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Abstract Let H be a Hecke algebra arising as an endomorphism algebra of the
representation of a Chevalley group G over Fq induced by a unipotent cuspidal repre-
sentation of a Levi quotient L of a parabolic subgroup.We assume that L is not a torus.
In this paper we outline a geometric interpretation of the coefficients of the canonical
basis of H in terms of perverse sheaves. We illustrate this in detail in the case where
the Weyl group of G is ot type B4 and that of L is of type B2.
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Introduction

0.1. Let W be a Coxeter group such that the set K of simple reflections of W is
finite. Let l : W→N be the length function and let L : W→N be a weight function
that is, a function such that L(xy) = L(x) + L(y) whenever x, y ∈ W satisfy
l(xy) = l(x) + l(y). Let A = Z[v, v−1] where v is an indeterminate. The Hecke
algebra of W (relative to L) is the free A-module H with basis {Tz; z ∈ W } with the
associative algebra structure defined by the rules (Tz+v−L(z)(Tz−vL(z)) = 0 if z ∈ K
and Txy = TxTy whenever x, y ∈ W satisfy l(xy) = l(x) + l(y). Let {cz; z ∈ W}
be the basis of H defined in [12, 5.2] in terms of W,L. We have cz = ∑

t∈W pt,zTt
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where pt,z ∈ Z[v−1] is zero for all but finitely many t . In the case whereH is split that
is L = l, we have pt,z(v) = v−l(z)+l(t)Pt,z(v2) where Pt,z is the polynomial defined
in [6]; in this case, pt,z can be interpreted geometrically in terms of intersection
cohomology (at least in the crystallographic case), see [7], and this interpretation has
many interesting consequences.

In this paper we are interested in the case where H is not split (and not even qua-
sisplit, in the sense of [12, 16.3]). As shown in [8,9] (resp. in [11]), such H, with
W a finite (resp. affine) Weyl group, appear as endomorphism algebras of represen-
tations of Chevalley groups over Fq (resp. Fq((ε))) induced from unipotent cuspidal
representations of a Levi quotient of a parabolic (resp. parahoric) subgroup. Our main
goal is to describe the elements pt,z coming from (nonsplit) H which appear in this
way in representation theory, in geometric terms, involving perverse sheaves. In this
paper we outline a strategy to achieve this goal using geometry based on the theory
of parabolic character sheaves [13], and we illustrate it in detail in the special case
whereH is the endomorphism algebra of the representation of SO9(Fq) induced from
a unipotent cuspidal representation of a Levi quotient of type B2 of a parabolic sub-
group. (This is the smallest example in which some pt,z can be outside N[v−1]. This
H is of type B2 with L taking the values 1 and 3 at the two simple reflections.) The
main effort goes into computing as much as possible of the cohomology sheaves of
parabolic character sheaves in this case. (For this we use the complete knowledge of
the polynomials Py,w for theWeyl group of type B4, the knowledge of the multiplicity
formulas for unipotent character sheaves on SO5 and some additional arguments.)
Eventually the various pt,z can be reconstructed from the information contained in
the various cohomology sheaves of parabolic character sheaves. I expect that similar
results hold for allH appearing as above from representation theory. (A conjecture in
this direction is formulated in 3.11. It makes more precise a conjecture that was stated
in [12, 27.12] before the theory of parabolic character sheaves was available.)

0.2. Notation If X is a finite set, �X denotes the number of elements of X . Let 2X be the
set of subsets of X . If� is a group,�′ is a subset of� and γ ∈ �, we set γ �′ = γ�γ −1.
Let k be an algebraically closed field. All algebraic varieties are assumed to be over k.
If X is an algebraic variety,D(X) denotes the bounded derived category of Q̄l -sheaves
on X (l is a fixed prime number invertible in k). We will largely follow the notation
of [2]. If K ∈ D(X) and A is a simple perverse sheaf on X , we write A � K instead
of: ”A is a composition factor of ⊕ j∈Z pH j (K )”. For K ∈ D(X), n ∈ Z we write
K 〈n〉 instead of K [n](n/2) (shift, followed by Tate twist). If f : X→Y is a smooth
morphism of algebraic varieties all of whose fibres are irreducible of dimension d and
K ∈ D(Y ), we set f �(K ) = f ∗(K )〈d〉. If X is an irreducible algebraic variety, |X |
denotes the dimension of X . For any connected affine algebraic group H ,UH denotes
the unipotent radical of H . If k is an algebraic closure of a finite field Fq and X is
an algebraic variety over k with a fixed Fq -structure, we shall denote by Dm(X) the
bounded derived category of mixed Q̄l -complexes on X .

Assume that C ∈ D(X) and that {Ci ; i ∈ I} is a family of objects of D(X). We
shall write C � {Ci ; i ∈ I} if the following condition is satisfied: there exist distinct
elements i1, i2, . . . , is in I, objects C ′

j ∈ D(X) ( j = 0, 1, . . . , s) and distinguished
triangles (C ′

j−1,C
′
j ,Ci j ) for j = 1, 2, . . . , s such that C ′

0 = 0, C ′
s = C ; moreover,
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Ci = 0 unless i = i j for some j ∈ [1, s]. The same definition can be given withD(X)

replaced by Dm(X).

1 The variety ZJ and its pieces wZJ

1.1.We fix an affine algebraic group Ĝ whose identity component G is reductive; we
also fix a connected component G1 of Ĝ. Let B be the variety of Borel subgroups of
G. Recall that the Weyl group W of G naturally indexes the set of G-orbits of the
simultaneous conjugation action of G on B×B. We writeOw for the G-orbit indexed
by w ∈ W . Let l : W→N be the length function w 
→ l(w) = |Ow| − |O1|; let
I = {w ∈ W ; l(w) = 1}. Recall that (W, I ) is a finite Coxeter group. Let ≤ be the
standard partial order on W . For any J ⊂ I let WJ be the subgroup of W generated
by J ; letW J (resp. JW ) be the set of all w ∈ W such that l(wa) = l(w) + l(a) (resp.
l(aw) = l(a) + l(w)) for any a ∈ WJ . For J ⊂ I , K ⊂ I , let KW J = KW ∩ W J .
Any (WK ,WJ )-double coset X in W contains a unique element of KW J denoted by
min(X).

We define an automorphism δ : W→W by

(B, B ′) ∈ Ow, g ∈ G1 �⇒ (g B, g B ′) ∈ Oδ(w).

We have δ(I ) = I . For J ⊂ I we write δ J instead of δ(J ); let NJ,δ be the set of all
w ∈ W such that wJw−1 = δ J and w has minimal length in wWJ = Wδ Jw. We
have NJ,δ ⊂ δ JW J .

1.2. Let P be the set of parabolic subgroups of G. For P ∈ P we set BP = {B ∈ B;
B ⊂ P}. For any J ⊂ I let PJ be the set of all P ∈ P such that

{w ∈ W ; (B, B ′) ∈ Ow for some B, B ′ ∈ BP } = WJ .

If J ⊂ I and P ∈ PJ , g ∈ G1, then g P ∈ Pδ J . We have P = �J⊂IPJ , P∅ = B,
PI = {G}. For B ∈ B, J ⊂ I , there is a unique P ∈ PJ such that B ⊂ P; we set
P = BJ . For J, K ⊂ I , P ∈ PK , Q ∈ PJ , the set

{w ∈ W ; (B, B ′) ∈ Ow for some B ∈ BP , B ′ ∈ BQ}

is a single (WK ,WJ )-double coset in W , hence it contains a unique element in KW J

denoted by pos(P, Q). We set PQ = (P ∩ Q)UP . We have PQ ∈ PK∩Ad(u)J where
u = pos(P, Q) and UPQ = UP (P ∩UQ) hence

|UPQ | = |P ∩UQ | + |UP | − |UP ∩UQ |.

Note that the condition that P, Q contain a common Levi subgroup is equivalent to
the condition that Ad(u−1)K = J ; in this case we have PQ = P , QP = Q.

1.3. Let J ⊂ I . Following Bédard [1] (see also [13, 2.4, 2.5]), for any w ∈ δ JW we
define a sequence J = J0 ⊃ J1 ⊃ J2 ⊃ . . . in 2I and a sequence w0, w1, . . . in W
nductively by
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J0 = J ,
Jn = Jn−1 ∩ δ−1(Ad(wn−1 Jn−1)), for n ≥ 1,
wn = min(Wδ JwWJn ), for n ≥ 0.
For n � 0 we have Jn = Jn+1 = · · · and wn = wn+1 = · · · ; we set Jw∞ = Jn for

n � 0 and w∞ = wn for n � 0.
According to loc.cit., this gives a bijection κ : δ JW

∼→T (J, δ) where T (J, δ) is the
set consisting of all sequences (Jn, wn)n≥0 in 2I × W where

Jn = Jn−1 ∩ δ−1(Ad(wn−1)Jn−1) for n ≥ 1,
wn ∈ δ JnW Jn for n ≥ 0,
wn ∈ wn−1WJn−1 for n ≥ 1.

The inverse bijection T (J, δ)→δ JW is given by (Jn, wn)n≥0 
→ w∞.
Assume that w ∈ δ JW . We have Jw∞ = δ−1(Ad(w)Jw∞). Hence there is a well

defined Coxeter group automorphism τw : Wδ(Jw∞)→Wδ(Jw∞) given by x 
→ τw(x) =
wδ−1(x)w−1.

1.4. Let J ⊂ I . We set

Z̃ J = {(P, P ′, g) ∈ PJ × Pδ J × G1; g P = P ′},
Z J = {(P, P ′, gUP ); P ∈ PJ , P

′ ∈ Pδ J , gUP ∈ G1/UP , g P = P ′}.

The variety Z J is the main object of this paper. (In [13, 3.3] Z̃ J , Z J are denoted
by ZJ,δ , Z J,δ .)

Now G × G acts on Z̃ J by (h, h′) : (P, P ′, g) 
→ (h P, h
′
P ′, h′gh−1) and on Z J

by (h, h′) : (P, P ′, gUP ) 
→ (h P, h
′
P ′, h′gh−1Uh P ). In this paper we shall restrict

these actions to G viewed as the diagonal in G ×G. Let eJ : Z̃ J→Z J be the obvious
map (an affine space bundle).

Following [13] we will define a partition of Z J into pieces indexed by
δ JW .

To any (P, P ′, g) ∈ Z̃ J we associate an element wP,P ′,g ∈ W by the requirements

(i),(ii) below. (We set z = pos(P ′, P) ∈ δ JW J .)

(i) wP,P ′,g = wP1,P ′
1,g

where P1 = P
g−1

P = (g
−1
P ∩ P)UP ∈ PJ∩δ−1(Ad(z)J ),

P ′
1 = P ′P ∈ Pδ J∩Ad(z)J ;

(ii) wP,P ′,g = z if z ∈ NJ,δ .

These conditions define uniquelywP,P ′,g by induction on �J . If z ∈ NJ,δ (in particular
if �J = 0), thenwP,P ′,g is given by (ii) (and (i) is satisfied since P1 = P). If z /∈ NJ,δ ,
then �(J ∩ δ−1(Ad(z)J )) < �J and wP,P ′,g is determined by (i) since wP1,P ′

1,g
is

known from the induction hypothesis.
From the definitions we see that the map Z̃ J→W , (P, P ′, g) 
→ wP,P ′,g is the

composition Z̃ J→T (J, δ)
κ−1→ δ JW (the first map is as in [13, 3.11]); in particular for

any (P, P ′, g) ∈ Z̃ J we have wP,P ′,g ∈ δ JW , wP,P ′,g ∈ Wδ Jpos(P
′, P)WJ . For any

w ∈ δ JW , we set
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w Z̃ J = {(P, P ′, g) ∈ Z̃ J ;wP,P ′,g = w},
wZ J = {(P, P ′, gUP ) ∈ Z J ;wP,P ′,g = w}.

The subsets {w Z̃ J ;w ∈ δ JW } are said to be the pieces of Z̃ J ; they form a partition of
Z̃ J . The subsets {wZ J ;w ∈ δ JW } are said to be the pieces of Z J ; they form a partition
of Z J . We have w Z̃ J = e−1

J (wZ J ), wZ J = eJ (w Z̃ J ), and w Z̃ J ,
wZ J are stable under

the G-actions on Z̃ J , Z J .

1.5. Let z ∈ δ JW J and let 	 = Wδ J zWJ . We set J1 = J ∩ δ−1(Ad(z)J ). Let

Z̃ J,	 = {(P, P ′, g) ∈ Z̃ J ; pos(P ′, P) = z},

a locally closed subvariety of Z̃ J . Let

Z̃†
J1,	

= {(Q, Q′, g) ∈ Z̃ J1; pos(Q′, Q) ∈ zWJ },

a locally closed subvariety of Z̃ J1 . By [13, 3.2],

(a) α̃ : Z̃ J,	→Z̃†
J1,	

, (P, P ′, g) 
→ (P1, P ′
1, g) where P ′

1 = P ′P , P1 = g−1
P ′
1

is a well defined morphism; by [13, 3.6],
(b) α̃ is an isomorphism. Let

Z J,	 = {(P, P ′, gUP ) ∈ Z J ; pos(P ′, P) = z},

a locally closed subvariety of Z J . Let

Z†
J1,	

= {(Q, Q′, gUQ) ∈ Z J1; pos(Q′, Q) ∈ zWJ },

a subvariety of Z J1 . Now α̃ induces a morphism α : Z J,	→Z†
J1,	

given by

(c) (P, P ′, gUP ) 
→ (P1, P ′
1, gUP ′ where P ′

1 = P ′P , P1 = g−1
P ′
1. From [13, 3.7–

3.10] we see that
(d) α is an affine space bundle with fibres of dimension |UP ∩ P ′| − |UP ∩ UP ′ | for

some/any (P, P ′) ∈ PJ × Pδ J such that pos(P ′, P) = z.

Next we note that for w ∈ δ JW such that w ∈ 	, we have

w Z̃ J ⊂ Z̃ J,	, wZ J ⊂ Z J,	, w Z̃ J1 ⊂ Z̃†
J1,	

, wZ J1 ⊂ Z†
J1,	

.

(We use that w ∈ zWJ .) Using the definitions we have
(e) w Z̃ J = α̃−1(w Z̃ J1),

wZ J = α−1(wZ J1).

Moreover, using (b), (d) we deduce:
(f) α̃ restricts to a bijection ϑ̃J,w : w Z̃ J→w Z̃ J1 ;
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(g) α restricts to a map ϑJ,w : wZ J→wZ J1 all of whose fibres are affine spaces of
dimension |UP ∩ P ′| − |UP ∩ UP ′ | for some/any (P, P ′) ∈ PJ × Pδ J such that
pos(P ′, P) = z.

Proposition 1.6 Let J ⊂ I , w ∈ δ JW . Define z ∈ δ JW J by w ∈ zW J .

(a) w Z̃ J (resp. wZ J ) is a smooth irreducible locally closed subvariety of Z̃ J (resp.
Z J ) of dimension l(w) + |G| (resp. l(w) + |G| − |PJ |).

(b) Let J1 = J ∩ δ−1(Ad(z)J ). Then ϑ̃J,w : w Z̃ J→w Z̃ J1 (see 1.5(f)) is an isomor-
phism and ϑJ,w : wZ J→wZ J1 is a smooth morphism all of whose fibres are affine
spaces of dimension |PJ1 | − |PJ |.

Assume first that z ∈ NJ,δ . Then z = w and

w Z̃ J = {(P, P ′, g) ∈ Z̃ J ; pos(P ′, P) = z}

(resp. wZ J = {(P, P ′, gUP ) ∈ Z J ; pos(P ′, P) = z}) is the inverse image of

zYJ = {(P, P ′) ∈ PJ × Pδ J ; pos(P ′, P) = z}

under the obvious map Z̃ J→PJ × Pδ J (resp. Z J→PJ × Pδ J ), a smooth map with
fibres isomorphic to P (resp. P/UP ) for P ∈ PJ . Since zYJ is smooth, irreducible,
locally closed in PJ ×Pδ J , of dimension l(z) + |PJ |, it follows that in this case w Z̃ J

(resp. wZ J ) is a smooth, irreducible, locally closed subvariety of Z̃ J (resp. Z J ) of
dimension l(z) + |PJ | + |P| (resp. l(z) + |PJ | + |P/UP |). Thus (a) follows in this
case.

If z /∈ NJ,δ then, setting J1 = J ∩ δ−1(Ad(z)J ), we have �J1 < �J and we can
assume that (a) holds when J is replaced by J1. Using 1.5(e),(b),(d) we deduce that
w Z̃ J (resp. wZ J ) is a smooth irreducible locally closed subvariety of Z̃ J (resp. Z J )
of dimension l(w) + |G| (resp. l(w) + |G| − |PJ1 | + |UP ∩ P ′| − |UP ∩ UP ′ | for
some/any (P, P ′) ∈ zYJ ). To complete the proof of (a) it is then enough to note that
|wZ J | = |w Z̃ J | − |PJ |. The proof above shows that

|PJ1 | − |PJ | = |UP ∩ P ′| − |UP ∩UP ′ |

for some/any (P, P ′) ∈ zYJ .
Now (b) follows immediately from (a) using 1.5(e), (b), (d).

1.7. Examples. In the case where J = I we can identify Z J = G1. It has a unique
piece, 1Z J = Z J . In the case where J = ∅, Z J is a torus bundle over B2. The pieces
of Z J are the inverse images of the G-orbits Ow (w ∈ W ) under Z J→B2.

Assume now that Ĝ = G = GL(V ) where V is a k-vector space of dimension 3.
We can identify the projective space P(V ) with PJ for a certain 1-element subset J
of I . Then Z̃ J becomes the set of triples (L , L ′, g) where L , L ′ are lines in V and
g ∈ GL(V ) carries L to L ′; since L ′ is determined by L , g we can identify Z̃ J with the
set of pairs (L , g)where L is a line in V and g ∈ GL(V ). For any r ∈ [1, 3] let r Z̃ J be
the set of all (L , g) ∈ Z̃ J such that L , gL , g2L , . . . span an r -dimensional subspace.
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Then the subsets r Z̃ J (r ∈ [1, 3]) are exactly the pieces of Z̃ J . Now Z J becomes the set
of quadruples (L , L ′, γ, γ̃ )where L , L ′ are lines inV andγ : L ∼→L ′, γ̃ : V/L

∼→V/L ′
are isomorphisms of vector spaces. Let 1Z J = {(L , L ′, γ, γ̃ ) ∈ Z J ; L = L ′}. Let 2Z J

be the set of all (L , L ′, γ, γ̃ ) ∈ Z J such that L �= L ′ and γ̃ carries the image of L ′ in
V/L to the image of L in V/L ′. Let 3Z J be the set of all (L , L ′, γ, γ̃ ) ∈ Z J such that
L �= L ′ and such that the following holds: denoting by L1 the image of L ′ in V/L , by
L ′
1 the image of L in V/L ′, and setting L2 = γ̃ −1(L ′

1) ⊂ V/L , L ′
2 = γ̃ (L1) ⊂ V/L ′,

we have L2 �= L1 (hence L ′
2 �= L ′

1) and γ̃ (L1⊕ L2) = L ′
1⊕ L ′

2. Then
1Z J ,

2Z J ,
3Z J

are exactly the pieces of Z J .
Assume now that Ĝ = G = Sp(V ) where V is a k-vector space of dimension 4

with a given nondegenerate symplectic form 〈, 〉. We can identify the projective space
P(V ) with PJ for a certain 1-element subset J of I . Then Z̃ J becomes the set of
triples (L , L ′, g) where L , L ′ are lines in V and g ∈ Sp(V ) carries L to L ′; since L ′
is determined by L , g we can identify Z̃ J with the set of pairs (L , g) where L is a line
in V and g ∈ Sp(V ).

For r ∈ [1, 2] let r Z̃ J be the set of all (L , g) ∈ Z̃ J such that L , gL , g2L , . . . span
an r -dimensional isotropic subspace of V and let r Z ′

J be the set of all (L , g) ∈ Z̃ J

such that 〈L , gL〉 = 〈L , g2L〉 = · · · = 〈L , gr−1L〉 = 0, 〈L , gr L〉 �= 0. Then the
subsets r Z̃ J ,

r Z̃ ′
J (r = 1, 2) are exactly the pieces of Z̃ J .

Now Z J becomes the set of quadruples (L , L ′, γ, γ̃ ) where L , L ′ are lines in V

and γ : L
∼→L ′ is an isomorphism of vector spaces and γ̃ : L⊥/L

∼→L ′⊥/L ′ is a
symplectic isomorphism. Let 1Z J = {(L , L ′, γ, γ̃ ) ∈ Z J ; L = L ′}. Let 2Z J be the
set of all (L , L ′, γ, γ̃ ) ∈ Z J such that L �= L ′, 〈L , L ′〉 = 0 and γ̃ carries the image of
L ′ in L⊥/L to the image of L in L ′⊥/L ′. Let 2Z ′

J be the set of all (L , L ′, γ, γ̃ ) ∈ Z J

such that L �= L ′, 〈L , L ′〉 = 0 and γ̃ does not carry the image of L ′ in L⊥/L to
the image of L in L ′⊥/L ′. Let 1Z ′

J = {(L , L ′, γ, γ̃ ) ∈ Z J ; 〈L , L ′〉 �= 0}. Then the
subsets 1Z J ,

2Z J ,
2Z ′

J ,
1Z ′

J are exactly the pieces of Z J .

1.8. Let J ⊂ I . Let

B2
J = {(B, B ′, gUBJ ); (B, B ′) ∈ B2, gUBJ ∈ G1/UBJ ,

g B = B ′};

this is well defined since UBJ ⊂ B. Define πJ : B2
J→Z J by

(B, B ′, gUBJ ) 
→ (BJ , B
′
δ J , gUBJ ).

For any y ∈ W let

B2
J,y = {(B, B ′, gUBJ ) ∈ B2

J ; (B, B ′) ∈ Oy},

and let πJ,y : B2
J,y→Z J be the restriction of πJ . The statements (a),(b) below can be

deduced from [13, 4.14].

(a) For any w ∈ δ JW , the image of πJ,w−1 : B2
J,w−1→Z J is exactly wZ J .
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(b) If w ∈ δ JW and x ∈ Wδ(Jw∞), then the image of πJ,w−1x : B2
J,w−1x

→Z J is
contained in wZ J .
Note that (a) gives an alternative description of wZ J as the image of πJ,w−1 .

1.9. Let J ⊂ I and let w ∈ δ JW . In [5, 4.6] it is shown that the closure of wZ J

in Z J is equal to ∪w′∈d(J )W ;w′≤Jw
w′
Z J where w′ ≤J w is defined by the condition:

δ(u)w′u−1 ≤ w for some u ∈ WJ .

2 Unipotent character sheaves on ZJ and on wZJ

2.1. Let J ⊂ I . For y ∈ W we set Ky
J = (πJ,y)!Q̄l ∈ D(Z J ). A unipotent character

sheaf on Z J is by definition a simple perverse sheaf A on Z J such that A � Ky
J

for some y ∈ W . This is a special case of what in [13] is referred to as a parabolic
character sheaf. Let CS(Z J ) be the collection of unipotent character sheaves on Z J .

In the case where J = I , we can identify Z J = ZI with G1. Hence there is a well
defined notion of unipotent character sheaf on G1. In this case, for y ∈ W we have

B2
I,y = {(B, B ′, g) ∈ B × B × G1; B ′ = g B, (B, B ′) ∈ Oy}

and πI,y : B2
J,y→ZI is given by (B, B ′, g) 
→ g.

In the case where J = ∅, for any y ∈ W , πJ,y is the inclusion of

{(B, B ′, gUB); (B, B ′) ∈ Oy, g ∈ G1, g B = B ′}

into

Z∅ = {(B, B ′, gUB); (B, B ′) ∈ B2, g ∈ G1, g B = B ′}.

It follows that CS(Z∅) consists of the simple perverse sheaves on Z∅ which are (up to
shift) the inverse images under Z∅→B2 of the simple G-equivariant perverse sheaves
on B2.

2.2. Let J ⊂ I and let w ∈ δ JW . We define a collection of simple perverse sheaves
CS(wZ J ) on wZ J (said to be unipotent character sheaves on wZ J ) by induction on
�J as follows. We set z = min(Wδ JwWJ ).

Assume first that z ∈ NJ,δ so that z = w. For any (P, P ′) ∈ zYJ we denote by
SP,P ′ the set of common Levi subgroups of P, P ′; this is a nonempty set. For any
L ∈ SP,P ′ we denote by L̂ the normalizer of L in Ĝ. Note that the identity component
of L̂ is L . We set L̂1 = {g ∈ G1; g P = P ′, gL = L} ⊂ L̂ . If g, g′ ∈ L̂1 then, setting
g′ = gh, we have h ∈ P ∩ L̂ hence h ∈ L; we see that L̂1 is a single connected
component of L̂ . We have a diagram

(a) L̂1 c←G × L̂1 c′→z Z J

where

c(h, g) = g, c′(h, g) = (h P, h P ′, hgh−1Uh P ).
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Now c is a smooth morphismwith fibres isomorphic toG and c′ is a smooth morphism
with fibres isomorphic to P ∩ P ′. By 2.1 (for L̂, L̂1 instead of Ĝ,G1) the notion
of unipotent character sheaf on L̂1 is well defined. If A1 ∈ CS(L̂1) then c�A1
is a simple (P ∩ P ′)-equivariant perverse sheaf on G × L̂1 (for the free P ∩ P ′
action a : (h, g) 
→ (ha−1, pr(a)gpr(a)−1) where pr : P ∩ P ′→L is the canonical
projection), hence it is of the form c′�A for a well defined (necessarilyG-equivariant)
simple perverse sheaf A on z Z J . Bydefinition,CS(z Z J ) consists of the simple perverse
sheaves A obtained as above from some A1 ∈ CS(L̂1). Note that A1 
→ A defines
a bijection between the set of isomorphism classes of objects in CS(L̂1) and the set
of isomorphism classes of objects in CS(z Z J ). This definition of CS(z Z J ) does not
depend on the choice of (P, P ′) in zYJ and that of L in SP,P ′ since the set of triples
(P, P ′, L) as above is a homogeneous G-space.

Next we assume that z /∈ NJ,δ . Then, setting J1 = J∩δ−1(Ad(z)J ), we have �J1 <

�J so that CS(wZ J1) is defined by the induction hypothesis. By definition, CS(wZ J )

consists of the simple perverse sheaves of the form ϑ
�
J,wA where A ∈ CS(wZ J1)

and ϑJ,w is as in 1.6(b). Note that A 
→ ϑ
�
J,wA defines a bijection from the set of

isomorphism classes of objects in CS(wZ J1) and the set of isomorphism classes of
objects in CS(wZ J ).

This completes the inductive definition of CS(wZ J ). Note that if A ∈ CS(wZ J ),
then A is G-equivariant.

2.3. Let J ⊂ I and let w ∈ δ JW . Let A ∈ CS(wZ J ). Let A� be the unique simple
perverse sheaf on Z J such that A�|wZ J = A and supp(A�) is the closure in Z J

of supp(A). (Here supp denotes support.) Let CS′(Z J ) be the collection of simple
perverse sheaves on Z J that are isomorphic to A� for some w, A as above. We show
that, if Ã ∈ CS′(Z J ) and Ã ∼= A� with w, A as above, then

(a) w is uniquely determined,
(b) A is uniquely determined up to isomorphism.

Assume thatwehave also Ã ∼= A′� where A′ ∈ CS(w
′
Z J ). Then supp(A) and supp(A′)

are dense in supp( Ã). Hence they have nonempty intersection. Since supp(A) ⊂ wZ J ,
supp(A′) ⊂ w′

Z J , it follows that wZ J ∩ w′
Z J �= ∅ so that w = w′. We have Ã|wZ J

∼=
A, Ã|wZ J

∼= A′ hence A ∼= A′.
We now state the following result.

Proposition 2.4 Let J ⊂ I .

(a) We have CS(Z J ) = CS′(Z J ).
(b) Let w ∈ δ JW and let A ∈ CS(Z J ). Let A′ be a simple perverse sheaf on wZ J

such that A′ � A|wZ J . Then A′ ∈ CS(wZ J ).

The proof of (a) appears in [13, 4.13, 4.17]. The proof of (b) appears in [13, 4.12].
We will reprove them here (the proof of 2.4(b) is given in 2.12; the proof of 2.4(a) is
given in 2.14). To do so we are using a number of lemmas some of which are more
precise than those in [13].

Lemma 2.5 Let J ⊂ I , z ∈ NJ,δ (so that z ∈ δ JW). Let y ∈ W and let A be a simple
perverse sheaf on z Z J such that A � Ky

J |z Z J . Then A ∈ CS(z Z J ).
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If y /∈ z−1Wδ J , then the image of πJ,y : B2
J,y→Z J is disjoint from z Z J hence

Ky
J |z Z J = 0. This contradicts the choice of A. Thus we must have y = z−1y′ for

some y′ ∈ Wδ J . We fix (P, P ′) ∈ zYJ , L ∈ SP,P ′ (see 2.2). Let BL be the variety of
Borel subgroups of L . Let BL ,y′ = {(β, β ′) ∈ B2

L ; (βUP ′ , β ′UP ′) ∈ Oy′ }. We have a
cartesian diagram

�
c̃←−−−− G × �

c̃′−−−−→ B2
J,zıy′

f

⏐
⏐
� f ′

⏐
⏐
� f ′′

⏐
⏐
�

L̂1 c←−−−− G × L̂1 c′−−−−→ z Z J

where

� = {(β, β ′, g) ∈ BL × BL × L̂1; gβg−1 = β ′, (β, β ′) ∈ OL ,y′ },
c̃(h, (β, β ′, g)) = (β, β ′, g),

c̃′(h, (β, β ′, g)) = (hPβUP ′ h−1, hβ ′UP ′h−1, hgh−1UhPh−1),

f (β, β ′, g) = g, f ′(h, (β, β ′, g)) = (h, g),

f ′′(B, B ′, gUBJ ) = (BJ , B
′
δ J , gUBJ )

and c, c′ are as in 2.2(a). It follows that c∗ f!Q̄l = c′∗ f ′′
! Q̄l . (Both are equal to

f ′
! Q̄l .) We have f!Q̄l = Ky′;L̂1

(which is defined likeKy
J by replacing Ĝ,G1, J, y by

L̂, L̂1, δ J, y′) and f ′′
! Q̄l = Kz−1y′

J |z Z J . Thus we have

(a) c′∗(Kz−1y′
J |z Z J ) = c∗(Ky′;L̂1

).

Since c is smooth with fibres isomorphic to G and c′ is smooth with fibres iso-
morphic to P ∩ P ′, it follows that

(b) c′� ⊕ j
pH j (Kz−1y′

J |z Z J ) = c� ⊕ j
pH j (Ky′;L̂1

)

so that c′�A � c�Ky′;L̂1
hence there exists a simple perverse sheafC on L̂1 such

that c′�A = c�C and C � Ky′;L̂1
. Thus C ∈ CS(L̂1) and from the definitions

we see that A ∈ CS(z Z J ). The lemma is proved.

2.6. For any y1, y2, y3 in W and any i ∈ Z we set

Ri
y1,y2,y3 = Hi

c ({B ∈ B; (B1, B) ∈ Oy1 , (B, B ′
1) ∈ Oy2}, Q̄l)

where (B1, B ′
1) ∈ Oy3 is fixed. This is a Q̄l -vector space independent of the choice of

(B1, B ′
1) (since G acts on Oy3 transitively with connected isotropy groups).

For J ⊂ I, u ∈ W we define p̃J,u : u−1
Z̃∅→Z̃ J by (B, B ′, g) 
→ (BJ , B ′

δ J
, g)

and we set K̃u
J = ( p̃J,u)!Q̄l ∈ D(Z̃ J ); we have K̃u

J = e∗
JK

u
J .
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Lemma 2.7 Let J ⊂ I . Let y∗ ∈ W
δ J , y∗ ∈ Wδ J , y = y∗y∗. Let z ∈ δ JW J and let

	 = Wδ J zWJ . We set J1 = J ∩ δ−1(Ad(z)J ). Let α̃ : Z̃ J,	
∼→Z̃†

J1,	
be as in 1.5(b).

(a) In D(Z̃ J,	) we have

K̃y
J |Z̃ J,	

� {Ri
δ−1(y∗),y∗;y′y∗ ⊗ α̃∗(K̃y′y∗

J1
|Z̃†

J1,	
)[−i]; y′ ∈ WJ , i ∈ Z}.

(b) Let w ∈ 	 ∩ δ JW . Let ϑJ,w : wZ J
∼→wZ J1 be as in 1.6(b). In D(wZ J ) we have

Ky
J |wZ J � {Ri

δ−1(y∗),y∗;y′y∗ ⊗ ϑ∗
J,w(Ky′y∗

J1
|wZ J1

)[−i]; y′ ∈ WJ , i ∈ Z}.

(c) In the setup of (b) let τw : Wδ(Jw∞)→Wδ(Jw∞) be as in 1.3. Let x ∈ Wδ(Jw∞). We have

Kw−1x
J |wZ J = ϑ∗

J,w(Kw−1τw(x)
J1

|wZ J1
).

We prove (a). Assume first that y−1 /∈ 	. In this case, the image of p̃J,y : y−1
Z̃∅→Z̃ J

is disjoint from Z̃ J,	, hence K̃
y
J |Z̃ J,	

= 0. Moreover, for any y′ ∈ WJ , the image of

p̃J1,y′y∗ : (y′y∗)−1
Z̃∅→Z̃ J1 is disjoint from Z̃†

J1,	
. (We have y∗−1 /∈ 	. If y∗−1y′−1 ∈

Wδ J1 zWJ , then y∗−1 ∈ Wδ J1 zWJ ⊂ 	, a contradiction.) Thus K̃y′y∗
J1

|Z̃†
J1,	

= 0 and

(a) holds.
We now assume that y−1 ∈ 	. We set

Ey
J = {(B1, B, B ′

1, g) ∈ B × B × B × G1; (B1, B) ∈ Oδ−1(y∗),

(B, B ′
1) ∈ Oy∗ , B ′

1 = g B1},
y∗−1WJ Z̃∅ = ∪y′∈WJ

(y′y∗)−1
Z̃∅ ⊂ Z̃∅.

Note that θ : Ey
J→y−1

Z̃∅, (B1, B, B ′
1, g) 
→ (B, g B, g) is a well defined isomor-

phism. Define k : Ey
J→y∗−1WJ Z̃∅ by (B1, B, B ′

1, g) 
→ (B1, B ′
1, g).

Now p̃J,y : y−1
Z∅→Z̃ J factors as y−1

Z∅
φ→Z̃ J,	

j→Z̃ J where j is the inclusion

and y∗−1WJ Z̃∅→Z̃ J1 (restriction of p̃J1 ) factors as
y∗−1WJ Z̃∅

ψ→Z̃†
J1,	

j1→Z̃ J1 where j1
is the inclusion. We have a commutative diagram

Ey
J

θ−−−−→ yıZ∅
φ−−−−→ Z̃ J,	

j−−−−→ Z̃ J

k

⏐
⏐
� α̃

⏐
⏐
�

y∗−1WJ Z̃∅
ψ−−−−→ −−−−→ Z̃†

J1,	
j1−−−−→ Z̃ J1 .

From the definitions we have

κ!Q̄l � {Ri
δ−1(y∗),y∗;y′y∗ ⊗ j̃y′!Q̄l [−i]; y′ ∈ WJ , i ∈ Z},
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where j̃y′ : (y′y∗)−1
Z̃∅→y∗−1WJ Z̃∅ is the obvious inclusion. It follows that

ψ!κ!Q̄l � {Ri
δ−1(y∗),y∗;y′y∗ ⊗ ψ! j̃y′!Q̄l [−i]; y′ ∈ WJ , i ∈ Z},

that is,

α̃!φ!θ!Q̄l � {Ri
δ−1(y∗),y∗;y′y∗ ⊗ ψ! j̃y′!Q̄l [−i]; y′ ∈ WJ , i ∈ Z}.

Since θ is an isomorphism we have θ!Q̄l = Q̄l ; since α̃ is an isomorphism we have
α̃∗α̃! = 1, hence

φ!Q̄l � {Ri
δ−1(y∗),y∗;y′y∗ ⊗ α̃∗ψ! j̃y′!Q̄l [−i]; y′ ∈ WJ , i ∈ Z}.

Since j∗ j! = 1, j∗1 j1! = 1 and j!φ!Q̄l = ( p̃J,y)!Q̄l = K̃y
J ,

j1!ψ! j̃y′!Q̄l = ( p̃J1,y′y∗)!Q̄l = K̃y′y∗
J1

,

we have

j∗K̃y
J � {Ri

δ−1(y∗),y∗;y′y∗ ⊗ α̃∗ j∗1 (K̃y′y∗
J1

)[−i]; y′ ∈ WJ , i ∈ Z}

and (a) is proved.
We prove (b). We have a commutative diagram

w Z̃ J
h−−−−→ Z̃ J,	

ϑJ,w

⏐
⏐
� α

⏐
⏐
�

w Z̃ J1
h1−−−−→ Z̃†

J1,	

where h, h1 are the inclusions. Applying h∗ to the relation � in (a) we obtain

K̃y
J |w Z̃ J

� {Ri
δ−1(y∗),y∗;y′y∗ ⊗ h∗α̃∗ j∗1 (K̃y′y∗

J1
)[−i]; y′ ∈ WJ , i ∈ Z}.

Let ϑ̃J,w be as in 1.6(b). Using that h∗α̃∗ j∗1 = ϑ̃∗
J,wh

∗
1 j

∗
1 and that j1h1 : w Z̃ J1→Z̃ J1

is the inclusion we obtain

K̃y
J |w Z̃ J

� {Ri
δ−1(y∗),y∗;y′y∗ ⊗ ϑ̃∗

J,w(K̃y′y∗
J1

|w Z̃ J1
)[−i]; y′ ∈ WJ , i ∈ Z}

or equivalently

(e∗
JK

y
J )|w Z̃ J

� {Ri
δ−1(y∗),y∗;y′y∗ ⊗ ϑ̃∗

J,w((e∗
J1K

y′y∗
J1

)|w Z̃ J1
)[−i]; y′ ∈ WJ , i ∈ Z}.
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Let eJ,w : w Z̃ J→wZ J (resp. eJ1,w : w Z̃ J1→wZ J1 ) be the restriction of eJ (resp. eJ1 ).
We have (e∗

JK
y
J )|w Z̃ J

= e∗
J,w(Ky

J |wZ J ) and

ϑ̃∗
J,w((e∗

J1K
y′y∗
J1

)|w Z̃ J1
) = ϑ̃∗

J,w((e∗
J1,w(Ky′y∗

J1
|wZ J1

)) = e∗
J,wϑ∗

J,w(Ky′y∗
J1

|wZ J1
),

hence

e∗
J,w(Ky

J |wZ J ) � {Ri
δ−1(y∗),y∗;y′y∗ ⊗ e∗

J,wϑ∗
J,w(Ky′y∗

J1
|wZ J1

)[−i]; y′ ∈ WJ , i ∈ Z}.

Applying (eJ,w)! and using that (eJ,w)!e∗
J,w = 〈−2|PJ |〉 we see that (b) holds.

We prove (c). We shall use notation in the proof of (a) with y∗ = w−1, y∗ = x ,
y = w−1x . We have δ−1(x)w−1 = w−1τw(x). Since w−1 ∈ W

δ J and τw(x) ∈ Wδ J
we have

l(δ−1(x)w−1) = l(w−1τw(x)) = l(w−1) + l(τw(x)) = l(w−1) + l(x)

= l(δ−1(x)) + l(w−1).

Hence if (B1, B, B ′
1, g) ∈ Ey

J , then B is uniquely determined by B1, B ′
1 and k is an

isomorphism of Ey
J onto the subspace

wδ−1(x)−1
Z̃∅ = τw(x)−1w Z̃∅

of y∗−1WJ Z̃∅. Hence we have j1!α̃!φ!θ!Q̄l = j1!ψ!k!Q̄l = K̃w−1τw(x)
J1

. Since θ is an

isomorphism we have θ!Q̄l = Q̄l . Hence j1!α̃!φ!Q̄l = K̃w−1τw(x)
J1

. Since j∗1 j1! = 1,

α̃∗α̃! = 1 we deduce φ!Q̄l = α̃∗ j∗1 K̃
w−1τw(x)
J1

. We have j!φ!Q̄l = K̃w−1x
J . Since

j∗ j! = 1, we deduce φ!Q̄l = j∗K̃w−1x
J . Thus

j∗K̃w−1x
J = α̃∗ j∗1 K̃

w−1τw(x)
J1

.

Applying h∗ (notation in the proof of (b)) we obtain

K̃w−1x
J |w Z̃ J

= ϑ̃∗
J,w(K̃w−1τw(x)

J1
|w Z̃ J1

).

From this we deduce as in the proof of (b) that (c) holds. The lemma is proved.

Lemma 2.8 Let J ⊂ I, w ∈ δ JW . Let y ∈ W. Let A be a simple perverse sheaf on
wZ J such that A � (Ky |wZ J ). Then A ∈ CS(wZ J ).

We argue by induction on �J . Let z = min(Wδ JwWJ ).
Assume first that z ∈ NJ,δ so that z = w. If y /∈ z−1Wδ J , then the image of

πJ,y : B2
J,y→Z J is disjoint from wZ J henceKy |wZ J = 0. This contradicts the choice
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of A. Thus we must have y = z−1y′ for some y′ ∈ Wδ J . Then with the notation in
2.5(b) we have

c′� ⊕ j
pH j (Kz−1y′ |wZ J ) = c� ⊕ j

pH j (Ky′;L̂1
).

Hence c′�A � c� ⊕ j
pH j (Ky′;L̂1

) and there exists a simple perverse sheaf A1 on

L̂1 such that c′�A = c�A1 and A1 � Ky′;L̂1
. Thus A1 ∈ CS(L̂1) and from the

definitions we see that A ∈ CS(wZ J ).
Next we assume that z /∈ NJ,δ . Then, setting J1 = J ∩ δ−1(Ad(z)J ), we have

�J1 < �J . We can write uniquely y = y∗y∗ as in 2.7. From 2.7(b) we see that

there exists y′ ∈ WJ such that A � ϑ∗
J,w

(
Ky′y∗

J1
|wZ J1

)
. Hence there exists a simple

perverse sheaf A1 on wZ J1 such that A = ϑ
�
J,wA1 and A1 � Ky′y∗

J1
|wZ J1

. By the
induction hypothesis, we have A1 ∈ CS(wZ J1). Hence A ∈ CS(wZ J ). The lemma is
proved.

Lemma 2.9 Let J ⊂ I and let w ∈ δ JW . Let A ∈ CS(wZ J ).

(a) There exists x ∈ Wδ(Jw∞) such that A � Kw−1x
J |wZ J .

(b) There exists x ∈ Wδ(Jw∞) such that A� � Kw−1x
J . In particular, A� ∈ CS(Z J ).

Thus we have CS′(Z J ) ⊂ CS(Z J ).

We prove (a) by induction on �J . Let z = min(Wδ JwWJ ). Let τw : Wδ(Jw∞)→Wδ(Jw∞)

be as in 1.3.

Assume first that z ∈ NJ,δ so that z = w and J = Jw∞. With notation in 2.2(a) we

have c′�A = c�A1 where A1 ∈ CS(L̂1) so that A1 � Kx;L̂1
for some x ∈ Wδ J .

Since

c′� ⊕ j
pH j (Kw−1x |wZ J ) = c�

(
⊕ j

pH j (Kx;L̂1
)
)

(see 2.5(b)) we see that c′�A � c′�Kw−1x |wZ J hence A � Kw−1x |wZ J . Thus (a)
holds in this case.

Next we assume that z /∈ NJ,δ . Then, setting J1 = J ∩ δ−1(Ad(z)J ) we have

�J1 < �J .We have A = ϑ
�
J,wA1 where A1 ∈ CS(wZ J1). By the induction hypothesis,

there exists x ∈ Wδ(Jw∞) such that A1 � Kw−1x
J1

|wZ J1
. Hence

A = ϑ∗
J,wA1 � ϑ∗

J,w

(
Kw−1x

J1 |wZ J1

)
.

Using 2.7(c) with x replaced by τ−1
w (x), we deduce that A � Kw−1τ−1

w (x)
J |wZ J . This

proves (a).
We prove (b). Let x be as in (a). Applying [14, 36.3(c)] with Y,Y ′,C replaced by

wZ J , Z J ,Kw−1x
J |wZ J , we deduce that (b) holds. (We use the fact that, if i : wZ J→Z J

is the inclusion, then i!(Kw−1x
J |wZ J ) = Kw−1x

J , which follows from 1.8(b).)
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2.10. Let J ⊂ I . For y ∈ W let Ōy be the closure ofOy in B2. The closure of B2
J,y in

B2
J is

B̄2
J,y = {(B, B ′, gUBJ ) ∈ B2

J ; (B, B ′) ∈ Ōy}.

Let KJ,y be the intersection cohomology complex of B̄2
J,y with coefficients in Q̄l ,

extended by zero on B2
J − B̄2

J,y . Let K̄
y
J = πJ !Ky,J with πJ : B2

J→Z J as in 1.8. For

y′ ∈ W let ιy′ : B2
J,y′→B2

J be the inclusion. By [7] we have

(a) Ky,J � {V i
y′,y ⊗ ιy′!Q̄l〈−i〉; y′ ∈ W, y′ ≤ y, i ∈ 2Z}.

where V i
y′,y are Q̄l -vector spaces such that

(b)
∑

i∈2Z dim V i
y′,yv

i = Py′,y(v2)
and Py′,y is the polynomial in [6]. Applying πJ ! we obtain

(c) K̄y
J � {V i

y′,y ⊗ Ky′
J 〈−i〉; y′ ∈ W, y′ ≤ y, i ∈ 2Z}.

Note that
(d) |B̄2

J,y | = l(y) + |G| − |PJ |.

2.11. Let J ⊂ I and let A be a simple perverse sheaf on Z J . We show that conditions
(i),(ii) below are equivalent:

(i) A ∈ CS(Z J );
(ii) We have A � K̄y

J for some y ∈ W .

Assume that (ii) holds. Then from 2.10(c) we see that A � Ky′
J for some y′ ∈ W ,

y′ ≤ y hence (i) holds. Conversely, assume that (i) holds. We can find y ∈ W such

that A � Ky
J for some y ∈ W and such that A �� Ky′

J for any y′ ∈ W such that y′ < y.
Using this and 2.10(c) we see that (ii) holds. (We use that dim V0

y,y = 1 and V i
y,y = 0

for i �= 0.)

2.12.Weprove 2.4(b). By 2.11, A is a composition factor of pH j (K̄y
J ) for some y ∈ W

and some j ∈ Z. By the decomposition theorem, pH j (K̄y
J ) is a semisimple perverse

sheaf and pH j (K̄y
J )[− j] is a direct summand of K̄y

J . It follows that A[ j] is a direct
summand of K̄y

J . Hence A′ � K̄y
J |wZ J . Using 2.10(c) we deduce that A′ � Ky′

J |wZ J

for some y′ ≤ y. Using 2.8 we deduce that A′ ∈ CS(wZ J ). This proves 2.4(b).

Lemma 2.13 Let J ⊂ I . Let A ∈ CS(Z J ). There exist w ∈ δ JW and A′ ∈ CS(wZ J )

such that A = A′�. In particular, CS(Z J ) ⊂ CS′(Z J ).

The subsets {supp(A) ∩ wZ J ;w ∈ δ JW } form a partition of supp(A) into locally
closed subvarieties. Hence we can find w ∈ δ JW such that supp(A) ∩ wZ J is open
dense in supp(A). We set A′ = A|wZ J . Then A′ is a simple perverse sheaf on wZ J

and A′ ∈ CS(wZ J ) (see 2.4(b)). From the definitions we have A = A′�. The lemma
is proved.

2.14. Let J ⊂ I . Since CS′(Z J ) ⊂ CS(Z J ) (see 2.9(b)) and CS(Z J ) ⊂ CS′(Z J )

(see 2.13) we see that 2.4(a) holds.
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2.15. For any J ⊂ I and any w ∈ d(J )W we choose (P, P ′) ∈ PJw∞ × Pδ(Jw∞) and

a common Levi subgroup Lw of P, P ′. Define L̂w, L̂w1 as L̂, L̂1 in 2.2 with J, L
replaced by Jw∞, Lw. We shall denote by CS(L̂w1) a set of representatives for the
objects in CS(L̂w1). For C ∈ CS(L̂w1)we denote by C̃ the object of CS(wZ Jw∞) such
that c′�C̃ = c�C (where c, c′ are as in 2.5 with J replaced by Jw∞); we set

Cw = ϑ
�
J,wϑ

�
J1,w

ϑ
�
J2,w

. . . (C̃) ∈ CS(wZ J )

where (Jn, wn)n≥0 = κ(w). Then C�
w := (Cw)� is defined as in 2.3; note that C�

w ∈
CS(Z J ) by 2.4(a). From 2.4 and the definitions we see that

(a) {Cw;C ∈ CS(L̂w1)} is a set of representatives for the isomorphism classes of
objects in CS(wZ J );

(b) {C�
w;w ∈ δ JW,C ∈ CS(L̂w1)} is a set of representatives for the isomorphism

classes of objects in CS(Z J ).

Let KJ be the freeA-module (A as in 0.1) with basis {C�
w;w ∈ δ JW,C ∈ CS(L̂w1)}.

For w ∈ δ JW let wKJ be the free A-module with basis {Cw;C ∈ CS(L̂w1)}. Let
K(L̂w1) be the free A-module with basis {C;C ∈ CS(L̂w1)}.

Let ξ 
→ ξw be theA-module isomorphism K(L̂w1)
∼→wKJ such that C 
→ Cw for

any C ∈ CS(L̂w1).

3 Mixed structures

3.1. In this section we assume that k is an algebraic closure of a finite field Fq with q
elements and that we are given an Fq -rational structure on Ĝ with Frobenius map F :
Ĝ→Ĝ such that F(G1) = G1 and the restriction of F to G is the Frobenius map of an
Fq -split rational structure on G. Then for any J ⊂ I , we have P ∈ PJ �⇒ F(P) ∈
PJ and P 
→ F(P) is the Frobenius map of an Fq -rational structure onPJ ; moreover,
(P, P ′, gUP ) 
→ (F(P), F(P ′), F(g)UF(P)) is the Frobenius map of an Fq -rational
structure on Z J . For any w ∈ W we have (B, B ′) ∈ Ow �⇒ (F(B), F(B ′)) ∈ Ow

and (B, B ′) 
→ (F(B), F(B ′)) is the Frobenius map of an Fq -rational structure on

Ow. For any J ⊂ I and any w ∈ δ JW , wZ J is a subvariety of Z J defined over
Fq ; we choose P, P ′, Lw as in 2.15 in such a way that F(P) = P , F(P ′) = P ′,
F(Lw) = Lw, F(L̂w1) = L̂w1 (notation of 2.2 with J replaced by Jw∞). We shall
assume (as we may, by replacing if necessary q by a power of q) that for any J ⊂ I ,
any w ∈ δ JW , and any C ∈ CS(L̂w1), we can find an isomorphism φC : F∗C ∼→C
which makes C into a pure complex of weight 0; we shall assume that such a φC has
been chosen.

Let J ⊂ I , w ∈ δ JW . For C ∈ CS(L̂w1) let C̃ ∈ CS(wZ Jw∞), Cw ∈ CS(wZ J ),

C�
w ∈ CS(Z J ) be as in 2.15. Then C̃,Cw,C�

w inherit from C mixed structures which
are pure of weight 0.



Nonsplit Hecke algebras and perverse sheaves 1969

3.2. Let J ⊂ I . Let ω (resp. ωJ ) be the element of maximal length in W (resp. WJ ).
Let B̃ ∈ B. Let P̃ = B̃ωJω, Ũ = UP̃ . Now Ũ acts by conjugation on

U = {B ∈ B; pos(B̃, B) ∈ ωWJ },

an open subset of B. For any P ∈ PJ such that pos(B̃, P) = ωωJ we define BP ×
Ũ→U by (B1, u) 
→ uB1u−1. We show:

(a) This map is a bijection (in fact an isomorphism).

Assume that B ′ ∈ BP , B ′′ ∈ BP and u′ ∈ Ũ , u′′ ∈ Ũ satisfy u′B ′u′−1 = u′′B ′′u′′−1.
Setting u = u′′−1u′ ∈ Ũ we have uB ′u−1 = B ′′ hence uPu−1 = P and u ∈ P .
Now P̃, P are opposed parabolic subgroups so that P ∩ Ũ = {1}. Thus u = 1 so that
u′ = u′′ and B ′ = B ′′. We see that our map is injective. Let B ∈ U . We have B ∈ BP ′
where P ′ ∈ PJ , pos(B̃, P ′) = ωωJ . Now Ũ acts transitively (by conjugation) on
{P1 ∈ PJ , pos(B̃, P1) = ωωJ } hence there exists u ∈ Ũ such that uPu−1 = P ′.
Setting B1 = u−1Bu we have B1 ∈ BP and our map takes (B1, u) to B; thus it is
surjective hence bijective. We omit the proof of the fact that it is an isomorphism.

Let L = P̃ ∩ P; this is a common Levi subgroup of P̃ and P . Let S be
the identity component of the centre of L . We can find a one-parameter subgroup
λ : k∗→S such that limt 
→0 λ(t)uλ(t)−1 = 1 for any u ∈ Ũ . We define an
action t : B 
→ λ(t)Bλ(t)−1 of k∗ on U . (This is well defined since λ(t) ∈ B̃.)
Under the isomorphism (a) this action becomes the action of k∗ on BP × Ũ
given by t : (B1, u) 
→ (B1, λ(t)uλ(t)−1). (To see this we must check that
λ(t)uλ(t)−1B1λ(t)u−1λ(t)−1 = λ(t)uB1u−1λ(t)−1 for B1 ∈ BP ; this holds since
λ(t) ∈ B1.) Now limt 
→0(B1, λ(t)uλ(t)−1) = (B1, 1) for any (B1, u) ∈ BP × Ũ .
Hence t : B 
→ λ(t)Bλ(t)−1 is a flow on U which contracts U to its fixed point set
BP . We have B × PJ = �y∈W JO′

y where O′
y is the image of B2

yWJ
:= ∪a∈WJOya

under the obvious map B×B→B×PJ . This is exactly the decomposition of B×PJ

into G-orbits where G acts by simultaneous conjugation. Hence B2
yWJ

is a locally

closed subvariety of B2 for any y ∈ W J .

3.3. Let J ⊂ I . We now fix y ∈ W J . Let B̃ ⊂ P̃ be as in 3.2. Let B1 ∈ B be such that
(B̃, B1) ∈ Oω and let P = (B1)J ; then pos(B̃, P) = ωωJ . We define S, λ in terms of
P̃, P as in 3.2. We choose B∗ ∈ B as follows: we note that T1 := B̃∩ B1 is a maximal
torus of G containing S (since S ⊂ B̃, S ⊂ B1) and we choose B∗ so that T1 ⊂ B∗
and (B̃, B∗) ∈ Oωy−1 . We have S ⊂ B∗. Since (B∗, B̃) ∈ Oyω, (B̃, B1) ∈ Oω

and B∗, B̃, B1 contain a common maximal torus, we have (B∗, B1) ∈ Oyωω = Oy .
Hence for any B ∈ BP , we have (B∗, B) ∈ Oya with a ∈ WJ . In other words, we
have BP ⊂ ∪a∈WJBya , where for any z ∈ W we set Bz = {B ∈ B; (B∗, B) ∈ Oz}.
As in 3.2, we set U = {B ∈ B; pos(B̃, B) ∈ ωWJ }. Note that ∪a∈WJBya ⊂ U . (If
B ∈ B satisfies pos(B∗, B) ∈ yWJ then for some B ′ ∈ B we have pos(B∗, B ′) =
y, pos(B ′, B) ∈ WJ , hence pos(B̃, B ′) = ω and pos(B̃, B) ∈ ωWJ .)

For z ∈ W we set B̄z = {B ∈ B; (B∗, B) ∈ Ōz}. Let w ∈ W . We show:

(a) K̄w|B2
yWJ

is pure of weight 0.
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Let K̄w be the intersection cohomology complex of B̄w with coefficients in Q̄l ; it
is naturally a pure complex of weight 0. Using the transitivity of the simultaneous
conjugation action of G on O′

y and the fact the fibre of B2
yWJ

→O′
y at (B∗, P) ∈ O′

y
may be identified with BP , we see that it is enough to show that:

(b) K̄w|B̄w∩BP
is pure of weight 0.

We can assume that B̄w∩BP �= ∅. Since B̄w∩U is open in B̄w, we have K̄w|B̄w∩U = K

where K is the intersection cohomology complex of B̄w ∩U and it is enough to show
that K |B̄w∩BP

is pure of weight 0 (recall that BP ⊂ U). For any z ∈ W , Bz ∩ U is

stable under the k∗-action t : B 
→ λ(t)Bλ(t)−1 on U (we use that λ(t) ∈ B∗ for
any t). Hence B̄w ∩ U is stable under this k∗-action on U . Since the k∗-action on U
is a contraction to its fixed point set BP and B̄w ∩ U is closed in U and k∗-stable, we
deduce that the k∗-action on B̄w ∩ U is a contraction to B̄w ∩ BP so that (b) follows
from the “hyperbolic localization theorem” [3]. This proves (a).

Proposition 3.4 Let J ⊂ I and let z ∈ NJ,δ .

(a) For y ∈ W, K̄y
J |z Z J (with its natural mixed structure) is pure of weight 0.

(b) Ifw ∈ δ JW , C ∈ CS(L̂w1), then C�
w|z Z J (with its natural mixed structure) is pure

of weight 0.

We prove (a). We have z Z J = {(P, P ′, gUP ) ∈ Z J ; pos(P ′, P) = z}. We have a
diagram

B2
z−1Wδ J

c←�
d→z Z J

where � = {(B, B ′, gUBJ ) ∈ B2
J ; (B, B ′) ∈ ∪a∈Wδ J

Oz−1a} and c(B, B ′, gUBJ ) =
(B, B ′), d(B, B ′, gUBJ ) = (BJ , B ′

δ J
, gUBJ ). Now � is the inverse image of z Z J

under πJ : B2
J→Z J and d is the restriction of πJ . Moreover πJ is proper hence

d is proper. Note also that c is smooth. From the definitions we see that K̄y
J |z Z J =

d!c∗(K̄y |B2
z−1Wδ J

). It remains to note that K̄y |B2
z−1Wδ J

is pure of weight 0 (see 3.3(a)

with J replaced by δ J ), that c∗ maps pure complexes of weight zero to pure complexes
of weight zero (since c is smooth) and d! maps pure complexes of weight zero to pure
complexes of weight zero (by Deligne’s theorem applied to the proper map d).

We prove (b). We can find y ∈ W and j ∈ Z such that C�
w appears in pH j (K̄y

J )

(with mixed structures being not necessarily compatible). Since K̄y
J and K̄y

J |z Z J are
pure of weight 0 it follows that pH j (K̄y

J ) and
pH j (K̄y

J )|z Z J are pure of weight j .

We can find a nonzero mixed vector space V of pure weight j such that V ⊗ C�
w is a

direct summand of pH j (K̄y
J ) (respecting the mixed structures). Then V ⊗ C�

w|z Z J is
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a direct summand of pH j (K̄y
J )|z Z J (respecting the mixed structures). Hence C�

w|z Z J

is pure of weight 0.

Remark. More generally for J ⊂ I , y ∈ W , w ∈ δ JW , we expect that K̄y
J |wZ J (with

its natural mixed structure) is pure of weight 0.

3.5. Let J ⊂ I . Let y ∈ W . Since K̄y
J 〈|B̄2

J,y |〉 is pure of weight 0, we have for any
j ∈ Z:

(a) pH− j (K̄y
J 〈|B̄2

J,y |〉) = ⊕
w∈δ J W,C∈CS(L̂w1)

Vy,w,C, j ( j/2) ⊗ C�
w

in Dm(Z J ), where Vy,w,C, j are Q̄l -vector spaces of pure weight 0. Moreover, by
the relative hard Lefschetz theorem [2, 5.4.10], for any y, w,C, j we have:

(b) Vy,w,C, j = Vy,w,C,− j .

Hence if t ∈ NJ,δ , we have
(c) K̄y

J |t Z J 〈|B̄2
J,y |〉 � {Vy,w,C, j ⊗ C�

w|t Z J 〈 j〉;w ∈ δ JW,C ∈ CS(L̂w1), j ∈ Z}.

Since for w ∈ δ JW , C�
w|t Z J is pure of weight 0 (see 3.4) we have

(d) C�
w|t Z J � {′VC ′,C

t,w, j ′ ⊗ C ′
t 〈 j ′〉;C ′ ∈ CS(L̂ t1), j ′ ∈ N}

in Dm(t Z J ), where ′VC ′,C
t,w, j ′ are Q̄l -vector spaces of pure weight 0. Note that if

w = t ∈ NJ,δ , we have C
�
w|t Z J = Ct hence ′VC ′,C

t,t, j ′ is Q̄l if C ′ = C, j ′ = 0 and
′VC ′,C

t,t, j ′ is 0 otherwise. From (c),(d) we deduce

(e)
K̄y

J |t Z J 〈|B̄2
J,y |〉 � {Vy,w,C, j ⊗ ′VC ′,C

t,w, j ′ ⊗ C ′
t 〈 j + j ′〉;

w ∈ δ JW,C ∈ CS(L̂w1),C ′ ∈ CS(L̂ t1), j ∈ Z, j ′ ∈ N}
in Dm(t Z J ).

3.6. Let J ⊂ I . For any w ∈ δ JW,C ∈ CS(L̂w1) and any K ∈ Dm(Z J ) we set

(C�
w : K ) =

∑

j,h∈Z
(−1) j ( multiplicity of C�

w in pH j (K )h)(−v)h ∈ A.

Here, for any mixed perverse sheaf R, Rh denotes the subquotient of R of pure weight
h. We set

(a) χ(K ) = ∑
w∈δ J W,C∈CS(L̂w1)

(C�
w : K )C�

w ∈ KJ .

For any w ∈ δ JW,C ∈ CS(L̂w1) and any K ′ ∈ Dm(wZ J ) we set
(b) (Cw : K ′) = ∑

j,h∈Z(−1) j (multiplicity of Cw in pH j (K ′)h)(−v)h ∈ A.

We set

χw(K ′) =
∑

C∈CS(L̂w1)

(Cw : K ′)Cw ∈ wKJ .

From 2.10(b),(c) we deduce for y ∈ W :
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(c) χw(K̄y
J 〈|B̄2

J,y |〉)v|B̄2
J,y | = χw(K̄y

J ) = ∑
y′∈W ;y′≤y Py′,y(v2)χw(Ky′

J ).

(We use that Vy′,y in 2.10(b) are pure of weight 0, see [7].)

For t ∈ NJ,δ , w ∈ NJ,δ , C ∈ CS(L̂w1), we have

(d) χt (C
�
w|t Z ) = ∑

C ′∈CS(L̂ t1)
�

C ′,C
t,w C ′

t
where

�
C ′,C
t,w =

∑

j ′∈N
dim ′VC ′,C

t,w, j ′v
− j ′ ∈ N[v−1]

specializes to the polynomial Py,w of [6] (in the case where J = ∅, δ = 1). Note

that �C ′,C
t,w is 1 if t = w,C = C ′ and is in v−1N[v−1] otherwise.

For t ∈ NJ,δ , y ∈ W we set

(e) [y](t) = v−|t Z J |χt (K̄
z−1u
J ).

3.7. Let J ⊂ I , z ∈ NJ,δ , y ∈ W . For u ∈ Wδ J we define K̄
u;L̂ z1

like K̄y
J by replacing

Ĝ,G1, J, y by L̂ z, L̂ z1, δ J, u. We define

[̃u] = v−|Lz |χ(Ku;L̂ z1
) ∈ K(L̂ z1), [u] = v−|Lz |χ(K̄u;L̂ z1

) ∈ K(L̂ z1),

like χ(Ky
J ) and χ(K̄y

J ) by replacing Ĝ,G1, J, y by L̂ z, L̂ z1, δ J, u.
From the proof of 2.5 we obtain:
If y /∈ z−1Wδ J , then χz(K

y
J ) = 0. If y = z−1u with u ∈ Wδ J , then

χz(K
y
J ) = v|z Z J | ∑

C∈CS(L̂ z1)

fu,CCz

where fu,C ∈ A are given by χ(Ku;L̂ z1
) = v|Lz | ∑

C∈CS(L̂ z1)
fu,CC . Thus we have

(a) v−|z Z J |χz(K
y
J ) = v−|Lz |(χ(Ku;L̂ z1

))z .

Let z, t ∈ NJ . Using (a), 3.6(c), we see that for u ∈ Wδ J we have

(b) χt (K̄
z−1u
J ) = ∑

u′∈Wδ J ;t−1u′≤z−1u Pt−1u′,z−1u(v
2)v|t Z J |ũ′

t .

Using 3.6(c) for L̂ z1 instead of G1 we see that for u′ ∈ Wδ J we have

[u′] =
∑

u′′∈Wδ J ;u′′≤u′
Pu′′,u′(v2)˜[u′′],
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hence

[̃u′] =
∑

u′′∈Wδ J ;u′′≤u′
P ′
u′′,u′(v2)[u′′]

where (P ′
u′′,u′(v2)) is the matrix inverse to (Pu′′,u′(v2)) (with u′, u′′ in Wδ J ).

Introducing this in (b) we obtain

(c) [z−1u](t) =∑
u′′∈Wδ J

(∑
u′∈WJ ;u′′≤u′,t−1u′≤z−1u P ′

u′′,u′(v2)Pt−1u′,z−1u(v
2)

)
[u′′]t .

3.8. Let H be the Hecke algebra of W . As anA-module, H has a basis {Tw;w ∈ W }.
The multiplication satisfies (Ts + 1)(Ts − v2) = 0 if s ∈ I , TwTw′ = Tww′ if
l(ww′) = l(w) + l(w′). For any J ⊂ I we define an A-linear map μJ : H→H by

(a) μJ (Ty) = Tδ−1(y∗)Ty∗

for any y ∈ W where y∗ ∈ W
δ J , y∗ ∈ Wδ J are uniquely determined by y = y∗y∗.

Now let w ∈ δ JW and let (Jn, wn)n≥0 = κ(w). Let n0 ≥ 0 be the smallest
integer such that Jn0 = Jn0+1 = . . . . Let Hw be the Hecke algebra defined in terms
of Wδ(Jw∞) in the same way as H was defined in terms of W . The automorphism
τw : Wδ(Jw∞)→Wδ(Jw∞) induces an algebra automorphism Hw→Hw (Ty 
→ Tτw(y) for
y ∈ Wδ(Jw∞)) denoted again by τw.

We define a A-linear function ew : H→Hw by ew(Ty) = Ty1 if y = w−1y1,
y1 ∈ Wδ(Jw∞) and ew(Ty) = 0 for all other y ∈ W . For n ≥ n0 we define an A-linear
function Ew,J,n : H→Hw by

(b) Ew,J,n(Ty) = ew(μJn−1 . . . μJ2μJ1μJ0(Ty)), (y ∈ W ).

(If n = n0 = 0 we have Ew,J,n(Ty) = ew(Ty).) We show that for y ∈ W and
n ≥ n0 we have

(c) Ew,J,n+1(Ty) = τw(Ew,J,n(Ty)).
It is enough to show that for y ∈ W we have
(d) ew(μJw∞(Ty)) = τw(ew(Ty)).

We have y = y′y′′ where y′ ∈ W
δ(Jw∞), y′′ ∈ Wδ(Jw∞) and

ew(μJw∞(Ty)) = ew(Tδ−1(y′′)Ty′),

ew(Ty) = δy′,w−1Ty′′ .

Now Tδ−1(y′′)Ty′ is anA-linear combination of terms Tỹy′ with ỹ ∈ WJw∞ . If ew(Tỹy′) �=
0, then ỹ y′ ∈ w−1Wδ(Jw∞) = WJw∞w−1 hence y′ = w−1. Thus, if y′ �= w−1, both

sides of (d) are zero. Now assume that y′ = w−1. We have

ew(Tδ−1(y′′)Ty′) = ew(Tδ−1(y′′)Tw−1) = ew(Tw−1Tτw(y′′)) = Tτw(y′′) = τw(ew(Ty)).

This proves (d) hence also (c).

Proposition 3.9 Let J ⊂ I and let w ∈ δ JW; let n ≥ n0 (n0 as in 3.8). Recall the
isomorphism K(L̂w1)

∼→wKJ , ξ 
→ ξw in 2.15. For y ∈ W we have

(a) χw(Ky
J ) = vφ(w,J )

∑
y′∈Wδ (Jw∞)

fy′,nχ(Ky′,L̂w1
)w
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where φ(w, J ) ∈ Z is explicitly computable and fy′,n ∈ A are given by

Ew,J,n(Ty) =
∑

y′∈Wδ (Jw∞)

fy′,nTy′ ∈ Hw,

see 3.8.

We argue by induction on �J . Let z = min(Wδ JwWJ ). Assume first that z ∈ NJ,δ so
that z = w and n0 = 0. If y /∈ z−1Wδ J then, as in the proof of 2.8 we haveK

y |wZ J = 0
hence χw(Ky

J ) = 0. From the definition, in this case we have Ez,J,0(Ty) = 0. Using
3.8(c) we deduce that Ez,J,n(Ty) = 0 for any n ≥ 0 hence (a) holds in this case. Thus
we can assume that y = z−1y′ with y′ ∈ Wδ J . From the definition, in this case we
have Ez,J,0(Ty) = Ty′ . Using 3.8(c) we deduce that for n ≥ 0 we have Ez,J,n(Ty) =
τ nw(Ty′) = Tτ nw(y′). Using 3.7(a) we have χz(K

z−1y′
J ) = vφ(z,J )χ(Ky′,L̂ z1

)z where

φ(z, J ) = |z Z J | − |Lz|. It remains to use that χz(K
z−1y′
J ) = χz(K

z−1τ nz (y′)
J ) which

follows from 2.7(c).
Next we assume that z /∈ NJ,δ . Then, setting J1 = J ∩ δ−1(Ad(z)J ), we have

�J1 < �J . We can write uniquely y = y∗y∗ as in 2.7. From 2.7(b) we see that

χw(Ky
J ) = vφ′(w,J )

∑

y′∈WJ

gy′χw(Ky′y∗
J1

)

where Tδ−1(y∗)Ty∗ = ∑
y′∈WJ

gy′Ty′y∗ in H (with gy′ ∈ A) and φ′(w, J ) ∈ Z. By the
induction hypothesis we have

χw(Ky′y∗
J1

) = vφ(w,J1)
∑

ỹ′∈Wδ (Jw∞)

f̃ ỹ′,n−1χ
(
K ỹ′,L̂w1

)

w
,

where

Ew,J1,n−1(Ty′y∗) =
∑

ỹ′∈Wδ (Jw∞)

f̃ ỹ′,n−1Tỹ′ ∈ Hw

and φ(w, J1) ∈ Z. It follows that

χw(Ky
J ) = vφ′(w,J )+φ(w,J1)

∑

y′∈WJ ,ỹ′∈Wδ (Jw∞)

gy′ f̃ ỹ′,n−1χ
(
K ỹ′,L̂w1

)

w
.



Nonsplit Hecke algebras and perverse sheaves 1975

We have
∑

y′∈WJ ,ỹ′∈Wδ (Jw∞)

gy′ f̃ ỹ′,n−1Tỹ′ =
∑

y′∈WJ

gy′Ew,J1,n−1(Ty′y∗)

=
∑

y′∈WJ

gy′ew(μJn−1 . . . μJ2μJ1(Ty′y∗))

= ew(μJn−1 . . . μJ2μJ1(Tδ−1(y∗)Ty∗))

= ew(μJn−1 . . . μJ2μJ1μJ (Ty)) = Ew,J,n(Ty).

Thus (a) holds with φ(w, J ) = φ′(w, J ) + φ(w, J1).

Proposition 3.10 Let J ⊂ I and let ωJ ∈ WJ be as in 3.2. Let w ∈ δ JW .

(a) If z ∈ NJ,δ , then K̄w−1δ(ωJ )
J |z Z J is a direct sum of complexes of the form Q̄l〈 j〉

with j ∈ Z.
(b) Let C = Q̄l〈|Lw|〉 ∈ CS(L̂w1). Then for some j ∈ Z, C�

w〈 j〉 is a direct summand
of K̄w−1δ(ωJ )

J .

(c) If C is as in (b) and z is as in (a), then C�
w|z Z J is a direct sum of complexes of the

form Q̄l〈 j〉 with j ∈ Z.

We prove (a). Using 3.4(a) and 3.6(c) we see that it is enough to show that

∑

y′∈W ;y′≤w−1δ(ωJ )

Py′,w−1ωJ
(v2)χz(K

y′
J ) ∈ AQ̄l〈|z Z J |〉.

Since w−1 ∈ W
δ J , the last sum is equal to

∑

y′∈W δ J ;y′≤w−1δ(ωJ )

Py′,w−1ωJ
(v2)

∑

u∈Wδ (J )

χz

(
Ky′u

J

)
.

(We use a standard property of the polynomials Py′,y .) Hence it is enough to show
that

∑

u∈Wδ (J )

χz(K
y′u
J ) ∈ AQ̄l〈|z Z J |〉

for any y′ ∈ W
δ J . By arguments in 3.7, the left-hand side is zero unless y′ = z−1 in

which case it equals

v|z Z J |−|Lz | ∑

u∈Wδ (J )

(
χ(Ku;L̂ z1

)
)

z
= v|z Z J |−|Lz | (χ

(
K̄δ(ωJ );L̂ z1

))

z
.

It remains to use that

χ(K̄δ(ωJ );L̂ z1
) ∈ AQ̄l〈|L̂ z1|〉.
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We omit the proof of (b). Now (c) follows immediately from (a) and (b).

3.11. In this subsection we assume that Ĝ = G is simple adjoint, hence G1 = G and
δ = 1. We fix J ⊂ I and we write NJ instead of NJ,δ = {w ∈ W ;wJw−1 = J },
a subgroup of W with unit element e. We assume that J �= I and that we are given
a cuspidal object A1 of CS(Le) (with Le as in 3.1). It follows that Le modulo its
centre is simple or {1}. We will attach to each w ∈ NJ a (not identically zero) map
ιw : CS(L̂w1)→Z (said to be a cuspidal map) well defined up to multiplication by
±1. Let Fw : Le→Le be the Frobenius map for an Fq -rational structure on Le whose
action on the Weyl group WJ of Le (or of Lw) is induced by the conjugation action
of the connected component L̂w1 of L̂w on Lw (see 2.15). As in [15] we identify
CS(L̂w1) with cs(Le, Fw), a set of representatives for the isomorphism classes of
unipotent representations of the finite reductive group (Le)Fw . Then ιw becomes a
map cs(Le, Fw)→Z. Now A1 gives rise to a cuspidal object Aw of cs(Lw) and as
in [15] this corresponds to a unipotent cuspidal representation πw of Lw(Fq) (with
respect to a split Frobenius map). According to [10, 4.23], ρw has an associated two-
sided cell c ofWJ and it corresponds to a pair (x, r)where x is an element of a certain
finite group � attached to c and r is an irreducible representation of Z�(x). Moreover,
c gives rise to a subset CS(L̂w1)c of CS(L̂w1) or equivalently to a subset cs(Le, Fw)c
of cs(Le, Fw) in natural bijection [10, 4.23] with the set M̄ = M̄(� ⊂ �̃) defined as
follows: � ⊂ �̃ is a certain embedding of � as a normal subgroup into a finite group
�̃ such that �̃/� is cyclic of order ≤ 3 with a given �-coset �1 whose image in �̃/�

generates �̃/�; M̄(� ⊂ �̃) consists of all pairs (y, s) where y ∈ �1 is defined up to
conjugation in �̃ and s is an irreducible representation of Z�(y), the centralizer of y
in �, up to isomorphism. Our function ιw is required to be zero on the complement
of cs(Le, Fw)c, hence it can be viewed as a function ιw : M̄(� ⊂ �̃)→Z. Let M(�̃)

be the set consisting of all pairs (y′, s′) where y′ ∈ �̃ is defined up to conjugation in
�̃ and s′ is an irreducible representation of Z�̃(y′), the centralizer of y′ in �̃, up to
isomorphism. We can find an irreducible representation r ′ of Z�̃(x) whose restriction
to Z�(x) is r .

Let {, } : M(�̃) × M(�̃)→Q̄l be the pairing [10, 4.14.3]. We define jr ′ : M̄(� ⊂
�̃)→Z by jr ′(y, s) = {(x, r ′), (y, s′)} where s′ is an irreducible representation of
Z�̃(y) whose restriction to Z�(y) is s. Since x ∈ �, jr ′(y, s) is independent of
the choice of s′. We can choose r ′ so that jr ′(y, s) takes values in Q. We define
ιw : M̄(� ⊂ �̃)→Z as cjr ′ where c is a rational number > 0 such that ιw takes values
in Z and there is no integer d > 1 dividing all values of ιw. In the case where �̃/�

has order 1 or 3, ιw is unique. In the case where �̃/� has order 2, ιw is unique up to
multiplication by ±1. We state some conjectures.

Conjecture 1. For any t ≤ z in NJ there is a (necessarily unique) Xt,z ∈ Z[v−1] such
that

∑

C∈CS(L̂ z1)c

ιz(C)�
C ′,C
t,z = Xt,zιt (C

′)

for any C ′ ∈ CS(L̂ t1)c where �
C ′,C
t,z ∈ N[v−1] are as in 3.6.
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An equivalent statement is that in tKJ we have

∑

C∈CS(L̂ z1)c

ιz(C)χt (C�z |t Z J ) = Xt,z

∑

C ′∈CS(L̂ t1)c

ιt (C
′)C ′

t

modulo
∑

C ′∈CS(L̂ t1)−CS(L̂ t1)c
AC ′

t .

Conjecture 2. For any t ≤ z in NJ , the matrix (�
C ′,C
t,z )

(C ′,C)∈CS(L̂ t1)c×CS(L̂ z1)c
is

square and invertible.
For any i ∈ I − J we have i ∈ NJ . It follows that ωJ∪iωJ = ωJωJ∪i ∈ NJ

hence τi = ωJ∪iωJ = ωJωJ∪i has square 1. It is known that NJ together with
{τi ; i ∈ I − J } is a Coxeter group. Let a : W→N be the a-function of W, l, see [12,
13.6]. For i ∈ I − J we set ci = a(xτi )−a(x ′)where x, x ′ ∈ c; this is independent of
the choice of x, x ′ by [12, 9.13, P11]. There is a unique weight function L : NJ→N
such thatL(τi ) = ci for all i ∈ I − J . Hence the Hecke algebraH associated to NJ ,L
and the elements pt,z (for t, z in NJ ) are well defined as in 0.1.

Conjecture 3. For any t ≤ z in NJ we have Xt,z = et,z pt,z where et,w = ±1.

4 An example

4.1. In this section we assume that we are in the setup of 3.1 and that Ĝ = G1 = G
is simply connected; we also assume that W is of type B4. We have δ = 1. We
shall denote the elements of I as si (i = 1, 2, 3, 4) where the notation is chosen so
that (s1s2)4 = (s2s3)3 = (s3s4)3 = 1 and si s j = s j si if i − j ∈ {±2,±3}. An
element w ∈ W with reduced expression si1si2 . . . sim will be denoted as i1i2 . . . im .
In particular we write i instead of si ; the unit element of W is denoted by ∅. We set
J = {1, 2} ⊂ I . The elements of JW J are

∅, 3, 4, 34, 43, 343, 3243, 32123, 321234, 321243, 432123,

3212343, 3432123, 4321234, 34321234, 32123432123, 321234321234.

Now NJ := NJ,1 is the subgroup of W consisting of the elements

∅, e = 4, f = 32123, f e = 321234, e f = 432123,

e f e = 4321234, f e f = 32123432123, e f e f = f e f e = 321234321234.

It is a Coxeter group (of order 8) with generators e, f which satisfy (e f )4 = 1. We
define a weight function L : NJ→N by

∅ 
→ 0, e 
→ 1, f 
→ 3, f e 
→ 4, e f 
→ 4, e f e 
→ 5, f e f 
→ 7, e f e f 
→ 8

and a homomorphism ε : NJ 
→ {±1} by ε(e) = 1, ε( f ) = −1. Note thatL coincides
with the weight function defined in 3.11 in terms of W,WJ and the two-sided cell
c = {1, 2, 12, 21, 121, 212} of WJ .
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If z ∈ NJ , then the Weyl group of Lz is WJ = {∅, 1, 2, 12, 21, 121, 212, 1212}.
In our case we have Lz = L̂ z1. Also Lz is independent of z (in NJ ) up to an inner
automorphism; hence we can use the notation L instead of Lz .

4.2. The objects of CS(L) can be denoted by 1, ρ, σ, σ ′, θ, S. Here 1, ρ, σ, σ ′, S are
perverse sheaves on L with support equal to L which are generically local systems
(up to shift) of rank 1, 2, 1, 1, 1; θ is a cuspidal character sheaf on L . They can be
characterized by the equalities

[∅] = 1 + 2ρ + σ + σ ′ + S;
[1] = (1 + v2)(1 + ρ + σ);
[2] = (1 + v2)(1 + ρ + σ ′);
[12] = v2(ρ + σ + σ ′ + θ) + (1 + v2)21;
[21] = v2(ρ + σ + σ ′ + θ) + (1 + v2)21;
[121] = (v2 + v4)(σ ′ + θ) + (1 + v2)(1 + v4)1;
[212] = (v2 + v4)(σ + θ) + (1 + v2)(1 + v4)1;
[1212] = (1 + v2)2(1 + v4)1.
(Recall from 3.7 that for u ∈ WJ we have [u] = v−|L|χ(K̄u;L).)

4.3. Let z, t ∈ NJ , u ∈ WJ . In our case the explicit values of Pt−1u′,z−1u(v
2) in

3.7(c) can be found in the tables of [4]; moreover in 3.7(c) we have P ′
u′,u′′(v2) =

(−1)l(u
′)+l(u′′). Hence the coefficients of [z−1u](t) in 3.7(c) are explicitly known. In

subsections 4.4-4.10 we give for any z, t in NJ the explicit values of [z−1u](t), with
u ∈ WJ − {∅, 1212}, as an A-linear combination of elements [u′′]t with u′′ ∈ WJ .
For ξ, ξ ′ in tKJ we write ξ ∼ ξ ′ if ξ − ξ ′ ∈ A1t .

4.4. Assume that (t, z) satisfies either t = z or that it is one of

(∅, 4), (32123, 432123), (32123, 321234), (32123, 4321234),

(432123, 4321234), (321234, 4321234), (32123432123, 321234321234)

that is,

(∅, e), ( f, e f ), ( f, f e), ( f, e f e), (e f, e f e), ( f e, e f e), ( f e f, e f e f ).

Note that l(z) − l(t) = L(z) − L(t), ε(z)ε(t) = 1. From 3.7(c) we have
[z−1(121)](t) = [121]t ,
[z−1(212)](t) = [212]t ,
[z−1(12)](t) = [12]t ,
[z−1(21)](t) = [21]t ,
[z−1(2)](t) = [2]t ,
[z−1(1)](t) = [1]t .
Hence, using 4.2, we have
[z−1(121)](t) ∼ (v2 + v4)(θt + σ ′

t ),
[z−1(212)](t) ∼ (v2 + v4)(θt + σt ),
[z−1(12)](t) ∼ v2(ρt + σt + σ ′

t + θt ),
[z−1(21)](t) ∼ v2(ρt + σt + σ ′

t + θt ),
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[z−1(2)](t) ∼ (1 + v2)(ρt + σ ′
t ),

[z−1(1)](t) ∼ (1 + v2)(ρt + σt ).

4.5. Assume that (t, z) is one of

(∅, 32123), (∅, 432123), (4, 432123), (∅, 321234), (4, 321234),

(32123, 321234321234), (432123, 321234321234), (321234, 321234321234),

(4321234, 321234321234), (432123, 32123432123), (321234, 32123432123)

that is, one of

(∅, f ), (∅, e f ), (e, e f ), (∅, f e), (e, f e),

( f, e f e f ), (e f, e f e f ), ( f e, e f e f ), (e f e, e f e f ), (e f, f e f ), ( f e, f e f ).

Note that l(z) − l(t) = L(z) − L(t) + 2, ε(z)ε(t) = −1. From 3.7(c) we have
[z−1(121)](t) = v2[121]t + [1212]t ,
[z−1(212)](t) = v4[2]t + [1212]t ,
[z−1(12)](t) = v2[12]t + [1212]t ,
[z−1(21)](t) = v2[21]t + [1212]t ,
[z−1(2)](t) = [212]t ,
[z−1(1)](t) = v2[1]t + [1212]t .
Hence, using 4.2, we have
[z−1(121)](t) ∼ (v4 + v6)(θt + σ ′

t ),
[z−1(212)](t) ∼ (v4 + v6)(ρt + σ ′

t ),
[z−1(12)](t) ∼ v4(ρt + σt + σ ′

t + θt ),
[z−1(21)](t) ∼ v4(ρt + σt + σ ′

t + θt ),
[z−1(2)](t) ∼ (v2 + v4)(θt + σt ),
[z−1(1)](t) ∼ (v2 + v4)(ρt + σt ).

4.6. Assume that (t, z) is one of (∅, 4321234), (4, 4321234) that is, one of
(∅, e f e), (e, e f e).

Note that l(z) − l(t) = L(z) − L(t) + 2 = −1, ε(z)ε(t) = −1. From 3.7(c) we
have

[z−1(121)](t) = (v2 + v4)[121]t + (1 + v2)[1212]t ,
[z−1(212)](t) = (v4 + v6)[2]t + (1 + v2)[1212]t ,
[z−1(12)](t) = (v2 + v4)[12]t + (1 + v2)[1212]t ,
[z−1(21)](t) = (v2 + v4)[21]t + (1 + v2)[1212]t ,
[z−1(2)](t) = (1 + v2)[212]t ,
[z−1(1)](t) = (v2 + v4)[1]t + (1 + v2)[1212]t .
Hence, using 4.2, we have
[z−1(121)](t) ∼ (v2 + v4)2(θt + σ ′

t ),
[z−1(212)](t) ∼ (v4 + v6)(1 + v2)(ρt + σ ′

t ),
[z−1(12)](t) ∼ (v4 + v6)(ρt + σt + σ ′

t + θt ),
[z−1(21)](t) ∼ (v4 + v6)(ρt + σt + σ ′

t + θt ),
[z−1(2)](t) ∼ (1 + v2)(v2 + v4)(θt + σt ),
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[z−1(1)](t) ∼ (1 + v2)(v2 + v4)(ρt + σt ).

4.7. Assume that (t, z) is one of

(∅, 321234321234), (4, 321234321234), (4, 32123432123)

that is, one of (∅, e f e f ), (e, e f e f ), (e, f e f ).
Note that l(z) − l(t) = L(z) − L(t) + 4, ε(z)ε(t) = 1. From 3.7(c) we have
[z−1(121)](t) = v4[121]t ,
[z−1(212)](t) = v4[212]t ,
[z−1(12)](t) = v4[12]t ,
[z−1(21)](t) = v4[21]t ,
[z−1(2)](t) = v4[2]t ,
[z−1(1)](t) = v4[1]t .
Hence, using 4.2, we have
[z−1(121)](t) ∼ (v6 + v8)(θt + σ ′

t ),
[z−1(212)](t) ∼ (v6 + v8)(θt + σt ),
[z−1(12)](t) ∼ v6(ρt + σt + σ ′

t + θt ),
[z−1(21)](t) ∼ v6(ρt + σt + σ ′

t + θt ),
[z−1(2)](t) ∼ (v4 + v6)(ρt + σ ′

t ),
[z−1(1)](t) ∼ (v4 + v6)(ρt + σt ).

4.8. Assume that (t, z) = (∅, 32123432123) that is, (∅, f e f ).
Note that l(z) − l(t) = L(z) − L(t) + 4, ε(z)ε(t) = 1. From 3.7(c) we have
[z−1(121)](t) = v8[1]t + v4[121]t ,
[z−1(212)](t) = (v4 + v6)[212]t ,
[z−1(12)](t) = (v4 + v6)[12]t ,
[z−1(21)](t) = (v4 + v6)[21]t ,
[z−1(2)](t) = (v4 + v6)[2]t ,
[z−1(1)](t) = v4[121]t + v4[1]t .
Hence, using 4.2, we have
[z−1(121)](t) ∼ (v8 + v10)(ρt + σt ) + (v6 + v8)(θt + σ ′

t ),
[z−1(212)](t) ∼ (v4 + v6)(v2 + v4)(θt + σt ),
[z−1(12)](t) ∼ (v6 + v8)(ρt + σt + σ ′

t + θt ),
[z−1(21)](t) ∼ (v6 + v8)(ρt + σt + σ ′

t + θt ),
[z−1(2)](t) ∼ (v4 + v6)(1 + v2)(ρt + σ ′

t ),
[z−1(1)](t) ∼ (v6 + v8)(θt + σ ′

t ) + (v4 + v6)(ρt + σt ).

4.9. Assume that (t, z) = (32123, 32123432123) that is, ( f, f e f ).
Note that l(z) − l(t) = L(z) − L(t) + 2, ε(z)ε(t) = −1. From 3.7(c) we have
[z−1(121)](t) = v6[1]t + v2[121]t ,
[z−1(212)](t) = (v4 + v6)[2]t ,
[z−1(12)](t) = (v2 + v4)[12]t ,
[z−1(21)](t) = (v2 + v4)[21]t ,
[z−1(2)](t) = (1 + v2)[212]t ,
[z−1(1)](t) = v2[121]t + v2[1]t .
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Hence, using 4.2, we have
[z−1(121)](t) ∼ (v6 + v8)(ρt + σt ) + (v4 + v6)(θt + σ ′

t ),
[z−1(212)](t) ∼ (v4 + v6)(1 + v2)(ρt + σ ′

t ),
[z−1(12)](t) ∼ (v4 + v6)(ρt + σt + σ ′

t + θt ),
[z−1(21)](t) ∼ (v4 + v6)(ρt + σt + σ ′

t + θt ),
[z−1(2)](t) ∼ (1 + v2)(v2 + v4)(θt + σt ),
[z−1(1)](t) ∼ (v4 + v6)(θt + σ ′

t ) + (v2 + v4)(ρt + σt ).

4.10. If (t, z) in NJ is not as in 4.4-4.9, then we have [z−1u](t) = 0 for any u ∈ WJ .

4.11. Let z, t ∈ NJ , u ∈ WJ . We set

[z−1u]′(t) = χt (K̄
z−1u
J 〈|B̄2

J,z−1u |〉).

Using 2.10(d) we have

(a) [z−1u]′(t) = v
−|B̄2

J,z−1u
|+|t Z J |[z−1u](t) = v−l(z)+l(t)−l(u)[z−1u](t).

Let C ∈ CS(L) − {1}, let t, z ∈ NJ and let u ∈ WJ − {∅, 1212}. From 4.4-4.10
we see that the following result holds:

(b) The coefficient of Ct in [z−1u]′(t) is in N[v−1]. More precisely, this coefficient
is:

(i) 0 or 1 + v−2 if (t, z) is as in 4.4 with t �= z, u ∈ {1, 2, 121, 212};
(ii) in v−1N[v−1] if t, z, u are not as in (i) but t �= z.

4.12. Let z, t ∈ NJ , u ∈ WJ . Using 4.11(a) and 3.5(e) with y = z−1u we deduce

v−l(z)+l(t)−l(u)[z−1u](t) =
∑

C ′∈CS(L)

Nz,t,u
C ′ C ′

t

where

Nz,t,u
C ′ =

∑

w∈J W,C∈CS(L), j∈Z, j ′∈N
dim Vz−1u,w,C, j dim

′VC ′,C
t,w, j ′)v

− j− j ′ .

If z = t , in the previous sum we must have w = z. Note that dim ′VC ′,C
z,z, j ′ = 0 unless

C = C ′, j ′ = 0 and we have
(a) Nz,z,u

C ′ = ∑
j∈Z dim Vz−1u,z,C ′, jv

− j . We show:

Proposition 4.13 Let z, t ∈ NJ . Assume that z �= t , j ∈ Z, u ∈ WJ − {∅, 1212} and
C ′ ∈ CS(L) − {1}. Then Vz−1u,t,C ′, j = 0 (notation of 3.5).

We first note that if t, z, u are as in 4.11(i), then from the definitions we have

(a) ′VC ′,C ′
t,z,1 = ′VC ′,C ′

z,z,0 .

For ξ, ξ ′ in A we write ξ ≥ ξ ′ if ξ − ξ ′ ∈ N[v, v−1]. Note that Nz,t,u
C ′ is ≥ than the

corresponding sum in which (w,C, j ′) is restricted
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to (t,C ′, 0) (if t, z, u are as in 4.11(ii));
to (t,C ′, 0) or to (z,C ′, 1) (if t, z, u are as in 4.11(i)).
Thus

Nz,t,u
C ′ ≥

∑

j∈Z
dim Vz−1u,t,C ′, j dim

′VC ′,C ′
t,t,0 v− j =

∑

j∈Z
dim Vz−1u,t,C ′, jv

− j

(if t, z, u are as in 4.11(ii)) and

Nz,t,u
C ′ ≥

∑

j∈Z
dim Vz−1u,t,C ′, j dim

′VC ′,C ′
t,t,0 v− j

+
∑

j∈Z
dim Vz−1u,z,C ′, j dim

′VC ′,C ′
t,z,1 v− j−1 =

∑

j∈Z
dim Vz−1u,t,C ′, j dim

′VC ′,C ′
t,t,0 v− j

+
∑

j∈Z
dim Vz−1u,z,C ′, j dim

′VC ′,C ′
z,z,0 v− j−1 =

∑

j∈Z
dim Vz−1u,t,C ′, jv

− j + v−1Nz,z,u
C ′

(if t, z, u are as in 4.11(i)). (We have used (a) and 4.12(a).) If t, z, u are as in 4.11(i)),
we have Nz,t,u

C ′ = v−1Nz,z,u
C ′ (see 4.4) and we deduce that

0 ≥
∑

j∈Z
dim Vz−1u,t,C ′, jv

− j ;

hence Vz−1u,t,C ′, j = 0 for all j . If t, z, u are as in 4.11(ii)), we see using 3.5(b) that
the sum

∑
j∈Z dim Vz−1u,t,C ′, jv

− j is either zero, or

for some j, v j and v− j both appear in it with > 0 coefficient.
In the last case it follows that v j and v− j both appear in Nz,t,u

C ′ with> 0 coefficient.
This is not compatible with the inclusion Nz,t,u

C ′ ∈ v−1N[v−1]. Thus we must have
∑

j∈Z dim(Vz−1u,t,C ′, j )v
− j = 0 hence Vz−1u,t,C ′, j = 0 for all j . The proposition is

proved.

Proposition 4.14 Let z ∈ NJ , u ∈ WJ − {∅, 1212}, j ∈ Z. Let t ∈ JW be such
that �J t∞ < �J . Assume that C ∈ CS(L̂ t1) is not isomorphic to Q̄l〈|Lt |〉. Then
Vz−1u,t,C, j = 0 (notation of 3.5(a)).

The existence of C guarantees that Lt is not a torus. Thus J t∞ consists of a sin-
gle element i (equal to 1 or 2) and Lt has semisimple rank 1. Hence C is uniquely
determined and it appears with coefficient 1 in v−|Lt |χ(K∅,Lt

) and with coefficient

−1 in v−|Lt |χ(Ki,Lt
). Hence the coefficient of Ct in v

−|B̄2
J,y |χt (K

y
J ) is explicitly

computable from 3.9(a) for any y ∈ W . Using now 3.6(c) (in which the polyno-
mials Py′,y(v2) are explicitly known from [4]) we see that the coefficient of Ct in

v
−|B̄2

J,y |χt (K̄
y
J ) is explicitly computable for any y ∈ W . In particular, the coefficient

of Ct in v
−|B̄2

J,z−1u
|
χt (K̄

z−1u
J ) is explicitly computable. We find that this coefficient is

in v−1Z[v−1]. On the other hand this coefficient is equal to∑
j∈Z dim(Vz−1u,t,C, j )v

− j



Nonsplit Hecke algebras and perverse sheaves 1983

which is invariant under the involution v 
→ v−1 of A. This forces dim(Vz−1u,t,C, j )

to be zero for any j . The proposition is proved.

Proposition 4.15 Let z ∈ NJ , u ∈ WJ − {∅, 1212}.
(a) We have

K̄z−1u
J 〈|B̄2

J,z−1u |〉 ∼= ⊕C∈CS(L)−{1}, j∈ZVz−1u,z,C, j ⊗ C�
z 〈 j〉 ⊕ K ′

where

K ′ ∼= ⊕w∈J W, j∈ZṼw, j ⊗ (Q̄l〈|Lw|〉)�w〈 j〉

and Ṽw, j are certain Q̄l -vector spaces.
(b) For any t ∈ NJ we have (with ∼ as in 4.3):

[z−1u]′(t) ∼
∑

C∈CS(L)−{1}, j∈Z
dim(Vz−1u,z,C, j )v

− jχt (C
�
z ).

(a) follows from 4.13, 4.14; (b) follows from (a) using 3.10(a).

4.16. In the setup of 4.15(b), the integers dim(Vz−1u,z,C, j ) (with C �= 1) can be
obtained from 4.4 (with t = z). Thus we can rewrite 4.15(b) as follows (recall that
z, t ∈ NJ ; we set ζ = v−l(z)+l(t) and we take u ∈ {1, 2, 121, 212}):

ζv−3[z−1121]t ∼ v−3(v2 + v4)(χt (θ
�
z ) + χt (σ

′�
z)),

ζv−3[z−1212]t ∼ v−3(v2 + v4)(χt (θ
�
z ) + χt (σ

�
z )),

ζv−1[z−12]t ∼ v−1(1 + v2)(χt (ρ
�
z ) + χt (σ

′�
z)),

ζv−1[z−11]t ∼ v−1(1 + v2)(χt (ρ
�
z ) + χt (σ

�
z )).

Using now the formulas in 4.4–4.10 we deduce that the following hold.
If (t, z) are as in 4.4, then

ζv−3(v2 + v4)(θt + σ ′
t ) ∼ v−3(v2 + v4)(χt (θ

�
z ) + χt (σ

′�
z)),

ζv−3(v2 + v4)(θt + σt ) ∼ v−3(v2 + v4)(χt (θ
�
z ) + χt (σ

�
z )),

ζv−1(1 + v2)(ρt + σ ′
t ) ∼ v−1(1 + v2)(χt (ρ

�
z ) + χt (σ

′�
z)),

ζv−1(1 + v2)(ρt + σt ) ∼ v−1(1 + v2)(χt (ρ
�
z ) + χt (σ

�
z )).

If (t, z) are as in 4.5, then

ζv−3(v4 + v6)(θt + σ ′
t ) ∼ v−3(v2 + v4)(χt (θ

�
z ) + χt (σ

′�
z)),

ζv−3(v4 + v6)(ρt + σ ′
t ) ∼ v−3(v2 + v4)(χt (θ

�
z ) + χt (σ

�
z )),

ζv−1(v2 + v4)(θt + σt ) ∼ v−1(1 + v2)(χt (ρ
�
z ) + χt (σ

′�
z)),



1984 G. Lusztig

ζv−1(v2 + v4)(ρt + σt ) ∼ v−1(1 + v2)(χt (ρ
�
z ) + χt (σ

�
z )).

If (t, z) are as in 4.6, then

ζv−3(v2 + v4)2(θt + σ ′
t ) ∼ v−3(v2 + v4)(χt (θ

�
z ) + χt (σ

′�
z)),

ζv−3(v4 + v6)(1 + v2)(ρt + σ ′
t ) ∼ v−3(v2 + v4)(χt (θ

�
z ) + χt (σ

�
z )),

ζv−1(1 + v2)(v2 + v4)(θt + σt ) ∼ v−1(1 + v2)(χt (ρ
�
z ) + χt (σ

′�
z)),

ζv−1(1 + v2)(v2 + v4)(ρt + σt ) ∼ v−1(1 + v2)(χt (ρ
�
z ) + χt (σ

�
z )).

If (t, z) are as in 4.7, then

ζv−3(v6 + v8)(θt + σ ′
t ) ∼ v−3(v2 + v4)(χt (θ

�
z ) + χt (σ

′�
z)),

ζv−3(v6 + v8)(θt + σt ) ∼ v−3(v2 + v4)(χt (θ
�
z ) + χt (σ

�
z )),

ζv−1(v4 + v6)(ρt + σ ′
t ) ∼ v−1(1 + v2)(χt (ρ

�
z ) + χt (σ

′�
z)),

ζv−1(v4 + v6)(ρt + σt ) ∼ v−1(1 + v2)(χt (ρ
�
z ) + χt (σ

�
z )).

If (t, z) are as in 4.8, then

ζv−3((v8 + v10)(ρt + σt ) + (v6 + v8)(θt + σ ′
t )) ∼ v−3(v2 + v4)(χt (θ

�
z ) + χt (σ

′�
z)),

ζv−3(v4 + v6)(v2 + v4)(θt + σt ) ∼ v−3(v2 + v4)(χt (θ
�
z ) + χt (σ

�
z )),

ζv−1(v4 + v6)(1 + v2)(ρt + σ ′
t ) ∼ v−1(1 + v2)(χt (ρ

�
z ) + χt (σ

′�
z)),

ζv−1((v6 + v8)(θt + σ ′
t ) + (v4 + v6)(ρt + σt )) ∼ v−1(1 + v2)(χt (ρ

�
z ) + χt (σ

�
z )).

If (t, z) are as in 4.9, then

ζv−3((v6 + v8)(ρt + σt ) + (v4 + v6)(θt + σ ′
t )) ∼ v−3(v2 + v4)(χt (θ

�
z ) + χt (σ

′�
z)),

ζv−3(v4 + v6)(1 + v2)(ρt + σ ′
t ) ∼ v−3(v2 + v4)(χt (θ

�
z ) + χt (σ

�
z )),

ζv−1(1 + v2)(v2 + v4)(θt + σt ) ∼ v−1(1 + v2)(χt (ρ
�
z ) + χt (σ

′�
z)),

ζv−1((v4 + v6)(θt + σ ′
t ) + (v2 + v4)(ρt + σt )) ∼ v−1(1 + v2)(χt (ρ

�
z ) + χt (σ

�
z )).

If (t, z) are as in 4.10, then

0 ∼ v−3(v2 + v4)(χt (θ
�
z ) + χt (σ

′�
z)),

0 ∼ v−3(v2 + v4)(χt (θ
�
z ) + χt (σ

�
z )),

0 ∼ v−1(1 + v2)(χt (ρ
�
z ) + χt (σ

′�
z)),

0 ∼ v−1(1 + v2)(χt (ρ
�
z ) + χt (σ

�
z )).
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4.17. Let z, t ∈ NJ . Let tK
+
J = ∑

C ′∈CS(L) N[v, v−1]C ′
t . From 3.5(d) we have (for

C ∈ CS(L)):

χt (C
�
z ) =

∑

C ′∈CS(L), j ′∈Z
dim ′VC ′,C

t,z, j ′ v
j ′C ′

t ,

hence
(a) χt (C

�
z ) ∈ tK+

J .

Using (a) we can extract from the formulas in 4.16 the following facts about χt (C
�
z ).

(As in 4.16 we set ζ = v−l(z)+l(t)).
If (t, z) are as in 4.4, then

χt (ρ
�
z ) ∼ ζρt , χt (σ

�
z ) ∼ ζσt , χt (σ

′�
z) ∼ ζσ ′

t , χt (θ
�
z ) ∼ ζθt .

If (t, z) are as in 4.5, then

χt (ρ
�
z ) ∼ ζv2σt , χt (σ

�
z ) ∼ ζv2ρt , χt (s

′�
z) ∼ ζv2θt , χt (θ

�
z ) ∼ ζv2σ ′

t .

If (t, z) are as in 4.6, then

χt (ρ
�
z ) ∼ ζ(v2 + v4)σt , χt (σ

�
z ) ∼ ζ(v2 + v4)ρt ,

χt (σ
′�
z) ∼ ζ(v2 + v4)θt , χt (θ

�
z ) ∼ ζ(v2 + v4)σ ′

t .

If (t, z) are as in 4.7, then

χt (ρ
�
z ) ∼ ζv4ρt , χt (σ

�
z ) ∼ ζv4σt , χt (σ

′�
z) ∼ ζv4σ ′

t , χt (θ
�
z ) ∼ ζv4θt .

If (t, z) are as in 4.8, then

χt (ρ
�
z ) ∼ ζ(v4ρt + v6σ ′

t ), χt (σ
�
z ) ∼ ζ(v4σt + v6θt ),

χt (σ
′�
z) ∼ ζ(v4σ ′

t + v6ρt ), χt (θ
�
z ) ∼ ζ(v4θt + v6σt ).

If (t, z) are as in 4.9, then

χt (ρ
�
z ) ∼ ζ(v2σt + v4θt ), χt (σ

�
z ) ∼ ζ(v2ρt + v4σ ′

t ),

χt (σ
′�
z) ∼ ζ(v2θt + v4σt ), χt (θ

�
z ) ∼ ζ(v2σ ′

t + v4ρt ).

If (t, z) are as in 4.10, then

χt (ρ
�
z ) ∼ 0, χt (σ

�
z ) ∼ 0, χt (σ

′�
z) ∼ 0, χt (θ

�
z ) ∼ 0.

4.18. Let z, t ∈ NJ . Using the results in 4.17 we see that
(a) χt (ρ

�
z ) − χt (σ

�
z ) − χt (σ

′�
z) + χt (θ

�
z ) ∼ Xt,z(ρt − σt − σ ′

t + θt ),

where Xt,z ∈ A is as follows:
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Xt,z = v−l(z)+l(t) if (t, z) are as in 4.4;
Xt,z = −v−l(z)+l(t)v2 if (t, z) are as in 4.5;
Xt,z = −v−l(z)+l(t)(v2 + v4) if (t, z) are as in 4.6;
Xt,z = v−l(z)+l(t)v4 if (t, z) are as in 4.7;
Xt,z = v−l(z)+l(t)(v4 − v6) if (t, z) are as in 4.8;
Xt,z = −v−l(z)+l(t)(v2 − v4) if (t, z) are as in 4.9;
Xt,z = 0 if (t, z) are as in 4.10.
It follows that
Xt,z = ε(z)ε(t)v−L(z)+L(t) if (t, z) are as in 4.4, 4.5 or 4.7;
Xt,z = ε(z)ε(t)v−L(z)+L(t)(1 + v2) if (t, z) are as in 4.6;
Xt,z = ε(z)ε(t)v−L(z)+L(t)(1 − v2) if (t, z) are as in 4.8 or 4.9;
Xt,z = 0 if (t, z) are as in 4.10.

4.19.DefineH, pt,z as in 0.1 in terms ofW = NJ ,L. According to [12, 7.6] we have:
(i) pt,z = v−L(z)+L(t)(1 + v2) if z = e f e and t ∈ {∅, e};
(ii) pt,z = v−L(z)+L(t)(1 − v2) if z = f e f and t ∈ {∅, f };
(iii) pt,z = v−L(z)+L(t) if t ≤ z in the usual partial order of NJ with (t, z) not as in

(i),(ii);
(iv) pt,z = 0 if t �≤ z.

We can now restate the result in 4.18 as follows.

χt (ρ
�
z ) − χt (σ

�
z ) − χt (σ

′�
z) + χt (θ

�
z ) ∼ pt,zε(z)ε(t)(ρt − σt − σ ′

t + θt ).

We see that Conjectures 1,2,3 in 3.11 hold in our case.
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