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1 Introduction

Let An be the coordinate ring of the space of symmetric bilinear forms on Cn , that is,
Sym(Sym2(Cn)). Inside of Spec(An) is the closed subset V (In,r ) of forms of rank at
most r defined by the determinantal ideal In,r . The resolution of An/In,r over An is
explicitly known by a classical result of Lascoux [14] (see also [24, Chapter 6]). The
explicit description of the resolution reveals an interesting feature: its terms stabilize
as n grows. More precisely, the decomposition of Tor p

An
(An/In,r ,C) into irreducible

representations of GLn is independent of n for n � p, r , when one appropriately
identifies irreducibles of GLn with a subset of those for GLn+1.

Given this observation, one may wonder whether the same phenomenon holds true
more generally. That is, suppose that for each n ≥ 0 we have a finitely generated
GLn-equivariant An-module Mn such that the M• are “compatible” in an appropriate
sense. Do the resolutions of the Mn stabilize?

The main result of this paper (Theorem 1.1) implies that the answer to this ques-
tion is “yes”. In fact, Theorem 1.1 establishes a more fundamental result: Compatible
sequences of finitely generated equivariant An-modules are “noetherian” in an appro-
priate sense.

1.1 Statement of results

Instead of working with a compatible sequence of An-modules, we prefer to pass to
the limit in n and work with a single module over the ring Sym(Sym2(C∞)). This
ring, with its GL∞ action, is an example of a twisted commutative algebra (tca);
see Sect. 2.1 for the general definition. Given a tca A, there is a notion of (finitely
generated) A-module, and A is said to be noetherian if any submodule of a finitely
generated A-module is again finitely generated.

Our main result is the following theorem:

Theorem 1.1 The tca’s Sym(Sym2(C∞)) and Sym(
∧2

(C∞)) are noetherian.

We also prove a variant of the above result. A bivariate tca is like a tca, but where
the group GL∞ × GL∞ acts. We prove:

Theorem 1.2 The bivariate tca Sym(C∞ ⊗ C∞) is noetherian.

Remark 1.3 Let FIM be the category whose objects are finite sets and where a mor-
phism X → Y is a pair ( f, �) consisting of an injection f : X → Y and a perfect
matching � on Y\ f (X). Then the category of Sym(Sym2(C∞))-modules is equiv-
alent to the category of FIM-modules over C (see [21, §4.3], where FIM is called
the upwards Brauer category). Thus Theorem 1.1 shows that finitely generated FIM-
modules are noetherian. This is reminiscent of the noetherianity result for FI-modules
(see [5, Theorem 1.3]), but much more difficult. There are analogous reinterpretations
for the other two cases.
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1.2 Motivation

We offer a few pieces of motivation for our work.

• Our main theorems generalize and place into the proper context the stability phe-
nomena observed in the resolutions of determinantal ideals and related ideals (such
as those considered in [17]).

• The algebras appearing in Theorems 1.1 and 1.2 are closely related to the repre-
sentation theory of orthogonal and symplectic groups; for example, see [21] or
Example 1.4 below. We believe our theorems will have useful applications in this
area.

• The tca’s we consider provide important new additions to the growing list of large
noetherian algebraic structures; see Sect. 1.3 for further discussion.

• FIM-modules are formally very similar to theFI-modules studied in [5,6]. Numer-
ous examples of FI-modules have been found, and the noetherian property for
FI-modules often translates to interesting new theorems about the examples (e.g.,
representation stability in the cohomology of configuration spaces).We do not cur-
rently have analogous examples of FIM-modules, but when examples are found
(which we expect), Theorem 1.1 will yield interesting new results about them.

Example 1.4 For δ ∈ C define theBrauer category B(δ) as follows: Objects are finite
sets, andmorphisms are Brauer diagrams, where composition of Brauer diagrams uses
the parameter δ. One can regard FIM as a subcategory of B(δ), and from this one can
deduce noetherianity of B(δ)-modules fromTheorem1.1. Suppose that δ = n−m with
integers n and m. Then one obtains an interesting B(δ)-module by S 	→ (Cn|m)⊗S ,
where Cn|m is the super vector space of the indicated super dimension. This module
is closely connected to the representation theory of the orthosymplectic Lie algebra
osp(n|m). Our theorem shows that any submodule of this module is finitely generated.
The second and third author plan to study B(δ)-modulesmore closely in a future paper,
and the noetherian property will be of foundational importance.

1.3 Connection to previous work

Theorem 1.1 fits into a theme that has emerged in recent years where large alge-
braic structures have been found to be noetherian. See [3,7,13] for examples of
S∞-equivariant polynomial rings. Some other examples include �-modules [23], FI-
modules [5,6] (see also [19]), FS-modules [22], VIC(R)-modules [18], and certain
spaces of infinite matrices [10–12].

However, the noetherian results of this paper seem fundamentally more difficult
than the previous ones. We do not know how to make this observation precise, but
offer the following observation. One can almost always use Gröbner bases to reduce
a noetherianity problem in algebra to one in combinatorics (see [22]). In the previous
noetherianity results, the combinatorial problems ultimately concernwords in a formal
language and can be easily solved using Higman’s lemma. In contrast, the combinato-
rial problem that naturally arises in the present case (Question 5.2) is graph-theoretic
and does not seem approachable by Higman’s lemma. Alternatively, this division can
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be seen in terms of the asymptotics of Hilbert functions: In the previous noetherian
results, the Hilbert functions have exponential growth, while in the present case the
growth is super-exponential.

Due to this fundamental new difficulty, we have been forced to introduce new
methods to prove the main theorem. We believe these will be useful more generally.

1.4 Outline of proof

We now outline the proof of noetherianity for A = Sym(Sym2(C∞)). Let K =
Frac(A), and let ModtorsA be the category of torsion A-modules, where we say that an
A-module M is torsion if M ⊗A K = 0. If I is a nonzero ideal of A then the quotient
tca A/I is “essentially bounded”, and it is not difficult to conclude from this that A/I
is noetherian (see Proposition 2.4); it follows that finitely generated objects of ModtorsA
are noetherian.

We next consider the Serre quotient category ModA /ModtorsA , which we denote
by ModK . The intuition for ModK comes from the following picture, which is not
rigorous:

The schemeSpec(A) is the space of symmetric bilinear forms onC∞. A-modules
correspond to GL∞-equivariant quasi-coherent sheaves on Spec(A). Torsion
A-modules correspond to sheaves that restrict to zero on the open set U of
non-degenerate forms. Thus objects of ModK correspond to equivariant quasi-
coherent sheaves on U . But such sheaves correspond to representations of O∞,
since GL∞ acts transitively on U with stabilizer O∞.

The above reasoning is fraught with errors. Nonetheless, it leads to a correct statement:
We prove (Theorem 3.1) that ModK is equivalent to the category of algebraic repre-
sentations of O∞, as defined in [21]. The results of [21] can therefore be transferred
to ModK and give an essentially complete understanding of this category.

We would now like to piece together what we know about ModtorsA and ModK

to deduce the noetherianity of A. However, the noetherianity of A is not a formal
consequence of what we have so far: We need to use more information about how
ModA is built out of the two pieces ModtorsA and ModK . We proceed in three steps.

(1) We show that if M is a finitely generated torsion A-module then M admits a reso-
lution by finitely generated projective A-modules (Proposition 4.3). The essential
input here is [17], which explicitly computes the resolutions of certain torsion
modules.

(2) We next show that the section functor ModK → ModA, defined as the right
adjoint of the localization functor ModA → ModK , takes finite length objects of
ModK to finitely generated objects of ModA. This follows from step (1) and the
structural results for ModK (see Proposition 4.8).

(3) Finally, the noetherianity of A is deduced from (2), and our knowledge ofModtorsA
and ModK , by a short argument (see Theorem 4.9).

Remark 1.5 Let us offer some broader context for this proof. Suppose that X is
a scheme equipped with an action of a group G. We say that X is topologically
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G-noetherian if every descending chain of G-stable Zariski closed subsets in X
stabilizes. We say that X is (scheme-theoretically) G-noetherian if the analogous
statement holds for subschemes.1 Suppose that U is a G-stable open subscheme of X ,
and let Z be the complement of U . One would then like to relate the noetherianity of
X to that of U and Z .

For topological noetherianity, there is no problem: If U and Z are topologically
G-noetherian then so is X (see [11, §5]). This is a fundamental tool used in vari-
ous topological noetherianity results, such as [10–12]. Unfortunately, the analogous
statement for scheme-theoretic G-noetherianity does not hold: this is why we cannot
directly conclude the noetherianity of A from that of ModtorsA and ModK .

The main technical innovation in this paper is our method for deducing (in our
specific situation) scheme-theoretic noetherianity of X from that of U and Z , together
with some extra information. This approach is likely to be applicable in other situations
and could be very useful: For instance, if one could upgrade the topological results of
[11] to scheme-theoretic results, it is likely that one could also get finiteness results
for higher syzygies in addition to results about equations (and not just set-theoretic
equations).

1.5 Twisted graded-commutative algebras

One can define a notion of twisted graded-commutative algebra, the basic exam-
ples being exterior algebras on finite length polynomial representations ofGL∞. The
noetherianity problem for these algebras is interesting and has applications similar to
the commutative case. Transpose duality interchanges the algebras Sym(C∞ ⊗ C∞)

and
∧

(C∞ ⊗C∞), and so noetherianity of the latter is an immediate consequence of
Theorem 1.2. However, the noetherianity of

∧
(Sym2(C∞)) and

∧
(
∧2

(C∞)) cannot
be formally deduced from the results of this paper. We treat these algebras in a follow-
up paper [16]. The main ideas are the same, but the details are more complicated: For
example, while Sym(Sym2(C∞)) is closely related to the orthogonal group O∞, the
algebra

∧
(Sym2(C∞)) is closely related to the periplectic superalgebra pe∞.

1.6 Open questions

We list a number of open problems related to this paper.

(1) Theorem 1.1 states that the tca Sym(V ) is noetherian when V is an irreducible
polynomial representation of degree 2. It would be natural to generalize this result
by allowing V to be a finite length representation of degree ≤ 2. Eggermont
[12] has shown that these tca’s are topologically noetherian (i.e., radical ideals
satisfy the ascending chain condition). This suggests that they are all noetherian.
However, new ideas are needed to actually prove this.

(2) It is desirable to have results (either positive or negative) when V has degree
> 2. One might begin by trying to prove topological noetherianity for degree 3

1 One should ask that all G-equivariant coherent sheaves are noetherian, not just the structure sheaf.
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representations. The third author is currently investigating this with H. Derksen
and R. Eggermont.

(3) Are the characteristic p analogs of the tca’s considered in this paper noetherian?
Our methods do not apply there. We point out that there are two versions of tca’s
in positive characteristic: one defined in terms of polynomial representations, and
one defined in terms of symmetric groups.

(4) Theorem 1.1 shows that A = Sym(Sym2(C∞)) is noetherian if we make use
of the GL∞ action. On the other hand, it is known that A is not noetherian if
one only makes use of the S∞ action [9, Example 2.4]. What happens for other
groups? Is A noetherian with respect to O∞ or Sp∞?

(5) In Sect. 4.2, we show that torsion modules over Sym(C∞ ⊗C∞) satisfy the prop-
erty (FT) by appealing to [17],which explicitly computes the resolutions of certain
torsion modules. We also show that torsion modules over Sym(Sym2(C∞)) sat-
isfy (FT), but deduce this by a rather clumsy argument from the previous case since
the analog of [17] is not known in this case. We therefore believe that carrying
out the analog of [17] for Sym(Sym2(C∞)) would be a worthwhile undertaking.

(6) Question 5.2 is an interesting and purely combinatorial question that is needed
for the Gröbner approach to Theorem 1.1.

1.7 Outline of paper

In Sect. 2, we review definitions and prove some general properties of tca’s. These
include generalities on the localization functor ModA → ModK and the section
functor S : ModK → ModA used in the proof of the main result. In Sect. 3 we prove
that for the specific algebras under consideration, the Serre quotient category ModK

can be described in terms of representations of infinite rank classical groups. The
proofs of Theorems 1.1 and 1.2 are in Sect. 4. Finally, Sect. 5 discusses an incomplete
Gröbner theoretic approach to the main theorems.

Remark 1.6 Transpose duality [20, §7.4] interchanges the two algebras in Theo-
rem 1.1, so it suffices to prove the noetherianity for either one. We give arguments for
both when convenient, but sometimes omit details for Sym(

∧2
(C∞)).

2 Generalities on tca’s

2.1 Definitions

A representation of GL∞ is polynomial if it appears as a subquotient of a (possibly
infinite) direct sumof representations of the form (C∞)⊗k . Polynomial representations
are semi-simple, and the simple ones are the Sλ(C∞), where Sλ denotes the Schur
functor corresponding to the partition λ. A polynomial representation is said to have
finite length if it is a direct sum of finitely many simple representations. See [20] for
details.

A twisted commutative algebra (tca) is a commutative associative unitalC-algebra
A equipped with an action ofGL∞ byC-algebra homomorphisms such that A forms a
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polynomial representation ofGL∞. Alternatively, A is a polynomial functor from vec-
tor spaces to commutative algebras [20, Theorem 5.4.1]; when used in this perspective,
we use A(V ) to denote its value on a vector space V .

We write |A| when we want to think of A simply as a C-algebra and forget the
GL∞ action. An A-module is an |A|-module M equipped with an action ofGL∞ that
is compatible with the one on A (i.e., g(ax) = (ga)(gx) for g ∈ GL∞, a ∈ A, and
x ∈ M) and such that M forms a polynomial representation of GL∞. An ideal of A
is an A-submodule of A, i.e., a GL∞-stable ideal of |A|. We denote the category of
A-modules by ModA. We write |M | when we want to think of M as a module over
|A|, forgetting its GL∞-structure.

We say that A is finitely generated if |A| is generated as a C-algebra by the GL∞
orbits of finitely many elements. Equivalently, A is finitely generated if it is a quotient
of a tca of the form Sym(V ), where V is a finite length polynomial representation of
GL∞. An A-module M is finitely generated if it is generated as an |A|-module by
theGL∞ orbits of finitely many elements. Equivalently, M is finitely generated if it is
a quotient of an A-module of the form A ⊗ V , where V is a finite length polynomial
representation ofGL∞. We note that the A ⊗ V are exactly the projective A-modules.
An A-module if noetherian if every submodule is finitely generated. We say that A
is noetherian (as an algebra) if every finitely generated A-module is noetherian.

Remark 2.1 We say that A is weakly noetherian if it is noetherian as a module over
itself; i.e., if ideals of A satisfy ACC. Of course, noetherian implies weakly noetherian.
However, it is not clear whether weakly noetherian implies noetherian: not every A-
module is a quotient of a direct sum of copies of A, due to the equivariance, and so
there is no apparent way to connect the noetherianity of A as an A-module to that of
general modules.

There are “bivariate” versions of the above concepts. A representation of GL∞ ×
GL∞ is polynomial if it appears as a subquotient of a (possibly infinite) direct sum
of representations of the form (C∞)⊗a ⊗ (C∞)⊗b. Polynomial representations are
again semi-simple, and the simple ones are the Sλ(C∞) ⊗ Sμ(C∞). A bivariate tca
is a commutative associative unital C-algebra A equipped with an action of GL∞ ×
GL∞ by C-algebra homomorphisms such that A forms a polynomial representation
ofGL∞ ×GL∞. The remaining definitions in the bivariate case should now be clear.

Since GL∞ sits inside of GL∞ ×GL∞ (diagonally), any action of GL∞ ×GL∞
can be restricted to one of GL∞. Thus bivariate tca’s can be regarded as tca’s, and
similarly for modules. This restriction process preserves finite generation (of algebras
and modules) since the tensor product of finite length polynomial representations is
again finite length.

2.2 Annihilators

Let A be a tca and M be an A-module. The annihilator of M , denoted Ann(M), is
the set of elements a ∈ A such that am = 0 for all m ∈ M . This is an ideal of |A| and
GL∞ stable, and thus an ideal of A.
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Proposition 2.2 Let A be a tca, and let M be an A-module. Suppose am = 0 for
some a ∈ A and m ∈ M. Then there exists an integer n, depending only on m, such
that an(gm) = 0 for all g ∈ GL∞(C).

Proof First, we claim that ak+1Xk · · · X1m = 0 for any X1, . . . , Xk ∈ gl∞. We
proceed by induction on k. The k = 0 case is simply the statement am = 0, which is
given. Suppose now that ak Xk−1 · · · X1m = 0. Applying Xk , we obtain

kak−1(Xka)(Xk−1 · · · X1m) + ak(Xk · · · X1m) = 0.

Multiplying by a kills the first term and shows ak+1Xk · · · X1m = 0. This completes
the proof of the claim.

Let M ′ ⊂ M be the GL∞ representation generated by m. Suppose that a belongs
to A(V ) with V ⊂ C∞. Pick m′ ∈ M ′ that also generates M ′ and belongs to M ′(U )

with U ∩ V = 0. We can write m′ = Xm for some X ∈ U(gl∞), and so the claim
shows that anm′ = 0 for some n. We claim that this n works for all elements in M ′.
Indeed, given any g ∈ GL∞, we can find f : C∞ → C∞ such that f agrees with g
on U and is the identity on V . We then have f∗(a) = a and f∗(m′) = gm′, and so
0 = f∗(anm′) = an(gm′). ��
Corollary 2.3 Suppose |A| is a domain. Let M be a finitely generated A-module such
that M ⊗A Frac(A) = 0. Then Ann M �= 0.

Proof Let m1, . . . , mr be generators for M . Since M ⊗A Frac(A) = 0, we can find
a �= 0 in A such that ami = 0 for all 1 ≤ i ≤ r . By the proposition, there exists
n > 0 such that an(gmi ) = 0 for all 1 ≤ i ≤ r and all g ∈ GL∞. Thus 0 �= an ∈
Ann(M). ��

2.3 Essentially bounded tca’s

We say that a polynomial representation V of GL∞ is essentially bounded if there
exist integers r and s such that for any simple Sλ(C∞) appearing in V we have λr ≤ s.
Similarly, we say that a polynomial representation V of GL∞ × GL∞ is essentially
bounded if there exist integers r and s such that for any simple Sλ(C∞) ⊗ Sμ(C∞)

appearing in V we have λr ≤ s and μr ≤ s. The Littlewood–Richardson rule [20,
(2.14)] implies that the tensor product of essentially bounded representations is again
essentially bounded. In particular, if V is an essentially bounded representation of
GL∞ × GL∞ then its restriction to the diagonal GL∞ is still essentially bounded.
Note also that any finite length representation is essentially bounded.

Proposition 2.4 Let A be a finitely generated and essentially bounded (bivariate) tca.
Then A is noetherian.

Proof We treat only the univariate case, the bivariate case is similar. Let P be a finitely
generated projective A-module. Note that P is essentially bounded. We must show
that P is noetherian. Suppose that every partition appearing in P has at most r rows
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and at most s columns. Let Cr |s be a super vector space with r -dimensional even part
and s-dimensional odd part.

For any symmetric monoidal category C and choice of object V ∈ C, there is a
symmetric monoidal functor Reppol(GL∞) → C that sends Sλ(C∞) to Sλ(V ). We
apply this with C the category of super vector spaces, equipped with the usual tensor
product and the signed symmetry (see [20, (7.3.3)]), and V = Cr |s . We thus obtain a
natural map

{A-submodules of P} → {A(Cr |s)-submodules of P(Cr |s)}.

It follows from [4, Theorem 3.20] that this map is injective. Since A(Cr |s) is a finitely
generated superalgebra, the finitely generated module P(Cr |s) is noetherian. Thus the
right side satisfies ACC and so the left side does as well. ��
Remark 2.5 This argument is modeled on the discussion in [20, §9.1].

2.4 Serre quotients

Let A be a tca with |A| a domain, and let K = Frac(|A|). The field K has an action
of GL∞, and we write |K | when we want to disregard this action. A K -module
is a |K |-vector space V equipped with a compatible action of GL∞ such that V is
spanned over |K | by polynomial elements (i.e., elements generating a polynomial
C-subrepresentation). We write ModK for the category of K -modules. If V is a poly-
nomial representation ofGL∞ then K ⊗V is a K -module.All K -modules are quotients
of such K -modules.Note, however, that K ⊗V is usually not projective as a K -module.

An A-module M is torsion if M ⊗A K = 0. Write ModtorsA for the category of
torsion modules. We let ModgenA be the Serre quotient ModA /ModtorsA , and we let
T : ModA → ModgenA be the localization functor. The functor ModA → ModK given
by M 	→ M ⊗A K is exact and kills ModtorsA , and thus induces an exact functor
F : ModgenA → ModK . Note that F(T (M)) = M ⊗A K , by definition. Given a K -
module M , let S(M) = Mpol be the set of polynomial elements in M . This is naturally
an A-module, and the resulting functor S : ModK → ModA is right adjoint to FT .
The following diagram summarizes the situation.

ModA

T

�����������

ModgenA
F �� ModK

S
�����������

Proposition 2.6 Let M be a K -module. Then the natural map Mpol⊗A K → M is an
isomorphism of K -modules. In particular, we have a natural isomorphism FT S = id.

Proof Injectivity is free. For surjectivity, pick v ∈ M . By definition, we can write
v = ∑n

i=1 xiwi , where xi ∈ K and wi ∈ M is polynomial. Again, by definition, we
can write xi = ai/bi , where ai and bi are polynomial elements of K . We therefore
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have v = b−1w, where b = ∏n
i=1 bi ∈ K and w = ∑n

i=1(ai b/bi )wi is a polynomial
element of M . ��
Proposition 2.7 The functor F is an equivalence of categories.

Proof Proposition 2.6 shows that F has a right quasi-inverse, and so is therefore
essentially surjective and full. We show that F is faithful. Let M and N be A-modules,
and consider a morphism f̃ : M → N in ModgenA mapping to 0 in ModK . Write
f̃ = T ( f ) for some morphism f : M ′ → N/N ′ in ModA, where M ′ and N ′ are
submodules of M and N with M/M ′ and N ′ torsion. Since f : M ′ ⊗ K → N/N ′ ⊗ K
is 0, it follows that the image of f is a torsion submodule of N/N ′, and therefore
of the form N ′′/N ′, where N ′′ is a torsion submodule of N containing N ′. But then
the image f ′ of f in Hom(M ′, N/N ′′) is 0, and since f̃ = T ( f ) = T ( f ′), we have
f̃ = 0. ��
Proposition 2.8 Let W be a finite length polynomial representation with WGL∞ = 0.
Set A = Sym(W ). Then S(K ⊗ V ) = A ⊗ V for any polynomial representation V .

Proof Suppose that x = ∑s
i=1( fi/g)⊗vi is a polynomial element of K ⊗V , written in

lowest terms (that is, gcd(g, f1, . . . , fs) = 1 and {v1, . . . , vs} is linearly independent).
Let m � 0 be such that g and each fi belong to A(Cm), and let n = m + 1. We can
think of x as a section of a vector bundle on Cn having a pole along the divisor g = 0.
Since x ∈ (K ⊗ V )pol, it generates a finite dimensional representation of GLn . Let∑

k( f j,k/g j ) ⊗ v j,k for 1 ≤ j ≤ r be a basis; then every element can be written with
common denominator g1 · · · gr . In particular, the GLn-orbit of the divisor g = 0 is
contained in g1 · · · gr = 0 and hence is finite. ButGLn is connected, so the irreducible
components of g = 0 are preserved. Thus g is semi-invariant under GLn . Any one-
dimensional polynomial representation of GLn must be of the form Sd,...,d(Cn). But
g ∈ A(Cm) and is nonzero, and so it must be the case that g is actually invariant under
GLn (d must be zero because otherwise Sd,...,d(Cn) = 0), and thus underGL∞. Since
AGL∞ = C, we conclude that g is constant, and so x ∈ A ⊗ V , as required. ��

There is also a version of the above discussion for bivariate tca’s. The statements
and proofs are nearly identical.

3 ModK and algebraic representations

3.1 The main theorem and its consequences

A representation of O∞ = ⋃
n≥1On is algebraic if it appears as a subquotient of a

(possibly infinite) direct sum of tensor powers of the standard representation C∞. We
write Rep(O∞) for the category of such representations. This category was studied in
[21].

We let A = Sym(Sym2(C∞)) and K = Frac(A) until Sect. 3.5. We let e1, e2, . . .
be a basis for C∞, and let xi, j = ei e j , so that A = C[xi, j ]. Define m ⊂ |A| to be the
ideal generated by xi,i − 1 and xi, j for i �= j . This ideal is not stable by GL∞, but
is stable by O∞. The quotient A/m is isomorphic to C. For an A-module M , define
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�̃(M) = M/mM . This is naturally a representation ofO∞. The main result of Sect. 3
is the following theorem (see Sect. 3.5 for analogous results in the other two cases):

Theorem 3.1 The functor �̃ induces an equivalence of categories � : ModK →
Rep(O∞).

We give the proof in the following subsections. The precise definition of � is given
in Sect. 3.3. For now, we note the following consequences of this theorem:

Corollary 3.2 We have the following:

(a) Finitely generated objects of ModK have finite length.
(b) If V is a finite length polynomial representation of GL∞ then K ⊗ V is a finite

length injective object of ModK , and all finite length injective objects have this
form.

(c) Associating to λ the socle of K ⊗ Sλ(C∞) gives a bijection between partitions
and isomorphism classes of simple objects of ModK .

(d) Every finite length object M of ModK has a finite injective resolution M → I•
where each Ik is a finite length injective object.

Proof These properties are proven for Rep(O∞) in [21]:
(a) [21, Proposition 4.1.5],
(b, c) [21, Proposition 4.2.9],
(d) dualize the explicit projective resolutions in [21, (4.3.9)]. ��

3.2 Local structure at m of A-modules

The main result of this section is the following:

Proposition 3.3 Let M be an A-module. Then Mm is a free Am-module.

Let M∞ be the set of infinite complex matrices, indexed by Z≥0. Let B ⊂ M∞
be the set of upper-triangular matrices, and let B ⊂ B be the group of invertible
upper-triangular matrices. Let bi, j : M∞ → C be the function taking the (i, j) matrix
entry. We let C[B] be the polynomial ring C[bi, j ]i≤ j , and we let C[B] = C[B][b−1

i,i ].
Elements of V ⊗ C[B] can be thought of as (certain) functions B → V .

If V is a polynomial representation of GL∞ then every v ∈ V spans a finite
dimensional subrepresentation of B. It follows that we can give V the structure of a
C[B]-comodule; that is, we have a map V → V ⊗C[B]. Explicitly, this map takes v

to the function B → V given by b 	→ bv. In fact, the image of the comultiplication
map is contained in V ⊗ C[B].

Let H = B ∩ O∞. Explicitly, H is the group of diagonal matrices with diagonal
entries ±1, almost all of which are 1. If V is a polynomial representation of GL∞
then the map V → V ⊗ C[B] above actually lands in the H -invariants of the target.
Here we let B, and H , act on C[B] by right translation.

Let M be an A-module. We then obtain a map

M → M ⊗ C[B] → M/mM ⊗ C[B].
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The image lands in the H -invariants (note that m is H -stable, so H still acts on
M/mM), and so we have a map

ϕM : M → (M/mM ⊗ C[B])H .

We now study this map. We first treat the case where M = A. Then A/mA = C, and
so our map takes the form

ϕA : A → C[B]H

The invariant ring C[B]H is easily seen to be the subring of C[B] generated by the
bi, j bi,k , with i ≤ j, k. Since B acts on A by algebra homomorphisms, the map
A → A⊗C[B] is an algebra homomorphism, and so ϕA is an algebra homomorphism
as well. Due to this, it suffices to understand where the generators xi, j go. For m ∈ B,
we have

mei =
∑

k≤i

bk,i (m)ek,

and so

m(ei e j ) =
⎛

⎝
∑

k≤i

bk,i (m)ek

⎞

⎠

⎛

⎝
∑

�≤ j

b�, j (m)e�

⎞

⎠ =
∑

k≤i,�≤ j

bk,i (m)b�, j (m)eke�.

Thus the map A → A ⊗ C[B] is given by

xi, j 	→
∑

k≤i, �≤ j

bk,i b�, j xk,�.

To compute ϕA, we now apply the homomorphism A → A/mA = C, which takes
xi, j to δi, j . Set Xi, j = ϕ(xi, j ), we thus find

Xi, j = ϕ(xi, j ) =
∑

k≤i, j

bk,i bk, j .

Proposition 3.4 The localization of ϕA at m is an isomorphism.

Proof Let me be the extension of m to C[B]H via ϕA. Let i ≤ j . We have Xi, j =
bi,i bi, j + X ′

i, j , where X ′
i, j is the sum of the bk,i bk, j with k < i . Since Xi, j ∈ m

for i �= j and Xi,i − 1 ∈ m, an easy inductive argument shows that b2i,i − 1 ∈ m

and bi, j bi,k ∈ m if i �= j or i �= k. In particular, b2i,i is a unit in the localization. The

expression Xi, j Xi,k = b2i,i bi, j bi,k +· · · (where themissing terms involve only smaller
variables) shows, inductively, that bi, j bi,k belongs to the image of ϕA localized at m.
Since these generate C[B]H , the result follows. (It is easy to see that ϕA, and hence
its localization, is injective.) ��
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A monomial character of H is a homomorphism H → C× of the form
(z1, z2, . . .) 	→ zn1

1 zn2
2 · · · where the ni are integers (it suffices to consider ni ∈ {0, 1})

and ni = 0 for i � 0. A representation of H is admissible if it is a sum of monomial
characters.

Proposition 3.5 Let V be an admissible representation of H. The localization of
(V ⊗C[B])H at m is a free Am-module, and the fiber at m is canonically isomorphic
to V .

Proof It suffices to treat the casewhereV is one-dimensional. Letχ = zi1 · · · zir be the
corresponding (monomial) character. Then an argument similar to the one in the proof
of Proposition 3.4 shows that for any nonzero v ∈ V , the element v ⊗ (bi1,i1 · · · bir ,ir )

is an H invariant and the localization of (V ⊗ C[B])H at m is a free Am-module
generated by v ⊗ (bi1,i1 · · · bir ,ir ). The second statement follows immediately from
this. ��

Now let M be an A-module, and consider the map

ϕM : M → (M/mM ⊗ C[B])H .

The target is naturally a module over the ring C[B]H , which is itself an A-algebra,
and one easily verifies that ϕM is a map of A-modules.

Proposition 3.6 Let M be an A-module. The localization of ϕM at m is an isomor-
phism.

Proof Note that for any M , the quotient M/mM is an admissible representation of H .
Since such representations are semi-simple, it follows that the target of ϕM commutes
with direct limits in M . It therefore suffices to treat the case where M is finitely
generated as an A-module. Let N = (M/mM ⊗ C[B])H

m, and let R be the kernel of
(ϕM )m. Since M/mM is an admissible representation of H , Proposition 3.5 shows
that N is a free Am-module whose fiber at m is isomorphic to M/mM . It follows that
(ϕM )m is a surjection, since it is a surjection mod m and N is free. We thus have an
isomorphism Mm = R ⊕ N , which shows that R is finitely generated. Since (ϕM )m
induces an isomorphism on the fiber at m, we see that R/mR = 0. Thus R = 0 by
Nakayama’s lemma, which completes the proof. ��

Proposition 3.3 follows from the above proposition, since as noted in the above
proof, the target of (ϕM )m is a free Am-module.

3.3 Definition of �

We begin with some simple observations.

Lemma 3.7 If V is a polynomial representation of GL∞ then �̃(A ⊗ V ) is isomor-
phic to the restriction of V to O∞. For any A-module M, �̃(M) is an algebraic
representation of O∞.
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Proof The first part is clear. For the second part, pick a surjection A ⊗ V → M of
A-modules. Since �̃ is right exact, there is an induced surjection V → �̃(M). As any
quotient of an algebraic representation is algebraic, the result follows. ��
Lemma 3.8 If I is a nonzero ideal of A then I + m = A.

Proof Suppose I is a nonzero ideal of A. Let An = Sym(Sym2(Cn)), regarded as
a subring of |A|. Then A is the union of the An , and so for n sufficiently large,
I ′ = I ∩ An is a nonzero GLn-stable ideal of An . Of course, m′ = m ∩ An is a
maximal ideal of An . The scheme Spec(An) is the space of symmetric bilinear forms
on Cn , and m′ ∈ Spec(An) represents the sum of squares form, which has maximal
rank. Since V (I ′) is a proper closedGLn-stable subset of Spec(An), it cannot contain
any form of maximal rank (as the orbit of any such form is dense), and so I ′ �⊂ m′. It
follows that I �⊂ m, and so I + m = A. ��
Lemma 3.9 If M is a torsion A-module then �̃(M) = 0.

Proof Since �̃ commutes with direct limits, it suffices to treat the case where M is
finitely generated and torsion. By Corollary 2.3, M has nonzero annihilator I , and
I + m = A by the Lemma 3.8. Thus

M/mM = M ⊗A/I (A/(I + m)) = 0.

��
Lemma 3.10 The functor �̃ is exact.

Proof This follows immediately from Proposition 3.3. ��
Thus �̃ is an exact functor killing ModtorsA . It follows that �̃ factors through the

Serre quotient ModA/ModtorsA , which we identify with ModK . In other words, there
exists an exact functor � : ModK → Rep(O∞), unique up to isomorphism, such that
�̃(M) = �(M ⊗A K ). Since �̃ is compatible with direct limits, so is �.

3.4 Proof of Theorem 3.1

We now prove that � is an equivalence. We first prove that it is faithful, then full, and
finally essentially surjective.

Lemma 3.11 � is faithful.

Proof Let f : M → N be a map of A-modules, and suppose �̃( f ) = 0. The square

M
ϕM ��

f

��

(M/mM ⊗ C[B])H

f ⊗1
��

N
ϕN �� (N/mN ⊗ C[B])H
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commutes. Since �̃( f ) = f = 0, the right map is 0. Since ϕM and ϕN are isomor-
phisms after localizing at m, the induced map f : Mm → Nm is 0. This implies that
the induced map f : M ⊗A K → N ⊗A K is 0, and so f = 0 in ModK . This shows
that � is faithful. ��

In what follows, we give GL∞ and B the direct limit topology (thinking of them
as the direct limits of GLn and B ∩ GLn in the Zariski topology).

Lemma 3.12 Let M be an A-module, and let x ∈ M ⊗A K . Then there exists a dense
Zariski open subset V of B such that bx ∈ Mm for all b ∈ V .

Proof Given h ∈ C[B], let Uh = {b ∈ B | h(b) �= 0} be the corresponding Zariski
open subset of B. Let V = {b ∈ B | bx ∈ Mm}. We can find nonzero a ∈ A such
that ax ∈ M . Note that b ∈ UϕA(a) if and only if ba /∈ m; since ϕA(a) is not the zero
function by Proposition 3.4, we can find such a b. Then bx ∈ Mm and so V �= ∅.

We claim that V is open. Suppose b ∈ V and write bx = ∑
i mi ⊗ ( fi/c) with

mi ∈ M , fi ∈ A, and c ∈ A\m. Then 1 ∈ UϕA(c) and b′bx ∈ Mm for each b′ ∈ UϕA(c).
So UϕA(c)b ⊆ V , showing that V is open. Finally, since B is a directed union of
irreducible spaces, a nonempty open subset, like V , is dense. ��
Lemma 3.13 Let M be an A-module, and let x ∈ M ⊗A K . Suppose that there exists
a dense Zariski open subset U of B such that for all b ∈ U we have bx ∈ Mm and
bx = 0, where the overline denotes reduction mod m. Then x = 0.

Proof Replacing x with ax , for an appropriate a ∈ A, it suffices to treat the case
x ∈ M . Then b 	→ bx defines a function B → M/mM which is continuous for the
Zariski topology. The hypothesis implies that it vanishes on a dense subset of B, and
therefore it vanishes on all of B. So ϕM (x) = 0, and so x = 0 since ϕM is injective
after localizing at m. ��
Lemma 3.14 Let U be a dense Zariski open subset of B. Then for all g ∈ GL∞ the
set O∞Ug−1 ∩ B contains a dense Zariski open subset of B.

Proof Pick g ∈ GL∞; then g ∈ GLn for n large enough. SinceOn ∩Un is a finite set,
the multiplication map On × Un → GLn has dense image (by a dimension count).
Since it is also constructible, it contains a dense open subset which we may assume is
closed under multiplication byOn . In particular, we conclude thatO∞Ug−1 contains
a Zariski dense open subset V such that O∞V = V . By a similar argument O∞ B
contains a dense open subset of GL∞. This implies that V ∩ O∞B is nonempty, and
hence there exists h ∈ O∞ such that V ∩ h B is nonempty. Multiplying on the left by
h−1 shows that V ∩ B is a nonempty open subset of B. Since B is a directed union of
irreducible spaces, we conclude that V ∩ B is a dense open subset of B. ��

We now begin the proof of fullness. Let M and N be torsion-free A-modules,
and let f : M/mM → N/mN be a map of O∞ representations. The diagram in
Lemma 3.11 allows us to define a map fm : Mm → Nm, and this induces a map
f : M ⊗A K → N ⊗A K a |K |-linear map. By definition, the map fm is characterized
as follows: If x ∈ Mm and y ∈ Nm then y = fm(x) if and only if f (bx) = by for
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all b ∈ B, where overlines denote reduction modulo m. Using Lemma 3.13, we can
say more: If f (bx) = by for all b in some dense Zariski open subset U ⊂ B then
y = fm(x). Indeed, putting y′ = fm(x) we have f (bx) = by′ for all b ∈ B, and
so by = by′ for all b ∈ U , and so y = y′ by the lemma. We now give a similar
characterization for f .

Lemma 3.15 Let x ∈ M ⊗A K and y ∈ N ⊗A K . Then y = f (x) if and only if the
following condition holds:

(∗) There exists a dense Zariski open dense subset U of B such that for all b ∈ U we
have bx ∈ Mm and by ∈ Nm and f (bx) = by.

Proof Suppose y = f (x). Pick nonzero a ∈ A such that ax ∈ M . Let V be a dense
Zariski open subset of B such that ba ∈ Am and ba−1 ∈ Am and bx ∈ Mm and
by ∈ Nm for all b ∈ V (Lemma 3.12). Put z = f (ax). Since ax ∈ Mm we have z =
fm(ax), and so bz = f (bax) for all b ∈ B. For b ∈ V we have f (bax) = ba · f (bx)

and bz = bay = ba · by, and so ba · by = ba · f (bx). Since ba−1 ∈ Am, it follows
that ba �= 0, and so by = f (bx). So (∗) holds.

Now suppose (∗) holds. Let a be a nonzero element of A such that ax ∈ M . Let z =
f (ax). Since ax ∈ M , we have z = fm(ax), and so bz = f (bax) for all b ∈ B. Let
V be a dense Zariski open subset of B such that ba ∈ Am for all b ∈ V (Lemma 3.12).
Then for b ∈ U ∩ V we have bz = f (bax) = ba · f (bx) = ba · by = bay. It follows
from Lemma 3.13 that z = ay, and so ay = f (ax). Since f is K -linear, we conclude
y = f (x). ��
Lemma 3.16 The map f : M ⊗A K → N ⊗A K is GL∞-equivariant.

Proof Let x ∈ M ⊗A K and let y = f (x) and let g ∈ GL∞. We must show
gy = f (gx). Let U be a dense Zariski open subset of B such that bx ∈ Mm and
by ∈ Nm and by = f (bx) for all b ∈ U (Lemma 3.15). Let V = O∞Ug−1 ∩ B,
and let b ∈ V . We can then write bg = h′b′ with h′ ∈ O∞ and b′ ∈ U . We have
bgx = h′b′x ∈ Mm since b′x ∈ Mm and Mm is stable by O∞. Similarly, bgy ∈ Nm.
Furthermore,

f (bgx) = f (h′b′x) = h′ f (b′x) = h′b′y = bgy.

This is the only place where we use the O∞-equivariance of f . Since this holds for
all b ∈ V and V contains a dense Zariski open of B (Lemma 3.14), it follows that
gy = f (gx) (Lemma 3.15). This completes the proof. ��

We have shown that � is full. The following lemma completes the proof of the
theorem.

Lemma 3.17 � is essentially surjective.

Proof Since � is full and compatible with direct limits, it suffices to show that all
finitely generated objects of Rep(O∞) are in the essential image of �. Thus let M be
such an object. By the results of [21, §4], we can realize M as the kernel of a map
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f : I → J , where I and J are injective objects of Rep(O∞). Every injective object
of Rep(O∞) is the restriction to O∞ of a polynomial representation of GL∞. Thus
I = �(M) and J = �(N ) for some M and N in ModK , and f = �( f ′) for some
f ′ : M → N in ModK . The exactness of � shows that M ∼= �(ker( f ′)), and so � is
essentially surjective. ��

3.5 The other two cases

Everything in this section can be adapted to Sym(
∧2

(C∞)). This is straightforward
(and not even logically necessary, per Remark 1.6), so we do not comment further on
it.

Everything can also be adapted to the bivariate tca A = Sym(C∞ ⊗C∞). We will
make a few comments on how this goes. First, we state the analogs of Theorem 3.1
and Corollary 3.2. A representation ofGL∞ is algebraic if it appears as a subquotient
of a (possibly infinite) direct sum of representations of the form (C∞)⊗a ⊗ (C∞∗ )⊗b.
Here C∞∗ is the restricted dual of C∞, defined as the span of the dual basis {e∗

i } in
the usual dual space (C∞)∗. One easily checks that C∞∗ is indeed a representation of
GL∞. We write Rep(GL∞) for the category of algebraic representations. This was
also studied in [21].

By the “twisted diagonal embedding”GL∞ → GL∞×GL∞, wemean the embed-
ding given by g 	→ (g, t g−1). We note that the algebraic representations of GL∞ are
exactly those appearing as a subquotient of the restriction of a polynomial represen-
tation from GL∞ × GL∞ via the twisted diagonal embedding.

We identify A with C[xi, j ] in the obvious manner, and let m ⊂ |A| be the ideal
generated by xi,i −1 and xi, j for i �= j . This ideal is stable under the twisted diagonal
GL∞. For an A-module M , define �̃(M) = M/mM . This is naturally a representation
of GL∞.

Theorem 3.18 The functor �̃ induces an equivalence � : ModK → Rep(GL∞).

Corollary 3.19 We have the following:

(a) Finitely generated objects of ModK have finite length.
(b) If V is a finite length polynomial representation of GL∞ × GL∞ then K ⊗ V

is a finite length injective object of ModK , and all finite length injective objects
have this form.

(c) Associating to (λ, μ) the socle of K ⊗ Sλ(C∞) ⊗ Sμ(C∞) gives a bijection
between pairs of partitions and isomorphism classes of simple objects of ModK .

(d) Every finite length object M of ModK has finite injective resolution M → I•
where each Ik is a finite length injective object.

Proof These properties are proven for Rep(GL∞) in [21]:
(a) [21, Proposition 3.1.5],
(b,c) [21, Proposition 3.2.14],
(d) dualize the explicit projective resolutions in [21, (3.3.7)]. ��
The proof of Theorem 3.18 closely follows that of Theorem 3.1. The main differ-

ences occur in the analog of Sect. 3.2. In the present case, one takes B ⊂ M∞ × M∞
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to be the set of pairs of upper-triangular matrices. The group H is replaced with the
intersection of B and the twisted diagonal GL∞ inside of GL∞ × GL∞ and con-
sists of pairs (h, h−1) where h ∈ GL∞ is a diagonal matrix. With these definitions,
everything proceeds in a similar way.

4 Proof of the main theorems

4.1 The structure of ideals

We have the following multiplicity-free decompositions:

Sym(Sym2 C∞) =
⊕

S2λ(C∞)

Sym(
∧2C∞) =

⊕
S(2λ)†(C

∞)

Sym(C∞ ⊗ C∞) =
⊕

Sλ(C∞) ⊗ Sλ(C∞).

For a proof, see [15, § I.5, Example 5] for the first two decompositions and [15,
§ I.4, (4.3)] for the last one. In all cases, the sum is over partitions λ. For the purposes
of stating the next result we write Eλ for the λ summand. Let Iλ be the ideal generated
by Eλ.

Proposition 4.1 Eμ ⊆ Iλ if and only if λ ⊆ μ.

Proof For Sym(Sym2 C∞), see [1], for Sym(
∧2 C∞), see [2, Theorem 3.1], and for

Sym(C∞ ⊗C∞), see [8, Theorem 4.1]. Since [1] is a difficult reference to obtain, we
note that the result for Sym(Sym2 C∞) follows from that of Sym(

∧2 C∞) because
the two are transpose dual (see [20, §7.4]). Proofs of these results will also appear in
[16]. ��
Corollary 4.2 Let A be one of the three algebras above, and let I be any nonzero
ideal of A. Then A/I is essentially bounded, and, in particular, noetherian.

Proof Suppose that I is a nonzero ideal of A. Then I contains some Eλ, and thus Iλ.
Thus by the proposition, A/I contains no partitionμ satisfying λ ⊂ μ and is therefore
essentially bounded. Noetherianity of A/I follows from Proposition 2.4. ��

4.2 The (FT) property

Let B be a (bivariate) tca with B0 = C, so that B+ (the ideal of B generated by positive
degree elements) ismaximal.We say that a B-module M is (FT) over B if TorB

i (M,C)

is a finite length representation of GL∞ (or GL∞ × GL∞) for all i ≥ 0. The i = 0
case implies that M is finitely generated as a B-module, by Nakayama’s lemma [20,
Proposition 8.4.2]. Conversely, if B is noetherian then any finitely generated B-module
satisfies (FT). We note that if

0 → M1 → M2 → M3 → 0
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is a short exact sequence of B-modules and two of the modules are (FT) then so is the
third.

The main result we need concerning (FT) is the following proposition:

Proposition 4.3 Let A be one ofSym(Sym2 C∞),Sym(
∧2 C∞), orSym(C∞⊗C∞),

and let M be a finitely generated torsion A-module. Then M satisfies (FT) over A.

We begin with some lemmas.

Lemma 4.4 Let B → B ′ be a homomorphism of (bivariate) tca’s, with B0 = B ′
0 = C,

and let M be a B ′-module. Suppose that B ′ is (FT) over B. Then M is (FT) over B if
and only if M is (FT) over B ′.

Proof First suppose that M is (FT) over B ′. Starting with a free resolution of M over
B ′, and a free resolution of B ′ over B, we get an acyclic double complex of B-modules
resolving M . This leads to a spectral sequence

E2
p,q = TorB

p (TorB′
q (M,C), B ′) �⇒ TorB

p+q(M,C).

Note that TorB′
q (M,C) is a trivial B module (meaning B+ acts by 0), and so

TorB
p (TorB′

q (M,C), B ′) = TorB′
q (M,C) ⊗C TorB

p (B ′,C).

Each of the Tor’s on the right has finite length by assumption, and so the left side also
has finite length. It follows that TorB

i+ j (M,C) has finite length, and so M is (FT) over
B.

Now suppose that M is (FT) over B. In particular, M is a finitely generated B-
module, and so also a finitely generated B ′-module. This shows that TorB′

0 (M,C) is
finite length. Let P → M → 0 be a minimal projective cover, and let N be the kernel.
Since B ′ is (FT) over B, we conclude that P , and hence N are both (FT) over B. In
particular, N is a finitely generated as a module over B, and hence over B ′. This shows
that TorB′

1 (M,C) is finite length; to get the statement for TorB′
i (M,C), we can iterate

this argument i times. ��
Lemma 4.5 Let A be the bivariate tca Sym(C∞ ⊗ C∞). Then A/Iλ satisfies (FT)
over A for all rectangular partitions λ.

Proof This follows from [17, Theorem 1.2], taking m = n = ∞ (the results there are
stated for finite m and n, but since the answer is given in terms of Schur functors, it
can be extended to the infinite case): one has to show that the coefficient of wi , as a
polynomial in z, is of bounded degree. To see that, note that fixing wi means that q
is bounded from above, and then the result is clear from the form of the polynomials
hr×s(z, w). ��
Lemma 4.6 Let B be Sym(Sym2 C∞) or Sym(

∧2 C∞). Then B/Iλ satisfies (FT)
over B for all rectangular partitions λ.



932 R. Nagpal et al.

Proof Let A = Sym(C∞ ⊗C∞). Let Jλ be the ideal in A generated by Sλ ⊗ Sλ. Let
Ã be the tca obtained from A by restricting to the diagonalGL∞ action. Then there is
a surjection of tca’s ϕ : Ã → B, induced by the natural map (C∞)⊗2 → Sym2(C∞),
and ϕ(Jλ) ⊂ Iλ. (Note that ϕ(Jλ) is nonzero: if λ is a single column, then this is
an ideal generated by minors of a given size and the image of every power of Jλ

is nonzero; in general, some power of a determinantal ideal belongs to Jλ after we
specialize to large enough finite dimensional vector spaces.)

Since A/Jλ is (FT) over A (Lemma 4.5), each TorA
i (A/Jλ,C) is a finite length

GL∞ × GL∞ module, and hence remains finite length under the restriction to the
diagonal copy of GL∞. So Ã/Jλ is (FT) over Ã. Also Ã/Jλ is essentially bounded
(since the bivariate tca A/Jλ is) and hence noetherian (Proposition 2.4). It follows that
B/ϕ(Jλ) is (FT) over Ã/Jλ, thus over Ã as well (Lemma 4.4).

Next, B is (FT) over Ã (the resolution of B over Ã is a Koszul complex) so another
application of Lemma 4.4 gives that B/ϕ(Jλ) is (FT) over B. Finally, B/Iλ is a finitely
generated module over B/ϕ(Jλ) and the latter is noetherian (Corollary 4.2), so B/Iλ
is (FT) over B/ϕ(Jλ). We apply Lemma 4.4 again to deduce that B/Iλ is (FT) over
B. ��
Remark 4.7 It would be interesting to prove directly that B/Iλ satisfies (FT) over B
by computing TorB

i (B/Iλ,C), as is done in [17] for Sym(C∞ ⊗ C∞).

Proof of Proposition 4.3 Let I be the annihilator of M . This is nonzero by Corol-
lary 2.3. Thus I contains an ideal generated by a rectangular partition; replace I with
this ideal. Since A/I is noetherian (Corollary 4.2), M is (FT) over A/I . By Lemma 4.5
or 4.6, A/I is (FT) over A. Thus by Lemma 4.4, M is (FT) over A. ��

4.3 Completion of the proofs

Let A be one of the tca’s Sym(Sym2 C∞) or Sym(
∧2 C∞), or the bivariate tca

Sym(C∞ ⊗ C∞), and let K = Frac(A).

Proposition 4.8 If M is a finite length K -module then S(M) satisfies (FT) over A.

Proof We prove this by induction on the injective dimension of M , which is possible
by Corollary 3.2(d) (and its analogs). If M is injective then S(M) is a finitely generated
projective A-module (Corollary 3.2(b), Proposition 2.8), and thus satisfies (FT). Now
let M be a finite length object of ModK with positive injective dimension. We can
then find an exact sequence

0 → M → I → N → 0,

where I is injective and N has smaller injective dimension than M . Applying S, we
obtain an exact sequence

0 → S(M) → S(I ) → S(N ) → (R1S)(M) → 0.
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By induction, S(N ) is (FT) over A, and so finitely generated. It follows that (R1S)(M)

is finitely generated. By Proposition 2.6 and the fact that localization is exact, we have
(R1S)(M) ⊗A K = 0, and so (R1S)(M) satisfies (FT) over A by Proposition 4.3.
Thus S(I ), S(N ), and (R1S)(M) all satisfy (FT) over A, and so S(M) satisfies (FT)
over A as well. ��

The following completes the proof of our main results: Theorems 1.1 and 1.2.

Theorem 4.9 A is noetherian.

Proof Let P be a finitely generated projective A-module, and let N1 ⊂ N2 ⊂ · · ·
be an ascending chain of A-submodules of P . Since P ⊗A K is finite length (Corol-
lary 3.2(a)), it follows that the ascending chain Ni ⊗A K stabilizes, and so we may
as well assume it is stationary to begin with. Let M ⊂ P be the common value of
S(Ni ⊗A K ), which is finitely generated by Proposition 4.8. Then N• is an ascending
chain in M . Let M ′ = M/N1 and N ′

i = Ni/N1 ⊂ M ′, so that N ′• is an ascending
chain in M ′. Since M ′ is finitely generated and M ′ ⊗ K = 0, Corollary 2.3 implies
that I = Ann(M ′) is nonzero. Thus M is a module over A/I , which is noetherian
(Corollary 4.2), and so N ′• stabilizes. This implies that N• stabilizes, and so P is
noetherian. ��
Remark 4.10 The above proof has three key ingredients:

(1) Finitely generated objects of ModK are noetherian.
(2) If I is a nonzero ideal of A then A/I is noetherian.
(3) If M is a finite length object ofModK then S(M) is a finitely generated A-module.

Let us make one comment regarding (3). Given a finite length object M in ModK , we
can realize M as the kernel of a map I → J where I and J are finite length injective
objects of ModK . Since S is left-exact, it follows that S(M) is the kernel of the map
S(I ) → S(J ), and we know that S(I ) and S(J ) are finitely generated projective
A-modules. Thus finite generation of S(M) would follow immediately if we knew
A to be coherent (which exactly says that the kernel of a map of finitely generated
projective modules is finitely generated). Since coherence is a weaker property than
noetherianity, it should be easier to prove; however, we have not found any way to
directly prove coherence.

5 A Gröbner-theoretic approach to the main theorems

In this section, we outline a possible approach to proving Theorem 1.1 using Gröbner
bases. This leads to an interesting combinatorial problem that we do not know how to
resolve.

5.1 Admissible weights

A weight of GL∞ is a sequence of nonnegative integers w = (w1, w2, . . .) such
that wi = 0 for i � 0. Every polynomial representation V of GL∞ decomposes as
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V = ⊕
Vw, where Vw is the w weight space. A weight is admissible if wi is 0 or 1

for all i . An admissible weight vector is an element of some Vw withw an admissible
weight. We require the following fact: if V is a polynomial representation of GL∞
then V is generated, as a representation, by its admissible weight vectors.

5.2 Degree one tca’s

We begin by sketching a Gröbner-theoretic proof that the tca A = Sym(C∞ ⊕ C∞)

is noetherian. This proof comes from transferring the proof in [22] that Rep(FI2)
is noetherian through Schur–Weyl duality and can easily be adapted to treat all tca’s
generated in degree≤ 1. Let x1, x2, . . . be a basis for the firstC∞, and let y1, y2, . . . be
a basis for the second C∞, so that A is the polynomial ring C[x1, x2, . . . , y1, y2, . . .].

Let M be the set of pairs � = (S, ϕ), where S is a finite subset of N = {1, 2, . . .}
and ϕ : S → {red, blue} is a function. Given�,�′ ∈ M, we define� → �′ (a “move”)
if one of the following two conditions hold:

• S′ is obtained from S by adding a single element and leaving the colors unchanged
(i.e., ϕ′|S = ϕ).

• There exists some i ∈ S such that i +1 /∈ S and S′ is obtained from S by replacing
i with i + 1 (and leaving all colors unchanged).

We define � ≤ �′ if there is a sequence of moves taking � to �′. This partially orders
M.

We also define a total order � on M, as follows. Given two finite subsets S and
S′ of N, define S � S′ if max(S) < max(S′), or max(S) = max(S′) = n and
S\{n} � S′\{n}. Given S ⊂ N and ϕ, ϕ′ : S → {red, blue}, define ϕ � ϕ′ by thinking
of ϕ and ϕ′ as words in R and B and using the lexicographic order (with R � B, say).
Finally, define (S, ϕ) � (S′, ϕ′) using the lexicographic order (i.e., S ≺ S′, or S = S′
and ϕ � ϕ′).

Given � ∈ M, define

m� =
∏

i∈S

{
xi if ϕ(i) = red

yi if ϕ(i) = blue
.

If f ∈ A is an admissible weight vector of weight w, then f is a linear combination
of the m�’s where � has the same support as w. We define the initial variable of f ,
denoted in( f ), to be the largest � (under �) such that m� appears in f with nonzero
coefficient.

Now let I be an ideal of A. Let in(I ) ⊂ M be the set of in( f )’s where f varies over
the admissible weight vectors in I . One then proves the following two statements:

(1) in(I ) is a poset ideal of M; that is, in(I ) is closed under moves, and
(2) if I ⊂ J and in(I ) = in(J ) then I = J .

From this, weak noetherianity of A follows from noetherianity ofM, which is an easy
exercise. A slight modification of this argument shows that A is noetherian.
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5.3 Degree two tca’s

We now sketch our Gröbner approach to the noetherianity of A = Sym(Sym2(C∞)).
Let xi, j , with i ≤ j , be a basis for Sym2(C∞), so that A = C[xi, j ].

LetM be the set of undirected matchings � onN. (Recall that a graph is a matching
if each vertex has valence 0 or 1.) Given �,�′ ∈ M, we define � → �′ if one of the
following two conditions hold:

• �′ is obtained from � by adding a single edge.
• There exists an edge (i, j) in � such that j +1 is not in �, and �′ is obtained from

� by replacing (i, j) with (i, j + 1). (Here we allow i < j or j < i .)

We call � → �′ a “type I move.” We define � ≤ �′ if there is a sequence of type I
moves transforming � to �′. This partially ordersM.

We also define a total order � on M as follows. First, suppose that i < j and
k < � are elements of N. Define (i, j) � (k, �) if j < �, or j = � and i ≤ k. Now,
let � and �′ be two elements of M, and let e1 � · · · � en and e′

1 � · · · � e′
m be

their edges, listed in increasing order. We define � � �′ if m > n, or if m = n and
(e1, . . . , en) � (e′

1, . . . , e′
m) under the lexicographic order.

Given � ∈ M, define m� = ∏
(i, j)∈� xi, j . Once again, every admissible weight

vector is a sum of m�’s, and we define the initial term in( f ) of an admissible weight
vector f to be the largest � (under the order �) for which the coefficient of m� is
nonzero in f .

Let I be an ideal of A. Define in(I ) as before. Once again, in(I ) is closed under
type I moves, and therefore forms a poset ideal of (M,≤). The weak noetherianity
of A would follow from the noetherianity of the poset (M,≤), but the latter property
fails:

Example 5.1 For n ≥ 3, define �n ∈ M to have edges (2i + 1, 2i + 4) for i =
0, 1, . . . , n − 2 and (2, 2n − 1). Then �n is supported on {1, . . . , 2n}. It is easy to
verify that the �n are incomparable, so (M,≤) is not a noetherian poset.

The above observation is not the end of the road, however: the set in(I ) is closed
under more than just type I moves. Suppose � ∈ in(I ) and that e = (i, j) and
e′ = (k, �) are edges appearing in �, with i < j and k < � and j < �. We then have
the following observations:

• Suppose k < i < j < � and that every number strictly between k and i that
appears in � is connected to a number larger than j . Let �′ be the graph obtained
by replacing e and e′ with (k, j) and (i, �). Then �′ ∈ in(I ).

• Suppose i < k < j < � and that every number strictly between k and j that
appears in � is connected to a number larger than j . Let �′ be the graph obtained
by replacing e and e′ with (i, k) and ( j, �). Then �′ ∈ in(I ).

Write� ⇒ �′ to indicate that �′ is related to � by one of the above twomodifications.
We call this a “type II move”. Here is a pictorial representation of these moves (we
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use labels a < b < c < d, and the dotted lines indicate that any element there either
is not on an edge, or is connected to a number larger than c):

a b c d
⇒

a b c d
⇒

a b c d

We define a new partial order � onM as follows: � � �′ if there exists a sequence
of moves (of any type) taking � to �′. The above observations show that in(I ) is a
poset ideal of (M,�). This leads to the important open question:

Question 5.2 Is the poset (M,�) noetherian?

Remark 5.3 The sequence defined in Example 5.1 is comparable in (M,�). Let σi be
the element (i, i + 1) · · · (3, 4)(2, 3) of the symmetric group S2n . For each 2 ≤ i ≤
2n−4,we have type IImoves σi�n → σi+1�n , so�n � σ2n−3�n . Finally, (2n−1, 2n)

is a valid type II move for σ2n−3�n . It is now easy to check that ((2n −1, 2n)σ2n−3)�n

embeds into �m (via type I moves) for any m > n. This shows �n � �m for any
m > n ≥ 3.

A positive answer to Question 5.2 would show that A is weakly noetherian. A slight
modification of this question would give noetherianity. Furthermore, this approach
would even give results in positive characteristic.
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