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Abstract Bicommutant categories are higher categorical analogs of von Neumann
algebras that were recently introduced by the first author. In this article, we prove
that every unitary fusion category gives an example of a bicommutant category. This
theorem categorifies the well-known result according to which a finite dimensional
x-algebra that can be faithfully represented on a Hilbert space is in fact a von Neumann
algebra.
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1 Introduction

Bicommutant categories were introduced by the first author in the recent preprint [ 14],
as a categorification of the notion of a von Neumann algebra.

Recall that a von Neumann algebra is a subalgebra of the algebra of bounded
operators on a Hilbert space which is equal to its bicommutant:

ACB(H) st. A=A" (von Neumann algebra).

Bicommutant categories are defined similarly. They are tensor categories equipped
with a tensor functor to the category Bim(R) of all separable bimodules over a
hyperfinite factor, such that the natural comparison functor from the category to its
bicommutant is an equivalence of categories:

C > Bim(R) st C>C’ (bicommutant category).

The main result of this paper is that every unitary fusion category gives an example
of a bicommutant category. The fusion categories themselves are not bicommutant
categories, as they do not admit infinite direct sums: In a fusion category, every object
is a finite direct sum of simple objects. In other words, every object is of the form
P, ¢i ® V; for some finite dimensional vector spaces V; € Vec and simple objects
¢; € C.In order to make C into a bicommutant category, we need to allow the V; to be
arbitrary separable Hilbert spaces. The resulting category is denoted as C ®yec Hilb
(this is an instance of balanced tensor product of linear categories [33]). Our main
result is as follows:

Theorem A If C is a unitary fusion category, then C ®vec Hilb is a bicommutant
category.

By aresult of Popa [27], every unitary fusion category C can be embedded in Bim(R)
(see Theorem 3.5). We prove that its bicommutant C” is equivalent to C ®yec Hilb,
and that the latter is a bicommutant category.

As a special case of the above theorem, if G is a finite group and w is a cocycle
representing a class [w] € H3(G, U(1)), then the tensor category Hilb”[G] of G-
graded Hilbert spaces with associator twisted by w is a bicommutant category. That
result was conjectured in [14, §6] as part of a bigger conjecture about categories of
representations of twisted loop groups.

We summarize the categorical analogy in the table below. Going left to right is
“categorification,” and going down is passing to the infinite dimensional case:
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An algebra A A tensor category C

A finite dimensional algebra A fusion category

The center of an algebra Z(A) The Drinfeld center Z(C)

The commutant (or centralizer) Zg(A) of Ain B The commutant Zp(C) of C in D
The algebra B(H) of bounded operators The category Bim(R) of all bimodules
On a Hilbert space On a hyperfinite factor R

The commutant A’ := ZB(H) (A) The commutant C’ := ZBim(R) ©

A von Neumann algebra A = A” A bicommutant category C = C”

We have omitted one technical point in the above discussion. Von Neumann algebras
are not just algebras; they are x-algebras (all the other structures such as the norm and
the various topologies can be deduced from the x-algebra structure, but the *-algebra
cannot be deduced from the algebra structure). Similarly, bicommutant categories are
equipped with two involutions which mimic the involutions that are naturally present
on Bim(R). One of the involutions acts at the level of morphisms (the adjoint of a linear
map), and the other acts at the level of objects (the complex conjugate of a bimodule).
We call such categories bi-involutive tensor categories (see Definition 2.5). Thus, we
add the following line to the above table:

*-algebra A Bi-involutive tensor category C

2 Preliminaries
2.1 Involutions on tensor categories

A linear dagger category is a linear category C over the complex numbers, equipped
with an anti-linear map C(x, y) — C(y,x) : f — f* for every x, y € C called the
adjoint of a morphism. It satisfies f** = f and (f o g)* = g* o f*, from which it
follows that id} = id,. An invertible morphism of a dagger category is called unitary
if f*= "L

A functor F : C — D between dagger categories is a dagger functor if F(f)* =
F(f%).

Definition 2.1 ([31, §7]1) A dagger tensor category is a linear dagger category C
equipped with amonoidal structure whose associators oty y , : (*®y)®z — x*®(y®z)
and unitors A, : | ® x — x and p, : x ® | — x are unitary, and which satisfies the
compatibility condition (f ® g)* = f* ® g*.

The last condition can be rephrased as saying that the monoidal product ® : C Qvec
C — C is a dagger functor. From now on, we shall abuse notation, and omit all
associators and unitors from our formulas. We trust the reader to insert them wherever
needed.

Definition 2.2 Let C and D be dagger tensor categories. A dagger tensor functor
F : C — D is a dagger functor equipped with a unitary natural transformation
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Mx,y : F(x) ® F(y) — F(x ® y) and a unitary isomorphism i : 1p — F(l¢) such
that the following identities hold for all x, y, z € C:

Mx,y®z © (idF(x) ®,U«y,z) = MUx®y,z © (Mx,y ® idF(z))
M1,x 0 (i ®idp)) =idp(y) Mx,10 (dp) ®i) = idp(y) -

We shall be interested in dagger tensor categories which are equipped with a second
involution, this time at the level of objects (compare [15, Def. 1.3]):

Definition 2.3 A bi-involutive tensor category is a dagger tensor category C with a
covariant anti-linear dagger functor = : C — C called the conjugate. This functor
should be involutive, meaning that for every x € C, we are given a unitary natural
isomorphisms ¢, : x — X satisfying ¢x = @5. It should be anti-compatible with the
tensor structure, meaning that we have unitary natural isomorphisms

Vx,y :f@iiy@x

and a unitary j : 1 — 1 satisfying Vyz@y © (dx ®vy ;) = Vygxz © (Vx,y ® idp)
andvixo(j ® iilf) = idy = vx,1 o (idy ®j). Finally, we require the compatibility
conditions ¢; = j o j and ¢rgy = V; x 0 Vx 3 o (¢x @ @y) between the above pieces
of data.

Remark 2.4 Itis interesting to note that the map j can be recovered from the other data
as j = Ayo (¢ '® idy) o v{ll o )»_T_l o ¢1. We believe that the notion of bi-involutive
category as presented above is equivalent to its variant without j (and without the
axioms that involve j). Nevertheless, we find it more pleasant to include this piece of
data in the definition.

Note that in the category of Hilbert spaces, the isomorphism ¢z : H — H is an
identity arrow. Whenever that is the case, we have j = j~! and Vyx = Vg, %
Definition 2.5 Let C and D be bi-involutive tensor categories. A bi-involutive tensor
functor is a dagger tensor functor F : C — D, equipped with a unitary natural
transformation v, : F(x) — F(x) satisfying the three conditions vy = Ty lo
Pr@ o F(@x) ™ v =iojpoit o F(je)™, and urgy = Tix,y 0 VF(y), F(x) © (Uy ®
v opgto Fvy, )7h

2.2 Unitary fusion categories
A tensor category C is rigid if for every object x € C, there exists an object x¥ € C,

called the dual of x, and maps ev, : x¥ ® x — 1 and coev, : 1 - x ® x" satisfying
the zigzag axioms

(idy ® evy) o (coevy ®idy) =1id, and (evy ®id,v) o (id,v ® coevy) =id,v (1)
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(those equations determine x ¥ up to unique isomorphism). Moreover, for every x € C,

there should exist an object Vx € C such that (Vx)¥ = x. The dual of a morphism
f 1 x — yisgiven by

Y = (evy ®idyv) o (idyv @ f ®idyv) o (idyv @coevy) 1y — x”.

Let Vec denote the category of finite dimensional vector spaces. A category is
semisimple if it is equivalent to a direct sum of copies of Vec, possibly infinitely
many. Equivalently, it is semisimple if it admits finite direct sums (including the zero
sum), and every object is a direct sum of finitely many (possibly zero) simple objects.

Definition 2.6 A fusion category is a tensor category which is rigid, semisimple, with
simple unit, and finitely many isomorphism classes of simple objects.

Let Hilb denote the dagger category of Hilbert spaces and bounded linear maps.
A C*-category is a dagger category C for which there exists a faithful dagger functor
C — Hilb whose image is norm-closed at the level of hom-spaces. Equivalently [10,
Prop. 1.14], a C*-category is a dagger category such that for every arrow f : x — y,
there exists an arrow g : x — x with f* o f = g* o g,! and such that the norms

I £1I% :=sup {|x] : f*of — A-id is not invertible}

are complete and satisfy || f o g|| < || flllgll and || f* o f| = Il £1I%. A C*-tensor cat-
egory is a dagger tensor category whose underlying dagger category is a C*-category.

Definition 2.7 A unitary fusion category is a dagger tensor category whose underlying
dagger category is a C*-category, and whose underlying tensor category is a fusion
category.

By [35, Thm.4.7] and [2, §4] , every rigid C*-tensor category with simple unit
(in particular, every unitary fusion category) can be equipped with a canonical bi-
involutive structure. The conjugation ~ is characterized at the level of objects (up to
unique unitary isomorphisms) by the data of structure morphismsev, : x®x — 1 and
coevy : 1 = x ®X, subject to the two zigzag axioms (1) and the balancing condition

coevy o (f ®idy) ocoevy =evy o (idy®@f)oevy V f:x — x.
The conjugation applied to a morphism f : x — y is given by f := (f*)V :
X — y. The coherences between the conjugation and the tensor structure are given by
J = coevy and vy y = (evy ® id@) o (idx ®evy ® idx®@) o (idzgy ®coevygy).

The last piece of data is provided by the isomorphisms

@x == (id= ®evy) o (evi®idy) 1 x — X.

1 This condition is present in the original definition [10] of Ghez, Lima, and Roberts, but is omitted from
many other references (e.g., from [6,15,35]). It is automatic for categories that admit direct sums, but it can
otherwise fail.
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Finally, the maps ¢, : x — X equip such a category with a canonical pivotal structure,
which is furthermore spherical.

Note that a unitary fusion category is a fusion category with an additional structure.
A fusion category could therefore, in principle, have more than one unitary structures.
The question of uniqueness is best formulated in the following way (see [9, §5] for
related work).

Question 2.8 Let F : C = D be a tensor equivalence between two unitary fusion
categories. Is any such F naturally equivalent to a dagger tensor functor?

Given a fusion category C, we define a new category C Qyec Hilb as follows.
Its objects are formal expressions €D, x; ® H; (finite direct sums) with x; € C and
H; € Hilb, and the morphisms are given by

Hom ¢, Hilb (@xi ® H;, @yj ® Kj) = @C(xi, yj) ®c Hilb(H;, K;j).

i J i,j

As we saw, if C is a unitary fusion category, then it is equipped with a canonical
bi-involutive structure. Combining it with the corresponding structure on Hilb yields
a bi-involutive structure on C ®vec Hilb. The adjoint of a morphism > fi; ® gij :
Dxi ® Hi > Dyj ®K;is 2 fj; ® g}, and the conjugate of an object P x; ® H;
isPx ® H;. The structure data ¢, v, j are inherited from those of C and of Hilb.

2.3 The commutant of a category

Given an algebra B and a subalgebra A C B, the commutant of A inside B, also called
the centralizer, is the algebra

Zp(A) :={b e B|lab =ba Ya € A}.

In this section, we introduce higher categorical variants of the above notion, where
the algebras A and B are replaced by tensor categories, dagger tensor categories, and
finally bi-involutive tensor categories.

Definition 2.9 ([20]) LetC and D be tensor categories, andlet F = (F, u,i) : C - D
be a tensor functor. The commutant Zp(C) of C in D is the category whose objects are
pairs (X, ex) with X € D an object, and ex = (ex,y : X ® F(y) > F(y) ® X)yec
a half-braiding. The components ey , of the half-braiding must satisfy the following
“hexagon” axiom:
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F(y))® X® F(z)

W idp(y) ®ex,

X®F(y)®F(z) FN®F2)®X

Wﬂy,z Hyle
€X,y®z

XQF(y®z) ———————— > F(y®)®X

Note that by setting y = z = 1¢ in the above diagram, it follows that ex 1, = idx.

A morphism (X, ex) — (Y, ey) in Zp(C) isamorphism f : X — Y in D such that
(idrp) ®f) oex,; = ey o (f ®idp(y)). The tensor product of two objects (X, ex),
(Y, ey) of Zp(C) is given by (X, ex) ® (Y, ey) = (X ® Y, exgy), With

exey,; = (ex,; ®idy) o (idx ®ey,;),

and the associators and unitors of Zp(C) are inherited from those of D.
Remark 2.10 The Drinfeld center Z(C) is the commutant of C in itself.

If C and D are dagger tensor categories and F : C — D is a dagger tensor functor,
then we may consider the full subcategory

Z5(C) C Zp(C)

whose objects are pairs (X, ex) asabove, wherethemapsey , : XQF (y) — F(y)®X
are unitary. We call Z7,(C) the unitary commutant of C in D (compare [21, Def. 6.1]).
Unlike Zp(C), the unitary commutant is a dagger category, and its x-operation is
inherited from D.

Remark 2.11 The inclusion Z7,(C) < Zp(C) is in general not an equivalence. The
easiest counterexample is given by C = Vec[G] for G some infinite group, and
D = Vec. Then, Z7,(C) is the category of unitary representations of G, whereas Zp (C)
is the category of all representations of G. See [22, Thm. 6.4] and [9, Proposition 5.24]
for some positive results when C is a fusion category.

If C and D are bi-involutive tensor categories, and F : C — D is a bi-involutive
tensor functor, then the unitary commutant Z7%,(C) of C in D is also naturally equipped
with the structure of a bi-involutive tensor category. The conjugate of (X, ex) € Z7,(C)

is the pair (X, ex) consisting of the object X € D and the half-braiding

Ve -t

id ®gy VX3 -
y® X y®X y®X.

exy: X®y X3y X®y

ex.y

The coherence isomorphisms ¢, j, and v are inherited from D.

We will be especially interested in the case when D = Bim(R), the tensor category
of bimodules over some hyperfinite von Neumann factor R. The monoidal product on
that category is based on the operation of Connes fusion, which we describe next.
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2.4 L2-spaces and Connes fusion

Let R be a von Neumann algebra, with predual R, and positive part R}” C R,. The
Lz-space of R (also known as standard form of R), denoted as L2R, is the Hilbert
space generated by symbols /¢ for ¢ € R, under the inner product

VoY) = anal. cont. (D : DY/1,),

where [D¢ : DY]; € R is Connes’ non-commutative Radon—Nikodym derivative.2
The Hilbert space L?R is an R—R-bimodule, with the two actions of R are determined
by the formula

(ay/¢b. /) = anal. cont. ¢(IDg Dy)i0) (b)a),

where o, is the modular flow. Finally, the modular conjugation J : LR — L?R

is given by J(A/@) = A/@ for o € C. General references about L?R include
[11,12,18].

Given a right module H and a left module K, their fusion H Xg K is the Hilbert
space generated by symbols «[£]8, for : L?R — H aright R-linear map, & € L?R,
and 8 : LR — K aleft R-linear map, under the inner product

(1 [E11B1. al&21Ba) = (€' (a3 0 an)E1r ™" (B3 0 B1). &2) 2

Here, ¢ and r denote the left and right actions of R on its L? space, defined by
L(a)(&) = a& and r(a) (&) = &a, respectively.

There exist two alternative descriptions of H X K, as generated by symbols «[&
fora : L>R — H aright R-linear map and & € K a vector, and generated by symbols
£]B for B : L>R — K a left R-linear map and £ € H a vector. The isomorphisms
between the above models are given by

al§]f = a(§)]p and «afE]B — a[B(E).

General references about Connes fusion include [24,30] and [4, Appendix B. é].
The two actions of R on L?R are each other’s commutants. That property charac-
terizes the bimodules which are invertible with respect to Connes fusion:

Lemma 2.12 ([30, Prop.3.1]) Let A and B be von Neumann algebras, and let H be an
A-B-bimodules such that A and B are each other’s commutants on H (in particular,
they act faithfully on H). Then, H is an invertible A—B-bimodule.

2 The formula for the inner product makes most sense if one rewrites formally [D¢ : D], as o' w_it and
¢(a) as Tr(pa). It then simplifies to Tr(gi)]"'”w_”)lt:i/z = Tr(¢!/2y1/2). Similarly, for next formula,

one may replace formally (r;” (b) by ¥ byr i Note that these formal symbols are genuinely meaningful
and can be implemented as (unbounded) operators on some Hilbert space, see, e.g., [34].
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Connes fusion has the following useful faithfulness property:

Lemma 2.13 Let R be a von Neumann algebra, and let H be a faithful right module.
Then, for any left modules K1 and K3, the map

H X — : Homg (K, K3) — Hom(H Xg K1, HKg K>) 2
is injective.

Proof Let R’ be the commutant of R on H. By Lemma 2.12, H is an invertible
R’—R-bimodule. The map (2) can then be factored as the composite of the bijection
Hompg (K1, K») = Homg (H X K1, H K K») with the inclusion

Hompz (H X Ky, HX K>) C Hom(H X K1, H X K>).

]

The operation of fusion makes the category Bim(R) of R—R-bimodules? into a
tensor category, with unit object L2 R. The associator is given by

(HNR K)Wg L > HNR (KX L) @ (a[5)]B — a[(1B),

fora : LR — H a right R-linear map, £ € K, and 8 : L?’R — L aleft R-linear
map, and the two unitors are given by

HXg L’R —> H :aff > a(&) and L’RRi H — H : aft — £ (a)E.

The category Bim(R) is a dagger tensor category, with adjoints of morphisms
defined at the level of the underlying Hilbert spaces. It is even a bi-involutive tensor
category. Given a bimodule H € Bim(R), the underlying Hilbert space of H is the
complex conjugate of H (with scalar multiplication A& = A&), and the two actions
of R are given by a€b = b*Ea*. The transformation ¢ is the identity. The map
j:L?R — L2Ris given by j(£) = J(£), with J the modular conjugation (note that
Jj is linear, and J is anti-linear), and the coherence v : HXr K —> K Xg H is given
by

v(@l£18) = (B o NIJEN@o )

fora : LR — H,& € L?R, and B : L>R — K. The latter is equivalently given by
v(alg) = JE)]@o j),or v(E]B) = (Bo LI ().

3 Later on, we will restrict attention to separable von Neumann algebras (i.e., ones which admit faithful
actions on separable Hilbert spaces), in which case we will take Bim(R) to be the category of R—R-
bimodules whose underlying Hilbert space is separable. The reason for that restriction will become evident
in Sect. 5.
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Remark 2.14 LetBim°(R) C Bim(R) be the full subcategory of dualizable bimodules
(equivalently, the bimodules with finite statistical dimension [2, § 5 and Cor. 7.14]).
Then, by [2, Cor. 6.12] , the canonical conjugation on Bim°(R) (described in Sect. 2.2)
is the restriction of the conjugation on Bim(R) described above.

2.5 Graphical calculus

Throughout this paper, we will use the string diagram calculus familiar from tensor
categories: Objects are denoted by strands, and morphisms are denoted by coupons
[17,31] . For example, the following string diagram

represents a morphismv @ w - x ® y ® z.

Given a dualizable object x € C in a C*-tensor category, the canonical evaluation
and coevaluations maps ev, : X ® x — 1 and coev, : 1 — x ® X, and their adjoints
evi:1— X ®ux andcoev} : x ® X — 1 are denoted graphically as follows:

X
= ) X = 5 = Vf:x—)x,
X ¥ x x x X

along with the equations ev, = j oevy o (idy ®¢;1) ) v;)l? and coev, = v x o (px ®
ids) ocoev, o j~! which, after omitting the coherences ;, v, and ¢, can be conveniently
abbreviated

=l

EVy = evy and COEV, = COEVy.
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The dimension of a dualizable object x € C is given by
dy := coev} o coevy = evy oevy € Rxo.

Given dualizable objects x, y, z € C, Frobenius reciprocity (or pivotality) provides
canonical isomorphisms

Hom(1,x®y®z) = Hom(l,y®z®x) = Hom(l,zQx®y) = Hom(Z,x®y) = Hom(¥,y®z) = Hom(y,z®x)

= Hom(z®Y,x) = Hom(x®z,y) = Hom(y®X,z) = Hom(z®y®Xx,1) = Hom(x®z®y,1) = Hom(y®x®z,1).

The sesquilinear pairing o, for f, g € Hom(1, x ® y ® z), equips this vector space
with the structure of a finite dimensional Hilbert space. The dual (or complex conju-
gate) Hilbert space is then given by any one of the following canonically isomorphic
vector spaces:

Hom(1,z®y®x) = Hom(1,y®x®z) = Hom(l,x®z®Yy) = Hom(x,z®Yy) = Hom(z,y®X) = Hom(y,Xx®z)

= Hom(x®y,z) = Hom(z®x,y) = Hom(y®z,X) = Hom(x®y®z,1) = Hom(z®x®y,1) = Hom(y®z®x,1).

Lete; € Hom(l,x®y®z) and ¢/ € Hom(1,Z®Y®X) be dual bases, and consider
the canonical element

Jddyd; - Zei ®e.
i

We will be making great use of string diagrams where pairs of trivalent nodes are
labeled by the above canonical element. These will be denoted by pairs of circular
colored nodes, as follows:

Xy Z
x Yy z
Y & A = Jddd Y ® 3)
¢ Y i z x ¥

Xy z
Remark 2.15 The element \( ® lies in Hom(z, x ® y) ® Hom(x ® y, z), and
z Xy

z

Xy
should not be confused with \( /K € Homz@x®y,x @y ® 2).
z Xy

When occurring in a bigger diagram, it might happen that we need to use the above
canonical elements in more that one place. In that case, we will use multiple colors
to indicate the various pairs of nodes (often, the coupling can also be inferred from
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the string labels). The remaining coupons will be sometimes denoted by little squares.
For example:

When x, y,z € C are irreducible objects, we will write N | for the dimension
of Hom(x ® y, z). Let us also fix a set Irr(C) € Ob(C) of representatives of the
isomorphism classes of irreducible objects.

The following lemma lists the most important relations satisfied in the above graph-
ical calculus. To our knowledge, the following relations have not appeared in this exact
form in the literature, but they are certainly well known to experts:

Lemma 2.16 The following relations hold:

)

() = y/dedyd;! FNE, (Bigon 1)

~n
n

x x 0y z
\( )\ W ® Y ® /K (Bigon 2)
! ! z x Y
x Yy
Z Jd- = Jdd, (Fusion)
zelr(C)
x Yy x Y
y z
O ) R O
velir(C) uelr(C) |

X w
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Proof By definition, the dual basis ¢; € Hom(z, x ® y) and ¢! € Hom(x ® ¥, 2)
satisty

2

tr(ej oe;) = x

By “undoing the trace,” it follows that, for ¢; and e/ as above,
eloe=d '8 ;- id;. (5)

The two Bigon relations are immediate consequences of the above equation:

Jdedyd: - > e oei = Jdydyd; - Y d; " -id; =/d.dyd: ' N7, -id;
i i

dedyd: D (el oer)®ej @€ = dvdy )8 jid; ®e; @ ¢
= -

inj
_ -1 . i
=\/dedyd:"\/dcdyd; Y id; @ei @€'
i
In order to prove the fusion relation

Z \/CTZ\/dXT)dZ t€jo ej = dxdy . idx®y 5
ZJ

it is enough to argue that it holds after precomposition with an arbitrary basis element
e; € Hom(Z/, x @ y) and object 7/ € Irr(C). So we must show that the equation
zm‘ d; -ejoel oe; = e; holds. This is again a consequence of Eq. (5):

D d.ejoeloei = d.-ejo(d]'s, 8 ;-1d;) = e
z,j z.j

To prove the I = H relation, we rewrite it as

y z Z y
.Y u YU
u,i,j
X w w X
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and note that both sides are of the form \/d.d,d.dy,, > f, ® f¢ for { f,} a basis of
Hom(x ® w, y ® z) and { ¢} the dual basis of Hom(w ® X, 7 ® y) with respect to the

pairing

To see that d, are indeed dual bases, we use the relation (5) twice:

-2
Spw 8 jr8iir =8y, v 8, j18iir-

y z z y
. . Y u oY U . .
The verification that d, and are dual bases is entirely
X w w X

a,belrr(C)

similar. O
Let us now assume that C is furthermore a fusion category, and let dim(C) :=
> clrr(C) df be its global dimension. We then have the following result.
Lemma 2.17 The following relation holds:
y y
Z a b®h<>a=dim(6)'5x,y ® (6)

X

Proof Recall that d, = dz. For every x € Irr(C), we have

D dudyNy =D da( D NE dp) = da(dedy) = dy dim(C).
a,b a b a
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Using the two Bigon relations, the left-hand side of (6) then simplifies to
D dadpd; "Ny 8y y - idy ®idy = dim(C) 8,y - idy ®idy .
a,b
O

There is an alternative proof of Lemma 2.17 which proceeds as follows. We use the
I = H relation to rewrite the left-hand side of (6) as

y y

> Q{ ® %«Q
a,belr(C) !
X x

We then note that the only terms which contribute to the sum are the ones with
b =1, and so we are left with

> OO |®| =dm0-|®
aelr(C) ¢ a

2.6 Cyclic fusion

Given rings R; and bimodules g, ,(M;)g, fori € {1, ..., n} (indices modulo n), we
may define the cyclic tensor product

[Ml ®r, M2®R, - ®r, | Mn ®r, —] = (M ®zM2®7- @7, My,) [~ (1)

cyclic
where ~ is the equivalence relation generated by

mp-- - Qmi_1r@m; @---my ~mp---Qm_1 @rm; ®---my, for r € R;

and me---Qmur ~rm Q- ---Qmy for r € Ry.

The cyclic Connes fusion, first introduced in [1, Appendix A], is the analog of the
above construction for Connes fusion.

Unlike the cyclic tensor product, the cyclic fusion is not always defined. Let us
explain by an analogy why it is not always defined, and when we can expect it to be
defined. If one takes the point of view that a bimodule between rings is something that
categorifies the notion of a linear map, then the expression (7) categorifies the number

tr(fio fao---o fa).

Now, we like to think of bimodules between von Neumann algebras as categorifying
the notion of a bounded linear map between infinite dimensional Hilbert spaces. Given
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bounded linear maps f; : Hi—1 — H;,i € {1, ..., n} (indices modulo n), then the
above trace is not always defined. It is however defined if at least two of the maps are
Hilbert—Schmidt.

For bimodules between von Neumann algebras, we propose the following as a
categorification of the Hilbert—Schmidt condition:

Definition 2.18 A bimodule 4 Hp between von Neumann algebras is coarse if the
action of the algebraic tensor product A © B°P extends to the spatial tensor product
A ® B°P, Equivalently, a bimodule is coarse if it is a direct summand of a bimodule
of the form

A(Hy) ®c (H2)p (3)

(and if A or B are factors, then any coarse bimodule is of the form (8)).

Coarse bimodules form an ideal in the sense that if 4 Hp is coarse and p K¢ is any
bimodule, then 4 H Xg K¢ is coarse.

Definition 2.19 Let R; be von Neumann algebras, and let g, , (H;)g;,i € {1,...,n},
be bimodules (indices modulo n). Assume that at least two of the H; are coarse. Then,
we define the cyclic fusion by:

[Hl ‘ERl H, IXRz T IXRn—l H, IXRH _]

cyclic

= (Ha+1 XRopr - MRy Hb) Mrrar, (Hb'H DRy DRy Ha)

(cyclic numbering), where the indices a and b are chosen so that at least one of the
{Hy+1, ..., Hp} is coarse, and at least one of the {Hp+1, ..., H,} is coarse.

Remark 2.20 A priori, the above description depends on the choice of locations a and
b used to “cut the circle”:

«»ﬁ% " &,

In [1, Appendix A], it was shown that when all the H; are coarse (and as long as
there are at least two of them), the cyclic fusion is well defined up to canonical unitary
isomorphism. It is also well defined in the presence of non-coarse bimodules: Let the
H;,, ..., H; be coarse, and let the other bimodules be non-coarse. Then, we may
define the cyclic fusion in terms of the operation described in [1, Appendix A] as

[(H,-1+1 N B Hyy) Ry (Hipe1 BB Hy) K, oo Mg, (Hyr1 8- K ) B

Ril _]cyclic
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Inspired by [29], we propose the following graphical calculus for morphisms
between cyclic fusions. The Hilbert space [H| Mg, - - Xg, | H, Mg, —lcyclic corre-
sponds to an arrangement of parallel strands (labeled by the various Hilbert spaces)
on the surface of a cylinder. A string diagram on the cylinder represents a morphism:

{mxm&m&m&%

cyclic

—)I:K]&KQ@KﬂX—]

cyclic

We draw thick strands for the coarse bimodules and thin strands for the bimodules
which are not coarse. For a morphism to be well defined, any horizontal plane inter-
secting the cylinder should cross at least two thick strands (and if the plane crosses
through the middle of a coupon which is connected to at least one thick strand, then
this coupon counts as one thick strand).

Later on in this paper, we will combine the above cylinder graphical calculus with
the colored dots notation from (3).

3 Bicommutant categories

Let R be a hyperfinite factor, and let Bim(R) be the category of R—R-bimodules whose
underlying Hilbert space is separable. The latter is a bi-involutive tensor category under
the operation of Connes fusion, as discussed in Sect. 2.4.

Recall that a bi-involutive tensor functor between two bi-involutive tensor categories
C and D is a quadruple (F, u, i, v), where F : C — D is a functor, and

fey F(X)®p F(y) = F(x®cy), i:lp— F(lg), vy :FE) - F(x)

are unitary isomorphisms.

Notation 3.1 Given a bi-involutive tensor category C and a bi-involutive tensor func-
tor C — Bim(R), we will write

C = ZBim(r)(©)
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for the unitary commutant of C in Bim(R).

There is an obvious bi-involutive tensor functor C' — Bim(R) given by forgetting
the half-braiding. It therefore makes sense to consider the commutant of the com-
mutant. There is also an “inclusion” functor ¢ : C — C” from the category to its
bicommutant. It sends an object X € C to the object (X, €,) € C” with half-braiding
given by e/X’(Y’ey) = e;’IX for (Y, ey) € C'. The coherence data u, i, v for ¢ are all
identity morphisms.

Definition 3.2 A bicommutant category is a bi-involutive tensor category C for which
there exists a hyperfinite factor R and a bi-involutive tensor functor C — Bim(R),
such that the “inclusion” functor ¢ : C — C” is an equivalence.

If a bi-involutive tensor functor & : C — Bim(R) is such that the corresponding
“inclusion” functor ¢ is an equivalence, then we say that « exhibits C as a bicommutant
category.

3.1 Representing tensor categories in Bim(R)

A representation of a x-algebra A on a Hilbert space H is a x-algebra homomorphism
A — B(H). By analogy, we define a representation of a bi-involutive tensor category
C to be a bi-involutive tensor functor C — Bim(R), for some von Neumann algebra
R. One can alternatively describe this as an action of C on the category Mod(R) of
left R-modules.

Definition 3.3 A morphism between two representations «; : C — Bim(R;) and
as : C — Bim(Ry) of C consists of an Ry—R{-bimodule @, along with unitary natural
isomorphisms

¢x P Ng, o1 (X) = o(X) Kg,
for every X € C, subject to the coherence condition

PxRid idBgy
@ Bp, ) (X) Bg; @) (V) ———— ap(X) Mg, ®Wg; oY) ———— o2 (X) Kg, ar (¥) Mg, @

lid&ul luzxid
PxeY

(DgRl a (X ®Y) az(X@Y)ng o.

A morphism (P, ¢) between two representations is an equivalence if the bimodule P is
invertible, or equivalently if the induced map Mod(R;) — Mod(R>) is an equivalence
of categories.

A representation C — Bim(R) is called fully faithful if non-isomorphic objects
of C remain non-isomorphic in Bim(R), and if simple objects of C remain simple in
Bim(R) (this agrees with the usual notion of fully faithfulness from category theory).
In the next theorem, we will see that if we restrict the von Neumann algebra R to be
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a hyperfinite factor which is not of type I, then every unitary fusion category admits
a fully faithful representation in Bim(R). We begin with the following well-known
lemma:

Lemma 3.4 Let R be a hyperfinite factor which is not of type 1, and let Ry, be a
hyperfinite I1;-factor. Then, R ® Ry, = R.

Proof If R is either of type II; or Il, then the result follows from the uniqueness of
the hyperfinite II; and Il factors [23, Thm. XIV]. We may therefore assume that R
is of type III.

Let o : R — Aut(R) be the modular flow of R. The flow of weights [5] is the
dual action of R on the von Neumann algebra S(R) := Z(R X, R).4 By the work of
Connes [3], Haagerup [13], and Krieger [19] (see also [32, Chapt. XVIII] ), the map
R — S(R) establishes a bijective correspondence between isomorphism classes of
hyperfinite type III factors, and isomorphism types of ergodic actions of R on abelian
von Neumann algebras, provided one excludes the standard action of R on L*°(R).
(The latter is the flow of weights of the hyperfinite II; and I, factors.)

Given abelian von Neumann algebras Z; and Z, with actions of R, we write
Z1 AR Z2 = (Z1 ® Z»)Rdiee for the fixed-point algebra with respect to Rz =
{(t, —1) : t € R} C R?, along with the residual R? /Riag action. The algebra L*°(R)
with its standard R action is a unit for that operation: Z Agr L*°(R) = Z. Now,
by [5, Cor. 11.6.8], given two factors M| and M>, there is a canonical isomorphism
S(M; ® M>) = S(M) AR S(M3).> It follows that

S(R® Ruy) = S(R) Ar S(Ru,) = S(R) AR L7 (R) = S(R).

Using the Connes—Haagerup—Krieger classification theorem of hyperfinite type III
factors, it follows that R ® Ry, = R. O

Theorem 3.5 Let R be a hyperfinite factor which is not of type 1. Then, every unitary
fusion category C admits a fully faithful representation C — Bim(R).

Proof Let Ry, be a hyperfinite 1I; factor. By the work of Popa [27, Thm. 3.1] (see
also [8, Thm. 4.1]), there exists a fully faithful representation

C— Bim(Rul )

Let now R be an arbitrary hyperfinite factor which is not of type I. By Lemma 3.4, we
have R ® Ry, = R. We may therefore compose the above embedding with the map

) L*R®c— . - :
Bim(Ry,) ———— Bim(R ® Ryy,) = Bim(R).

]

4 Unlike the modular flow, which depends on a choice of state, the crossed product R X R does not depend
on any choices, up to canonical isomorphism.

5 The result in [5] is only stated for type III factors, but the proof never uses the type III assumption.
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The above result raises the question of uniqueness. We believe that the follow-
ing conjecture should follow straightforwardly from Popa’s uniqueness theorems for
hyperfinite finite depth subfactors of types II; [25,26] and III; [28]. However, we do
not attempt to prove it here as it would take us too far afield.

Conjecture 3.6 Let C be a unitary fusion category, and let R be a hyperfinite factor
which is either of type 111 or 1lIy. Then, any two fully faithful representations C —
Bim(R) are equivalent in the sense of Definition 3.3.

4 The commutant of a fusion category

Throughout this section, we fix a factor R (not necessarily hyperfinite), a unitary
fusion category C, and a representation C — Bim(R). To simplify the notation, we
will assume that the representation is fully faithful and identify C with its image in
Bim(R), but the fully faithfulness condition is actually not required for the results of
this section. It will however be needed later on, in Sect. 5.

4.1 Constructing objects in C’
The goal of this section is to construct a functor
A:Bim(R) » C' A(A) = (A(A), ean)).

For simplicity of notation, we will denote the underlying object A(A) of A(A)
simply by A. It is given by

A = @ rNAXKY. 9)
xelrr(C)

Note that this object does not depend, up to canonical unitary isomorphism, on the
choice of representatives of the simple objects of C.

For a € C, an irreducible object, the half-braiding e , : AKa — a XK A, is given
by

(10)

esa= Y Jf\ﬁ

a YAY
x,yelr(C)
xXAX a

where the projection AXa — x XA XX Xa and inclusionaXyX A KXY — aX A
are implicit in the notation. The half-braiding is natural with respect to morphisms
a — a’ between simple objects, and we extend it by additivity to all objects.

Proposition 4.1 ex = (ea o : AR a — a X A)yec is a unitary half-braiding.

Proof The maps ep , are natural in a by construction. To see that e , is unitary, we
use the Bigon and Fusion relations:
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ZAZ a

€A q0Cha= > d;la yo= > dyd7'dg " 5,
x,y,z€lrr(C) x,y,z€lr(C)

xAX a

The verification that ep 4 0 €} , = id,x is similar.
It remains to verify the “hexagon” axiom e, ,xp, = (id, e p) o (ea o Kidp). We
do this with the help of the Fusion and I = H relations:

ab A
celrr(C) celrr(C)
A ab

a b zAZ a b zZAZ
c y
11 —1 -1 Y
= 3 Ja'y AR YRR \
x,z,celr(C) x,y,z€lr(C)
xAX @ b xAX 4

Proposition 4.2 The assignment A — (A, ep) defines a functor Bim(R) — C'.

Proof Given a morphism f : A| — Aj in Bim(R), we let
A(f) = D id ®f Ridy : A(A]) > A(A).

In order to check that this is a morphism in C’, we need to verify that ea(a,).q ©
(A(f) Wid,) = (idy KA(f)) o ea(ay),q- This is straightforward using the definition
(10) of the half-braiding:

ay My a y My
S
> Vi = > V' .
x,yelr(C) /i x,yelr(C)
x A1 X a x A1 X a
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Remark 4.3 The construction of A(A) = (A(A), ea(a)) works under the greater gen-
erality of arigid C*-tensor category (in particular semisimple) represented in Bim(R),
not necessarily fully faithfully. The half-braiding (10) is unitary by Proposition 4.1,
and thus bounded.

4.2 The endomorphism algebra

In this section, we fix a bimodule A € Bim(R). Our goal is to compute the endomor-
phism algebra of A(A). As in the previous section, we will write A for the underlying
object of A(A).

Theorem 4.4 The map that sends
f=(fu:ARa—aXA)

aelr(C)

to

a,x,yelr(C)

induces a vector space isomorphism

EB Hompim(r)(A Ra,a® A) = Ende(A(A)).
aelr(C)

Under the above isomorphism, the left-hand side acquires the following *-algebra
structure: The x-operation is given by

a A

(fa = (11)

A a
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and the product is given by

12)

(f&a = D,

b,celrr(C)

Remark 4.5 The map f7 : AXa — a X A, which appears in the right-hand side
of (11) requires the choice of an isomorphism between a and the unique element of
Irr(C) to which it is isomorphic. It is important to note that, because a appears in both
the domain and the codomain, the map fz does not depend on that choice.

Remark 4.6 1f we take A = EBerrr(C) x, then the two Egs. (11) and (12) are exactly
the ones describing Ocneanu’s tube algebra [7,16].

Proof of Theorem 4.4 'We begin by checking, using the I = H relation, that the formula
(idp XTr) o epnp = eap o (Ty Kidp) holds:

y

-y Vi

a,x,yelr(C)

> Y

a,x,yelr(C)

This ensures that 7y € End¢r (A(A)).

We now show that the map P, ;,, ) Hom(A X a, a X A) — Endc/(A) given by
f + Ty is an isomorphism. For that, we define a map the other way as follows. It
sends T € Endg/ (A(A)) to the element f7 = (frq : A Xa — a X A) given by

fra =dim@)~" >°

x,y€elr(C)
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We now check that these two maps are each other’s inverses. The equation fr, = f
is an easy consequence of Lemma 2.17:

frra = dim@©~" >

x,v,b

For the other direction, we need to check that Ty, = T holds for every T €
Ender (A(A)):

Here, we have used the I = H relation, followed by the fact that 7 commutes with
(a scalar multiple of) the half-braiding, and finally Lemma 2.17.

At last, we check that the isomorphism D,cp ) Hom(A M a,a B A) =
End¢r (A(A)) is compatible with the x-operation (11) and the multiplication (12):
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Here, the last line’s middle equality follows from the I = H relation. O

Remark 4.7 The map f +— Ty : @aehr(c) Homgpimpy(A ® a,a K A) —
Endcr(A(A)) makes sense in the greater generality of a rigid C*-tensor category
represented in Bim(R). In particular, the operator 7'y is always bounded (this follows

Yy aAay
from /a4, >

\% being unitary, and hence bounded).
x,yelr(C)

xaaA X

5 Absorbing objects

A tensor category C has no zero-divisors if for every nonzero object X and every
objects Y1, Y>, the maps

Hom(Yq, Y2) > Hom(X®Y;, X®Y>) and Hom(Yy, Y2) - Hom(Y1®X, Y>,®X)

are injective. Note that for categories with involutions, it is enough to check that one
of the above maps is injective.

Example 5.1 The tensor category Bim(R) has no zero-divisors. Indeed, since R is a
factor, every nonzero module is faithful, and the claim follows from Lemma 2.13.

Example 5.2 Fusion categories have no zero-divisors. To see that, consider an object
X and a morphism f : Y1 — Y5 such thatidy ® f = 0. We need to show that X 2 0
implies f = 0. Since X is nonzero, evy is an epimorphism (indeed a projection onto
a direct summand). The morphism evy ® idy, is then also an epimorphism, and we
may reason as follows:

fo(evx ®idy,) =evy ®f = (evx ®ly,) o (idyv ®idy ®f) =0 = f =0.
———— ——
epi. =0

Definition 5.3 Let C be a tensor category with no zero-divisors. A nonzero object X
is called

e right absorbing if for every nonzero object Y € C, wehave X Y = X,
e left absorbing if for every nonzero object Y € C, we have Y ® X = X, and
e absorbing if X is both right and left absorbing.
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Clearly, if C admits an absorbing object, then such an object is unique up to (non-
canonical) isomorphism. Note also that if a category has both right absorbing and left
absorbing objects, then any such object is in fact absorbing.

If C is equipped with a conjugation, then X is right absorbing if and only if X is
left absorbing. In this case, any right absorbing object is automatically absorbing, and
isomorphic to its conjugate. By taking ¥ = 1 @ 1, we can also readily see that any
absorbing object satisfies X & X = X.

Let Hilb be the category of separable Hilbert spaces.
Example 5.4 The Hilbert space £%(N) is absorbing in Hilb.

Example 5.5 1f C is a unitary fusion category, then the object

P rem

xelrr(C)

of C ®vec Hilb is absorbing. Indeed, for any simple objects y and z of C, there exists
an x such that z occurs as a summand of x ® y. The object y @ (B, clrr(C) X) therefore
contains each simple object at least once. It follows that y ® (@x cmr@) X ® 22(N))
contains each simple object infinitely many times. The same remains true when y gets
replaced by an arbitrary nonzero object of C Qe Hilb.

Example 5.6 Let G be an infinite countable group, and let Rep(G) denote the category
of unitary representation of G whose underlying Hilbert spaces is separable. Then,

2(G) ® 2(N)

is absorbing in Rep(G). Indeed, if V is a unitary representation with orthonormal basis
{vi}ier, then e, ® ¢; > (g - v;) ® e, defines a unitary isomorphism 2GR L) —
V ®€%(G). Tt follows that V ® £2(G) ® €2(N) = ¢2(G) @ £>(I xN) = £2(G) % (N).

Let R be a separable factor, and let Bim(R) be the category of R—R-bimodules
whose underlying Hilbert space is separable. Let also Mod(R) be the category of left
R-modules whose underlying Hilbert space is separable. We say that H € Mod(R)
is infinite if it is nonzero and satisfies H @ H = H. It is well known that an infinite
module exists and is unique up to isomorphism.

Example 5.7 The bimodule
RL*(R) ® £*(N) ® L*(R)R

is absorbing in Bim(R). To see that, let g Hg € Bim(R) be any nonzero bimodule. The
following two modules are infinite, and therefore isomorphic: g H Xg L*(R) ® t*(N)
and g L2(R) ® €2(N). It follows that g H Kz L2(R) @ 2(N) @ L2(R)g = rL*(R)®
(N) ® L*(R)g.
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Remark 5.8 If we had taken Bim(R) to be the category of all bimodules, with no
restriction on cardinality, then it would not admit an absorbing object (and similarly
for the previous examples).

Absorbing objects are useful because they control half-braidings:

Proposition 5.9 Let Q2 be an absorbing object of C, and let (X, ex) be an object of
C'. Then, ex is completely determined by its value on Q.

Proof Let Y be a nonzero object of C. Since ey is a half-braiding, we have a commu-
tative diagram

YRXKXQ
ex,y &gf\xﬂ
ex,Y®Q
XKYXQ YXQKX X.

Fix an isomorphism ¢ : ¥ X Q@ — Q. The following square is commutative

ex YNQ

XX (Y XQ) (YRQ) XX
J/idx X¢ J/qﬁ Xidx
ex.Q
XXQ QX X

and so we get an equation
ex.y Ridg = (idy Key'q) o (¢~ Hidx) o ex.q o (idx Xe).
In particular, we see that ey, y Midg is completely determined by ex q. Since Bim(R)

has no zero-divisors, ey y is completely determined by ex y X idg. Putting those two
facts together, we see that ex y is completely determined by ex q. O

5.1 The absorbing object of C’
We now return to our usual setup, which is that of a separable factor R equipped with

a fully faithful representation C — Bim(R) of some unitary fusion category C. Our
next goal is to show that C" admits absorbing objects. Recall the construction

A:Bim(R) - C'  A(A) = (A(A), eaqn))
from Sect. 4.1.

Theorem 5.10 The functor A sends absorbing objects to absorbing objects. In par-
ticular, the category C' admits absorbing objects.
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The proof of this theorem will depend on Theorem 5.12, proved in next section,
according to which the endomorphism algebra of A(A) is a factor whenever A is
absorbing in Bim(R). We begin with the following technical lemma:

Lemma 5.11 Suppose that Q = (2, eq) € C' is such that Q is absorbing in Bim(R),
and such that Q ® Q@ = Q in C'. Then, Q is (non-canonically) isomorphic to A(S2).

Proof Let ¢ : Q@ — A(S2) be the map given by

X Q X x Q X
s -y |
xelrr(C) xelr(C)
Q Q

By the fusion relation, this map is compatible with the half-braidings:

y x Q X y x Q X
(dyHp)oeqy = Z@\ J =>\Jd.dy" K . = eaqq).y © (¢ Kidy),
X \ X,z
Q y Q y

and therefore defines a morphism ¢ : £ — A(2) in C'.

The coevaluation map coevy : L’R — x XX is, up to a constant, the inclusion
of a direct summand. So ¢ is manifestly injective. By polar decomposition in C’, the
map ¢ therefore induces a unitary isomorphism between 2 and a certain subobject of
A(2).

Now, the subobjects of A(£2) are in one-to-one correspondence with the projections
in M := End¢/ (A(S2)), whichis a factor by Theorem 5.12. Let p € M be the projection
corresponding to 2. Since 2@ 2 = Q and 2 # 0, that projection is infinite (its range
is an infinite module). So there is a partial isometry u € M with p = uu™ and u*u = 1.
The latter provides an isomorphism u : A(Q2) — Qin C'. O

Proof of Theorem 5.10 Let A be an absorbing object of Bim(R), and let X be an
arbitrary nonzero object of C’. We wish to show that  := A(A) X X is isomorphic
to A(A). Let ©2 denote the underlying object of 2. If we could show that Q2 satisfies
the hypotheses of Lemma 5.11, then we could reason as follows:

ANMKRX = 2 = AQ) = A(A),

where the last isomorphism holds because €2 and A are both absorbing in Bim(R).
So let us show that 2 satisfies the hypotheses of Lemma 5.11. Since A is absorbing
in Bim(R), the object @ = @, x W A WX X X is clearly absorbing in Bim(R). And
since A D A = AinBim(R) and A — A(A) X X is a linear functor, the same holds
true for 2, namely Q & 2 = Q. O
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5.2 The endomorphism algebra is a factor

The goal of this section is to prove that when A is absorbing, the endomorphism algebra
of A(A) is afactor (a von Neumann algebra with trivial center). We emphasize the fact
that, for the above result to hold, it is essential that the representation C — Bim(R)
be fully faithful (this is used in the last paragraph of the proof of Theorem 5.13).

Theorem 5.12 If A is absorbing in Bim(R), then Endc/ (A(A)) is a factor.
It will be easier to prove the following stronger result:

Theorem 5.13 If A is absorbing, then Endpimr)(A) has trivial commutant in
End¢/ (A(A)). In other words, the inclusion

Endgim(r) (A) C Endc/ (A(A)) 13)

is an irreducible subfactor.
Proof The absorbing object is unique up to isomorphism. So without loss of generality,
we may take A to be the one from example 5.7, namely A = gL*(R) ® £2(N) ®
L2(R)g. Let

Ao := rL’R ® L*Rg.
Writing H for £2(N), we have

Endpim(r)(A) = Endpim(r)(Ao) ® B(H) and Ende/(A(A)) = Ender(A(Ao)) ® B(H),

and so Zgndga(a))(End(A)) = Zgndaa(ag)) (End(Ag)). It is therefore equivalent to
prove the statement of the theorem for A instead of A. Recall from Theorem 4.4 that

Ende/(A(A0)) = @D Homgim(r) (Ao K x, x & Ao),
x€lrr(C)

with product as in (12).
Let f = (fx : AoX¥x — x X Ag)rermr(c) be an element that commutes with every
g € Endgim(r)(A9) = RP® R:

x A x Ap
— e Vx e Irr(C), Vg e End(Ay). (14)
0
Ao x Ag  x

The bimodule A is of the form (8), and thus coarse. The action of the algebraic tensor
product R ® R°P (the one which equips it with the structure of an R—R-bimodule)
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therefore extends to an action of the spatial tensor product R ® R°P. We may therefore
treat Ag as a left (R ® R°P)-module. Writing 1 for L?(R), we then have canonical
isomorphisms

RXXR AR = garor((x @ 1) Mpgro Ao)
R(AO MR X)R = pepror((1 @ x) Kpgror Ao).

Under those identifications, Eq. (14) becomes:

x®1 Ao 1®1 Ao
= Vx elrr(C), Vg € End(Ayp), (15)

1®x Ag 1®x Ao

where O = R® R°P, O = C, and we have used the string diagram notation for
bicategories reviewed in [2, §2] .

Note that Ag = L*(RQ R°P). We may therefore identify (x ® 1) Xrgror Ao With
x®1,and (1 ® x) Kpgro Ag with 1 ® x. The maps f; can then be viewed as left
(R ® R°P)-module maps:

fr:i1®x—>x®1.

The operators idjgx Xg and id,g Mg which appear on the two sides of (15) are
nothing else than the right actions of g € R® R’ on 1 ® x and on x ® 1, and so
Eq. (15) is just the statement that fy is a right (R ® R°P)-module map. Each f; is
therefore both a left (R ® R°P)-module and a right (R ® R°P)-module map.

But 1 ® x and x ® 1 are irreducible (R ® R°P)—(R ® R°P)-bimodules, and 1 ® x 2%
x ® 1 unless x = 1. The maps fy can therefore only be nonzero when x = 1, in which
case it must be a scalar. O

Let us now assume that A is a coarse bimodule, and that it is given to us as the
tensor product of a left R-modules with a right R-module:

A=prHQ®cKpr.

Then, we have Endgimr)(A) = End(g H) ® End(K ), and the subfactor (13) is of
the form

End(x H) ® End(Kg) C Ender(A(A)).

Proposition 5.14 The algebras End(g H) and End(K g) are each other’s relative com-
mutants in Endge (A(A)).
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Proof We will only prove that ZEnder (A(A)) (End(g H)) = End(Kg). The other claim
is symmetric and can be proved in a completely analogous way.

Let b € End(gH) be an endomorphism of H, and let f be an element of
Endc(A(A)). Let f, : AXa — alX A be the maps which correspond to
f € Ende (A(A)) under the bijection established in Theorem 4.4. The statement
that b and f commute is then equivalent to the statement that for every a € Irr(C), the
following equality holds in Hom(H ®c K Mg a,a Mg H Q¢ K):

a H K a H K

Treating K as a left R°P-module and letting R’ be the commutant of R on H (so
that H is an R—R’°P-bimodule), we may “fold” the above diagram (as we did to get

(15)):

a®l1 H®K

I®a HQ®K I®a H®K

Ya elr(C), Vb e R/,

where O = R® R and O = C. It follows that f; is not just in
HOmR®R0p ((1 ®a) xR®Rop (H ® K), (a ® ]) IZ'R@ROP (H ® K))
= Homg(L’R Mg H,a Xg H) ® Homgop(a Mgop K, L>R Kgop K),
but actually in

HomR’R/op (LZR &R H, a &R H) ® HomRop (a |X|Rop K, LZR |X|Rop K)

But H is an invertible R—R’°P-bimodule, and so

Hompg, goo (LR K H,a Rg H) = Hompim(g)(1, @).

It follows that f, = O unless a = 1, in which case f € Hom gop (K, K) = End(KR).
O

Remark 5.15 Proposition 5.14 implies Theorems 5.12 and 5.13. It shows that, among
other things, these two theorems hold in the greater generality of A a coarse bimodule
(as opposed to merely absorbing).
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5.3 Algebras acting on cyclic fusions

Let A1 and A; be coarse bimodules. In Sect. 4.2, we computed the endomorphism
algebra of A(A1) = (A(A1), ep,) € C'. Our next task is to compute the commutant
of End¢/ (A(A1)) on the cyclic fusion

[A(A1)®A2@—] - B [x&AlﬁfﬁAZ&—]

cyclic cyclic
Y xelrr(C) Y

We first note that there is a commuting action of End¢r (A (A»)) on that same Hilbert
space:

>

yelrr(C) yelrr(C)

Here, we have used Theorem 4.4 in order to write a generic element of
y Ay

Ende (A(A1)) as a sum of operators of the form Nk and similarly for
x A1 x

Endcr (A(A2)). We have then used the I = H relation to show that the resulting operators

commute. We have also secretly used the existence of a canonical isomorphism

P FRaRx = P xKHARE (16)
xelrr(C) xelr(C)

(Atfirstsight, this looks like is might depend on the choice of isomorphisms between
each x and the corresponding object of Irr(C). But as each X appears next to an x, the
isomorphism (16) is independent of those choices.)

Lemma 5.16 Let Ay and A; be coarse bimodules. Then, N1 = Endgim(r) (A1) and
N> = Endgim(r)(A2) are each other’s commutants on [A1 g Ay Kg _]cyclic'
Proof The algebra N is the commutant of R ® R°P on A. By Lemma 2.12, the latter
is therefore invertible as an Ni-(R°°? ® R)-bimodule. Similarly, A is invertible as an
(R°P ® R)-N;-bimodule. It follows that

[A1 Xr Ay Mg —] = At Mo g g A2

cyclic
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is an invertible N 1—N§P -bimodule. m]

Proposition 5.17 Let A| and Ay be coarse bimodules. Then, M1 = End¢c/ (A(A1))

and M = End¢ (A (A2)) are each other’s commutants on H = @xem(c) [x XAKX
xX A X —]

cyclic”

Proof Let f bein Mé. Since f commutes with Endgim(g)(A2) C M>, it follows from
Lemma 5.16 that f € Endgim(r)(A(A1)). We therefore have the following situation:

s L
2o

yelrr(C)

e
=

(17)

It remains to show that f commutes with the half-braiding. Write A as g(Hz) Q¢

(H1)R, for some right/left R-modules H; and H>. We then have a canonical isomor-
phism

[x&[\]&fgl\g@—] = HiIXxXA XxX H.

cyclic
Taking g of the form

AZEa=H2®@H1®aL®M>a®H2®CH1:a@Az

for R-module maps v : Hy - a X Hy and u : Hl Ka — Hj, Eq. (17) becomes:

yelrr(C)
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This being true for any u# and v, it follows that

H xAx a Hy H xA\x a Hy

Finally, fusing with H; and H, are faithful operations by Lemma 2.13, and so the
above equation implies ea(a,),q © (f Wid,) = (id, X f) 0 ea(a),a> as desired. O

6 Proof of the main theorem

Let C be a unitary fusion category, and let « : C — Bim(R) be a fully faithful
representation. Then, « extends to a functor

oM ;€ @yec Hilb — Bim(R)
Prxi®H — Palx)® H,.

Here, the first “— ® H;” is formal (as defined in Sect. 2.2), whereas the second one
is evaluated in Bim(R).

Lemma 6.1 The restriction functor (C Qvec Hilb) — C' is an equivalence.

Proof Given an object (X, ex) € C’, we can extend the half-braiding ex = (ex,y :
X®y— y® X)yec to arbitrary objects ¥ = @D y; ® H; of C ®vec Hilb by

ex,y:X&Y:X@(@Yi@@H,‘)ZEB(ngi)(X)Hi

Dex.y, ®idy,
S PR ®H = (@yl@Hi)&X:Y&X.

The half-braiding ex y is completely determined from the ey y, by naturality, and so
the functor (C ®vec Hilb)’ — C’ is a bijection on objects. To finish the argument,
we note that again by naturality, given two objects (X1, ex,) and (X2, ex,) inC’, a
map f : X1 — Xz is a morphism (X1, ex,) — (X2, ex,) in C' if and only if it is a
morphism between the corresponding objects of (C Qvec Hilb)'. O

Theorem (Theorem A) Let C be a unitary fusion category, and let o : C — Bim(R)
be a fully faithful representation. Then, «' exhibits C Qvec Hilb as a bicommutant
category.

Proof We will show that C” is equivalent to C ®vec Hilb. The result will then follow
since C” = (C ®vec Hilb)” by Lemma 6.1. We first note that the “inclusion” functor
t : C = C" (described in Sect. 3)
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extends to a functor

M- 0 @vec Hilb — €7
Pxrxi®H — Pilxi)) H;

where the first “— ® H;” is formal, and the second is evaluated in C”.

e The functor (1P is fully faithful:

The functor is fully faithful on simple objects, since their images remain simple in
C”. Indeed, they remain simple in Bim(R), and therefore also in C”. For finite sums
of simple objects, fully faithfulness follows by additivity. For the remaining objects,
we have

Hom (@i (X)) ® Hi, @j1(y)) ® Kj) = @ Homer (1(xi), 1(y))) ®c Hilb(H;, K ;)
ij
= @ Home (x;, y;) ®c Hilb(H;, K ;)
ij
= Hom cg, . Hilb (@; % ®H,D;y® Kj)»

where we have used the finite dimensionality of Homer (¢(x;), ¢(y;)) in the first equal-
ity.

Hilb

e The functor (""" is essentially surjective:

Let £ € C’ be an absorbing object. The proof splits into three steps:

1. If (X, ex) is an object of C”, then its underlying bimodule X lies in C ®vec Hilb
(the essential image of LH"b).
2. Let (X, ef,})) and (X, e()?) € C” be two objects with same underlying bimodule X.

0 e
Then, €x.q0 = €x.q
3. Given an object (X, ex) € C”,thenex = (exy : XKY — Y K X)

uniquely determined by ex o.

Y=(Y,ep)eC’ 1S

These are proven in Propositions 6.2, 6.4, and 5.9, respectively. O
Proposition 6.2 The underlying bimodule of an object of C” lies in C Qvec Hilb.

Proof Let Ag := rL*(R) ® L>(R)g, and let (Ao, ea,) := A(A). Given an object
(X, ex) of C”, the half-braiding ey yields a bimodule map

e = ex A(hg) - X Xr Ag = AgKr X
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which, after rewriting

X8 Ao =X B (€D B Ao B T)
yelrr(C)
- @ XXgyXRg L’RQ® L’RXRy
yelrr(C)

= @ (XMry)®y and
yelrr(C)

AR X = P y® (YR X),
yelrr(C)

becomes a map

e: @ (XRry)®y — @ y® (¥ Rg X).

yelrr(C) yelr(C)

The Hilbert spaces (X Kg y) ® y and y ® (y K X) each have four actions of R,
two left actions, and two right actions:

(X X y) ® and ® (g X)

/ N PEEN PERN / N

IR MR 3R 4R IR 2ndR 3R 4R

In order to keep track of all these copies of R, we denote them R;, R, R3, Ra,
respectively.
The map e is a morphism in Bim(R), meaning that it is an Rj—R4-bimodule map.
This map also has the property of being natural with respect to endomorphisms of
A(Ap). Restricting attention to

Endgim(g)(Ao) = RP® R C End¢r(A(Ao)),

this translates into the property of e being an R3—R>-bimodule map (or rather an
R<2>p —R;)p -bimodule map). All in all, we learn that there is an isomorphism of quadri-
modules:

P xrry)ey = P yo (TR X).

yelrr(C) yelrr(C)



Bicommutant categories from fusion categories 1705

Now, applying Homg, R4(L2R, —) to the above isomorphism, we get an Rj—R»>-
bimodule isomorphism:

X = Homg, g, (LQR, b (Xﬁy)@)i)

yelrr(C)

~ 2 — ~ 25 —

=~ Hompg, g, (L R. P y®(y&X)) = (P y®Homgim(r) (L*R.YE X).
yelr(C) yelr(C)

Finally, Hompjm R)(LzR, v X X) is just some Hilbert space (because L2R is irre-
ducible), and so the above isomorphism exhibits X as an element of C ®yegc Hilb.

LetC/, C C'be the full subcategory of absorbing objects of C'. This is a non-unital
tensor category, and it makes sense to talk about half-braidings with C/, ~(the axioms
of a half-braiding never mention unit objects).

Lemma 6.3 Let @ = (R, eq) € C' be an absorbing object, let X be a right R-
module, and let u : X X Q — X X Q be a right module map that commutes with
idy ® End¢/ (2). Then, u = v X idg for some right module map v : X — X.

Proof By Theorem 5.10, we can write 2 as A(A) for some absorbing bimodule A.
In particular, we then have Q@ = @, 1) ¥ X A K X. Letting A := RL’R ®c Xg,
we can then identify X X © with

P FHARFRA, K-
xelrr(C)

cyclic

By Proposition 5.17, since u commutes with End¢cr (A(A)), itlies in Ender (A(A2)).
Now, we also know that u commutes with R°P = End( RL2R). By Proposition 5.14,
it therefore comes from some element of End(Xz), which we may call v. In other
words, u = v K idg. 0O

Proposition 6.4 An object X € Bim(R) admits at most one half-braiding with C,,, .

Proof Let eg}) and e(;) be two half-braidings. Given an object @ € C/, , withunderlying
bimodule 2 € Bim(R), we need to show that the two maps e := eg,)’g and e :=

e?Q are equal. Let u := e, "5 e). The maps e and e, are natural with respect to

endomorphisms of £2, and so # commutes with idx ® End¢/(£2). By Lemma 6.3, we
may therefore write it as u = v M idg for some v € Endgim(r)(X). All in all, we get
a commutative diagram

el

€2

XRQ— = XNRQ— QX X.

Fix an isomorphism ¢ : QX Q2 — Q in C’, and let us denote by the same letter the
corresponding isomorphism Q X Q — Q. By combining the “hexagon” axiom with
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the statement that the half-braiding is natural with respect to ¢, we get the following
commutative diagrams (as in the proof of Proposition 5.9):

e Nidg idg Xey
XKQAQXQ—— QR XKXQ—QXOQX X
J/idx Xe¢ l:p&idx (18)
XXQ - QN X
and
ez‘gidg idQ‘XEZ
XKQAXKQ—— QXXX Q—— QX QXX
J/idx Xe¢ l(})lzlidx (19)
XXQ = QK X.

Horizontally precomposing (19) with

Ulzidmgg
XROQRQ—XKQXQ
J/idx Xo J/idx XN¢
vXlidg
XX Q XX Q
yields the following diagram
eﬂXidQ idg &62
XROQKQ—QRXKXQ——QXNQKX
lidx DX lqﬂidx
XXQ = QR X.

The latter is almost identical to (18), but for the top right arrow. All maps in sight
being isomorphisms, it follows that idg Xe; = idg Xe,. At last, by Lemma 2.13, we
conclude that e; = e>. |
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