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Abstract We generalize and unify various tools from the study of valued fields
equipped with an automorphism to obtain a relative quantifier elimination result for
such fields. Along the way we point how the techniques we employ relate to a classi-
cal result from tropical geometry. The quantifier elimination result we provide is then
applied to the transseries field equipped with the automorphism which sends f (x) to
f (x + 1).
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1 Introduction

A difference field is a field equipped with a distinguished automorphism. The concept
has derived from the study of functional equations like f (x+1)− f (x) = g(x), which
are called difference equations. A valued difference field is a valued field equippedwith
a distinguished automorphism which fixes the valuation ring setwise. These structures
have attracted attention after their relevance in [8] as a tool for analyzing difference
varieties.
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The results of Ax&Kochen and Ershov (see [10]) on valued fields have been very
influential on the algebraic theory of valued fields and lead to an asymptotic solution
of Artin’s conjecture that over the p-adics every homogeneous polynomial of degree
d with more than d2 variables has a nontrivial zero.1 Hence it is very natural to ask
whether one can obtain analogs of these results in the context of valued difference
fields. Most notably, in [4], Belair, Macintyre and Scanlon provide axiomatization and
relative quantifier elimination for the field ofWitt vectors over the algebraic closure of
Fp equippedwith the lifting of theFrobenius automorphism.Oneof the key ingredients
of these results is the study of zeroes of difference polynomials in one variable. This is
purely algebraic in nature and may be seen as a first step toward the study of difference
varieties in terms of valuation theory. The success of [4] inspired further research, and
more results in the same directionwere proved in [1,2] and [12]. It is worthmentioning
that these results were used in [5] to show that valued difference fields are concrete
examples of NTP2 theories. The main results of this paper are again axiomatization
and relative quantifier elimination for valued difference fields (see Sect. 7) but in a
much more general context than the results mentioned above. In Sect. 8 we apply
these results to the transseries field considered as a valued difference field with the
automorphism that sends each element f (x) to f (x + 1).

Let K be a valued difference fieldwith valuation v, valuation ringOwhosemaximal
ideal is m, value group Γ and distinguished automorphism σ . Then σ induces an
automorphism of the residue field k := O/m, denoted σ̄ . Likewise σ induces an
order-preserving automorphism of the value group, which we also denote by σ :

γ �→ σ(γ ) := v(σ (a)) where v(a) = γ.

Up to this point model theoretic results on valued difference fields are obtained in
restricted settings determined by the action of σ on the value group. For example, in
[4], σ is assumed to induce the identity map on Γ . In general the action of σ on Γ

can be quite complicated (see Hahn difference fields in Sect. 2 and also Sect. 8). Our
key improvement in this paper is omitting all assumptions about the action of σ on
the value group except what is already implied by requiring that it fixes the valuation
ring setwise. This is achieved via generalizing and unifying various techniques from
the aforementioned results. The notion of regularity from the PhD thesis of the second
author [11] (also used in [12] independently) turns out to be a very efficient tool for
understanding the interaction between pseudoCauchy sequences and σ -polynomials
(see Sect. 3).

For the main content of this paper we need the results of Sect. 3 only for σ -
polynomials in one variable, but we also present straightforward generalizations to
the multivariable setting at the end of Sect. 3. These results are very much in the
spirit of tropical geometry, and we hope that they will find applications in the study of
difference varieties. Indeedweprovide a straightforward proof ofKapranov’sTheorem
as a consequence (see Theorem 3.13). A tropical approach to difference geometry
with the tools introduced here also seems within reach, but this is a separate goal to
be pursued elaborately in further research.

1 The conjecture is indeed false.
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Henselianity plays a crucial role in [10] and all similar results about the elemen-
tary theory of valued fields. There are various attempts for a suitable definition of
σ -henselianity to fulfill that role in valued difference fields. The one we use (see Def-
inition 4.5) was introduced in [1]. It was initially intended to deal with contractive
valued difference fields,2 but in Sect. 4 we show that this notion of σ -henselianity is
suitable for the general setting as well. It is worth noting that σ -henselianity implies
that the residue difference field is linear difference closed. That is, if K is a σ -henselian
valued difference field as in Definition 4.5, then for all α0, . . . , αn ∈ k with αi �= 0
for some i , the equation

1 + α0x + α1σ̄ (x) + · · · + αn σ̄
n(x) = 0

has a solution in k (see Lemma 4.6). In particular our results in Sect. 7 do not apply
when σ̄ is the identity on the residue field. Let us note that this restriction is present
in each of [1,4,12].

In Sect. 8 we apply our results to transseries. Transseries, also referred to as LE-
series, present themselves in real differential algebra as real closed differential fields
(see [13]).Moreover there is a lot of additional structure on transseries: exponentiation,
valuation, composition and integration. We will be considering a transseries field, T,
as a valued field equipped with a right composition map. If g(x) is a positive, infinite
transseries, then the map given by f (x) �→ f (g(x)) is an automorphism of T and
it fixes the valuation ring setwise. As such T becomes a valued difference field. One
natural choice for g(x) as above is g(x) = x + 1. Let us note that in this case
the automorphism is neither value-preserving, nor contractive, nor multiplicative; the
cases considered in [1,4,12], respectively.Unfortunately, the residuefield of the natural
valuation on T is really closed. In particular, the residue difference field is not linear
difference closed. However, when g(x) = x + 1, we can pass to a coarsening of the
natural valuation whose residue difference field is linear difference closed and then
apply the results of Sect. 7. This trick can not be applied for an arbitrary g(x). In the
particularly interesting case g(x) = ex , the linear difference equation

f (ex ) − f (x) = 1

does not have a solution in T and worse the reduced equation does not have a solution
in the residue difference field of any coarsening.

We would like to thank Lou van den Dries and Joris van der Hoeven for the help
they provided in issues concerning transseries. Part of this research was conducted at
Nesin Mathematics Village, we are thankful for their hospitality.

2 Preliminaries

Throughout, N = {0, 1, 2, . . .}, and m, n range over N. We let K× = K\{0} be the
multiplicative group of a field K . Some of the basic concepts we use are introduced

2 That is, valued difference fields where σ(γ ) > nγ for all n whenever γ > 0.
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below. For the rest (difference fields, σ -polynomials and their Taylor expansions,
valued fields, etc.) we follow the notations and conventions given in the preliminaries
section of [2].
Ordered difference groups An ordered difference group is an ordered abelian group
equippedwith a distinguishedorder-preserving automorphism.Weconsider anordered
difference group in the obvious way as a structure for the language {0,+,−,<, σ },
where the unary function symbol σ is interpreted as the distinguished automorphism.
Let Δ ⊆ Γ be an extension of ordered difference groups, and γ ∈ Γ . We define
Δ〈γ 〉 to be the smallest ordered difference subgroup of Γ containing Δ and γ . For
i = (i0, . . . , in) ∈ Z

n+1 we put

σ i (γ ) :=
n∑

k=0

ikσ
k(γ ).

Consider the polynomial ring Z[σ ]where σ is taken as an indeterminate. We construe
the ordered difference group Γ as a Z[σ ]-module as follows: for

τ =
n∑

k=0

ikσ
k ∈ Z[σ ], γ ∈ Γ,

we set τ(γ ) := σ i (γ ) where i = (i0, . . . , in) ∈ Z
n+1. We also consider each ordered

difference subgroup of Γ as a Z[σ ]-submodule of Γ .
Valued difference fields A valued difference field is a valued field K =

(K , Γ, k; v, π) where K is not just a field, but a difference field whose difference
operator σ satisfies σ(Ov) = Ov . It follows that σ induces an automorphism of the
residue field:

π(a) �→ π(σ(a)) : k → k, a ∈ O.

We denote this automorphism by σ̄ , and k equipped with σ̄ is called the residue
difference field of K. Likewise σ induces an order-preserving automorphism of the
value group Γ , which we also denote by σ . Furthermore

v(σ (y)i ) = σ i (γ )

for all y ∈ K× with v(y) = γ and σ (y)i = yi0 · · · σ n(y)in . Hence v : K× → Γ is a
morphism of Z[σ ]-modules.
LetK be a valued difference field. The difference operator σ of K is also referred to as
the difference operator of K. By an extension of K we shall mean a valued difference
field K′ = (K ′, . . .) that extends K as a valued field and whose difference operator
extends the difference operator of K′. In this situation we also say that K is a valued
difference subfield of K′, and we indicate this byK ≤ K′. Such an extension is called
immediate if it is immediate as an extension of valued fields. In dealing with a valued
difference field K as above v also denotes the valuation of any extension of K that
gets mentioned (unless specified otherwise), and any difference subfield E of K is
construed as a valued difference subfield of K in the obvious way. Whenever we say



Quantifier elimination for valued fields equipped with… 1181

K is a valued difference field, it should be understood that K = (K , Γ, k; v, π); thus
fixing the notations for the underlying field, value group, residue field and valuation.
Likewise K′ will always be (K ′, Γ ′, k′; v′, π ′). In case K ≤ K′ we write v, σ , π for
v′, σ ′ and π ′, respectively.

Let Kh = (Kh, Γ, k; . . . ) be the henselization of the underlying valued field of
K. By the universal property of “henselization” the operator σ extends uniquely to
an automorphism σ h of the field Kh such that Kh with σ h is a valued difference
field. Accordingly we shall viewKh as a valued difference field, making it thereby an
immediate extension of the valued difference field K.

Given an extension K ≤ K′ of valued difference fields and a ∈ K ′ we define K〈a〉
to be the smallest valued difference subfield ofK′ extendingK and containing a in its
underlying difference field; thus the underlying difference field of K〈a〉 is K 〈a〉.
Hahn difference fields Let k be a field and Γ an ordered abelian group. This gives the
Hahn field k((tΓ ))whose elements are the formal sums a = ∑

γ∈Γ aγ tγ with aγ ∈ k
for all γ , with well-ordered support {γ : aγ �= 0} ⊆ Γ . With a as above we define
the valuation v : k((tΓ ))× → Γ by v(a) := min{γ : aγ �= 0}, and the surjective ring
morphism π : Ov → k by π(a) := a0. In this way we obtain the (maximal) valued
field K = (k((tΓ )), Γ, k; v, π) which we also just refer to as the Hahn field k((tΓ )).
Suppose that the field k is equipped with an automorphism σ̄ and that the ordered
group Γ is equipped with an order-preserving automorphism σ . Then

∑

γ

aγ t
γ �→

∑

γ

σ̄ (aγ )tσ(γ )

is an automorphism, to be denoted by σ , of the field k((tΓ )), with σ(Ov) = Ov .
We consider the three-sorted structure (k((tΓ )), Γ, k; v, π), with the field k((tΓ ))

equipped with the automorphism σ as above, as a valued difference field, and also
refer to it as the Hahn difference field k((tΓ )).
PseudoCauchy sequences A well-indexed sequence is a sequence {aρ} indexed by the
elements ρ of some nonempty well-ordered set without largest element; throughout
“eventually” means “for all sufficiently large ρ” in the context of a well-indexed
sequence. Let K be a valued field and {aρ} a well-indexed sequence from K .

Definition 2.1 The sequence {aρ} is a pseudoCauchy sequence (pc-sequence) if for
some index ρ0,

ρ′′ > ρ′ > ρ ≥ ρ0 �⇒ v(aρ′′ − aρ′) > v(aρ′ − aρ).

For a in some valued field extension of K we say that a is a pseudolimit of {aρ} if
{v(a − aρ)} is eventually increasing, denoted aρ � a.

For ρ0 as above, and put

γρ := v(aρ′ − aρ)

for ρ′ > ρ ≥ ρ0; this depends only on ρ. Then {γρ}ρ≥ρ0 is strictly increasing. The
width of {aρ} is the set
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{γ ∈ Γ ∪ {∞} : γ > γρ for all ρ ≥ ρ0}.

Its significance is that if a, b ∈ K and aρ � a, then aρ � b if and only if v(a − b)
is in the width of {aρ}. A useful observation about pc-sequences is that if {aρ} is a
pc-sequence in an expansion of a valued field (e.g., in a valued difference field), then
{aρ} has a pseudolimit in an elementary extension of that expansion.

3 Regularity and pseudoconvergence

Let K be a valued difference field. For a σ -polynomial F(x) = ∑
i aiσ (x)i over K

and γ ∈ Γ define Fv(γ ) : = mini {v(ai ) + σ i (γ )}. Thus F induces a map

Fv : Γ → Γ

γ �→ Fv(γ )

which is strictly increasing whenever F(x) is nonzero and the constant term of F
is equal to zero (since σ is an order- preserving automorphism of Γ ). In general Fv

is strictly increasing on an initial segment of Γ and constant on the complement of
this initial segment. Note that if F is a σ -monomial then for all a ∈ K we have
vF(a) = Fv(γ ), where v(a) = γ . This obviously does not hold for σ -polynomials.

Definition 3.1 Let F(x) be a σ -polynomial over K . An element a ∈ K is regular for
F if

v(F(a)) = Fv(γ ),

where γ = v(a); otherwise a is irregular for F . We say that a ∈ K is regular over a
subfield E of K if a is regular for all σ -polynomials with coefficients from E .

Every element a ∈ K is regular for allσ -monomials over K , and 0 is regular for F(x) if
and only if F(0) = 0.Note that a is irregular for F(x) if and only if vF(a) > Fv(v(a)).

Lemma 3.2 Let a, b ∈ K be such that v(b − a) > v(a) and F(x) a σ -polynomial
over K . Then a is regular for F(x) if and only if b is regular for F(x).

Proof Suppose that a is regular for F(x) = ∑
i aiσ (x)i and v(a) = γ . Pick j with

v(a j ) + σ j (γ ) = Fv(γ ) = vF(a) and let

G(x) = F(ax)

a jσ (a) j
=

∑

i

aiσ (a)i

a jσ (a) j
σ (x)i .

Then G(x) has coefficients from the valuation ring, and since a is regular for F(x),
vG(1) = 0. Therefore we obtain G(1) �= 0 ∈ k where G(x) is the reduced σ̄ -
polynomial over k. Set c = b/a. Then c̄ = 1 and vG(c) = 0 since G(c̄) = G(1) �= 0.
This leads to

vF(b) = v(a j ) + σ j (γ ) = Fv(γ )

and so b is also regular for F(x). ��
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If {aρ} is a pc-sequence in a valued field K and aρ � a with a ∈ K then for an
ordinary nonconstant polynomial f (x) ∈ K [x] we have f (aρ) � f (a) (see [9]).
For certain valued difference fields, as in [1], the same is true for nonconstant σ -
polynomials but that is not the case in general. In the context of a value-preserving
automorphism this issue was resolved in [4] via the notion of equivalent pc-sequences
under the assumption that the automorphism is not of finite order over the residue
field. We will also need this assumption, which we explicitly state as an axiom.
Axiom 1. For each integer d > 0 there is y ∈ k with σ̄ d(y) �= y.
Also, the focus of the current paper is valued difference fields with residue charac-
teristic zero, and so we assume this throughout the rest even though some results are
valid without this assumption.

Definition 3.3 Two pc-sequences {aρ}, {bρ} in a valued field are equivalent if for all
a in all valued field extensions, aρ � a ⇔ bρ � a.

This is an equivalence relation on the set of pc-sequences with given index set and in
a given valued field, and:

Lemma 3.4 Two pc-sequences {aρ} and {bρ} in a valued field are equivalent if and
only if they have the same width and a common pseudolimit in some valued field
extension.

We shall prove that given a pc-sequence {aρ} from a valued difference fieldKwhich
satisfies Axiom 1, and a σ -polynomial F(x) overK there is an equivalent pc-sequence
{bρ} such that {F(bρ)} is also a pc-sequence. Construction of bρ , even when assuming
specific behavior of σ as in [4], is quite complicated. Appropriately using regular
elements this can be achieved in straightforward manner. First we state a well-known
fact which will allow us to use Axiom 1 effectively.

Lemma 3.5 Let k ⊆ k′ be a field extension, and g(x0, . . . , xn) a nonzero polynomial
over k′. Then there is a nonzero polynomial f (x0, . . . , xn) over k such that whenever
y0, . . . , yn ∈ k and f (y0, . . . , yn) �= 0, then g(y0, . . . , yn) �= 0.

The existence of regular elements as described below will be the key tool for
constructing an equivalent pc-sequence as in the above discussion.

Lemma 3.6 Suppose that K ≤ K′ is an extension of valued fields, and K satisfies
Axiom 1. Let F be a σ -polynomial over K ′, and γ ∈ Γ . Then there exists a ∈ K such
that v(a) = γ and a is regular for F.

Proof Let F = ∑
aiσ i (x) and take b ∈ K with v(b) = γ . Set

G(x) := F(bx)

a jσ (b) j
=

∑

i

aiσ (b)i

a jσ (b) j
σ (x)i

where j is such that Fv(γ ) = v(a j ) + σ j (γ ). So the coefficients of G(X) are in the
valuation ring of K ′, with one coefficient equal to 1. So the reduced σ̄ -polynomial
G(x) over k′ is nonzero.
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By Lemma 3.5 there is a nonzero σ̄ -polynomial h(x) over k such that for all α ∈ k,
G(α) �= 0 whenever h(α) �= 0. Since σ̄ is not of finite order as an automorphism of k,
there exists a nonzero element α ∈ k such that h(α) �= 0 (see [6], p. 201) and hence
G(α) �= 0. So we can take c ∈ K with v(c) = 0 and c̄ = α. Then v(G(c)) = 0,
v(bc) = v(b) = γ and

v(F(bc)) = v(a jσ(b) j ) = Fv(γ ).

That is, a = bc ∈ K is regular for F . ��
Remark 3.7 Under the same hypothesis of above lemma, given a finite set 
 of σ -
polynomials over K′ and γ ∈ Γ , we can find a ∈ K of valuation γ which is regular
for every σ -polynomial in 
.

Theorem 3.8 SupposeK satisfies Axiom 1, {aρ} is a pc-sequence from K and aρ � a
in an extension. Let 
 be a finite set of σ -polynomials F(x) over K . Then there is
a pc-sequence {bρ} from K , equivalent to {aρ}, such that F(bρ) � F(a) for each
nonconstant F in 
.

Proof First, let us assume that 
 consists of a single nonconstant σ -polynomial F(x)
over K . Put γρ := v(aρ − a) ∈ Γ ; then {γρ} is an eventually strictly increasing
sequence. Also set

G(x) := F(a + x) − F(a) =
∑

|i |≥1

Fi (a)σ (x)i .

Note that G(x) is a nonzero σ -polynomial which has constant term zero and its coef-
ficients are in K 〈a〉.

For allρ we choose, usingLemma3.6, cρ ∈ K of valuation γρ such that cρ is regular
for G(x). Now, define bρ := aρ+1 + cρ . Then v(a − bρ) = v(a − aρ+1 − cρ) = γρ

eventually, so bρ � a. Moreover

v(bρ+1 − bρ) = v(aρ+2 + cρ+1 − aρ+1 − cρ) = γρ

eventually, and hence {bρ} is equivalent to {aρ}. Since cρ is regular for G(x) and

v(bρ − a − cρ) = v(aρ+1 + cρ − a − cρ) = γρ+1 > v(cρ)

eventually, by Lemma 3.2, bρ − a is regular for G(x) eventually. Then

v
(
F(bρ) − F(a)

) = vG(bρ − a) = Gv(γρ)

eventually. SinceG(x) has constant term equal to zero,Gv is a strictly increasing func-
tion, and hence F(bρ) � F(a). The general case can be obtained using Remark 3.7.

��
Corollary 3.9 The same result, where a is removed and one only asks that {G(bρ)}
is a pc-sequence.
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Proof Put in an a from an elementary extension. ��

Using the above results it is easy to obtain the following theorem which will be crucial
at later stages. See [4] for a detailed treatment.

Theorem 3.10 Let K be a valued difference field satisfying Axiom 1. Let {aρ} be a
pc-sequence from K and let a in some extension of K be such that aρ � a. Let G(x)
be a σ -polynomial over K such that

(i) G(aρ) � 0,
(ii) G(l)(bρ) �� 0 whenever |l| ≥ 1 and {bρ} is a pc-sequence in K equivalent to

{aρ}.
Let 
 be a finite set of σ -polynomials H(x) over K . Then there is a pc-sequence
{bρ} in K , equivalent to {aρ}, such that G(bρ) � 0, and H(bρ) � H(a) for every
nonconstant H in 
.

The multivariable case and Kapranov’s theorem For our model theoretic treatment
of valued difference fields we only need to deal with σ -polynomials in one variable.
However we will provide generalizations of some of the results of this section to the
multivariable case with the hope that they can be useful for other applications. A
particular goal would be to establish a basis for tropical difference geometry.

Let F(x1, x2, . . . , xn) = ∑
i Mi be a multivariable σ -polynomial, where Mi ’s are

its monomials. Then each monomial Mi induces a function

Mi v : Γ n → Γ

(γ1, . . . , γn) �→ v(Mi (x1, . . . , xn))

where v(xi ) = γi . We set Fv(γ1, . . . , γn) := mini {Mi v(γ1, . . . , γn)}. Note that when
F is an ordinary multivariable polynomial, Fv is precisely the tropicalization of F . We
define a regular tuple for F to be an n-tuple a ∈ Kn such that Fv(v(a)) = v(F(a)).

We see Γ n as a group with componentwise addition and equipped with the natural
partial ordering obtained from the ordering on Γ . We say that γ, θ ∈ Γ n are compa-
rable if γ ≤ θ or θ ≤ γ . We also extend all structure on K to Kn componentwise,
and we use the same notations that we use for elements of Γ and K for n-tuples. So
for a = (a1, . . . an), b = (b1, . . . , bn) ∈ Kn we have:

v(a) = (v(a1), . . . , v(an));
v(a) < v(b) ⇔ v(ai ) < v(bi ) for i = 1, . . . , n;
ab = (a1b1, . . . , anbn);

a + b = (a1 + b1, . . . , an + bn).

It is easy to see that for a, b ∈ Kn , we have v(ab) = v(a) + v(b) and

v(a + b) ≥ min{v(a), v(b)}
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whenever v(a) and v(b) are comparable. In particular, if v(a) < v(b), then v(a+b) =
v(a). A pc-sequence from Kn is a sequence such that each of its coordinates is a pc-
sequence in K and it pseudoconvergences to an n-tuple if each of its coordinates
pseudoconverge to the corresponding coordinate of that n-tuple. Two pc-sequences
from Kn are equivalent if the corresponding pc-sequences from each coordinate are
equivalent.

Then it is straightforward to check that all the previous results of this section are
valid in the multivariable context. In particular, we note the following consequence of
the proof of the Lemma 3.6:

Lemma 3.11 Let a �= 0 ∈ Kn and F(x) be a nonzero multivariable σ -polynomial.
Then a is regular for F(x) if and only if (1, . . . , 1) is not a zero of reduced polynomial
F(ax)/d over k for some d ∈ Kn of valuation Fv(v(a)). More generally, for all
b ∈ Kn such that v(b) = (0, . . . , 0), the element ab is irregular for F if and only if
ab is a root of F or (b̄1, . . . , b̄n) is a root of F(ax)/d.

Now let us explain how these tools relate to tropical geometry. Let F(x) = ∑
i Mi

be a multivariable σ -polynomial, with monomials Mi , over a nontrivially valued field
K = (K , Γ, k; v). A tropical zero of F is an element γ ∈ Γ n , such that Fv(γ ) is
equal to Mi v(γ ) = M j v(γ ) for some i �= j . Note that if F is an ordinary polynomial
in one variable, then it has finitely many tropical zeroes. The same assertion is false
for multivariable polynomials and σ -polynomials even in one variable (e.g., if σ is
the identity on Γ then F(x) = σ(x) − x has infinitely many tropical zeroes). This
difference is actually the reason why pseudoconvergence is preserved under ordinary
polynomials in one variable but not under σ -polynomials. So it is no surprise that the
tools we introduced to deal with pseudoconvergence are actually closely related to
tropical geometry.

If a ∈ Kn is a zero of F then v(a) is a tropical zero of F . One of the essential
results in tropical geometry is Kapranov’s Theorem (see Theorem 2.1.1. [7]) which
asserts the converse when K is algebraically closed; namely that if γ is a tropical zero
of F then there is a ∈ Kn with v(a) = γ and F(a) = 0. Using the lemma below we
provide an alternative proof of this fact.

Lemma 3.12 Let F be an ordinary one variable polynomial over a nontrivially valued
field (K , Γ, v), γ ∈ Γ be a tropical zero of F and b ∈ K of valuation γ . Consider
the polynomial G(x) := ∑

i≥1 Fi (b)x
i . Then Gv(γ ) = Fv(γ ).

Proof Since it enough to show that Fv(γ ) andGv(γ ) agree over an extension of (K , v)

we can suppose that K is algebraically closed. Since the residue field is infinite, by
the Lemma 3.6, we can choose ε ∈ Kn of valuation γ which is regular for G. Then
v(ε + b) ≥ γ and F(ε + b) − F(b) = G(ε). Since

vF(ε + b) ≥ Fv(γ ) & vF(b) ≥ Fv(γ )

we have v(G(ε)) ≥ Fv(γ ).
The reduced polynomial F(bx)/d with v(d) = Fv(γ ), as in Corollary 3.11, is

nonzero, and since k is algebraically closed we can pick a root of it which provides
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an irregular element for F of the form by with v(y) = 0. On the other hand, as above,
there exists regular elements for F for an arbitrary value in Γ . Now if b is irregular for
F then choose c ∈ K of valuation γ regular for F , and if b is regular for F then choose
c irregular for F of valuation γ . Then v(c − b) = γ by 3.11 and v(F(c) − F(b)) =
min{F(c), F(b)} = Fv(γ ). Hence we have Fv(γ ) = v(G(c − b)) ≥ Gv(γ ). ��

Theorem 3.13 (Kapranov’s theorem) If F(x) is a nonzero multivariable polynomial
over an algebraically closed valued field (K , Γ, v) and γ ∈ Γ n is a tropical zero of
F then there is a root of F of valuation γ .

Proof Let a := (a1, . . . , an−1, an) ∈ Kn be of valuation γ . Since γ is a tropical
zero of F we can w.l.o.g. suppose that a is irregular for F(x): In fact if not, repeating
the proof above, by 3.11 we can consider the polynomial F(ax)/d over k; since k
is algebraically closed we can take a root of it which provides an irregular element
for F(x) of the form ab with v(b) = (0, . . . , 0). Remark in this case that by 3.11 an
is irregular for the one variable polynomial Fa := F(a1, . . . , an−1, y): the fact that
(1, . . . , 1) is a root of F(ax)/d implies 1 is a root of Fa(an y)/d . Now it is enough to
find a zero of Fa of valuation v(an).

Set b0 := an and θ := v(b0). We will first find b1 ∈ K of valuation θ such that
v(b1 − b0) > θ and Fa(b1) > Fa(b0). Set

G(x) :=
∑

i≥1

Fa
(i)(b0)x

i .

By divisibility of the value group Γ we can pick δ such that Gv(δ) = v(Fa(b0)).
By Lemma 3.12 we have Gv(θ) = Fa

v (θ) and since b0 is irregular for Fa we get
v(Fa(b0)) > Fa

v (θ). Putting these together with the fact that Gv is strictly increasing
we conclude that δ > θ . Let ε be such that v(ε) = δ. Set b1 = b0 + εu where u
is a new variable. Then G(εu) + Fa(b0) = Fa(b1). Since Gv(δ) = v(Fa(b0)) the
polynomial

H(u) := G(εu)

Fa(b0)

has coefficients from the valuation ring of K , and the reduced polynomial H(u)

over the residue field is nonzero and has constant term zero. Now, in order to have
Fa(b1) > Fa(b0), we pick a c ∈ K of valuation zero such that c̄ ∈ k is a zero of the
polynomial H + 1 and set b1 = b0 + εc.

Proceeding inductively we can construct a pc-sequence {bk}k∈N with Fa(bk+1) >

Fa(bk) if Fa(bk) �= 0 for all k ∈ N. Since {bk} is of algebraic type, {bk} � bω for some
bω ∈ K . Since {Fa(bk)} � 0 and {Fa(bk)} � Fa(bω)we have Fa(bω) > Fa(bk) for
all k ∈ N. Then again either Fa(bω) = 0 or we can continue extending our sequence
as before. Hence we can construct a pc-sequence of arbitrary length {bρ} if during
the process we do not get a zero Fa . We must obtain a zero of Fa considering the
cardinality of K . ��
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4 Approximating zeroes of σ -polynomials

Let K be a valued difference field of residue characteristic zero as usual. Let G(x) be
a σ -polynomial over K of order≤ n and a ∈ K . Let i range over tuples (i0, . . . , in) ∈
N
n+1, and likewise with j = ( j0, . . . , jn), l = (l0, . . . , ln). Much of this section is

parallel with the corresponding sections of [4] and [2]. There are some points which
require close inspection, in which case we present proofs in full detail even though
they look identical to what is already known from [4] and [2]; otherwise we just point
out the necessary references.

Definition 4.1 We say (G, a) is in σ -hensel configuration if G /∈ K and there is i
with |i | = 1 and γ ∈ Γ such that

(i) v(G(a)) = v(G(i)(a)) + σ iγ ≤ v(G( j)(a)) + σ jγ whenever | j | = 1,
(ii) v(G( j)(a)) + σ jγ < v(G( j+l)(a)) + σ j+lγ whenever j , l �= 0 and G( j) �= 0.

If (G, a) is inσ -hensel configuration thenG( j)(a) �= 0whenever j �= 0 andG( j) �= 0,
so G(a) �= 0, and therefore γ as above satisfies

v(G(a)) = min| j |=1
v(G( j)(a)) + σ jγ,

so is unique, and we set γ (G, a) := γ . If (G, a) is not in σ -hensel configuration we
set γ (G, a) := ∞.

Remark 4.2 Suppose G is nonconstant, G(a) �= 0, v(G(a)) > 0 and v(G(i)(a)) = 0
for all i �= 0withG(i) �= 0.Then (G, a) is inσ -hensel configurationwithγ (G, a) > 0.

The definition of σ -hensel configuration above is identical with the corresponding
definition in [1] and [4]. In order to obtain Lemma 4.3 we need to impose the following
condition on the residue difference field.
Axiom 2n . If α0, . . . , αn ∈ k are not all 0 then the equation

1 + α0x + · · · + αm σ̄ n(x) = 0

has a solution in k.
We say that a difference field satisfies Axiom 2 if it satisfies Axiom 2n for all n, such

a difference field will be called linear difference closed. This axiom is very similar to
Kaplansky’s condition on residue fields in the study of valued fields of positive residue
characteristic. One just replaces the Frobenius with σ̄ , see [1] for a detailed study of the
connection. It is shown in [1] that Axiom 2 can not be avoided if one wants to obtain
Theorem 5.8. Nonetheless it is conceivable that AKE-type results can be obtained
without having Theorem 5.8 and hencewithout requiring the residue difference field to
be linear difference closed. Presently we avoid this discussion and assume throughout
the rest of the paper that all valued difference fields under consideration satisfy Axiom
2. Note that Axiom 2 implies Axiom 1. The next lemma is identical to Lemma 4.4
from [1], and one can see that its proof remains valid in our context when the details
are made explicit.
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Lemma 4.3 Suppose thatK satisfies Axiom 2, and (G, a) is inσ -hensel configuration.
Then there is b ∈ K such that

(1) v(b − a) ≥ γ (G, a), v(G(b)) > v(G(a)),
(2) either G(b) = 0, or (G, b) is in σ -hensel configuration.

For any such b we have v(b − a) = γ (G, a) and γ (G, b) > γ (G, a).

Proof Let γ = γ (G, a), pick ε ∈ K with v(ε) = γ . Let b = a + εu where u ∈ K is
to be determined later; we only impose v(u) ≥ 0 for now. Consider

G(b) = G(a) +
∑

|i |≥1

G(i)(a) · σ (b − a)i .

Therefore G(b) = G(a) · (1 + ∑
|i |≥1

ci · σ (u)i ), where

ci = G(i)(a) · σ (ε)i

G(a)
.

From v(ε) = γ we obtain min|i |=1 v(ci ) = 0 and v(c j ) > 0 for | j | > 1. Then
imposing v(G(b)) > v(G(a)) forces ū to be a solution of the equation

1 +
∑

|i |=1

c̄i · σ̄ (x)i = 0.

ByAxiom2we can take uwith this property, and then v(u) = 0, so v(b−a) = γ (G, a)

and v(G(b)) > v(G(a)).
Assume that G(b) �= 0. It remains to show that then (G, b) is in σ -hensel configu-

ration with γ (G, b) > γ . Let j �= 0, G( j) �= 0 and consider

G( j)(b) = G( j)(a) +
∑

l �=0

G( j)(l)(a) · σ (b − a)l .

Note that G( j)(a) �= 0. Since char k = 0, v(G( j)(l)(a)) = v(G( j+l)(a)). Therefore,
for all l �= 0,

v
(
G( j)(l)(a) · σ (b − a)l

)
> v(G( j)(a)),

hence v(G( j)(b)) = v(G( j)(a)). If |i | = 1, then θ �→ σ i (θ) is an automorphism ofΓ .
Since G(b) �= 0, it follows that we can pick γ1 ∈ Γ such that

G(b) = min|i |=1
v(G(i)(b)) + σ iγ1.

Note that γ1 > γ because v(G(b)) > v(G(a)) and v(G(i)(b)) = v(G(i)(a)) for
i �= 0. Also for i, j �= 0 and θ ∈ Γ with θ > 0 we have σ iθ < σ i+ jθ , since σ is
order- preserving. Now the inequality
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v(G(i)(a)) + σ iγ < v(G(i+ j)(a)) + σ i+ jγ

together with γ1 > γ leads to3

v(G(i)(a)) + σ iγ1 < v(G(i+ j)(a)) + σ i+ jγ1.

Hence (G, b) is in σ -hensel configuration with γ1 = γ (G, b). ��
Using the above lemma it is straightforward to obtain the following (see [2] for a

proof).

Lemma 4.4 SupposeK satisfies Axiom 2 and G(x) is σ -henselian at a. Suppose also
that there is no b ∈ K with G(b) = 0 and v(a − b) = v(G(a)). Then there is a
pc-sequence {aρ} in K with the following properties:

(1) a0 = a and {aρ} has no pseudolimit in K ;
(2) {v(G(aρ))} is strictly increasing, and thus G(aρ) � 0;
(3) v(aρ′ − aρ) = v

(
G(aρ)

)
whenever ρ < ρ′;

(4) for any extensionK′ = (K ′, . . .) ofK and b, c ∈ K ′ such that aρ � b, G(c) = 0
and v(b − c) ≥ v(G(b)), we have aρ � c.

Definition 4.5 A valued difference fieldK is σ -henselian if for all (G, a) in σ -hensel
configuration there is b ∈ K such that v(b − a) = γ (G, a) and G(b) = 0.

Lemma 4.6 If K is σ -henselian, then K satisfies Axiom 2.

Proof Assume that K is σ -henselian and let α0, . . . , αn ∈ k, not all zero. Let

G(x) = 1 + a0x + · · · + anσ
n(x) (all ai ∈ K ),

where ai = 0 if αi = 0, and v(ai ) = 0 with āi = αi if αi �= 0, for i = 0, . . . , n. It
is easy to see that (G, 0) is in σ -hensel configuration with γ (G, a) = 0. This gives
a ∈ K such that v(a) = 0 and G(a) = 0. Then ā is a solution of

1 + α0x + · · · + αn σ̄
n(x) = 0.

��
Definition 4.7 We say {aρ} is of σ -algebraic type over K if G(bρ) � 0 for some
σ -polynomial G(x) over K and an equivalent pc-sequence {bρ} in K .

If {aρ} is of σ -algebraic type over K then a minimal σ -polynomial of {aρ} over K
is a σ -polynomial G(x) over K with the following properties:

(i) G(bρ) � 0 for some pc-sequence {bρ} in K , equivalent to {aρ};
(ii) H(bρ) �� 0 whenever H(x) is a σ -polynomial over K of lower complexity4 than

G and {bρ} is a pc-sequence in K equivalent to {aρ}.

3 With i = (0, 1, 0 . . . , 0), the multi-index (0, 0, 1, 0, . . . , 0) can not be written as i + j , and hence we do
not claim σ(γ1) < σ 2(γ1), which is not true in general.
4 See [2], section 2, for the definition of complexity.
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If {aρ} is of σ -algebraic type over K then {aρ} clearly has a minimal σ -polynomial
over K .

Lemma 4.8 Suppose K satisfies Axiom 2. Let {aρ} from K be a pc-sequence of σ -
algebraic type over K with minimal σ -polynomial G(x) over K , and with pseudolimit
a in some extension. Let 
 be a finite set of σ -polynomials H(x) over K . Then there
is a pc-sequence {bρ} in K , equivalent to {aρ}, such that, with γρ := v(a − aρ):

(1) G(bρ) � 0 and eventually v(a − bρ) = γρ;
(2) if H ∈ 
 and H /∈ K, then H(bρ) � H(a);
(3) Eventually (G, bρ) is in σ -hensel configuration with γ (G, bρ) = γρ;
(4) If G(a) �= 0, then (G, a) is in σ -hensel configuration, and γ (G, a) > γρ , even-

tually.

Proof Let G have order n. We can assume that 
 includes all G(i). In the rest of
the proof i, j , l range over Nn+1. Since Axiom 2 implies Axiom 1, Theorem 3.10
and its proof yield an equivalent pc-sequence {bρ} in K such that (1) and (2) hold.
Choosing regular elements like in the proof of Theorem 3.8 yields in addition that
there is i ∈ N

n+1 such that, for cofinally many ρ,

v
(
G(bρ) − G(a)

) = v
(
G(i)(a)

) + σ iγρ ≤ v
(
G( j)(a)

) + σ jγρ,

for each j �= i . Hence we can w.l.o.g. suppose that the above formula holds eventually
for all ρ (if needed we can pass to an cofinal subsequence of {bρ} which is necessarily
equivalent to it). Now

{
v
(
G(bρ)

)}
is strictly increasing, eventually, so v

(
G(a)

)
>

v
(
G(bρ)

)
eventually, and so for j �= i :

v
(
G(bρ)

) = v
(
G(i)(a)

) + σ iγρ ≤ v
(
G( j)(a)

) + σ jγρ, eventually.

We claim that |i | = 1. Let | j | = 1 with G( j) �= 0, and let k > j ; our claim will then
follow by deriving

v
(
G( j)(a)

) + σ jγρ < v
(
G(k)(a)

) + σ kγρ, eventually.

The proof of Theorem 3.8 with G( j) in the role of G shows that we can arrange that
our sequence {bρ} also satisfies

v
(
G( j)(bρ) − G( j)(a)

) ≤ v
(
G( j)(l)(a)

) + σ lγρ, eventually

for all l with |l| ≥ 1. Since v
(
G( j)(bρ)

) = v
(
G( j)(a)

)
eventually, this yields

v
(
G( j)(a)

) ≤ v
(
G( j)(l)(a)

) + σ lγρ, eventually

for all l with |l| ≥ 1, hence for all such l ,

v
(
G( j)(a)

) ≤ v

(
j + l
i

)
+ v

(
G( j+l)(a)

) + σ lγρ, eventually
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For l with j + l = k, this yields

v
(
G( j)(a)) ≤ v

(
k
j

)
+ v

(
G(k)(a)

) + σ k− jγρ, eventually.

Since char(k) = 0,

v
(
G( j)(a)) ≤ v

(
G(k)(a)

) + σ k− jγρ, eventually, hence

v
(
G( j)(a)

) + σ jγρ < v(G(k)(a)) + σ kγρ, eventually.

Thus |i | = 1 as claimed. Then we obtain (3) and (4) by the above inequalities together
with the fact that G is a minimal σ -polynomial of {bρ}. ��

5 Immediate extensions

Throughout this section K = (K , Γ, k; v, π) is a valued difference field satisfying
Axiom 2. Note that immediate extensions of K also satisfy Axiom 2. We let K stand
for K when the meaning is clear from the context. The results of this section contain
precisely the same conclusions as in the results of the corresponding sections of [2,4]
and [1]. Having proved Lemmas 4.3 and 4.8 for the general context of this paper,
proofs in [2,4] and [1] remain intact. Therefore we present the results without proof.

Definition 5.1 A pc-sequence {aρ} from K is said to be of σ -transcendental type over
K if it is not of σ -algebraic type over K , that is, G(bρ) �� 0 for each σ -polynomial
G(x) over K and each equivalent pc-sequence {bρ} from K .

In particular, such a pc-sequence cannot have a pseudolimit in K . For the proofs of
next two lemmas see [4] or [1].

Lemma 5.2 Let {aρ} from K be a pc-sequence of σ -transcendental type over K . Then
K has an immediate extension (K 〈a〉, Γ, k; va, πa) such that:

(1) a is σ -transcendental over K and aρ � a;
(2) for any extension (K1, Γ1, k1; v1, π1) of K and any b ∈ K1 with aρ � b there is

a unique embedding

(K 〈a〉, Γ, k; va, πa) −→ (K1, Γ1, k1; v1, π1)

over K that sends a to b.

Lemma 5.3 Let {aρ} from K be a pc-sequence of σ -algebraic type over K , with no
pseudolimit in K . Let G(x) be a minimal σ -polynomial of {aρ} over K . Then K has
an immediate extension (K 〈a〉, Γ, k; va, πa) such that

(1) G(a) = 0 and aρ � a;
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(2) for any extension (K1, Γ1, k1; v1, π1) of K and any b ∈ K1 with G(b) = 0 and
aρ � b there is a unique embedding

(K 〈a〉, Γ, k; va, πa) −→ (K1, Γ1, k1; v1, π1)

over K that sends a to b.

We note the following consequences of Lemmas 5.2 and 5.3:

Corollary 5.4 Let a from some extension ofK be σ -algebraic over K and let {aρ} be
a pc-sequence in K such that aρ � a. Then {aρ} is of σ -algebraic type over K .

Corollary 5.5 Suppose K is finitely ramified. Then K as a valued field has a proper
immediate extension if and only ifK as a valued difference field has a proper immediate
extension.

We say that K is σ -algebraically maximal if it has no proper immediate σ -algebraic
extension, and we say it is maximal if it has no proper immediate extension. Corol-
lary 5.4 and Lemmas 5.3 and 4.4 yield:

Corollary 5.6 (1) K is σ -algebraically maximal if and only if each pc-sequence in
K of σ -algebraic type over K has a pseudolimit in K ;

(2) if K satisfies Axiom 2 and is σ -algebraically maximal, then K is σ -henselian.

It is clear that K has σ -algebraically maximal immediate σ -algebraic extensions, and
also maximal immediate extensions. Using the next lemma we will show that if K
satisfies Axiom 2 both kinds of extensions are unique up to isomorphism.

Lemma 5.7 Suppose K satisfies Axiom 1 and K′ satisfies Axiom 2. Let K′ be
σ -algebraically maximal extension of K and {aρ} from K be a pc-sequence of σ -
algebraic type over K , with no pseudolimit in K , and with minimal σ -polynomial
G(x) over K . Then there exists b ∈ K ′ such that aρ � b and G(b) = 0.

Proof Lemma 5.3 provides a pseudolimit a ∈ K ′ of {aρ}. Take a pc-sequence {bρ}
in K equivalent to {aρ} with the properties listed in Lemma 4.8. Since K′ satisfies
Axiom 2, it is σ -henselian and hence there is b ∈ K ′ such that

v(a − b) = γ (G, a) and G(b) = 0.

Note that aρ � b since γ (G, a) > v(a − aρ) = γρ eventually. ��
Together with Lemmas 5.2 and 5.3 this yields:

Theorem 5.8 SupposeK satisfies Axiom 2. Then all its maximal immediate extensions
are isomorphic over K, and all its σ -algebraically maximal immediate σ -algebraic
extensions are isomorphic over K.

It is worth mentioning that the above result fails if Axiom 2 is not assumed (see [1]).
A minor variant of these results will be needed in proving our model theoretic conclu-
sions, and its proof is straightforward. Let |X | denote the cardinality of a set X , and
let κ be a cardinal.



1194 S. Durhan, G. Onay

Lemma 5.9 Suppose E = (E, ΓE , . . .) ≤ K satisfies Axiom 1 and K is σ -henselian,
and κ-saturated with κ > |ΓE |. Let {aρ} from E be a pc-sequence of σ -algebraic type
over E, with no pseudolimit in E, and with minimal σ -polynomial G(x) over E. Then
there exists b ∈ K such that aρ � b and G(b) = 0.

In combination with Lemmas 5.2 and 5.3 this yields:

Corollary 5.10 If E = (E, ΓE , . . .) ≤ K satisfies Axiom 2, and K is σ -henselian,
and κ-saturated with κ > |ΓE |, then any maximal immediate extension of E can be
embedded in K over E .

6 The embedding theorem

Theorem 6.2, the main result of the paper, will give us a criterion for elementary
equivalence between σ -henselian valued difference fields of residue characteristic
zero and also a relative quantifier elimination result. We now present the notion of
rv-structure for a valued field which will be needed for relative quantifier elimination.
This notion was introduced in [3] building up on the notion of additive multiplicative
congruences.
RV-structure Let K be a valued field. The rv-sort for K is the imaginary sort RV =
K×/1 + m, which is a multiplicative group. The associated canonical surjection is
denoted by rv, andwe extend it to K by setting rv(0) : = ∞. The subgroupO×/1+m
of RV is exactly k×. Two elements a, b ∈ K are equivalent modulo 1+m if and only
if v(a − b) > v(a) = v(b) and so the map

vrv : RV → Γ

a(1 + m) �→ v(a)

is well-defined. There is also a partial addition on the rv-sort. For a, b ∈ K with
v(a + b) = min{v(a), v(b)}, define

rv(a) + rv(b) : = rv(a + b).

It is clear that this partial addition is well-defined and we can extend this addition to
all of RV by setting rv(a) + rv(b) := ∞ whenever v(a + b) �= min{v(a), v(b)}. We
denote this map by

⊕
.

IfK is a valued difference field its distinguished automorphism σ fixesm setwise, and
so the map σrv : x(1 + m) → rv(σ (x)) is also well-defined. Moreover the induced
maps σrv : Γ → Γ and σ : Γ → Γ are the same. We consider the rv-sort of K as
first-order structure in the language Lrv := {.,−1 ,⊕, 1, vrv, σrv} and refer to it as the
difference rv-structure ofK. Replacing the addition, multiplication and the difference
operator on K by the corresponding operations on the rv-sort, we may consider a
σ -polynomial F(x) over K as a function on the rv-sort, also denoted F(x). It is worth
noting that the value group and residue field are interpretable in the rv-structure both
for valued fields and valued difference fields (see Proposition 9.3 of [12]).
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The main result In this subsection we consider 4-sorted structures

K = (
K , Γ, k,RV ; v, rv, vrv, π)

where
(
K , Γ, k; v, π

)
is a valued difference field andRV is its rv-sort. Such a structure

will be called an rv-valued difference field. Any subfield E of K is viewed as a valued
subfield of K with valuation ring OE := O ∩ E .
A good substructure of K = (K , Γ, k,RV ; v, rv, vrv, π) is a quadruple E =
(E, ΓE , kE ,RVE ) such that

(1) E is a difference subfield of K ,
(2) ΓE is an ordered abelian subgroup of Γ with v(E×) ⊆ ΓE ,
(3) kE is a difference subfield of k with π(OE ) ⊆ kE ,
(4) RVE is a subgroup of RV with rv(E) ⊆ RVE .

For good substructures E1 = (E1, Γ1, k1,RV1) and E2 = (E2, Γ2, k2,RV2) of K,
we define E1 ⊆ E2 to mean that E1 ⊆ E2, Γ1 ⊆ Γ2, k1 ⊆ k2 and RV1 ⊆ RV2.

Throughout this subsection

K = (K , Γ, k,RV ; v, rv, vrv, π), K′ = (K ′, Γ ′, k′,RV ′; v′, rv′, v′
rv, π

′)

are rv-valued difference fields, with valuation rings O and O′, and

E = (E, ΓE , kE ,RVE ), E ′ = (E ′, ΓE ′ , kE ′,RVE ′)

are good substructures of K, K′, respectively. To avoid too complicated notation we
let σ denote the difference operator of each of K , K ′, E, E ′, and putOE ′ := O′ ∩ E ′.

A goodmap f : E → E ′ is a quadruple f = ( f, fv, fr, frv) consisting of a difference
field isomorphism f : E → E ′, an ordered group isomorphism fv : ΓE → ΓE ′ , a
difference field isomorphism fr : kE → kE ′ and a group isomorphism frv : RVE →
RVE ′ such that

(i) fv(v(a)) = v′( f (a)) for all a ∈ E×, and fv is elementary as a partial map
between Γ and Γ ′;

(ii) fr(π(a)) = π ′( f (a)) for all a ∈ E , and fr is elementary as a partial map between
k and k′;

(iii) frv(rv(a)) = rv′( f (a)) for all a ∈ E×, and frv is elementary as a partial map
between RVE and RVE ′ .

Let f : E → E ′ be a good map as above. Then the field part f : E → E ′ of f
is a valued difference field isomorphism. Moreover fv, fr and frv agree on v(E×),
π(OE ) and rv(E) with the corresponding maps induced by f . We say that a good
map g = (g, gv, gr, grv) : F → F ′ extends f if E ⊆ F , E ′ ⊆ F ′, and g, gv, gr, grv
extend f , fv, fr, grv , respectively. The domain of f is E .
We say that E satisfies Axiom 1 (respectively, Axiom 2) if the valued difference
subfield (E, v(E×), π(OE ); . . . ) of K does. Likewise we say that E is σ -henselian if
this valued difference subfield of K is.
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Regular elements will also play a role in the main theorem, for value group exten-
sions. The same technique has been used in [12] with a different name.5 The next
result is the analog of Lemma 8.8 from [12], whose proof can be generalized to our
context easily using Lemma 3.6.

Lemma 6.1 Let K be a κ+-saturated valued difference field which satisfies Axiom 1.
Suppose that E is a good substructure of K with kE < κ . Let γ ∈ Γ , γ /∈ v(E×).
Then

(i) there is a ∈ K with v(a) = γ which is regular over E;
(ii) The value group of E〈a〉 is v(E×)〈γ 〉, and its residue field is the same as the

residue field of E;
(iii) if b ∈ K is regular over E with v(a) = γ ′ and the ordered difference groups

v(E×)〈γ 〉 and v(E×)〈γ ′〉 are isomorphic via the map sending γ to γ ′ then there
is a valued difference field isomorphism between E〈a〉 and E〈b〉 sending a to b.

Theorem 6.2 Suppose char(k) = 0,K,K′ satisfy Axiom 2 and are σ -henselian. Then
any good map E → E ′ is a partial elementary map between K and K′.

Proof The theorem holds trivially for Γ = {0}, so assume that Γ �= {0}. Let
f = ( f, fv, fr, frv) : E → E ′ be a good map. By passing to suitable elementary
extensions of K and K′ we may assume that K and K′ are κ-saturated, where κ is
an uncountable cardinal such that |kE |, |ΓE | < κ . We say that a good substructure
E1 = (E1, k1, Γ1,RV1) of K small if |k1|, |Γ1| < κ . We shall prove that the good
maps with small domain form a back-and-forth system between K and K′, which
suffices to obtain the theorem. In other words we shall prove that under the present
assumptions on E , E ′ and f , there is for each a ∈ K a good map g extending f such
that g has small domain F = (F, . . .) with a ∈ F . We achieve this by appropriately
iterating Corollary 5.10, and the extension procedures described below which corre-
spond to extending the residue field and value group. We will use results from [2] to
extend the residue field which have been used in different contexts in [1] and [12].

(1) Given α ∈ k, arranging that α ∈ kE . By saturation and the definition of “good
map” this can be achieved without changing f , fv, frv , E , ΓE , RVE by extending
fr to a partial elementary map between k and k′ with α in its domain. In the same
way we obtain the next two results.

(2) Given γ ∈ Γ , arranging that γ ∈ ΓE .
(3) Given r ∈ RV , arranging that r ∈ RVE .
(4) Arranging kE = π(OE ). Suppose α ∈ kE , α /∈ π(OE ); set α′ := fr(α).

If α is σ̄ -transcendental over π(OE ), we pick a ∈ O and a′ ∈ O′ such that ā = α

and ā′ = α′, and then Lemma 2.5 from [2] yields a good map g = (g, fv, fr, frv)
with small domain (E〈a〉, ΓE , kE ,RVE ) such that g extends f and g(a) = a′.

Next, assume that α is σ̄ -algebraic over π(OE ). Let G(x) be a σ -polynomial over
OE such that Ḡ(x) is a minimal σ̄ -polynomial of α over π(OE ) and has the same
complexity as G(x). Pick a ∈ O such that ā = α. Then G is σ -henselian at a. So we

5 Generic elements from [12] correspond to regular elements.
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have b ∈ O such that G(b) = 0 and b̄ = ā = α. Likewise we obtain b′ ∈ O′ such
that f (G)(b′) = 0 and b̄′ = α′, where f (G) is the difference polynomial over E ′ that
corresponds to G under f . By Lemma 2.6 of [2] we obtain a good map extending f
with small domain (E〈b〉, ΓE , kE ,RVE ) and sending b to b′.
Iterating (4) we may assume that kE = π(OE ). We refer from now on to kE as the
residue difference field of E . Since K satisfies Axiom 2, appropriately iterating (1)
and (4), we may assume in addition that E satisfies Axiom 2, and consequently Axiom
1.

(5) Arranging ΓE = v(E×).

Suppose γ ∈ ΓE , γ /∈ v(E×). By Lemma 6.1 we can take b ∈ K such that
v(b) = γ and b is regular over K . By (3) we may assume r = rv(b) ∈ RVE . Let
r ′ = frv(r) ∈ K′ and pick b′ ∈ K′ with rv(b′) = r ′. Then b′ is regular over E ′ and
we can extend f by mapping b to b′, again by Lemma 6.1.
Iterating (5) we assume in the rest of the proof that ΓE = v(E×). This condition is
actually preserved in the earlier extension procedures (4). We refer from now on to
ΓE as the value group of E . Note also that in the extension procedure (5) the residue
difference field does not change.
Now let a ∈ K be given. We want to extend f to a good map whose domain is small
and contains a. By our previous remarks kE = π(OE ), ΓE = v(E×), and E satisfies
Axiom 2. Appropriately iterating and alternating the above extension procedures we
can arrange in addition that E〈a〉 is an immediate extension of E . LetE〈a〉be the valued
difference subfield ofK that has E〈a〉 as underlying differencefield.ByCorollary 5.10,
E〈a〉 has a maximal immediate valued difference field extension E1 ≤ K. Then E1 is a
maximal immediate extension of E as well. Applying Corollary 5.10 to E ′ and using
Theorem 5.8 we can extend f to a good map with domain E1, construed here as a good
substructure ofK in the obvious way. Of course, a is in the underlying difference field
of E1. ��

7 Equivalence and relative quantifier elimination

Here we state the model theoretic consequences of the Theorem 6.2. All these con-
sequences are obtained by standard model theoretic considerations which has been
done in detail repeatedly in the context of valued difference fields, see [1,2,4,12]. We
use the symbols ≡ and � for the relations of elementary equivalence and being an
elementary submodel, in the setting of many-sorted structures. In this section

K = (K , Γ, k,RV ; . . .), K′ = (K ′, Γ ′, k′,RV ′; . . .)

are rv-valued difference fields of residue characteristic 0 that satisfy Axiom 2 and
are σ -henselian. We consider them as L-structures where L is the 4-sorted language
described in the previous section. Note that Γ and k are interpretable in RV , hence:

Theorem 7.1 K ≡ K′ if and only if RV ≡ RV ′.

The Hahn difference field k((tΓ )) can be expanded to an rv-valued difference field in
the natural way and, by the above result, it is elementarily equivalent to K.



1198 S. Durhan, G. Onay

Theorem 7.2 Let E = (E, ΓE , kE ,RVE ; . . . ) be a σ -henselian rv-valued difference
subfield of K such that RV E � RV. Then E � K.

Theorem 7.3 Let T be the L-theory of σ -henselian valued difference fields with
residue characteristic 0. Then every L-formula φ is equivalent (modulo T ) to an
L-formula ψ in which all occurences of field variables are free.

Cross section and angular component mapsLetK = (K , Γ, k; v, π) be a valued field.
A cross-sectionalmap is a group homomorphism c : Γ → K× such that v(c(γ )) = γ ,
for all γ ∈ Γ . An angular component map is a multiplicative group homomorphism
ac : K× → k× which agrees with the residue class map π onO\m. We can extend an
angular component map to K by setting ac(0) = 0. In the presence of a cross section
the rv-sort is interpretable in K = (K , Γ, k; v, π, c) by taking rv : K× → k× × Γ

with rv(a) = (π(a/c(v(a))), v(a)). Similarly, when K is equipped with an angular
component map the rv-sort is interpretable in K = (K , Γ, k; v, π, ac) via rv(a) =
(ac(a), v(a)). Evert valued field has elementary extension which admits cross section
and an angular component map.

IfK is a valued difference field we ask that cross-sectional and angular component
maps are compatible with the distinguished automorphism σ . Therefore it seems quite
unlikely that an arbitrary valued difference field admits a cross section or an angular
component map in an elementary extensions6. However many natural examples of
valued difference fields can be equipped with cross section and angular component
maps, and so it is worthwhile stating the consequences of the above results in the
presence of a cross-sectional or an angular component map7.

Theorem 7.4 Let K,K′ be σ -henselian valued difference fields with residue charac-
teristic zero which are either both equipped with a cross section or both equipped with
an angular component map. Then K ≡ K′ if and only if k ≡ k′ and Γ ≡ Γ ′.

Theorem 7.5 Let Lc and Lac be the expansions of the 3-sorted language of valued
difference fields with a cross section andwith an angular component map, respectively.
Let Tc and Tac be the theories of σ -henselian valued difference fields with residue
characteristic 0 in the language Lc and Lac, respectively. Then every Lc-formula φ is
equivalent (modulo Tc) to anLc-formulaψ in which all occurrences of field variables
are free, and every Lac-formula φ is equivalent (modulo Tac) to an Lac-formula ψ in
which all occurrences of field variables are free.

8 Applications to transseries

We refer the reader to [13] for all definitions, conventions and basic facts regarding
transseries. Let T be a field of transseries (grid based or well based) in x . Monomials
of T (with coefficient 1) form an ordered multiplicative group. Let Γ be this group

6 The first author would like to thank Koushik Pal for bringing up this point, which has been neglected
in [1].
7 It is also possible to obtain these maps with additional assumptions. For example if the value difference
group is flat as a Z[σ ]-module then the field admits a cross section in an elementary extension.
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monomials, seen as an additive group and equipped with the reverse of the ordering
on monomials. Then we define the valuation of an element f (x) ∈ T as the minimum
(in the sense of the reversed ordering) of the support of f (x). So we have

v(ex ) << v(x) << v(log(x)) << v(1) = 0 < v(x−1) << v(e−x )

where γ << γ ′ is a shorthand for nγ < γ ′ for all n > 0. Note that the residue field of
T is isomorphic to the field of constants of T which is really closed. Clearly T admits
a cross-sectional map; simply send γ ∈ Γ to the monomial with coefficient 1 and
valuation γ .
Let g(x) be an infinite positive element of T. Then we obtain an automorphism of T
via sending f (x) to f (g(x)) which is obtained from f (x) by uniformly substituting
x by g(x). By proposition 5.10 of [13] such automorphisms are asymptotic which, in
terms of the valuation, means that they fix the valuation ring ofT setwise. Now let σ be
the automorphism of T given by right composition with g(x) = x + 1, and consider
T as a valued difference field equipped with a cross section (T, Γ, k; v, π, c) with
distinguished automorphism σ . Note that σ̄ is the identity, and hence the equation

σ̄ (x) − x + 1 = 0

has no solution in k. On the contrary the action of σ on the value group is rather
complex;

v(σ (ex )) = v(ex ), v(σ (ex logx )) = v(ex logx ) + v(x), v(σ (ex
2
) = v(ex

2
) + v(ex )

and as such does not fit in any of contexts studied in [1,4] and [12].
We now introduce a coarsening of v, whose residue difference field will be linear

difference closed. Let

Δ := {γ ∈ Γ : v(ex ) << γ << v(e−x )}.

ThenΔ is a convex subgroup ofΓ , andmoreover if v( f (x)) ∈ Δ then so is v(σ ( f (x)).
Therefore we obtain a valued difference field equipped with a cross section

TΔ := (T, Γw, kw;w,πw, cw)

where w : T× → Γw = Γ/Δ is the coarsening of v by Δ. Let Kw be the difference
subfield of T which consists of elements f (x) whose support is contained in Δ. Then
Kw is isomorphic to kw via the restriction of the residue class map πw. In order to
show that Kw is linear difference closed we will use the differential operator ∂ on T,
as introduced in Chapter 5 of [13], which has a functional inverse

∫
and is compatible

with composition and exponentiation. Next we list a few conclusions from Proposition
5.11 of [13] and its proof.

Lemma 8.1 For all f (x) ∈ Kw we have:

(i) ∂ f (x) ∈ Kw;
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(ii) f (x + 1) = f (x) + ∂ f (x) + ∂2 f (x)/2! + ∂3 f (x)/3! + · · · ;
(iii) v(∂log f (x)) > 0.

Hence σ( f (x)) = e∂ f (x) where e∂ is seen as an operator in Kw[[∂]]. Now let
h0, . . . , hn ∈ Kw, with hi �= 0 for some i , and consider the linear difference equation

h0 + h1σ( f (x)) + · · · + hnσ
n( f (x)) = 1

We represent this equation as an (infinite order) linear differential equation:

L f (x) = 1

where L = h0 + h1e∂ + · · · + hnen∂ ∈ Kw[[∂]] is nonzero. A formal inverse L−1 of
L can be found in the ring Kw[[∂]][∫ ]. Note that it is possible to have the constant
term of L equal to zero and then one would need the inverse of ∂ (which is

∫
) to find

L−1. See flat discrete summation in [14] for a specific example worked out in detail.
By part (iii) of Lemma 8.1, the formal operator L−1 indeed acts on Kw and so we
can find a solution to the equation L f (x) = 1 by choosing f (x) = L−1(1) ∈ Kw.
Therefore Kw is linear difference closed.

Remark 8.2 The fact that Kw is linear difference closed is actually implicit in Chapter
7 of [13]. One can generalize the Newton polygon method for finite-order linear
differential operators to linear differential operators like L above and indeed obtain
much more than what we proved.

Theorem 8.3 TΔ is σ -henselian.

Proof Since σ( f (x)) = f (x +1), exponentiality of f and σ( f ) is the same, exercise
5.13 of [13]. Also, T is the union of Hahn fields

L0 ⊆ L1 ⊆ L2 · · ·
where Li+1 is obtained from Li by taking exponentials (see [13] page 98). Therefore
σ is an automorphism of each Li , and T is the directed union of the valued difference
subfields Li . Since Kw ⊆ L0, the residue difference field of Li is kw and by the above
discussion Li satisfies Axiom 2 for all i . Now, since each Li is maximal, we can use
Corrollary 5.6 to conclude that they are σ -henselian. Note that σ -henselianity is a
universal–existential first-order property and such properties are preserved in unions
of chains. Therefore T is σ -henselian. ��

Thus the results of the previous section are applicable, in particular:

Corollary 8.4 TΔ is elementarily equivalent to the Hahn difference field kw((tΓw))

(equipped with its natural cross section).

In this section we considered the particular automorphism σ( f (x)) = f (x + 1)
but indeed one can carry out the arguments above for any σ which is given by right
composition with g(x) where g(x) is an infinite positive transseries of exponential
and logarithmic depth zero. For that general case one still considers the coarsening
above, and the only difference would be to explicitly follow Remark 8.2 instead of the
discussion which precedes it.
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