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Abstract Bicommutant categories are higher categorical analogs of von Neumann
algebras that were recently introduced by the first author. In this article, we prove
that every unitary fusion category gives an example of a bicommutant category. This
theorem categorifies the well-known result according to which a finite dimensional
∗-algebra that can be faithfully represented on aHilbert space is in fact a vonNeumann
algebra.
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1 Introduction

Bicommutant categories were introduced by the first author in the recent preprint [14],
as a categorification of the notion of a von Neumann algebra.

Recall that a von Neumann algebra is a subalgebra of the algebra of bounded
operators on a Hilbert space which is equal to its bicommutant:

A ⊂ B(H) s.t. A = A′′ (vonNeumann algebra).

Bicommutant categories are defined similarly. They are tensor categories equipped
with a tensor functor to the category Bim(R) of all separable bimodules over a
hyperfinite factor, such that the natural comparison functor from the category to its
bicommutant is an equivalence of categories:

C → Bim(R) s.t. C �→ C′′ (bicommutant category).

The main result of this paper is that every unitary fusion category gives an example
of a bicommutant category. The fusion categories themselves are not bicommutant
categories, as they do not admit infinite direct sums: In a fusion category, every object
is a finite direct sum of simple objects. In other words, every object is of the form⊕

i ci ⊗ Vi for some finite dimensional vector spaces Vi ∈ Vec and simple objects
ci ∈ C. In order to make C into a bicommutant category, we need to allow the Vi to be
arbitrary separable Hilbert spaces. The resulting category is denoted as C ⊗Vec Hilb
(this is an instance of balanced tensor product of linear categories [33]). Our main
result is as follows:

Theorem A If C is a unitary fusion category, then C ⊗Vec Hilb is a bicommutant
category.

By a result of Popa [27], every unitary fusion category C can be embedded in Bim(R)

(see Theorem 3.5). We prove that its bicommutant C′′ is equivalent to C ⊗Vec Hilb,
and that the latter is a bicommutant category.

As a special case of the above theorem, if G is a finite group and ω is a cocycle
representing a class [ω] ∈ H3(G,U (1)), then the tensor category Hilbω[G] of G-
graded Hilbert spaces with associator twisted by ω is a bicommutant category. That
result was conjectured in [14, §6] as part of a bigger conjecture about categories of
representations of twisted loop groups.

We summarize the categorical analogy in the table below. Going left to right is
“categorification,” and going down is passing to the infinite dimensional case:
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An algebra A A tensor category C
A finite dimensional algebra A fusion category
The center of an algebra Z(A) The Drinfeld center Z(C)

The commutant (or centralizer) ZB (A) of A in B The commutant ZD(C) of C in D
The algebra B(H) of bounded operators The category Bim(R) of all bimodules
On a Hilbert space On a hyperfinite factor R
The commutant A′ := ZB(H)(A) The commutant C′ := ZBim(R)(C)

A von Neumann algebra A = A′′ A bicommutant category C ∼= C′′

Wehave omitted one technical point in the above discussion.VonNeumann algebras
are not just algebras; they are ∗-algebras (all the other structures such as the norm and
the various topologies can be deduced from the ∗-algebra structure, but the ∗-algebra
cannot be deduced from the algebra structure). Similarly, bicommutant categories are
equipped with two involutions which mimic the involutions that are naturally present
onBim(R). One of the involutions acts at the level ofmorphisms (the adjoint of a linear
map), and the other acts at the level of objects (the complex conjugate of a bimodule).
We call such categories bi-involutive tensor categories (see Definition 2.5). Thus, we
add the following line to the above table:

∗-algebra A Bi-involutive tensor category C

2 Preliminaries

2.1 Involutions on tensor categories

A linear dagger category is a linear category C over the complex numbers, equipped
with an anti-linear map C(x, y) → C(y, x) : f 
→ f ∗ for every x, y ∈ C called the
adjoint of a morphism. It satisfies f ∗∗ = f and ( f ◦ g)∗ = g∗ ◦ f ∗, from which it
follows that id∗

x = idx . An invertible morphism of a dagger category is called unitary
if f ∗ = f −1.

A functor F : C → D between dagger categories is a dagger functor if F( f )∗ =
F( f ∗).

Definition 2.1 ([31, §7]) A dagger tensor category is a linear dagger category C
equippedwith amonoidal structurewhose associatorsαx,y,z : (x⊗y)⊗z → x⊗(y⊗z)
and unitors λx : 1 ⊗ x → x and ρx : x ⊗ 1 → x are unitary, and which satisfies the
compatibility condition ( f ⊗ g)∗ = f ∗ ⊗ g∗.

The last condition can be rephrased as saying that the monoidal product⊗ : C⊗Vec
C → C is a dagger functor. From now on, we shall abuse notation, and omit all
associators and unitors from our formulas. We trust the reader to insert them wherever
needed.

Definition 2.2 Let C and D be dagger tensor categories. A dagger tensor functor
F : C → D is a dagger functor equipped with a unitary natural transformation
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μx,y : F(x) ⊗ F(y) → F(x ⊗ y) and a unitary isomorphism i : 1D → F(1C) such
that the following identities hold for all x, y, z ∈ C:

μx,y⊗z ◦ (idF(x) ⊗μy,z) = μx⊗y,z ◦ (μx,y ⊗ idF(z))

μ1,x ◦ (i ⊗ idF(x)) = idF(x) μx,1 ◦ (idF(x) ⊗i) = idF(x) .

We shall be interested in dagger tensor categories which are equipped with a second
involution, this time at the level of objects (compare [15, Def. 1.3]):

Definition 2.3 A bi-involutive tensor category is a dagger tensor category C with a
covariant anti-linear dagger functor · : C → C called the conjugate. This functor
should be involutive, meaning that for every x ∈ C, we are given a unitary natural
isomorphisms ϕx : x → x satisfying ϕx = ϕx . It should be anti-compatible with the
tensor structure, meaning that we have unitary natural isomorphisms

νx,y : x ⊗ y
�−→ y ⊗ x

and a unitary j : 1 → 1 satisfying νx,z⊗y ◦ (idx ⊗νy,z) = νy⊗x,z ◦ (νx,y ⊗ idz)
and ν1,x ◦ ( j ⊗ idx ) = idx = νx,1 ◦ (idx ⊗ j). Finally, we require the compatibility
conditions ϕ1 = j ◦ j and ϕx⊗y = νy,x ◦ νx,y ◦ (ϕx ⊗ ϕy) between the above pieces
of data.

Remark 2.4 It is interesting to note that themap j can be recovered from the other data

as j = λ1 ◦ (ϕ−1
1 ⊗ id1) ◦ ν−1

11
◦ λ1

−1 ◦ ϕ1. We believe that the notion of bi-involutive
category as presented above is equivalent to its variant without j (and without the
axioms that involve j). Nevertheless, we find it more pleasant to include this piece of
data in the definition.

Note that in the category of Hilbert spaces, the isomorphism ϕH : H → H is an
identity arrow. Whenever that is the case, we have j = j−1 and νy,x = ν−1

x,y .

Definition 2.5 Let C and D be bi-involutive tensor categories. A bi-involutive tensor
functor is a dagger tensor functor F : C → D, equipped with a unitary natural
transformation υx : F(x) → F(x) satisfying the three conditions υx = υx

−1 ◦
ϕF(x) ◦ F(ϕx )

−1, υ1C = i ◦ jD ◦ i−1 ◦ F( jC)−1, and υx⊗y = μx,y ◦νF(y),F(x) ◦ (υy ⊗
υx ) ◦ μ−1

y,x ◦ F(νy,x )
−1.

2.2 Unitary fusion categories

A tensor category C is rigid if for every object x ∈ C, there exists an object x∨ ∈ C,
called the dual of x , and maps evx : x∨ ⊗ x → 1 and coevx : 1 → x ⊗ x∨ satisfying
the zigzag axioms

(idx ⊗ evx ) ◦ (coevx ⊗ idx ) = idx and (evx ⊗ idx∨) ◦ (idx∨ ⊗ coevx ) = idx∨ (1)
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(those equations determine x∨ up to unique isomorphism). Moreover, for every x ∈ C,
there should exist an object ∨x ∈ C such that (∨x)∨ ∼= x . The dual of a morphism
f : x → y is given by

f ∨ := (evy ⊗ idx∨) ◦ (idy∨ ⊗ f ⊗ idx∨) ◦ (idy∨ ⊗ coevx ) : y∨ → x∨.

Let Vec denote the category of finite dimensional vector spaces. A category is
semisimple if it is equivalent to a direct sum of copies of Vec, possibly infinitely
many. Equivalently, it is semisimple if it admits finite direct sums (including the zero
sum), and every object is a direct sum of finitely many (possibly zero) simple objects.

Definition 2.6 A fusion category is a tensor category which is rigid, semisimple, with
simple unit, and finitely many isomorphism classes of simple objects.

Let Hilb denote the dagger category of Hilbert spaces and bounded linear maps.
A C*-category is a dagger category C for which there exists a faithful dagger functor
C → Hilb whose image is norm-closed at the level of hom-spaces. Equivalently [10,
Prop. 1.14], a C*-category is a dagger category such that for every arrow f : x → y,
there exists an arrow g : x → x with f ∗ ◦ f = g∗ ◦ g,1 and such that the norms

‖ f ‖2 := sup
{|λ| : f ∗◦ f − λ· id is not invertible

}

are complete and satisfy ‖ f ◦ g‖ ≤ ‖ f ‖‖g‖ and ‖ f ∗ ◦ f ‖ = ‖ f ‖2. A C*-tensor cat-
egory is a dagger tensor category whose underlying dagger category is a C*-category.

Definition 2.7 Aunitary fusion category is a dagger tensor categorywhose underlying
dagger category is a C*-category, and whose underlying tensor category is a fusion
category.

By [35, Thm.4.7] and [2, §4] , every rigid C*-tensor category with simple unit
(in particular, every unitary fusion category) can be equipped with a canonical bi-
involutive structure. The conjugation · is characterized at the level of objects (up to
unique unitary isomorphisms) by the data of structuremorphisms evx : x⊗x → 1 and
coevx : 1 → x ⊗ x , subject to the two zigzag axioms (1) and the balancing condition

coev∗
x ◦ ( f ⊗ idx ) ◦ coevx = evx ◦ (idx ⊗ f ) ◦ ev∗

x ∀ f : x → x .

The conjugation applied to a morphism f : x → y is given by f := ( f ∗)∨ :
x → y. The coherences between the conjugation and the tensor structure are given by
j = coev1 and νx,y = (evx ⊗ idy⊗x ) ◦ (idx ⊗evy ⊗ idx⊗y⊗x ) ◦ (idx⊗y ⊗coevy⊗x ).
The last piece of data is provided by the isomorphisms

ϕx := (idx ⊗ evx ) ◦ (ev∗
x ⊗ idx ) : x → x .

1 This condition is present in the original definition [10] of Ghez, Lima, and Roberts, but is omitted from
many other references (e.g., from [6,15,35]). It is automatic for categories that admit direct sums, but it can
otherwise fail.
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Finally, the maps ϕx : x → x equip such a category with a canonical pivotal structure,
which is furthermore spherical.

Note that a unitary fusion category is a fusion category with an additional structure.
A fusion category could therefore, in principle, have more than one unitary structures.
The question of uniqueness is best formulated in the following way (see [9, §5] for
related work).

Question 2.8 Let F : C �→ D be a tensor equivalence between two unitary fusion
categories. Is any such F naturally equivalent to a dagger tensor functor?

Given a fusion category C, we define a new category C ⊗Vec Hilb as follows.
Its objects are formal expressions

⊕
i xi ⊗ Hi (finite direct sums) with xi ∈ C and

Hi ∈ Hilb, and the morphisms are given by

Hom C⊗VecHilb

(⊕

i

xi ⊗ Hi ,
⊕

j

y j ⊗ K j

)
:=

⊕

i, j

C(xi , y j ) ⊗C Hilb(Hi , K j ).

As we saw, if C is a unitary fusion category, then it is equipped with a canonical
bi-involutive structure. Combining it with the corresponding structure on Hilb yields
a bi-involutive structure on C ⊗Vec Hilb. The adjoint of a morphism

∑
fi j ⊗ gi j :⊕

xi ⊗ Hi → ⊕
y j ⊗ K j is

∑
f ∗
i j ⊗ g∗

i j , and the conjugate of an object
⊕

xi ⊗ Hi

is
⊕

xi ⊗ Hi . The structure data ϕ, ν, j are inherited from those of C and of Hilb.

2.3 The commutant of a category

Given an algebra B and a subalgebra A ⊂ B, the commutant of A inside B, also called
the centralizer, is the algebra

ZB(A) := {b ∈ B | ab = ba ∀a ∈ A}.

In this section, we introduce higher categorical variants of the above notion, where
the algebras A and B are replaced by tensor categories, dagger tensor categories, and
finally bi-involutive tensor categories.

Definition 2.9 ([20]) LetC andD be tensor categories, and let F = (F, μ, i) : C → D
be a tensor functor. The commutantZD(C) of C inD is the category whose objects are
pairs (X, eX ) with X ∈ D an object, and eX = (eX,y : X ⊗ F(y)

�→ F(y) ⊗ X)y∈C
a half-braiding. The components eX,y of the half-braiding must satisfy the following
“hexagon” axiom:
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F(y) ⊗ X ⊗ F(z)

idF(y) ⊗eX,z

X ⊗ F(y) ⊗ F(z)

eX,y⊗idF(z)

idX ⊗μy,z

F(y) ⊗ F(z) ⊗ X

X ⊗ F(y ⊗ z)
eX,y⊗z

F(y ⊗ z) ⊗ X

μ−1
y,z⊗idX

Note that by setting y = z = 1C in the above diagram, it follows that eX,1C = idX .
Amorphism (X, eX ) → (Y, eY ) inZD(C) is amorphism f : X → Y inD such that

(idF(z) ⊗ f ) ◦ eX,z = eY,z ◦ ( f ⊗ idF(y)). The tensor product of two objects (X, eX ),
(Y, eY ) of ZD(C) is given by (X, eX ) ⊗ (Y, eY ) = (X ⊗ Y, eX⊗Y ), with

eX⊗Y,z = (eX,z ⊗ idY ) ◦ (idX ⊗eY,z),

and the associators and unitors of ZD(C) are inherited from those of D.

Remark 2.10 The Drinfeld center Z(C) is the commutant of C in itself.

If C and D are dagger tensor categories and F : C → D is a dagger tensor functor,
then we may consider the full subcategory

Z∗
D(C) ⊂ ZD(C)

whoseobjects are pairs (X, eX ) as above,where themaps eX,y : X⊗F(y) → F(y)⊗X
are unitary. We call Z∗

D(C) the unitary commutant of C inD (compare [21, Def. 6.1]).
Unlike ZD(C), the unitary commutant is a dagger category, and its ∗-operation is
inherited from D.

Remark 2.11 The inclusion Z∗
D(C) ↪→ ZD(C) is in general not an equivalence. The

easiest counterexample is given by C = Vec[G] for G some infinite group, and
D = Vec. Then,Z∗

D(C) is the category of unitary representations ofG,whereasZD(C)

is the category of all representations ofG. See [22, Thm.6.4] and [9, Proposition 5.24]
for some positive results when C is a fusion category.

If C and D are bi-involutive tensor categories, and F : C → D is a bi-involutive
tensor functor, then the unitary commutantZ∗

D(C) of C inD is also naturally equipped
with the structure of a bi-involutive tensor category. The conjugate of (X, eX ) ∈ Z∗

D(C)

is the pair (X , eX ) consisting of the object X ∈ D and the half-braiding

eX ,y : X ⊗ y
id⊗ϕy

X ⊗ y
νX,y

X ⊗ y
eX,y

y ⊗ X
ν−1
y,X

y ⊗ X
ϕ−1
y ⊗id

y ⊗ X .

The coherence isomorphisms ϕ, j , and ν are inherited from D.
We will be especially interested in the case whenD = Bim(R), the tensor category

of bimodules over some hyperfinite von Neumann factor R. The monoidal product on
that category is based on the operation of Connes fusion, which we describe next.
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2.4 L2-spaces and Connes fusion

Let R be a von Neumann algebra, with predual R∗ and positive part R+∗ ⊂ R∗. The
L2-space of R (also known as standard form of R), denoted as L2R, is the Hilbert
space generated by symbols

√
φ for φ ∈ R+∗ , under the inner product

〈√φ,
√

ψ〉 = anal. cont.
t→i/2

φ([Dφ : Dψ]t ),

where [Dφ : Dψ]t ∈ R is Connes’ non-commutative Radon–Nikodym derivative.2

The Hilbert space L2R is an R–R-bimodule, with the two actions of R are determined
by the formula

〈a√
φ b,

√
ψ〉 = anal. cont.

t→i/2
φ
([Dφ : Dψ]tσψ

t (b)a
)
,

where σ
ψ
t is the modular flow. Finally, the modular conjugation J : L2R → L2R

is given by J (λ
√

φ) = λ
√

φ for λ ∈ C. General references about L2R include
[11,12,18].

Given a right module H and a left module K , their fusion H �R K is the Hilbert
space generated by symbols α[ξ ]β, for α : L2R → H a right R-linear map, ξ ∈ L2R,
and β : L2R → K a left R-linear map, under the inner product

〈
α1[ξ1]β1, α2[ξ2]β2

〉 = 〈
�−1(α∗

2 ◦ α1)ξ1r
−1(β∗

2 ◦ β1), ξ2
〉
L2R .

Here, � and r denote the left and right actions of R on its L2 space, defined by
�(a)(ξ) = aξ and r(a)(ξ) = ξa, respectively.

There exist two alternative descriptions of H �R K , as generated by symbols α[ξ
for α : L2R → H a right R-linear map and ξ ∈ K a vector, and generated by symbols
ξ ]β for β : L2R → K a left R-linear map and ξ ∈ H a vector. The isomorphisms
between the above models are given by

α[ξ ]β 
→ α(ξ)]β and α[ξ ]β 
→ α[β(ξ).

General references about Connes fusion include [24,30] and [4, Appendix B. δ].
The two actions of R on L2R are each other’s commutants. That property charac-

terizes the bimodules which are invertible with respect to Connes fusion:

Lemma 2.12 ([30, Prop. 3.1]) Let A and B be von Neumann algebras, and let H be an
A–B-bimodules such that A and B are each other’s commutants on H (in particular,
they act faithfully on H). Then, H is an invertible A–B-bimodule.

2 The formula for the inner product makes most sense if one rewrites formally [Dφ : Dψ]t as φi tψ−i t and
φ(a) as Tr(φa). It then simplifies to Tr(φ1+i tψ−i t )|t=i/2 = Tr(φ1/2ψ1/2). Similarly, for next formula,

one may replace formally σ
ψ
t (b) by ψ i t bψ−i t . Note that these formal symbols are genuinely meaningful

and can be implemented as (unbounded) operators on some Hilbert space, see, e.g., [34].
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Connes fusion has the following useful faithfulness property:

Lemma 2.13 Let R be a von Neumann algebra, and let H be a faithful right module.
Then, for any left modules K1 and K2, the map

H �R − : HomR(K1, K2) → Hom(H �R K1, H �R K2) (2)

is injective.

Proof Let R′ be the commutant of R on H . By Lemma 2.12, H is an invertible
R′–R-bimodule. The map (2) can then be factored as the composite of the bijection
HomR(K1, K2) ∼= HomR′(H � K1, H � K2) with the inclusion

HomR′(H � K1, H � K2) ⊂ Hom(H � K1, H � K2).

��
The operation of fusion makes the category Bim(R) of R–R-bimodules3 into a

tensor category, with unit object L2R. The associator is given by

(H �R K ) �R L → H �R (K �R L) : (α[ξ)]β 
→ α[(ξ ]β),

for α : L2R → H a right R-linear map, ξ ∈ K , and β : L2R → L a left R-linear
map, and the two unitors are given by

H �R L2R → H : α[ξ 
→ α(ξ) and L2R �R H → H : α[ξ 
→ �−1(α)ξ.

The category Bim(R) is a dagger tensor category, with adjoints of morphisms
defined at the level of the underlying Hilbert spaces. It is even a bi-involutive tensor
category. Given a bimodule H ∈ Bim(R), the underlying Hilbert space of H is the

complex conjugate of H (with scalar multiplication λξ = λξ ), and the two actions
of R are given by aξb = b∗ξa∗. The transformation ϕ is the identity. The map
j : L2R → L2R is given by j (ξ) = J (ξ), with J the modular conjugation (note that
j is linear, and J is anti-linear), and the coherence ν : H �R K → K �R H is given
by

ν(α[ξ ]β) = (β ◦ j)[J (ξ)](α ◦ j)

for α : L2R → H , ξ ∈ L2R, and β : L2R → K . The latter is equivalently given by

ν(α[ξ) = J (ξ)](α ◦ j), or ν(ξ ]β) = (β ◦ j)[J (ξ).

3 Later on, we will restrict attention to separable von Neumann algebras (i.e., ones which admit faithful
actions on separable Hilbert spaces), in which case we will take Bim(R) to be the category of R–R-
bimodules whose underlying Hilbert space is separable. The reason for that restriction will become evident
in Sect. 5.
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Remark 2.14 LetBim◦(R) ⊂ Bim(R)be the full subcategory of dualizable bimodules
(equivalently, the bimodules with finite statistical dimension [2, § 5 and Cor. 7.14]).
Then, by [2, Cor. 6.12] , the canonical conjugation on Bim◦(R) (described in Sect. 2.2)
is the restriction of the conjugation on Bim(R) described above.

2.5 Graphical calculus

Throughout this paper, we will use the string diagram calculus familiar from tensor
categories: Objects are denoted by strands, and morphisms are denoted by coupons
[17,31] . For example, the following string diagram

x

v

y z

w

t

u
f

g

h

k
f : v → x ⊗ t

g : t ⊗ u → y

h : 1 → u

k : w → z

represents a morphism v ⊗ w → x ⊗ y ⊗ z.
Given a dualizable object x ∈ C in a C*-tensor category, the canonical evaluation

and coevaluations maps evx : x ⊗ x → 1 and coevx : 1 → x ⊗ x , and their adjoints
ev∗

x : 1 → x ⊗ x and coev∗
x : x ⊗ x → 1 are denoted graphically as follows:

evx :
x x

coevx :
x x

ev∗
x :

x x

coev∗
x :

x x

.

They satisfy:

x

x

x =
x

,

x

x

x =
x

, f

x x

= f

xx

∀ f : x → x ,

along with the equations evx = j ◦ evx ◦ (idx ⊗ϕ−1
x ) ◦ ν−1

x,x and coevx = νx,x ◦ (ϕx ⊗
idx )◦coevx ◦ j−1 which, after omitting the coherences j , ν, and ϕ, can be conveniently
abbreviated

evx = evx and coevx = coevx .
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The dimension of a dualizable object x ∈ C is given by

dx := coev∗
x ◦ coevx = evx ◦ ev∗

x ∈ R≥0.

Given dualizable objects x, y, z ∈ C, Frobenius reciprocity (or pivotality) provides
canonical isomorphisms

Hom(1,x⊗y⊗z) ∼= Hom(1,y⊗z⊗x) ∼= Hom(1,z⊗x⊗y) ∼= Hom(z,x⊗y) ∼= Hom(x,y⊗z) ∼= Hom(y,z⊗x)

∼= Hom(z⊗y,x) ∼= Hom(x⊗z,y) ∼= Hom(y⊗x,z) ∼= Hom(z⊗y⊗x,1) ∼= Hom(x⊗z⊗y,1) ∼= Hom(y⊗x⊗z,1).

The sesquilinear pairing o, for f, g ∈ Hom(1, x ⊗ y ⊗ z), equips this vector space
with the structure of a finite dimensional Hilbert space. The dual (or complex conju-
gate) Hilbert space is then given by any one of the following canonically isomorphic
vector spaces:

Hom(1,z⊗y⊗x) ∼= Hom(1,y⊗x⊗z) ∼= Hom(1,x⊗z⊗y) ∼= Hom(x,z⊗y) ∼= Hom(z,y⊗x) ∼= Hom(y,x⊗z)

∼= Hom(x⊗y,z) ∼= Hom(z⊗x,y) ∼= Hom(y⊗z,x) ∼= Hom(x⊗y⊗z,1) ∼= Hom(z⊗x⊗y,1) ∼= Hom(y⊗z⊗x,1).

Let ei ∈ Hom(1, x⊗ y⊗z) and ei ∈ Hom(1, z⊗ y⊗x) be dual bases, and consider
the canonical element

√
dxdydz ·

∑

i

ei ⊗ ei .

We will be making great use of string diagrams where pairs of trivalent nodes are
labeled by the above canonical element. These will be denoted by pairs of circular
colored nodes, as follows:

x y

z

⊗
x y

z

:= √
dxdydz ·

∑

i

x y

z

ei ⊗
x y

z

ei (3)

Remark 2.15 The element
x y

z
⊗

x y

z

lies in Hom(z, x ⊗ y) ⊗ Hom(x ⊗ y, z), and

should not be confused with
x y

z x y

z

∈ Hom(z ⊗ x ⊗ y, x ⊗ y ⊗ z).

When occurring in a bigger diagram, it might happen that we need to use the above
canonical elements in more that one place. In that case, we will use multiple colors
to indicate the various pairs of nodes (often, the coupling can also be inferred from
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the string labels). The remaining coupons will be sometimes denoted by little squares.
For example:

f g

x
y

z v
y

u y

w

u x

u v s t

:=
√
dxdydu

√
dvdydz ·

∑

i, j

ei

e jei
e j

gf

x
y

z v y

u y

w

u x

u v s t

(4)

When x, y, z ∈ C are irreducible objects, we will write Nz
x,y for the dimension

of Hom(x ⊗ y, z). Let us also fix a set Irr(C) ⊂ Ob(C) of representatives of the
isomorphism classes of irreducible objects.

The following lemma lists the most important relations satisfied in the above graph-
ical calculus. To our knowledge, the following relations have not appeared in this exact
form in the literature, but they are certainly well known to experts:

Lemma 2.16 The following relations hold:

z

yx

z

=
√

dxdyd
−1
z · Nz

x,y

z

(Bigon 1)

z

yx

z

⊗
x y

z

⊗
x y

z

=
√

dxdyd
−1
z ·

z

⊗
x y

z

⊗
x y

z

(Bigon 2)

∑

z∈Irr(C)

√
dz

x y

x y

z = √
dxdy ·

x y

(Fusion)

∑

v∈Irr(C)

x w

y z

v ⊗
w x

z y

v =
∑

u∈Irr(C) w

z

x

y

u ⊗
x

y

w

z

u
(I = H)
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Proof By definition, the dual basis ei ∈ Hom(z, x ⊗ y) and ei ∈ Hom(x ⊗ y, z)
satisfy

tr(e j ◦ ei ) =
e j

ei
z

yx

z

= δi, j .

By “undoing the trace,” it follows that, for ei and e j as above,

e j ◦ ei = d−1
z δi, j · idz . (5)

The two Bigon relations are immediate consequences of the above equation:

√
dxdydz ·

∑

i

ei ◦ ei = √
dxdydz ·

∑

i

d−1
z · idz =

√

dxdyd
−1
z N z

x,y · idz

dxdydz
∑

i, j

(e j ◦ ei ) ⊗ e j ⊗ ei = dxdy
∑

i, j

δi, j idz ⊗e j ⊗ ei

=
√

dxdyd
−1
z

√
dxdydz

∑

i

idz ⊗ei ⊗ ei .

In order to prove the fusion relation

∑

z, j

√
dz

√
dxdydz · e j ◦ e j = √

dxdy · idx⊗y ,

it is enough to argue that it holds after precomposition with an arbitrary basis element
ei ∈ Hom(z′, x ⊗ y) and object z′ ∈ Irr(C). So we must show that the equation∑

z, j dz · e j ◦ e j ◦ ei = ei holds. This is again a consequence of Eq. (5):

∑

z, j

dz · e j ◦ e j ◦ ei =
∑

z, j

dz · e j ◦ (d−1
z δz,z′δi, j · idz) = ei .

To prove the I = H relation, we rewrite it as

√
dxdydzdw ·

∑

v,i, j

dv

ei

e j

x w

y z

v ⊗
ei

e j

w x

z y

v =
√
dxdydzdw ·

∑

u,i, j

du ei e j

x w

y z

u ⊗ e j
′ ei ′

w x

z y

u
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and note that both sides are of the form
√
dxdydzdw

∑
fa ⊗ f a for { fa} a basis of

Hom(x ⊗w, y ⊗ z) and { f a} the dual basis of Hom(w ⊗ x, z ⊗ y) with respect to the
pairing

〈
f

y z

x w

, g

z y

w x

〉 := f g .

To see that dv

ei

e j

x w

y z

v and
ei

e j

w x

z y

v are indeed dual bases, we use the relation (5) twice:

dv

ei

e j

v

ei ′

e j
′

v′ = dvd
−1
v δv,v′ δ j, j ′

ei

v

ei ′

v = dvd
−2
v δv,v′ δ j, j ′ δi,i ′ ·

v
= δv,v′ δ j, j ′ δi,i ′ .

The verification that du ei e j

x w

y z

u
and e j

′ ei ′

w x

z y

u
are dual bases is entirely

similar. ��
Let us now assume that C is furthermore a fusion category, and let dim(C) :=∑
x∈Irr(C) d

2
x be its global dimension. We then have the following result.

Lemma 2.17 The following relation holds:

∑

a,b∈Irr(C)

x

ba

y

⊗
x

ab

y

= dim(C) · δx,y

x

⊗
x

(6)

Proof Recall that da = da . For every x ∈ Irr(C), we have

∑

a,b

dadbN
x
a,b =

∑

a

da
( ∑

b

Nb
a,xdb

) =
∑

a

da(dadx ) = dx dim(C).
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Using the two Bigon relations, the left-hand side of (6) then simplifies to

∑

a,b

dadbd
−1
x N x

a,b δx,y · idx ⊗ idx = dim(C) δx,y · idx ⊗ idx .

��
There is an alternative proof of Lemma 2.17 which proceeds as follows. We use the

I = H relation to rewrite the left-hand side of (6) as

∑

a,b∈Irr(C)
x

b
a

y

⊗
x

b
a

y

We then note that the only terms which contribute to the sum are the ones with
b = 1, and so we are left with

∑

a∈Irr(C) a

·
a

·
x

⊗
x

= dim(C) ·
x

⊗
x

2.6 Cyclic fusion

Given rings Ri and bimodules Ri−1(Mi )Ri for i ∈ {1, . . . , n} (indices modulo n), we
may define the cyclic tensor product

[
M1⊗R1 M2⊗R2 · · ·⊗Rn−1 Mn ⊗Rn −

]

cyclic
:= (

M1⊗Z M2⊗Z · · ·⊗Z Mn
)/∼ (7)

where ∼ is the equivalence relation generated by

m1 · · · ⊗ mi−1r ⊗ mi ⊗ · · ·mn ∼ m1 · · · ⊗ mi−1 ⊗ rmi ⊗ · · ·mn for r ∈ Ri
and m1 ⊗ · · · ⊗ mnr ∼ rm1 ⊗ · · · ⊗ mn for r ∈ Rn .

The cyclic Connes fusion, first introduced in [1, Appendix A], is the analog of the
above construction for Connes fusion.

Unlike the cyclic tensor product, the cyclic fusion is not always defined. Let us
explain by an analogy why it is not always defined, and when we can expect it to be
defined. If one takes the point of view that a bimodule between rings is something that
categorifies the notion of a linear map, then the expression (7) categorifies the number

tr( f1 ◦ f2 ◦ · · · ◦ fn).

Now,we like to think of bimodules between vonNeumann algebras as categorifying
the notion of a bounded linear map between infinite dimensional Hilbert spaces. Given
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bounded linear maps fi : Hi−1 → Hi , i ∈ {1, . . . , n} (indices modulo n), then the
above trace is not always defined. It is however defined if at least two of the maps are
Hilbert–Schmidt.

For bimodules between von Neumann algebras, we propose the following as a
categorification of the Hilbert–Schmidt condition:

Definition 2.18 A bimodule AHB between von Neumann algebras is coarse if the
action of the algebraic tensor product A � Bop extends to the spatial tensor product
A ⊗̄ Bop. Equivalently, a bimodule is coarse if it is a direct summand of a bimodule
of the form

A(H1) ⊗C (H2)B (8)

(and if A or B are factors, then any coarse bimodule is of the form (8)).

Coarse bimodules form an ideal in the sense that if AHB is coarse and BKC is any
bimodule, then AH �B KC is coarse.

Definition 2.19 Let Ri be von Neumann algebras, and let Ri−1(Hi )Ri , i ∈ {1, . . . , n},
be bimodules (indices modulo n). Assume that at least two of the Hi are coarse. Then,
we define the cyclic fusion by:

[
H1 �R1 H2 �R2 · · · �Rn−1 Hn �Rn −

]

cyclic

:=
(
Ha+1 �Ra+1 · · · �Rb−1 Hb

)
�Rop

a ⊗̄Rb

(
Hb+1 �Rb+1 · · · �Ra−1 Ha

)

(cyclic numbering), where the indices a and b are chosen so that at least one of the
{Ha+1, . . . , Hb} is coarse, and at least one of the {Hb+1, . . . , Ha} is coarse.
Remark 2.20 A priori, the above description depends on the choice of locations a and
b used to “cut the circle”:

H 1

�R1 H2 �
R2 H

3 �
R
3
H
4

�
R4

H5�R5H6
�
R
6
H
7

�
R
7

a

b

In [1, Appendix A], it was shown that when all the Hi are coarse (and as long as
there are at least two of them), the cyclic fusion is well defined up to canonical unitary
isomorphism. It is also well defined in the presence of non-coarse bimodules: Let the
Hi1 , . . . , Hik be coarse, and let the other bimodules be non-coarse. Then, we may
define the cyclic fusion in terms of the operation described in [1, Appendix A] as

[(
Hi1+1 � · · · � Hi2

) �Ri2

(
Hi2+1 � · · · � Hi3

) �Ri3
· · · · · · �Rik

(
Hik+1 � · · · � Hi1

) �Ri1
−

]

cyclic
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Inspired by [29], we propose the following graphical calculus for morphisms
between cyclic fusions. The Hilbert space [H1 �R1 · · · �Rn−1 Hn �Rn −]cyclic corre-
sponds to an arrangement of parallel strands (labeled by the various Hilbert spaces)
on the surface of a cylinder. A string diagram on the cylinder represents a morphism:

H1 H2

K2
K3

H4

H3

K1

:
[
H1 � H2 � H3 � H4 � −

]

cyclic

→
[
K1 � K2 � K3 � −

]

cyclic

We draw thick strands for the coarse bimodules and thin strands for the bimodules
which are not coarse. For a morphism to be well defined, any horizontal plane inter-
secting the cylinder should cross at least two thick strands (and if the plane crosses
through the middle of a coupon which is connected to at least one thick strand, then
this coupon counts as one thick strand).

Later on in this paper, we will combine the above cylinder graphical calculus with
the colored dots notation from (3).

3 Bicommutant categories

Let R be a hyperfinite factor, and let Bim(R) be the category of R–R-bimodules whose
underlyingHilbert space is separable. The latter is a bi-involutive tensor category under
the operation of Connes fusion, as discussed in Sect. 2.4.

Recall that a bi-involutive tensor functor between twobi-involutive tensor categories
C and D is a quadruple (F, μ, i, υ), where F : C → D is a functor, and

μx,y : F(x) ⊗D F(y) → F(x ⊗C y), i : 1D → F(1C), υx : F(xC) → F(x)
D

are unitary isomorphisms.

Notation 3.1 Given a bi-involutive tensor category C and a bi-involutive tensor func-
tor C → Bim(R), we will write

C′ := Z∗
Bim(R)(C)



1686 A. Henriques, D. Penneys

for the unitary commutant of C in Bim(R).

There is an obvious bi-involutive tensor functor C′ → Bim(R) given by forgetting
the half-braiding. It therefore makes sense to consider the commutant of the com-
mutant. There is also an “inclusion” functor ι : C → C′′ from the category to its
bicommutant. It sends an object X ∈ C to the object (X, e′

X ) ∈ C′′ with half-braiding
given by e′

X,(Y,eY ) := e−1
Y,X for (Y, eY ) ∈ C′. The coherence data μ, i , υ for ι are all

identity morphisms.

Definition 3.2 A bicommutant category is a bi-involutive tensor category C for which
there exists a hyperfinite factor R and a bi-involutive tensor functor C → Bim(R),
such that the “inclusion” functor ι : C → C′′ is an equivalence.

If a bi-involutive tensor functor α : C → Bim(R) is such that the corresponding
“inclusion” functor ι is an equivalence, then we say that α exhibits C as a bicommutant
category.

3.1 Representing tensor categories in Bim(R)

A representation of a ∗-algebra A on a Hilbert space H is a ∗-algebra homomorphism
A → B(H). By analogy, we define a representation of a bi-involutive tensor category
C to be a bi-involutive tensor functor C → Bim(R), for some von Neumann algebra
R. One can alternatively describe this as an action of C on the category Mod(R) of
left R-modules.

Definition 3.3 A morphism between two representations α1 : C → Bim(R1) and
α2 : C → Bim(R2) of C consists of an R2–R1-bimodule�, along with unitary natural
isomorphisms

φX : � �R1 α1(X) → α2(X) �R2 �

for every X ∈ C, subject to the coherence condition

� �R1 α1(X) �R1 α1(Y )

id�μ1

φX� id
α2(X) �R2 � �R1 α1(Y )

id�φY
α2(X) �R2 α2(Y ) �R2 �

μ2� id

� �R1 α1(X ⊗ Y )
φX⊗Y

α2(X ⊗ Y ) �R2 �.

Amorphism (�, φ) between two representations is an equivalence if the bimodule� is
invertible, or equivalently if the inducedmapMod(R1) → Mod(R2) is an equivalence
of categories.

A representation C → Bim(R) is called fully faithful if non-isomorphic objects
of C remain non-isomorphic in Bim(R), and if simple objects of C remain simple in
Bim(R) (this agrees with the usual notion of fully faithfulness from category theory).
In the next theorem, we will see that if we restrict the von Neumann algebra R to be
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a hyperfinite factor which is not of type I, then every unitary fusion category admits
a fully faithful representation in Bim(R). We begin with the following well-known
lemma:

Lemma 3.4 Let R be a hyperfinite factor which is not of type I, and let RII1 be a
hyperfinite II1-factor. Then, R ⊗̄ RII1

∼= R.

Proof If R is either of type II1 or II∞, then the result follows from the uniqueness of
the hyperfinite II1 and II∞ factors [23, Thm. XIV]. We may therefore assume that R
is of type III.

Let σ : R → Aut(R) be the modular flow of R. The flow of weights [5] is the
dual action of R on the von Neumann algebra S(R) := Z(R �σ R).4 By the work of
Connes [3], Haagerup [13], and Krieger [19] (see also [32, Chapt. XVIII] ), the map
R 
→ S(R) establishes a bijective correspondence between isomorphism classes of
hyperfinite type III factors, and isomorphism types of ergodic actions of R on abelian
von Neumann algebras, provided one excludes the standard action of R on L∞(R).
(The latter is the flow of weights of the hyperfinite II1 and II∞ factors.)

Given abelian von Neumann algebras Z1 and Z2 with actions of R, we write
Z1 ∧R Z2 := (Z1 ⊗̄ Z2)

Rdiag for the fixed-point algebra with respect to Rdiag :=
{(t,−t) : t ∈ R} ⊂ R

2, along with the residual R
2/Rdiag action. The algebra L∞(R)

with its standard R action is a unit for that operation: Z ∧R L∞(R) = Z . Now,
by [5, Cor. II.6.8], given two factors M1 and M2, there is a canonical isomorphism
S(M1 ⊗̄ M2) ∼= S(M1) ∧R S(M2).5 It follows that

S(R ⊗̄ RII1)
∼= S(R) ∧R S(RII1)

∼= S(R) ∧R L∞(R) ∼= S(R).

Using the Connes–Haagerup–Krieger classification theorem of hyperfinite type III
factors, it follows that R ⊗̄ RII1

∼= R. ��
Theorem 3.5 Let R be a hyperfinite factor which is not of type I. Then, every unitary
fusion category C admits a fully faithful representation C → Bim(R).

Proof Let RII1 be a hyperfinite II1 factor. By the work of Popa [27, Thm. 3.1] (see
also [8, Thm. 4.1]), there exists a fully faithful representation

C ↪→ Bim(RII1).

Let now R be an arbitrary hyperfinite factor which is not of type I. By Lemma 3.4, we
have R ⊗̄ RII1

∼= R. We may therefore compose the above embedding with the map

Bim(RII1)
L2R⊗C−
↪−−−−→ Bim(R ⊗̄ RII1)

∼= Bim(R).

��
4 Unlike the modular flow, which depends on a choice of state, the crossed product R�σ R does not depend
on any choices, up to canonical isomorphism.
5 The result in [5] is only stated for type III factors, but the proof never uses the type III assumption.
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The above result raises the question of uniqueness. We believe that the follow-
ing conjecture should follow straightforwardly from Popa’s uniqueness theorems for
hyperfinite finite depth subfactors of types II1 [25,26] and III1 [28]. However, we do
not attempt to prove it here as it would take us too far afield.

Conjecture 3.6 Let C be a unitary fusion category, and let R be a hyperfinite factor
which is either of type II1 or III1. Then, any two fully faithful representations C →
Bim(R) are equivalent in the sense of Definition 3.3.

4 The commutant of a fusion category

Throughout this section, we fix a factor R (not necessarily hyperfinite), a unitary
fusion category C, and a representation C → Bim(R). To simplify the notation, we
will assume that the representation is fully faithful and identify C with its image in
Bim(R), but the fully faithfulness condition is actually not required for the results of
this section. It will however be needed later on, in Sect. 5.

4.1 Constructing objects in C′

The goal of this section is to construct a functor

� : Bim(R) → C′ �(�) = (�(�), e�(�)).

For simplicity of notation, we will denote the underlying object �(�) of �(�)

simply by �. It is given by

� :=
⊕

x∈Irr(C)

x � � � x . (9)

Note that this object does not depend, up to canonical unitary isomorphism, on the
choice of representatives of the simple objects of C.

For a ∈ C, an irreducible object, the half-braiding e�,a : � � a → a � �, is given
by

e�,a :=
∑

x,y∈Irr(C)

√

d−1
a

�x x a

�y ya

(10)

where the projection �� a → x ��� x � a and inclusion a� y ��� y → a ��

are implicit in the notation. The half-braiding is natural with respect to morphisms
a → a′ between simple objects, and we extend it by additivity to all objects.

Proposition 4.1 e� = (e�,a : � � a → a � �)a∈C is a unitary half-braiding.

Proof The maps e�,a are natural in a by construction. To see that e�,a is unitary, we
use the Bigon and Fusion relations:
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e∗�,a ◦ e�,a =
∑

x,y,z∈Irr(C)

d−1
a

�x x a

�z z a

a y y =
∑

x,y,z∈Irr(C)

√

dyd
−1
x d−1

a · δx,z

�x x a

�x x a

y =
∑

x∈Irr(C)

�x x a

�x x a

.

The verification that e�,a ◦ e∗
�,a = ida�� is similar.

It remains to verify the “hexagon” axiom e�,a�b = (ida �e�,b)◦ (e�,a � idb). We
do this with the help of the Fusion and I = H relations:

e�,a�b

�

�

a b

a b

=
∑

c∈Irr(C)

√

dcd
−1
a d−1

b

e�,a�b

�

�

a b

a b

c

=
∑

c∈Irr(C)

√

dcd
−1
a d−1

b
e�,c

� a b

�ba

c

c

=

=
∑

x,z,c∈Irr(C)

√

d−1
a d−1

b

�x x a b

�z zba

c

c
=

∑

x,y,z∈Irr(C)

√

d−1
a d−1

b

�x x a b

�z zba

y

y

��

Proposition 4.2 The assignment � 
→ (�, e�) defines a functor Bim(R) → C′.

Proof Given a morphism f : �1 → �2 in Bim(R), we let

�( f ) :=
∑

idx � f � idx : �(�1) → �(�2).

In order to check that this is a morphism in C′, we need to verify that e�(�2),a ◦
(�( f ) � ida) = (ida ��( f )) ◦ e�(�1),a . This is straightforward using the definition
(10) of the half-braiding:

∑

x,y∈Irr(C)

√

d−1
a

f

�1x x a

�2y ya

=
∑

x,y∈Irr(C)

√

d−1
a

f

�1x x a

�2y ya

.

��



1690 A. Henriques, D. Penneys

Remark 4.3 The construction of�(�) = (�(�), e�(�))works under the greater gen-
erality of a rigid C*-tensor category (in particular semisimple) represented in Bim(R),
not necessarily fully faithfully. The half-braiding (10) is unitary by Proposition 4.1,
and thus bounded.

4.2 The endomorphism algebra

In this section, we fix a bimodule � ∈ Bim(R). Our goal is to compute the endomor-
phism algebra of�(�). As in the previous section, we will write � for the underlying
object of �(�).

Theorem 4.4 The map that sends

f = (
fa : � � a → a � �

)
a∈Irr(C)

to

T f :=
∑

a,x,y∈Irr(C)

fa

y y

x x

a

a

�

�

: � → �

induces a vector space isomorphism

⊕

a∈Irr(C)

HomBim(R)(� � a, a � �) ∼= EndC′(�(�)).

Under the above isomorphism, the left-hand side acquires the following ∗-algebra
structure: The ∗-operation is given by

( f ∗)a := ( fa)∗

a

a

�

�

(11)
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and the product is given by

( f ·g)a :=
∑

b,c∈Irr(C)

fb

gc

a

a

b

c

c

b

�

�

. (12)

Remark 4.5 The map fa : � � a → a � �, which appears in the right-hand side
of (11) requires the choice of an isomorphism between a and the unique element of
Irr(C) to which it is isomorphic. It is important to note that, because a appears in both
the domain and the codomain, the map fa does not depend on that choice.

Remark 4.6 If we take � = ⊕
x∈Irr(C) x , then the two Eqs. (11) and (12) are exactly

the ones describing Ocneanu’s tube algebra [7,16].

Proof of Theorem 4.4 We begin by checking, using the I = H relation, that the formula
(idb �T f ) ◦ e�,b = e�,b ◦ (T f � idb) holds:

∑

a,x,y∈Irr(C)

√
d−1
b

fa

z z

y

y

x x

a

a

�

�

b

b

=
∑

a,x,y∈Irr(C)

√
d−1
b

fa

z z

y

y

x x

a

a

�

�b

b

.

This ensures that T f ∈ EndC′(�(�)).
We now show that the map

⊕
a∈I rr(C) Hom(� � a, a � �) → EndC′(�) given by

f 
→ T f is an isomorphism. For that, we define a map the other way as follows. It
sends T ∈ EndC′(�(�)) to the element fT = ( fT,a : � � a → a � �) given by

fT,a := dim(C)−1
∑

x,y∈Irr(C)

T

�

�

a

a

y

y

y

x

xx
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We now check that these two maps are each other’s inverses. The equation fT f = f
is an easy consequence of Lemma 2.17:

fT f ,a = dim(C)−1
∑

x,y,b

fb

a

a

y

y

x

x

b
b

�

�

= fa .

For the other direction, we need to check that T fT = T holds for every T ∈
EndC′(�(�)):

T fT = dim(C)−1
∑

a,b,c,x,y

T

�

�

b

b

y y

x x

a a

c c

= dim(C)−1
∑

a,b,c,x,y

T

�

�

b b

y y

x x

c c

a a

= dim(C)−1
∑

a,b,c,x,y
T

�

�

b by y

x x

c c

a a

= T .

Here, we have used the I = H relation, followed by the fact that T commutes with
(a scalar multiple of) the half-braiding, and finally Lemma 2.17.

At last, we check that the isomorphism
⊕

a∈Irr(C) Hom(� � a, a � �) ∼=
EndC′(�(�)) is compatible with the ∗-operation (11) and the multiplication (12):

(T f )
∗ =

∑

a,x,y

( fa)∗

yy

xx

a

a

�

�

=
∑

a,x,y

( fa)∗

y y

x x

a

a

�

�

=
∑

a,x,y

( f ∗)a

y y

x x

a

a

�

�

= T f ∗
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T f ◦ Tg =
∑

a,b,x,y,z ga

fb

z z

x x

y

y
a

a

b
b

�

�

=
∑

a,b,c,x,z ga

fb

z z

x x

c

c

a

a

b

b

�

�

= T f ·g .

Here, the last line’s middle equality follows from the I = H relation. ��
Remark 4.7 The map f 
→ T f : ⊕

a∈Irr(C) HomBim(R)(� � a, a � �) →
EndC′(�(�)) makes sense in the greater generality of a rigid C*-tensor category
represented in Bim(R). In particular, the operator T f is always bounded (this follows

from
√

d−1
a

∑

x,y∈Irr(C)

y y

x xa

a�

�

a

a

being unitary, and hence bounded).

5 Absorbing objects

A tensor category C has no zero-divisors if for every nonzero object X and every
objects Y1,Y2, the maps

Hom(Y1,Y2) → Hom(X⊗Y1, X⊗Y2) and Hom(Y1,Y2) → Hom(Y1⊗X,Y2⊗X)

are injective. Note that for categories with involutions, it is enough to check that one
of the above maps is injective.

Example 5.1 The tensor category Bim(R) has no zero-divisors. Indeed, since R is a
factor, every nonzero module is faithful, and the claim follows from Lemma 2.13.

Example 5.2 Fusion categories have no zero-divisors. To see that, consider an object
X and a morphism f : Y1 → Y2 such that idX ⊗ f = 0. We need to show that X � 0
implies f = 0. Since X is nonzero, evX is an epimorphism (indeed a projection onto
a direct summand). The morphism evX ⊗ idY1 is then also an epimorphism, and we
may reason as follows:

f ◦ (evX ⊗ idY1︸ ︷︷ ︸
epi.

) = evX ⊗ f = (evX ⊗1Y2) ◦ (idX∨ ⊗ idX ⊗ f
︸ ︷︷ ︸

=0

) = 0 ⇒ f = 0.

Definition 5.3 Let C be a tensor category with no zero-divisors. A nonzero object X
is called

• right absorbing if for every nonzero object Y ∈ C, we have X ⊗ Y ∼= X ,
• left absorbing if for every nonzero object Y ∈ C, we have Y ⊗ X ∼= X , and
• absorbing if X is both right and left absorbing.
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Clearly, if C admits an absorbing object, then such an object is unique up to (non-
canonical) isomorphism. Note also that if a category has both right absorbing and left
absorbing objects, then any such object is in fact absorbing.

If C is equipped with a conjugation, then X is right absorbing if and only if X is
left absorbing. In this case, any right absorbing object is automatically absorbing, and
isomorphic to its conjugate. By taking Y = 1 ⊕ 1, we can also readily see that any
absorbing object satisfies X ⊕ X ∼= X .

Let Hilb be the category of separable Hilbert spaces.

Example 5.4 The Hilbert space �2(N) is absorbing in Hilb.

Example 5.5 If C is a unitary fusion category, then the object

⊕

x∈Irr(C)

x ⊗ �2(N)

of C ⊗Vec Hilb is absorbing. Indeed, for any simple objects y and z of C, there exists
an x such that z occurs as a summand of x ⊗ y. The object y⊗ (

⊕
x∈Irr(C) x) therefore

contains each simple object at least once. It follows that y ⊗ (
⊕

x∈Irr(C) x ⊗ �2(N))

contains each simple object infinitely many times. The same remains true when y gets
replaced by an arbitrary nonzero object of C ⊗Vec Hilb.

Example 5.6 LetG be an infinite countable group, and letRep(G) denote the category
of unitary representation of G whose underlying Hilbert spaces is separable. Then,

�2(G) ⊗ �2(N)

is absorbing inRep(G). Indeed, if V is a unitary representationwith orthonormal basis
{vi }i∈I , then eg ⊗ ei 
→ (g · vi )⊗ eg defines a unitary isomorphism �2(G)⊗ �2(I ) →
V ⊗�2(G). It follows that V ⊗�2(G)⊗�2(N) ∼= �2(G)⊗�2(I ×N) ∼= �2(G)⊗�2(N).

Let R be a separable factor, and let Bim(R) be the category of R–R-bimodules
whose underlying Hilbert space is separable. Let also Mod(R) be the category of left
R-modules whose underlying Hilbert space is separable. We say that H ∈ Mod(R)

is infinite if it is nonzero and satisfies H ⊕ H ∼= H . It is well known that an infinite
module exists and is unique up to isomorphism.

Example 5.7 The bimodule

RL
2(R) ⊗ �2(N) ⊗ L2(R)R

is absorbing in Bim(R). To see that, let RHR ∈ Bim(R) be any nonzero bimodule. The
following two modules are infinite, and therefore isomorphic: RH �R L2(R)⊗ �2(N)

and RL2(R)⊗�2(N). It follows that RH �R L2(R)⊗�2(N)⊗ L2(R)R ∼= RL2(R)⊗
�2(N) ⊗ L2(R)R .



Bicommutant categories from fusion categories 1695

Remark 5.8 If we had taken Bim(R) to be the category of all bimodules, with no
restriction on cardinality, then it would not admit an absorbing object (and similarly
for the previous examples).

Absorbing objects are useful because they control half-braidings:

Proposition 5.9 Let � be an absorbing object of C, and let (X, eX ) be an object of
C′. Then, eX is completely determined by its value on �.

Proof Let Y be a nonzero object of C. Since eX is a half-braiding, we have a commu-
tative diagram

Y � X � �
idY �eX,�

X � Y � �
eX,Y��

eX,Y� id�

Y � � � X.

Fix an isomorphism φ : Y � � → �. The following square is commutative

X � (Y � �)
eX,Y��

idX �φ

(Y � �) � X

φ �idX

X � �
eX,�

� � X

and so we get an equation

eX,Y � id� = (idY �e−1
X,�) ◦ (φ−1 � idX ) ◦ eX,� ◦ (idX �φ).

In particular, we see that eX,Y � id� is completely determined by eX,�. Since Bim(R)

has no zero-divisors, eX,Y is completely determined by eX,Y � id�. Putting those two
facts together, we see that eX,Y is completely determined by eX,�. ��

5.1 The absorbing object of C′

We now return to our usual setup, which is that of a separable factor R equipped with
a fully faithful representation C → Bim(R) of some unitary fusion category C. Our
next goal is to show that C′ admits absorbing objects. Recall the construction

� : Bim(R) → C′ �(�) = (�(�), e�(�))

from Sect. 4.1.

Theorem 5.10 The functor � sends absorbing objects to absorbing objects. In par-
ticular, the category C′ admits absorbing objects.
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The proof of this theorem will depend on Theorem 5.12, proved in next section,
according to which the endomorphism algebra of �(�) is a factor whenever � is
absorbing in Bim(R). We begin with the following technical lemma:

Lemma 5.11 Suppose that � = (�, e�) ∈ C′ is such that � is absorbing in Bim(R),
and such that � ⊕ � ∼= � in C′. Then, � is (non-canonically) isomorphic to �(�).

Proof Let ϕ : � → �(�) be the map given by

ϕ :=
∑

x∈Irr(C)

√
dx e�,x

�

x � x

=
∑

x∈Irr(C)

√
dx

�

x � x

.

By the fusion relation, this map is compatible with the half-braidings:

(idy � ϕ) ◦ e�,y =
∑

x

√
dx

�

xy � x

y

=
∑

x,z

√

dzd
−1
y

�

xy

z

� x

y

z = e�(�),y ◦ (ϕ � idy),

and therefore defines a morphism ϕ : � → �(�) in C′.
The coevaluation map coevx : L2R → x � x is, up to a constant, the inclusion

of a direct summand. So ϕ is manifestly injective. By polar decomposition in C′, the
map ϕ therefore induces a unitary isomorphism between � and a certain subobject of
�(�).

Now, the subobjects of�(�) are in one-to-one correspondence with the projections
inM := EndC′(�(�)), which is a factor byTheorem5.12. Let p ∈ M be the projection
corresponding to�. Since�⊕� ∼= � and� �= 0, that projection is infinite (its range
is an infinite module). So there is a partial isometry u ∈ M with p = uu∗ and u∗u = 1.
The latter provides an isomorphism u : �(�) → � in C′. ��
Proof of Theorem 5.10 Let � be an absorbing object of Bim(R), and let X be an
arbitrary nonzero object of C′. We wish to show that � := �(�) � X is isomorphic
to �(�). Let � denote the underlying object of �. If we could show that � satisfies
the hypotheses of Lemma 5.11, then we could reason as follows:

�(�) � X = � ∼= �(�) ∼= �(�),

where the last isomorphism holds because � and � are both absorbing in Bim(R).
So let us show that� satisfies the hypotheses of Lemma 5.11. Since� is absorbing

in Bim(R), the object � = ⊕
x x � � � x � X is clearly absorbing in Bim(R). And

since � ⊕ � ∼= � in Bim(R) and � 
→ �(�) � X is a linear functor, the same holds
true for �, namely � ⊕ � ∼= �. ��
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5.2 The endomorphism algebra is a factor

The goal of this section is to prove thatwhen� is absorbing, the endomorphismalgebra
of�(�) is a factor (a von Neumann algebra with trivial center).We emphasize the fact
that, for the above result to hold, it is essential that the representation C → Bim(R)

be fully faithful (this is used in the last paragraph of the proof of Theorem 5.13).

Theorem 5.12 If � is absorbing in Bim(R), then EndC′(�(�)) is a factor.

It will be easier to prove the following stronger result:

Theorem 5.13 If � is absorbing, then EndBim(R)(�) has trivial commutant in
EndC′(�(�)). In other words, the inclusion

EndBim(R)(�) ⊂ EndC′(�(�)) (13)

is an irreducible subfactor.

Proof The absorbing object is unique up to isomorphism. Sowithout loss of generality,
we may take � to be the one from example 5.7, namely � = RL2(R) ⊗ �2(N) ⊗
L2(R)R . Let

�0 := RL
2R ⊗ L2RR .

Writing H for �2(N), we have

EndBim(R)(�) ∼= EndBim(R)(�0) ⊗̄ B(H) and EndC′ (�(�)) ∼= EndC′ (�(�0)) ⊗̄ B(H),

and so ZEnd(�(�))(End(�)) ∼= ZEnd(�(�0))(End(�0)). It is therefore equivalent to
prove the statement of the theorem for�0 instead of�. Recall from Theorem 4.4 that

EndC′(�(�0)) ∼=
⊕

x∈Irr(C)

HomBim(R)(�0 � x, x � �0),

with product as in (12).
Let f = ( fx : �0 � x → x � �0)x∈Irr(C) be an element that commutes with every

g ∈ EndBim(R)(�0) = Rop ⊗̄ R:

fx

g

x

x

�0

�0

=
fx

g

x

x

�0

�0

∀ x ∈ Irr(C), ∀ g ∈ End(�0). (14)

The bimodule�0 is of the form (8), and thus coarse. The action of the algebraic tensor
product R � Rop (the one which equips it with the structure of an R–R-bimodule)
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therefore extends to an action of the spatial tensor product R ⊗̄ Rop. We may therefore
treat �0 as a left (R ⊗̄ Rop)-module. Writing 1 for L2(R), we then have canonical
isomorphisms

R(x �R �0)R ∼= R⊗̄Rop((x ⊗ 1) �R⊗̄Rop �0)

R(�0 �R x)R ∼= R⊗̄Rop((1 ⊗ x) �R⊗̄Rop �0).

Under those identifications, Eq. (14) becomes:

fx

g

x ⊗ 1

1 ⊗ x

�0

�0

=
fx

g

x ⊗ 1

1 ⊗ x �0

�0

∀ x ∈ Irr(C), ∀ g ∈ End(�0), (15)

where = R ⊗̄ Rop, = C, and we have used the string diagram notation for
bicategories reviewed in [2, §2] .

Note that �0 = L2(R⊗̄Rop). We may therefore identify (x ⊗ 1) �R⊗̄Rop �0 with
x ⊗ 1, and (1 ⊗ x) �R⊗̄Rop �0 with 1 ⊗ x . The maps fx can then be viewed as left
(R ⊗̄ Rop)-module maps:

fx : 1 ⊗ x → x ⊗ 1.

The operators id1⊗x �g and idx⊗1 �g which appear on the two sides of (15) are
nothing else than the right actions of g ∈ R ⊗̄ Rop on 1 ⊗ x and on x ⊗ 1, and so
Eq. (15) is just the statement that fx is a right (R ⊗̄ Rop)-module map. Each fx is
therefore both a left (R ⊗̄ Rop)-module and a right (R ⊗̄ Rop)-module map.

But 1⊗ x and x ⊗1 are irreducible (R ⊗̄ Rop)–(R ⊗̄ Rop)-bimodules, and 1⊗ x �

x ⊗1 unless x = 1. The maps fx can therefore only be nonzero when x = 1, in which
case it must be a scalar. ��

Let us now assume that � is a coarse bimodule, and that it is given to us as the
tensor product of a left R-modules with a right R-module:

� = RH ⊗C KR .

Then, we have EndBim(R)(�) = End(RH) ⊗̄ End(KR), and the subfactor (13) is of
the form

End(RH) ⊗̄ End(KR) ⊂ EndC′(�(�)).

Proposition 5.14 ThealgebrasEnd(RH)andEnd(KR)are eachother’s relative com-
mutants in EndC′(�(�)).
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Proof We will only prove that ZEndC′ (�(�))(End(RH)) = End(KR). The other claim
is symmetric and can be proved in a completely analogous way.

Let b ∈ End(RH) be an endomorphism of H , and let f be an element of
EndC′(�(�)). Let fa : � � a → a � � be the maps which correspond to
f ∈ EndC′(�(�)) under the bijection established in Theorem 4.4. The statement
that b and f commute is then equivalent to the statement that for every a ∈ Irr(C), the
following equality holds in Hom(H ⊗C K �R a, a �R H ⊗C K ):

fa

b

KH

KH a

a

=
fa

b

H K

H Ka

a

.

Treating K as a left Rop-module and letting R′ be the commutant of R on H (so
that H is an R–R′op-bimodule), we may “fold” the above diagram (as we did to get
(15)):

fa

b ⊗1

a⊗1

1⊗a

H⊗K

H⊗K

=
fa

b ⊗1

a⊗1

1⊗a H⊗K

H⊗K

∀ a ∈ Irr(C), ∀ b ∈ R′,

where = R ⊗̄ Rop and = C. It follows that fa is not just in

HomR ⊗̄ Rop
(
(1 ⊗ a) �R ⊗̄ Rop (H ⊗ K ), (a ⊗ 1) �R ⊗̄ Rop (H ⊗ K )

)

= HomR(L2R �R H, a �R H) ⊗̄ HomRop(a �Rop K , L2R �Rop K ),

but actually in

HomR,R′op
(
L2R �R H, a �R H

) ⊗̄ HomRop
(
a �Rop K , L2R �Rop K

)
.

But H is an invertible R–R′op-bimodule, and so

HomR,R′op(L2R �R H, a �R H) = HomBim(R)(1, a).

It follows that fa = 0 unless a = 1, in which case f ∈ HomRop
(
K , K

) = End(KR).
��

Remark 5.15 Proposition 5.14 implies Theorems 5.12 and 5.13. It shows that, among
other things, these two theorems hold in the greater generality of � a coarse bimodule
(as opposed to merely absorbing).
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5.3 Algebras acting on cyclic fusions

Let �1 and �2 be coarse bimodules. In Sect. 4.2, we computed the endomorphism
algebra of �(�1) = (�(�1), e�1) ∈ C′. Our next task is to compute the commutant
of EndC′(�(�1)) on the cyclic fusion

[
�(�1) � �2 � −

]

cyclic
=

⊕

x∈Irr(C)

[
x � �1 � x � �2 � −

]

cyclic

We first note that there is a commuting action of EndC′(�(�2)) on that sameHilbert
space:

∑

y∈Irr(C)

g

f

x

x

z

z

�1

�2

y
y =

∑

y∈Irr(C)

y
y

g

f

x

x

z

z

�1

�2

Here, we have used Theorem 4.4 in order to write a generic element of

EndC′(�(�1)) as a sum of operators of the form f

y y

x x

a
a

�1

�1

, and similarly for

EndC′(�(�2)).Wehave then used the I =H relation to show that the resulting operators
commute. We have also secretly used the existence of a canonical isomorphism

⊕

x∈Irr(C)

x � �2 � x ∼=
⊕

x∈Irr(C)

x � �2 � x . (16)

(At first sight, this looks like ismight dependon the choice of isomorphismsbetween
each x and the corresponding object of Irr(C). But as each x appears next to an x , the
isomorphism (16) is independent of those choices.)

Lemma 5.16 Let �1 and �2 be coarse bimodules. Then, N1 = EndBim(R)(�1) and
N2 = EndBim(R)(�2) are each other’s commutants on

[
�1 �R �2 �R −]

cyclic.

Proof The algebra N1 is the commutant of R ⊗̄ Rop on�1. By Lemma 2.12, the latter
is therefore invertible as an N1-(Rop ⊗̄ R)-bimodule. Similarly, �2 is invertible as an
(Rop ⊗̄ R)-N2-bimodule. It follows that

[
�1 �R �2 �R −]

cyclic = �1 �Rop ⊗̄ R �2
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is an invertible N1–N
op
2 -bimodule. ��

Proposition 5.17 Let �1 and �2 be coarse bimodules. Then, M1 = EndC′(�(�1))

and M2 = EndC′(�(�2)) are each other’s commutants on H = ⊕
x∈Irr(C)

[
x ��1 �

x � �2 � −]
cyclic.

Proof Let f be in M ′
2. Since f commutes with EndBim(R)(�2) ⊂ M2, it follows from

Lemma 5.16 that f ∈ EndBim(R)(�(�1)). We therefore have the following situation:

∑

y∈Irr(C)

g

f

x

x

z

z

�1

�2

y
y =

∑

y∈Irr(C)

y
y

g

f

x

x

z

z

�1

�2

∀g :�2 � a

→ a � �2.

(17)
It remains to show that f commutes with the half-braiding. Write �2 as R(H2)⊗C

(H1)R , for some right/left R-modules H1 and H2. We then have a canonical isomor-
phism

[
x � �1 � x � �2 � −]

cyclic = H1 � x � �1 � x � H2.

Taking g of the form

�2 � a = H2 ⊗C H1 � a
v⊗u−−→ a � H2 ⊗C H1 = a � �2

for R-module maps v : H2 → a � H2 and u : H1 � a → H1, Eq. (17) becomes:

∑

y∈Irr(C) f

u

v

�1

�1

x x

z zH1 H2

H1 H2

a
ay y =

∑

y∈Irr(C)

y y

f

u

v

�1

�1

a
a

x x

z zH1 H2

H1 H2

.
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This being true for any u and v, it follows that

∑

y∈Irr(C) f

�1

�1

x x

z zH1 a H2

H1 H2a

y y =
∑

y∈Irr(C)

y y

f

�1

�1

x x

z zH1 a H2

H1 H2a

.

Finally, fusing with H1 and H2 are faithful operations by Lemma 2.13, and so the
above equation implies e�(�1),a ◦ ( f � ida) = (ida � f ) ◦ e�(�1),a , as desired. ��

6 Proof of the main theorem

Let C be a unitary fusion category, and let α : C → Bim(R) be a fully faithful
representation. Then, α extends to a functor

αHilb : C ⊗Vec Hilb → Bim(R)
⊕

xi ⊗ Hi 
→ ⊕
α(xi ) ⊗ Hi .

Here, the first “−⊗ Hi” is formal (as defined in Sect. 2.2), whereas the second one
is evaluated in Bim(R).

Lemma 6.1 The restriction functor (C ⊗Vec Hilb)′ → C′ is an equivalence.

Proof Given an object (X, eX ) ∈ C′, we can extend the half-braiding eX = (eX,y :
X ⊗ y → y ⊗ X)y∈C to arbitrary objects Y = ⊕

yi ⊗ Hi of C ⊗Vec Hilb by

eX,Y : X � Y = X �
(⊕

yi ⊗ Hi

)
=

⊕
(X � yi ) ⊗ Hi

⊕
eX,yi ⊗idHi−−−−−−−−−→

⊕
(yi � X) ⊗ Hi =

(⊕
yi ⊗ Hi

)
� X = Y � X.

The half-braiding eX,Y is completely determined from the eX,yi by naturality, and so
the functor (C ⊗Vec Hilb)′ → C′ is a bijection on objects. To finish the argument,
we note that again by naturality, given two objects (X1, eX1) and (X2, eX2) in C′, a
map f : X1 → X2 is a morphism (X1, eX1) → (X2, eX2) in C′ if and only if it is a
morphism between the corresponding objects of (C ⊗Vec Hilb)′. ��
Theorem (Theorem A) Let C be a unitary fusion category, and let α : C → Bim(R)

be a fully faithful representation. Then, αHilb exhibits C ⊗Vec Hilb as a bicommutant
category.

Proof We will show that C′′ is equivalent to C ⊗Vec Hilb. The result will then follow
since C′′ = (C ⊗Vec Hilb)′′ by Lemma 6.1. We first note that the “inclusion” functor
ι : C → C′′ (described in Sect. 3)
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extends to a functor

ιHilb : C ⊗Vec Hilb → C′′
⊕

xi ⊗ Hi 
→ ⊕
ι(xi ) ⊗ Hi

where the first “− ⊗ Hi” is formal, and the second is evaluated in C′′.

• The functor ιHilb is fully faithful:

The functor is fully faithful on simple objects, since their images remain simple in
C′′. Indeed, they remain simple in Bim(R), and therefore also in C′′. For finite sums
of simple objects, fully faithfulness follows by additivity. For the remaining objects,
we have

HomC′′
(⊕

i ι(xi ) ⊗ Hi ,
⊕

j ι(y j ) ⊗ K j

)
=

⊕

i j

HomC′′
(
ι(xi ), ι(y j )

) ⊗C Hilb(Hi , K j )

=
⊕

i j

HomC(xi , y j ) ⊗C Hilb(Hi , K j )

= Hom C⊗VecHilb

(⊕
i xi ⊗ Hi ,

⊕
j y j ⊗ K j

)
,

where we have used the finite dimensionality of HomC′′(ι(xi ), ι(y j )) in the first equal-
ity.

• The functor ιHilb is essentially surjective:

Let � ∈ C′ be an absorbing object. The proof splits into three steps:

1. If (X, eX ) is an object of C′′, then its underlying bimodule X lies in C ⊗Vec Hilb
(the essential image of ιHilb).

2. Let (X, e(1)
X ) and (X, e(2)

X ) ∈ C′′ be two objects with same underlying bimodule X .
Then, e(1)

X,� = e(2)
X,�.

3. Given an object (X, eX ) ∈ C′′, then eX = (
eX,Y : X � Y → Y � X

)
Y=(Y,eY )∈C′ is

uniquely determined by eX,�.

These are proven in Propositions 6.2, 6.4, and 5.9, respectively. ��

Proposition 6.2 The underlying bimodule of an object of C′′ lies in C ⊗Vec Hilb.

Proof Let �0 := RL2(R) ⊗ L2(R)R , and let (�0, e�0) := �(�0). Given an object
(X, eX ) of C′′, the half-braiding eX yields a bimodule map

e := eX,�(�0) : X �R �0 → �0 �R X
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which, after rewriting

X �R �0 = X �R

( ⊕

y∈Irr(C)

y �R �0 �R y
)

=
⊕

y∈Irr(C)

X �R y �R L2R ⊗ L2R �R y

=
⊕

y∈Irr(C)

(
X �R y

) ⊗ y and

�0 �R X =
⊕

y∈Irr(C)

y ⊗ (
y �R X

)
,

becomes a map

e :
⊕

y∈Irr(C)

(
X �R y

) ⊗ y →
⊕

y∈Irr(C)

y ⊗ (
y �R X

)
.

The Hilbert spaces (X �R y) ⊗ y and y ⊗ (y �R X) each have four actions of R,
two left actions, and two right actions:

(X �R y) ⊗ y

1stR 2ndR 3rdR 4thR

and y ⊗ (y �R X)

4thR3rdR2ndR1stR

In order to keep track of all these copies of R, we denote them R1, R2, R3, R4,
respectively.

The map e is a morphism in Bim(R), meaning that it is an R1–R4-bimodule map.
This map also has the property of being natural with respect to endomorphisms of
�(�0). Restricting attention to

EndBim(R)(�0) = Rop ⊗̄ R ⊂ EndC′(�(�0)),

this translates into the property of e being an R3–R2-bimodule map (or rather an
Rop
2 –Rop

3 -bimodule map). All in all, we learn that there is an isomorphism of quadri-
modules:

⊕

y∈Irr(C)

(
X �R y

) ⊗ y ∼=
⊕

y∈Irr(C)

y ⊗ (
y �R X

)
.
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Now, applying HomR3,R4(L
2R,−) to the above isomorphism, we get an R1–R2-

bimodule isomorphism:

X ∼= HomR3,R4

(
L2R,

⊕

y∈Irr(C)

(X � y) ⊗ y
)

∼= HomR3,R4

(
L2R,

⊕

y∈Irr(C)

y ⊗ (y � X)
) ∼=

⊕

y∈Irr(C)

y ⊗ HomBim(R)

(
L2R, y � X

)
.

Finally, HomBim(R)(L2R, y � X) is just some Hilbert space (because L2R is irre-
ducible), and so the above isomorphism exhibits X as an element of C ⊗Vec Hilb.

Let C′
abs ⊂ C′ be the full subcategory of absorbing objects of C′. This is a non-unital

tensor category, and it makes sense to talk about half-braidings with C′
abs (the axioms

of a half-braiding never mention unit objects).

Lemma 6.3 Let � = (�, e�) ∈ C′ be an absorbing object, let X be a right R-
module, and let u : X � � → X � � be a right module map that commutes with
idX ⊗EndC′(�). Then, u = v � id� for some right module map v : X → X.

Proof By Theorem 5.10, we can write � as �(�) for some absorbing bimodule �.
In particular, we then have � = ⊕

x∈Irr(C) x � � � x . Letting �2 := RL2R ⊗C XR ,
we can then identify X � � with

⊕

x∈Irr(C)

[
x � � � x � �2 � −]

cyclic

By Proposition 5.17, since u commuteswith EndC′(�(�)), it lies in EndC′(�(�2)).
Now, we also know that u commutes with Rop = End(RL2R). By Proposition 5.14,
it therefore comes from some element of End(XR), which we may call v. In other
words, u = v � id�. ��
Proposition 6.4 An object X ∈ Bim(R) admits at most one half-braiding with C′

abs .

Proof Let e(1)
X and e(2)

X be twohalf-braidings.Given anobject� ∈ C′
abs ,with underlying

bimodule � ∈ Bim(R), we need to show that the two maps e1 := e(1)
X,� and e2 :=

e(2)
X,� are equal. Let u := e−1

2 ◦ e1. The maps e1 and e2 are natural with respect to
endomorphisms of �, and so u commutes with idX ⊗EndC′(�). By Lemma 6.3, we
may therefore write it as u = v � id� for some v ∈ EndBim(R)(X). All in all, we get
a commutative diagram

X � �

e1

v�id�
X � �

e2
� � X.

Fix an isomorphism φ : � � � → � in C′, and let us denote by the same letter the
corresponding isomorphism � � � → �. By combining the “hexagon” axiom with
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the statement that the half-braiding is natural with respect to φ, we get the following
commutative diagrams (as in the proof of Proposition 5.9):

X � � � �
e1�id�

idX �φ

� � X � �
id� �e1

� � � � X

φ�idX

X � �
e1

� � X

(18)

and

X � � � �
e2�id�

idX �φ

� � X � �
id� �e2

� � � � X

φ�idX

X � �
e2

� � X.

(19)

Horizontally precomposing (19) with

X � � � �

idX �φ

v�id���
X � � � �

idX �φ

X � �
v�id�

X � �

yields the following diagram

X � � � �
e1�id�

idX �φ

� � X � �
id� �e2

� � � � X

φ�idX

X � �
e1

� � X.

The latter is almost identical to (18), but for the top right arrow. All maps in sight
being isomorphisms, it follows that id� �e1 = id� �e2. At last, by Lemma 2.13, we
conclude that e1 = e2. ��
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