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Abstract We define an invariant of contact 3-manifolds with convex boundary using
Kronheimer and Mrowka’s sutured instanton Floer homology theory. This is the first
invariant of contact manifolds—with or without boundary—defined in the instanton
Floer setting. We prove that our invariant vanishes for overtwisted contact structures
and is nonzero for contact manifolds with boundary which embed into Stein fillable
contact manifolds. Moreover, we propose a strategy by which our contact invari-
ant might be used to relate the fundamental group of a closed contact 3-manifold
to properties of its Stein fillings. Our construction is inspired by a reformulation
of a similar invariant in the monopole Floer setting defined by Baldwin and Sivek
(arXiv:1403.1930, 2014).
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1 Introduction

Floer-theoretic invariants of contact manifolds have been responsible for many impor-
tant results in low-dimensional topology. Notable examples of such invariants include
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the invariants of closed contact 3-manifolds defined by Kronheimer and Mrowka [13]
and by Ozsváth and Szabó [25] in monopole and Heegaard Floer homology, respec-
tively. Among other applications, these have been used to show that their respective
homology theories detect the Thurston norm and that knot Floer homology detects the
Seifert genus [20,24], to prove Dehn surgery characterizations of the unknot [15] and
the trefoil and figure eight [7,26], and to provemany results about contact 3-manifolds,
such as a complete solution to the existence problem for tight contact structures on
Seifert fiber spaces [22].

Also important is the work in [11], where Honda, Kazez, andMatić extend Ozsváth
and Szabó’s construction, using sutured Heegaard Floer homology to define an invari-
ant of sutured contact manifolds, which are triples of the form (M, �, ξ)where (M, ξ)

is a contact 3-manifold with convex boundary and � ⊂ ∂M is a multicurve dividing
the characteristic foliation of ξ on ∂M . Applications of this invariant include the van-
ishing of the Ozsváth–Szabó contact class in the presence of Giroux torsion [8], which
implies that manifolds with Giroux torsion cannot be strongly symplectically fillable;
and a proof that in any contact 3-manifold, the complement of the binding of a support-
ing open book decomposition is torsion-free [6]. Recently, we defined an analogous
invariant of sutured contactmanifolds inKronheimer andMrowka’s suturedmonopole
Floer homology theory [1].

The goal of this paper is to define an invariant of sutured contact manifolds in
Kronheimer and Mrowka’s sutured instanton Floer homology (SH I ). To the best
of our knowledge, this is the first invariant of contact manifolds—with or without
boundary—defined in the instanton Floer setting. Like the Heegaard Floer invariants
but in contrast with the monopole invariants, our instanton Floer contact invariant is
defined using the full relative Giroux correspondence. Its construction is inspired by
a reformulation of the monopole Floer invariant in [1] which was used there to prove
that the monopole invariant is well defined.

A unique feature of the instanton Floer viewpoint is the central role played by the
fundamental group. Along these lines, we conjecture a means by which our contact
invariant in SH I might be used to relate the fundamental group of a closed contact
3-manifold to properties of its Stein fillings, a relationship which has been largely
unexplored to this point.

Below, we sketch the construction of our contact invariant, describe some of its
most important properties, state some conjectures, and discuss plans for future work
which include using the constructions in this paper to define invariants of bordered
manifolds in the instanton Floer setting.

1.1 A contact invariant in SH I

Suppose (M, �) is a balanced suturedmanifold.Roughly speaking, a closureof (M, �)

is formedbygluingon someauxiliary piece and “closingup”by identifying the remain-
ing boundary components. In [21], Kronheimer and Mrowka defined an invariant of
balanced sutured manifolds in terms of the instanton Floer homology groups of these
related closed 3-manifolds. They proved that the groups associated to different clo-
sures of a given suturedmanifold are all isomorphic. In this way, their invariant assigns
to (M, �) an isomorphism class of C-modules, denoted by SH I (M, �).
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In [2], we introduced a refinement of their construction which assigns to (M, �)

a projectively transitive system of C-modules, denoted by SHI(M, �). This system
records the collection of C-modules—all isomorphic to SH I (M, �)—associated to
different closures of (M, �) together with canonical isomorphisms relating these
modules, where these isomorphisms are well defined up to multiplication in C

×. We
refer to this system as the sutured instanton homology of (M, �).

A key step in constructing our contact invariant is to first define maps on sutured
instanton homology associated to contact handle attachments. That is, suppose
(Mi , �i ) is a balanced sutured manifold obtained by attaching a contact i-handle
to (M, �) for some i ∈ {0, 1, 2, 3}. We define a map

Hi : SHI(−M,−�) → SHI(−Mi ,−�i )

which depends only on the smooth data involved in this handle attachment. Our con-
struction of these maps is almost identical to that of the analogous maps in sutured
monopole homology [1]; in particular, these maps are defined in terms of the maps on
instanton Floer homology induced by natural cobordisms between closures.

Suppose now that (M, �, ξ) is a sutured contact manifold. According to the relative
Giroux correspondence, this contact manifold admits a partial open book decomposi-
tion. This implies that (M, �, ξ) can be obtained by attaching contact 2-handles to a
sutured contact manifold H(S) formed from rounding the corners of a tight, vertically
invariant contact structure on S × I , where S is a compact surface with boundary (the
surface S and the contact 2-handle attachments are specified by the partial open book
decomposition). Let

H : SHI(−H(S)) → SHI(−M,−�)

be the composition of the maps associated to the contact 2-handle attachments above.
Since H(S) is a product sutured manifold, its sutured instanton homology has rank
one with generator 1 ∈ SHI(−H(S)) ∼= C, and we define the contact invariant of
(M, �, ξ) to be

θ(M, �, ξ) := H (1) ∈ SHI(−M,−�).

Our main theorem (stated later as Theorem 4.3) is the following.

Theorem 1.1 The element θ(M, �, ξ) is well defined.

That is to say, this element does not depend on the chosen partial open book
decomposition (by the Giroux correspondence, it suffices to prove that this element is
preserved under positive stabilization of the open book).1

We also show that this contact invariant behaves naturallywith respect to the contact
handle attachment maps, per the following (stated later as Theorem 4.8).

1 The analogous contact invariant in suturedmonopole homology is definedwithout reference to the relative
Giroux correspondence, but admits the same formulation as above.
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Theorem 1.2 Suppose (Mi , �i , ξi ) is obtained from (M, �, ξ) by attaching a contact
i-handle and Hi is the associated map for i = 0, 1, or 2. Then, Hi (θ(M, �, ξ)) =
θ(Mi , �i , ξi ).

2

The invariant θ shares several important features with Honda, Kazez, and Matić’s
invariant and with our contact invariant in sutured monopole homology (besides the
one above). Among these are the following two results (stated later as Theorems 4.10
and 4.12). Interestingly, the proofs of both theorems below are substantially different
from those of their counterparts in [1] in the sutured monopole homology setting.

Theorem 1.3 If (M, �, ξ) is overtwisted, then θ(M, �, ξ) = 0.

For the next theorem, suppose (Y, ξ) is a closed contact 3-manifold and let Y (n)

denote the sutured manifold obtained by removing n disjoint Darboux balls for any
n ≥ 1.

Theorem 1.4 If (Y, ξ) is Stein fillable, then θ(Y (n), ξ |Y (n)) �= 0.

As we shall see, the corollary below (stated later as Corollary 4.13) follows from
Theorems 1.4 and 1.2.

Corollary 1.5 If (M, �, ξ) embeds into a Stein fillablemanifold, then θ(M, �, ξ) �= 0.

In a related direction, we conjecture the following, which is an instanton Floer
analogue of a theorem of Plamenevskaya regarding the contact invariant in Heegaard
Floer homology [27].

Conjecture 1.6 Suppose J1, J2 are Stein structures on a smooth 4-manifold X such
that c1(J1) − c1(J2) is nontorsion. Let ξ1, ξ2 be the induced contact structures on
Y = ∂X. Then, the contact invariants

θ(Y (1), ξ1|Y (1)) and θ(Y (1), ξ2|Y (1))

are linearly independent in SHI(−Y (1)).

Note that one needs some kind of naturality for a statement like that in Conjecture
1.6 since “linear independence” has little meaning if elements are only well defined
up to isomorphism. This is precisely the sort of consideration that motivated our work
in [2].

As we explain in Sect. 5, a positive answer to Conjecture 1.6 would imply the
following link between the fundamental group of a contact 3-manifold and properties
of its Stein fillings.

Conjecture 1.7 Suppose Y is an integer homology 3-sphere which bounds a Stein
4-manifold (X, J ) with c1(J ) �= 0. Then, there exists a nontrivial homomorphism
ρ : π1(Y ) → SU (2).

2 We believe the contact 3-handle maps also preserve the contact invariant but do not prove this here.



Instanton Floer homology and contact structures 943

It was pointed out to us by TomMrowka that the conclusion of Conjecture 1.7 holds
by arguments similar to those used in the proof of the Property P conjecture [14] if the
Stein filling has b+

2 > 0. However, this leaves a lot of Stein fillable contact structures
behind. For instance, Etnyre [5] shows that if a contact structure is supported by a
planar open book, then all of its Stein fillings are negative definite.

In light of Conjecture 1.7, it is natural to ask whether there exist any integer homol-
ogy spheres other than S3 whose fundamental group admits no nontrivial SU (2)
representations? The main result of [17] implies that the answer is “no” among inte-
ger homology spheres arising from surgery on knots in S3. In general, however, the
question seems to be wide open.

Finally, it is worth mentioning that Conjecture 1.7 would also follow from
Plamenevskaya’s work in [27], combined with the conjectural isomorphism between
SH I (Y (1)) and Ĥ F(Y ) ⊗ C proposed in [21], but the latter seems more difficult to
establish than Conjecture 1.6.

1.2 Future directions

Two of our future projects involve defining sutured cobordism maps and bordered
invariants in the instanton Floer setting as mentioned briefly below.

Suppose (M, �) is a sutured submanifold of (M ′, �′) and ξ is a contact structure
on M ′

� int(M) with dividing set � ∪ �′. Note that (M ′
� int(M), � ∪ �′, ξ) can be

obtained from a vertically invariant contact structure on ∂M × I by attaching contact
handles. Given such a handle decomposition H , we may then define

�ξ,H : SHI(−M,−�) → SHI(−M ′,−�′)

to be the corresponding composition of contact handle attachmentmaps.A similarmap
was defined by Honda et al. in [10] in the setting of sutured Heegaard Floer homology
(see also [1] in the setting of sutured monopole homology). Their map depends only
on ξ , and we conjecture that the same is true for the map above.

Conjecture 1.8 The map �ξ,H is independent of H.

A positive answer to this conjecture would allow us assign well-defined maps to
cobordisms between sutured manifolds in the instanton Floer setting—in the language
of [2], to extendSHI to a functor fromCobSut toC-PSys—following Juhasz’s strategy
[12], as explained in the analogous context of suturedmonopole in [1, Subsection 1.3].
And this, in turn, would allow us to define invariants of bordered 3-manifolds using
instanton Floer homology, following a strategy of Zarev [28]; again, see [1, Subsection
1.3] for the analogous discussion in the sutured monopole Floer setting. Namely,
Zarev [28] constructed the homology of the bordered Heegaard Floer invariants as
a direct sum of sutured Heegaard Floer homology groups. The invariant associated
to a parametrized surface is a differential graded algebra, and he also described the
product on its homology in terms of Juhász’s sutured cobordismmaps [12]. A complete
bordered instanton theory would require these constructions at the chain level rather
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than just on homology, but being able to implement Zarev’s construction would be an
important first step.

1.3 Organization

In Sect. 2, we provide the necessary background on projectively transitive systems,
sutured instanton homology, and the relative Giroux correspondence. In Sect. 3, we
define the contact handle attachment maps mentioned above. In Sect. 4, we define
the contact invariant θ and establish some basic properties of this invariant, proving
Theorems 1.2, 1.3, 1.4, and Corollary 1.5. Finally, in Sect. 5, we explain how a positive
answer to Conjecture 1.6 would imply a positive answer to Conjecture 1.7.

2 Preliminaries

In this section,we review the notion of a projectively transitive system, the construction
of sutured instanton homology, and the relative Giroux correspondence.

2.1 Projectively transitive systems of C-modules

In [2], we introduced projectively transitive systems to make precise the idea of a
collection of modules being canonically isomorphic up to multiplication by a unit. We
recount their definition and related notions below, focusing on modules over C.

Definition 2.1 Suppose Mα and Mβ are C-modules. We say that elements x, y ∈ Mα

are equivalent if x = u · y for some u ∈ C
×. Likewise, homomorphisms

f, g : Mα → Mβ

are equivalent if f = u · g for some u ∈ C
×.

Remark 2.2 We will write x
.= y or f

.= g to indicate that two elements or homo-
morphisms are equivalent, and will denote their equivalence classes by [x] or [ f ].

Note that composition of equivalence classes of homomorphisms is well defined,
as is the image of the equivalence class of an element under an equivalence class of
homomorphisms.

Definition 2.3 A projectively transitive system of C-modules consists of a set A and:

(1) a collection of C-modules {Mα}α∈A and
(2) a collection of equivalence classes of homomorphisms {gα

β }α,β∈A such that:
(a) elements of the equivalence class gα

β are isomorphisms from Mα to Mβ ,
(b) gα

α = [idMα ],
(c) gα

γ = gβ
γ ◦ gα

β .
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Remark 2.4 The equivalence classes of homomorphisms in a projectively transitive
system ofC-modules can be thought of as specifying canonical isomorphisms between
the modules in the system that are well defined up to multiplication by units in C.

The class of projectively transitive systems of C-modules forms a category C-PSys
with the following notion of morphism.

Definition 2.5 A morphism of projectively transitive systems of C-modules

F : (A, {Mα}, {gα
β }) → (B, {Nγ }, {hγ

δ })

is a collection of equivalence classes of homomorphisms F = {Fα
γ }α∈A, γ∈B such

that:

(1) elements of the equivalence class Fα
γ are homomorphisms from Mα to Nγ ,

(2) Fβ
δ ◦ gα

β = hγ
δ ◦ Fα

γ .

Note that F is an isomorphism iff the elements in each equivalence class Fα
γ are

isomorphisms.

Remark 2.6 Acollection of equivalence classes of homomorphisms {Fα
γ }with indices

ranging over any nonempty subset of A× B can be uniquely completed to a morphism
as long as this collection satisfies the compatibility in (2) where it makes sense.

Remark 2.7 Suppose {Sα}α∈A is a collection of projectively transitive systems of C-
modules and

{ fα,β : Sα → Sβ}α,β∈A

is a collection of isomorphisms of projectively transitive systems ofC-modules which
satisfy the transitivity fα,γ = fβ,γ ◦ fα,β for all α, β, γ ∈ A. Then, this transitive
system of systems defines an even larger projectively transitive system of C-modules
in a natural way, whose set of constituent C-modules is the union over all α ∈ A of
the sets of C-modules making up the systems Sα .

Definition 2.8 An element of a projectively transitive system of C-modules

x ∈ M = (A, {Mα}, {gα
β })

is a collection of equivalence classes of elements x = {xα}α∈A such that:

(1) elements of the equivalence class xα are elements of Mα ,
(2) xβ = gα

β (xα).

Remark 2.9 As in Remark 2.6, a collection of equivalence classes of elements {xα}
with indices ranging over any nonempty subset of A can be uniquely completed to
an element of M as long as this collection satisfies the compatibility in (2) where it
makes sense.
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We say that x is a generator in M if each Mα is isomorphic to C and each xα is
the equivalence class of a generator—i.e., nonzero. The zero element 0 ∈ M is the
collection of equivalence classes of the elements 0 ∈ Mα . Finally, it is clear how to
define the image F(x) of an element x ∈ M under a morphism F : M → N of
projectively transitive systems of C-modules.

Remark 2.10 Given a C-module M , we can also think of M as the projectively tran-
sitive system of C-modules given (in an abuse of notation) by

M = ({}, {M}, {[idM ]})

consisting of the singleC-moduleM together with the equivalence class of the identity
map, so that it makes sense to write S ∼= M , for any other object S ∈ C-PSys.

2.2 Sutured instanton homology

In this subsection, we describe our refinement in [2] of Kronheimer and Mrowka’s
sutured instanton homology, as defined in [21].

2.2.1 Closures of balanced sutured manifolds

Definition 2.11 A balanced sutured manifold (M, �) is a compact, oriented, smooth
3-manifold M with a collection � of disjoint, oriented, smooth curves in ∂M called
sutures. Let R(�) = ∂M��, oriented as a subsurface of ∂M . We require that:

(1) neither M nor R(�) has closed components,
(2) R(�) = R+(�) � R−(�) with ∂R+(�) = −∂R−(�) = �,
(3) χ(R+(�)) = χ(R−(�)).

An auxiliary surface for (M, �) is a compact, connected, oriented surface F with
g(F) > 0 and π0(∂F) ∼= π0(�). Suppose F is an auxiliary surface for (M, �), A(�)

is a closed tubular neighborhood of � in ∂M , and

h : ∂F × [−1, 1] → A(�)

is anorientation-reversingdiffeomorphismwhich sends ∂F×{±1} to ∂(R±(�)�A(�)).

One forms a preclosure of M

M ′ = M ∪h F × [−1, 1]

by gluing F × [−1, 1] to M according to h and rounding corners. This preclosure has
two diffeomorphic boundary components, ∂+M ′ and ∂−M ′. We may therefore glue
∂+M ′ to ∂−M ′ by some diffeomorphism to form a closed manifold Y containing a
distinguished surface

R := ∂+M ′ = −∂−M ′ ⊂ Y.
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In [21], Kronheimer and Mrowka define a closure of (M, �) to be any pair (Y, R)

obtained in this way. Our definition of closure, as needed for naturality, is slightly
more involved.

Definition 2.12 ([2])Amarked odd closure of (M, �) is a tupleD =(Y, R, r,m, η, α)

consisting of:

(1) a closed, oriented, 3-manifold Y ,
(2) a closed, oriented, surface R with g(R) ≥ 2,
(3) an oriented, nonseparating, embedded curve η ⊂ R,
(4) a smooth, orientation-preserving embedding r : R × [−1, 1] ↪→ Y ,
(5) a smooth, orientation-preserving embedding m : M ↪→ Y�int(Im(r)) such that:

(a) m extends to a diffeomorphism

M ∪h F × [−1, 1] → Y�int(Im(r))

for some A(�), F , h, as above,
(b) m restricts to an orientation-preserving embedding

R+(�)�A(�) ↪→ r(R × {−1}).

(6) an oriented, embedded curve α ⊂ Y such that:
(a) α is disjoint from Im(m),
(b) α intersects r(R × [−1, 1]) in an arc of the form r({p} × [−1, 1]) for some

p ∈ R.

The genus g(D) refers to the genus of R.

Remark 2.13 Suppose D = (Y, R, r,m, η, α) is a marked odd closure of (M, �).
Then, the tuple

−D := (−Y,−R, r,m,−η,−α),

obtained by reversing the orientations of Y , R, η, and α is a marked odd closure of
−(M, �) := (−M,−�),where r andm are the induced embeddings of−R×[−1, 1]
and −M into −Y .

2.2.2 Instanton Floer homology

Before defining sutured instanton homology, we recall the basic set up of instanton
Floer homology from [21].

Suppose Y is a closed, oriented, smooth 3-manifold and w → Y is a Hermitian
line bundle such that c1(w) has odd pairing with some class in H2(Y ; Z). Let E → Y
be a U (2) bundle with an isomorphism θ : �2E → w. Let C be the space of SO(3)
connections on ad(E), and let G be the group of determinant-1 gauge transformations
of E (the automorphisms of E that respect θ ). The associated instantonFloer homology
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group, which Kronheimer and Mrowka denote by I∗(Y )w, is the Z/8Z-graded C-
module arising from the Morse homology of the Chern–Simons functional on C/G
(cf. [3]). Given any closed, embedded surface R ⊂ Y there is a natural operator

μ(R) : I∗(Y )w → I∗(Y )w

of degree −2. When R has genus at least 2, Kronheimer and Mrowka define the
submodule

I∗(Y |R)w ⊂ I∗(Y )w

to be the eigenspace ofμ(R)with eigenvalue 2g(R)−2. In this paper, in contrast with
[2,21], we will instead use the (2 − 2g(R))-eigenspace for the sake of consistency
with [1], but it makes no difference as far as the proofs of invariance or naturality (or
for that matter anything in this paper) are concerned.

Suppose α is an oriented, smooth 1-cycle in Y which intersects a closed, embedded
surface in an odd number of points. One can associate to (Y, α) an instanton Floer
group after first choosing bundles w, E , and an isomorphism θ as above, where the
first Chern class is Poincaré dual to α. This Floer group is itself not an invariant of
(Y, α) as it depends on these auxiliary choices. However, given a pair (Y, α), the
Floer groups associated to any two sets of auxiliary choices are related by a canonical
isomorphismwhich iswell defined up to sign (cf. [18, Section 4]). In particular, the pair
(Y, α) defines a projectively transitive system of C-modules, which we will denote by
I∗(Y )α . The canonical isomorphisms respect the eigenspace decompositions and, so,
for a closed embedded surface R ⊂ Y , we may also define the projectively transitive
system of C-modules I∗(Y |R)α .

Suppose R1 and R2 are embedded surfaces in Y1 and Y2 as above. A cobordism
(W, ν) from (Y1, α1) to (Y1, α2) together with an embedded surface RW ⊂ W con-
taining R1 and R2 as components gives rise to a map of projectively transitive systems

I∗(W |RW )ν : I∗(Y1|R1)α1 → I∗(Y2|R2)α2 .

This map depends only on the homology class [ν] ⊂ H2(W, ∂W ; Z) and the isomor-
phism class of (W, ν), where two pairs are isomorphic if they are diffeomorphic by a
map which intertwines the boundary identifications.

2.2.3 Sutured instanton homology

Following Kronheimer and Mrowka [21], we made the following definition in [2].

Definition 2.14 Given a marked odd closure D = (Y, R, r,m, η, α) of (M, γ ), the
twisted sutured instanton homology of D is the projectively transitive system of C-
modules

SH I (D) := I∗(Y |r(R × {0}))α � η.
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Remark 2.15 If w and u are line bundles over Y with first Chern classes represented
by α and η, then the line bundle w ⊗ u has first Chern class represented by α � η.

In [2], we constructed canonical isomorphisms

�D ,D ′ : SH I (D) → SH I (D ′)

for any two marked odd closures D,D ′ of (M, �), so that

�D ,D ′′ = �D ′,D ′′ ◦ �D ,D ′

for all D,D ′,D ′′. In other words, the systems in {SH I (D)}D and the maps in
{�D ,D ′ }D ,D ′ form a transitive system of systems and, therefore, a larger projectively
transitive system of C-modules as explained in Remark 2.7. These isomorphisms are
defined almost exactly as in the monopole setting—in terms of 2-handle or splicing
cobordisms depending on whether the genera of D and D ′ are the same or different.

Definition 2.16 The sutured instanton homology of (M, �) is the projectively tran-
sitive system of C-modules SHI(M, �) defined by the transitive system of systems
above.

Sutured instanton homology is functorial in the following sense. Suppose

f : (M, �) → (M ′, �′)

is a diffeomorphism of sutured manifolds andD ′ = (Y ′, R′, r ′,m′, η′, α′) is a marked
odd closure of (M ′, �′). Then,

D ′
f := (Y ′, R′, r ′,m′ ◦ f, η′, α′) (1)

is a marked odd closure of (M, �). Let

idD ′
f ,D

′ : SH I (D ′
f ) → SH I (D ′)

be the identity map on SH I (D ′
f ) = SH I (D ′). The equivalence classes underlying

these identity maps can be completed to a morphism (as in Remark 2.6)

SHI( f ) : SHI(M, �) → SHI(M ′, �′),

which is an invariant of the isotopy class of f . We proved in [2] that these morphisms
behave as expected under composition of diffeomorphisms, so that SHI defines a
functor from DiffSut to C-PSys, where DiffSut is the category of balanced sutured
manifolds and isotopy classes of diffeomorphisms between them.

The following will be important in our definition of the instanton Floer contact
invariant.

Proposition 2.17 If (M, �) is a product sutured manifold, then SHI(M, �) ∼= C.
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Proof Let F be an auxiliary surface for (M, �)with g(F) ≥ 2. Thinking of (M, �) as
obtained from (S×[−1, 1], ∂S×{0}) by rounding corners, we can form a preclosure
of (M, �) by gluing F × [−1, 1] to S × [−1, 1] according to a map

h : ∂F × [−1, 1] → ∂S × [−1, 1]

of the form f × id for some diffeomorphism f : ∂F → ∂S. This preclosure is then a
product M ′ = (S ∪ F) × [−1, 1]. To form a marked odd closure, we take R = S ∪ F
and glue R × [−1, 1] to M ′ by the “identity” maps

R × {±1} → S × {∓1}.

An oriented, nonseparating curve η ⊂ S ∪ F and a curve α = {p} × S1 for any point
p ∈ F gives a marked odd closure

D = ((S ∪ F) × S1, (S ∪ F), r,m, η, α).

Here, we are thinking of S1 as the union of two copies of [−1, 1], and r and m as the
obvious embeddings. The system SH I (D) is then given by

I∗((S ∪ F) × S1|(S ∪ F) × {0})α � η
∼= C,

where this isomorphism follows from [21, Proposition 7.8]. ��

2.3 The relative Giroux correspondence

Below, we review the relative Giroux correspondence between partial open books and
sutured contact manifolds. Our discussion of this correspondence differs slightly in
style but not in substance from the discussions in [4,11].

Definition 2.18 A partial open book is a quadruple (S, P, h, c), where:

(1) S is a surface with nonempty boundary,
(2) P is a subsurface of S,
(3) h : P → S is an embedding which restricts to the identity on ∂P ∩ ∂S,
(4) c = {c1, . . . , cn} is a set of disjoint, properly embedded arcs in P such that S�c

deformation retracts onto S�P .

Remark 2.19 The collection c of basis arcs for P is not typically recorded in the data
of a partial open book. Usually, it is just required that S be obtained from S�P by
successive 1-handle attachments. The basis arcs specify a 1-handle decomposition of
P . Given that we are specifying basis arcs, we do not technically need to record the
subsurface P . We do so anyhow to emphasize the equivalence between Definition 2.18
and the more commonplace definition of partial open book found in [4,11].

Suppose (S, P, h, c) is a partial open book. Consider the [−1, 1]-invariant contact
structure ξS on S×[−1, 1] for which each S×{t} is convex with collared Legendrian
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Fig. 1 Left, (S×[−1, 1], ξS), with negative region shaded, for a genus 2 surface with 3 boundary compo-
nents. Right, the convex boundary of the sutured contact handlebody H(S) obtained by rounding corners

boundary and the dividing set on S × {1} consists of k boundary parallel arcs, one
for each component of ∂S, oriented in the same direction as the boundary, as shown
in Fig. 1. Let H(S) be the product sutured contact manifold obtained from (S ×
[−1, 1], ξS) by rounding corners.

Remark 2.20 Note that H(S) is precisely the sort of contact handlebody that appears
in the Heegaard splitting associated to an open book with page S.

Let γi be the curve on ∂H(S) corresponding to

(ci × {1}) ∪ (∂ci × [−1, 1]) ∪ (h(ci ) × {−1}) ⊂ ∂(S × [−1, 1]). (2)

Let M(S, P, h, c) be the sutured contact manifold obtained from H(S) by attaching
contact 2-handles along the curves in

γ (h, c) := {γ1, . . . , γn}. (3)

We will use H(S) and M(S, P, h, c) to refer both to these sutured contact manifolds
and to the sutured manifolds underlying them.

Definition 2.21 A partial open book decomposition of (M, �, ξ) is a partial open
book (S, P, h, c) together with a contactomorphism

f : M(S, P, h, c) → (M, �, ξ).

The “existence” part of the relative Giroux correspondence between partial open
books and sutured contactmanifolds, proven byHonda et al. in [11], says the following.

Theorem 2.22 Every sutured contact manifold admits a partial open book decompo-
sition.



952 J. A. Baldwin, S. Sivek

Below, we describe how different partial open book decompositions of (M, �, ξ)

are related. Suppose (S, P, h, c) and (S′, P ′, h′, c′) are partial open books. Note that
a diffeomorphism

g : (S, P, c) → (S′, P ′, c′) (4)

which intertwines h and h′ gives rise to a canonical isotopy class of contactomorphisms

g̃ : H(S) → H(S′) (5)

and therefore to a canonical isotopy class of contactomorphisms

¯̃g : M(S, P, h, c) → M(S′, P ′, h′, c′). (6)

Definition 2.23 We say that (S, P, h, c, f ) and (S′, P ′, h′, c′, f ′) are isomorphic par-
tial open book decompositions if there exists a diffeomorphism g as in (4) such that
f = f ′ ◦ ¯̃g.
Definition 2.24 A positive stabilization of the partial open book (S, P, h, c) is a
partial open book (S′, P ′, h′, c′) such that:

(1) S′ is obtained by attaching a 1-handle H0 to S,
(2) P ′ = P ∪ H0,
(3) h′ = Dβ ◦ h, where β is a curve on S′ meeting a cocore c0 of H0 exactly once,

and Dβ denotes a positive Dehn twist along β,
(4) c′ = c ∪ {c0}.

Suppose (S′, P ′, h′, c′) is a positive stabilization of (S, P, h, c) as in the definition
above. Let M(S′, P ′, h′, c0) be the sutured contact manifold obtained from H(S′) by
attaching a contact 2-handle along the curve γ ′

0 ⊂ ∂H(S′) obtained from c0 as in (2).
Note that M(S′, P ′, h′, c0) is obtained from H(S) by attaching a Darboux ball in the
form of canceling contact 1- and 2-handles. In particular, there is a canonical isotopy
class of contactomorphisms

q : M(S′, P ′, h′, c0) → H(S) (7)

which restricts to the identity away from this Darboux ball and sends the curves
γ ′
1, . . . , γ

′
n ⊂ ∂M(S′, P ′, h′, c0) to γ1, . . . , γn ⊂ ∂H(S). Such a map gives rise to a

canonical isotopy class of contactomorphisms

q̄ : M(S′, P ′, h′, c′) → M(S, P, h, c). (8)

Definition 2.25 A positive stabilization of the partial open book decomposition
(S, P, h, c, f ) is a partial open book decomposition (S′, P ′, h′, c′, f ′ = f ◦q̄),where
(S′, P ′, h′, c′) is a positive stabilization of (S, P, h, c) and q̄ is the contactomorphism
in (8).

The “uniqueness” part of the relative Giroux correspondence says the following.
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Theorem 2.26 Given two partial open book decompositions of the same sutured con-
tact manifold, it is possible to positively stabilize each some number of times so that
the resulting partial open book decompositions are isomorphic.

Remark 2.27 As stated, Theorem 2.26 is a combination of the results in [4,11].
Namely, Etgü andÖzbağcı’swork in [4] implies that a partial open bookdecomposition
of (M, �, ξ) as defined above determines a contact cell decomposition of (M, �, ξ). In
[11], Honda,Kazez, andMatić prove that two contact cell decompositions of (M, �, ξ)

admit a common subdivision, and subdividing in their sense corresponds to positive
stabilization as defined above.

3 Contact handle attachment maps

In this section, we define the contact handle attachment maps in sutured instanton
homology mentioned in the introduction. Our construction of these maps is nearly
identical to that of the corresponding maps in sutured monopole homology [1], except
that we make comparatively little reference to contact geometry here.

3.1 0-handles

Attaching a contact 0-handle to (M, �) is equivalent to taking the disjoint union of
(M, �) with the Darboux ball (B3, S1, ξstd). Let (M0, �0) be this disjoint union. It is
not hard to construct a marked odd closure of (M0, �0) which is also a marked odd
closure of (M, �). We may therefore define the 0-handle attachment map to be the
“identity” map.

Indeed, suppose M ′
0 is a preclosure of (M0, �0) formed from an auxiliary surface

F0. Then, there are natural identifications

∂±M ′
0 = R±(�) ∪ F0 ∪ R±(S1).

Let R be a copy of ∂+M ′
0. Let Y0 be the closed 3-manifold obtained by gluing R ×

[−1, 1] to M ′
0 by the “identity” map from R × {−1} to ∂+M ′

0 and by a map from
R × {+1} to ∂−M ′

0 which sends a point

p ∈ F0 ⊂ R to p ∈ F0 ⊂ ∂−M ′
0.

Let η ⊂ R be an oriented, nonseparating curve contained in F0 ⊂ R, and let α ⊂ Y0
be the union of the oriented arcs

{p} × [−1, 1] ⊂ F0 × [−1, 1] ⊂ M ′
0 and

{p} × [−1, 1] ⊂ F0 × [−1, 1] ⊂ R × [−1, 1].

Then,

D0 = (Y0, R, r,m0, η, α)
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Fig. 2 Left, a neighborhood of part of ∂M (top), and the thickened surface F × [−1, 1] which is glued
to it along � to produce a preclosure M ′

0 of (M, �) (bottom). Right, the same neighborhood together with
a 0-handle, viewed as part of (M0, �0) (top), and the thickened surface F0 × [−1, 1] which is glued to it
along �0 to realize M ′

0 as a preclosure of (M0, �0) (bottom)

is a marked odd closure of (M0, �0), where r and m0 are the obvious embeddings of
R × [−1, 1] and M0 into Y0.

Note that M ′
0 is also a preclosure of (M, �) in a natural way, formed using the

auxiliary surface F = F0 ∪ R+(S1), as illustrated in Fig. 2. It is then clear that

D = (Y0, R, r,m, η, α)

is a marked odd closure of (M, �), where m is the restriction of m0 to M ⊂ M0. In
particular, SH I (−D) = SH I (−D0). This leads to the following definition.

Definition 3.1 We define the 0-handle attachment map

H0 : SHI(−M,−�) → SHI(−M0,−�0)

to be the morphism determined by the identity map

id−D ,−D0 : SH I (−D) → SH I (−D0).

To prove that H0 is independent of the choices made in its construction, we need to
show that if D0,D

′
0 are marked odd closures of (M0, �0) constructed as above, and

D,D ′ are the corresponding marked odd closures of (M, �), then the diagram
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SH I (−D)
id−D,−D0 ��

�−D,−D′
��

SH I (−D0)

�−D0,−D′
0

��
SH I (−D ′)

id−D′,−D′
0

�� SH I (−D ′
0)

commutes, where �−D ,−D ′ and �−D0,−D ′
0
are the canonical isomorphisms relat-

ing the systems associated to different closures. But this follows from the fact that
�−D0,−D ′

0
is a composition of maps associated to 2-handle and splicing cobordisms,

and �−D ,−D ′ can be defined via the exact same composition (refer to [2] for the
definition of these maps and [1, Subsection 4.2] for the same argument in the sutured
monopole Floer context).

3.2 1-handles

Suppose D− and D+ are disjoint embedded disks in ∂M which each intersect � in
a single properly embedded arc. To attach a contact 1-handle to (M, �) along these
disks,we glue the contactmanifold (D2×[−1, 1], ξD2) to (M, �) by diffeomorphisms

D2 × {−1} → D− and D2 × {+1} → D+,

which preserve and reverse orientations, respectively, and identify the dividing sets
with the sutures, and then we round corners, as illustrated in Fig. 3. Let (M1, �1) be
the resulting sutured manifold. As in the 0-handle case, it is not hard to construct a
marked odd closure of (M1, �1) which is also a marked odd closure of (M, �), as
shown in Fig. 4, so that we may define the contact 1-handle attachment map to be the
“identity” map in this case as well.

Indeed, suppose M ′
1 is a preclosure of (M1, �1) formed from an auxiliary surface

F1. Then, there are natural identifications

∂±M ′
1 = R±(�1) ∪ F0.

Fig. 3 Left, a collar neighborhood of a subsurface of ∂M containing the disks D−, D+ ⊂ ∂M , whose
boundaries are dotted.Middle, attaching the contact 1-handle.Right, the 1-handle attachment after rounding
corners
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Fig. 4 Left, a neighborhood of a subsurface of ∂M where a 1-handle is about to be attached (top), and a
piece of the thickened surface F × [−1, 1] which is glued along � to form M ′

1 as a preclosure of (M, �)

(bottom). Right, the corresponding region of M1, with 1-handle in place (top), and the piece of F1×[−1, 1]
glued along �1 which is used to realize M ′

1 as a preclosure of (M1, �1) (bottom)

Let R be a copy of ∂+M ′
1. Let Y1 be the closed 3-manifold obtained by gluing R ×

[−1, 1] to M ′
1 by the “identity” map from R × {−1} to ∂+M ′

1 and by a map from
R × {+1} to ∂−M ′

1 which sends a point

p ∈ F1 ⊂ R to p ∈ F1 ⊂ ∂−M ′
1.

Let η ⊂ R be an oriented, nonseparating curve contained in F1 ⊂ R, and let α ⊂ Y1
be the union of the oriented arcs

{p} × [−1, 1] ⊂ F1 × [−1, 1] ⊂ M ′
1 and

{p} × [−1, 1] ⊂ F1 × [−1, 1] ⊂ R × [−1, 1].

Then,

D1 = (Y1, R, r,m1, η, α)

is a marked odd closure of (M1, �1), where r and m1 are the obvious embeddings of
R × [−1, 1] and M1 into Y1.

In complete analogy with the 0-handle case, we note that M ′
1 is also a preclosure

of (M, �), the point being that the union of F1 × [−1, 1] with the contact 1-handle is
a product F × [−1, 1], where F is an auxiliary surface for (M, �). It follows that

D = (Y1, R, r,m, η, α)



Instanton Floer homology and contact structures 957

is a marked odd closure of (M, �), where m is the restriction of m1 to M ⊂ M1. In
particular, SH I (−D) = SH I (−D1). This leads to the following definition.

Definition 3.2 We define the 1-handle attachment map

H1 : SHI(−M,−�) → SHI(−M1,−�1)

to be the morphism determined by the identity map

id−D ,−D1 : SH I (−D) → SH I (−D1).

The same reasoning as in the 0-handle case shows that the mapH1 is independent
of the choices made in its construction.

3.3 2-handles

In this subsection, we define themap associated to contact 2-handle attachment. Along
the way, we define a map associated to surgery on a framed knot in a sutured manifold.

Suppose γ is an embedded curve in ∂M which intersects � in two points. Let
A(γ ) be an annular neighborhood of γ intersecting � in two cocores. To attach a
contact 2-handle to (M, �, ξ) along γ , we glue (D2 × [−1, 1], ξD2) to (M, �, ξ) by
an orientation-reversing diffeomorphism

∂D2 × [−1, 1] → A(γ )

which identifies positive regions with negative regions, and then round corners, as
illustrated in Fig. 5. Let (M2, �2) be the resulting sutured manifold. We will show
that there exists a marked odd closure of (M2, �2) which is obtained from a marked
odd closure of (M, �) via integer surgery and will accordingly define the 2-handle
attachment map to be the map induced by the four-dimensional 2-handle cobordism
corresponding to this surgery, roughly speaking.

We construct the aforementioned closure of (M2, �2) in a slightly roundabout
way. Let us first consider the sutured manifold (M1, �1) obtained from (M2, �2) by

Fig. 5 Left, a collar neighborhood N of a subsurface of ∂M containing A(γ ) ⊂ ∂M , whose boundary is
dotted. Middle, attaching the contact 2-handle. Right, the 2-handle attachment after rounding corners
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Fig. 6 Attaching a contact 1-handle to form M1. The circles on D2 × {±1} indicate where the feet of this
handle are to be attached. The union of the 1-handle below with the portion of M1 shown above is the solid
torus N1

attaching a contact 1-handle along disks in the interiors of the D2 × {±1} boundary
components of the contact 2-handle, as indicated in Fig. 6. Let

H1 : SHM(−M2,−�2) → SHM(−M1,−�1)

be the corresponding 1-handle attachment map, as defined in Sect. 3.2. It is not hard
to see that (M1, �1) is diffeomorphic to the sutured manifold obtained from (M, �)

by performing ∂M-framed surgery on a parallel copy γ ′ of γ in the interior of M .
To be precise, let us suppose that γ ′ is contained in the solid torus neighborhood

N ⊂ M shown in Fig. 5. Let N1 ⊂ M1 be the solid torus obtained from N by attaching
the 1- and 2-handles as indicated in Figs. 5 and 6. Note that

(M�N , �|M�N ) = (M1�N1, �1|M1�N1). (9)

Furthermore, the restriction of the identity map on these complements to ∂M�N =
∂M1�N1 extends uniquely, up to isotopy, to a diffeomorphism of pairs

(∂M, �) → (∂M1, �1).

The identity map on the complement in (9) therefore extends naturally to a diffeomor-
phism

(M�N ′, �) → (M1�N ′
1, �1),

where N ′ ⊂ int(N ) and N ′
1 ⊂ int(N1) are slightly smaller solid tori. This provides a

canonical, up to isotopy, diffeomorphism

f : (M ′, �′) → (M1, �1), (10)
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where (M ′, �′) is the sutured manifold obtained from (M, �) via ∂M-framed surgery
on γ ′.

In order to define the contact 2-handle map, we first define a morphism associated
to this surgery. In fact, we take this opportunity to define a map associated to surgery
on any framed knot in the interior of a sutured manifold.

Suppose D = (Y, R, r,m, η, α) is a marked odd closure of (M, �). Suppose K is
a framed knot in the interior of M , and let (M ′, �′) be the sutured manifold obtained
via surgery on K with respect to this framing. Let Y ′ be the 3-manifold obtained from
Y by performing surgery on m(K ) with respect to the induced framing. Then, D ′ =
(Y ′, R, r ′,m′, η, α) is amarked odd closure of (M ′, �′), where r ′ is themap induced by
r andm′ is the embeddingofM ′ intoY ′ inducedbym. LetW be the 2-handle cobordism
from Y to Y ′ obtained from Y × [0, 1] by attaching the 2-handle corresponding to the
above surgery, and let ν ⊂ W be the obvious cylindrical cobordism from

(r(η × {0}) � α) ⊂ Y to (r ′(η × {0}) � α) ⊂ Y ′.

We define

FK : SHI(−M,−�) → SHI(−M ′,−�′)

to be the morphism induced by the map

I∗(−W |−R)−ν : SH I (−D) → SH I (−D ′).

To prove that FK is well defined, we must show that the diagram

SH I (−D1)
I∗(−W1|−R1)−ν1 ��

�−D1,−D2

��

SH I (−D ′
1)

�−D′
1,−D′

2

��
SH I (−D2)

I∗(−W2|−R2)−ν2

�� SH I (−D ′
2)

commutes, for any two marked odd closuresD1,D2 of (M, �), whereD ′
1,D

′
2 are the

induced marked odd closures of (M ′, �′). As explained in [1, Subsection 4.2] in the
context of sutured monopole homology, this diagram commutes because the cobor-
disms used to define these maps commute:W1 andW2 are built by attaching 2-handles
along curves in the regions m1(M) and m2(M), while the vertical isomorphisms are
defined from cobordisms built by attaching 2-handles or splicing along tori outside of
these regions.

Let us now return to the situation at hand, where (M2, �2) is obtained from (M, �)

by attaching a contact 2-handle along γ , and f is the diffeomorphism in (10).

Definition 3.3 We define the 2-handle attachment map

H2 : SHI(−M,−�) → SHI(−M2,−�2)
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to be the composition H2 = H −1
1 ◦ SHI( f ) ◦ Fγ ′ .

ThatH2 is independent of γ ′ follows from the fact that any two such parallel copies
of γ are related by an ambient isotopy of M supported in N .

Remark 3.4 Unpacking the composition above,we see thatH2 mayalso be formulated
as follows. Suppose D = (Y, R, r,m, η, α) is a marked odd closure of (M, �), and
letD ′ be the induced marked odd closure of the surgered manifold (M ′, �′) as above.
Then,

D2 = (Y ′, R, r ′,m2, η, α)

is a marked odd closure of (M2, �2), where m2 is the restriction of m′ ◦ f −1 to
M2 ⊂ M1. Let

id−D ′,−D2 : SH I (−D ′) → SH I (−D2)

be the identity map on SH I (−D ′) = SH I (−D2). Then,H2 is the morphism induced
by the map

id−D ′,−D2 ◦ I∗(−W |−R)−ν : SH I (−D) → SH I (−D2).

In other words, the 2-handle map is really just the map of systems induced by the
cobordism map corresponding to surgery along the curve of attachment.

3.4 3-handles

Attaching a contact 3-handle to (M, �) amounts to gluing the Darboux ball
(B3, S1, ξstd) to (M, �) along an S2 boundary component of M with one suture,
identifying positive regions with negative regions and vice versa. Let (M3, �3) be the
result of this gluing.Wewill assume that ∂M is disconnected, so thatM3 has boundary.
Let p be a point in M3 in the interior of the Darboux ball we glued in. Then, there is
a canonical isotopy class of diffeomorphisms

f : (M, �) → (M ′, �′),

where (M ′, �′) is the sutured manifold obtained by taking the connected sum of
(M3, �3) with (B3, S1) at the point p. Let (M0, �0) be the disjoint union of (M3, �3)

with (B3, S1), and let

H0 : SHI(−M3,−�3) → SHI(−M0,−�0)

be the corresponding 0-handle attachment map, as defined in Sect. 3.1. Suppose

D0 = (Y0, R, r,m, η, α)
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is a marked odd closure of (M0, �0). Then,

D ′ = (Y ′, R, r,m′, η, α)

is a marked odd closure of (M ′, �′), where Y ′ is the self connected sum obtained
from Y0 by removing Darboux balls around m(p) and some point in m(B3) ⊂ Y0 and
gluing in S2 × I , and m′ is the embedding of M ′ into Y ′ induced by m. In particular,
Y ′ is a connected sum of Y0 with S1 × S2. Let W be the natural 1-handle cobordism
from Y0 to Y ′, and let ν ⊂ W be the natural cylindrical cobordism from

(r(η × {0}) � α) ⊂ Y0 to (r(η × {0}) � α) ⊂ Y ′.

Let

F# : SHI(−M ′,−�′) → SHI(−M0,−�0)

be the morphism determined by the map

I∗(W |−R)ν : SH I (−D ′) → SH I (−D0).

Definition 3.5 We define the 3-handle attachment map

H3 : SHI(−M,−�) → SHI(−M3,−�3)

to be the composition H3 = H −1
0 ◦ F# ◦ SHI( f ).

To show that this map is well defined, we only need to argue that F# is well defined.
But this follows from same sort of reasoning as was used to argue that FK is well
defined: Namely, the 1-handle cobordism used to define F# is formed via 1-handle
attachment along balls in the interiors of Y ′ and Y0 and therefore commutes with the
2-handle and splicing cobordisms used to define the canonical isomorphisms in the
systems SHI(−M ′,−�′) and SHI(−M0,−�0).

3.5 A further property

Below, we prove a lemma which will be useful for defining the contact invariant in
Sect. 4. Suppose

f : (M, �) → (M ′, �′)

is a diffeomorphism and (Mi , �i ) is obtained from (M, �) by attaching a contact i-
handle along an attaching region S ⊂ ∂M . Note that f extends uniquely, up to isotopy,
to a sutured diffeomorphism

f̄ : (Mi , �i ) → (M ′
i , �

′
i ),
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where (M ′
i , �

′
i ) is obtained from (M ′, �′) by attaching a contact i-handle along the

attaching region f (S) ⊂ ∂M ′. Then, we have the following.

Lemma 3.6 The diagram

SHI(−M,−�)
Hi ��

SHI( f )

��

SHI(−Mi ,−�i )

SHI( f̄ )

��
SHI(−M ′,−�′)

H ′
i

�� SHI(−M ′
i ,−�′

i )

commutes, whereHi andH ′
i are the appropriate contact i-handle attachment maps.

Proof The composition SHI( f̄ ) ◦ Hi is ultimately defined in terms of the map on
instanton Floer homology induced by a natural cobordism (the identity cobordism, a
1-handle cobordism, or a 2-handle cobordism) fromaclosure of (−M,−�) to a closure
of (−M ′

i ,−�′
i ). Unraveling definitions, it is clear that the compositionH ′

i ◦ SHI( f )
is determined by the same cobordism map. ��

4 A contact invariant in sutured instanton homology

In this section, we use the relative Giroux correspondence to define the contact invari-
ant

θ(M, �, ξ) ∈ SHI(−M,−�)

outlined in the introduction. We then establish some basic properties of this invariant,
such as the fact that it vanishes for overtwisted contact structures and is nonzero for
the complement of a Darboux ball in a Stein fillable contact manifold.

4.1 The contact invariant

Suppose (M, �, ξ) is a sutured contact manifoldwith partial open book decomposition
(S, P, h, c, f ). Recall that M(S, P, h, c) is obtained from H(S) by attaching contact
2-handles along the curves in the set γ (h, c) defined in (3). Let

H : SHI(−H(S)) → SHI(−M(S, P, h, c))

be corresponding composition of contact 2-handle attachment morphisms.

Definition 4.1 We define

θ(S, P, h, c, f ) := SHI( f )(H (1)) ∈ SHI(−M,−�),

where 1 is the generator of SHI(−H(S)) ∼= C.
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Definition 4.2 We define

θ(M, �, ξ) := θ(S, P, h, c, f ) ∈ SHI(−M,−�)

for any partial open book decomposition (S, P, h, c, f ) of (M, �, ξ).

That the element θ(M, �, ξ) is well defined is the content of the following theorem.

Theorem 4.3 The element θ(S, P, h, c, f ) is independent of the partial open book
decomposition (S, P, h, c, f ) of (M, �, ξ).

The rest of this subsection is devoted to the proof of Theorem 4.3. As a first step,
we have the following lemma.

Lemma 4.4 If (S, P, h, c, f )and (S′, P ′, h′, c′, f ′)are isomorphic partial openbook
decompositions, then θ(S, P, h, c, f ) = θ(S′, P ′, h′, c′, f ′).

Proof We must show that

SHI( f )(H (1)) = SHI( f ′)(H ′(1′)), (11)

where H and H ′ are the compositions of contact 2-handle maps used to
define θ(S, P, h, c, f ) and θ(S′, P ′, h′, c′, f ′) and 1 and 1′ are the generators of
SHI(−H(S)) and SHI(−H(S′)).

Since these open book decompositions are isomorphic, there exist maps g̃ and ¯̃g as
in (5) and (6) such that f = f ′ ◦ ¯̃g. Note that we have a commutative diagram

SHI(−H(S))
H ��

SHI(g̃)

��

SHI(−M(S, P, h, c))

SHI( ¯̃g)
��

SHI( f ) �� SHI(−M,−�)

id

��
SHI(−H(S′))

H ′
�� SHI(−M(S′, P ′, h′, c′))

SHI( f ′) �� SHI(−M,−�).

The leftmost square commutes by Lemma 3.6 and the rightmost square commutes
since

SHI( f ) = SHI( f ′ ◦ ¯̃g) = SHI( f ′) ◦ SHI( ¯̃g).

The equality in (11) then follows as long as SHI(g̃) sends 1 to 1′, but it does since this
map is an isomorphism and 1 and 1′ are the generators. ��

Since isomorphic partial open book decompositions give rise to the same contact
element, by Lemma 4.4, it suffices, for the proof of Theorem 4.3, to establish the
following.

Proposition 4.5 If the partial openbookdecomposition (S′, P ′, h′, c′, f ′) is a positive
stabilization of (S, P, h, c, f ), then θ(S′, P ′, h′, c′, f ′) = θ(S, P, h, c, f ).



964 J. A. Baldwin, S. Sivek

Proof Suppose the partial open book decomposition (S′, P ′, h′, c′, f ′) of (M, �, ξ)

is a positive stabilization of (S, P, h, c, f ). Recall from Definition 2.24 that c denotes
a collection of basis arcs {c1, . . . , cn} ⊂ P and that c′ = c∪{c0}, where the new basis
arc c0 ⊂ P ′ is the cocore of the handle attached to P to produce P ′. Let

H : SHI(−H(S)) → SHI(−M(S, P, h, c))

H ′ : SHI(−H(S′)) → SHI(−M(S′, P ′, h′, c′))

be the compositions of contact 2-handle maps used to define the elements
θ(S, P, h, c, f ) and θ(S′, P ′, h′, c′, f ′). To prove Proposition 4.5, we must show
that

SHI( f )(H (1)) = SHI( f ′)(H ′(1′)), (12)

where 1 and 1′ are the generators of SHI(−H(S)) and SHI(−H(S′)). Let

H c0 : SHI(−H(S′)) → SHI(−M(S′, P ′, h′, c0))

be the morphism associated to the 2-handle attachment along the curve

γ0 = (c0 × {1}) ∪ (∂c0 × [−1, 1]) ∪ (h′(c0) × {−1})

in ∂H(S′) = ∂(S′ × [−1, 1]), which is defined as in (2), and let

H c>0 : SHI(−M(S′, P ′, h′, c0)) → SHI(−M(S′, P ′, h′, c′))

be the morphism associated to the composition of 2-handle attachments along the
analogously defined curves γ ′

1, . . . , γ
′
n, so that

H ′ = H c>0 ◦ H c0 .

Finally, let q and q̄ be the contactomorphisms in (7) and (8), so that f ′ = f ◦ q̄ . Then,
we have

SHI( f ′) ◦ H ′ = SHI( f ) ◦ SHI(q̄) ◦ H c>0 ◦ H = SHI( f ) ◦ H ◦ SHI(q) ◦ H c0 ,

where the second equality is an application of Lemma 3.6. Thus, for (12), it suffices
to show that

SHI(q)(H c0(1′)) = 1,

which is equivalent to proving that H c0 is nonzero.
By definition, the curve γ0 ⊂ ∂H(S′) is obtained from the curve

(c0 × {1}) ∪ (∂c0 × [−1, 1]) ∪ (Dβ(c0) × {−1}) ⊂ ∂(S′ × [−1, 1]),

shown in Fig. 7, by rounding corners. Suppose D = (Y, R, r,m, η, α) is a marked
odd closure of H(S′), let γ ′

0 be a parallel copy of γ0 in the interior of Y , and let Y ′
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β

c0

Fig. 7 Left, the surface S′ with the cocore c0 of the 1-handle H0 and the curve β.Middle, the curve γ0 in
H(S′) drawn as (c0 ×{1})∪ (∂c0 ×[−1, 1])∪ (Dβ(c0)×{−1}) in S′ × [−1, 1]. Right, the curve β ′ drawn
as β × {1} ⊂ S′ × {1}

be the result of 0-surgery on m(γ ′
0) with respect to the framing induced by ∂H(S′).

By the construction of the contact 2-handle map in the previous section, we know that
there is an embedding

m′ : M(S′, P ′, h′, c0) → Y ′

such that D ′ = (Y ′, R, r,m′, η, α) is a marked odd closure of M(S′, P ′, h′, c0). Let
W be the 2-handle cobordism from Y to Y ′ obtained from Y × [0, 1] by attaching a
2-handle corresponding to this surgery. Then, H c0 is the morphism determined by
the induced map

I∗(−W |−R)−ν : SH I (−D) → SH I (−D ′), (13)

where ν ⊂ W is the obvious cylindrical cobordism from

(r(η × {0}) � α) ⊂ Y to (r ′(η × {0}) � α) ⊂ Y ′.

Note that γ0 is isotopic to the curve β ′ ⊂ ∂H(S′) corresponding to β × {1} ⊂
S′ × {1}, by an isotopy which sends the ∂H(S′)-framing on γ0 to the (∂H(S′) + 1)-
framingonβ ′. Sinceβ ′ is contained in the positive region of ∂H(S′), the imagem(β ′) is
isotopic to r(b×{t}) for some embedded curve b ⊂ R and any t ∈ [0, 1], by an isotopy
which sends the ∂H(S′)-framing onm(β ′) to the r(R×{t})-framing on r(b×{t}). We
may therefore thinkofW as the cobordismassociated to (+1)-surgeryon r(b×{t}). But
this is exactly the sort of cobordism used to define the canonical isomorphisms relating
the sutured instanton homologies associated to different closures of a suturedmanifold,
as described in [2, Section 9]. In particular, the map in (13) is an isomorphism, proving
that H c0 is nonzero. ��

This completes the proof of Theorem 4.3.

4.2 Properties

Below, we establish some properties of the invariant θ(M, �, ξ). The first result below
says that the invariant θ behaves functorially with respect to contact (+1)-surgery.
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Proposition 4.6 Suppose K is a Legendrian knot in the interior of (M, �, ξ) and that
(M ′, �′, ξ ′) is the result of contact (+1)-surgery on K . Then, the map

FK : SHI(−M,−�) → SHI(−M ′,−�′)

corresponding to this surgery, as defined in Sect.3.3, sends θ(M, �, ξ) to θ(M ′, �′, ξ ′).

Proof Let (S, P, h, c, f ) be a partial open book decomposition of (M, �, ξ) such that
K = f (�), where � is a pushoff of

λ × {−1} ⊂ S × [−1, 1] ⊂ M(S, P, h, c)

into the interior of M(S, P, h, c), where λ ⊂ P is a curve which intersects c1 ∈ c in
a single point, is disjoint from all other ci , and is not homotopic to ∂P . We further
require that the contact framing on K agrees with the contact framing on � (which
is induced by the S-framing on λ). One can construct an (S, P, h, c, f ) with these
properties by including K in the Legendrian graph used to define the partial open
book, as described in [11].

Let H ′(S) and M ′(S, P, h, c) be the contact manifolds obtained from H(S) and
M(S, P, h, c), respectively, by performing contact (+1)-surgery on �. The contacto-
morphism f naturally induces a contactomorphism

f̄ : M ′(S, P, h, c) → (M ′, �′, ξ ′)

such that the diagram

SHI(−M(S, P, h, c))
SHI( f ) ��

F�

��

SHM(−M,−�)

FK

��
SHI(−M ′(S, P, h, c))

SHI( f̄ )
�� SHM(−M ′,−�′)

commutes, by the same sort of argument as was used in the proof of Lemma 3.6. Note
that there is a canonical isotopy class of contactomorphism

g : H ′(S) → H(S)

which sends the attaching set

γ (h, c) ⊂ ∂H ′(S) to γ (h ◦ D−1
λ , c) ⊂ ∂H(S).

This map naturally induces a contactomorphism

ḡ : M ′(S, P, h, c) → M(S, P, h ◦ D−1
λ , c).
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Thus,

(S, P, h ◦ D−1
λ , c, fλ := f̄ ◦ (ḡ)−1)

is a partial open book decomposition for (M ′, �′, ξ ′).
Let

H : SHI(−H(S)) → SHI(−M(S, P, h, c))

H ′ : SHI(−H(S′)) → SHI(−M ′(S, P, h, c))

Hλ : SHI(−H(S)) → SHI(−M(S, P, h ◦ D−1
λ , c))

be the compositions of contact 2-handle maps associated to the attaching sets

γ (h, c) ⊂ ∂H(S) and γ (h, c) ⊂ ∂H ′(S) and γ (h ◦ D−1
λ , c) ⊂ ∂H(S),

respectively. The commutativity of the diagram

SHI(−M(S, P, h, c))
SHI( f ) ��

SHI(ḡ) ◦ F�

��

SHI(−M,−�)

FK

��
SHI(−M(S, P, h ◦ D−1

λ , c))
SHI( fλ)

�� SHI(−M ′,−�′)

follows immediately from that of the previous diagram combined with the fact that

SHI( f̄ ) = SHI( fλ) ◦ SHI(ḡ).

Since

SHI( f )(H (1)) = θ(M, �, ξ),

SHI( fλ)(Hλ(1)) = θ(M ′, �′, ξ ′),

by definition, it suffices for the proof of the proposition to show that

(SHI(ḡ) ◦ F�)(H (1)) = Hλ(1). (14)
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For this, consider the diagram

SHI(−H(S))
H ��

F�

��

SHI(−M(S, P, h, c))

F�

��
SHI(−H ′(S))

H ′
��

SHI(g)

��

SHI(−M ′(S, P, h, c))

SHI(ḡ)

��
SHI(−H(S))

Hλ

�� SHI(−M(S, P, h ◦ D−1
λ , c)).

The top square commutes since the 2-handle cobordisms between closures used to
define the maps obviously commute. Moreover, the leftmost map

F� : SHI(−H(S)) → SHI(−H ′(S))

is induced by the same sort of 2-handle cobordism that defines the canonical isomor-
phisms between different closures of the same genus, since � is isotopic to a curve
contained in the negative region of ∂H(S) (see [2, Section 9]). In particular, it is an
isomorphism and therefore sends 1 to 1. It follows that the rightmost map

F� : SHI(−M(S, P, h, c)) → SHI(−M ′(S, P, h, c))

satisfies
F�(H (1)) = H ′(1). (15)

The bottom square in the diagram commutes by Lemma 3.6, and since SHI(g) is an
isomorphism, it sends 1 to 1. Hence,

SHI(ḡ)(H ′(1)) = Hλ(1). (16)

Putting (15) and (16) together, we obtain (14), completing the proof of Proposition
4.6. ��

Next, we show that the invariant θ behaves as one would expect with respect to
contactomorphism.

Proposition 4.7 Suppose

g : (M, �, ξ) → (M ′, �′, ξ ′)

is a contactomorphism. Then, the map

SHI(g) : SHI(−M,−�) → SHI(−M ′,−�′)

sends θ(M, �, ξ) to θ(M ′, �′, ξ ′).
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Proof Suppose (S, P, h, c, f ) is a partial open book decomposition for (M, �, ξ).
Then, clearly (S, P, h, c, g ◦ f ) is a partial open book decomposition for (M ′, �′, ξ ′).
Letting

H : SHI(−H(S)) → SHI(−M(S, P, h, c))

be the corresponding composition of contact 2-handle maps, we have that

θ(M ′, �′, ξ ′) := SHI(g ◦ f )(H (1)) = SHI(g)(SHI( f )(H (1)))

= SHI(g)(θ(M, �, ξ)),

as desired. ��
As explained in the introduction, the contact invariant θ behaves naturally with

respect to the maps induced by handle attachments.

Theorem 4.8 Suppose (Mi , �i , ξi ) is obtained from (M, �, ξ) by attaching a contact
i-handle and Hi is the associated contact handle attachment map for i = 0, 1, or 2.
Then,

Hi : SHI(−M,−�) → SHI(−Mi ,−�i )

sends θ(M, �, ξ) to θ(Mi , �i , ξi ).

Proof Let us first assume that i = 0, and let us adopt all the notation from Sect. 3.1.
Suppose (S, P, h, c, f ) is a partial open book decomposition for (M, �, ξ). Then,
(S′, P, h, c, f ′) is a partial open book decomposition of (M0, �0, ξ0), where S′ is the
disjoint union of S with D2 and f ′ is the disjoint union of f with a contactomorphism

H(D2) → (B3, S1, ξstd).

Consider the diagram

SHI(−H(S))
H ′′

0 ��

H

��

SHI(−H(S′))

H ′

��
SHI(−M(S, P, h, c, f ))

H ′
0 ��

SHI( f )

��

SHI(−M(S′, P, h, c, f ′))

SHI( f ′)

��
SHI(−M,−�)

H0

�� SHI(−M0,−�0).

whereH ,H ′ are the compositions of contact 2-handlemaps of the sort used to define
θ , and H0,H

′
0 ,H ′′

0 are the obvious contact 0-handle maps. Since the map H ′′
0 is
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an isomorphism (and therefore sends 1 to 1), we need only check that this diagram
commutes. But this is straightforward from the definitions of these maps—on the level
of closures, the identity and 2-handle cobordisms defining these maps commute. The
map H0 thus preserves the contact invariant as desired.

Let us now assume that i = 1 and adopt all the notation from Sect. 3.2. The proof
in this case is similar. We can find a partial open book decomposition (S, P, h, c, f )
for (M, �, ξ) such that (S′, P, h, c, f ′) is a partial open book decomposition for
(M1, �1, ξ1), where S′ is the surface obtained by attaching a 1-handle to S away from
P , and

f ′ : M(S′, P, h, c) → (M0, �0, ξ0)

is a contactomorphism which restricts to f on M(S, P, h, c) ⊂ M(S′, P, h, c). (To
find open book decompositions with this property, we first construct a partial open
book decomposition for (M0, �0, ξ0) from a contact cell decomposition whose Leg-
endrian graph contains the core of the contact 1-handle. We can then arrange that the
resulting partial open book decomposition is precisely of the form (S′, P, h, c, f ′),
where (S, P, h, c, f ) is a partial open book decomposition for (M, �, ξ), as described
above.) As in the previous case, it suffices to check that the diagram

SHI(−H(S))
H ′′

1 ��

H

��

SHI(−H(S′))

H ′

��
SHI(−M(S, P, h, c, f ))

H ′
1 ��

SHI( f )

��

SHI(−M(S′, P, h, c, f ′))

SHI( f ′)

��
SHI(−M,−�)

H1

�� SHI(−M1,−�1).

commutes, where H ,H ′ are the compositions of contact 2-handle maps of the sort
used to define θ , and H1,H

′
1 ,H ′′

1 are the obvious contact 1-handle maps. Again,
this commutativity is straightforward from the definitions of these maps. The mapH1
thus preserves the contact invariant as desired.

Let us now assume that i = 2 and adopt all the notation from Sect. 3.3. The contact
2-handle attachment map

H2 : SHI(−M,−�) → SHI(−M2,−�2)

is defined byH2 = H −1
1 ◦SHI( f )◦Fγ ′ .We have shown thatH1 preserves the contact

invariant; we can assume that γ ′ is Legendrian so that (M ′, �′, ξ ′) is obtained from
(M, �, ξ) by contact (+1)-surgery on γ ′, which means that Fγ ′ preserves the contact
invariant, by Proposition 4.6; finally, we can assume that f is a contactomorphism
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f : (M ′, �′, ξ ′) → (M1, �1, ξ1)

(see the discussion in [1, Subsubsection 4.2.3]) and therefore preserves the contact
invariant by Proposition 4.7. The map H2 thus preserves the contact invariant as
desired. ��
Remark 4.9 Suppose (M, �) is a sutured submanifold of (M ′, �′), as defined in [10].
Let ξ be a contact structure on M ′

�int(M) with convex boundary and dividing set
� on ∂M and �′ on ∂M ′. As explained in Sect. 1.2, the sutured contact manifold
(M ′

�int(M), � ∪ �′, ξ ′) can be obtained from a vertically invariant contact structure
on ∂M × I by attaching contact handles. Given a contact handle decomposition H of
this sort, we define

�ξ,H : SHI(−M,−�) → SHI(−M ′,−�′)

to be the corresponding composition of contact handle attachment maps, as in the
introduction. Note that if the contact handles in H are 0-, 1-, and 2-handles only and
if ξM is a contact structure on M which agrees with ξ near ∂M , then

�ξ,H (θ(M, �, ξM )) = θ(M ′, �′, ξM ∪ ξ)

by Theorem 4.8.

We remark that Theorem 4.8 does not necessarily apply to the contact 3-handle
map

H3 : SHI(−M,−�) → SHI(−M3,−�3)

of Sect. 3.4. The problem lies with themorphism F# of Definition 3.5, which is defined
fromamapon instantonFloer homology corresponding to a four-dimensional 1-handle
cobordism; it is not clear that this morphism should take one contact class to another.
In sutured monopole homology, this is not an issue (see [1, Subsubsection 4.2.4]),
because the sutured contact class is defined in terms of an invariant of closed contact
3-manifolds, and since the above cobordism is Stein it is known to take one such
contact invariant to another. However, in this setting we cannot hope to apply the same
argument, because θ(M, �, ξ) does not come from an instanton Floer invariant of
closed contact manifolds; indeed, no such invariant currently exists. Fortunately, we
will not need a version of Theorem 4.8 for contact 3-handles in this paper.

Next, we show that θ vanishes for overtwisted contact structures.

Theorem 4.10 If (M, �, ξ) is overtwisted, then θ(M, �, ξ) = 0.

Proof Let N ⊂ M be a neighborhood of an overtwisted disk D. Take a Darboux ball
in N � D and let K be a Legendrian right-handed trefoil in this ball with tb(K ) = 1
and rot (K ) = 0. Then, the connected sum K ′ = K#∂D is a Legendrian trefoil with
tb(K ′) = 2, and it has a connected Seifert surface � ⊂ N ⊂ M of genus 1.
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Let (M−, �−, ξ−) be the result of contact (−1)-surgery on K ′. Suppose D =
(Y, R, r,m, η, α) is amarkedodd closure of (M, �) and letD− = (Y−, R, r,m−, η, α)

be the induced closure of (M−, �−, ξ−), where Y− is obtained from Y via contact
(−1)-surgery on m(K ′). Let X be the associated 2-handle cobordism from Y to Y−.
Now, (M, �, ξ) can be thought of as being obtained from (M−, �−, ξ−) via contact
(+1)-surgery on a Legendrian pushoff K ′′ ⊂ M− of K ′. The associated 2-handle
cobordism from Y− to Y is isomorphic to −X . The morphism

FK ′′ : SHI(−M−,−�−) → SHI(−M,−�)

is therefore the equivalence class of the map associated to X , viewed as a cobordism
from −Y− to −Y .

We can cap off � to a closed surface �′ ⊂ X of genus 1 with self-intersection

�′ · �′ = tb(K ′) − 1 = 1.

This surface violates the adjunction inequality �′ · �′ ≤ 2g(�′) − 2, which implies
that the map induced by the cobordism X is zero [16]. It follows that FK ′′ ≡ 0. But this
map sends θ(M−, �−, ξ−) to θ(M, �, ξ), by Proposition 4.6. Thus, θ(M, �, ξ) = 0.
��
Remark 4.11 The idea above of using the right-handed trefoil was suggested to us by
Peter Kronheimer and has been used to prove similar results; see [23], for example.

Given a closed 3-manifold Y , we denote by Y (n) the sutured manifold obtained by
removing n disjoint 3-balls from Y , where the suture on each component of ∂Y (n)

consists of a single curve. The following is perhaps the most important result of this
subsection.

Theorem 4.12 Suppose (Y, ξ) is a closed contact manifold which is Stein fillable.
Then, the invariant θ(Y (n), ξ |Y (n)) of the sutured contact manifold obtained from
(Y, ξ) by removing n Darboux balls is nonzero.

As promised in the introduction, we have the following corollary.

Corollary 4.13 If (M, �, ξ) embeds as a sutured contact submanifold of a Stein fill-
able contact manifold, then θ(M, �, ξ) �= 0.

Proof Suppose (M, �, ξ) embeds in the Stein fillable contact manifold (Y, ξ). Then,
(M, �, ξ) also embeds into the complement (Y (n), ξ |Y (n)) of some n Darboux balls
for any n ≥ 1. By choosing these Darboux balls appropriately, we can arrange that
Y (n)� int(M) has a contact handle decomposition consisting of 0-, 1-, and 2-handles
only. This corollary then follows from Theorem 4.12 and the discussion in Remark
4.9. ��

In order to prove Theorem 4.12, we first establish the following.

Lemma 4.14 For any k ≥ 0 and any n ≥ 1, SHI((#k(S1 × S2))(n)) ∼= C
2k+n−1

.
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Proof Note that (#k(S1 × S2))(n) can be obtained from the disjoint union of k copies
of (S1 × S2)(1) with one copy of S3(n) via k contact 1-handle attachments. Note that
each (S1 × S2)(1) is obtained from S3(2) by attaching a single contact 1-handle and
that S3(n) is obtained from the disjoint union of n − 1 copies of S3(2) by attaching
n − 2 contact 1-handles. Since contact 1-handle attachment has no effect on the rank
of sutured instanton homology, it follows that SHI((#k(S1 × S2))(n)) is isomorphic
to the sutured instanton homology of the disjoint union of k + n − 1 copies of S3(2).
In particular,

SHI((#k(S1 × S2))(n)) ∼=
k+n−1⊗

i=1

SHI(S3(2)).

So, it suffices for the proof of this lemma to show that

SHI(S3(2)) ∼= C
2. (17)

Let Lk denote the k-component unlink. Then, S3(Lk) refers to the sutured manifold
given as the complement of a regular neighborhood of Lk , with 2meridional sutures on
each boundary component. Note that S3(Lk) can be obtained from S3(k) by attaching
k contact 1-handles. Thus,

SHI(S3(k)) ∼= SHI(S3(Lk)).

The isomorphism class of the modules which make up the system SHI(S3(Lk)) is
what Kronheimer and Mrowka call the instanton knot homology of Lk , denoted by
K H I (Lk), so it suffices for (17) to show that

K H I (L2) ∼= C
2.

In [19], Kronheimer and Mrowka show that K H I satisfies an oriented skein exact
triangle. Applying this to a diagram of L1 with a single crossing, as in Fig. 8, we have

K H I (L1)
f �� K H I (L1)

����
��

��
��

K H I (L2).

����������

Since S3(1) is a product sutured manifold, we have that SHI(S3(1)) ∼= C, which
implies that K H I (L1) ∼= C. The map f is therefore either zero or an isomorphism.
If the latter, then K H I (L2) ∼= 0, which would imply that SHI(S3(2)) ∼= 0. But this
is impossible since S3(2) is taut [21, Theorem7.12]. Thus, f ≡ 0, which implies that
K H I (L2) ∼= C

2. ��
We may now prove Theorem 4.12.
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Fig. 8 Diagrams in an oriented
skein triangle

L1 L1 L2

Proof of Theorem 4.12 Since (Y, ξ) is Stein fillable, it is the result of contact (−1)-
surgery on some link in the standard tight (#k(S1× S2), ξk). Let #k(S1× S2)(n) be the
sutured contact manifold obtained by removing n Darboux balls away from this link
and let Y (n) be the corresponding sutured contact manifold obtained via surgery (we
are suppressing the contact structures from the notation). Then, repeated application
of Proposition 4.6 gives rise to a map

SHI(−Y (n)) → SHI(−(#k(S1 × S2)(n)))

which sends θ(Y (n)) to θ(#k(S1 × S2)(n)). So, it suffices to show that

θ(#k(S1 × S2)(n)) �= 0. (18)

The sutured contactmanifold #k(S1×S2)(n) has a partial open book decomposition
given by (S, P, id, c, f ), where S is obtained from the disk D2 by attaching k unlinked
1-handles h1, . . . , hk ; c = {c1, . . . , ck+n−1}, where c1, . . . , ck−1 are cocores of the
1-handles h1, . . . , hk−1 and ck, . . . , ck+n−1 are parallel cocores of the 1-handle hk ;
P is a regular neighborhood of these cocores, as shown in Fig. 9. Define M0 = H(S)

and let Mi be the sutured contact manifold obtained by attaching contact 2-handles to
H(S) along the curves γ1, . . . , γi ⊂ γ (h, c) for i ≥ 1. In particular, Mi is obtained
from Mi−1 by attaching a contact 2-handle along γi ⊂ ∂Mi−1. Let

Hγi : SHI(−Mi−1) → SHI(−Mi )

denote the corresponding morphism. Note that Mk+n−1 = M(S, P, id, c) and the
contact invariant θ(#k(S1 × S2)(n)) is the image of

(Hγk+n−1 ◦ · · · ◦ Hγ1)(1) (19)

under the map SHI( f ). So, to prove (18), it suffices to show that the class in (19) is
nonzero. For this, it suffices to show that each Hγi is injective.

Let Di−1 = (Yi−1, R, r,mi−1, η, α) be a marked odd closure of Mi−1 and let
Di = (Yi , R, r,mi , η, α) be the induced closure of Mi , where Yi is obtained from
Yi−1 by performing (∂Mi−1)-framed surgery on m(γ ′

i ), where γ ′
i is a pushoff of γi

into the interior of Mi−1. The 2-handle cobordism associated to this surgery gives rise
to a map
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Fig. 9 Page S obtained from the
disk by attaching k unlinked
1-handles showing the cocores
c1, . . . , ck−1 on the first k − 1
handles and the cocores
ck , . . . , cr on the last handle,
where r = k + n − 1

c1

c2

c k
−1

c k c
r

g : SH I (−Di−1) → SH I (−Di )

whose equivalence class agrees with the map Hγi . Note that γi is a unknot in Mi−1
such that the framing induced by the bounding disk agrees with the (∂Mi−1)-framing.
In other words, Yi is obtained from Yi−1 via 0-surgery on the unknot m(γ ′

i ). Let
D ′

i−1 = (Y ′
i−1, R, r,m′

i−1, η, α) be the closure of Mi−1 in which Y ′
i−1 is obtained

from Yi−1 by (−1)-surgery on this unknot. Then, g fits into the surgery exact triangle

SH I (−Di−1)
g �� SH I (−Di )

����
��

��
��

SH I (−D ′
i−1).

����������

(20)

For i = 1, . . . , k, let (Si , Pi , id, ci = {c1, . . . , ci }) be the partial open book in which
Si is the surface obtained from the disk by attaching the first i 1-handles h1, . . . , hi .
Then, M(Si , Pi , id, ci ) is diffeomorphic to (#i (S1× S2))(1). Note that Mi is obtained
from M(Si , Pi , id, ci ) by attaching contact 1-handles. Therefore,

SHI(−Mi ) ∼= SHI(−(#i (S1 × S2))(1)) ∼= C
2i ,

where the latter isomorphism is by Lemma 4.14. It follows that

SH I (−D ′
i−1)

∼= C
2i−1

and SH I (−Di−1) ∼= C
2i−1

and SH I (−Di ) ∼= C
2i .

The exactness of the triangle in (20) then implies that g is injective for i = 1, . . . , k.
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For i = k + 1, . . . , k + n − 1, Mi is diffeomorphic to (#k(S1 × S2))(1 + i − k).
Therefore,

SHI(−Mi ) ∼= SHI(−(#k(S1 × S2))(1 + i − k)) ∼= C
2i

in this case as well, by Lemma 4.14. We therefore have again that

SH I (−D ′
i−1)

∼= C
2i−1

and SH I (−Di−1) ∼= C
2i−1

and SH I (−Di ) ∼= C
2i .

The exactness of the triangle in (20) then implies that g is injective for i = k +
1, . . . , k + n − 1.

Putting all of this together, we have shown thatHγi is injective for all i = 1, . . . , k+
n − 1, completing the proof. ��

5 Stein fillings and the fundamental group

Below, we demonstrate how Conjecture 1.7 follows from Conjecture 1.6. Suppose
Y is an integer homology 3-sphere which bounds a Stein 4-manifold (X, J ) with
c1(J ) �= 0. The long exact sequence of the pair (X,Y ), combined with Poincaré
duality, tells us that

H2(X) ∼= H2(X,Y ) ∼= H2(X).

Moreover, H2(X) is nontorsion since X can be built out of 1- and 2-handles. Thus,
H2(X) is nontorsion. In particular, the difference between two unequal elements in
H2(X) is nontorsion. Let J̄ be the conjugate Stein structure on X , so that c1( J̄ ) =
−c1(J ). It then follows from the discussion above that c1(J ) �= c1( J̄ ) and, hence,
that c1(J ) − c1( J̄ ) is nontorsion. Assuming that Conjecture 1.6 is true, it follows that
the rank of SHI(−Y (1)) is at least 2. But

rk(SHI(−Y (1))) = rk(SHI(−Y (U ))),

where U is an unknot in Y . Therefore,

rk(K H I (Y,U )) ≥ 2. (21)

We claim that there exists an irreducible homomorphism

ρ : π1(Y � U ) → SU (2) (22)

which sends a chosen meridian m of U to i ⊂ SU (2). The argument is similar to that
used in the proof of [21, Proposition 7.17]. Suppose there are no irreducibles. Observe
that there is only one reducible homomorphism. Indeed, reducibles have abelian image
and so must factor through homomorphisms

H1(Y�U ; Z) → SU (2)
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sending [m] to i. But H1(Y�U ; Z) ∼= Z since Y is an integer homology 3-sphere,
so there is exactly one such homomorphism. Since there are no irreducibles, this
reducible homomorphism corresponds to the unique generator of a chain complex for
the reduced singular instanton knot homology I �(Y,U ), which implies that

I �(Y,U ) ∼= Z.

There are several ways to see this; it follows easily, for instance, from the work of
Hedden et al. [9]. On the other hand, Kronheimer and Mrowka proved in [18] that

K H I (Y,U ) ∼= I �(Y,U ) ⊗ C,

so the inequality in (21) implies that I �(Y,U ) has rank at least 2, a contradiction. It
follows that there exists an irreducible homomorphism

ρ : π1(Y � U ) ∼= π1(Y ) ∗ Z → SU (2)

as claimed. Such a ρ then induces a homomorphism

ρY : π1(Y ) → SU (2)

which must be nontrivial (otherwise, ρ would be reducible), completing this discus-
sion.
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