed in
Example 4.8, each component of H(u) has a (trivial) augmentation, and hence H(u)

itself does; call it εu . With respect to this trivial augmentation, we use Mishachev’s
homotopy splitting [34] to decompose the vector space AH(u) into four subcomplexes,
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Fig. 6 The chords γu and δ1−u
each yield a non-zero class in
LCH∗(H(u), ε)

γ

δ

one for each ordered pair of components; aReeb chord is a generator of the subcomplex
corresponding to its lower and upper ends. The chord δ1−u depicted in Fig. 6 is the
sole generator of its subcomplex, and hence yields a cohomology class [δ1−u]. The
chord γu , on the other hand, is one of three chords generating its subcomplex, but
the argument in [4, §6]4 shows that it must yield a cohomology class [γu]. It follows
immediately from Lemma 4.7 that the capacities of these classes are:

c(H(u), εu, [γu]) = u,

c(H(u), εu, [δ1−u]) = 1 − u.
(6.1)

Suppose L is a Lagrangian cobordism from �− = H(u) to �+ = H(v). To apply
Theorem 1.5, we begin by asserting that it is clear that the cobordism map �

L ,εu
1

preserves Mishachev’s homotopy splitting. Combining this fact with Proposition 5.3,
we see that �

L ,εu
1 ([γu]) = [γv] and that �

L ,εu
1 ([δ1−u]) = [δ1−v]. Theorem 1.5 then

gives the stated lower bounds:

�(L) ≥ max

{
ln

1 − u

1 − v
, ln

u

v

}
=

{
ln 1−u

1−v
, u < v

ln u
v
, u > v.

To see that these bounds are the best possible, we apply Lemmas 3.1 and 3.2.
Namely, consider a smooth function ρ(s) so that ρ(s) = u for s ≤ 0 and ρ(s) = v for
s ≥ A. Parameterize � by (x(t), y(t), z(t)) for t ∈ �. Let �1, �2 be disjoint copies
of � and consider the Legendrian embedding λs(�1 ∪ �2) given by

λs(t) =
{

((1 + ε)x(t), y(t)/(1 + ε), z(t) + ρ(s)), t ∈ �2

(x(t), y(t), z(t)), t ∈ �1
.

4 While the calculation in [4, §6] is ostensibly for generating family homology, the same argument works
for Legendrian contact homology as only length and grading of Reeb chords are used.
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It follows that

η(s, t) − η(s, t ′) =

⎧⎪⎨
⎪⎩

−ρ′(s), t ∈ �1, t ′ ∈ �2

ρ′(s), t ∈ �2, t ′ ∈ �1

0, t, t ′ ∈ �i .

TheHopf link�s = im λs has six Reeb chords. By Lemma 3.2, it suffices to choose
ρ(s) so that for each of these six Reeb chords, the height of the Reeb chord from λs(t)
to λs(t ′) does not equal η(s, t) − η(s, t ′).

Two Reeb chords begin and end on the same component and have height 1. These
Reeb chords give no obstruction to embedding since 1 �= 0 = η(s, t) − η(s, t ′).

There are two Reeb Chords of height ρ(s) that come from t ∈ �1, t ′ ∈ �2.
For these Reeb chords, the embedding condition is ρ(s) �= −ρ′(s), or equivalently
d
ds (e

sρ(s)) �= 0. Thus, we are required to choose ρ(s) so that esρ(s) is a strictly
increasing function and so that

u = e0ρ(0) < eAρ(A) = eAv. (6.2)

When u < v, we may find a ρ(s) that satisfies Eq. 6.2 for any A > 0. When u > v,
we may find a ρ(s) that satisfies Eq. 6.2 so long as A > ln u/v.

There will be one Reeb chord of height 1 − ρ(s) coming from t ∈ �2, t ′ ∈ �1.
For this Reeb chord, the embedding condition is 1 − ρ(s) �= ρ′(s), or equivalently
d
ds (e

s(ρ(s) − 1)) �= 0. Since ρ(s) − 1 < 0, we now want to choose ρ(s) so that
es(ρ(s) − 1) is a strictly decreasing function. If u < v, finding an appropriate ρ is
possible as long as A > ln 1−u

1−v
. If u > v, we may find an appropriate ρ(s) for any

A > 0.
The one remainingReeb chord has height 1+ρ(s) and comes from t ∈ �1, t ′ ∈ �2.

For this Reeb chord, the embedding condition is: 1+ ρ(s) �= −ρ′(s), or equivalently
d
ds (e

s(ρ(s) + 1)) �= 0. If u < v, es(ρ(s) + 1) is guaranteed to be a strictly increasing
function by choosing ρ(s) to be an increasing function. When u > v, embeddedness
can be guaranteed as long as (esρ(s) + 1)|s=0 < (esρ(s) + 1)|s=A, equivalently
A > ln u+1

v+1 . However, this is not a new restriction: we already know that when u > v,

we need A > ln u
v
, and since ln u

v
> ln u+1

v+1 , this Reeb chord introduces no new
restrictions. �

6.3 Packing Lagrangian cylinders

In the previous section, we examined the minimum length of a cobordism between
two different Hopf links. Now we turn this question around and ask: if a Lagrangian
cobordism has length 1, which links of unknots can appear as the boundaries? More
precisely, we form a (k + 1)-copy of the Legendrian submanifold Un(1), where each
copy is vertically translated by vi and then slightly dilated horizontally so that the
resulting link, H(v1, . . . , vk) is chord generic:

H(v1, . . . , vk) = Un(1) ∪ (Un(1))v1ε1 ∪ · · · ∪ (Un(1))vkεk 0 < v1 < · · · < vk < 1,
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When vi = i
k+1 , for each i ∈ {1, . . . , k}, we call H

(
1

k+1 , . . . ,
k

k+1

)
the evenly

shifted (k + 1)-copy of Un(1).
We return to the question asked in Question 1.3: fix the evenly shifted (k + 1)-

copy as the negative boundary condition for the Lagrangian cobordism.Which shifted
(k + 1)-copies H(v1, . . . , vn) can appear as the positive boundary of a Lagrangian
cobordism of length one? See Fig. 3.

For the 2-copy (k = 1), the question reduces to: for which v does there exist a
Lagrangian cobordism L from �− = H(1/2) to �+ = H(v) with �(L) ≤ 1? This
question was essentially answered in the previous section. Theorem 6.3 shows that
such a cobordism exists if and only if

1

2e
≤ v ≤ 1 − 1

2e
.

Using similar techniques, we may answer the question for arbitrary k:

Theorem 6.4 If there exists a Lagrangian cobordism of length 1 from the evenly
spaced (k+1)-copy H to the shifted (k+1)-copy H(v1, . . . , vn) composed of (k+1)
Lagrangian cylinders joining corresponding components, then

i − j

(k + 1)e
≤ vi − v j ≤ 1 − (k + 1) − (i − j)

(k + 1)e
,

where i ∈ {1, . . . , k}, j ∈ {0, . . . , k − 1}, i > j , and v0 = 0. These bounds are the
best possible.

In the case of the 3-copy, these inequalities are visualized in Fig. 4.

Proof The proof relies on rewriting the last inequality in Theorem 1.5 in the case of
a cobordism of length at most 1:

c
(
�+, ε+, �

L ,ε−
1 (θ)

)
≥ 1

e
c (�−, ε−, θ) . (6.3)

Fix the trivial augmentation ε− on H . For each pair of components of the (k + 1)-
copy, we will apply Eq. (6.3) to cohomology classes corresponding to δ and γ in the
proof of Theorem 6.3. As in the proof of Theorem 6.3,Mishachev’s homotopy splitting
implies that the computation of LCH∗(H, ε−) and LCH∗(H(v1, . . . , vn), ε+) splits
into computations entirely similar to that for LCH∗(H(u), ε). In particular, we obtain
two non-trivial classes [γ ±

i j ] and [δ±
i j ] for every pair of components i > j .

As before, the capacity of each generator is easy to compute from the length of the
associated Reeb chord:

c(H, ε−, [γ −
i j ]) = i − j

k + 1
, c(H(v1, . . . , vn), ε+, [γ +

i j ]) = vi − v j

c(H, ε−, [δ−
i j ]) = 1 − i − j

k + 1
, c(H(v1, . . . , vn), ε+, [δ+

kl ]) = 1 − (vi − v j ).
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Fig. 7 A non-trivial loop of Legendrian trefoils

Proposition 5.3 and the fact that �
L ,ε−
1 preserves the homotopy splitting together

imply that�L ,ε−
1 ([γ −

i j ]) = [γ +
i j ] and�

L ,ε−
1 ([δ−

i j ]) = [δ+
i j ]. The bounds in the theorem

now follow from applying (6.3) to the capacities computed above.
The construction to show that the bounds in the theorem are the best possible

is entirely similar to that in Theorem 1.2, where once again the restrictions on the
auxiliary function ρ(s) precisely match the capacity inequalities. �

6.4 Non-trivial loops of isotopies

Non-trivial loops of Legendrian isotopies yield another interesting set of Lagrangian
cobordisms. To clarify the meaning of a non-trivial loop of isotopies, ifL(M, ξ) is the
space of Legendrian submanifolds of (M, ξ), suitably topologized, then we consider
non-trivial elements of π1(L(M, ξ),�), especially those that are contractible in the
space of smooth submanifolds. The first such example, due to Kálmán [32], is the
loop of Legendrian trefoils in the standard contact R3 pictured in Fig. 7. We will also
consider a higher-dimensional example due to the first author and Sullivan [38].

First, consider the Lagrangian projection of the Legendrian trefoil shown in Fig. 8.
It is straightforward to compute using the inequalities in [32, Example 2.7] that if the
heights of the Reeb chords satisfy the following constraints, then we obtain a valid
Lagrangian diagram:

h(a1) > h(b1) + h(b2) + h(b3),

h(a2) + h(b1) + h(b3) > 2h(a1). (6.4)

Let us denote h(b1) = h(b3) by h1 and h(b2) by h2.

Proposition 6.5 Let L denote a Lagrangian cobordism induced by Kálmán’s non-
trivial isotopy. For any L ′ ∈ [L], the length of L ′ is bounded below by | ln h1 − ln h2|.
Proof A standard computation, as in [32, Example 2.7], shows that the generators
a1, a2 of the Legendrian contact homology algebra have degree 1 and that the others
have degree 0. Further, following [32, Example 2.14], wemay compute the differential
to be:
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a2 a1

b3

b2

b1

Fig. 8 The Lagrangian projection of the trefoil that Kálmán uses as the base point for his non-trivial loop
of Legendrians

∂a1 = 1 + b1 + b3 + b1b2b3
∂a2 = b2 + b2b3 + b1b2 + b2b3b1b2
∂b1 = ∂b2 = ∂b3 = 0.

Fixing the augmentations ε− that sends b1 to 1 and all other generators to 0 and ε+
that sends both b1 and b2 to 1 and all other generators to 0, we may compute that

LCH∗(�, ε−) = 〈[a2], [b2], [b1 + b3]〉
LCH∗(�, ε+) = 〈[a1] = [a2], [b2], [b3]〉.

Since we computed linearized cohomology above, we had to change coordinates,
linearize the differential ∂ε, and then take adjoints to obtain dε.

Using the fact that Chekanov’s original description of the maps between LCH
algebras induced by Reidemeister moves coincides with the chain-level cobordism
map φL when L is induced by the corresponding Reidemeister move [19], we may say
that in [32, Example 3.6], Kálmán computes the cobordism map for the Lagrangian
induced by his loop of trefoils on the b∗ generators to be:

φL(b1) = 1 + b2b3
φL(b2) = b1
φL(b3) = b2

We have made the obvious identification of the generators at the top and bottom of
the cobordism. We see immediately that ε+ = ε− ◦ φL .

Finally, we compute the linearized cobordism map on the b∗ generators to be:

ψ
L ,ε−
1 (b1) = b2

ψ
L ,ε−
1 (b2) = b3

ψ
L ,ε−
1 (b3) = 0.
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On cohomology, we see that �L ,ε−
1 sends [b1 + b3] to [b2] and [b2] to [b3]. Applying

Theorem 1.5 to this cobordism map yields the inequalities

�(L) ≥ ln c(�, ε−, [b1 + b3]) − ln c(�, ε+, [b2])) = ln h1 − ln h2,

�(L) ≥ ln c(�, ε−, [b2]) − ln c(�, ε+, [b3]) = ln h2 − ln h1.

Weconclude that the length of the cobordism L induced byKálmán’s nontrivial isotopy
is bounded below by | ln h1 − ln h2|. �

By choosing h1 and h2 appropriately, Proposition 6.5 proves the second half of
Theorem 1.4:

Corollary 6.6 For any b > 0, there exists a non-trivial loop γ of Legendrian subman-
ifolds with induced Lagrangian cobordism Lγ such that the length of any Lagrangian
cobordism in [Lγ ] is bounded below by b.

The first half of Theorem 1.4 follows from the following proposition:

Proposition 6.7 There exists a non-trivial loop γ of Legendrian n-spheres in J 1Rn

with induced Lagrangian cobordism Lγ such that [Lγ ] contains arbitrarily short
cobordisms.

Proof In [38], the first author and Sullivan constructed a non-contractible loop of
Legendrian n-spheres in J 1Rn . Briefly, the base point � of the loop is constructed
by first forming a sphere �r for r � n using spinning and surgery; see Fig. 9a for a
schematic picture. Two copies of �r , with one component shifted in the x1 direction
and rotated by π , are then joined together to form � using a connect sum, as in
Fig. 9b. The loop itself is simple to describe: rotate the front projection of � by π in
the x coordinates. This rotation extends to a form-preserving diffeomorphism of J 1Rn ,
so Corollary 3.6 implies that cobordisms induced by this isotopy may be arbitrarily
short. �

x

z

x1

x2

(a) (b)

Fig. 9 aALegendrian sphere is obtained after spinning the diagram and then performing surgery along the
dotted line. b Via an additional surgery, a connect sum of two copies of this sphere produces a sphere that
has a front projection that is invariant under a 180◦ rotation of the x-coordinates. This rotation produces a
non-trivial loop of Legendrian spheres [38]
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