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Abstract Let H be a Hecke algebra arising as an endomorphism algebra of the
representation of a Chevalley group G over F;; induced by a unipotent cuspidal repre-
sentation of a Levi quotient L of a parabolic subgroup. We assume that L is not a torus.
In this paper we outline a geometric interpretation of the coefficients of the canonical
basis of H in terms of perverse sheaves. We illustrate this in detail in the case where
the Weyl group of G is ot type B4 and that of L is of type B>.
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Introduction

0.1. Let VW be a Coxeter group such that the set K of simple reflections of W is
finite. Let [ : YW—N be the length function and let £ : W—N be a weight function
that is, a function such that L(xy) = L(x) + L(y) whenever x,y € W satisfy
I(xy) = I(x) +I(y). Let A = Z[v, v~'] where v is an indeterminate. The Hecke
algebra of W (relative to £) is the free .A-module H with basis {7;; z € W} with the
associative algebra structure defined by the rules (7; +v @ (T, —v£@) = 0ifz € K
and 7, = 7,7, whenever x, y € W satisfy [(xy) = [(x) 4+ I(y). Let {c;; z € W)}
be the basis of  defined in [12, 5.2] in terms of W, L. We have c; = >, oy pr.: T
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where p; , € Z[v~']is zero for all but finitely many 7. In the case where H is split that
is £ = [, we have p; . (v) = v @D p, (v2) where P, is the polynomial defined
in [6]; in this case, p;, can be interpreted geometrically in terms of intersection
cohomology (at least in the crystallographic case), see [7], and this interpretation has
many interesting consequences.

In this paper we are interested in the case where H is not split (and not even qua-
sisplit, in the sense of [12, 16.3]). As shown in [8,9] (resp. in [11]), such H, with
WV a finite (resp. affine) Weyl group, appear as endomorphism algebras of represen-
tations of Chevalley groups over F; (resp. F;((€))) induced from unipotent cuspidal
representations of a Levi quotient of a parabolic (resp. parahoric) subgroup. Our main
goal is to describe the elements p; ; coming from (nonsplit) 7 which appear in this
way in representation theory, in geometric terms, involving perverse sheaves. In this
paper we outline a strategy to achieve this goal using geometry based on the theory
of parabolic character sheaves [13], and we illustrate it in detail in the special case
where H is the endomorphism algebra of the representation of S Og(F,) induced from
a unipotent cuspidal representation of a Levi quotient of type B» of a parabolic sub-
group. (This is the smallest example in which some p; , can be outside N[v~!]. This
‘H is of type By with L taking the values 1 and 3 at the two simple reflections.) The
main effort goes into computing as much as possible of the cohomology sheaves of
parabolic character sheaves in this case. (For this we use the complete knowledge of
the polynomials Py ,, for the Weyl group of type By, the knowledge of the multiplicity
formulas for unipotent character sheaves on SOs and some additional arguments.)
Eventually the various p; ; can be reconstructed from the information contained in
the various cohomology sheaves of parabolic character sheaves. I expect that similar
results hold for all H appearing as above from representation theory. (A conjecture in
this direction is formulated in 3.11. It makes more precise a conjecture that was stated
in [12, 27.12] before the theory of parabolic character sheaves was available.)

0.2. Notation If X is a finite set, § X denotes the number of elements of X. Let 2X be the
set of subsets of X. If I is a group, " isasubsetof and y € ', weset 'I" = yI'y L.
Let k be an algebraically closed field. All algebraic varieties are assumed to be over k.
If X is an algebraic variety, D(X) denotes the bounded derived category of Q;-sheaves
on X (I is a fixed prime number invertible in k). We will largely follow the notation
of [2]. If K € D(X) and A is a simple perverse sheaf on X, we write A 4 K instead
of: ”A is a composition factor of eajeZPHj(K)”. For K € D(X), n € Z we write
K (n) instead of K[n](n/2) (shift, followed by Tate twist). If f : X—7Y is a smooth
morphism of algebraic varieties all of whose fibres are irreducible of dimension d and
K € D(Y), we set f*(K) = f*(K){d).If X is an irreducible algebraic variety, | X|
denotes the dimension of X. For any connected affine algebraic group H, Uy denotes
the unipotent radical of H. If k is an algebraic closure of a finite field F; and X is
an algebraic variety over k with a fixed F,-structure, we shall denote by D, (X) the
bounded derived category of mixed Q;-complexes on X.

Assume that C € D(X) and that {C;;i € Z} is a family of objects of D(X). We
shall write C < {C;; i € 7} if the following condition is satisfied: there exist distinct
elements iy, i2, ..., iy in Z, objects C} e D(X)(j =0,1,...,s) and distinguished
triangles (C;;], C}, Ci;) for j = 1,2,..., s such that Cy =0, C; = C; moreover,
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Ci =Ounlessi = i; forsome j € [1, s]. The same definition can be given with D(X)
replaced by D, (X).

1 The variety Z; and its pieces *Z;

1.1. We fix an affine algebraic group G whose identity component G is reductive; we
also fix a connected component G' of G. Let B be the variety of Borel subgroups of
G. Recall that the Weyl group W of G naturally indexes the set of G-orbits of the
simultaneous conjugation action of G on B x 3. We write O,, for the G-orbit indexed
by w € W. Letl : W—N be the length function w — [(w) = |Oy| — |O1]; let
I = {w € W;Il(w) = 1}. Recall that (W, I) is a finite Coxeter group. Let < be the
standard partial order on W. For any J C I let W; be the subgroup of W generated
by J; let w/ (resp. JW) be the set of all w € W such that [(wa) = [(w) +1(a) (resp.
l(aw) = I(a) + I(w)) foranya € Wy.ForJ c I, K C I,let KW/ = Kwnw’/.
Any (Wg, Wy)-double coset X in W contains a unique element of ¥ W/ denoted by
min(X).
We define an automorphism § : W— W by

(B,B)€ 0,, g€ G = (¢B,%B’) € Os().

We have §(I) = I. For J C I we write °J instead of §(J); let Ny s be the set of all
w € W such that wJw~! = %J and w has minimal length in wW,; = W;s,w. We

8
have Ny s C /W7,

1.2. Let P be the set of parabolic subgroups of G. For P € P we set Bp = {B € B;
B C P}.Forany J C I let Py be the set of all P € P such that

{weW:(B,B) €O, forsome B, B € Bp} = Wj.

IfJ cland P € Py, g € G!, then 8P € Ps;. We have P = UyciPy, Py = B,
P; = {G}. For B € B, J C I, there is a unique P € P, such that B C P; we set
P=Bj.ForJ,K CI,P € Pk, Q€ Py, the set

{w e W; (B, B') € Oy for some B € Bp, B’ € By}

is a single (Wg, W;)-double coset in W, hence it contains a unique element in Kw/
denoted by pos(P, Q). We set P2 = (P N Q)Up. We have P2 ¢ Pknadw)s where
u=pos(P,Q)and Upp = Up(P NUgp) hence

Upel = 1P NUg| + [Up| — |Up N Ug].

Note that the condition that P, Q contain a common Levi subgroup is equivalent to
the condition that Ad(u~')K = J; in this case we have P¢ = P, 9 = Q.

1.3. Let J C I. Following Bédard [1] (see also [13, 2.4, 2.5]), for any w € BJW we
define a sequence J = Jp D J1 D J» D ...in 2! and a sequence wq, Wi, ... in W
nductively by
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Jo=1J,

Jn = Jn-1 N8~ (Ad(wy—1Jp-1)), forn > 1,

w, = min(Ws ;jwW,, ), forn > 0.

Forn > Owehave J, = J,41 =+ and w, = wy41 = ---; we set J& = J, for
n > 0 and weo = w, forn > 0.

According to loc.cit., this gives a bijection « : g W7 (J, 8) where T (J, ) is the
set consisting of all sequences (J,,, w,),>0 in 21 x W where

Jn = Jn-1 087 (Ad(wy—1)Jp-1) forn > 1,

w, € 2 W forn > 0,

w, € wy,—1 Wy, , forn > 1.

The inverse bijection 7 (J, 5)—>SJW is given by (J;,, Wy)n>0 = Weo-

Assume that w € "/ W. We have JY = S_I(Ad(w)Jo’g). Hence there is a well
defined Coxeter group automorphism 7, : Ws 12y~ Wi u) given by x — 1, (x) =
w8*1(x)w’1.

1.4.Let J C I. We set

Z‘]:{(P’P/vg)elp‘lXPSJXGl;gP:P/},
Z; ={(P,P'.gUp); P € Py, P' € Ps; gUp € G'/Up, 8P = P'}.

The variety Z; is the main object of this paper. (In [13, 3.3] Z 7, Zj are denoted
by Z;5, Z71.5.)

Now G x G actson Z; by (h, h') : (P, P, g) — ("P, Wp, hW'gh~') and on Z,
by (h, k') : (P, P, gUp) — ("P, WP W gh U p)- In this paper we shall restrict
these actions to G viewed as the diagonal in G x G. Letej : Z 7— Z j be the obvious
map (an affine space bundle).

Following [13] we will define a partition of Z; into pieces indexed by .

To any (P, P', g) € Z; we associate an element wp, p g € W by the requirements

(1),(ii) below. (We set z = pos(P’, P) € 8y w')
. » »
(i) wp prg = wp pr Where P = P° P = (¢ PN PYUp € Prosiiadens
P =P e Ps jnad)Js
(i) wp prg =2zifz € Nys.

These conditions define uniquely wp p/ o by inductionon #J.1f z € Ny 5 (in particular
ifJ = 0),then wp p' ¢ is given by (ii) (and (i) is satisfied since Py = P).1fz ¢ Ny s,
then #(J N8~ 1(Ad(z)J)) < #J and wp, p o is determined by (i) since Wpy Pl g is
known from the induction hypothesis.

From the definitions we see that the map ZJ—>W, (P,P,g) — wp pr g is the

~ —1
composition Z;—7 (J, S)K—/SJW (the first map is as in [13, 3.11]); in particular for
any (P, P, g) € 7 we have Wp prg € SJW, wp p o € Wsypos(P’, P)W,. For any

§
w e JW,WGSGt
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ij = {(P, P’7g) IS Zj; Wp prg = w},
YZy={(P,P',gUp) € Zj;wp pr g = w}.

The subsets {*Z;; w € g W} are said to be the pieces of Z; they form a partition of

Z ;. The subsets {"Zjwe K W} are said to be the pieces of Z; they form a partition
of Z;. Wehave VZ; = ejl(wZJ), wzZy=e;("Zy),and Y Z;, W Z are stable under
the G-actions on Z], Zj.

1.5.Letz e /W’ andlet @ = Ws ;zW;. Weset J; = J N8~ (Ad(z)J). Let
Zja={(P, P g) e Z;;pos(P, P) =z},

a locally closed subvariety of Z;. Let
Z5 o=10.0".9) € Zy:pos(Q’. Q) € zW,},

a locally closed subvariety of 7 J;- By [13,3.2],
@ &:Zs0>Z) g (P.P.g) > (P, P,g) where P{ = P'P Py =% P|

is a well defined morphism; by [13, 3.6],
(b) @ is an isomorphism. Let

Zjo={(P, P gUp) e Zy;pos(P', P) =z},

a locally closed subvariety of Z;. Let
Z5 o =10.0Q. gUp) € Zy;: pos(Q'. Q) € zW,},

a subvariety of Z,,. Now & induces a morphism « : Z; o— Z;l o given by

(¢c) (P, P',gUp) — (P1, P{, gUpr where P| = PP p = gflPl’. From [13, 3.7-
3.10] we see that

(d) « is an affine space bundle with fibres of dimension |Up N P'| — |Up N Up/| for
some/any (P, P") € Pj x Ps; such that pos(P’, P) = z.

§
Next we note that for w € "/ W such that w € 2, we have
Y7y CZ19."2s CZ10." 21, C Ly 0. 2y C L} o

(We use that w € zW;.) Using the definitions we have
© "Zy=a'"Zy)," "2 =a (" Zy).

Moreover, using (b), (d) we deduce: ~
() a restricts to a bijection ¥y, V" Zj—"Zy,;
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(g) « restricts to amap Uy : W Zj—"Zy, all of whose fibres are affine spaces of
dimension |Up N P'| — |Up N Up:| for some/any (P, P') € Py x Ps; such that
pos(P’, P) = z.

Proposition 1.6 Let J C I, w € "/ W. Definez € /WY by w € zW".

(a) YZj (resp. “Zy) is a smooth irreducible locally closed subvariety of Z (resp.
Zj) of dimension l(w) + |G| (resp. l(w) + |G| |73]|).

(b) Let J1 = J NS~ YAd()J). Then 1?1 w - ZJ—>w211 (see 1.5(f)) is an isomor-
phismand ¥y, 1 Y Z;—" 7, is a smooth morphism all of whose fibres are affine
spaces of dimension [Py | — |Py|.

Assume first that z € Nj 5. Then z = w and
YZy={(P,P'.g) € Zy;pos(P', P) =z}
(resp. YZ; = {(P, P', gUp) € Zj; pos(P’, P) = z}) is the inverse image of
Yy ={(P,P)ePyx Ps s pos(P’, P) =z}

under the obvious map Z;—>P; x Ps g (resp. Z;—P; x Ps;), a smooth map with
fibres isomorphic to P (resp. P/Up) for P € P;. Since *Y; is smooth, irreducible,
locally closed in P; x Ps;, of dimension [(z) + |P|, it follows that in this case wz J
(resp. ¥ Zy) is a smooth, irreducible, locally closed subvariety of Z J (resp. Zj) of
dimension /(z) + |Ps| + | P| (resp. [(z) + |Ps| + |P/Up|). Thus (a) follows in this
case.

If z ¢ Njs then, setting J; = J N S’I(Ad(z)J) we have 1J; < #J and we can
assume that (a) holds when J is replaced by Ji. Using 1.5(e),(b),(d) we deduce that
wz J (resp. WZy) is a smooth irreducible locally closed subvariety of Z J (resp. Zy)
of dimension /(w) + |G| (resp. [(w) + |G| — [Py, | + |[Up N P'| — |Up N Up:| for
some/any (P, P’) € ?Y;). To complete the proof of (a) it is then enough to note that
[“Z;| =|"Zs| —|Ps|. The proof above shows that

Pyl —=1Psl=1UpNP'|—|UpNUp|

for some/any (P, P’) € Y.
Now (b) follows immediately from (a) using 1.5(e), (b), (d).

1.7. Examples. In the case where J = I we can identify Z; = G!. It has a unique
piece, 1 Z; = Z;. In the case where J = , Z is a torus bundle over B%. The pieces
of Z; are the inverse images of the G-orbits O,, (w € W) under Z;— 2.

Assume now that G = G = GL(V) where V is a k-vector space of dimension 3.
We can identify the projective space P (V) with P, for a certain 1-element subset J
of I. Then Zj becomes the set of triples (L, L', g) where L, L’ are lines in V and
g € GL(V)carries L to L'; since L is determined by L, g we can identify VA 7 with the
set of pairs (L, g) where Lisalinein V and g € GL(V).Foranyr € [1, 3] let’ZJ be
the set of all (L, g) € ZJ such that L, gL, gzL, ... span an r-dimensional subspace.
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Then the subsets” Z; (r € [1, 3]) are exactly the pieces of Z;.Now Z becomes the set
of quadruples (L, L', y, ) where L, L' arelinesin Vandy : L>L',7 : V/L—>V/L’
are isomorphisms of vector spaces. Let 1z, = {(L,L',y,y) e Z;; L=1L"}. Let?Z;
be the setof all (L, L', y,7) € Z; suchthat L # L' and y carries the image of L’ in
V/L to the image of L in V/L'. Let3Z; be the set of all (L, L', y, 7) € Z such that
L # L’ and such that the following holds: denoting by L the image of L’ in V/L, by
L' the image of L in V//L', and setting L, = 7~ '(L}) ¢ V/L,L = (L) C V/L/,
wehave Ly # Ly (hence Ly # L) and (L1 & Ly) = Ly ® L,. Then'Z,,%22,,3Z,
are exactly the pieces of Z;.

Assume now that G = G = § p(V) where V is a k-vector space of dimension 4
with a given nondegenerate symplectic form (, ). We can identify the projective space
P(V) with P for a certain 1-element subset J of I. Then Z; becomes the set of
triples (L, L', g) where L, L' are lines in V and g € Sp(V) carries L to L'; since L’
is determined by L, g we can identify Z; with the set of pairs (L, g) where L is a line
inV and g € Sp(V).

Forr € [1, 2] let’ZJ be the setof all (L, g) € ZJ such that L, gL, gzL, ... span
an r-dimensional isotropic subspace of V and let " Z’J be the set of all (L, g) € Z;
such that (L, gL) = (L, g*L) = --- = (L,g" " 'L) = 0, (L, g"L) # 0. Then the
subsets " Z T, ’Z/J (r = 1, 2) are exactly the pieces of 7 J.

Now Z; becomes the set of quadruples (L, L', y, y) where L, L’ are lines in V
and y : L—L’ is an isomorphism of vector spaces and y : L+/L>L'‘/L is a
symplectic isomorphism. Let ' Z; = {(L, L', y,7) € Z;; L = L'}. Let 2Z; be the
setofall (L, L', y,7) € Z; suchthat L # L', (L, L’) = 0 and y carries the image of
L'in L*/L to the image of L in L't /L' Let>Z, be the set of all (L, L', y, 7) € Z;
such that L # L', (L, L) = 0 and 7 does not carry the image of L’ in L*/L to
the image of L in L'Y/L". Let 'Z/, = {(L, L', y,7) € Z;; (L, L’) # 0}. Then the
subsets 1 7,27, 2Z’J, 1Z’J are exactly the pieces of Z.

1.8.LetJ C I. Let
B% ={(B, B',gUs,); (B, B') € B*,gUp, € G'/Up,,*B = B'};
this is well defined since Up, C B. Define 7y : B5—Z, by
(B, B', gUg,) + (By, Bs, gUg,).
For any y € W let
Bj, ={(B.B'.gUs,) € B}: (B, B)) € Oy},

andletmy y : B%y vy~ Z j be the restriction of 7t 7. The statements (a),(b) below can be
deduced from [13, 4.14].

(a) Forany w € 5JW, the image of 7y -1 : B2

y w71—>ZJ is exactly Y Z j.



1960 G. Lusztig

s . ;
b)) If we 'Wandx € Wi gy then the image of wy -1, : Biwi]x—>ZJ is
contained inVZ.

Note that (a) gives an alternative description of ' Z j as the image of 7 ;-1

1.9.Let J C I and let w € JW. In [5, 4.6] it is shown that the closure of ¥ Z;
in Z; is equal to U,y catyy. <" Z Where w' <; w is defined by the condition:
S(u)yw'u"" < w for some u € Wy.

2 Unipotent character sheaves on Z; and on *Z

2.1.Let J C I.Fory € W we set K§ = (nj,y)g(_)l € D(Zy). A unipotent character
sheaf on Zj is by definition a simple perverse sheaf A on Z; such that A — K§
for some y € W. This is a special case of what in [13] is referred to as a parabolic
character sheaf. Let CS(Z ) be the collection of unipotent character sheaves on Z ;.
In the case where J = I, we can identify Z; = Z; with G!. Hence there is a well
defined notion of unipotent character sheaf on G'. In this case, for y € W we have

Bi,={(B.B'.g)e BxBxG';B' =%B,(B,B) €0}

and 7y y : B2 7.y Z1 is given by (B, B',g) — g.
In the case where J = §J, for any y € W, 7, is the inclusion of

{(B,B',gUgp); (B,B") € Oy, g € G',$B = B}
into
Zy=1{(B, B, gUp); (B,B) e B*, g € G',B = B'}.

It follows that C S(Zy) consists of the simple perverse sheaves on Zy which are (up to
shift) the inverse images under Zg— 3% of the simple G-equivariant perverse sheaves
on B2.

2.2.Let J C I andletw € "/ W. We define a collection of simple perverse sheaves
CS(YZy) on WZ (said to be unipotent character sheaves on ¥ Z ) by induction on
gJ as follows. We set z = min(Ws ;jwWj).

Assume first that z € Ny s so that z = w. For any (P, P’) € *Y; we denote by
Sp.p the set of common Levi subgroups of P, P’; this is a nonempty set. For any
L € Sp_pr we denote by L the normalizer of L in G. Note that the identity component
of Lis L. Weset L' = {g € G1 ¢p=P ¢L=L)CL. Ifg,g' € L! then, setting
g = gh, we have h € PNLhence h € L; we see that L' is a single connected
component of L.We have a diagram

(a) L'<-G x L'S Zz,
where

ch,g)=g, c'(h,g)="P."P' hgh™'Uip).
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Now c¢ is a smooth morphism with fibres isomorphic to G and ¢’ is a smooth morphism
with fibres isomorphic to P N P’. By 2.1 (for L, L" instead of G, G') the notion
of unipotent character sheaf on L' is well defined. If A, € CS (I:l) then ¢X A,
is a simple (P N P’)-equivariant perverse sheaf on G x L' (for the free P N P’
actiona : (h, g) — (ha’],pr(a)gpr(a)’l) where pr : P N P'— L is the canonical
projection), hence it is of the form ¢’ * A for a well defined (necessarily G-equivariant)
simple perverse sheaf A on*Z ;. By definition, C'S(* Z ;) consists of the simple perverse
sheaves A obtained as above from some A; € CS (il). Note that A; +— A defines
a bijection between the set of isomorphism classes of objects in C'S (L") and the set
of isomorphism classes of objects in CS(*Zy). This definition of CS(*Z ) does not
depend on the choice of (P, P’) in *Y; and that of L in Sp_p since the set of triples
(P, P’, L) as above is a homogeneous G-space.

Next we assume that z ¢ N 5. Then, setting J; = JN8~1(Ad(z)J), wehave #J; <
gJ so that CS(* Z,,) is defined by the induction hypothesis. By definition, CS(*'Z )

consists of the simple perverse sheaves of the form ﬁfwA where A € CS(MZy,)

and U'; ,, is as in 1.6(b). Note that A +— ﬂfwA defines a bijection from the set of
isomorphism classes of objects in CS("Z,) and the set of isomorphism classes of
objects in CS(*'Zy).

This completes the inductive definition of CS(* Z;). Note thatif A € CS(WZy),
then A is G-equivariant.

23.LetJ C Iandletw € "/W.Let A € CS(*Z,). Let A® be the unique simple
perverse sheaf on Z; such that Alwy ; = A and supp(Au) is the closure in Z;
of supp(A). (Here supp denotes support.) Let CS’(Z) be the collection of simple
perverse sheaves on Z; that are isomorphic to A for some w, A as above. We show
that, if A € CS'(Z;) and A = A? with w, A as above, then
(a) w is uniquely determined,
(b) A is uniquely determined up to isomorphism.
Assume that we have also A = A’f where A’ € CS(¥'Z). Then supp(A) and supp(A”)
are dense in supp(A). Hence they have nonempty intersection. Since supp(A) C Y Zj,
supp(A’) C w'7, it follows that * Z, N¥' Z, # { so that w = w’. We have A|wzj >~
A, Alwz, = A hence A = A’

We now state the following result.

Proposition 2.4 Let J C I.

(a) We have CS(Zj) = CS'(Z)).

(b) Let w € SJW and let A € CS(Zy). Let A’ be a simple perverse sheaf on ' Z;
such that A" 4 Alwz,. Then A € CS(YZ)).

The proof of (a) appears in [13, 4.13, 4.17]. The proof of (b) appears in [13, 4.12].
We will reprove them here (the proof of 2.4(b) is given in 2.12; the proof of 2.4(a) is
given in 2.14). To do so we are using a number of lemmas some of which are more
precise than those in [13].

Lemma 2.5 Let J C I,z € Ny (sothatz € SJW). Lety € W and let A be a simple
perverse sheaf on *Z j such that A - K§|zzj. Then A € CS(Zy).
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Ify ¢ z_1W5J, then the image of m; , : B%J,—>ZJ is disjoint from *Z; hence
K?lz z, = 0. This contradicts the choice of A. Thus we must have y = z~ 1y’ for
some y' € Ws;. We fix (P, P’') € *Y;, L € Sp_pr (see 2.2). Let B, be the variety of
Borel subgroups of L. Let By v = {(B, B) € B2; (BUp/, B'Up:) € Oy}. We have a
cartesian diagram

where

E={(B.B.8) eBLxBLxL"igpg =p.(B.B) €Oyl
&h, (B, B, 8) =B, B8,
&(h. (B, B.g) = mPPUP n= hB'Uph™" hgh™" Uy py1),
fB.B. =g [f(h (BB .9 =g,
f"(B,B',gUs,) = (By, B;, gUs,)

and ¢, ¢’ are as in 2.2(a). It follows that ¢* Q; = C’*f,”Ql. (Both are equal to
£/Qu) We have £iQ; = K" (which is defined like K}, by replacing G, G, J, y by
A A — -1,/

L,L'%J,y)and f/Q; =K’ " |:z,. Thus we have

-1,/ g1
(@) *(Kj ¥ z,) = (K.

Since ¢ is smooth with fibres isomorphic to G and ¢ is smooth with fibres iso-
morphic to P N P/, it follows that

. —1,7/ . ro7
b) ¢* @, PHI(KS V|ez,) = c* @, PHI (KLY

sothat ¢* A o ¢*K”'iL' hence there exists a simple perverse sheaf C on L' such
that ’*A = ¢*XC and C 4 K*L'. Thus C ¢ CS(f,l) and from the definitions
we see that A € CS(*Zy). The lemma is proved.

2.6. For any y1, yp, y3in W and any i € Z we set

R! = H.({B € B; (B1, B) € O,,, (B, B}) € Oy,}, Q)

Y1,Y2,)3

where (B, B;) € O,, is fixed. This is a Q,-vector space independent of the choice of
(Bi1, By) (since G acts on Oy, transitively with connected isotropy groups).

For J C I.u € W we define ps, : " Zg—Z; by (B.B',g) — (By. B},.8)
and we set I~(‘; = (ﬁ‘]’u)!Q] € D(Z;); we have K‘; = e}KY.
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Lemma 2.7 Let J C I. Let y* € WSJ, Ve € Wy, y = y*y.. Let z € "W and let
Q= Ws; zW;. Weset Ji = J N8~ (Ad(2)J). Let @ : ZJ,Q;Z}I,Q be as in 1.5(b).

(a) In ID(Z_]’Q) we have

Ky ® &*(Ky/ *
J * Ji

N ~ i Yo JER PR .
|ZJ,Q ~ {RS—I(),*)’),*;),/), |Zj1,Q)[ l], y € W]»l € Z}

(b) Letw € QN “IW. Let Vjw: “)Z];“’ZJ1 be as in 1.6(b). In D Z ) we have

K§|wz‘, = {R:S*I(y*),y*;y’y* ® ﬁ;,w(K%y |wZJl )[—l], y/ € Wj,i (S Z}

(c) Inthe setup of (b) let Ty, : Wi (guy= Ws(gu) beasin1.3. Letx € Wi (ju). We have

-1 wlt, (x
Ky oz, =05, K] " z,),

We prove (a). Assume first that y~! ¢ €. In this case, the image of DJy: v Zy—7Z;

is disjoint from Z 7.9, hence I~(§| Zi0 = 0. Moreover, for any y' € W, the image of

Doy yy* oy~ Zy— Z, is disjoint from Z;l q- Wehave y*~! ¢ Q. If y*~ 1y =1 €

Ws;,zWy, then y*~! € Ws;, zW, C €, a contradiction.) Thus IN(zly* |+ =0and
J1.2

(a) holds.
We now assume that y~! € Q. We set

E} ={(B1.B.B].g) € BxBxBxG';(B1,B) € 051,
(B, B}) € Oy, By = ¥B1},

Y*_IW ~ N e B ~
Y 17y = nyewj(y} ) Zgy C Zg.

Note that 6 : E;—ﬂHZVJ, (B1, B, B}, g) — (B,%B,g) is a well defined isomor-
phism. Define k : EJ—>""'W/ Z; by (B, B, B}, g) — (B, B}, 2.

Now pyy : leg—)ZJ factors as 3’7IZVJ£>ZJ,Q—].>ZJ where j is the inclusion
and ¥ W Zy— Z, (restriction of p,) factors as vetwy Z@ij) Z;Qﬂ) 71, where ji
is the inclusion. We have a commutative diagram

VA 0 i j i
E} vz s 7,0 —L s 7,

{ |

14

J

7*—]W ~ =F ~
yTWa Z, Zh o —— Zy.

From the definitions we have

A\ [ s P PR .
Q1 ARG () ey © Iy Qul=ils Y € Wy, i € 2},
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< =1 5 *x—1 5. . . .
where jy : Y Zy—>"" Wi Z4 is the obvious inclusion. It follows that

YiaQr < {Rgfl(y*),y*;y/y* ® YjyQil—il; y' € Wy, i € Z},

that is,
a4 6Q <= {Rj;fl(y*),y*;y,y* @ Y jyQul—il; y € Wy, i € Z}.

Since 6 is an isomorphism we have 6,Q; = Q;; since & is an isomorphism we have
a*a) = 1, hence

$Qr = (R 1)) yoryye ®F Y Qul=ili Y € Wy i € Z).

Since j*ji = 1, jiji = 1 and ipQ; = (5,,,1Q; = K,

Jin Qi = (B yy Qi = K?,y ;
we have

JKG AR () ey @G KDLy € Wi € Z)

and (a) is proved.
We prove (b). We have a commutative diagram

~ h ~
wZJ —_— Z‘],Q

o «

~ hy =
ZJI ZII,Q

where h, h; are the inclusions. Applying /#* to the relation < in (a) we obtain
K)oz, & Ryt yooyye @ WK DI=iL Y € WyLi € Z),

Let 51,10 be as in 1.6(b). Using that h*a* j* = ﬁj’wh’fjl* and that jih : wZ]l—>Zjl
is the inclusion we obtain

~y N . ~ ,..y/y* .. .
KJ"‘”ZJ = {Réfl(y*),y*;y’y* ® ﬁj,w(KJI |ij1)[_l]’ y eWy,ielZ}

or equivalently

(€K Dlwz, < (RS 1 (30 yiyrye ® 95, (e, K Moz, =il y e Wy,iel).
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Letejy : wZJ—>“’ZJ (resp. ej,,w : “’Z,l—>“’ZJ])be the restriction of e (resp. ey,).
y y
We have (ejKJ)|,,,ZJ = ej’w(Kjlwzj) and

~* % y/y* ,..* % y/y* % % y/y*
07w (€], K )Iwzjl)=1‘/‘J,w((ejl,w(K,l lwz, ) = €7, 07, Ky vz, ),
hence

e (K lvz,) < (R} ® €5, 07, K oz, =il y € Wy.i € Z}.

L)y iy v

Applying (e ): and using that (ej,w)gej’w = (—2|Py|) we see that (b) holds.

We prove (c). We shall use notation in the proof of (a) with y* = w™!, y, = x,
y = w'x. We have 6~ (x)w~! = w1 (x). Since w=! € W' and 1, (x) € Wi,
we have

17 w™) = 1wty () = 1w ™) + (1, (x) = 1w™) +1(x)
=167 ) + 1w,

Hence if (Bq, B, B{, g) € E;, then B is uniquely determined by By, B{ and k is an
isomorphism of E } onto the subspace

ws H(x)~! 7y = ()~} wZ@

*= = ~ A = ~ ! . .
of YWy Zy. Hence we have jjio1¢16,Q; = jvnkiQ; = K;}I W Since 0 is an
_ — - ~ —1
isomorphism we have 6,/Q; = Q;. Hence jj1a1¢Q; = K;JI w0 Since Jijn =1,
— ~ —1 — ~ —
a*@ = 1 we deduce ¢»Q; = &*ij?l W We have jiQr = KY "X Since

j*ji = 1, we deduce $Q; = j*IN(?flx. Thus
J-*I'“(;)’lx _ &*J-I*K?flfw(x)
: .
Applying 2™ (notation in the proof of (b)) we obtain
swlx ok ~w*lrw(x)
Kj |ij :ﬁj’w(K‘]l |ijl)'
From this we deduce as in the proof of (b) that (c) holds. The lemma is proved.

Lemma28 Let J C I,w € “IW. Let y € W. Let A be a simple perverse sheaf on
WZj suchthat A4 (Ky|wz,). Then A € CS(WZy).

We argue by induction on /. Let z = min(Ws ;w Wy).
Assume first that z € Njgssothatz = w. If y ¢ z_1WsJ, then the image of
Ty B%)y—> Zy is disjoint from ' Z ; hence K”|wz, = 0. This contradicts the choice
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of A. Thus we must have y = z~ 'y’ for some y' € Ws ;- Then with the notation in
2.5(b) we have

C/* @j PHJ'(KZ*I};’MZJ) _ c* @] ij(Ky,;I:]),

Hence ¢’*A - c* & i H J (Ky/;il) and there exists a simple perverse sheaf A on

L! such that /*A = c¢*Ap and A; Kyl‘il. Thus A € CS(f,‘) and from the
definitions we see that A € CS(YZ).

Next we assume that z ¢ Njs. Then, setting J1 = J N 8§~ 1(Ad(2)J), we have
gJ1 < gJ. We can write uniquely y = y*y, as in 2.7. From 2.7(b) we see that

there exists y’ € W, such that A - 1?* (Ky el |wz " ) Hence there exists a simple
perverse sheaf A; on WZ;, such that A = 19 »A1 and Ay K |w Zy,- By the

induction hypothesis, we have A1 € CS(WZ}, ) Hence AeCS (“)Z ]) The lemma is
proved.

Lemma2.9 LetJ C Iandletw € ' W. Let A € CS(VZ)).

(a) There exists x € WS(Joug)) such that A - K771x|wzj.
(b) There exists x € Ws(];g) such that A* - K?_I". In particular, A* € CS(Zy).
Thus we have CS'(Z;) C CS(Z)).

We prove (a) by induction on §J. Let z = min(Ws jwWy). Let Ty, : Ws(]gé)%Wa(Jowo)
be as in 1.3.

Assume first that z € Ny 5 so that z = w and J = J. With notation in 2.2(a) we

have ¢’*XA = C*A1 where A € CS(L ) so that Ay 4 K% L for some x € Ws;.
Since

X PHIKY Mg = (057 H V)

(see 2.5(b)) we see that XA ~ ¢/*K¥ ¥|uz, hence A - K” *|uz,. Thus (a)
holds in this case.
Next we assume that z ¢ Nj 5. Then, setting J; = J N 8§~ 1(Ad(z)J) we have

f1J1 < gJ.Wehave A = 19J*wA1 where A; € CS(¥Z,). By the induction hypothesis,
there exists x € W) such that A; Kg’;lx |lvz,, . Hence

-1
A=05,40407, (K5 1z, ).

Using 2.7(c) with x replaced by 7, I(x), we deduce that A K? o
proves (a).

We prove (b). Let x be as in (a). Applying [14, 36.3(c)] with Y, Y’, C replaced by
wZr, 7y, K?ilx |wz,, we deduce that (b) holds. (We use the fact that, if i : Y Z;—Z;

is the inclusion, then i!(K?fl"lwzl) = K?il", which follows from 1.8(b).)

|wZ]. This
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2.10.Let J C I.Fory € W let (’_)y be the closure of O, in B2. The closure of Bg’ y in
B% is

B}, ={(B.B'.gUs,) € B}: (B, B') € Oy)}.

Let Ky, be the intersection cohomology complex of Bg’y with coefficients in Q;,
extended by zero on B — Bﬁ,y. LetK) = 7K, withr; : B5—Z, asin 1.8. For
yeWletty : B% y,—>B% be the inclusion. By [7] we have

@ Kys = (V) @1 Qu(=i)iy' € W,y < y.,i €2Z).
where V;, , are Qy-vector spaces such that

(b) Xz dimVy, v’ = Py, (v?) . .
and Py, is the polynomial in [6]. Applying 7 we obtain

© K = Vi, @K} (~i):y € W.y <y.ie2Z).
Note that

@ B3 | =1() + G| = |Py].

2.11.Let J C I and let A be a simple perverse sheaf on Z;. We show that conditions
(i),(i1) below are equivalent:

(i) AeCS(Z));

(i) We have A - K§ for somey e W.

Assume that (ii) holds. Then from 2.10(c) we see that A — K?l for some y' € W,
y' < y hence (i) holds. Conversely, assume that (i) holds. We can find y € W such
that A - K, for some y € W and such that A A K? forany y’ € W such that y’ < y.
Using this and 2.10(c) we see that (ii) holds. (We use that dim VS’ y= 1 and V; y= 0
fori #0.)

2.12. We prove 2.4(b). By 2.11, A is a composition factor of » H/ (I_(ﬁ) forsomey € W
and some j € Z. By the decomposition theorem, ” H/ (I_(ﬁ) is a semisimple perverse
sheaf and » H/ (I_(y)[— Jj]1is a direct summand of I_(} It follows that A[j] is a direct
summand of K. Hence A’ - K} |vz,. Using 2.10(c) we deduce that A’ K"JleZJ
for some y’ < y. Using 2.8 we deduce that A’ € CS(WZy). This proves 2.4(b).

Lemma 2.13 Let J C I. Let A € CS(Zy). There existw € ' W and A’ € CS(VZ,)
such that A = A'®. In particular, CS(Z;) C CS'(Z)).

The subsets {supp(A) N " Z;; w € " W} form a partition of supp(A) into locally
closed subvarieties. Hence we can find w € "/ W such that supp(A) N* Z; is open
dense in supp(A). We set A’ = A|wz,. Then A’ is a simple perverse sheaf on *'Z;
and A’ € CS(YZy) (see 2.4(b)). From the definitions we have A = A’%. The lemma
is proved.

214.Let J C I.Since CS'(Z;) C CS(Zy) (see 2.9(b)) and CS(Z;) C CS'(Zy)
(see 2.13) we see that 2.4(a) holds.
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2.15. For any J C [ and any w € 4w we choose (P, P') € Pyw x 735(]0%) and
a common Levi subgroup LY of P, P’. Define i“’, Lw! ag i, L' in 2.2 with J,L
replaced by JX, L. We shall denote by CS§ (L™ a set of representatives for the
objects in CS(i")l). ForC e Q(I:’“) we denote by C the object of CS(*'Zw) such
that ' *C = ¢*XC (where ¢, ¢’ are as in 2.5 with J replaced by J%); we set

Co=0K oK 9%  (C)eCS™Z))

woJraw T hw e

where (J,,, wy)n>0 = k(w). Then CE, := (Cy)" is defined as in 2.3; note that Cﬁj e
CS(Zy) by 2.4(a). From 2.4 and the definitions we see that

(@) {Cy;C e CS (iwl)} is a set of representatives for the isomorphism classes of
objectsin CS(YZy);

(b) {Cg,; w e BJW, C e Q(I:“’l)} is a set of representatives for the isomorphism
classes of objects in CS(Z ).

Let &, be the free A-module (A as in 0.1) with basis {Cg); w e (SJW, Ce Q(iwl)}.
Forw € /W let YR, be the free A-module with basis {C,,; C € Q(I:“”)}. Let
R(L™") be the free A-module with basis {C; C € CS(L™1)}.

Let§ — &, be the A-module isomorphism ﬁ(i“”):)wﬁ J such that C — C,, for
any C € CS(L™").

3 Mixed structures

3.1. In this section we assume that k is an algebraic closure of a finite field F, with ¢
elements and that we are given an F,-rational structure on G with Frobenius map F :
G— G such that F (G1y = G! and the restriction of F to G is the Frobenius map of an
F,-split rational structure on G. Then forany J C I, wehave P € P; = F(P) €
Py and P — F(P) is the Frobenius map of an F,-rational structure on P, ; moreover,
(P, P',gUp) — (F(P), F(P'), F(g)UF(p)) is the Frobenius map of an F-rational
structure on Z ;. For any w € W we have (B, B') € O, = (F(B), F(B')) € O,
and (B, B') — (F(B), F(B’)) is the Frobenius map of an F,-rational structure on
Oy. Forany J C I and any w € 5JW, WZy is a subvariety of Z; defined over
F,; we choose P, P', L" as in 2.15 in such a way that F(P) = P, F(P') = P/,
F(L") = LY, F(I:“”) = fw! (notation of 2.2 with J replaced by J¥). We shall
assume (as we may, by replacing if necessary g by a power of ¢) that for any J C I,
any w € SJW, and any C € Q(f,'“), we can find an isomorphism ¢¢ : F*C>C
which makes C into a pure complex of weight 0; we shall assume that such a ¢¢ has
been chosen. . B

LetJ C I,w e /W.For C e CS(L") let € € CS("Zu), Cyy € CS("Zy),
ng € CS(Zy)beasin?2.15. Then C~’, Cy, ng inherit from C mixed structures which
are pure of weight 0.
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3.2.Let J C I. Let w (resp. wy) be the element of maximal length in W' (resp. Wy).
Let Be B.Let P = B,y,, U = Us. Now U acts by conjugation on

U={B e B, pos([?, B) € oW},

an open subset of B. For any P € Py such that pos(1§, P) = wwy we define Bp x
U—U Dby (By,u) — uBju~"'. We show:

(a) This map is a bijection (in fact an isomorphism).

Assume that B’ € Bp, B” € Bp and u’ € U, u’ € U satisfy u’B’14”1 =u'B"u" .
Setting u = u"~ "W € U we have uB'u""! = B” hence uPu~! = P and u € P.
Now P, P are opposed parabolic subgroups so that P N U = {1}. Thus u = 1 so that
u' = u" and B" = B". We see that our map is injective. Let B € U. We have B € Bp:
where P’ € Py, pos(B P') = wwy. Now U acts transitively (by conjugatlon) on
{P, € Py, pos(B P1) = wwy} hence there exists u € U such that uPu~! = P’.
Setting B] = u ~1Bu we have B; € Bp and our map takes (Bj, u) to B; thus it is
surjective hence bijective. We omit the proof of the fact that it is an isomorphism.
Let L = P N P; this is a common Levi subgroup of P and P. Let S be
the identity component of the centre of L. We can find a one- parameter subgroup
A : k*—~S§ such that hm,._)o rOur@)™' = 1 for any u € U. We define an
action t : B — A(@)BA(H)~! of k* on U. (This is well defined since A() € E.)
Under the isomorphism (a) this action becomes the action of k* on Bp x U
given by t : (Bi,u) — (B1, A(Our(®)~Y). (To see this we must check that
AOuUrA@) " Bix@®u"A@)"" = A@)uBiu"'A(r)"! for By € Bp; this holds since
A(t) € Bi.) Now limyo(By, A(1)ur(t)~") = (By, 1) for any (B, u) € Bp x U.
Hence 7 : B — A(t)BA(r)~! is a flow on I/ which contracts I to its fixed point set
Bp. We have B x Py = Uycys O’y where (’)’y is the image of Biwj = Ugew, Oya
under the obvious map B x B— B x P;. This is exactly the decomposition of B x P
into G-orbits where G acts by simultaneous conjugation. Hence Biwl is a locally

closed subvariety of B2 forany y € W.

3.3.LetJ C I.Wenow fix y € W/.Let B C P beasin3.2. Let B € BB be such that
(B B)) € Oy, andlet P = (By)y; then pos(é P) = wwy. We define S, A in terms of
P P asin 3.2. We choose B* € B as follows: we note that 7} := BN Bj is a maximal
torus of G containing S (since S C B, S C By) and we choose B* so that T, C B*
and (B, B*) € O,,-1. We have S C B*. Since (B*, B) € Oyo, (B, B)) € O,
and B*, E, B\ contain a common maximal torus, we have (B*, By) € Oypw = Oy.
Hence for any B € Bp, we have (B*, B) € Oy, with a € W;. In other words, we
have Bp C Ugew, Byq, where for any z € W we set B, = {B € B; (B*, B) € O,}.
Asin 3.2, wesetld = {B € B; pos(1§ B) € wW/}. Note that Usew, Bys C U. (If
B € B satisfies pos(B*, B) € yW, then for some B’ € B we have pos(B*, B') =
v, pos(B’, B) € Wy, hence pos(B B’) = wand pos(B B) € ®Wj.)
Forz € W we set B, = {B € B; (B*, B) € O.}. Let w € W. We show:

(a) K |Bzw is pure of weight 0.
Wy
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Let £* be the intersection cohomology complex of B,, with coefficients in Qy; it
is naturally a pure complex of weight 0. Using the transitivity of the simultaneous
conjugation action of G on O} and the fact the fibre of 83W1—>O/y at (B*, P) € O,
may be identified with Bp, we see that it is enough to show that:

(b) £V |3, s pure of weight 0.

We can assume that B,,N\Bp # . Since B, N is open in BB,,, we have KV I, u =K
where K is the intersection cohomology complex of 3, NI/ and it is enough to show
that K|;3 5, is pure of weight 0 (recall that Bp C U).Forany z € W, B, NU is
stable under the k*-action ¢ : B — A(t)BA(t)~' on U (we use that A(r) € B* for
any t). Hence B,, N is stable under this k*-action on I{. Since the k*-action on U/
is a contraction to its fixed point set Bp and By, NU is closed in U and k*-stable, we
deduce that the k*-action on B,, N is a contraction to By, N Bp so that (b) follows
from the “hyperbolic localization theorem” [3]. This proves (a).

Proposition 3.4 Let J C I andletz € Ny 5.

(a) Fory e W, I_(ﬁ |2z, (with its natural mixed structure) is pure of weight 0.

(b) Ifw e SJW, Ce CS(I:”’I), then C5J|zzj (with its natural mixed structure) is pure
of weight 0.

We prove (a). We have *Z; = {(P, P, gUp) € Z;;pos(P’, P) = z}. We have a
diagram

2 c ~d
B 1W5 (—C“—)ZZJ

where & = {(B, B', gUs,) € B}; (B, B) € Usew;,0,-1,} and ¢(B, B/, gUp,) =
(B,B’), d(B,B',gUg,) = (By, ng, gUp,). Now E is the inverse image of *Z;
under 7y : B%—)Z ; and d is the restriction of 7 ;. Moreover 7, is proper hence
d is proper. Note also that ¢ is smooth. From the definitions we see that sz 7, =
dic* (K| B, " ). It remains to note that K| Bz " is pure of weight 0 (see 3.3(a)
with J replacedjby 3.J), that ¢* maps pure complexes :)f weight zero to pure complexes
of weight zero (since c is smooth) and dy maps pure complexes of weight zero to pure
complexes of weight zero (by Deligne’s theorem applied to the proper map d).

We prove (b). We can find y € W and j € Z such that Cw appears in ? H/ (K J)
(with mixed structures being not necessarlly compatlble) Since K) and K’ | 27, are
pure of weight 0 it follows that I’HJ(K ') and PH/ (K )|zz, are pure of welght j.
We can find a nonzero mixed vector space V of pure weight j such that V ® Cw isa
direct summand of ? H/ (K J) (respecting the mixed structures). Then V & Cw -z, is
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a direct summand of » H/ (I_(z) |-z, (respecting the mixed structures). Hence Cﬁ, l=z,
is pure of weight 0.

Remark. More generally for J C I,y € W, w € K W, we expect that K§|w z, (with
its natural mixed structure) is pure of weight 0.

35.LetJ C I.Lety € W. Since I_(ﬁ(|l§3’y|) is pure of weight 0, we have for any
jeZ:
eV . g
@ PHIK(B] ) = @,y cecsiim) Vrwc.i(i/2) @ Co
in D,,(Zy), where Vy ,, ¢, j are Q;-vector spaces of pure weight 0. Moreover, by
the relative hard Lefschetz theorem [2, 5.4.10], for any y, w, C, j we have:
(b) Vy,w,C,j = Vy,w,C,—j~
Hence if t € N 5, we have
_ _ . ) ~ .
(©) Kjliz, (1B 1) = {Vyucj® Chliz, (j);we W, CecCSA™),jeZ).

Since for w € SJW, Cﬁ,pzl is pure of weight O (see 3.4) we have
(d) Chliz, = VS ®Ci(j): € e (M), j' €N}

Lw,j

’ —_
in D,,(*Z;), where ’ Vtcw’i, are Q;-vector spaces of pure weight 0. Note that if

w =t € Ny;, we have C3}|tz‘, = C; hence ’Vtct,’j(; isQ;if C' =C, j' =0and
1v,C'.C

Vt,t,j’
=V ~ C/,C H o
KJliz, (1B3 ) = {Vyu,cj ® 'V, 5 @ Cl{j + ')

we' W, C eSS, eCS(L'Y), jeZ, j €N}
inD,,('Z)).

is 0 otherwise. From (c),(d) we deduce

(e)

3.6.Let J C I.Forany w € 6JW, Ce Q(iwl) and any K € D,,(Z;) we set
(CE:K)= Z (—1)7 (multiplicity of C in P H/ (K)p)(—v)" € A.
Jj.hel

Here, for any mixed perverse sheaf R, R, denotes the subquotient of R of pure weight
h. We set

@ x(K) =3, o0y cecsim)(Co: KICh € &y,
For any w € SJW, C e Q(£WI) and any K' € D,,,(WZ) we set

b) (Cp: K= j’hez(—l)j(multiplicity of Cy in PHI(K")p)(—v)" € A.
We set

xwK)=" D (Cy:K)Cye" Ry,
CeCs(L")

From 2.10(b),(c) we deduce for y € W:
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(© Xw(Ky(|BJ y|>)U|B” = Xw (K ) = Zy’eW;y’Sy PY’,y(Uz)Xw(K? ).
(We use that Vy/ , in 2.10(b) are pure of weight 0, see [7].)

Fort € Njs,w e Nys,C € CS(L™), we have

(d) Xt(Cw ’Z) ZC/ECS(L’I) C CC/
where

C:Zdim vEC i e N

t,aw,j’
j'eN

specializes to the polynomial Py ,, of [6] (in the case where J = {4, § = 1). Note
that CD,C,;’,C is 1ifr = w,C = C" and is in v~ !N[v~!] otherwise.

Fort € Nys,y € W we set
— -1
@ W =v "% @ES ).

37.LetJ Cl,z€ Nys,y € W.Foru € Ws ; we define KL Jike K7, by replacing
é, Gl J, y by iz’ izl, 8 J, u. We define

[l = v E (K2 € RAEF),  [u) = v IFx(RUET) € /(ED),
like X(K ') and X(K ) by replacmgG G', J,yby L3 L3 %) u.

From the proof of 2.5 we obtain:
Ify ¢ z7'Ws,, then x.(K}) = 0.1f y = z7'u with u € W, then

XK =ol# g e

CeCS(Lah

where f, ¢ € A are given by X(K“;]:ZI) =l zCECS(iZI) Ju,cC. Thus we have

(@) v 2l (KY) = v 11 G (R L)

Letz,t € N;. Using (a), 3.6(c), we see that for u € Ws; we have
_ 1 P
) % (K5 ) = Xew, twzetu Pt o1 0 A0y

Using 3.6(c) for L*! instead of G' we see that for u’ € Ws; we have

Wi= > Pus@)],

u”eWs ju” <u’
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hence

wWi= > P )]

u”eWs ju” <u’

where (P,, M/(vz)) is the matrix inverse to (P, (v?)) (with u’,u” in Ws ).
Introducing this in (b) we obtain

—1 2 2
© [z u](l) =ZM”EW5J (ZM’EWJ;M”SM/,FIu’SZ—'u PL;”,M’(U )Pflu’,zflu(v )) [u//]t-

3.8. Let H be the Hecke algebra of W. As an .A-module, H has a basis {T,; w € W}.
The multiplication satisfies (Ty + 1)(Ty — v2) = 0ifs € I, TyTy = Ty if
[(ww”) = I(w) + I(w"). For any J C I we define an A-linear map p; : H— H by

(@) wy(Ty) = Tafl(y*)Ty*

for any y € W where y* € w'/ , Y« € W5 are uniquely determined by y = y*y,.

Now let w € 5JW and let (J,, wy)u=0 = k(w). Let n9p > 0 be the smallest
integer such that J,,, = J,,,+1 = .... Let H,, be the Hecke algebra defined in terms
of Wi ) in the same way as H was defined in terms of W. The automorphism
Tw : Wi ];g)—>Wa( ) induces an algebra automorphism H,,— H,, (Ty, > Tz, (y) for
y € Ws Jgé)) denoted again by ty,.

We define a A-linear function e, : H—H,, by e, (Ty) = Ty, if y = wlyy,
Y1 € Ws(Jolg) and e,,(Ty) = 0 for all other y € W. For n > no we define an .4-linear
function Ey, ;., : H— H,, by

(b) Eyp yn(Ty) = ew(y,_y - nitn i (Ty)), (v € W).

(If n = nop = 0 we have Ey y ,(Ty) = ey(Ty).) We show that for y € W and
n > ng we have

©) Ew, 7 n+1 (Ty) = Tw(Ew,J,n(Ty))-

It is enough to show that for y € W we have

(d) ey (yp (Ty)) = tw(ew(Ty)).
We have y = y'y” where y/ € W' %)y e Ws(ju) and

€y (,I,Lj;g (Ty)) = €y (T5_| (") Ty/),

ey(Ty) = (Sy/’w—l Tyn.

Now T-1 (y//)Ty/ is an A-linear combination of terms T5y withy € W Jw ey (T5y) #
0, then yy’ € w_IWa(Jolg) = Wjolgw_l hence y/ = w~!. Thus, if y # w™!, both
sides of (d) are zero. Now assume that y’ = w~!. We have

ew(T(S*l(y”)Ty/) = ew(T(S*l(y“)wal) = ew(walTrw(y”)) = Trw(y”) = 1y (ew(Ty)).
This proves (d) hence also (c).

Proposition 3.9 Let J C I and let w € SJW; let n > ng (ng as in 3.8). Recall the
isomorphism ﬁ(i“’l):)wﬁj, &> &y in2.15. Fory € W we have

s Twl
(@) xuwK)) = 0D ey, X (KETy
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where ¢ (w, J) € Z is explicitly computable and f , € A are given by

Ew,J,n(Ty) = Z fy’,nTy’ € Hy,

)Y/EW(S(JC%)

see 3.8.

We argue by induction on fJ. Let z = min(Ws ;wW,). Assume first that z € N 5 so
thatz = wandng = 0.1f y ¢ 77! Wiy then, as in the proof of 2.8 we have K¥|wz, =0
hence xy, (Kﬁ) = 0. From the definition, in this case we have E; ; o(Ty) = 0. Using
3.8(c) we deduce that E ; ,(Ty) = 0 for any n > 0 hence (a) holds in this case. Thus
we can assume that y = z~'y’ with y’ € Ws ;. From the definition, in this case we
have E; j0(Ty) = Ty. Using 3.8(c) we deduce that for n > 0 we have E; ; ,(Ty) =

-1 ) 7z
t2(Ty) = Ten(y)- Using 3.7(a) we have x.(Kj *) = v?@)x (KL "), where

—1. —long/
$(z,J) = [FZ;| — |L?|. It remains to use that x.(K; ) = XZ(KZJ =0 )) which
follows from 2.7(c).
Next we assume that z ¢ Njs. Then, setting J; = J N 8§ 1(Ad(2)J), we have
gJ1 < gJ. We can write uniquely y = y*y, as in 2.7. From 2.7(b) we see that

X (K) = 07D g (KT

yew;

where Ty-1(,, ) Tyx = Zy’ewj gy Ty in H (with g, € A) and ¢'(w, J) € Z. By the
induction hypothesis we have

Ky/y* :v¢(ww/l) -, - (Kflqiuﬂ) ’
Xuw( I ) Z fy,n 1X w

VEWsu)
where

Ew,Jl,nfl(Ty/y*) = Z f}*’,n—lT)"’ € Hy

o7
y EWa(JOuOv)

and ¢ (w, J1) € Z. It follows that

) ’ ~ 5 Twl
s () = pf 00 DF0@I0 % g fo o ix (Ky -+ )w
VEW, §EWs )
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We have

Z g)”ﬁ/,n—lTi’ = Z gy’Ew,.h,n—l(Ty’y*)

YeEW, .Y eWs juw yew,
(Joo)
= Z gy’ew(,u],,,l e gy (Ty’y*))
yew,

= €y (,ufJn_l s R gy (T(Sfl(y*)Ty*))
= ew(lg,_y - g g (Ty)) = Evw g (Ty).
Thus (a) holds with ¢ (w, J) = ¢'(w, J) + ¢ (w, J1).
Proposition 3.10 Let J C I and let wj € Wy be as in 3.2. Let w € .

(a) If z € Ny 5, then I_(? 1‘S(w’)|zzj is a direct sum of complexes of the form Q;(j)
with j € Z.

(b) Let C = Qi{|L™]) € Q(iﬂ“). Then for some j € Z, Cg)(j) is a direct summand
of RY 0,

(c) If Cisasin(b)and z is as in (a), then C5,|zzj is a direct sum of complexes of the
form Q;(j) with j € Z.

We prove (a). Using 3.4(a) and 3.6(c) we see that it is enough to show that

> Py, 0 x(K)) € AQUIFZy1).

yeWw:;y <w 18(wy)

. 8 .
Since w—! € W"/, the last sum is equal to
2 yu
> Pyin, @) D X (K, )
VeW sy <w5(w;) ueWs ()

(We use a standard property of the polynomials Py ,.) Hence it is enough to show
that

> K € AQUIEZ )

uEW,g(_,)

for any y' € W'Y, By arguments in 3.7, the left-hand side is zero unless y’ = z~! in

which case it equals

°Z1-IL%| ( Ku;i“) _ |Zz/|—\w( (Ka(w,);zz'))
v = .
2 (x@sth). X

Zz
ue W‘S(J)
It remains to use that

X RPCED) € AQUILT)).
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We omit the proof of (b). Now (c) follows immediately from (a) and (b).

3.11. In this subsection we assume that G = G is simple adjoint, hence G' = G and
8 = 1. We fix J C I and we write Ny instead of Ny s = {w € W;wJw™" = J},
a subgroup of W with unit element e. We assume that J # [ and that we are given
a cuspidal object A of CS(L¢) (with L¢ as in 3.1). It follows that L modulo its
centre is simple or {1}. We will attach to each w € N a (not identically zero) map
w:CS (L*1Y—Z (said to be a cuspidal map) well defined up to multiplication by
+1. Let F, : L*— L* be the Frobenius map for an F,-rational structure on L¢ whose
action on the Weyl group W, of L¢ (or of L") is 1nduced by the conjugation action
of the connected component L"! of L™ on L¥ (see 2.15). As in [15] we identify
CcS (L") with cs(L¢, Fy), a set of representatives for the isomorphism classes of
unipotent representations of the finite reductive group (L¢)*». Then (,, becomes a
map ¢s (L€, Fy,,)—Z. Now A gives rise to a cuspidal object A,, of c¢s(L") and as
in [15] this corresponds to a unipotent cuspidal representation m,, of L (F,) (with
respect to a split Frobenius map). According to [10, 4.23], p,, has an associated two-
sided cell ¢ of W and it corresponds to a pair (x, r) where x is an element of a certain
finite group I" attached to ¢ and r is an irreducible representation of Z(x). Moreover,
c gives rise to a subset CS(L“’I)c of CS(L“’I) or equivalently to a subset cs (L, Fy)c
of cs(L¢, F,) in natural bijection [10, 4.23] with the set M = M(I" C I') defined as
follows: I' C T is a certain embedding of I" as a normal subgroup into a finite group
[ such that T/ T is cyclic of order < 3 with a given I'-coset I" ! whose image in '/ T
generates 1"/ r;MT C F) consists of all pairs (y, s) where y € I'! is defined up to
conjugation in I" and s is an irreducible representation of Zr(y), the centralizer of y
in I, up to isomorphism. Our function ¢,, is required to be zero on the complement
of ¢s (L, Fy)e, hence it can be viewed as a function ¢, : MT C f‘)—)Z. Let M(f‘)
be the set consisting of all pairs (y’, s’) where y’ € T is defined up to conjugation in
[ and s’ is an irreducible representation of Z5 (y"), the centralizer of y’ in f, up to
isomorphism. We can find an irreducible representation r" of Z(x) whose restriction
to Zr(x)isr.

Let {,} : M(T") x M(I")—Q; be the pairing [10, 4.14.3]. We define j,» : M(I' C
[)—Z by j(y,s) = {(x,r"), (v,s")} where s is an irreducible representation of
Z#(y) whose restriction to Zp(y) is s. Since x € I', j/(y,s) is independent of
the choice of s’. We can choose r’ so that j.(y,s) takes values in Q. We define
w:MT CcT)—>Zas cj,» where c is a rational number > 0 such that ¢,, takes values
in Z and there is no integer d > 1 dividing all values of t,,. In the case where I'/ T’
has order 1 or 3, ¢,, is unique. In the case where I'/ " has order 2, ¢,, is unique up to
multiplication by +1. We state some conjectures.

Conjecture 1. For anyt < z in N there is a (necessarily unique) X; ; € Z[v~"] such
that

> O =X u(C)

CeCS(LH),

forany C' € CS(L'")e where ®€ e N[v="] are as in 3.6.
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An equivalent statement is that in ' &, we have

> wOx(Chliz)=X: Y. u(C)C

CeCS(Lh), C'eCS(L1),

modulo 3. /e cgjin)—cs(in, ACtH

c’

Conjecture 2. For any t < z in Ny, the matrix (CIDM’C)(C, C)eCS(EM)exCS(iahy, 1S

square and invertible.

Foranyi € I — J we have i € Nj. It follows that w;uiw; = wjwjui € Ny
hence 7, = wjuiw; = wjw u; has square 1. It is known that N; together with
{ri;i € I — J}is a Coxeter group. Let a : W—N be the a-function of W, [, see [12,
13.6]. Fori € I —J wesetc; = a(xt;) —a(x’) where x, x” € c¢; this is independent of
the choice of x, x” by [12, 9.13, P11]. There is a unique weight function £ : N;—N
such that £(t;) = ¢; foralli € I — J. Hence the Hecke algebra H associated to N, £
and the elements p; ; (for ¢, z in N;) are well defined as in 0.1.

Conjecture 3. For any t < z in Nj we have X; ; = e; ;p; ; where ¢; ,, = £1.

4 An example

4.1. In this section we assume that we are in the setup of 3.1 and that G=G'=¢G
is simply connected; we also assume that W is of type Bs. We have § = 1. We
shall denote the elements of 7 as s; (i = 1,2, 3, 4) where the notation is chosen so
that (s150)* = (s253)° = (s354)°> = 1 and sisj = sy if i — j € {£2,%£3}. An
element w € W with reduced expression s;,s;, ... s;, will be denoted as i1is...i5.
In particular we write i instead of s;; the unit element of W is denoted by ¢. We set
J ={1,2} c I.The elements of / W are

7, 3,4,34,43,343, 3243, 32123, 321234, 321243, 432123,
3212343, 3432123, 4321234, 34321234, 32123432123, 321234321234.

Now N; := Ny 1 is the subgroup of W consisting of the elements

B,e =4, f =32123, fe = 321234, ef = 432123,
efe =4321234, fef = 32123432123, efef = fefe = 321234321234.

It is a Coxeter group (of order 8) with generators e, f which satisfy (ef)* = 1. We
define a weight function £ : N;—N by

N> 0,et— 1, f >3, fer>4,ef — 4, efer— 5, fef > T,efef — 8
and ahomomorphisme : Ny — {£1}bye(e) = 1,€(f) = —1. Note that £ coincides

with the weight function defined in 3.11 in terms of W, W; and the two-sided cell
c=1{1,2,12,21, 121, 212} of W,.
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If z € Ny, then the Weyl group of L* is W; = {4, 1,2, 12,21, 121,212, 1212}.
In our case we have L? = L%l Also L? is independent of z (in N;) up to an inner
automorphism; hence we can use the notation L instead of L*.

4.2. The objects of CS(L) can be denoted by 1, p, 0,07, 60, S. Here 1, p, o, o', S are
perverse sheaves on L with support equal to L which are generically local systems
(up to shift) of rank 1,2, 1, 1, 1; 6 is a cuspidal character sheaf on L. They can be
characterized by the equalities

W=1+2p+0+0"+S;

[1=04+v)(1+p+0);

2=+ v)(1+p+0);

(121 =v2(p+0 +0' +0)+ 1 +vH)21;

RI1=v2(p+0+0 +60)+ 1A+ vH)2%1;

[121] = W2 +vH (e’ +0) + (1 + vH) (1 + vH1;

[212] = (W2 +vH (o +0) + (1 +vH) A + vH1;

[1212] = (1 + v®)%(1 + vH1.

(Recall from 3.7 that for u € W; we have [u] = v"L‘X(I_(“;L).)

4.3. Let z,t € Ny, u € Wj. In our case the explicit values of Pt—lu/’z—lu(vz) in
3.7(c) can be found in the tables of [4]; moreover in 3.7(c) we have P‘;, u,,(vz) =

(—1)1(”/)“(””). Hence the coefficients of [z’lu](,) in 3.7(c) are explicitly known. In
subsections 4.4-4.10 we give for any z, ¢t in N the explicit values of [z_lu](,), with
u € Wy — {#, 1212}, as an A-linear combination of elements [u”], with u” € W;.
For&,& in'Ry; we write § ~ &' if & — &' € Al,.

4.4. Assume that (7, z) satisfies either + = z or that it is one of

(@, 4), (32123, 432123), (32123, 321234), (32123, 4321234),
(432123, 4321234), (321234, 4321234), (32123432123, 321234321234)

that is,

@.e). (f.ef). (f. fe).(f.efe). (ef efe). (fe.efe), (fef.efef).

Note that [(z) — [(t) = L(z) — L(1), €(2)e(t) = 1. From 3.7(c) we have
[z7' (12D = [121];,
[z7'212)]¢ = [212],,
27121 = [121,,
[z7'2Dl = [211,,
'@ = 21,
27" (D] = [1];.
Hence, using 4.2, we have
=1 (12D)]¢) ~ % 4+ v (G + o)),
[Z7'212)1¢) ~ W2 + v (O + o),
[2_1(12)](t) ~ v (o + o1 + 0/ +6)),
[ @Dy ~ v*(pr + 01 + 0/ +6)),
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2 D) ~ A+ v3)(or + 7)),
7' (D ~ A+ v3)(or + o).

4.5. Assume that (7, z) is one of

(9, 32123), (1, 432123), (4, 432123), (1, 321234), (4, 321234),
(32123, 321234321234), (432123, 321234321234), (321234, 321234321234),
(4321234, 321234321234), (432123, 32123432123), (321234, 32123432123)

that is, one of

@, 1), @.ef). (e.ef), @, fe). (e, fe),
(f.efef), (ef.efef). (fe.efef), (efe,efef). (ef, fef). (fe. fef).

Note that [(z) — I(t) = L(z) — L(t) + 2, €(z)e(t) = —1. From 3.7(c) we have
[z~ (12D)]¢y = v2[121], + [1212],,
[z7'212)]¢) = v*[2], + [1212];,
[z~ (12)]) = v?[12]; + [1212];,
[z7'2D]g) = v?[21], + [1212];,
™' @] = 12121,

[~ (D] = v?[1]; + [1212].
Hence, using 4.2, we have

[z~ A2D)]¢ ~ * +v0)(6; + o)),
[271212)]¢) ~ W* + vO) (or + 7)),
27110y ~ v* (o + 01 + 0] + 6)),
272Dy ~ v*(or + 01 + 0] + 6)),
7 @) ~ 0 +vH 6 + 0y,
7'My ~ @ +vH(or + 07).

4.6. Assume that (¢,z) is one of (¥,4321234), (4,4321234) that is, one
D, efe), (e, efe).

of

Note that [(z) — I(t) = L(z) — L(t) + 2 = —1, €(z)e(t) = —1. From 3.7(c) we

have
[~ (12D)]¢) = % + vH[121] + (1 +vD)[1212];,
I = * +vO)2] + (1 4+ v)[1212];,
D] = % +vhH[12] + (1 4+ v3)[1212];,
[7'@D1e = @ +vHI21] + (1 + v)[1212];,
7' @) = (A +vH)[212];,
[ (D] = @2+ vH1] + (1 + vH[1212];.
Hence, using 4.2, we have
[~ 12D]0y ~ % + v + o)),
[z7'212)]) ~ @* + v (A +v*) (o + o)),
7'y ~ * + 0O (o1 + 01 + 0/ +6)),
' @DI ~ @* + ) (o + 0y + 0] +6)),
'@ ~ A+ D)% + v + o),
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[z (DI ~ A + 02 + v (o + 7).

4.7. Assume that (z, z) is one of

(7, 321234321234), (4, 321234321234), (4, 32123432123)

that is, one of (0, efef), (e, efef), (e, fef).
Note that [(z) — I(t) = L(z) — L(t) + 4, €(2)e(t) = 1. From 3.7(c) we have
271 (12D = v*[121],,
[z7'212)]¢) = v*[212],,
[z71(12)]¢) = v*[12],,
[z7'2D]y) = v*[21],,
' @)1y = v*[21s,
[z (D] = v*[11,.
Hence, using 4.2, we have
712D ~ WO + 080, + o)),
[z7'212)]¢) ~ (° + v*) (6, + o),
A1y ~ vO(pr + 01 + 0/ +61),
=" @Dy ~ v®(pr + 01 + 0/ +60),
' @1 ~ * + 00 (o + o)),
[Z_l(l)](t) ~ *+ 0% (por + 07).

4.8. Assume that (¢, z) = (¥, 32123432123) that is, (4, fef).
Note that [(z) — [(t) = L(z) — L(t) + 4, €(z)e(t) = 1. From 3.7(c) we have
[z~ (12D = v®[1]; + v*[121];,

7' 212)]¢) = " +vO)[212],

D)) = * +vO)[12];,

2Dl = ' +v)[21];,

'@l = @ + 00121,

(7' (D] = v*[121]; + V(1]

Hence, using 4.2, we have

z7'12D]1e) ~ @8 + 0100 + 07) + W® + v®) (6 + o)),
271 212)]¢) ~ W* + 0O W? + v (6, + 0y),

' A1) ~ @W° + 0¥ (o + 01 + 0] +6)),
[z7'@D1g) ~ @° + 0¥ (or + 01 + 0] +6)),
7M@) ~ @* + O + ) (or + o)),

7'M ~ @8+ 08O + o)) + * + 10 (or + 7).

4.9. Assume that (¢, z) = (32123, 32123432123) that is, (f, fef).
Note that [(z) — [(t) = L(z) — L(t) + 2, €(z)e(t) = —1. From 3.7(c) we have
[z7'(12D]e) = vo[1], + v [121],,
2712121y = W* + vO)[2];.

7' (12)]¢) = @W* +vH[12],
z7'2D]e) = @ + vH[21],
7' = A +vH)[212],,
[z (D] = v2[121], + v2[1];.
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Hence, using 4.2, we have

[z7112D]) ~ @8 +v¥) (o + 0p) + (v* +00) (6, + o)),
2712121 ~ W* +vO)(1 + v))(ps + o)),

2 A1) ~ W* + 08 (o + 01 + 0] +6)),
z7'2DIg ~ * + 00 (o + 01 + 0] +6)),
2720 ~ A+ )@ + v + o),

7D ~ @+ 00O +0)) + 0 + v (s + 0p).

4.10. If (z, z) in Ny is not as in 4.4-4.9, then we have [z’lu](,) =0 foranyu € Wj.

411.Letz,t € Ny, u € Wy. We set

/ >z lu
[z ully = 2 (K5 B3 1, 1)

Using 2.10(d) we have

(@) [z 'ul,, = LT L 2] S T 105 W 10y S 1 o
o ulyy =v [z ulp =v [z7 ul.
LetC € CS(L) — {1}, lett,z € Ny and letu € W; — {@4, 1212}. From 4.4-4.10
we see that the following result holds:
(b) The coefficient of C; in [z_lu]/(t) is in N[v™']. More precisely, this coefficient
is:
1) Oor1+ v2if (t,z)isasin44witht # z,u € {1,2,121,212};
(i) in v IN[v ™ ift,z,u arenotasin (i) butt # z.

4.12.Letz,t € Nj,u € W;. Using 4.11(a) and 3.5(e) with y = z~'u we deduce

U*l(z)+l(t)*l(u)[zflu]([) _ Z Né,/t,uct/
C’eCS(L)

where

Z’t’u . . ’ C/,C i ./
N = Z dim V1w, ¢, dim "V, m v
we’/ W,CeCS(L), jeZ, ] eN

If z = t, in the previous sum we must have w = z. Note that dim ’VZCZ’JC/ = (0 unless
C = (’, j' = 0 and we have
@ N&™ =2 ez dim Voo, o o jv™/ . We show:

Proposition 4.13 Let z,t € Nj. Assume that 7 % t, j € Z, u € Wy — {#}, 1212} and
C' € CS(L) — {1}. Then V-1us,c,j = 0 (notation of 3.5).

We first note that if 7, z, u are as in 4.11(i), then from the definitions we have

1y,CC i, CLC
(a) Vt,z,l = Vz,z,O'

For £, &' in A we write £ > &' if & — &’ € N[v, v™']. Note that Né’f‘“ is > than the
corresponding sum in which (w, C, j’) is restricted
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to (¢, C',0) (if ¢, z, u are as in 4.11(i1));
to (z,C’,0) orto (z, C’, 1) (if t, z, u are as in 4.11(1)).
Thus

, - _ .
NG = Zdlm Vot jdim’ Vt . 0 /= Zdlm Vetusc,jv !
JEZ jezZ

(if t, z, u are as in 4.11(ii)) and

z,tu . c.c’
Ngw = Zdlm Vetuicj ;dim "V, 10V

JEZ
+ZdlmV 1y, ¢, dim ch/lclv =l ZdlmV Lyl dlthO v/
JEZ J€EZL
+ Zdlm Vo-1y e dim’ VZ . STl = Zdim Votypcor v v NG
JEZ jez

(if 7, z, u are as in 4.11(i)). (We have used (a) and 4.12(a).) If ¢, z, u are as in 4.11(i)),
we have Né}”” = v’lNé’/Z’” (see 4.4) and we deduce that

0> Zdim szlu’t,clij*];
JjeZ

hence V-1, ; ¢/ j =0 forall j. If 7, z, u are as in 4.11(ii)), we see using 3.5(b) that
the sum Zjez dim Vz_lu,‘,’c/’j v~/ is either zero, or

for some j, v/ and v=/ both appear in it with > 0 coefficient.

In the last case it follows that v/ and v=/ both appear in N5"* with > 0 coefficient.
This is not compatible with the inclusion N é‘,”” € v~ IN[v~!]. Thus we must have
ZjeZ dim(szlu,,’C/,j)v_j = O hence V-1, , v ; = 0 for all j. The proposition is
proved.

Proposition 4.14 Let z € Ny, u € Wy —{0,1212}, j € Z. Let t € 'W be such
that 8J1, < #J. Assume that C € CS(L'") is not isomorphic to Q;(|L'|). Then
V-tus,c,j = 0 (notation of 3.5(a)).

The existence of C guarantees that L is not a torus. Thus J/ consists of a sin-
gle element i (equal to 1 or 2) and L' has semisimple rank 1. Hence C is uniquely
determined and it appears with coefficient 1 in v I x (K% L'y and with coefficient

—1 in v_‘L[‘X(Ki'LI). Hence the coefficient of C; in v ~IB].5! Xt (K}) is explicitly
computable from 3.9(a) for any y € W. Using now 3.6(c) (in which the polyno-
mials Py y(vz) are explicitly known from [4]) we see that the coefficient of C; in
vf‘BJ Y Xt (Ky ) is expllcltly computable for any y € W. In particular, the coefficient

of C;inwv 15 1, Xt (KZ ") is explicitly computable. We find that this coefficient is

inv~!Z[v~!]. On the other hand this coefficient is equal to ez dim(szlu,,,C,j)v_j
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which is invariant under the involution v > v~! of .A. This forces dim(V-1,, ¢ ;)
to be zero for any j. The proposition is proved.

Proposition 4.15 Letz € Nj, u € Wy — {#, 1212}.
(a) We have

| — ~ )
K (B85 1) = Bcecsw-1).jezVetuzc. ® CEHJ) ® K’

,Z’1u|

where
K'Z®,crw jez Vi ® QL") ()

and Vw, j are certain Qq-vector spaces.
(b) Foranyt € Nj we have (with ~ as in4.3):
), ~ > dim(V,-1,, ;¢ v~ % (CH).
CeCS(L)—{1},j€Z

[z

(a) follows from 4.13, 4.14; (b) follows from (a) using 3.10(a).

4.16. In the setup of 4.15(b), the integers dim(V_-1, . ¢ ;) (with C # 1) can be
obtained from 4.4 (with t = z). Thus we can rewrite 4.15(b) as follows (recall that
z,t € Ny weset £ = v/ @H® and we take u € {1, 2, 121, 212}):

cv [z M21) ~ v 0P+ ) Ga00) + 3 (0D,
cv 2712121 ~ v 2 4 v (0 (09 + xi (),
cv 2 ~ v+ vz)(Xz(pf) + xt(o’ﬁ)),

cv 'z e ~ v A+ D) (e (08) + xe ().

Using now the formulas in 4.4-4.10 we deduce that the following hold.
If (¢, z) are as in 4.4, then

v+ 4+ 0) ~ v+ D) (0 (08) + xi (0D,
v+ G+ o) ~ v 0P+ v (6 (00) + 30D,
o A4+ 0D+ o)) ~ v A+ ) (D) + xi(0h),
co ' A+ v (o 4 1) ~ v A+ 0D (e (07) + x:(0D)).

If (¢, z) are as in 4.5, then

vt 006+ 0)) ~ v+ v (0D + 1 (0'h)),
w3+ 00 (o +0)) ~ v W+ v (008 + xi (o)D),
o @+ N6+ o) ~ v A+ v (08 + X0,
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v 2+ v (o + o) ~ v A+ v O (D) + xe (o).
If (¢, z) are as in 4.6, then

v+ vH2 O + o) ~ v+ 0 (609 + xi(0),
v A+ ) (o + 0) ~ v+ v 00D + xi(eh)),
v 1+ )2+ v + o) ~ v+ D) (6 (0)) + (0",
o A+ v+ v (o + o) ~ v A+ v (D) + xi(0D).

If (¢, z) are as in 4.7, then

v+ 8O + o) ~ v+ D) (e (08 + xi (07D,
v W8 + 080 + o) ~ v+ vH (09 + xi (0D,
o ' 00 (o + 0)) ~ v+ D) O (D) + xi(0'h)),

co 00 (or + o) ~ v A H VD) (D) + xi(0D).

If (¢, z) are as in 4.8, then

cv 3 (0 + 0" (or + 07) + V0 + 036 + 0))) ~ v W2+ v (1 (0F) + X (07h)).
v )2+ 0O + o) ~ v 0+ o) (0 (0D + xi(0D)),

o 0 A+ ) (o + 0)) ~ v+ D) O (08) + xi(0'D)),

co (O + 03O + ) + W+ 0O (o + 00)) ~ v+ 0D (e (0F) + xi(0D)).

If (¢, z) are as in 4.9, then

tv (W0 4+ v (o + 07) + W+ 00O +0)) ~ v P+ v e (0F) + xi(07).
v+ 0 A 0D (or + 0)) ~ v+ v (e (0F) + xi(ah)),

o 1+ v+ v O + o) ~ v A+ 0D (6 (D) + xi(0'h)),

o N+ 00O + o)) + WP+ v (o 4 01)) ~ v+ 0D (e (05) + xe(0D)).

If (¢, z) are as in 4.10, then

0~ v + vH (60D + xi(a'h),
0~ v+ v (09 + x: (0D)),
0~ v (1 + vt (pD) + xi(a'h).

0~ v (1 + vt (o)) + xi (o).
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4.17. Let z,1 € Ny. Let '&) = > crccsr) Nlv, v 1C;. From 3.5(d) we have (for

CelSW)):

x:(CY) =

>

-1y CLC
dim VI’Z!J.,U C,,

C'eCS(L),j'€Z

hence
(@) x/(C) € '8}

Using (a) we can extract from the formulas in 4.16 the following facts about x; (C E ).

(As in 4.16 we set ¢ = v~ L@+ ®)
If (¢, z) are as in 4.4, then

xi(PH) ~ ¢, xi(0h) ~ oy,
If (¢, z) are as in 4.5, then
xi(p5) ~ ¢vior,  xi(oh) ~ ¢vPpr,

If (¢, z) are as in 4.6, then

x(p2) ~ £ (v + vhHoy,
xi (0’3 ~ c(v? +vhe,,

If (¢, z) are as in 4.7, then
Xt(,Ozu) ~ §U4,0t, Xt(Uzﬁ) ~ §v40t,

If (¢, z) are as in 4.8, then

xt (9 ~ £ (v*p; +1%0)),
x(@'%) ~ ¢ (o] +0p),

If (¢, z) are as in 4.9, then

Xt (p5) ~ t(v?o; +v%6,),
X (@'%) ~ £ (%0, + vioy),

If (¢, z) are as in 4.10, then

xi(@'%) ~ o, x(©) ~ ¢6,.

X (8’8 ~ cv®6,, xi(6F) ~ ¢va].

X (@5 ~ ¢ +vhpr,
X (03 ~ c (0 + vho/.

xi(0'%) ~ cvio], x (67) ~ cv6,.

xi(02) ~ t (o, +0%6,),
Xt (09) ~ ¢ (v*0, + v%0y).

xi (@5 ~ t (W p, + v'a)),
X (03 ~ t (o] +vipp).

xi(PH) ~0, x(©H~0, xi(0'?)~0, x/(6~0.

4.18. Let z,t € Ny. Using the results in 4.17 we see that
@ % (05) = x:(0) = x1(@"2) + (05 ~ X, 2(py — 07 — 0] +6y),

where X, ; € A is as follows:
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X;, = v OO §f (¢, 2) are as in 4.4;

X;, = —vl@OHOY2f (1, 7) are as in 4.5;

X; . = —v@OHO Q2 44y if (1, 7) are as in 4.6;

X, = v @HOW4if (1, 7) are as in 4.7,

X, = v @HO Q% _46)if (¢, 7) are as in 4.8;

X;, = —v1@HO Q2 ) if (1, z) are as in 4.9;
X;,=0if (¢, ) are as in 4.10.

It follows that

X, = e()e®)vLOLWO §f (1, 7) are as in 4.4, 4.5 or 4.7;
X, . = e()e(®)v LOHLO (1 4 v2) if (1, 7) are as in 4.6;
X . = e(2)e()v LOTLO (1 — y2) if (¢, 7) are as in 4.8 or 4.9;

thz 0if (¢, z) are as in 4.10.

4.19. Define H, p; ; asin 0.1 in terms of W = N, L. According to [12, 7.6] we have:

() pr. = v LOTLO 1 402y if 7 = efeand 1 € {0, e};
(i) pr. =v FOHLOQ —v2)ifz = fef andt € {0, f;
(iii) pr, = v L@HLD if ¢ < 7 in the usual partial order of N; with (¢, z) not as in

(®),(i);

@iv) pi;=0ift £ z.

We can now restate the result in 4.18 as follows.

X (P = x:(0F) = X (0'%) + X (0) ~ pr.€(D)e(®)(pr — 01 — 0] + ).

We see that Conjectures 1,2,3 in 3.11 hold in our case.
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