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Abstract We describe a new method of quantization of Lie bialgebras, based on
a construction of Hopf algebras out of a cocommutative coalgebra and a braided
comonoidal functor.
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1 Introduction

The problem of functorial/universal quantization of Lie bialgebras was solved by
Etingof and Kazhdan in [4]. They quantize the double of the Lie bialgebra using a
monoidal structure on the forgetful functor from the corresponding Drinfeld category
and then define their quantization of the Lie bialgebra as a certain Hopf subalgebra of
the Hopf algebra quantizing the double. Alternative solutions were given by Enriquez
[2], combining the approach of Etingof–Kazhdan with cohomological methods, and
by Tamarkin [8], based on formality of the little disks operad.

We present another solution of the problem. It is based on the fact that a cocommu-
tative coalgebra and a braided comonoidal functor give rise, under certain invertibility
conditions, to a Hopf algebra (Theorem 1). This method avoids the need for quantiza-
tion of the double, and is significantly simpler than the previous solutions, though it
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still needs a Drinfeld associator. It can also be used to quantize infinitesimally braided
Lie bialgebras to braided Hopf algebras.

There are two simple ideas behind this construction. The first one is a construction
of non-commutative algebras (or coalgebras): if A1 and A2 are associative algebra
in a braided monoidal category then their tensor product A1 ⊗ A2 is an associative
algebra; however, if A1 and A2 are commutative then A1 ⊗ A2 is not commutative in
general. The same applies to the tensor product of coassociative coalgebras.

The second idea is that one can recover a group from its nerve. IfG is a group thenwe
can consider the simplicial sets EnG := Gn+1 and BnG = (EnG)/G (E•G → B•G
is the simplicial model of the universal G-bundle). The group is G = B1G, and the
group multiplication on G can be reconstructed from the face maps B2G → B1G.

If we replace G by a cocommutative coalgebra M in a braided monoidal category
D then we can still define a simplicial coalgebra EnM := Mn+1 in D, namely the
cobar construction of the coalgebra M. As noted above, this simplicial coalgebra is
not cocommutative. We then replace the operation X �→ X/G with an appropriate
braided comonoidal functor F : D → C to another braided monoidal category C,
set BnM := F(EnM) and construct (as a generalization of a group) a Hopf algebra
structure on B1M = F(M ⊗ M).

2 Coalgebras in braided monoidal categories

In this section we recall some basic definitions and facts concerning monoidal cate-
gories needed in the statement and the proof of Theorem 1. Additional details can be
found in standard texts, such as [7].

A functor F : C1 → C2 between monoidal categories is a comonoidal functor (also
called colax monoidal functor) if it comes equipped with a natural transformation

cX,Y : F(X ⊗ Y ) → F(X) ⊗ F(Y )

such that

commutes, together with a morphism

c : F(1C1) → 1C2

compatible with the units. Let us stress that cX,Y and c are not required to be isomor-
phisms. If cX,Y ’s and c are isomorphisms then F is a strongly monoidal functor.

A comonoidal functor F : C1 → C2 sends coalgebras to coalgebras: if M ∈ C1 is
a coalgebra then the coproduct on F(M) is the composition

F(M) → F(M ⊗ M) → F(M) ⊗ F(M)
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and the counit is the composition

F(M) → F(1C1) → 1C2 .

If C is a braided monoidal category then the functor

⊗ : C × C → C

is a strongly monoidal functor, with the monoidal structure

(X1 ⊗ Y1) ⊗ (X2 ⊗ Y2) → (X1 ⊗ X2) ⊗ (Y1 ⊗ Y2) (∀X1, X2,Y1,Y2 ∈ C)

given by the parenthesized braid

(1)

In particular, if M and M ′ are coalgebras in C then M ⊗ M ′ is a coalgebra as well,
with the coproduct

(2)

In this way the category of coalgebras in C becomes a monoidal category. If F :
C1 → C2 is a braided comonoidal functor, i.e., if F is a monoidal functor such that
the diagram (where β is the braiding)

commutes, then F(M ⊗ M ′) → F(M)⊗ F(M ′) is a morphism of coalgebras; F thus
becomes a comonoidal functor from the category of coalgebras in C1 to the category
of coalgebras in C2.

An algebra (i.e., a monoid)H in the category of coalgebras inC is called a bialgebra
in C. It is a Hopf algebra if it comes with an invertible morphism S ∈ HomC(H, H)

such that
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mH ◦ (S ⊗ idH ) ◦ �H = mH ◦ (idH ⊗S) ◦ �H = ηH ◦ εH

where εH : H → 1C is the counit, ηH : 1C → H the unit, and mH and �H the
product and the coproduct of H.

3 A construction of Hopf algebras

In this section we shall construct a Hopf algebra out of a braided comonoidal functor
and of a cocommutative coalgebra. The rest of the paper is an application of this
construction.

SupposeM is a coalgebra in a braided monoidal categoryD. Even ifM is cocom-
mutative (i.e., if βM,M ◦ �M = �M , where �M : M → M ⊗ M is the coproduct
and βM,M : M ⊗ M → M ⊗ M the braiding), the coalgebra M ⊗ M may be non-
cocommutative. This simple observation will be our source of non-cocommutativity.
If F : D → C is a braided comonoidal functor to another braided monoidal category
C then the coalgebra F(M) is cocommutative, but F(M ⊗ M) might be not.

As we shall see, under certain compatibility conditions onM and F, the coalgebra
F(M ⊗ M) is a Hopf algebra.

Definition 1 LetD andC be braidedmonoidal categories and (M,�M , εM ) a cocom-
mutative coalgebra in D. A braided comonoidal functor

F : D → C

is M-adapted if it satisfies these invertibility conditions: the composition

F(M)
F(εM )−−−→ F(1D) → 1C

is an isomorphism, and for every objects X,Y ∈ D the morphism

τ
(M)
X,Y : F((X ⊗ M) ⊗ Y ) → F(X ⊗ M) ⊗ F(M ⊗ Y ),

defined as the composition

F((X ⊗ M) ⊗ Y )
F((idX ⊗�M )⊗idY )−−−−−−−−−−−→ F

(
(X ⊗ (M ⊗ M)) ⊗ Y

)

∼= F
(
(X ⊗ M) ⊗ (M ⊗ Y )

) → F(X ⊗ M) ⊗ F(M ⊗ Y ),

is an isomorphism.

Remark 1 The functor D → D, X �→ M ⊗ X , is comonoidal (since ⊗ : D × D →
D is strongly monoidal and M is a coalgebra); explicitly, the comonoidal structure
M ⊗ (X ⊗ Y ) → (M ⊗ X) ⊗ (M ⊗ Y ) is
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(3)

A braided comonoidal functor F is M-adapted iff the composition D
M⊗−−→ D

F−→ C,
which is a priori comonoidal, is in fact strongly monoidal.

Theorem 1 Let F : D → C be an M-adapted functor. Then F(M ⊗ M) is a Hopf
algebra in C, with the structure given as follows.

• The coalgebra structure on F(M ⊗ M) is inherited from the coalgebra structure
on M ⊗ M, with the coproduct (2) and counit εM ⊗ εM.

• The product on F(M ⊗ M) is the composition

F(M ⊗ M) ⊗ F(M ⊗ M)
τ

(M)
M,M

−1

−−−−→ F((M ⊗ M) ⊗ M)

F(idM ⊗εM⊗idM )−−−−−−−−−−→ F(M ⊗ M). (4)

• The unit is

1C ∼= F(M)
F(�M )−−−−→ F(M ⊗ M). (5)

• The antipode is

F(M ⊗ M)
F(β−1

M,M )−−−−−→ F(M ⊗ M)

where βM,M : M ⊗ M → M ⊗ M is the braiding in D.

Proof To simplify notation, let us replace D and C with equivalent strict monoidal
categories. The sequence of objects Xn := M⊗(n+1) (n = 0, 1, 2, . . . ) is a simplicial
object ofD, with degeneracies id⊗k

M ⊗�M ⊗ id⊗(n−k)
M and faces id⊗k

M ⊗εM ⊗ id⊗(n−k)
M

(it is the cobar construction of the coalgebra M). Since M is cocommutative, �M :
M → M ⊗ M is a morphisms of coalgebras, and thus X• is a simplicial coalgebra in
D. As a result (using comonoidality of F), Y• := F(X•) is a simplicial coalgebra in
C.

By repeatedly using invertibility of τ
(M)
X,Y ’s we know that the composition

Yn = F(M⊗(n+1))
F

(
idM ⊗�

⊗(n−1)
M ⊗idM

)

−−−−−−−−−−−−−−→ F(M⊗2n) → F(M ⊗ M)⊗n

is an isomorphism. Since M is cocommutative and F is braided, both arrows are
morphisms of coalgebras, hence we have an isomorphism of coalgebras in C

Yn ∼= F(M ⊗ M)⊗n .



1568 P. Ševera

In terms of this isomorphism, the face maps of Y• are given by the product (4) on
F(M⊗M) and the degeneracy maps are given by including the unit (5) of F(M⊗M).
This shows that the product is associative and that the unit is a unit of the product (and
that Y• is the bar construction of the resulting algebra F(M ⊗ M)). In more detail,
associativity follows from the fact that the map

F(M ⊗ M)⊗3 ∼= Y3 = F(M⊗4)
F(idM ⊗εM⊗εM⊗idM )−−−−−−−−−−−−−→ Y1 = F(M ⊗ M)

is equal to both ways of bracketing of the product, and the fact that the unit (5) is
indeed a unit of the product is simply the fact that the compositions

F(M ⊗ M)
F(�M⊗idM )−−−−−−−→ F(M ⊗ M ⊗ M)

F(idM ⊗εM⊗idM )−−−−−−−−−−→ F(M ⊗ M)

F(M ⊗ M)
F(idM ⊗�M )−−−−−−−→ F(M ⊗ M ⊗ M)

F(idM ⊗εM⊗idM )−−−−−−−−−−→ F(M ⊗ M)

are the identity. The object F(M ⊗M) is thus an algebra in the category of coalgebras
in C, i.e., it is a bialgebra in C.

Finally, the fact that F(β−1
M,M ) is an antipode for the bialgebra F(M ⊗ M) follows

easily from the definitions. 
�
Remark 2 The proof used simplicial methods in an essential way. It is not difficult to
extract from it a direct proof: associativity of the product m : F(M ⊗ M) ⊗ F(M ⊗
M) → F(M ⊗ M) follows from the commutative diagram

where, to keep its size reasonable, ⊗’s and indexes are dropped and id’s are denoted
by |.
Remark 3 LetDuniv be the universal braidedmonoidal category with a chosen cocom-
mutative coalgebra: the objects of Duniv are tensor powers of the coalgebra, and
the morphisms can be visualized as parenthesized braids with strands attached non-
bijectively at the bottom. One can show that for any Hopf algebra H in any braided
monoidal category C there is anM-adapted functor F : D → C (where M ∈ Duniv is
the coalgebra) such that H = F(M ⊗ M) as a Hopf algebra, and also that F is unique
up to an isomorphism.
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This gives us a description/construction of the braided (or ordinary) PROP of
braided (or ordinary) Hopf algebras as the universal braided (or symmetric) cate-
gory Cuniv admitting a M-adapted functor Funiv : Duniv → Cuniv (i.e., such that any
M-adapted functor F : Duniv → C factors via Funiv through a strict braided (or
symmetric) monoidal functor Cuniv → C).

Remark 4 As we noticed above, the functor D → C, X �→ F(M ⊗ X), is strongly
monoidal, with themonoidal structure given by (3). The functor can actually be seen as
a braided strongly monoidal functor fromD to the center of the monoidal category of
F(M⊗M)-modules in C. In particular, there is an action of F(M⊗M) on F(M⊗ X)

given by

F(M ⊗ M) ⊗ F(M ⊗ X)
τ

(M)
M,X

−1

−−−−→ F((M ⊗ M) ⊗ X)
F(idM ⊗εM⊗idX )−−−−−−−−−−→ F(M ⊗ X).

4 Infinitesimally braided categories

In this section we recall Drinfeld’s construction of braided monoidal categories via
associators. We also observe how cocommutative coalgebras and braided comonoidal
functors arise in this construction, as we need to feed them to Theorem 1.

Let us fix a field K with char K = 0. By a K-linear category we mean a category
enriched over K-vector spaces, i.e., Hom(X,Y ) should be a vector space over K and
the composition map Hom(X,Y ) × Hom(Y, Z) → Hom(X, Z) should be bilinear.

An infinitesimally braided category (i-braided category for short) is a K-linear
symmetric monoidal category C together with a natural transformation

tX,Y : X ⊗ Y → X ⊗ Y

such that

tX,Y⊗Z = tX,Y ⊗ idZ +(idX ⊗σZ ,Y ) ◦ (tX,Z ⊗ idY ) ◦ (idX ⊗σY,Z )

(where σY,Z : Y ⊗ Z → Z ⊗ Y is the symmetry) and

tY,X ◦ σX,Y = σX,Y ◦ tX,Y

tX,1C = 0.

The transformation tX,Y defines a deformation of the symmetric monoidal structure
of C to a braided monoidal structure: if ε is a formal parameter with ε2 = 0 and Cε is
the same as C but with HomCε

(X,Y ) = HomC(X,Y )[ε] then

βX,Y = σX,Y ◦ (idX⊗Y +ε tX,Y /2)

is a braiding on Cε (with the monoidal structure inherited from C).
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Example 1 Let d be a Lie algebra over K and let t ∈ (S2d)d. The category of Ud-
modules is infinitesimally braided, with tX,Y given by the action of t ∈ d ⊗ d ⊂
Ud ⊗Ud.

Let C be an i-braided category and let Ch̄ be as C, with HomCh̄ (X,Y ) =
HomC(X,Y )�h̄�. Following Drinfeld [1], we can make Ch̄ to a braided monoidal
category (extending the first-order deformation Cε) in the following way. Let

� ∈ K 〈〈x, y〉〉

be an element which is group-like w.r.t the coproduct

�x = x ⊗ 1 + 1 ⊗ x, �y = y ⊗ 1 + 1 ⊗ y.

Let us define a new braiding on Ch̄ by

βX,Y = σX,Y ◦ eh̄tX,Y /2

and a new associativity constraint γX,Y,Z by

(X ⊗ Y ) ⊗ Z
�(h̄tX,Y ,h̄tY,Z )−−−−−−−−→ (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z).

Remark 5 If C is enriched over coalgebras and tX,Y are primitive then the new braid-
ings and associativity constraints are group-like. This is the reason for demanding� to
be group-like and also for choosing eh̄tX,Y /2 among all power series 1+ h̄tX,Y /2+ . . .

in tX,Y . We shall not need this fact in what follows.

The pentagon and hexagon relations for βX,Y ’s and γX,Y,Z translate to the following
properties of �:

Proposition 1 ([1]) The category Ch̄ with the natural transformations β and γ is a
braided monoidal category provided � is a Drinfeld associator, i.e., if it satisfies the
relations

�(y, x) = �(x, y)−1,

ex/2 �(y, x) ey/2 �(z, y) ez/2 �(x, z) = 1 where z = −x − y,

�2,3,4 �1,23,4 �1,2,3 = �1,2,34 �12,3,4.

The last relation takes place in the algebra generated by symbols

t i, j (1 ≤ i, j ≤ 4, i �= j, t i, j = t j,i )

modulo the relations

[t i, j , t i,k + t j,k] = 0 and [t i, j , tk,l ] = 0 if {i, j} ∩ {k, l} = ∅,
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and �A,B,C := �(t A,B, t B,C ) with t A,B := ∑
i∈A, j∈B ti, j . See [1] for details, and

also for a proof of existence of Drinfeld associators for every K.
We shall denote the category Dh̄ with its new braided monoidal structure by D�

h̄ .
Let us now define infinitesimal versions of commutative coalgebras and of braided

comonoidal functors.

Definition 2 Let D be an i-braided category. An i-cocommutative coalgebra in D is
an objectM which is a cocommutative coalgebra in the symmetric monoidal category
D, and which satisfies tM,M ◦ �M = 0. If C is another i-braided category, an i-
braided comonoidal functor F : D → C is a K -linear symmetric comonoidal functor
F : D → C such that

commutes.F isM-adapted if it isM-adapted as a braided comonoidal functor between
the symmetric monoidal categories D and C.

Proposition 2 Let D and C be i-braided categories. Let � be a Drinfeld associator.
If M ∈ D is an i-cocommutative coalgebra then it is, with the same coproduct and
counit, a cocommutative coalgebra inD�

h̄ . If F : D → C is an i-braided comonoidal
functor then it is, with the same comonoidal structure, a braided comonoidal functor
D�

h̄ → C�
h̄ . If F : D → C is M-adapted then it remains M-adapted as a functor

D�
h̄ → C�

h̄ .

Proof If F : D → C is i-braided comonoidal then the braided comonoidality of
F : D�

h̄ → C�
h̄ is an immediate consequence of the definitions.

Let 1 be the symmetric monoidal category with a unique object I and with
Hom(I, I ) = K . Let us make it i-braided via tI,I = 0. An i-cocommutative coal-
gebra M ∈ D is equivalent to an i-braided comonoidal functor G : 1 → D, with
M = G(I ). The functor G is thus braided comonoidal as a functor 1h̄ = 1�

h̄ → D�
h̄ ,

which means that G(I ) = M is a cocommutative coalgebra in D�
h̄ . 
�

Example 2 Let d be a Lie algebra and t ∈ (S2d)d. Let us suppose that dim d < ∞ and
that t is non-degenerate, and thus defines a symmetric pairing 〈, 〉 : d × d → K . Let
g ⊂ d be a Lie subalgebra which is Lagrangian w.r.t. the pairing, i.e., g⊥ = g. Then
the functor

F : Ud-mod → Vect, F(V ) = V/(g · V ),

with

cV,W : (V ⊗ W )/(g · (V ⊗ W )) → (
V/(g · V )

) ⊗ (
W/(g · W )

)

being the natural projection, is i-braided comonoidal, as the projection of t to S2(d/g)
vanishes.
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If g∗ ⊂ d is another Lagrangian Lie subalgebra, such that g ∩ g∗ = 0, i.e., if
(g, g∗ ⊂ d) is a Manin triple, then

M = Ud/(Ud)g∗,

with the coalgebra structure inherited from Ud, is i-cocommutative. The reason is
again that the image of t in S2(d/g∗) vanishes. The functor F isM-adapted.

The Hopf algebra F(M ⊗ M) in Vecth̄ (given by Proposition 2 and Theorem 1) is
a quantization of the Lie bialgebra g. We discuss this quantization in detail in Sect. 5.

Example 3 More generally, let p ⊂ d be a coisotropic Lie subalgebra, i.e., such that
p⊥ ⊂ p. Notice that p⊥ is an ideal in p. Let h = p/p⊥. The functor

F : Ud-mod → Uh-mod, F(V ) = V/(p⊥ · V )

is i-braided comonoidal.
Let p̄ ⊂ d be another coisotropic Lie subalgebra such that d = p̄ ⊕ p⊥ as a vector

space (for example, d can be semisimple with the Cartan-Killing form and p and p̄ a
pair of opposite parabolic subalgebras; p⊥ ⊂ p is then the nilpotent radical of p). If
we set

M = Ud/(Ud)p̄

then F is M-adapted.
Proposition 2 and Theorem 1 nowmake F(M⊗M) to a Hopf algebra in the braided

monoidal categoryUh-mod�
h̄ . The object F(M ⊗ M) can be naturally identified with

U (p⊥), and gives us a deformation of the standard Hopf algebra structure on U (p⊥).

5 Quantization of Lie bialgebras

Let us recall that if g is a Lie algebra and if mh̄ and �h̄ are formal deformation of the
product and of the coproduct onUg, makingUg (with the original unit and counit) to
a bialgebra in Vecth̄ , then

δ(x) := (�h̄ − �
op
h̄ )(x)/h̄ mod h̄, x ∈ g ⊂ Ug,

δ : g → g ⊗ g,

is a Lie cobracket and that it makes g to a Lie bialgebra. The quantization problem
of Lie bialgebras is the problem of constructing mh̄ and �h̄ out of [, ] and δ in a
functorial/universal way.

To solve the problem, let us reformulate Example 2 so that it works for infinite-
dimensional Lie bialgebras and is functorial with respect to Lie bialgebra morphisms.
Let g be a Lie bialgebra over a fieldK of characteristic 0, with cobracket δ : g → g⊗g.
Let D be the category of g-dimodules, i.e., of vector spaces with an action of the Lie
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algebra g

ρ : g ⊗ V → V

and with a right coaction of the Lie coalgebra g

ρ̃ : V → V ⊗ g

such that

ρ̃ ◦ ρ = (ρ ⊗ id) ◦ (id⊗ρ̃) + (ρ ⊗ id) ◦ σ23 ◦ (δ ⊗ id) + (id⊗[, ]) ◦ σ12 ◦ (id⊗ρ̃),

or equivalently, such that the resulting map

(ρ + ρ̃∗) : (g ⊕ g∗) ⊗ V → V

is an action of the double d = g⊕ g∗. If dim g < ∞ thenD is simply the category of
Ud-modules; in general it is its (full) subcategory.

The category D is i-braided, with

tV,W : V ⊗ W → V ⊗ W

given in terms of ρ and ρ̃ as

tV,W = rV,W + σW,V ◦ rW,V ◦ σV,W ,

where

rV,W : V ⊗ W → V ⊗ W

is the composition

V ⊗ W
ρ̃V ⊗idW−−−−−→ V ⊗ g ⊗ W

idV ⊗ρW−−−−−→ V ⊗ W.

Let us now define an i-cocommutative coalgebra M in D. Let

M = Ug

with the g-action

ρM (x ⊗ y) = xy (x ∈ g, y ∈ Ug)

and with the coaction ρ̃M uniquely determined by

ρ̃M (1) = 0;
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in particular,

ρ̃M (x) = δ(x) for x ∈ g.

The usual coproduct � : M → M ⊗ M and counit ε : M → K of Ug make M to an
i-cocommutative coalgebra in D.

Remark 6 The coalgebra M plays an important role in the quantization of Etingof
and Kazhdan [4], where it is denoted M−. Despite this similarity, the relation between
these two quantization methods is unclear to me. For technical reasons Etingof and
Kazhdan had to replace D with a somewhat complicated category of equicontinuous
Ud-modules.

Let Vect denote the symmetric monoidal category of vector spaces over K (we can
see it as i-braided with tX,Y = 0 for all X,Y ∈ Vect). Let F : D → Vect be given
by

F(V ) = V/(g · V ).

It is an i-braided comonoidal functor, which isM-adapted, with the comonoidal struc-
ture given by the projection

(V ⊗ W )/
(
g · (V ⊗ W )

) → V/(g · V ) ⊗ W/(g · W ).

We have a linear bijection

F(M ⊗ M) ∼= Ug (6a)

given by

[x ⊗ y] �→ S0(x)y (x, y ∈ Ug) (6b)

where S0 is the usual antipode onUg and [x ⊗ y] denotes the class of x ⊗ y ∈ M ⊗M
in F(M ⊗ M). The inverse of this bijection is given by x �→ [1 ⊗ x], x ∈ Ug.

Let us now choose a Drinfeld associator � over K and consider the braided
monoidal category D�

h̄ . By Theorem 1 and Proposition 2, F(M ⊗ M) becomes a
Hopf algebra in Vect�h̄ = Vecth̄ .

Theorem 2 TheHopf algebra structure on F(M⊗M) ∼= Ug inVecth̄ is a deformation
of the cocommutative Hopf algebra Ug, and its classical limit is the Lie bialgebra
structure on g. It is functorial with respect to Lie bialgebra morphisms.

Proof Let us identify Ug ⊗Ug and F((M ⊗ M) ⊗ M) via the linear map

x ⊗ y �→ [S0(x) ⊗ 1 ⊗ y] (x ⊗ y ∈ Ug ⊗Ug).
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The isomorphism in Vecth̄

τ
(M)
M,M : F((M ⊗ M) ⊗ M) → F(M ⊗ M) ⊗ F(M ⊗ M)

then becomes an isomorphism (of vector spaces)

Ug ⊗Ug → Ug ⊗Ug,

which is, by the definition of τ
(M)
M,M and by (6), of the form

x ⊗ y �→ x ⊗ y + O(h̄2)

(as �(h̄t1,2, h̄t2,3) = 1 + O(h̄2)). On the other hand, the map

F((M ⊗ M) ⊗ M)
F(id⊗ε⊗id)−−−−−−−→ F(M ⊗ M)

becomes under these identifications

x ⊗ y �→ xy, Ug ⊗Ug → Ug.

The product on F(M ⊗ M) ∼= Ug is thus x ⊗ y �→ xy + O(h̄2).
Let us now compute the coproduct �h̄ on F(M ⊗ M) ∼= Ug to first order in h̄.

Let us recall that M ⊗ M is a coalgebra inD�
h̄ , with the coproduct given by (2) (with

M ′ = M). For x ∈ g we get

�M⊗M (1 ⊗ x) = 1 ⊗ x ⊗ 1 ⊗ 1 + 1 ⊗ 1 ⊗ 1 ⊗ x − h̄

2
1 ⊗ δ(x) ⊗ 1 + O(h̄2).

The coproduct �h̄ on F(M ⊗ M) ∼= Ug is thus

�h̄(x) = x ⊗ 1 + 1 ⊗ x + h̄

2
δ(x) + O(h̄2)

(where the sign change comes from (id⊗S0)(δ(x)) = −δ(x)), hence

(�h̄ − �
op
h̄ )(x) = h̄ δ(x) + O(h̄2),

as we wanted to show.
Functoriality of the deformed Hopf algebra structure on Ug in Lie bialgebra mor-

phisms follows from functoriality of D,M, F, and of the isomorphism (6). 
�
Let us stress that the Hopf algebra structure on F(M ⊗ M) ∼= Ug depends on the
associator�. Curiously, the antipode is independent of�: if θ : g → g is the derivation
given as the composition of δ : g → g ⊗ g with [, ] : g ⊗ g → g, then

S = S0 ◦ e
h̄
2 θ .
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Remark 7 (Quantization in terms of PROPs). Etingof and Kazhdan proved in [5] that
their quantization is given by “universal formulas” in the following sense. Let LieBialg
be the PROP of Lie bialgebras and let HcP := S(LieBialg) (HcP is the PROP of Hopf
co-Poisson algebras). Let us denote by guniv the generating object of LieBialg (guniv is
the universal Lie bialgebra) and by Sguniv the generating object of HcP. Then there is
a Hopf algebra structure (mh̄,�h̄, Sh̄, η0, ε0) on Sguniv (i.e., a PROP morphism from
HcP to the PROP of Hopf algebras, formally depending on h̄) which is a deformation
of the universal enveloping algebra

Uguniv = (Sguniv,m0,�0, S0, η0, ε0)

in the direction of the cobracket of guniv.
The same is true for our quantization. Let M := Sguniv with its guniv-dimodule

structure as above. Let D be the full monoidal subcategory of the category of guniv-
dimodules in HcP, generated by M (i.e., the objects of D are 1, M, M⊗2, . . . ); the
category D is i-braided and M is an i-cocommutative coalgebra in D. Let C = HcP.

Finally we need a M-adapted functor F : D → C, which is simply

F(M⊗k) = (Sguniv)
⊗(k−1)

(“guniv-coinvariants”). Theorem 1 and Proposition 2 now produce a Hopf algebra
structure on Sguniv.

Remark 8 (Quantization of infinitesimally braided Lie bialgebras) If we apply Theo-
rem 1 and Proposition 2 to Example 3, we make

F(M ⊗ M) ∼= U (p⊥)

to a Hopf algebra in the braided monoidal categoryUh-mod�
h̄ , deforming the standard

Hopf algebra structure onU (p⊥). This is a special case of quantizationofLie bialgebras
in (Abelian) i-braided categories, which is a minor generalization of what we did in
above.

By a Lie bialgebra in an i-braided category C we mean an object g in C, together
with a Lie bracket μ : g ⊗ g → g and a Lie cobracket δ : g → g ⊗ g such that

δ ◦ μ = (μ ⊗ id+(id⊗μ) ◦ σ12) ◦ (id⊗δ) ◦ (id−σ12) + tg,g ◦ (id−σ12)/2

(besides the tg,g-term, it is the standard definition of a Lie bialgebra). As an example,
p⊥ is a Lie bialgebra in the i-braided category Uh-mod, with the cobracket given by
the Lie bracket on p̄⊥.

Let D be the category whose objects are objects V of C together with a left action
ρ : g ⊗ V → V and a right coaction ρ̃ : V → V ⊗ g, such that

ρ̃ ◦ ρ = (ρ ⊗ id) ◦ (id⊗ρ̃) + (ρ ⊗ id) ◦ σ23 ◦ (δ ⊗ id) + (id⊗μ) ◦ σ12 ◦ (id⊗ρ̃)

+ σg,V ◦ tg,V .
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Category D is i-braided, with

tDV,W = rV,W + σW,V ◦ rW,V ◦ σV,W + tCV,W .

Supposing that C is an Abelian category, so that we can make sense of Ug and of
g-coinvariants, we define M = Ug ∈ D and F : D → C as above, and F(M ⊗ M)

becomes a Hopf algebra in C�
h̄ deforming Ug.

Remark 9 (Quantization of twists). The quantization of Lie bialgebras given by The-
orem 2 is compatible with twists in the following sense. Suppose that j ∈ ∧2 g is a
twist of the Lie bialgebra (g, [, ], δ), i.e., that

g∗
j := { j (α, ·) + α; α ∈ g∗} ⊂ d

is a Lie subalgebra of the Drinfeld double d. Since (g, g∗
j , d) is a Manin triple, we get a

new Lie bialgebra structure on g, with the original bracket and with the new cobracket
δ j (u) = δ(u) + [1 ⊗ u + u ⊗ 1, j]. Let H be the quantization of (g, [, ], δ) and Hj

the quantization of (g, [, ], δ j ) (as given by Theorem 2; we have H = Hj = Ug as
vector spaces). Then there is a twist J ∈ H ⊗ H [[h̄]], i.e., an element satisfying

J 12,3 J 1,2 = J 1,23 J 2,3 and (ε ⊗ id)(J ) = (id⊗ε)(J ) = 1

(where J 12,3 = (� ⊗ id)(J ), J 1,2 = J ⊗ 1, etc.), such that J = 1 + O(h̄) and
(J − Jop) = h̄ j + O(h̄2). Moreover, there is an isomorphism of Hopf algebras

I : H (J ) ∼= Hj , I = id+O(h̄2),

where H (J ) has the same product, unit and counit as H , and the coproduct

�H (J ) (a) = J−1�H (a)J.

This statement was proven for Etingof–Kazhdan quantization by Enriquez and Hal-
bout [3], but their proof required a considerable effort. In our case it is a consequence
of the following observation. If, in the context of Theorem 1, N ∈ D is another cocom-
mutative coalgebra, and F : D → C is both M- and N -adapted, then the coalgebra
F(M ⊗ N ) is a F(M ⊗ M) − F(N ⊗ N ) bimodule in the category of coalgebras in
C, with the action given by

F(M ⊗ M) ⊗ F(M ⊗ N )
τ

(M)
M,N

−1

−−−−→ F((M ⊗ M) ⊗ N )
F(idM ⊗εM⊗idN )−−−−−−−−−−→ F(M ⊗ N )

F(M ⊗ N ) ⊗ F(N ⊗ N )
τ

(N )
M,N

−1

−−−−→ F((M ⊗ N ) ⊗ N )
F(idM ⊗εN⊗idN )−−−−−−−−−−→ F(M ⊗ N ).

To apply it, let D,C, M, F as in the proof of Theorem 2 (in particular, D is the
category of (g, [, ], δ)-dimodules), and let D j , Mj , Fj be the corresponding objects
for the Lie bialgebra (g, [, ], δ j ) in place of (g, [, ], δ). Notice that the categories D
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and D j are naturally isomorphic (essentially because g and g j have the same double
d): if

(V, ρ : g ⊗ V → V, ρ̃ j : V → V ⊗ g)

is a (g, [, ], δ j )-dimodule, then (V, ρ, ρ̃) is a (g, [, ], δ)-dimodule, with

ρ̃(v) = ρ̃ j (v) +
∑

i

ρ( j1i ⊗ v) j2i

where j = ∑
i j

1
i ⊗ j2i . If we identify D j with D using this isomorphism, we get

D j = D, Fj = F , while Mj becomes the dimodule N ∈ D, N = Ug, with the
coaction ρ̃ : N → N ⊗ g uniquely determined by

ρ̃(1) = j.

We have H = F(M ⊗ M) and Hj = F(N ⊗ N ). Let us denote by B the H − Hj -
bimodule F(M ⊗ N ) (in the category of coalgebras in Vecth̄).

Notice that H = Hj = B = Ug as vector spaces, and that the action H⊗B⊗Hj →
B is of the form a ⊗ b ⊗ c �→ a · b · c = abc + O(h̄2). Now we can define the twist
J ∈ H ⊗ H [[h̄]] by

J · (1 ⊗ 1) = �B1 (1 ⊗ 1 ∈ B ⊗ B, 1 ∈ B) (7)

and the isomorphism I : H (J ) ∼= Hj by

a · 1 = 1 · I (a) (1 ∈ B, a ∈ H, I (a) ∈ Hj ).

The fact that J is a twist follows from coassociativity of �B : the equality

(�B ⊗ id)�B1 = (id⊗�B)�B1

and (7) give

J 12,3 J 1,2 · 1 ⊗ 1 ⊗ 1 = J 1,23 J 2,3 · 1 ⊗ 1 ⊗ 1.

6 Quantization of Poisson-Lie groups

In this sectionwedualize our quantizationofLie bialgebras to get a deformationquanti-
zation of Poisson-Lie groups. This translation is straightforward (replacing coalgebras
with algebras and comonoidal functors with monoidal functors), but we describe the
resulting star-product with some detail, to reveal the geometric intuition behind the
algebraic constructions. Our quantization of Poisson-Lie groups can be seen a special
case of the deformation quantization of moduli spaces of flat connections studied in
[6], though this particular quantization of Poisson-Lie groups was missed in op. cit.
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Let G be a Poisson-Lie group. Let g be its Lie algebra and (g, g∗ ⊂ d) the corre-
sponding Manin triple. There is an action ρ of d on G (the “dressing action”), given
by

ρ(v) = vL for v ∈ g (8)

ρ(α) = π(·, αL) for α ∈ g∗, (9)

where π is the Poisson bivector field on G and xL means x left-transported over G.
For any f1, f2 ∈ C∞(G) we then have

{ f1, f2} =
∑

i

(ρ(ei ) f1) (ρ(ei ) f2),

where ei is a basis of g and ei the dual basis of g∗. The stabilizer of g ∈ G is
Adg g∗ ⊂ d.

The action ρ makes C∞(G) to an algebra in Ud-mod. This algebra is i-commuta-
tive:

m ◦ ρ⊗2(t) = 0,

where m is the product, as the stabilizers of ρ are coisotropic. As a result, C∞(G),
with its original product, is a commutative associative algebra in Ud-mod�

h̄ .
We can now make C∞(G × G) to an associative (but not commutative) algebra in

Ud-mod�
h̄ . C

∞(G ×G) = C∞(G) ⊗̂C∞(G), being a (completed) tensor product of
algebras, is again an algebra in Ud-mod�

h̄ , with the product

where m0 is the ordinary product on C∞(G × G) and

T ∈ Ud⊗4�h̄�

is given by the parenthesized braid (1).
Observe finally that C∞(G × G)g ⊂ C∞(G × G) with the product mh̄ is an asso-

ciative algebra in Vecth̄ (as the functor X �→ Xg, Ud-mod�
h̄ → Vecth̄ is monoidal).

Proposition 3 If we identify C∞(G) with C∞(G × G)g via f̃ (g1, g2) = f (g1g
−1
2 )

( f ∈ C∞(G), f̃ ∈ C∞(G × G)g) then mh̄ becomes a star-product on G quantizing
the Poisson structure π .
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Proof The fact thatmh̄ is a star-product, i.e., that it is associative and that its coefficients
in the h̄-power series are bidifferential operators, is clear from the construction. We
need to verify that

mh̄( f1, f2) − mh̄( f2, f1) = h̄{ f1, f2} + O(h̄2).

Since T = 1 − h̄ t2,3/2 + O(h̄2), we get

mh̄( f1, f2) = f1 f2 − h̄

2

∑

i

(ρ(ei ) f1) (ρ(ei ) f2) + O(h̄2)

= f1 f2 + h̄

2
{ f1, f2} + O(h̄2).


�
Theorem 1 (in its dualized version, with the algebra C∞(G) in place of a coalgebra

M, and the monoidal functor X �→ Xg in place of a comonoidal functor F) gives us a
coproduct

�h̄ : C∞(G) → C∞(G × G)

which, together with mh̄ , makes C∞(G) to a (topological) bialgebra in Vecth̄ . The
coproduct is of the form.

�h̄ = Dh̄ ◦ �0

where �0 : C∞(G) → C∞(G × G) is the ordinary coproduct,

(�0 f )(g1, g2) = f (g1g2),

and

Dh̄ = 1 + h̄2D2 + h̄3D3 + . . .

is a differential operator on G × G.
Let us conclude by recalling the proof of Theorem 1 in our current context, to see

its geometrical meaning. For any k ∈ N we have

C∞(Gk+1) = C∞(G) ⊗̂ . . . ⊗̂C∞(G)︸ ︷︷ ︸
k+1

.

By viewing it as a tensor product of algebras in Ud-mod�
h̄ we make C∞(Gk+1) to an

associative algebra in this category (we need to choose a parenthesization of the tensor
product, but all the choices are canonically isomorphic). We can view this sequence
of algebras as a cosimplicial algebra (namely the bar construction of the commuta-
tive algebra C∞(G)); we thus get a deformation quantization (in Ud-mod�

h̄ ) of the
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simplicial manifold E•G = G•+1. By taking the g-invariants we get a deformation
quantization (in Vecth̄) of the nerve B•G = (E•G)/G, which is finally the cobar
construction of the resulting Hopf algebra.
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