
Sel. Math. New Ser. (2016) 22:417–445
DOI 10.1007/s00029-015-0187-9

Selecta Mathematica
New Series

Mapping class groups of trigonal loci

Michele Bolognesi1 · Michael Lönne2

Published online: 28 September 2015
© Springer Basel 2015

Abstract In this paper,we study the topology of the stackTg of smooth trigonal curves
of genus g over the complex field. We make use of a construction by the first named
author and Vistoli, which describes Tg as a quotient stack of the complement of the
discriminant. This allows us to use techniques developed by the second named author
to give presentations of the orbifold fundamental group of Tg , and of its substrata with
prescribed Maroni invariant, and describe their relation with the mapping class group
Mapg of Riemann surfaces of genus g.
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1 Introduction

The theory of moduli spaces is one of the most charming subjects of algebraic geome-
try. Already at the very first stages of its development, it seemed clear that a good way
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to construct spaces that would solve in some sense a moduli problem was to display
them as quotients by group actions. As everybody learns in a first course of GIT, taking
quotients is a delicate operation in algebraic geometry, but a good solution, at least in
moduli theory, has been given by the theory of quotient stacks. If an algebraic stack S
is a quotient stack [X/G], where G is an algebraic group acting on an algebraic variety
X , then its geometry is very much related to the action of G on X . The first example
that comes to mind is the stack M1,1 of elliptic curves, which is a quotient [X/Gm],
where X is the complement in A

2 of the discriminant hypersurface 4x3 + 27y2 = 0,
and Gm acts with weights 4 and 6. Very powerful techniques have been developed in
equivariant intersection theory, after the landmark work of Edidin and Graham [10],
and applications have flourished (e.g., [2,12,28]) in equivariant intersection theory.

The goal of this paper is to explore a particular quotient stack, the stack of smooth
trigonal curves, under the somewhat different light of homotopy groups. This stack
has been constructed in [4] for curves of genus g > 0 (and, accordingly, we will
assume this throughout the paper, except where explicitly stated differently), and it
has a presentation as a quotient stack [X ′/�g], where �g is a certain algebraic group
and X ′ is an open set inside the total space of a vector bundle over an open subset of a
representation of �g (see Sect. 1.2 for more details). In particular, we will concentrate
on the study of the orbifold fundamental group (see Sect. 1.1 for a detailed definition)
of the stack Tg .

The universal family of curves over Tg has a structure of fiber bundle for the group
Homeog of orientation-preserving homeomorphisms of a Riemann surface of genus
g. This allows us to define a monodromy map

μ
Tg
g : πorb

1 (Tg, x0) → π0(Homeog) = Mapg,

given a base point x0 ∈ Tg . The analogous map for the stack of hyperelliptic curves
maps to the proper subgroup of hyperelliptic mapping classes. But in Theorem 3, we
show the following quite surprising statement.

Theorem The monodromy map μ
Tg
g is surjective.

Now recall that Tg admits a classical stratification in terms ofMaroni invariant [22].
Let T M

g denote the stratum with Maroni invariant equal to M . Then, one can ask what
kind of map does the natural inclusion T M

g ↪→ Tg induce on the orbifold fundamental
groups. The answer to this question is Theorem 4.

Theorem If M < g/3 − 1, the inclusion T M
g ↪→ Tg induces a surjection

πorb
1 (T M

g ) →−→ πorb
1 (Tg)

with kernel a homomorphic image of Z/(M) if g �= 4.

As a corollary of this theorem, we obtain that the restriction of the monodromymap

μ
Tg
g to T M

g is still surjective, except for maximal Maroni invariant and g ≡ 1(mod 3).
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Finally, we derive an explicit finite presentation for the orbifold fundamental group
of the maximal Maroni stratum T M

g . Recall that Dolgachev and Libgober [8] posed
the vastly open problem to determine the fundamental group of the discriminant com-
plement of any (complete) linear system.

They handle the case of linear systems of elliptic curves on P2 and P1 × P1 as
well as linear systems on curves, but actually the first result of that kind is due to
Zariski who considered the complete linear systems on P1, which he showed to have
fundamental group given by the braid group with one additional relation.

Libgober [18] and Looijenga [21] later considered orbifold fundamental groups
which they showed to be natural quotients of groups finitely presented of Artin type.

Building on the results of [19,20], we manage to obtain a presentation which again
follows that pattern:

Theorem The orbifold fundamental group πorb
1 (T M

g ) of the maximal Maroni stratum,
in the case g ≡ 1 ( mod 3), has a presentation in terms of generators t1, . . . , t2g+2,
and relations:

– of “diagram type”

ti t j ti = t j ti t j if j = i + 1 or j = i + 2;
ti t j = t j ti otherwise,

and
(ti t j t

−1
i )tk = tk(ti t j t

−1
i ) if i + 1 = j = k − 1.

– of “global type”: denote δ0 = t1t2 t3t4, . . . , t2g+1t2g+2

δ0 centralizes t2g+1t2g−1, . . . , t3t1,

t2g+2t2g, . . . , t4t2.

– of “quotient type”: denote δ1 = t2g+1t2g+2 t2g−1t2g, . . . , t1t2.

(δ0δ1)
3 = 1

δ
g+2
0 = 1.

See Sect. 4 for more details on the different relations.

1.1 The orbifold fundamental group

We will denote by [X/G] the (possibly orbifold) quotient of a topological space (or
variety, scheme, etc.) X by a group G. When we work on an orbifold [X/�], the orbit
of x0 ∈ X will be indicated by � · x0.

Definition 1.1 Let X be a topological space, x0 a point of X and � a group acting
on X . Let moreover E� be the universal �-principal bundle over a classifying space
B�. We define the orbifold fundamental group πorb

1 ([X/�], � · x0) as the classical
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fundamental group π1([X × E�/�], � · (x0, t)), where t may be any element of E�,
since E� is contractible.

Remark 1.2 The orbifold fundamental group then fits into a commutative diagram

π1(X, x0) �� πorb
1 ([X/�], � · x0) �� π0(�, e)

π1(X × E�, (x0, e)) �� π1([X × E�/�], � · (x0, t)) �� π0(�, e).

Accordingly, given a morphism φ from a smooth algebraic variety Y , pointed at
y0, to an orbifold [X/�], we define a map of fundamental groups as follows. The
morphism φ is given by the datum consisting of a �-torsor PY over Y and a �-
equivariant morphism φ̃ : PY → X . By choosing a base point ỹ ∈ PY over y0 and its
images φ̃(ỹ) ∈ X and � · φ̃(ỹ) ∈ [X/�], we get a commutative diagram

π1(PY , ỹ)
φ̃∗ ��

����

π1(X, φ̃(ỹ))

����
π1(Y, y0)

φ∗ �� πorb
1 ([X/�], � · φ̃(ỹ))

(1)

Now, let us recall the construction from Definition 1.1. Since E� is contractible,
then πorb

1 ([X/�], � · x0) = π1(X, x0)/π1(�, e). This equality is well-defined and
independent of the choice of the base point inside � · x0, in the sense that there exists
a canonical isomorphism ψx0,x1 : π1(X, x0) → π1(X, x1), ∀x0, x1 ∈ � · x0. Hence,
the extension at the bottom of the above diagram—which defines φ∗—is possible in
a unique way and independently of the choice of ỹ, since the kernel of both vertical
maps is the image of π1(�, e).

1.2 The stack of smooth trigonal curves

The purpose of this subsection is to review and recall the construction of the quotient
stack of smooth trigonal curves of genus g, as introduced in [4] generalizing a con-
struction byMiranda [23]. This stack is constructed as the complement of an invariant
hypersurface inside a quotient stack of a vector bundle over an open set of an affine
space. On the other hand, it also has a presentation as an orbifold itself. Let us review
these constructions.

Wewarn the reader that our notation is slightly different from that of [4]. Let us recall
from [23] that the datum of a trigonal curve t : C → P1 of genus g is equivalent to the
datumof a rank two vector bundle E onP1 (actually obtained as t∗OC/OP1 , and known
as Tschirnhausen module) with a few properties and a section of Sym3E ⊗ det E∗.
Notably, the splitting type (m, n) of E should be such that m + n = g + 2 and, if C is
integral, then m, n ≥ g+2

3 (see also [4, Proposition2.2]). The stack of smooth trigonal
curves is constructed starting from this datum.
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Let Mat2,g+2 be the affine space of (g + 2)× (g + 4) matrices (li j ), where each li j

is a linear form in two indeterminates. Let us denote by ˜�2,g+2 the open subscheme
of Mat2,g+2 parametrizing matrices (li j ) with the property that the matrix (li j (p)) has
corank 2 at all points p ∈ P1. As remarked in [4, Proposition4.2],

Lemma 1.3 The complement Mat2,g+2\˜�2,g+2 is pure-dimensional of codimension
at least 2.

In what follows, we will identify a matrix (li j ) with the associated sheaf homomor-
phism over P1 × ˜�2,g+2

OP1×˜�2,g+2
(−1)g+2 (li j ) �� Og+4

P1×˜�2,g+2
. (2)

Wewill denote by E2,g+2 the cokernel of the above universal morphism. It is locally
free of rank 2. Moreover, inside ˜�2,g+2, we will distinguish an open subset �2,g+2,
which is defined as follows: For any matrix (li j ) ∈ �2,g+2, the cokernel sheaf E2,g+2
is a globally generated locally free sheaf of rank 2, the degree of its restriction to
the geometric fibers of the projection π : P1 × �2,g+2 → �2,g+2 is (g + 2), and if
(m, n) is the splitting type of E2,g+2 over such a fiber, then m, n ≥ g+2

3 . We will often
abuse of notation by denoting simply E2,g+2 the restriction to �2,g+2. Let us also
introduce the well-known Maroni invariant of a trigonal curve C as M := |m − n|.
This is a discrete invariant of a trigonal curve (introduced in [22]) that takes the
even values from 0 to � g+2

3 � if g(C) is even, or the odd values from 1 to � g+2
3 � if

g(C) is odd. The open subset �2,g+2 is naturally stratified by the Maroni invariant
�2,g+2 = �M

2,g+2∪· · ·∪�M
2,g+2∪· · ·∪�M

2,g+2, whereM andM denote, respectively,
the minimal and the maximal Maroni invariant. The stratification via the Maroni
invariant extends to the whole moduli space of trigonal curves.

In order to pass from �2,g+2 to trigonal curves, we need to consider a tensor
of E2,g+2, namely Sym3E2,g+2 ⊗ det E∗

2,g+2, and consider the sheaf E2,g+2 :=
π∗(Sym3E2,g+2 ⊗ det E∗

2,g+2) over �2,g+2. This is locally free, and its construc-
tion commutes with base change. We will call Xg the total space of the vector bundle
corresponding to E2,g+2. We now introduce (see [4, Sect. 4]) an algebraic group action
on Xg . Let us take G := GLg+4 × GLg+2 × GL2 and consider the embedding

η : C
∗ ↪→ GLg+4 × GLg+2 × GL2,

t �→
(

I dg+4, t I dg+2, t−1 I d2
)

.
(3)

of the torus. The image of this embedding is a central group subscheme of G, and we
will denote by �g the cokernel of η. The group �g acts naturally on �2,g+2 and Xg .
In [4, Theorem5.3], the following is proven.

Theorem 1 Let T̂g be the moduli stack consisting of objects (C
t→ P → S), where

P is a P1-bundle over S and t is a triple cover such that the splitting type (m, n) of
the associated rank 2 bundle on P satisfies m, n ≥ g+2

3 . Then, there is an equivalence

of fibered categories T̂g ∼= [Xg/�g]
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We recall from [4] that a point of �2,g+2 completely defines a Tschirnhausen
module E over P1 (up to the action of �g), whereas it is the fibers of the vector bundle
Xg that naturally parametrize all the sections of Sym3E ⊗ det E∗.

In order to consider the moduli stack Tg of smooth trigonal curves, we need to
consider the complement of certain closed integral substack Sg ⊂ T̂g parametrizing
singular curves. The substack Sg is of the form [Dg/�g] for an invariant discriminant
hypersurface Dg ⊂ Xg . We will denote by X ′

g the complement Xg − Dg . It is not
hard to observe that the restriction of Dg to the geometric fibers of the vector bundle
Xg corresponds naturally to the discriminant locus of the given space of sections over
P1, or curves inside the Hirzebruch surface FM .

Theorem 2 ([4]) The (fine) moduli substack Tg ⊂ T̂g of smooth trigonal curves is
equivalent to the quotient stack [X ′

g/�g].
Notation Wewill denote by�M

2,g+2 the stratum inside�2,g+2 corresponding to the

Maroni invariant M . By restriction of Xg , we define a fibration X M,g → �M
2,g+2. We

will denote by DM,g and X ′
M,g the corresponding discriminant and its complement.

2 The monodromy map

In this section, we investigate the monodromymap associated with families of trigonal
curves. Though often defined using an Ehresmann connection on a differentiable fiber
bundle, it can be put on a purely topological footing. We need to employ a more
detailed definition later, but conceptually monodromy does the following: To a closed
path in the base of a fiber bundle, it associates the homeomorphism of the base fiber
obtained by a bundle trivialization along the path. Its isotopy class only depends on
the homotopy class of the path; hence, monodromy provides a well-defined map from
the fundamental group of the base to the mapping class group of the fiber.

In our situation of trigonal families, the monodromy map takes values in the map-
ping class group of a curve of genus g. Our aim now is threefold: first to define a
monodromy map on the fundamental group of the moduli orbifold, second to show its
universality, i.e., that it factors every monodromy map of a trigonal family in a way to
be made precise below, and last to give properties of the image.1

In our argument, we need a notion of monodromy in the more general setting of
G-principal bundles–the usual situation corresponding to G equal to the group of
homeomorphisms of the fiber. Let I be the unit interval.

Definition 2.1 Suppose E → B is a G-bundle over a base B pointed at b0, then the
monodromy map (see “Appendix A” for the precise definition)

μG : π1(B, b0) −→ π0(G)

associates with a closed path the isotopy class of an element g of G. A trivialization
along the path gives a map gI : I → G and g = gI (1).

1 The study of the kernel will be taken up in a subsequent paper.
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Note that this general notion is well-adapted to comparing monodromy maps of
bundles with possibly different structure groups. This feature will be relevant in the
rest of the paper.

Example 1 There exists a tautological genus g trigonal family over X ′
g , obtained by

pullback along the quotient map of the universal family on [X ′
g/�g]. It is a fiber bun-

dle for the group Homeog of orientation-preserving homeomorphisms of a Riemann
surface of genus g; hence, the monodromy associated with a base point x0 ∈ X ′

g is

μX ′
g : π1(X ′

g, x0) −→ π0(Homeog) = Mapg

with values in the mapping class group Mapg of genus g.

We make the following observation:

Proposition 2.2 If x0 ∈ X ′
g is any base point and

π1(�g, e) −→ π1(X ′
g, x0)

is the map induced by the �g-action on X ′
g, then μX ′

g is trivial on the image.

Proof It suffices to see that the restriction to the�g-orbit�g ·x0 has trivialmonodromy.
This in turn follows from the fact that the�g-orbit consists exactly of all different ways
to describe one trigonal curve in a ruled surface by putting coordinate systems on the
base and on the surface (see Sections 4 and 5 of [4] for details on the �g action). ��

Instead of giving a general definition of monodromy associated with a moduli
orbifold, we rather provide an ad hoc definition in our special situation. Since in our
situation the orbifold fundamental group is the cokernel of the inclusion above, we
may define:

Definition 2.3 The monodromy map of the moduli orbifold is

μ
Tg
g : πorb

1

([

X ′
g/�g

]

, �g · x0
)

= π1

(

X ′
g, x0

)

/

π1
(

�g, e
) −→ π0

(

Homeog
)

(4)

induced from the monodromy of X ′
g .

To proceed, we have to rely on the notion of morphism to an orbifold, as described
in Sect. 1.1, and the universality property of the (fine) moduli orbifold.

Let us recall from Sect. 1.2 that, given a family of trigonal curves over a smooth
projective variety Y , pointed at y0, there is a natural �g-torsor PY over Y . The natural
�g-equivariant map from PY to X ′

g is the datumwhich fixes the classifying morphism

c : Y −→ [X ′
g/�g].
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Proposition 2.4 Let Py0 be the fiber of PY over y0 ∈ Y . Given a family of trigonal
curves over the smooth variety Y , pointed at y0, there is a commutative diagram

π1(Y, y0) −→ π0(Homeo(Py0))
⏐

�c∗
⏐

� ∼=
πorb
1 ([X ′

g/�g], �g · x0)
μT

g−→ π0(Homeog)

with horizontal monodromy maps and c∗ induced by the classifying morphism c from
Y to the moduli orbifold.

Proof The family over Y gives rise to a �g-torsor PY and a classifying �g-equivariant
map c̃ : PY → X ′

g such that pullback of the trigonal family from Y and the pullback
of the tautological trigonal family over X ′

g along c̃ are isomorphic. Let ỹ ∈ Py0 , and
then, the monodromy homomorphism is associated with the family over PY factors
as

π1(PY , ỹ)
c̃∗−→ π1(X ′

g, c̃(ỹ)) −→ π0(Homeog)

Then, the diagram of the claim follows, since the monodromy is trivial along
�-orbits thanks to Proposition2.2. ��

In order to show that the bottom map in Proposition2.4 is surjective, it suffices to
construct a trigonal family with surjective monodromy. The rest of this section will
be devoted to showcasing such a family.

Definition 2.5 Wedefine the tautological family of branch data as the universal hyper-
surfaceH2g+4 ⊂ P1 × P2g+4 of degree 2g + 4 given by the homogeneous equation

∑

i+ j=2g+4

ai xi
0x j

1 = 0. (5)

The hypersurface H2g+4 naturally defines a discriminant locus D2g+4 that is the
locus of a ∈ P2g+4 where at least two of the 2g + 4 roots of (5) coincide. Let U be the
complement ofD2g+4 inside P2g+4. Consider now the trivial P1-bundle P1×U → U .
Its structure group can be reduced from Homeo0 to the subgroup Homeo0,2g+4 of
orientation-preserving homeomorphisms of a fiber, which preserve the intersection
with H2g+4. Let u0 ∈ U . Under the identification of π1(U , u0) with the braid group
of the sphere on 2g + 4 strands due to Zariski [29], the corresponding monodromy
map is the surjection (cf. [11, (9.1), p. 245])

μ0,2g+4 : π1(U , u0) �� �� π0(Homeo0,2g+4) = Map0,2g+4 . (6)

Definition 2.6 Let u0 ∈ U . Consider a simple generic triple cover f : C → P1

branched at the 2g + 4 points of intersections with H2g+4 in the fiber over u0. The
group of liftable homeomorphisms Homeo 0̃,2g+4 of P1 with respect to f is given
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by the homeomorphisms of P1, such that there exists a homeomorphism of C and a
commuting diagram

C ��

f
��

C

f
��

P1 �� P1

Since, by simplicity, fibers over the branch points consist of only 2 points, any
liftable homeomorphisms belong to Homeo0,2g+4. Thus, there is a sequence of suc-
cessive inclusions

Homeo0̃,2g+4
� � �� Homeo0,2g+4

� � �� Homeog.

Theorem 3 The monodromy map μX ′
g descends to the surjective map

μ
Tg
g = πorb

1 ([X ′
g/�g], �g · x0) �� �� Mapg. (7)

Proof Let M be the mapping class group associated with Homeo0̃,2g+4. The group
M is of finite index insideMap0,2g+4 [3]. Moreover, by means of the surjective map
(6), we can consider the inverse image of M inside π1(U , u0). This is also of finite
index inside π1(U , u0) and hence induces a finite étale cover ˜U → U , which is a
smooth complex variety. If we pull the trivial P1-bundle over U back to ˜U , then its
structure group can be reduced toHomeo0̃,2g+4 and its monodromy surjects ontoM.
Let μ̃0,2g+4 the monodromy map of Ũ and ũ0 a base point over u0. The following
diagram resumes the situation.

π1(˜U, ũ0)

��

μ̃0,2g+4 �� π0(Homeo0̃,2g+4)

��

M

π1(U , u0)
μ0,2g+4 �� π0(Homeo0,2g+4)

(8)

In order to proceed, we need to compare this with a second étale cover of U . Let us
describe it. LetH3

g be the Hurwitz space of simple triple covers of the projective line
by a smooth projective curve of genus g, considered up to isomorphisms covering the
identity on the projective line

C −→ C
↓ ↓
P1 I d−→ P1

By [13, Theorem1.53],H3
g is an étale cover of U . Let us now compare the images

of π1(H3
g) and π1(˜U ) inside π1(U). Composing the homomorphism of fundamental
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groups induced by the étale cover H3
g → U with the surjective monodromy map

μ0,2g+4, we get a monodromy map

μH3

0,2g+4 : π1(H3
g) → π0(Homeo0,2g+4).

By the second part of [13, Theorem1.53, p. 33], there exists a universal family of
trigonal curves C3g → H3

g over the Hurwitz space. The existence of such a family

implies that μH3

0,2g+4 factors through the homomorphism

π0(Homeo0̃,2g+4) → π0(Homeo0,2g+4)

induced by inclusion. Hence, we get the following diagram (where for simplicity we
omitted the base points)

π1(H3
g)

��

��
μ′

��
π1(˜U)

��

μ̃0,2g+4 �� π0(Homeo0̃,2g+4)

��
π1(U)

μ0,2g+4 �� π0(Homeo0,2g+4)

We observe that π1(˜U) is the fiber product in the square. Hence, by the universal
property, there exists a homomorphism

μ′ : π1(H3
g) → π1(˜U).

In fact, μ′ is injective since it factors the injective map π1(H3
g) → π1(U). Thus, there

exists an étale cover H3
g → ˜U . We claim that this map is an isomorphism. In fact,

suppose that we have two different covers C → P1 and C ′ → P1 inside H3
g that

map to the same element in ˜U . This means that they have the same set of liftable
homeomorphisms of P1; hence, they must have the same branch data. This in turn
implies that they are the same cover.

Moreover, every element of Homeo0̃,2g+4 lifts uniquely to Homeog , because the
simple covering f has no covering transformations. Therefore, the monodromy map
of the family C3g of curves of genus g factors as

μg : π1(H3
g)

μ̃◦μ′
�� �� π0(Homeo0̃,2g+4) �� π0(Homeog) = Mapg, (9)

where we wrote μ̃ to shorten μ̃0,2g+4. Finally, our surjectivity claim follows from
the result of Hilden [15, Theorem4, p. 994], which states that the second map of
the sequence is surjective. To phrase it in the words of [3, p. 24–25], Hilden proved
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that, if C → S2 is a simple 3-sheeted branched covering of a 2-sphere, then every
homeomorphism of C is isotopic to a lifting of a homeomorphism of S2. ��
Remark 2.7 Let M be a Maroni invariant and X M,g the restriction of the vector bun-
dle Xg to the fixed Maroni invariant matrix locus �M

2,g+2. Let, moreover, DM,g be
the discriminant inside X M,g and X ′

M,g its complement. The corresponding Maroni
stratum has a presentation as quotient stack [X ′

M,g/�g].

Remark 2.8 By the next section, the monodromymapμX ′
g and its restrictions descend

to surjective maps

μT
g : πorb

1 ([X ′
g/�g]) → Mapg,

μM
g : πorb

1 ([X ′
M,g/�g]) → Mapg,

except forμM
g for g ≡ 1 ( mod 3) (see the upcoming Theorem 4 in case M < g/3−

1). The remaining surjections follow by arguments in the proofs of Proposition3.5
and Theorem4 that hold under relaxing isomorphisms to surjections in the respective
hypotheses.

3 Hirzebruch surfaces, discriminants and their topological invariants

Before of some details, let us state the result that we aim to show along the rest of this
section.

The main goal of the present section is to prove the following theorem, trivially
true in case g < 4.

Theorem 4 If M < g/3 − 1, the inclusion [X ′
M,g/�g] ↪→ [X ′

g/�g] induces a
surjection

πorb
1 ([X ′

M,g/�g]) →−→ πorb
1 ([X ′

g/�g])

with kernel a homomorphic image of Z/(M) if g �= 4.

It states that the orbifold fundamental groups πorb
1 ([X M,g − DM,g/�g]) of the

Maroni strata depend only very mildly on the Maroni invariant M , except in the cases
excluded, when M is maximal for its genus. In our argument, we will use a powerful
theorem by Shimada ([26, Corollary 1.1], see Theorem5 of this paper) that—under
some hypotheses—puts the fundamental group of a fibration and the fundamental
group of a single fiber into a short exact sequence. In other words, we can then exploit
the fundamental group of the complement of the discriminant inside one single fiber
of Xg → �2,g+2 over a chosen matrix ω0 in �M

2,g+2, that is with prescribed Maroni
invariant.

As we have already stated in Sect. 1.2, the fibers of Xg parametrize the sections of
the Tschirnhausenmodule that give rise to trigonal curves.Moreover, the projectivized
vector bundle obtained from the Tschirnhausen module is a Hirzebruch surface FM .
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Hence, the projectivized space of each fiber of Xg → �M
2,g+2 can be interpreted as a

linear system |T | onFM . Notably, if we consider trigonal curves of genus g andMaroni
invariant M (which must meet the conditions 0 ≤ M ≤ 1

3 (g + 2) and M ≡2 g), then
|T | corresponds to the linear system of type |3σ0 + c(g, M) f | on FM , where σ0 is
the movable section with σ 2

0 = M , f the ruling of FM and c(g, M) is the numerical
function of g and M defined as 2c(g, M) = g + 2 − 3M . This in fact follows from
the adjunction formula (here we denote the negative section by σ∞ := σ0 − M f ):

2g − 2 = C · (C + K ) = (3σ0 + c(g, M) f )(2σ0 − σ∞ + (c(g, M) − 2) f )

= 6M + 2c(g, M) − c(g, M) + 3c(g, M) − 6,

hence g − 1 = 3M + 2c(g, M) − 3. Our linear system |T | has projective dimension
N := 2(m + n) + 3.

Consider now a fiber F of Xg over a matrix ω0 ∈ �2,g+2, and let D0 be the
restriction of the discriminant to F . Recall that P(F) ∼= |T | = PN . In fact, more
precisely the discriminant D0 is exactly the cone over the projective dual variety
F

∗
M ⊂ P(F) of the Hirzebruch surface FM ⊂ P(F)∗ ∼= |T |∗. Let P(D0) be its

associated projectivized space inside P(F). In order to understand the fundamental
group of the complement of D0, it will be enough to consider the fundamental group
of the complement of a generic plane section D := P2 ∩ P(D0), thanks to Zariski’s
theoremon the fundamental group of hyperplane sections of divisor complements [29].
The dual operation of taking a plane section is projecting onto a plane and considering
the branch divisor. Hence, we project FM onto a general plane P2 ⊂ P(F)∗, and
consider the branch divisor B. This divisor is the dual curve of D, and it is not
hard to compute its topological invariants. Once one assumes that P(D0) has mild
singularities, the curves B,D form a dual pair of Plücker curves. Via the Plücker
formulas, we get then the topological invariants of D, which are needed to control
the fundamental group of its complement. The claim will follow since the Plücker
characteristics of B depend only on g, K 2 and C · C which are clearly independent
of the Maroni invariant.

3.1 Topological properties of the branch curve

Let us start with the examination of the branch curveB of a generic projection to P2

of the image of FM embedded in the projective space P(F)∗ ∼= |T |∗. The following
claim is taken from [6, Theorem1.1] and [7, Proposition2.6].

Proposition 3.1 ([6]) Let S be a smooth surface in Pn of degree d and ρ : S → P2

be a general projection. Let K and H be the canonical and the hyperplane class of S
and K 2, e(S) its Chern numbers. Then, the branch curve of ρ is an irreducible plane
curve with no singularities except for ordinary cusps and nodes and with the following
numerical characteristics:

(i) the degree of the branch curve is b = 3d + K H = 3H2 + K H,
(ii) the number of ordinary nodes is e(S) − 3K 2 + 24d + b(b − 30)/2,
(iii) the number of ordinary cusps is 2K 2 − e(S) − 15d + 9b.
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Corollary 3.2 Let S be a Hirzebruch surface embedded into P(F)∗ by the complete
linear system |T | of trigonal curves of genus g. Then, the numerical characteristics
of the branch curve of a generic projection ρ : S → P2 depend only on g.

Proof The Chern numbers are invariantly equal to K 2 = 8 and e(S) = 4. By adjunc-
tion, 2g − 2 = H2 + K H , and a quick calculation shows

H2 = (3σ0 + c(g, M) f )2 = 3g + 6.

So the claim follows from the preceding proposition. ��
Assuming thatD,B form a dual pair of Plücker curves, we could deduce that also

the generic plane sectionD is a Plücker curve with numerical characteristic invariant
but for their dependence on g.

Alas so much can certainly not be assumed in case M = (g + 2)/3 since the linear
system is not very ample in this case. The positive result we can give is the following.

Proposition 3.3 Let FM be a Hirzebruch surface embedded into P(F)∗ ∼= |T |∗ by
the complete linear system of trigonal curves of genus g. Then, a generic plane section
D of its dual F

∗
M is a Plücker curve with numerical characteristics only depending on

g, if c(g, M) ≥ 3.

Proof We have to show that D has no singularities except for ordinary nodes and
cusps. Let us stratify F

∗
M according to singularity type of generic plane sections, i.e.,

two points belong to the same stratum iff generic plane sections with F
∗
M through them

produce topologically equivalent plane curve germs. The only singularity types which
can thus be present for D are those belonging to strata in F

∗
M of codimension 1.

Such strata are open in the set of hyperplanes which have a degenerate singular
intersection with FM or in the set of hyperplanes which have at least two singular
intersections. The first set is irreducible under the given hypotheses by a result of
Shimada [25, Proposition4.9]. In fact, his criterion is that at each point p the sections
corresponding to our linear system and the fourth powerm4

p of the local ideal generate
the local algebra Op. The former can be identified with

Span
(

xi y j , j ≤ 3, i ≤ c(g, M) + (3 − j)M
)

resp. Span
(

xi y j , j ≤ 3, i ≤ c(g, M) + j M
)

in case of p /∈ σ∞, resp. p ∈ σ∞, so the criterion applies since c(g, M) ≥ 3. By the
irreducibility thus established, this part gives rise exclusively to ordinary cusp singu-
larities ofD. So other irreducible open parts can only come from sets of hyperplanes
having intersections with S which are smooth except for ordinary nodes of which there
are at least two.

Now, thanks to a result of Tyomkin [27, Proposition2.11], we know that the sets of
such hyperplanes not containing σ∞ are irreducible of codimension in P(F) equal to
the number of nodes. Hence, it suffices to prove that the set of hyperplanes containing
σ∞ is of codimension at least 3.
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In fact, σ∞ is embedded in P(F)∗ as the rational normal curve of degree c(g, M).
The linear subspace of P(F)∗ spanned by this image must be contained in any hyper-
plane which contains σ∞. So the codimension of the family of such hyperplanes is
c(g, M) + 1, one more than the dimension of the linear subspace containing σ∞. ��

3.2 An input from Shimada

As we have already anticipated, a key role will be played by Corollary1.1 of the paper
[26] by Shimada. Since we will use this result thoroughly, it seems worth to recall it
here. The framework is the following. Let f : A → B be a dominant morphism from
a smooth variety A to a smooth variety B, with a connected general fiber. Moreover
we assume that there exists a nonempty Zariski open subset B◦ ⊂ B such that f is
locally trivial in the C∞ category over B◦. Let us now choose a base point b ∈ B◦,
put Fb := f −1(b) and choose a base point b̃ ∈ Fb. Then, the inclusion ı : Fb ↪→ A
induces a homomorphism ı∗ : π1(Fb, B̃) → π1(A, b̃). Here is the statement from
[26].

Theorem 5 Suppose that the following three conditions hold true:

(i) the locus Sing( f ) of critical points of f is of codimension greater than 2 in A;
(ii) there exists a Zariski closed subset Ξ of B of codimension ≥ 2 such that Fy :=

f −1(y) is irreducible for any y ∈ B\Ξ ,
(iii) there exists a subspace C ⊂ B containing b and a continuous cross section

sC : C → f −1(C) of f over C satisfying sC (C) ∩ Sing( f ) = ∅ and sC (b) = b̃
such that the inclusion C ↪→ B induces a surjection π2(C, b) → π2(B, b).

Let i A∗ : π1(A◦, b̃) → π1(A, b̃) be the homomorphism induced by the inclusion
ı A : A◦ ↪→ A. Then, K er(ı∗) is equal to

R :=
〈{

g−1gγ |g ∈ π1

(

Fb, b̃
)

, γ ∈ K er
(

i A∗
)

}〉

,

and we have the exact sequence

1 → π1

(

Fb, b̃
)

//

K er(i A∗)
ı∗−→ π1

(

A, b̃
)

f∗−→ π1(B, b) → 1. (10)

where the first group is the factor group by R.

We remark that the natural projection map X ′
g → �2,g+2 is smooth and has no

critical points. Hence, the hypothesis of Theorem5 is true, and we can apply it.

3.3 Families with nonconstant Maroni invariant

Let FM,g be one fiber of the vector bundle Xg → �2,g+2 with Maroni invariant M .
We will denote by F ′

M,g the complement of the discriminant inside FM,g . We recall
that we denote by M and M the minimal and the maximal Maroni invariant.
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Since �M is dense in �2,g+2, we can find a disk W ⊂ �2,g+2 with center O such
that W ∩ �M = {O} and W − {O} ⊂ �M . Without loss of generality, shrinking W
if necessary, we have a fibration in generic (with respect to D) C3-subspaces over W
contained in Xg . This means that we get a flat family of cones over projective curves
obtained by intersecting the discriminants with the C3-fibration. We obtain a diagram
of inclusions

F ′
M

� � �� X ′
g F ′

M
� ���

F ′
M ∩ C3

��

��

� � �� X ′
g ∩ C3 × W

��

��

F ′
M ∩ C3� ���

��

��

(11)

where F ′
M is the fiber of X ′

g → �2,g+2 over some ω1 �= O ∈ W ∩ �M and F ′
M is

the one over ω0 = O ∈ W .

Proposition 3.4 If g �= 4, there is an isomorphism of fundamental groups

π1
(

F ′
M

) ∼−→ π1

(

X ′
g

)

.

Proof We will apply Theorem5 to the sequence of maps F ′
M → X ′

g → �2,g+2. In
order to do this, we need to verify some properties of the projection X ′

g → �2,g+2.
First, π1(�2,g+2) = π2(�2,g+2) = 1 since the complement of �2,g+2 in Matg+2,g+4
has codimension at least 2 by Lemma 1.3. Moreover, all fibers of X ′

g → �2,g+2 are
irreducible, the map has no critical points and the minimal Maroni stratum X ′

M is
contained in the part where the fibration is locally trivial in the differentiable category.
Thus, we can apply Theorem5, and we get

1 → π1
(

F ′
M

) //

K er
(

iX ′
g∗

)

ı∗−→ π1

(

X ′
g

)

→ 1.

To get the claim, we need to show that the subgroupR of Theorem5 is trivial. If g is
odd, the minimal Maroni stratum X ′

M ⊂ X ′
g has complement of codimension at least

2, since in this case on the minimal Maroni strata n and m are not equal. Hence, it is
clear that K er(iX ′

g∗) is trivial.
In case g is even, n = m on the minimal Maroni strata, hence, the complement in

X ′
g is codimension one. However, we can consider a diagram in the spirit of (11) with

fiberwise restriction to one dimension less:

F ′
M

� � �� X ′
g F ′

M
� ���

F ′
M ∩ C2

��

��

� � �� X ′
g ∩ C2 × W

��

��

F ′
M ∩ C2� ���

��

��

(12)

On the bottom row, we get a fibration with each fiber a complement of a cone over
finitely many points. In case M = M + 2 and g > 4, this fibration is trivial and,
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accordingly, the action on fundamental groups is trivial. We infer that the action of
K er(iX ′

g∗) is trivial, soR is trivial and we get our claim. ��
The following proposition is needed in order to relate the fundamental group of a

fiber with given Maroni invariant to the fundamental group of the total space.

Proposition 3.5 Let jM : F ′
M,g ↪→ X ′

g be the embedding of the complement of the
discriminant inside a fiber FM,g with any given Maroni invariant M. The induced map

jM∗ of fundamental groups is an isomorphism π1(F ′
M,g)

∼−→ π1(X ′
g).

Proof The claim is true for the minimal Maroni stratum by Proposition3.4. Now let
us consider once again diagram (11) and the π1 of the spaces involved. We observe
that the horizontal arrows in the bottom row induce isomorphisms thanks to Proposi-
tion3.3, whereas the vertical arrows (left and right) induce isomorphisms by Zariski
Theorem on generic sections [29]. Finally, the map π1(F ′

M ) → π1(X ′
g) is an iso-

morphism thanks to Proposition3.4; thus, we conclude that all arrows need to induce
isomorphisms. ��

3.4 Some alternative quotient presentations

Let us start with a few set-theoretical observations on the presentation of the quotient
stack.

We know we have a surjection G → �g . We want to compare the subgroups in G
and in�g that stabilizematrices belonging to different strata of themoduli space. Let x0
be a point in the fiber of the vector bundle Xg → �2,g+2 over ω0 ∈ �2,g+2. The point
ω0 is naturally identified with a matrix. We can associate with ω0 the Maroni invariant
M since ω0 completely defines the splitting type of the Tschirnhausen module. As
before, X M,g (respectively, �M

2,g+2) will denote the locus inside Xg (resp. inside
�2,g+2) that corresponds to that Maroni invariant. In the following, G M,g will be the
stabilizer inside G of ω0 ∈ �M

2,g+2 and �M,g the respective stabilizer inside �g . Let
us denote by FM,g the fiber over ω0 that contains x0. Then, G M,g �= �M,g but their
orbits inside FM,g are the same, since the kernel of the natural map G M,g → �M,g

acts trivially. Since every �g-orbit on X ′
M,g intersects with F ′

M,g in a �M,g-orbit, we
have set-theoretical bijections between

[

X ′
M,g/G

]

,
[

X ′
M,g/�g

]

,
[

F ′
M,g/�M,g

]

and
[

F ′
M,g/G M,g

]

. (13)

More is true in fact:

Lemma 3.6 Let F ′
M,g ⊂ X ′

M,g be as above and �∗ ⊂ � groups which act, respec-
tively, on F ′

M,g and X ′
M,g. If the injection as a subspace induces a bijection between

the respective orbits, then it induces an isomorphism

πorb
1

([

F ′
M,g/�∗

]) ∼= πorb
1

([

X ′
M,g/�

])
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Proof Let us use the shorthand notation F and X for F ′
M,g and X ′

M,g . The bijection
of orbits is induced by the embedding F ⊂ X and induces a homotopy equivalence
from which we conclude our claim:

F × E�
/

�∗ � X × E�
/

� �⇒ π1

(

F × E�
/

�∗
) ∼= π1

(

X × E�
/

�
)

�⇒ πorb
1 ([F/�∗] ∼= πorb

1 ([X/�])

��

Proposition 3.7 There is a sequence of isomorphisms

πorb
1

([

X ′
M,g/G

]) ∼= πorb
1

([

X ′
M,g/�g

]) ∼= πorb
1

([

F ′
M,g/�M,g

])

∼= πorb
1

([

F ′
M,g/G M,g

])

.

Proof In all quotients considered in (13), we remark that the acting group is con-
nected; thus, π0(�g) = π0(�M,g) = π0(G M,g) = 1. The upshot is that the orbifold
fundamental group of these spaces does not change if their presentations change. Two
isomorphisms follow from Lemma 3.6, and the last one from the following diagram:

πorb
2 ([X ′

g])/�M,g]) �� π1(�M,g) �� π1(X ′
g) �� �� πorb

1 ([X ′
g/�M,g]) �� 1

πorb
2 ([X ′

g])/G M,g]) �� π1(G M,g)

����

�� π1(X ′
g) �� �� πorb

1 ([X ′
g/G M,g])

��

�� 1

In fact, the π1 of the quotients on the right are seen to be isomorphic by diagram chase.
��

The next aim of this subsection is to understand the natural map

π1(�M ) → π1(�g),

for M as usual a Maroni invariant. The corresponding rank 2 vector bundle has a
splitting type (m, n), with n − m = M and n + m = g + 2. We identify the preimage
of �M under the map G → �g with the group Aut (O(m) ⊕ O(n)) × GL2. Let us
observe that under this identification the natural projection of G onto its last factor
GL2 gives

(i) the trivial map, when restricted to the first factor of Aut (O(m) ⊕O(n)) × GL2,
(ii) an isomorphism, when restricted to the second factor of Aut (O(m) ⊕ O(n)) ×

GL2, even though this second factor is not identified with the last factor of G.
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Moreover, the chosen identification restricts to the map

Aut (O(m)) × Aut (O(n)) → Aut H0(O(m − 1) ⊕ O(n − 1))∗

× Aut H0(O(m) ⊕ O(n))

∼= GLn+m × GLn+m+2;
λ, μ �→

(

λ−1 I dm 0
0 μ−1 I dn

)

,

(

λI dm+1 0
0 μI dn+1

)

.

Hence, we get a commutative (with nonexact rows) diagram of groups

Aut (O(m)) × Aut (O(n))
� � ��

� �

��

Aut (O(m)⊕O(n)) × GL2� �

��

�� �� �M

��
GLg+2 × GLg+4

� � �� GLg+2 × GLg+4 × GL2 �� �g

(14)

that in turn induces the following diagram of fundamental groups

Z × Z ��
� �

v

��

π1(Aut (O(m)⊕O(n))) × Z

w

��

�� π1(�M )

ρ

��
Z × Z �� Z × Z × Z �� π1(�g),

(15)

where the maps are named for further use.

Lemma 3.8 The cokernel of the RHS vertical map ρ : π1(�M ) → π1(�) is a homo-
morphic image of Z

/

(M).

Proof Let us first notice that the vertical map v : Z × Z → Z × Z is given by the
matrix

( −m −n
m+1 n+1

)

. Thus, the image of the vertical map w is generated by the columns

of the matrix
( −m −n ∗

m+1 n+1 ∗
0 0 1

)

, where ∗ stands for possibly any integer value. The 1 in the

bottom right entry is a consequence of our observation ii) here above.
Accordingly, the cokernel of w is isomorphic to Z/(n − m) ∼= Z

/

(M) . It is now
straightforward to see that we can plug the RHS commutative square from Diagram
15 into the following commutative diagram, with exact rows and columns.

1 �� π1(C∗) �� π1(G M )� �

��

�� π1(�M )

��

�� 1

1 �� π1(C∗) �� π1(G)

����

�� π1(�)

����

�� 1

Z
/

(M) �� �� coker(ρ)

(16)

��
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3.5 Proof of Theorem 4

Now we are ready to give a proof of our main Theorem4.

Proof We have the following commutative diagram.

π1(�M,g) ��

��

π1(F ′
M,g)

��

�� πorb
1 ([F ′

M,g/�M,g]) ��

��

1

π1(�g) �� π1(X ′
M,g)

��

�� πorb
1 ([X ′

M,g/�g])

��

�� 1

π1(�g) �� π1(X ′
g) �� πorb

1 ([X ′
g/�g]) �� 1

(17)

The exact rows stem from the long exact homotopy sequence associated with the
respective group actions. The commutativity of the squares on the left follows from
the commutativity of the underlying continuous maps, while on the right the maps
between the orbifold fundamental groups are defined in exactly the way to make the
diagram commutative.

Next, we add more information to the diagram. Let us note that by Proposition3.5
the composition of the vertical maps in the middle is an isomorphism; hence, the first
factor is injective, and the second is surjective. Hence, in the bottom right square, all
maps are surjective. Finally, the map at the right top of the diagram is an isomorphism
thanks to Lemma 3.6.

Discarding the middle row and using the isomorphism at the right top, we get a new
commutative diagram, where the central map is an isomorphism by Proposition3.5
and thus can be transversed in both directions.

π1(�M,g) ��

��

π1(F ′
M,g)��
∼=

��

�� �� πorb
1 ([X ′

M,g/�g])

����

�� 1

π1(�g) �� π1(X ′
g) �� �� πorb

1 ([X ′
g/�g]) �� 1

(18)

Thus, the kernel we are interested in is the homomorphic image of π1(�g), since all
its elements come from elements in the kernel of the surjection in the bottom row.

Moreover, the image of π1(�M,g) in π1(�g)maps to the zero of πorb
1 ([X ′

M,g/�g]).
We conclude with the help of Lemma 3.8 that our kernel is the homomorphic image
of Z/(M). ��

4 Presentation of the fundamental group

The goal of the present section is to give a complete presentation of the orbifold
fundamental group of the Maroni stratum in case 3M = g + 2. This is the case where
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the upper bound for the Maroni invariant 1
3 (g + 2) is attained. Our main theorem is

the following.

Theorem 6 The orbifold fundamental group πorb
1 ([X ′

M,g/�g]) of the maximal
Maroni stratum, in the case g ≡ 1 (mod 3) has a presentation in terms of gener-
ators t1, . . . , t2g+2, and relations:

– of “diagram type”

ti t j ti = t j ti t j if j = i + 1 or j = i + 2;
ti t j = t j ti otherwise,

and
(ti t j t

−1
i )tk = tk(ti t j t

−1
i ) if i + 1 = j = k − 1.

– of “global type”: denote δ0 = t1t2 t3t4, . . . , t2g+1t2g+2

δ0 centralizes t2g+1t2g−1, . . . , t3t1,

t2g+2t2g, . . . , t4t2.

– of “quotient type”. let us denote δ1 = t2g+1t2g+2 t2g−1t2g, . . . , t1t2.

(δ0δ1)
3 = 1

δ
g+2
0 = 1.

Here the relations of “diagram type” are encoded by the graph of Fig. 1.

4.1 Comparison with Weierstrass parameter space

We are going to give a presentation of the orbifold fundamental group of the trigonal
stratum [X ′

M/�g] of Maroni invariant M in the moduli space of curves of genus
g = 3M − 2.

First, we give an identification with the orbifold fundamental group of another quo-
tient. To this end, we give a concrete description of the linear system PVM associated
with the divisor 3σ0 on FM . Consider the isomorphism

�

�

�

�

�

�

�

�

�

2g+ 2

� � �

2 4 · · · · · ·

1 3 · · · · · · 2g+ 1�

Fig. 1 Diagram encoding the relations of diagram type in Theorem 6
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C × C[x1, x0]M × C[x1, x0]2M × C[x1, x0]3M −→ VM = H0(FM ,OFM (3σ0))
u0, u1(x1, x0), u2(x1, x0), u3(x1, x0) �→ u0y3 + u1y2 + u2y + u3

which uses the homogeneous coordinates x1, x0 on the baseP1 and the inhomogeneous
coordinate y on the fiber. The left-hand side is acted on by C∗ × C∗ × GL2 where

(i) the first factor C∗ acts diagonally by homotheties,
(ii) the second factor C∗ acts on the polynomials uν by λν and
(iii) GL2 acts on the coordinate vector (x1, x0).

The set of sections with singular zero locus is preserved under this action.

Proposition 4.1 Let DVM ⊂ PVM be the discriminant corresponding to singular
divisors, then

πorb
1 ([X ′

M/�g]) = πorb
1

(

(PVM\DVM )
/

C
∗×GL2

)

with respect to the action of {1} × C∗ × GL2 induced on the linear system.

Proof From Proposition3.7 the orbifold fundamental group on the left hand side is
isomorphic to

πorb
1 ([F ′

M/�M ]).

On the other hand, FM is identified with H0(FM ,OFM (3σ0)) = VM . Of course, also
the discriminants are identified, so we infer PV ′

M = PF ′
M . To take the group actions

into account, we notice the following three facts,

(i) the action of �M is induced by the action of G M on FM , which in turn is induced
by the action of

AutO(M) × AutO(2M) � Hom(O(M),O(2M)) × GL2

on the corresponding rank 2 bundle O(M) ⊕ O(2M) over P1.
(ii) under the identification PV ′

M = PF ′
M , the action of C∗ × C∗ × GL2 factors

through the isomorphism

C∗ × C∗ × GL2 ∼= AutO(M) × AutO(2M) × GL2. (19)

(iii) Under the identification VM = H0O + H0O(M) + H0O(2M) + H0O(3M),
the action induces the map

AutO(M)×AutO(2M) −→ AutO×AutO(M)×AutO(2M)×AutO(3M)

λ, η �→ λ2η
−1
, λ, η, λ

−1
η2
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We can therefore argue with the following commutative diagram

π1(C
∗×C

∗×GL2)
�� ��

∼
��

π1(PV ′
M ) �� πorb

1 ([PV ′
M/C

∗×GL2]) ��

∼
��

1

π1(�M ) �� π1(PF ′
M ) �� πorb

1 ([F ′
M/�M ]) �� 1

(20)

First, we note that the top row is exact, even though we divide out by a subgroup
of the group on the left-hand side. But this does not matter since the additional factor
acts transitively on the fibers of V ′

M → PV ′
M .

Similarly the bottom row is exact since the quotientmap F ′
M → PF ′

M is obtained by
a free action of a subgroup of�M . The first two vertical maps then follow fromEq. (19)
and the identity PV ′

M = PF ′
M . With the five lemmas, we get the final isomorphism to

complete our proof. ��
Very much in the spirit of [19], a presentation of the knot group of DVM ⊂ PVM

has been obtained:

Theorem 7 ([20], Theorem2) Let PV ′
M be the discriminant complement in the linear

system |3σ0| of trigonal curves of genus g on the ruled surface P(O(M) ⊕ O(2M))

with 3M = g + 2. Then, π1(PV ′
M ) is generated by elements

T1, . . . , T2g+2

with a complete set of relations provided in terms of the edges EM of the graph of
Fig. 2:

(i) Ti Tj = Tj Ti for all (i, j) /∈ EM ,
(ii) Ti Tj Ti = Tj Ti Tj for all (i, j) ∈ EM ,
(iii) Ti Tj Tk Ti = Tj Tk Ti Tj for i < j < k such that (i, j), (i, k), ( j, k) ∈ EM ,
(iv) for all j

(

T
−1

j

(

T2g+2T2g+1, . . . , T2T1
)

)g+1

=
(

(

T2g+2T2g+1, . . . , T2T1
)

T
−1

j

)g+1

� �

�

�

�

�

�

�

g+ 1

� � �

1 2 · · · · · ·

g+ 2� g+ 3 · · · · · · 2g+ 2�

Fig. 2 Diagram encoding relations of type (i), (ii), and (iii) of the knot group of DVM
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Remark The claim is changed from the given source in so far as we restrict to the case
n = 1 and give the indices in the usual linear order, 1 replaces (1, 1), 2 replaces (1, 2)
and so on till 2g + 2 replaces (2, g + 1).

We need to take a little bit more from that paper:

Proposition 4.2 Let δ0 and δ1 be the homotopy classes given by

δ0 = T2g+2T2g+1, . . . , T2T1, δ1 = Tg+2T1 Tg+3T2 , . . . , T2g+3Tg+1. (21)

Then, the following paths represent their free homotopy classes:

y3 + xg+2 + e2π i t , y3 + e2π i t xg+2 + 1.

In fact, we may deduce, with the commutation relations from (i) above, that

δ0 = T2g+2T2g+1, . . . , T2T1 = T2g+2Tg+1, . . . , Tg+3T2 Tg+2T1 (22)

Toget a concise presentation of the given group, it is possible to exploit the following
isomorphism of free groups of free rank 2g + 2 = 6M − 2.

ti = σ j j = 6M − (i + 3)/2 if i ≡6 1

ti = σ j j = 3M − i/2 if i ≡6 2

ti = σ j j = 3M − (i + 1)/2 if i ≡6 3

ti = t
−1

i−1σ j ti−1 j = 6M − (i + 2)/2 if i ≡6 4

ti = ti+1σ j t
−1

i+1 j = 3M − (i + 1)/2 if i ≡6 5

ti = σ j j = 6M − (i + 2)/2 if i ≡6 0

Thanks to t2i−1t2i = T2 j Tj for j = 3M − i , the special elements are given in the
new generators as

δ0 = t1t2 t3t4 , . . . , t2g+1t2g+2

δ1 = t2g+1t2g+2 t2g−1t2g , . . . , t1t2

This isomorphism lies at the heart of the following corollary.

Corollary 4.3 The fundamental group π1(PV ′
M ) has a finite presentation in terms of

generators t1, . . . , t2g+2, and relations
(i) of “diagram type”

ti t j ti = t j ti t j if j = i + 1, i + 2;
ti t j = t j ti otherwise,

and
(ti t j t

−1
i )tk = tk(ti t j t

−1
i ) when i + 1 = j = k − 1.
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(ii) of “global type”

δ0 centralizes t2g+1t2g−1, . . . , t3t1,

t2g+2t2g, . . . , t4t2.

where we denote δ0 = t1, . . . , t2g+2.

Aside It needs quite an effort to get all the relations of part (iv) of the theorem essen-
tially out of the two relations of (23).

4.2 The group action and free loops

With Proposition4.1 in mind, we want to understand the left- hand map of the exact
sequence (20):

π1

(

C
∗×C

∗×GL2

)

−→ π1(PV ′
M )

Elements in the domain can be represented by loops based at the identity which are
real 1-parameter subgroups. An image is then represented by the corresponding orbit
of a chosen basepoint.

We choose four S1-subgroups of C
∗×C

∗×GL2, each parametrized by complex
numbers λ of unit length:

(

λ,λ,
(

1 0
0 1

))

,
(

λ,λ
2,

(

1 0
0 1

)

)

,
(

1, 1,
(

λ 0
0 1

))

,
(

1, 1,
(

1 0
0 λ

))

.

As we noted before, the first subgroup acts trivially on the projective space PVM ,
since it coincides with the circle action on the coordinates y and y0.

y �→ λy

y0 �→ λy0

The action of the second subgroup on coordinates is

y0 �→ λy0
x, x0, y �→ x, x0, y

The remaining two act by multiplication by λ solely on x , respectively, x0.
In PVM , let us take now the point represented by y3 + xg+2 + xg+2

0 . We neglect
the first constant orbit, and the other three orbits are represented by

y3 + λ
3xg+2 + λ

3xg+2
0 , y3 + λ

g+2xg+2+xg+2
0 , y3 + xg+2 + λ

g+2xg+2
0 .

With these pieces of information, we can obtain the image classes in π1(PV ′
M ) of

the three essential subgroups.
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Lemma 4.4 The images of the three essential subgroups are, respectively,

δ30δ
3
1, δ

g+2
0 , and δ

g+2
1 .

Proof By Proposition4.2, the last orbit is freely homotopic to δ
g+2
1 ; hence, the claim

is true up to conjugation. It is in fact true, since δ
g+2
1 can be shown to be central in

π1(PV ′
M ). The same argument applies to the second orbit.

Now let us go back to y3 + xg+2 + xg+2
0 . We use it again as a base point but look

at the family

y3 + exg+2 + e0xg+2
0 .

All members define smooth trigonal curves except for e = 0 or e0 = 0. Let us denote
by E = {e, e0} the parameter space of this family. The discriminant is a normal
crossing divisor in C2, the union of the axes. This means that E ′ ∼= C∗ × C∗ and
π1(E ′) ∼= Z × Z. We can thus conclude that δ0 and δ1 commute.

Moreover, the first orbit is now identified with δ30δ
3
1 up to conjugacy. Also in this

last case, the claim follows, since this element can be shown to be central, too. ��

In this way, the argument of the section is almost completed. It only remains to
combine Corollary4.3 and add the elements in the claim of Lemma 4.4 to get the claim
of Theorem 6. This procedure is justified by Proposition4.1. As a last improvement,
we note that the last two elements in Lemma 4.4 coincide.

4.3 The symplectic action on the first homology group

Let us conclude with an application of Theorem6 to the monodromy map in the case
M = g+2

3 . Instead of the mapping class group of genus g itself, we consider the
representation on the first homology group with Z/2Z coefficients of the complex
curve Cg of genus g. We will denote by c the class in H1(Cg, Z2) of a closed (real)
curve c ⊂ Cg . Let ti be the generators of the orbifold fundamental group as in Section
4.1. Since they map to Dehn twists along simple closed curves ci on Cg , the induced
maps on the first homology are Picard-Lefchetz transvections

τi : H1(Cg, Z2) → H1(Cg, Z2);
c �→ c + 〈c, ci 〉ci

where 〈c, ci 〉 is the parity of the transversal intersection of ci with a representative c
of the class c.

Lemma 4.5 The generators t1, . . . , t2g+2 map to transvections τ1, . . . , τ2g+2 ∈
SpH1(�g, Z2) on elements c1, . . . , c2g+2 ∈ H1(�g, Z2) on which the intersection
pairing is given by the diagram below.
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Proof If we consider y3 + xg+2 as a singular curve in the trigonal linear system, then
theMilnor fiber of its isolated singularity is naturally identified with the intersection of
a small ball with any sufficiently close smooth curve Cg in our trigonal linear system.
In fact, the elements ci are linearly independent in the Z/2Z first homology of the
Milnor fiber FMil of the function y3 + xg+2. It is then readily checked that for i �= j

(i) τiτ j = τ jτi implies 〈ci , c j 〉 = 0,
(ii) τiτ jτi = τ jτiτ j implies 〈ci , c j 〉 = 1.

Hence, the intersection diagram of the ci coincides with the diagram of Fig. 1 encoding
the commutation and braid relations of pairs of ti . ��

By our choice of the generators ti , the diagram gives generators ci of the Z/2Z first
homology of the Milnor fiber FMil of the function y3 + xg+2, as computed by Pham
[24] and Hefez-Lazzeri [14].

The isolated singularity given by y3+ xg+2 is of type JM,0 according to the second
table of [1, p. 248], where again M = g+2

3 . According to [9, Table 3, p. 484], its
integral intersection lattice is isomorphic to

l
⊕

E8 ⊕
2l

⊕
(

0 1
1 0

) ⊕ D4 if M = 2l + 1 is odd,

respectively
l

⊕

E8 ⊕
2l−2
⊕

(

0 1
1 0

) ⊕ 0 ⊕ 0 if M = 2l is even.

After reduction (mod 2) the corresponding Z2-vector space of dimension 2g + 2
is seen to have a radical of rank 2, coming from the reduction in the summand D4 in
case M is odd. This radical is generated by the elements

c1 + c4 + c7 + c10 + · · · + c2g−1 + c2g+2,

c1 + c2 + c3 + c7 + c8 + c9 + · · · + c2g−1 + c2g + c2g+1.

The support of the corresponding elements can be given on the Dynkin-diagram as

We infer that the embedding of FMil into Cg induces a surjection on H1 with Z2
coefficients and kernel generated by the two elements above.
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The quadratic form on the Milnor lattice is given by 1 on the generators. Its value
on the elements of the radical can be read off the diagrams, since this value is the
mod 2 Euler number of the corresponding full subgraph. In the first diagram above,
the subgraph consists of an even number of isolated vertices; in the second, it consists
of d cycles. Thus, the quadratic form takes value 0 on the radical. We conclude that the
monodromy group acts on first homology of the trigonal fiber preserving the induced
quadratic form.

Remark The last claim can be deduced from [5, Theorem 11.1]. Consider the basis of
the first homology consisting of the c1, . . . , c2g (except for c2g+1, c2g+2). Using the
two elements of the radical above, we can express c2g+1, c2g+2 in this basis as

c1 + c2 + c3 + c7 + c8 + c9 + · · · + c2g−1 + c2g,

c1 + c4 + c7 + c10 + · · · + c2g−1.

The quadratic form defined on the basis elements to be 1 has value 1 also on these
two elements; hence, (c) of [5, Theorem11.1] is not given, and the transvections on
the monodromy does not generate the full group of symplectic transformations. Using
[16,17], it is then immediate that monodromy acts by the full group of transformations
respecting the quadratic form.

Acknowledgments We warmly thank C. Ciliberto, F. Flamini, T. Dedieu, I. Tyomkin , A. Vistoli and
F. Catanese for suggestions and fruitful email exchange.

Appendix A: The construction of the monodromy map

We include here a preliminary discussion of the monodromy map as this notion needs
to be defined carefully to get our statements right.

The families of trigonal curves are locally trivial in the complex topology. Hence,
in our topological analysis, we want to associate some topological datum to it.

Suppose p : E → B is a G-bundle on a smooth variety B with respect to an action
of the group G on the fiber F . So B is covered by open trivialization patches U with
chart diagrams

F × U
φU

∼ ��

pr2

��

E|U

��
U U

such that a change in trivialization is given by a diagram

F × U
φ−1

V φU ��

��

F × V

��
U V
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where the map on top is given as

(e, u) �→ (gU∩V (u) · e, u)

for u ∈ U ∩ V and some continuous g : U ∩ V → G.
Let I be the unit interval. A map γ : I → B gives rise to a pullback bundle

γ ∗
E := {(t, e) ∈ I × E | p(e) = γ (t)}

There is a natural bundle map lifting γ

γ̃ : γ ∗
E → E

(t, e) �→ e

Since I is contractible, the pullback bundle γ ∗
E can be trivialized

φγ : F × I → γ ∗
E

For a given choice of γ and φγ , we get a group element in G

gγ,φγ : Eb0

γ̃ −1
|0−→ γ ∗

E0

φ
γ−1|0−→ F × {0} −→ F × {1}

φγ |1−→ γ ∗
E1

γ̃|1−→ Eb0 ,

where the third map is the trivialization along I . To define the monodromy map, it
thus suffices to show that the component of G to which gγ,φγ belongs is independent
of φγ and depends only on the homotopy class of γ .

Independence of the trivialization φγ follows directly from formula valid in case
of a change in trivialization. The two group elements differ by a group element which
is in the path-connected component of the identity.

Independence of the representative γ of a given homotopy class follows similarly.
A homotopy gives rise to a pullback bundle over I × I , which again is trivial by the
contractibility of the base. The induced trivializations over the two homotopic paths
give the same group element.

The natural consequence of this is the Proposition/Definition that we wanted.

Proposition 4.6 Let p : E → X be a G-bundle on a smooth variety X. The following
map given on representatives is well-defined

π1(X, x0) −→ π0(G, id)

[γ ] �→ [gγ,φγ ]

and is called the G-monodromy of the G-bundle p : E → X.

Remark 4.7 (i) We remark that the monodromy map is in fact part of the long exact
homotopy sequence of the corresponding G-bundle.

(ii) The definition of monodromy map extends harmlessly to the orbifold context.
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