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Abstract We prove a conjecture of Etingof and the second author for hypertoric
varieties that the Poisson–de Rham homology of a unimodular hypertoric cone is iso-
morphic to the de Rham cohomology of its hypertoric resolution. More generally, we
prove that this conjecture holds for an arbitrary conical variety admitting a symplec-
tic resolution if and only if it holds in degree zero for all normal slices to symplectic
leaves. ThePoisson–deRhamhomology of a Poisson cone inherits a second grading. In
the hypertoric case, we compute the resulting 2-variable Poisson–de Rham–Poincaré
polynomial and prove that it is equal to a specialization of an enrichment of the Tutte
polynomial of a matroid that was introduced by Denham (J Algebra 242(1):160–175,
2001). We also compute this polynomial for S3-varieties of type A in terms of Kostka
polynomials, modulo a previous conjecture of the first author, and we give a conjec-
tural answer for nilpotent cones in arbitrary type, which we prove in rank less than or
equal to 2.

Mathematics Subject Classification 17B63 · 05B35 · 17B45

1 Introduction

Let X be a Poisson variety over C. Etingof and the second author [13] define a right
D-module M(X) (whose definition we recall in Sect. 2) and define the Poisson–de
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Rham homology group HPk(X) to be the cohomology in degree −k of the derived
pushforward of M(X) to a point. If X is affine, then HP0(X) coincides with the zeroth
Poisson homology of C[X ], but HP∗(X) does not directly relate to higher Poisson
homology. If X is smooth and symplectic, then M(X) is naturally isomorphic to the
right D-module �X of volume forms on X , and therefore, we have an isomorphism
HPk(X) ∼= Hdim X−k(X; C). The next natural case to consider iswhen X is singular but
admits a conical symplectic resolution1 ρ : X̃ → X ; examples include hypertoric vari-
eties, symmetric schemes of Kleinian singularities (more generally, Nakajima quiver
varieties), nilpotent cones (more generally, S3-varieties), and certain slices to Schu-
bert varieties in the affine Grassmannian [7, §2]. In this case, Etingof and the second
author [15, 1.3.1] conjecture that M(X) is (noncanonically) isomorphic to ρ∗�X̃ and
therefore that HPk(X) ∼= Hdim X−k(X̃; C).

In this paper, we prove this conjecture for hypertoric varieties. More generally,
we show that if the vector space isomorphism holds when k = 0 not just for X , but
also for all normal slices to symplectic leaves of X , then the D-module isomorphism
M(X) ∼= ρ∗�X̃ holds, as well (Theorem 4.1). These vector space isomorphisms have
already been established for hypertoric varieties by the first author [32, 3.2]; therefore,
Theorem 4.1 applies. Also, since these vector space isomorphisms are well known to
hold for slices to codimension two leaves, the isomorphism M(X) ∼= ρ∗�X̃ always
holds in codimension two, which gives another proof of a result of Namikawa [31,
4.2] on the sections of the local systems on codimension two leaves (see Corollary 4.7
below).2

Part of the structure of a conical symplectic resolution is an action of C× on X with
respect to which the Poisson bracket is homogeneous. The right D-module M(X) is
weakly C×-equivariant, and this induces a second grading on HP∗(X), which we call
the weight grading. We prove a general result (Theorem 5.1 and its corollaries) that
computesM(X), with itsweight grading, in terms of the degree zeroPoisson homology
of the slices. Let PX (x, y) be the Poincaré polynomial of HP∗(X), where x encodes
homological degree and y encodes weight. When X is a hypertoric variety, we show
that PX (x, y) is equal to a specialization of a polynomial studied by Denham [10] that
encodes the dimensions of the eigenspaces of the combinatorial Laplacian of amatroid
(Theorem 6.1), which is closely related to the Tutte polynomial of the associated
hyperplane arrangement. When X is an S3-variety of type A, we similarly compute
PX (x, y) in terms of Kostka polynomials (Proposition 7.1), modulo a conjecture that
appears in [32, 3.4]. Finally, we give a conjectural description of PX (x, y) where X
is the nilpotent cone in arbitrary type (Conjecture 8.4) and prove it in certain cases.

2 The twistor family

We first recall the definition of the right D-module M(X) from [13]. Let X be an affine
Poisson variety over C and i : X → V an embedding into a smooth affine variety
V = SpecO(V ), let IX ⊆ O(V ) be the ideal of X , and H(X) ⊆ Vect(X) the Lie

1 A precise definition of a conical symplectic resolution is given at the beginning of Sect. 3.
2 Thanks to the anonymous referee for this observation.
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algebra of Hamiltonian vector fields, H(X) = {ξ f | f ∈ O(X)}, with ξ f (g) = { f, g}.
Let ˜H(X) ⊆ Vect(V ) be the subspace of vector fields which are parallel to X and
restrict there to Hamiltonian vector fields. Then we can define the right D-module on

X , M(X) = i !
(
(˜H(X) + IX ) · D(V )\D(V )

)
, where D(V ) is the ring of differential

operators on V . By Kashiwara’s theorem, the resulting D-module on M(X) does not
depend on the choice of embedding. In fact, it can also be defined without using the
embedding by (H(X) · DX )\DX , where now DX is the standard right D-module on
X (in terms of i ,DX = i !

(
IX ·D(V )\D(V )

)
), which has a canonical action on the left

by Vect(X). Note that this definition extends in a canonical way to nonaffine Poisson
varieties, but we will not need this extension.

Fromnowon, let X be a normal, irreducible, affinePoisson variety of finite type over
C. Let ρ : X̃ → X be a projective symplectic resolution, equipped with a particular
choice of ample line bundle on X̃ . Kaledin extends ρ to a projective map ρ : X̃ → X
of schemes over the formal disk� : =SpecC[[t]], where over the closed point 0 ∈ �

we have

X̃0 ∼= X̃ and X0 ∼= X.

Furthermore, he shows thatX is normal and flat over� and that over the generic point,
ρ restricts to an isomorphism of smooth, affine, symplectic varieties [23, 2.2 and 2.5].
This family of maps over � is called the twistor family.

Let M : =M(X), and let T : =ρ∗�X̃ be the derived pushforward to X of the right
D-module of volume forms on X̃ . By [22, 2.11], ρ is semismall; hence, T is also a
right D-module (that is, the homology of T is concentrated in degree zero). These
extend naturally to right D-modulesM : =M(X) and T : =ρ∗�X̃ on X (we note that
the definition of theseD-modules makes perfect sense in families over �). LetM0 be
the right D-module on X obtained by killing C[[t]]-torsion in M, and let M0 be the
restriction ofM0 to X . (In Theorem 4.1, we will show that, under suitable hypotheses,
M0 is isomorphic to M . However, we a priori know only that M0 is a quotient of M .)

We would like to perform the same construction on T and T , but it is unnecessary:
If we forget the Poisson structure, the family X̃ over � is locally trivial (that is, X̃
admits an open cover by trivial families over�) [30, 17]; thus,T has noC[[t]]-torsion.
Since M(X) equals the canonical D-module of volume forms when X is smooth and
symplectic [13, 2.6], the right D-modules M0, M, and T are all isomorphic at the
generic fiber.

Proposition 2.1 The semisimplification of M0 is (noncanonically) isomorphic to T .

Proof SinceM0 and T are isomorphic at the generic fiber, the semisimplifications of
M0 and T must be isomorphic (as they have the same class in the Grothendieck group
of holonomic D-modules on X ). But T is semisimple by the decomposition theorem
[2, 6.2.5], so it must be isomorphic to the semisimplification of M0. ��

3 Rigidity

We now add the hypothesis that ρ : X̃ → X is conical, which means the following:
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• X and X̃ are both equipped with actions of the multiplicative group C×, and the
map ρ is equivariant.

• The action of C× induces a nonnegative grading on C[X ], with only the constant
functions in degree zero.

• ThePoisson bracket on X (equivalently the symplectic formon X̃ ) is homogeneous
for the action of C×.

Our aim in this section is to prove that Ext1(T, T ) = 0 and therefore that M0 is in fact
isomorphic to T . We accomplish this in two steps, first showing that all summands
supported on a single leaf have no self-extensions, and then showing that there can be
no extensions between summands of T supported on different leaves.

For the first step, we prove more generally that all topological local systems on a
leaf are semisimple. We use the term local system to mean an O-coherent right D-
module (equivalently, a vector bundlewith aflat connection) on a locally closed smooth
subvariety. We use the term topological local system to mean a representation of the
fundamental group of such a subvariety. By the Riemann–Hilbert correspondence, the
latter are equivalent to the former when we require that the connection has regular
singularities. All of the local systems we consider will have regular singularities.

Proposition 3.1 All finite-rank topological local systems on a leaf S ⊂ X are semi-
simple.

Remark 3.2 Proposition 3.1 does not require that X admit a symplectic resolution,
but only that it be conical and be a symplectic variety in the sense of Beauville [3],
which means that the Poisson bracket on the regular locus of X is nondegenerate and
the inverse meromorphic symplectic form extends to a (possibly degenerate) 2-form
on some (equivalently every) resolution of X . Such varieties include, for example,
quotients of symplectic varieties by finite groups acting symplectically [3, 2.4], which
often do not admit symplectic resolutions (see, e.g., [8]).

Proof of Proposition 3.1 Let Y be the normalization of the closure of S in X . Then Y
is a symplectic variety in the sense of Beauville [22, 2.5], and the conical action on X
induces a conical action on Y . The regular locus Yreg is birational to S and isomorphic
away from a subvariety of codimension 2; in particular, the fundamental groups of S
and Yreg are isomorphic. Thus it is sufficient to prove that every finite-rank topological
local system on Yreg is trivial.

Since Yreg is a quasiprojective variety, π1(Yreg) is finitely generated (this follows,
for example, from the finite triangulability of [25]). In the situation at hand, Namikawa
has proved that the profinite completion π̂1(Yreg) is finite [29]. By a theorem of
Grothendieck [18], the map π1(Yreg) → π̂1(Yreg) induces an equivalence of cate-
gories of finite-dimensional representations; hence, the category of finite-dimensional
representations of π1(Yreg) (equivalently, the category of finite-rank topological local
systems on Yreg) is semisimple. ��
Corollary 3.3 For any topological local system K on S, the D-module IC(S; K ) is
semisimple. Moreover, any D-module whose composition factors are of this form is
semisimple. In particular,Ext1(IC(S; K ), IC(S; L)) = 0 for topological local systems
K , L on S.
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Proof Thefirst statement is awell-knownconsequenceof the fact that K is semisimple.
Indeed, if K = K1 ⊕ · · · ⊕ Km is a decomposition into simples, then IC(S; K ) =
IC(S; K1)⊕· · ·⊕ IC(S; Km), and each IC(S; Ki ) is simple. For the second statement,
let j : S → S̄ be the open inclusion. If M is any D-module whose composition factors
are all of the form IC(S; K ), then M ∼= IC(S; j∗M). Indeed, we have canonical maps
H0( j! j∗M) → M → H0( j∗ j∗M), which become isomorphisms after restriction to
S. Since all composition factors of M have support S̄, the first map must be surjective
and the second injective. Therefore M is isomorphic to the image of H0( j! j∗M) →
H0( j∗ j∗M), i.e., to IC(S; j∗M). If we further assume that all composition factors
IC(S; K ) are topological local systems, then j∗M is semisimple, and hence so is
IC(S; j∗M) ∼= M , implying the second statement. The final statement follows because
any extension of IC(S; K ) and IC(S; L) must be trivial. ��
Let S ⊂ X be a symplectic leaf, and let i : S̄�S → X be the inclusion of the
boundary of S. Let KS : =H codim Sρ∗�ρ−1(S),which is a local systemon Swith regular
singularities (i.e., a topological local system). Since the resolution ρ is semismall [22,
2.11], the decomposition theorem [2, 6.2.5] yields

T ∼=
⊕

S

IC(S; KS), (3.1)

and that the KS are semisimple; for us, this last fact also follows from Proposition 3.1.
By Corollary 3.3, Ext1(IC(S; KS), IC(S; KS)) is zero.

It remains to show that there are no extensions between summands on different
leaves. We do this using the following two lemmas.3

Lemma 3.4 The complex i∗i∗ IC(S; KS) of right D-modules is concentrated in
degrees ≤ −2.

Proof It is a standard property of intermediate extensions of local systems that
i∗ IC(S; KS) is concentrated in negative degrees. Since i is a closed embedding, i∗ is
exact, and thus, i∗i∗ IC(S; KS) is concentrated in negative degrees. Therefore we only
have to show that H−1 i∗i∗ IC(S; KS) = 0.

For a contradiction, let S′ be a maximal symplectic leaf in the closure of S on which
H−1 i∗i∗ IC(S; KS) is supported, and let jS′ : S′ → X the inclusion. Then

H−1 j∗S′ i∗i∗ IC(S; KS) = H−1 j∗S′ IC(S; KS)

is a local system on S′. By our assumption, the stalk of IC(S; KS) at every point of S′
has nonzero cohomology in degree − dim S′ − 1.

Choose a point x ∈ S′. The stalk IC(S; KS)x is a summand of Tx . But H∗(Tx ) is
the pushforward to a point of the restriction of �X̃ to the fiber ρ−1(x). This is the
same for the formal neighborhood (or an analytic neighborhood) of ρ−1(x); thus, we
obtain the shifted topological cohomology H∗+dim X (ρ−1(x); C) of the fiber. By [24,
1.9], H∗(ρ−1(x); C) is concentrated in even degrees, and hence, the same is true for
H∗(Tx ). Since dim S′ is even, this gives us a contradiction. ��

3 The authors thank Carl Mautner for explaining the following two lemmas and their proofs.
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Lemma 3.5 Let S 
= S′ be symplectic leaves of X. ThenExt1(IC(S; KS), IC(S′, KS′))
= 0.

Proof Assume first that S is not contained in the closure of S′. Thus, S is disjoint
from the closure of S′. Let jS : S → X and iS : S̄\S → X be the inclusions. Then
j∗S IC(S′, KS′) = 0. We have the standard exact triangle

→ ( jS)!KS → IC(S; KS) → (iS)∗i∗S IC(S; KS) → .

Apply Hom
(−, IC(S′, KS′)

)
, and we obtain in the long exact sequence,

→ Ext1
(
(iS)∗i∗S IC(S; KS), IC(S′, KS′)

) → Ext1(IC(S; KS), IC(S′, KS′))

→ Ext1(( jS)!KS, IC(S′, KS′)) → .

Wewant to show that themiddle term is zero. By adjunction, since j∗S IC(S′, KS′) = 0,
the last term is zero. It suffices therefore to show that the first term is zero. However,
by Lemma 3.4, (iS)∗i∗S IC(S; KS) has cohomology concentrated in degrees ≤ −2,
whereas IC(S′, KS′) is a D-module (in degree zero). Therefore, the first term is also
zero.4

Next assume S is contained in the closure of S′. Since S 
= S′, S′ is not contained
in the closure of S. In this case, applying Verdier duality,

Ext1(IC(S; KS), IC(S′, KS′)) = Ext1(D IC(S′, KS′), D IC(S; KS)).

But, since �X̃ is self-dual, so is T , and hence, D IC(S; KS) = IC(S; DKS) is a
summand of T . Therefore, IC(S; DKS) ∼= IC(S; KS), and the same holds for S′. Thus
we again have Ext1(IC(S; KS), IC(S′, KS′)) = 0. ��

Putting together Lemma 3.5 and Proposition 3.1, (3.1) immediately implies:

Proposition 3.6 The D-module T is rigid; that is, Ext1(T, T ) = 0.

The following corollary is an immediate consequence of Propositions 2.1 and 3.6.

Corollary 3.7 M0 is isomorphic to T .

4 The main theorem

For each leaf S, choose a point s ∈ S, and let XS be a formal slice to S at s. Then
the base change of ρ along the inclusion of XS into X induces a projective symplectic
resolution X̃ S → XS . The following theorem asserts that, if the weak version [15,
1.3(a)] of the conjecture of Etingof and the first author holds for each XS , then the
strong version [15, 1.3(c)] holds for X .

4 More generally, for any triangulated category with a t-structure, if M is a complex whose cohomology
is concentrated in negative degrees and N is a complex whose cohomology is concentrated in nonnegative
degrees, then Hom(M, N ) = 0.
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Theorem 4.1 Suppose that, for every leaf S of X, dimHP0(XS) = rk KS. Then
M ∼= T .

Our proof of Theorem 4.1 easily extends to the following more general statement.

Theorem 4.2 If U ⊆ X is an open subset and dimHP0(XS) = rk KS for all leaves
S intersecting U, then M |U ∼= T |U .
Remark 4.3 In fact, we can relax the assumption that X admit a symplectic resolution
and assume only that X is a conical symplectic variety in the sense of Beauville [3]
and that U ⊆ X admits a projective symplectic resolution, replacing T |U by the
corresponding D-module on U .

If S is a symplectic leaf of codimension two, the equality dim HP0(XS) = rk KS

is well known (since XS is a Kleinian singularity), so we automatically conclude the
following result.

Corollary 4.4 If U is the complement of all symplectic leaves of codimension greater
than two, then M |U ∼= T |U .

Note that the isomorphism of Theorem 4.1 is not canonical; we can correct this as
follows. Let i : S → X be the inclusion, and let LS : =H0(i∗M) be the local system
studied in [13, §4.3].5 The fiber LS,s of LS at the point s is canonically isomorphic to
the vector space HP0(XS) [13, 4.10].

Corollary 4.5 Under the hypothesis of Theorem 4.1, there is a canonical isomorphism
M ∼= ⊕

S IC(S; LS), and a noncanonical isomorphism LS ∼= KS for each symplectic
leaf S. More generally, for each leaf S, we can conclude LS ∼= KS if we know that
dimHP0(XS′) = rk KS′ for all S′ whose closure contains S.

Remark 4.6 As in Remark 4.3, for the final assertion we need not require X admits a
symplectic resolution, rather that X be a conical symplectic variety and that an open
subset containing S admit a projective symplectic resolution.

Proof of Corollary 4.5 As explained by Etingof and the second author [13, §4.3],
the right D-modules IC(S; LS) are subquotients of M . Now, by Theorem 4.1 and
Corollary 3.3, M is semisimple, so in fact IC(S; LS) is a direct summand of M , and
since Hom(IC(S; LS), IC(S′; KS′)) = 0 for S 
= S′, we must have that IC(S; LS)

is a direct summand of IC(S; KS) ⊆ M . Restricting to S, we see that LS is a direct
summand of KS . Since rk LS = dimHP0(XS) = rk KS , KS and LS are in fact
isomorphic.

Consider the canonical adjunction morphism M → H0(i∗LS), which induces a
surjection from M to IC(S; LS). By Proposition 3.6, the map M → ⊕

S IC(S; LS) is
an isomorphism.

The final assertion is obtained by the same argument along with Theorem 4.2. ��

5 It is not a priori clear that LS has regular singularities, though this will follow from Corollary 4.5.
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Corollary 4.5 allows us to give a new proof of a result of Namikawa [31, 4.2].6

Corollary 4.7 Let S be a codimension two symplectic leaf of a conical symplectic
variety (such as a variety admitting a conical symplectic resolution). Then the dimen-
sion of�(S, LS) is equal to the number of irreducible components of the inverse image
ρ−1(S).

Proof LetU ⊆ X be the complement of the symplectic leaves of codimension greater
than two. ThenU automatically admits a symplectic resolution (which is the minimal
resolution), so by Remark 4.6, Corollary 4.5 applies (if we assume X admits a conical
symplectic resolution, this argument is unnecessary). Thus �(S, LS) ∼= �(S, KS).
Next, KS is the local system with fibers H2(ρ−1(s)) for s ∈ S (the top cohomology of
the fibers ρ−1(s)), and so one sees that the global sections identify with the functions
on the irreducible components of ρ−1(S). Thus the dimension is the number of such
components. ��

Proof of Theorem 4.1 Let N be the kernel of the surjection M → M0 ∼= T , so that
we have a short exact sequence

0 → N → M → T → 0

of right D-modules on X . Assume for the sake of contradiction that the support of N
is nontrivial. It is necessarily a union of symplectic leaves; let S be a maximal such
leaf. Restrict to the formal neighborhood of the leaf S. Then N , M , and T are local
systems along S (that is, upon restriction to a contractible analytic open neighborhood
U of every point of S, they become external tensor products of local systems onU and
D-modules on the normal slice). We can therefore make use of the exact restriction
functor for such D-modules to the slice XS at s, given by P �→ PS : =i∗XS

P[− dim S]
(for iXS the inclusion of XS into the formal neighborhood of S), and we obtain the
exact sequence

0 → NS → MS → TS → 0.

By functoriality and the definitions of M and T , MS is isomorphic to M(XS), and TS
is isomorphic to the derived pushforward of the canonical sheaf of X̃ S .

Let π be the pushforward of XS to a point. We have

H−1 π∗(TS) ∼= Hdim XS−1(ρ−1(s); C
) = 0

6 Namikawa works in greater generality, not requiring that X be conical. He also uses an a priori different
local system than LS , notated byH, and defined only on codimension two leaves. In particular,H is defined
as a topological local system, unlike LS . However, it follows from the discussion in [31, §4] that LS and
H have the same monodromy; hence, the underlying topological local system of LS is isomorphic to H.
Moreover, under our assumptions, we show that LS has regular singularities, so it can be viewed as a
topological local system isomorphic to H.
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by [22, 2.12]. Also, NS is a delta-function D-module at s, so π∗NS is concentrated in
degree zero. Thus, we obtain a short exact sequence

0 → H0 π∗(NS) → H0 π∗(MS) → H0 π∗(TS) → 0.

We have

H0 π∗(TS) ∼= Hdim XS (ρ−1(s); C).

By assumption, we also have

dimH0 π∗(MS) = dimHP0(XS) = rk KS = dimHdim XS
(
ρ−1(s); C

)
.

ThusH0 π∗(MS) andH0 π∗(TS)have the samedimension, and therefore,H0 π∗(NS) =
0. This means that NS = 0, which is a contradiction. ��

Letπ be themap from X to a point. By definition, we haveHPk(X) : =H−k π∗(M).
By the de Rham theorem, we have an isomorphism H−k π∗(T ) ∼= Hdim X−k(X̃; C).
Thus, as explained by Etingof and the second author [15, 1.3], Theorem 4.1 implies
that the Poisson–de Rham homology of X is isomorphic to the de Rham cohomology
of X̃ .

Corollary 4.8 Under the hypothesis of Theorem 4.1, we have a (noncanonical) iso-
morphism HPk(X) ∼= Hdim X−k(X̃; C) for all k.

Corollary 4.9 Any two conical projective symplectic resolutions of X have the same
Betti numbers.

Remark 4.10 In fact, it is possible to show that any two conical projective symplectic
resolutions of X have canonically isomorphic cohomology rings; this follows from
[30, 25].

Example 4.11 Let A be a coloop-free, unimodular, rational, central hyperplane
arrangement, and let X (A) be the associated hypertoric variety [33, §1]. Any sim-
plification Ã of A determines a conical projective symplectic resolution X̃(Ã) of
X (A). The symplectic leaves of X (A) are indexed by coloop-free flats of A, and the
slice to the leaf indexed by F is isomorphic to a formal neighborhood of the cone point
of X (AF ), where AF is the localization of A at F [33, §2]. Hence the hypothesis of
Theorem 4.1 is that, for every coloop-free flat F ,

dim HP0(X (AF )) = dimH2 rk F(X̃(ÃF ); C
)
.

This is proved in [32, 3.2]; hence, Theorem 4.1 holds for hypertoric varieties.
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5 Weights

We assume throughout this section that the hypothesis of Theorem 4.1 is satisfied.
By homogeneity of the Poisson bracket, the vector space

HP0(X) ∼= C[X ]/{C[X ], C[X ]}

inherits a grading from the action of C×. Moreover, the D-module M has a canonical
weak C×-equivariant structure; thus, HPk(X) = H−k π∗(M) is naturally graded for
all k (where π is the map from X to a point).

Let n be the positive integer such that the Poisson bracket on X has weight−n (this
weight must be negative since the bracket vanishes along ρ−1(0) in the resolution X̃ ).
Suppose that, for every symplectic leaf S, the normal slice XS admits a conical C×-
action equipping the Poisson bracket on XS with the same weight−n. More generally,
we can suppose XS to be equipped with a vector field ξ such that LξπXS = −nπXS ,
where πXS is the Poisson bivector (that is, we only require an infinitesimal action of
C×). In fact, this is no additional assumption: such a ξ always exists by virtue of the
Darboux–Weinstein decomposition X̂s ∼= Ŝs×̂XS [22, 2.3]. If p : X̂s → XS is the
projection, we may take ξ = p∗(EuX̂s

|{0}×XS ), where EuX̂s
is the vector field for the

C×-action. However, we impose no requirement that the vector field ξ be obtained in
this way.

Letπ be the Poisson bivector on X , and let θ be any vector field such that Lθπ = cπ
for some c ∈ C. Then the bracket of θ with any Hamiltonian vector field is again
Hamiltonian, and thus, left multiplication by θ is an endomorphism of the right D-
module M(X). It is the zero endomorphism if and only if θ is Hamiltonian (in which
case c = 0). Since IC(S; LS) is (canonically) a quotient of M(X), this also induces
an endomorphism of IC(S; LS) and hence of LS and its fiber LS,s . In the case of the
Euler vector field EuX , which is induced by an honest action ofC×, this endomorphism
must be semisimple. By the same construction, the vector field ξ on XS induces an
endomorphism of M(XS) and therefore of the vector space HP0(XS). In this case,
since we do not assume that ξ integrates to an honest action of C×, we do not know a
priori that the endomorphism is semisimple. The following result says that it is, and
that the induced gradings on LS,s ∼= HP0(XS) agree up to a shift.

Theorem 5.1 The endomorphism of HP0(XS) induced by ξ is semisimple, and the
canonical vector space isomorphism LS,s → HP0(XS)[n dim S/2] respects the
weight gradings.

Inmany cases, including hypertoric andNakajimaquiver varieties, the local systems
LS ∼= KS are trivial. This allows us to conclude the following two corollaries.

Corollary 5.2 If the local systems {KS} are trivial, then there is an isomorphism of
weakly C×-equivariant D-modules

M(X) ∼=
∑

S

IC(S; LS) ∼=
∑

S

IC(S;�S) ⊗ HP0(XS)[n dim S/2],
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where the grading on HP0(XS) is induced by the (possibly infinitesimal) action of C×
on XS.

Define PX (x, y) to be the Poincaré polynomial of HP∗(X), where x records homo-
logical degree and y records weights for the C×-action. Note that weights can be
both positive and negative, so PX (x, y) is a polynomial in x , y, and y−1. For each
leaf S, let QS̄(x) be the intersection cohomology Poincaré polynomial of S̄, that is,
QS̄(x) : = ∑

dim IHk(S̄; C) xk .

Corollary 5.3 If the local systems {KS} are trivial, then

PX (x, y) =
∑

S

xdim S y−n dim S/2 QS̄(x
−1) PXS (0, y).

Proof Let π be the map from X to a point. Then the corollary follows from Corol-
lary 5.2 and the fact that H−k(π∗ IC(S;�S)) ∼= IHdim S−k(S̄; C). ��
Remark 5.4 The first author has conjectured that, if n = 2 and X ! is symplectic dual
to X in the sense of [5, 10.15], then PX (0, y) = QX !(y) [32, 3.4]. Thus, if each KS is
trivial, each slice XS has a symplectic dual, and the aforementioned conjecture holds,
then Corollary 5.3 allows us to express PX (x, y) entirely in terms of intersection
cohomology Poincaré polynomials.7

In the next two sections, we will apply this result to compute PX (x, y) when X
is a unimodular hypertoric cone or a type A S3-variety. In both of these cases, the
leaf closures, the slices, and their symplectic duals are varieties of the same type [5,
10.4, 10.8, 10.16, 10.18, and 10.19]; the local systems are trivial, and we know how
to compute their intersection cohomology Poincaré polynomials. In the former case
we obtain h-polynomials of the broken circuit complexes of matroids, and in the latter
case we obtain Kostka polynomials. The conjecture about symplectic duals is proved
for hypertoric varieties but not for S3-varieties; thus, the computations in Section 7
are conditional on this unproved statement.

To prove Theorem 5.1, we need the following result. LetUs be a contractible open
neighborhood of s in the analytic topology.

Proposition 5.5 Every analytic Poisson vector field on Us is Hamiltonian, and so is
any algebraic Poisson vector field on the formal completion X̂s .

Proof By normality of X , it is enough to prove each statement on the regular locus. On
a smooth symplectic manifold, Poisson vector fields correspond to closed one-forms
and Hamiltonian vector fields correspond to exact one-forms. Thus, we need to show
that the global sections of the de Rham complex have vanishing first cohomology on
the regular locus. For the analytic statement, it suffices to show that the topological
cohomology of U reg

s vanishes, since in this case every closed one-form is the differ-
ential of a smooth function, and if the one-form is analytic, the same must be true of
the function.

7 As explained in [32], the full version of the conjecture [32, 3.4] applied to a slice XS with a symplectic
dual would imply that dimHP0(XS) = rk KS ; thus, the hypothesis of Theorem 4.1 would be satisfied.
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Webegin by observing thatU reg
s

∼= ρ−1(U reg
s ). By [22, 2.12],H1(ρ−1(Us); C) = 0,

so we need to show that passing to the preimage of the regular locus does not introduce
any cohomology in degree 1. Since Us\U reg

s has complex codimension at least one,
hence real codimension at least two, every loop in Us can be homotoped to U reg

s , so
the map π1(U

reg
s ) → π1(Us) is surjective. Consider the stratification

ρ−1 (
Us\U reg

s
) =

⊔

S′
ρ−1(Us ∩ S′),

where S′ ranges over all symplectic leaves of X whose closure contains S other than
the open leaf. Suppose S′ is such a leaf. By the semismallness property [22, 2.11], the
codimension of ρ−1(Us ∩ S′) is at least half the codimension of S′. If the codimension
of S′ is at least four, then ρ−1(Us ∩ S′) therefore has codimension at least two, hence
real codimension four. The fundamental group of a smooth manifold is unchanged
by removing a locus of real codimension greater than two (since homotopies of loops
can be pushed off this locus). Therefore the fundamental group ofUs is unchanged by
removing the union of ρ−1(Us ∩ S′) over all leaves S′ of codimension at least four.
Next, if S′ has codimension two, then the singularity at s′ ∈ S′ is of Kleinian type, and
hence in a small enough neighborhoodUs′ of s′, the fundamental group π1(ρ

−1(Us′))
is a finite subgroup of SL2(C). Therefore, the kernel of the map π1(ρ

−1(Us\S′)) →
π1(ρ

−1(Us)) is generated by this finite subgroup of SL2(C). We conclude that the
surjection π1(ρ

−1(U reg
s )) → π1(ρ

−1(Us)) is generated by elements of finite order,
and hence, this surjection descends to an isomorphism on homology

0 = H1

(
ρ−1(U reg

s ), C
) ∼=−→ H1(ρ

−1(Us), C).

Dualizing, we obtain the desired result.
For the statement about the formal completion, we follow [12, § 4.4]. Let V :

=U\U reg
s be the singular locus. By Hartshorne’s theorem [19,20], the de Rham hyper-

cohomology of the formal completion ˆ̃Xρ−1(s) equals the topological cohomology of
the fiber ρ−1(s), which also equals the topological cohomology of ρ−1(Us). Then, as

in [12, (4.40)], the Mayer–Vietoris sequences for the triples (X̃ , X̃\ρ−1(V ),
ˆ̃Xρ−1(s))

and (X̃ , X̃\ρ−1(V ), ρ−1(Us)) are isomorphic. Since the intersections of the second
two open subsets of X̃ are ρ−1(X̂ reg

s ) ∼= X̂ reg
s and ρ−1(U reg

s ) ∼= U reg
s , respec-

tively, we may take hypercohomology of the de Rham complex to conclude that
H1

DR(X̂ reg
s ) ∼= H1

DR(U reg
s ). The latter, by Grothendieck’s theorem, is equal to the

topological cohomology, which we showed is zero.
To conclude, we need to compare the hypercohomology of the de Rham complex

with the cohomologyof global sections of the deRhamcomplex. The spectral sequence
computing hypercohomology degenerates in degree one on the second page, yielding
an isomorphismH1

DR(X̂ reg
s ) ∼= H1(�(�•

X̂ reg
s

))⊕(R1�)(OX̂ reg
s

). Hence both summands
are zero. ��
Proof of Theorem 5.1 Passing to a formal neighborhood of s, we obtain the Darboux–
Weinstein decomposition X̂s ∼= Ŝs×̂XS . Then we can view ξ as a vector field on
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X̂s parallel to the XS factor everywhere, and set ξ ′ : =EuŜs + ξ . Letting π be the

Poisson bivector on X and hence on X̂s , we have Lξ ′π = −nπ = LEuπ . This
implies that ξ ′ − Eu is Poisson and therefore Hamiltonian by Proposition 5.5. Thus
the endomorphisms of M(X̂s) ∼= M(Ŝs) � M(XS) induced by Eu and ξ ′ are equal.

The endomorphism induced by Eu is responsible for the grading on LS,s , and the
endomorphism of M(XS) induced by ξ is responsible for the grading on HP0(XS).
To prove the theorem, we need to show that the endomorphism of M(Ŝs) induced by
EuŜs is multiplication by −n dim S/2. To see this last fact, note that M(Ŝs) ∼= �Ŝs
via the map that sends the canonical generator to ωdim S/2, where ω is the symplectic
form on Ŝs . Since the Lie derivative map from vector fields to differential operators is
an antihomomorphism, we have

EuŜs · ωdim S/2 = −LEuŜs
ωdim S/2 = −(n dim S/2) ωdim S/2,

by our assumption that the Poisson bracket on X , and hence on S, has weight −n. ��

6 The hypertoric case

In this section, we compute the polynomial PX (A)(x, y) for a coloop-free, unimodular,
rational, central hyperplane arrangement A with 
 hyperplanes. We use the action of
C× described in [32, §2], for which the symplectic form on the resolution has weight
n = 2.

Denham [10, §3] defines a polynomial �A(x, y, b1, . . . , b
) whose coefficients
are the dimensions of certain eigenspaces (determined by the b exponents) of “com-
binatorial Laplacian” operators on certain vector spaces (determined by the x and
y exponents). We will identify all of the b variables to obtain a 3-variable polyno-
mial �A(x, y, b). This is an enrichment of the Tutte polynomial in the sense that
�A(x − 1, y − 1, 1) = TA(x, y) [10, 23(2)].

Theorem 6.1 PX (A)(x, y) = y−2 rkA �A(x2 − 1, y−2 − 1, y2).

Proof As stated in Example 4.11, the symplectic leaves of X (A) are indexed by
coloop-free flats ofA, and the leaf indexed by F has a formal slice that is isomorphic
to a formal neighborhood of the cone point of X (AF ). Furthermore, the closure of the
leaf is isomorphic to X (AF ), where AF is the restriction of A to F [33, §2].

Let TA(x, y) be the Tutte polynomial of A. By [33, 4.3 and 5.5], we have

QX (A)(x) = hbrA(x2) = x2 rkA TA(x−2, 0).

Applying this to the restricted arrangement AF , we obtain

QX (AF )(x) = x2 crk FTAF (x−2, 0),

where crk F = rkA − rk F . By [32, 3.1], we have

PX (A)(0, y) = QX (A∨)(y) = y2 rkA∨
TA∨(y−2, 0) = y2|A|−2 rkA TA(0, y−2),
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where A∨ is the Gale dual of A. Applying this to the localized arrangement AF , we
obtain

PX (AF )(0, y) = y2|F |−2 rk F TAF (0, y−2).

Applying Corollary 5.3, we have

PX (A)(x, y) =
∑

F

x2 crk F y−2 crk F x−2 crk F TAF (x2, 0) y2|F |−2 rk F TAF (0, y−2)

= y−2 rkA ∑

F

y2|F | TAF (x2, 0) TAF (0, y−2).

Let χA(x) = (−1)rkA TA(1 − x, 0) be the characteristic polynomial of A. By the
first equation in [10, §3.1], we have

�A(x, y, b) =
∑

F

(−1)rkA−|F | χAF (−x) χ(AF )∨(−y) b|F |

=
∑

F

(−1)rkA−|F | (−1)rkAF
(−1)rk(AF )∨

× TAF (x + 1, 0) T(AF )∨(y + 1, 0) b|F |

=
∑

F

TAF (x + 1, 0) T(AF )∨(y + 1, 0) b|F |

=
∑

F

TAF (x + 1, 0) TAF (0, y + 1) b|F |.

Thus

y−2 rkA �A(x2 − 1, y−2 − 1, y2) = y−2 rkA ∑

F

TAF (x2, 0) TAF (0, y−2) y2|F |

= PX (A)(x, y),

and the theorem is proved. ��

Remark 6.2 Specializing at y = 1, we obtain the equation

PX (A)(x, 1) = �A(x2 − 1, 0, 1) = TA(x2, 1) = x2 rkAhA(x−2),

matching the known formula for the Betti numbers of a conical symplectic resolution
of X (A) given in [21, 1.2] and [33, 3.5 and 5.5].
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7 The case of S3-varieties in type A

Let λ and μ be partitions of the same positive integer r . Let Oλ be the nilpotent
coadjoint orbit in sl∗r whose Jordan blocks have sizes given by the parts of λ;8 then,
λ ≥ μ in the dominance order if and only if Oμ is contained in the closure of Oλ.
In this case, let Xλμ be the normal slice to Oμ inside of the closure of Oλ. This
space is sometimes called an S3-variety, after Slodowy, Spaltenstein, and Springer
[5,35]. The variety Xλμ is a Nakajima quiver variety for a finite type A quiver, and
conversely any such variety is an S3-variety [28]; in particular, Xλμ admits a projective
symplectic resolution (the fibers are known as Spaltenstein varieties), and the local
systems associated with the symplectic leaves are trivial.We equip these varieties with
the standard action of C× with the property that the Poisson bracket is homogeneous
of weight -2. The symplectic leaves of Xλμ are indexed by the poset [μ, λ]. For any
ν ∈ [μ, λ], the closure of the leaf Sν is isomorphic to Xνμ, and the normal slice to Sν

is isomorphic to Xλν .
Let nλ = ∑

i (i − 1)λi , so that dim Xλμ = 2(nμ − nλ). A theorem of Lusztig [26,
Theorem 2] says that

QXλμ(x) = x2(nμ−nλ)Kλμ(x−2), (7.1)

where Kλμ(t) is the Kostka polynomial associated with λ and μ. We will assume
that the conjecture [32, 3.4] holds; we have X !

λμ = Xμtλt , so the explicit statement of
the conjecture in this case is that

PXλμ(0, y) = QXμt λt
(y) = y2(nλt −nμt )Kμtλt (y

−2). (7.2)

Proposition 7.1 If Eq. (7.2) holds for all type A S3-varieties, then

PXλμ(x, y) = y2(nλt −nμ)
∑

ν∈[μ,λ]
y2(nν−nνt )Kνμ(x2)Kνtλt (y

−2).

Proof For all ν ∈ [μ, λ], Eq. (7.2) tells us that
dimHP0(Xλν) = PXλν (0, 1) = Kνtλt (1),

which is in turn equal to the rank of the local system KSν [6, 3.5(b)]; thus, the hypothesis
of Theorem 4.1 is satisfied. Then by Corollary 5.3, we have

PXλμ(x, y) =
∑

ν∈[μ,λ]
x2(nμ−nν )y−2(nμ−nν )x2(nν−nμ)Kνμ(x2)y2(nλt −nνt )Kνtλt (y

−2)

= y2(nλt −nμ)
∑

ν∈[μ,λ]
y2(nν−nνt )Kνμ(x2)Kνtλt (y

−2).

This completes the proof. ��

8 More precisely, the elements of the image of this orbit under the Killing form isomorphism sl∗r → slr
have this Jordan decomposition.
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8 The case of the nilpotent cone in general type

Let g be any semisimple Lie algebra, and let X ⊆ g∗ be the nilpotent cone. As before,
one can consider coadjoint orbits in X and slices to one inside the closure of another;
however, these do not admit symplectic resolutions in general, and even when they do,
the assumptions of Theorem 4.1 are not known to be satisfied. Here we consider only
the case of X itself, where Theorem 4.1 is known to hold for the Springer resolution
T ∗B → X [14], whereB is the flag variety.9 If g is not of typeA, then the hypothesis of
Corollary 5.3 fails, so we have no direct way of using that result to compute PX (x, y).
However, we will conjecture a formula for PX (x, y) based on the type A case and a
suggestion of G. Lusztig and P. Etingof.

8.1 Generalized Kostka polynomials

Let W be the Weyl group of g. Springer theory tells us that T is equipped with an
action of W , and that for every irreducible representation χ of W , we may associate
a nilpotent coadjoint orbit Og,χ and an irreducible local system Mg,χ on Og,χ such
that

M ∼= T ∼=
⊕

g,χ

IC(Og,χ ; Mg,χ ) ⊗ χ (8.1)

as aW -equivariant D-module. By pushing forward to a point and taking cohomology,
we obtain an action of W on H∗(T ∗B; C) = H∗(B; C) which is isomorphic (after
forgetting the grading) to the regular representation.

For each χ of W , let

Kg,χ (t) : =
∑

i≥0

t i dimHomW
(
χ,H2dimB−2i (B; C)

)
.

We call Kg,χ (t) a generalized Kostka polynomial, motivated by the following well-
known proposition.

Proposition 8.1 For any g and any representation χ of W, we have

Kg,χ (t2) =
∑

i≥0

t i dim IHdimOg,χ−i (Ōg,χ ; Mg,χ ).

If g = slr , χ is an irreducible representation of Sr , and ν is the partition of r with the
property that Og,χ = Oν , then Kg,χ (t) = Kν(1r )(t).

Proof The first statement follows immediately from pushing Eq. (8.1) forward to a
point and taking cohomology. To obtain the second statement from the first, we use
Eq. (7.1) (for μ = (1r ) and λ = ν), along with the fact that, in type A, all the local
systems Mg,χ are trivial. ��

9 In fact, in [14] the conclusion M ∼= T of Theorem 4.1 is proved first, and then, the hypothesis follows.
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Remark 8.2 By Poincaré duality, for σ the sign representation, HomW (χ, H2i (B; C))
∼= HomW (χ ⊗ σ, H2 dimB−2i (B; C)), thus we also have

Kg,χ (t) =
∑

i≥0

t i dimHomW
(
χ ⊗ σ,H2i (B; C)

)
.

Remark 8.3 Note that H∗(B; C) is canonically isomorphic as aW -equivariant graded
algebra to the coinvariant algebra C[h]/(C[h]W+ ), where C[h]+ ⊂ C[h] is the aug-
mentation ideal and h∗ ⊂ C[h] sits in degree 2.

8.2 The conjecture

Since the summand IC(Og,χ ; Mg,χ ) ofM is simple, theweakC×-equivariant structure
on M induces a grading on the multiplicity space χ . Let h(χ; t) be the Hilbert series
for this grading.

Conjecture 8.4 For each irreducible representation χ of W, we have

h(χ; y) = Kg,χ (y−2),

and therefore

PX (x, y) =
∑

χ∈Irrep(W )

Kg,χ (x2)Kg,χ (y−2).

Remark 8.5 Conjecture 8.4 holds at the specialization y = 1 by the fact that H∗(B; C)

is isomorphic to the regular representation of W .

Remark 8.6 If Mg,χ is trivial, then IH0(Ōg,χ ; Mg,χ ) ∼= C, thus Proposition 8.1 tells
us that the top degree of Kg,χ (x2) is equal to the dimension of Og,χ . Similarly, the
bottom degree of Kg,χ (y−2) is equal to − dimOg,χ , which is what the bottom degree
of h(χ) should be according to Theorem 5.1.

Remark 8.7 By Theorem 5.1, Conjecture 8.4 implies that, for each nilpotent orbit S,

PXS (0, y) = ydim S
∑

rk Mg,χ · Kg,χ (y−2), (8.2)

where the sum is taken over all χ such thatOg,χ = S. If there is only one such χ (and
hence Mg,χ is trivial), then Conjecture 8.4 for χ is equivalent to Eq. (8.2) for S.

Let σ denote the sign representation of W and triv the trivial representation.

Example 8.8 In the case where χ = triv, which corresponds to the trivial local system
on the open orbit, Eq. (8.2) says that h(triv; y) = y− dim X . On the other hand, ifχ = σ

is the sign representation, which corresponds to the cone point, it says h(σ ; y) = 1.
These conclusions both agree with Theorem 5.1, since in both cases the Poisson
homology of the slice is one dimensional and concentrated in degree zero.
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Proposition 8.9 If g = slr , then the first formula of Conjecture 8.4 agrees with
Eq. (7.2) and the second with Proposition 7.1.

Proof If Og,χ = Oν , then Eq. (7.2) with λ = (r) and μ = ν tells us that

PX(r)ν (0, y) = y2(n(1r )−nνt )Kνt (1r )(y
−2) = ydimOνt Kνt (1r )(y

−2)

= ydimOg,χ⊗σ Kg,χ⊗σ (y−2).

On the other hand, the first formula of Conjecture 8.4 is equivalent to Eq. (8.2), which
says that

PX(r)ν (0, y) = ydimOg,χ Kg,χ (y−2).

Thus we need to prove the following identity:

Kg,χ (t2) = tdimOg,χ−dimOg,χ⊗σ Kg,χ⊗σ (t2). (8.3)

Using Poincaré duality (Remark 8.2) and the fact that dimOg,χ = r(r − 1) − nν , this
identity reduces to the following palindromic property of Kg,χ (t2):

Kg,χ (t2) = tnνt −nν+r(r−1)Kg,χ (t−2).

This follows from [4, Propositions A and B, (1)], and (as explained there) is originally
due to Steinberg [34]. ��
Remark 8.10 As pointed out byG. Lusztig, it is possible to generalize (8.3) to arbitrary
irreducible types. For any irreducible representation χ ofW , let χ s denote the unique
special representation in the same two-sided cell as χ . In [4], there is an involution i
defined on the set of irreducible representations of W , which is the identity except for
six irreducible representations in types E7 and E8, called “exceptional” ones, which
are exactly the representations for which Kg,χ (t) is not palindromic.

Lusztig pointed out that, combining [4, Propositions A and B] with the determinant
of [27, 5.12.2], and comparing powers of u in the latter, one can conclude the following
identity (when W is irreducible):

Kg,χ (t2) = tdimOg,χs−dimOg,χs⊗σ Kg,i(χ)⊗σ (t2). (8.4)

In type A, i is trivial and χ = χ s for all χ , thus we recover the identity in Eq. (8.3).

Remark 8.11 Motivated by in part by symplectic duality [5], we originally guessed
the following formula for h(χ):

y− dimOg,χ+dimOgL,χ⊗σ Kg,χ⊗σ (y−2).

(Here gL is the Langlands dual of g, whose Weyl group is canonically isomorphic to
that of g.) This agrees with Conjecture 8.4 in all of the examples considered in this
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paper: types A
, B2, C2, and G2, and also for the subregular orbit in general (and, in
the B2,C2, and G2 cases, the Langlands duality is required for it to hold). However,
as Lusztig pointed out, the formulas do not coincide in some cases, such as when χ is
the (nonexceptional) 50-dimensional irreducible representation of E8 for which Mg,χ

is trivial; moreover, Remark 8.6 implies that our original guess was incorrect in this
case.

8.3 A proof of the conjecture along the subregular orbit

In this subsection, we verify Conjecture 8.4 whenOg,χ is equal to the subregular orbit
R. First suppose g is simply laced; in this case, the only such representation is the
reflection representation χ = h.

Proposition 8.12 If g is simply laced, then Conjecture 8.4 holds for χ = h.

Proof Since there is only one irreducible representation associatedwith the subregular
orbit, Conjecture 8.4 for h is equivalent to Eq. (8.2) for R, which says

PXR (0, y) = ydim RKg,h(y
−2).

By Remarks 8.2 and 8.3, since codim R = 2, we have

ydim RKg,h(y
−2) = y−2h(HomW (h, C[h]/(C[h]W+ ); y).

Consider the map from � : C[h]W → HomW (h, C[h]/(C[h]W+ )) taking f to � f ,
which is defined by the formula � f (x) : =∂x ( f ) for all x ∈ h. The restriction of �

to the linear span of the fundamental invariants (the ring generators of C[h]W ) is an
isomorphism. Since � lowers degree by 2, this implies that

ydim RKg,h(y
−2) = y−2

∑

i

y2di−2 =
∑

i

y2(di−2),

where {2di } are the degrees of the fundamental invariants.10 This indeed coincides
with PXR (0, y), as desired [1,17]. ��

In the nonsimply laced case, let D̃ be the simply laced Dynkin diagram folding
to the type of g, let W̃ be the corresponding Weyl group, and let h̃ be its reflection
representation. As representations of W , we have h̃ ∼= h ⊕ τ for some irreducible
representation τ � h of W , and τ and h are the only two irreducible representations
lying over R. The slice XR is a Kleinian singularity of type D̃, and Theorem 5.1 tells
us that HP0(XR) is isomorphic as a graded vector space to a fiber of the local system
LR[− dim R], where

LR = (
Mg,h ⊗ h

) ⊕ (
Mg,τ ⊗ τ

)
.

10 The factor of 2 is there because h∗ sits in degree 2.
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Proposition 8.13 If g is not simply laced, then Conjecture 8.4 holds for χ = h and
for χ = τ .

Proof For χ = h or τ , let HP0(XR)χ ⊂ HP0(XR) be the summand corresponding
to a fiber of the local system Mg,h[− dim R] ⊂ LR[− dim R]. As in the proof of
Proposition 8.12, we need to show that the Hilbert series of HP0(XR)χ is equal to

y−2h
(
HomW

(
χ, C[h]/

(
C[h]W+

))
; y

)
. (8.5)

We first consider the case where χ = h. The local system Mg,h is trivial, so
HP0(XR)h is the part of HP0(XR) that is fixed by the action of π1(R). As in the proof
of Proposition 8.12, Eq. (8.5) simplifies to

∑

i

y2(di−2),

where {2di } are the degrees of the fundamental invariants for the action ofW on C[h].
(Note that these are a subset of the fundamental invariants for the action of W̃ on
C[h̃].) We will check on a case-by-case basis that this is equal to the Hilbert series
of HP0(XR)h. We will skip the case of G2, since that will be treated separately in
Proposition 8.15. In all other cases, π1(R) ∼= Z/2, and the action on HP0(XR) can
be deduced from the explicit bases for the latter in [11, §5.1]. It is straightforward to
check that our formula is correct.

Next, consider the case χ = τ . In view of the above, we need to show that

y−2h
(
HomW

(
τ, C[h]/

(
C[h]W+

))
; y

)
=

∑

i

y2(ei−2),

where {2ei } are the degrees of the fundamental invariants for the action of W̃ on C[h̃]
that restrict to zero on h ⊆ h̃. To prove this, it is sufficient to show that there exists a
graded vector space isomorphism

HomW̃

(
h̃, C[h̃]/

(
C[h̃]W̃+

)) ∼= HomW

(
h̃, C[h]/

(
C[h]W+

))
.

The restriction map from C[h̃] to C[h] induces a natural map from the left-hand side
to the right-hand side. Moreover, both sides have the same dimension (equal to dim h̃),
since the coinvariant algebras for W and W̃ are the regular representations of W and
W̃ , respectively. Therefore, it suffices to prove that the natural map is injective.

Equivalently, we need to show that, for every fundamental invariant f ∈
C[h̃]W̃ which restricts to zero on h̃, the corresponding homomorphism � f ∈
HomW̃ (h̃, C[h̃]/(C[h̃]W̃+ )) defined above restricts to a nonzero element of
HomW (τ, C[h]/(C[h]W+ )). This is easy to verify explicitly in the case where g is
of type Bn (so D̃ = A2n−1), using the embedding W (Bn) ↪→ W (A2n−1) ∼= S2n−1,
since then C[h̃]W̃ is the ring of symmetric polynomials (modulo linear symmetric
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polynomials). In the caseCn , τ is one dimensional and τ ⊗τ is trivial, thus h⊥ ⊆ (h̃)∗
is one dimensional. Then, the fundamental invariant f of C[h̃]W̃ which restricts to
zero in C[h]W lies in (h⊥) but not in (h⊥)2. It follows that the corresponding element
� f indeed restricts to a nonzero element of HomW (τ, C[h]/(C[h]W+ )). In the case F4,
one can explicitly verify the statement. ��

8.4 Proof of the conjecture for semisimple Lie algebras of rank at most 2

Conjecture 8.4 is easy to verify for g of type A1 and A2 by checking Eq. (7.2) in low
dimensions.11 In the two remaining examples, we prove the conjecture for g of type
B2 and G2 and therefore for all g of semisimple rank at most 2.

Proposition 8.14 Conjecture 8.4 for g of type B2 (g = so5).

Proof There are four nilpotent orbits: the zero orbit, the minimal orbit (of dimension
four), the subregular orbit (of dimension six), and the open orbit (of dimension eight).
Call these O0, O2, O4, O6, and O8, where Ok has dimension k. These orbits are all
simply connected except for O6, which has fundamental group Z/2Z. Let �k denote
the rank-one trivial local system on Ok , and let L6 be the nontrivial rank-one local
system (with regular singularities) on O6. TheWeyl group is isomorphic to the dihedral
group of order eight, which has five irreducible representations: triv, σ, τ, τ ⊗ σ , and
h. The Springer correspondence for g takes the following form [9, §13.3].

χ (Og,χ , Mg,χ )

triv (O8,�8)

σ (O0,�0)

τ (O6, L6)

τ ⊗ σ (O4,�4)

h (O6,�6)

The W -equivariant Poincaré polynomial of the coinvariant algebra is equal to

1 + h · t2 + (τ + τ ⊗ σ) · t4 + h · t6 + σ · t8,

therefore

Kg,triv(t
2) = t8, Kg,σ (t2) = 1, Kg,τ (t

2) = t4 = Kg,τ⊗σ (t2),

Kg,h(t
2) = t2 + t6.

Thus, Conjecture 8.4 says that

h(triv; y) = y−8, h(σ ; y) = 1, h(τ ; y) = y−4 = h(τ ⊗ σ ; y),
h(h; y) = y−2 + y−6.

11 In fact, in these cases, the result also follows from Example 8.8 and Proposition 8.12.
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All of the slices except the slice to O6 have one-dimensional HP0; therefore, the
conjectural formulas for triv, σ , and τ ⊗ σ follow from Theorem 5.1. Our table tells
us that IC(O6;�6) appears in M with multiplicity 2 = dim h and IC(O6;�6) appears
in M with multiplicity 1 = dim σ . The slice to O6 is a Kleinian singularity of type
A2, where a basis for HP0 is given by the images of 1, xy, (xy)2 ∈ C[x, y]Z/3. Since
the generator in top degree can be taken to be the square of the generator in middle
degree, we see that the nontrivial local system L6 must be in middle degree and the
trivial one �6 must be in top and bottom degrees; this allows us to conclude that the
formulas for h(σ ; y) and h(h; y) are correct. ��
Proposition 8.15 Conjecture 8.4 holds for g of type G2.

Proof There are five nilpotent orbits, call them O0, O6, O8, O10, and O12 (again
dim Ok = k), and these are all simply connected except for the subregular orbit O10,
which has fundamental group S3 [9, p. 427]. Let �k denote the trivial local system
on Ok , and on O10, let L10 denote the local system corresponding to the reflection
representation of the fundamental group S3 (this is irreducible of rank two,with regular
singularities).

Let τ be the irreducible one-dimensional representation of W other than σ (it is
denoted by φ′

1,3 in [9, p. 412]). Then the Springer correspondence for g takes the
following form [9, p. 427].

χ (Og,χ , Mg,χ )

1 (O12,�12)

σ (O0,�0)

τ (O10, L10)

τ ⊗ σ (O6,�6)

h (O10,�10)

h ⊗ τ (O8,�8)

The W -equivariant Poincaré polynomial of the coinvariant algebra is equal to

1 + h · t2 + (h ⊗ τ) · t4 + (τ + τ ⊗ σ) · t6 + (h ⊗ τ) · t8 + h · t10 + σ · t12

therefore

Kg,1(t
2) = t12, Kg,σ (t2) = 1, Kg,τ = t6 = Kg,τ⊗σ ,

Kg,h(t
2) = t2 + t10, Kg,h⊗τ (t

2) = t4 + t8.

Thus, Conjecture 8.4 says that

h(triv; y) = y−12, h(σ ; y) = 1, h(τ ; y) = y−6 = h(τ ⊗ σ ; y),
h(h; y) = y−2 + y−10, h(h ⊗ τ ; y) = y−4 + y−8.

The slices to O0, O6, and O12 have one-dimensional HP0; therefore, the conjectural
formulas for triv, σ , and τ ⊗σ follow from Theorem 5.1. The slice to O10 is a Kleinian
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singularity of type D4, thus HP0(XO10), has the Hilbert series 1+ 2t4 + t8. Since L10
has rank two, it must occur in weight 4; this proves our conjecture for τ and h.

Finally, to prove our conjecture for h⊗ τ , we need to show that h(HP0(XO8); t) =
1 + t4. First note that the dimension of HP0(XO8) must be two, as a consequence of
[14]. Since XO8 is conical and singular, the function 1 ∈ C[XO8 ] has nonzero image
in HP0(XO8); thus, we only need to show that there is a nonzero element of HP0(XO8)

in degree four. To do this we can use the explicit realization of XO8 given in [16]: It is
the intersection of the nilpotent cone with the Slodowy slice Y := �(e+ ker(Ad f )),
with� : g → g∗ given by the Killing form, with e ∈ O8 and (e, h, f ) a corresponding
sl2-triple. Since there is only one nilpotent orbit of dimension 8, it is easy to see that
we can take e to be the generator eα of the root space for the short simple root α,
f = fα , and h = hα . Moreover, as explained in [14], it suffices to compute HP0(Y )

itself, since this is a free module over C[g]g, with HP0(XO8)
∼= HP0(Y )/(C[g]g+), the

latter being the augmentation ideal. The latter can be computed explicitly in the first
few degrees: Under the Kazhdan grading, C[Y ] is a polynomial algebra on generators
in degrees 2, 2, 2, 4, 5, and 5. The first three generators are the sl2 triple mentioned
above, and they act trivially on the generator in degree 4. Thus in degree four, HP0(Y )

has dimension two. However, the generators of C[g]g are in degrees four and twelve
(these are the fundamental invariants, and the Kazhdan grading restricts on C[g]g to
the usual grading placing g∗ in degree two, and the latter is well known to assign the
generators degrees four and twelve). Thus, in degree four, HP0(XO8) has dimension
one, as desired. ��
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