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Abstract In this paper, we give a criterion on the Cauchy data for the semilinear wave
equations satisfying the null condition inR+ ×R

3 such that the data can be arbitrarily
large, while the solution is still globally in time in the future.
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1 Introduction

In this paper, we study the Cauchy problem to the semilinear wave equations

{
�φ = (−∂2t + �)φ = F(φ, ∂φ),

φ(0, x) = φ0(x), ∂tφ(0, x) = φ1(x)
(1)

on the Minkowski space of R3+1. The nonlinearity F is assumed to satisfy the null
condition outside a large cylinder {(t, x)||x | ≤ R}, that is,

F(φ, ∂φ) = Aαβ∂αφ∂βφ + O
(
|φ|3 + |∂φ|3 + |φ|N + |∂φ|N

)
, |x | ≥ R, (2)

where Aαβ are constants such that Aαβξαξβ = 0 whenever ξ20 = ξ21 + ξ22 + ξ23 and N
is a given integer larger than 3. Inside the cylinder, we assume F is at least quadratic
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in terms of φ, ∂φ. The data (φ0, φ1) are assumed to be smooth but can be arbitrarily
large in the energy space.

The long time behavior of solutions of nonlinear wave equations has drawn con-
siderable attention in the past decades. When the data are small, the classical result of
Christodoulou [1] and Klainerman [8] shows that the solution of the nonlinear wave
equation (1) is globally in time for all sufficiently small initial data.Generalizations and
variants can be found in [5,11,15,18,19,23,24,29] and references therein. One of the
most remarkable related results should be the global nonlinear stability of Minkowski
space first proved by Christodoulou and Klainerman [3] and later an alternative proof
contributed by Lindblad and Rodnianski [14].

For the general large data case which is concerned in the current study, global
existence results for the related wave map problems in dimension 2 + 1 have been
established with initial energy below that of any nontrivial harmonic maps, see e.g.,
[12,25,26,28]. Failure of this energy constriction may lead to finite time blow up, see
e.g., [13,20–22,27]. For the 3+ 1 dimensional case of Eq. (1), the concrete example

�φ = |∂tφ|2 − |∇φ|2

shows that the solution can blow up in finite time for general large data. For the details,
we refer to Klainerman [6].

In a recent work [30] of Wang–Yu, they constructed an open set of Cauchy data
for the semilinear wave equations satisfying the null condition such that the energy is
arbitrarily large, while the solution exists globally in the future. The construction is
indirect. They in fact impose the radiation data at the past null infinity and then solve
the equation to some time t0 < 0 to obtain the Cauchy data. Their work relied on the
short pulse method of Christodoulou in his monumental work [2] on the formation of
trapped surface. Extensions and refinements of Christodoulou’s result are contributed
by, e.g., Klainerman and Rodnianski [10], Luk and Rodnianski [16,17], Klainerman
et al. [9], Yu [31,35,36].

However, the nonlinear terms considered in Wang–Yu’s work are quite restrictive.
In fact, only quadratic null forms are allowed and cubic or higher-order nonlinearities
are excluded for consideration due to the short pulse method. In this paper, we use
the new approach developed in [4,32–34] to treat the nonlinear wave equations (1)
with large data. We are able to give a criterion on the initial data such that the solution
exists globally in the future, while the energy can be arbitrarily large. In particular, our
approach applies to equations with any higher-order nonlinearities. Combined with
the techniques developed in [34], our result here can even be extended to quasilinear
wave equations. Moreover, we no longer require the data to have compact support as
in [32–34]. This in particular implies that those results also hold for data satisfying
conditions in this paper.

Before we state the main result, we define the necessary notations. We use the
coordinate system (t, x) = (

x0, x1, x2, x3
)
of the Minkowski space. We denote ∂0 =

∂t , ∂i = ∂xi , ∂ = (∂t , ∂1, ∂2, ∂3) = (∂t ,∇). We may also use the standard polar
coordinates (t, r, ω). Let ∇/ denote the induced covariant derivative and �/ the induced
Laplacian on the spheres of constant r . We also define the null coordinates u =
t−r
2 , v = t+r

2 and denote the corresponding partial derivatives
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∂u = ∂t − ∂r , ∂v = ∂t + ∂r , ∂v = (∂v,∇/ ), ∂u = (∂u,∇/ )

for r > 0. The vector fields that will be used as commutators are

Z = {∂t ,	i j = xi∂ j − x j∂i }.

Let α be a positive constant.Without loss of generality, wemay assume α < 1
4 . Denote

E0(R) =
∑
k≤4

∫
{r≥R}∩R3

r1+α |∂v(r Z
kφ)|2drdω

∣∣∣
t=0

+
∫

{r≤R}∩R3
|∂Zkφ|2 + |φ|2dx

∣∣∣∣
t=0

,

E1(R) =
∑
k≤4

∫
{r≥R}∩R3

|∂u(r Zkφ)|2 + |r Zkφ|2drdω
∣∣∣∣
t=0

.

These quantities can be uniquely determined by the initial data (φ0, φ1) together with
the Eq. (1). We have the following main result:

Theorem 1 Consider the Cauchy problem for the semilinear wave equation (1) satis-
fying the null condition (2) with some integer N ≥ 3. For all α ∈ (0, 1), there exists a
constant R(α), depending only on α, and a constant ε0, depending only on the highest
order N of the nonlinearity, such that if the initial data satisfy the estimate

E0(R) ≤ R−2+α, E1(R) ≤ Rε0α (3)

for some R ≥ R(α), then the solution φ exists globally in the future and obeys the
estimates:

|∂vφ| ≤ Cδ(1 + r)−
3
2+δ, δ > 0;

|∂uφ| ≤ Cδ(1 + r)−1+δ(1 + t − r + R)−
1
2− 1

2α, δ > 0, t + R ≥ r;
|φ| ≤ C(1 + r)−1R

1
2 ε0α, t + R < r,

where the constant Cδ depends on δ, α and the constant C depends only on α.

Remark 1 Similar result holds for equations in higher dimensions without assuming
the null condition.

The Theorem implies that the energy of the initial data can be as large as Rε0α . Since
R can be any constant larger than a fixed constant R(α), the energy together with
the higher-order Sobolev norm can be arbitrarily large. Moreover, the amplitude of

the solution, at least in a small region, can have size R
1
2 ε0α . In Wang–Yu’s work, the

construction of the Cauchy data is indirect and only the size of the energy has a lower
bound. The amplitude or the L∞ estimates of the solution are unclear except the upper
bound. From this point of view, the problem we consider here is a large data problem.
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The existence of the initial data (φ0, φ1) satisfying the conditions in the Theorem
can be seen as follows: For any fixed α ∈ (0, 1) and any R ≥ R(α), let φ0 be small
in the ball with radius R in R

3. Here, R(α) is a sufficiently large constant depending
only on α. Outside the ball, the energy of φ0 is allowed to be as large as Rε0α . Then
for φ1, we require it to be small inside the ball with radius R. Outside the ball, it is
close to ∂rφ0. This will definitely give a large set of initial data (φ0, φ1) satisfying the
conditions in the Theorem.

We will use the new approach developed in [4,32–34] to prove the main Theorem.
A key ingredient of this new approach is the p-weighted energy inequality originally
introduced by Dafermos and Rodnianski [4]. This inequality can be obtained by using
the vector field r p∂v asmultipliers in a neighborhood of the null infinity. It in particular
implies that the p-weighted energy E0(R), see the definition before themain Theorem,
keeps small if initially it is. This allows us to relax the size of the transversal derivative
of the solution, which is E1(R) in the theorem.

We will first construct the solution of the nonlinear wave equation outside the light
cone, that is the region r ≥ R + t , and show that the energy flux through the outgoing
null hypersurface r = t + R is small. And then, we prove the solutions exist globally
inside the light cone, for which we are not able to apply the results, e.g., in [34]
directly. In the previous results, the smallness needed in order to close the bootstrap
argument for nonlinear problem is guaranteed by assuming the data to be sufficiently
small. Hence, it is not necessary to keep track of the dependence of the radius R of
the constants in the argument. However, in this paper, the smallness comes from the
radius R and thus we need an argument with all the dependence on R.

2 Preliminaries and energy identities

We briefly recall the energy identity for wave equations, for details, we refer to Yang
[34]. Let m be the Minkowski metric. We make a convention that the Greek indices
run from 0 to 3, while the Latin indices run from 1 to 3. We raise and lower indices of
any tensor relative to the metric m, e.g., ∂γ = mγμ∂μ. Recall the energy-momentum
tensor

Tμν[φ] = ∂μφ∂νφ − 1

2
mμν∂

γ φ∂γ φ.

Given a vector field X , we define the currents

J X
μ [φ] = Tμν[φ]Xν, K X [φ] = T

μν[φ]π X
μν,

where π X
μν = 1

2LX gμν is the deformation tensor of the vector field X . For any function

χ , we define the vector field J̃ X [φ]

J̃ X [φ] = J̃ X
μ [φ]∂μ =

(
J X
μ [φ] − 1

2
∂μχ · φ2 + 1

2
χ∂μφ2

)
∂μ. (4)
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For any bounded regionD inR3+1, using Stokes’ formula, we have the energy identity

∫∫
D

�gφ(χφ + X (φ)) + K X [φ] + χ∂γ φ∂γ φ − 1

2
�gχ · φ2dvol =

∫
∂D

i J̃ X [φ]dvol,

(5)

where ∂D denotes the boundary of the domain D, and iY dvol denotes the contraction
of the volume form dvol with the vector field Y which gives the surface measure of
the boundary.

3 The solution on the region {r ≥ t + R}

In this section, we construct the solution of the nonlinear wave equation (1) on the
region {r ≥ R + t}. First, we define some notations. For R ≤ r1 ≤ r2, we use Sr1,r2
to denote the following outgoing null hypersurface emanating from the sphere with
radius r1

Sr1,r2 :=
{
u = −r1

2
, r1 ≤ r ≤ r2

}
.

Similarly, define C̄r1,r2 to be the following incoming null hypersurface emanating from
the sphere with radius r2

C̄r1,r2 :=
{
v = r2

2
, r1 ≤ r ≤ r2

}
.

On the initial hypersurface R3, the annulus with radii r1, r2 is

Br1,r2 := {t = 0, r1 ≤ r ≤ r2}.

We use Sr to be short for Sr,∞. Similarly, we have C̄r and Br .
We useDr1,r2 to denote the region bounded by Sr1,r2 , Br1,r2 , C̄r1,r2 . Let E[φ](�) be

the energy flux forφ through the hypersurface� in theMinkowski space. In particular,

E[φ](Sr1,r2) =
∫
Sr1,r2

|∂vφ|2r2dvdω, E[φ](C̄r1,r2) =
∫
C̄r1,r2

|∂uφ|2r2dudω,

where ∂u = (∂u,∇/ ). On the initial hypersurface

E[φ](Br1,r2) =
∫
Br1,r2

|∂φ|2dx .
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3.1 Energy estimates

In the energy identity (5), take the region D to be Dr1,r2 , the vector field X = ∂t and
the function χ = 0. We obtain the classical energy estimate

2
∫∫

Dr1,r2

�φ · ∂tφdvol + E[φ](Sr1,r2) + E[φ](C̄r1,r2) = E[φ](Br1,r2). (6)

We also need an integrated energy estimate adapted to the region Dr1,r2 . For some
small positive constant ε, depending only on α, we construct the vector field X and
choose the functions f, χ as follows

X = f (r)∂r , f = 2ε−1 − 2ε−1

(1 + r)ε
, χ = r−1 f.

We then can derive from the energy identity (5) that

I ε[φ]r2r1 ≤ Cε(E[φ](Br1) + E[φ](Sr1,r2) + E[φ](C̄r1,r2) + Dε[�φ]r2r1), (7)

where we denote

I ε[φ]r2r1 :=
∫∫

Dr1,r2

|∂̄φ|2
(1 + r)1+ε

dxdt, Dε[F]r2r1 :=
∫∫

Dr1,r2

(1 + r)1+ε |F |2dxdt.

here, ∂̄φ = (∂φ,
φ

1+r ). The constant Cε depends only on ε and is independent of
r1, r2. For the derivation of the above estimate (7), it is almost the same as Proposition
1 of Yang [34] or Proposition 2 of Yang [33]. The only point we have to point out
here is that we use the fact that the solution φ goes to zero as r → ∞ on the initial

hypersurface. We thus can use a Hardy’s inequality to control the integral of |φ|2
(1+r)2

.
This is also the reason that we have E[φ](Br1), which is E[φ](Br1,∞) according to
our notations, instead of E[φ](Br1,r2) on the right-hand side of the above estimate (7).

Combine the above two estimates (6), (7).We derive the following integrated energy
estimates.

Proposition 1 We have

E[φ](Sr1,r2) + E[φ](C̄r1,r2) + I ε[φ]r2r1 ≤ Cε(E[φ](Br1) + Dε[�φ]r2r1) (8)

for some constant Cε depending only on ε.

Proof For the derivation of the integrated energy estimate (7), we refer to [33] or [34].
Then, from the energy identity (6), we can estimate

E[φ](Sr1,r2) + E[φ](C̄r1,r2) ≤ E[φ](Br1,r2) + 1

2
C−1

ε I ε[φ]r2r2 + 2CεD
ε[�φ]r2r2 ,
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where Cε is the constant in the integrated energy estimate (7). Then, the integrated
energy estimate (7) can be improved to be

I ε[φ]r2r1 ≤ 4Cε(E[φ](Br1) + Dε[�φ]r2r1).
This together with the previous estimate proves the proposition. Here, according to
our notation, Cε is a constant depending only on the small constant ε. 	


Next, we consider the p-weighted energy inequality. In the energy identity (5), we
take

X = f ∂v, χ = r p−1, f = r p, 0 ≤ p ≤ 2.

We can compute∫
Br1,r2

i J̃ X [φ]dvol = 1

2

∫
Br1,r2

f
(
|∂vψ |2 + |∇/ψ |2

)
− ∂r

(
f rφ2

)
+ f ′rφ2drdω,

∫
Sr1,r2

i J̃ X [φ]dvol =
∫
Sr1,r2

f |∂vψ |2 − 1

2
∂v

(
f rφ2

)
dvdω,

∫
C̄r1,r2

i J̃ X [φ]dvol = −
∫
C̄r1,s2

f |∇/ψ |2 + f ′rφ2 + 1

2
∂u

(
f rφ2

)
dudω,

∫∫
Dr1,r2

K X [φ] + χ∂γ φ∂γ φ − 1

2
�χ · φ2dvol

=
∫∫

Dr1,r2

1

2
f ′|∂vψ |2 +

(
χ − 1

2
f ′

)
|∇/ψ |2 − 1

2
∂v

(
f ′rφ2

)
drdt.

here, ψ = rφ. We can do integration by parts on Dr1,r2 to estimate the integral of
∂v( f ′rφ2). Alternatively, we can modify the current vector field J̃ X [φ] defined in line
(4) to be

Ĵ X [φ] = J̃ X [φ] + 1

2
f ′rφ2∂v.

Notice that

−
∫
Br1,r2

∂r ( f rφ
2)drdω −

∫
C̄r1,r2

∂u( f rφ
2)dudω +

∫
Sr1,r2

∂v( f rφ
2)dvdω = 0.

Then, from the energy identity (5) and the above calculations, we obtain∫∫
Dr1,r2

r p−1(p|∂vψ |2 + (2 − p)|∇/ψ |2)drdtdω +
∫
C̄r1,r2

r p|∇/ψ |2dudω

+
∫
Sr1,r2

r p|∂vψ |2dvdω=
∫
Br1,r2

r p|∂vψ |2drdω−2
∫∫

Dr1,r2

r p−1�φ∂vψdxdt.

(9)
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3.2 Bootstrap argument

We assume initially

E0(R) ≤ R−β, E1(R) ≤ Rε1 .

for some positive constant β, ε1, which will be determined later. The definition of
E0(R) can be found in the introduction before the statement of the main Theorem.We
impose the following bootstrap assumption on the nonlinearity F(∂φ) in the Eq. (1)

∑
k≤4

∫∫
DR

|Zk F |2r2+αdxdt ≤ 2R−β. (10)

Then, the p-weighted energy inequality (9) obtained in the end of the previous sub-
section implies that

∫∫
Dr1,r2

r p−1
(
p|∂vZ

kψ |2 + (2 − p)|∇/ Zkψ |2
)
drdtdω

+
∫
Sr1,r2

r p|∂vZ
kψ |2dvdω +

∫
C̄r1,r2

r p|∇/ Zkψ |2dudω

≤ r p−1−α
1

∫
Br1,r2

r1+α|∂vψ |2drdω +
∫∫

Dr1,r2

p

2
r p−1|∂vZ

kψ |2drdtdω

+
∫∫

Dr1,r2

2

p
r p+1|Zk�φ|2dxdt

≤ r p−1−α
1 E0(R) + p

2

∫∫
Dr1,r2

r p−1|∂vZ
kψ |2drdtdω + r p−1−α

1

×
∫∫

Dr1,r2

2

p
r2+α|Zk�φ|2dxdt.

The second term in the last line can be absorbed. Then, let r2 goes to infinity, we can
obtain the following p-weighted energy estimate

∫∫
Dr1

r p−1|∂vZ
kψ |2drdtdω +

∫
Sr1

r p|∂vZ
kψ |2dvdω +

∫
C̄r1,r2

r p|∇/ Zkψ |2dudω

� R−βr p−1−α
1 (11)

for all k ≤ 4, r2 ≥ r1 ≥ R, 0 < p ≤ 1 + α. Here and in the following, we make a
convention that A � B means A ≤ CB for some constant C depending only on α

and is independent of R, r1.
Note that the assumption (3) in particular implies that

∫
ω

r2|Zkφ(0, r, ω)|2dω � Rε1 , k ≤ 4, r ≥ R. (12)
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Using the p-weighted energy inequality (11) when p = 1+α, on Sr1 , we can estimate

∫
ω

|r Zkφ|2(t, r, ω)dω ≤
∫

ω

|r Zkφ(0, r1, ω)|2dω

+
∫
Sr1

r1+α|∂v(r Z
kφ)|2dvdω · α−1r−α

1

�
∫

ω

|r Zkφ(0, r1, ω)|2dω + R−βr−α
1 , k ≤ 4. (13)

In particular, we have

∫
ω

|r Zkφ|2(t, r, ω)dω � Rε1 , k ≤ 4.

We also need an inequality to estimating ∂uψ,ψ = rφ. From the energy inequality
(8), we can show that

∫
C̄R,r2

|∂u Zkψ |2dudω � E[φ](C̄R,r2) +
∫

ω

r |Zkφ|2(ur2 , vr2 , ω)dω

� Rε1 , k ≤ 4, r2 ≥ R, (14)

where ur = r−R
2 , vr = r+R

2 , ∂u = (∂u,∇/ ).
We now improve the bootstrap assumption (10). The quadratic part of the nonlin-

earity F is a null form Q(φ, φ). Note that

ZkQ(φ, φ) =
∑

k1+k2≤k

Q
(
Zk1φ, Zk2φ

)
.

Here, Q denotes a general null form. They may stand for different null forms with
different constants Aμν . For details, we refer to, e.g., [7]. We denote

φ1 = Zk1φ, φ2 = Zk2φ, ψ1 = rφ1, ψ2 = rφ2.

This φ1 is only a notation and should not be confused with the initial data φ1. Note
that

|r2ZkQ(φ, φ)| �
∑

k1+k2≤k

|∂̄ψ1||φ2| + |∇/ψ1|(|∂tψ2| + |∂vψ2|) + |∇/ψ1||∇/ψ2|

+|∂uψ1||∂vψ2|.

For the proof of the above inequality, we refer to, e.g., Lemma 7 in [33]. The key point
of this estimate is that the null form does not allow the worst term ∂uφ1 · ∂uφ2 in the
estimate. Then by using Sobolev embedding, for k ≤ 4, we have the estimate



1414 S. Yang

∫
ω

|r2ZkQ(φ, φ)|2dω �
∑

k1≤4,k2≤4

∫
ω

|∂̄ψ1|2dω ·
∫

ω

|φ2|2dω

+
∑

k1≤4,k2≤2

∫
ω

|∂uψ1|2dω ·
∫

ω

|∂vψ2|2dω

+
∑

k1≤2,k2≤4

∫
ω

|∂uψ1|2dω ·
∫

ω

|∂vψ2|2dω

+
∫

ω

|∇/ Z4ψ |2|∂tψ |2dω. (15)

The last term in the above estimates needs special consideration. We comment here
that all the other terms (after using Sobolev embedding on the unit sphere) estimating
the term |∇/ψ1||∂tψ2| in the previous inequality are grouped to the first term in the
above estimate.

We will use estimate (12) or (13) to bound ‖φ2‖L2(S2), k2 ≤ 4. For the good term
‖∂vψ2‖L2(S2), k2 ≤ 3, we will rely on the equation together with the p-weighted
energy estimates. In fact, we have

sup
v= r

2 ,− r
2≤u≤− R

2

rα‖∂vψ2‖2L2(S2)
� rα

∫
ω

|∂vψ2|2(0, r, ω)dω

+
∣∣∣∣∣
∫
C̄R,r

∂u(r
α|∂vψ2|2)dudω

∣∣∣∣∣
� rα

∫
ω

|∂vψ2|2(0, r, ω)dω

+
∫
C̄R,r

rα−1|∂vψ2|2+rα|∂u∂vψ2||∂vψ2|dudω

� rα

∫
ω

|∂vψ2|2(0, r, ω)dω+
∫
C̄R,r

rα−1|∂vψ2|2dudω

+
∫
C̄R,r

rα+1(|∇/	φ2|2 + |r Zk2F |2)dudω,

where we have used the equation for φ2 in null coordinates (u, v, ω). We have to note
that the coordinate (0, r, ω) appeared in the above estimate is with respect to the polar
coordinate (t, r, ω). Integrate the above estimate with respect to r from R to infinity.
We obtain

∫ ∞

R
sup

v= r
2 ,− r

2≤u≤− R
2

rα‖∂vψ2‖2L2(S2)
dr

�
∫
BR

rα|∂vψ2|2drdω +
∫∫

DR

rα−1|∂vψ2|2drdtdω +
∫∫

DR

rα−1|∇/	ψ2|2

+ rα+3|Zk2F |2dtdωdr � R−1−β. (16)
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here, we have used the assumption on the initial data that E0(R) ≤ R−β . The bound
for F follows from the bootstrap assumption (10). The estimates for |∂vψ2|2, |∇/	ψ2|2
are due to the p-weighted energy inequality (11) and the fact that k2 ≤ 3.

Similarly, for ‖∂uψ1‖L2(S2), k1 ≤ 3, we have

∫ ∞

R
sup

u=− r
2 ,v≥ r

2

r−1‖∂uψ1‖2L2(S2)
dr

� R−1
∫
BR

|∂uψ1|2drdω +
∫∫

DR

r−2|∂uψ1|2dtdrdω

+
∫∫

DR

|∇/	φ1|2 + |r Zk1F |2drdtdω

� R−1+ε1 + R−1+ε I ε[φ1]∞R + R−2−α−β

� R−1+ε1+ε .

here, the estimate for the integrated energy estimate I ε[φ1]∞R follows from (8) inwhich
the bounds for Dε[Zk1F]∞R are guaranteed by the bootstrap assumption (10).

On the right-hand side of the null form estimate (15), we are left to estimate the
special term |∇/ψ1||∂tψ |, ψ1 = Z4ψ . We can show that

∫∫
DR

|∇/ψ1|2|∂tψ |2rαdrdtdω �
∫ ∞

R

∫ ∞
r
2

(
v + r

2

)α
∫

ω

|∇/ψ1|2 ·
∫

ω

|ψ2|2dωdrdv

�
∫ ∞

R

∫ ∞
r
2

(
v + r

2

)α
∫

ω

|∇/ψ1|2

×
(∫

ω

|ψ2|2
(
r,
r

2
, ω

)
dω+R−β

(
v+ r

2

)−α
)
drdv

� R−2β−α +
∫ ∞

R

∫ − R
2

− r
2

∫
ω

( r
2

− u
)α |∇/ψ1|2dω

×
∫

ω

|ψ2|2
(
r,− r

2
, ω

)
dωdudr.

Here, we have used estimate (13) and k2 ≤ 3. We note that when u is fixed, the
p-weighted energy inequality (11) implies that

∫ − R
2

− r
2

∫
ω

( r
2

− u
)1+α |∇/ψ1|2dωdu ≤

∫
C̄R,r

r1+α|∇/ψ1|2dudω � R−β.

Thus, we can show that

∫∫
DR

|∇/ψ1|2|∂tψ |2rαdrdtdω � R−2β−α +
∫ ∞

R
R−β−1

∫
ω

|ψ2|2(0, r, ω)dωdr

� R−2β−α + R−1−β+ε1 .
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Therefore from the null form estimate (15), we can derive that

∫∫
DR

rα|r2ZkQ(φ, φ)|2drdtdω

� Rε1

∫∫
DR

r−2+α|∂ψ1|2dtdrdω +
∫ ∞

R
sup
u

rα‖∂vψ2‖2L2(S2)

∫
C̄R,r

|∂uψ1|2dudωdr

+
∫ ∞

R
sup
v

r−1‖∂uψ1‖2L2(S2)

∫
Sr1

r1+α|∂vψ2|2dvdωdr1 + R−2β−α + R−1−β+ε1

� R2ε1−1+α+ε + Rε1−1−β + R−1+ε1+ε−β + R−2β−α + R−1−β+ε1 .

For cubic or higher-order nonlinearities, we first conclude from estimate (16) that

∫ r1−R

0

∫
ω

rα
1

(
|∂vZ

kψ |2 + |∂v∂t Z
kψ |2

)
dωdt � R−1−β, k ≤ 2.

In particular, we have

∫
ω

|∂vZ
kψ |2dω � R−1−βr−α

1 , k ≤ 2.

Since we have shown that ∫
ω

|Zkψ |2dω � Rε1 , k ≤ 4,

we then have ∫
ω

|∂Zkψ |2dω � Rε1 , k ≤ 2.

Thus for cubic or higher-order nonlinearities, we can bound

∫∫
DR

|Zk(F − Q)|2r2+αdxdt �
∑
k≤4

∫∫
DR

|∂Zkφ|2r−4+2+αR2(N−2)ε1dxdt

� R(2N−3)ε1+α+ε−1.

here, we recall that N is the order of the highest order nonlinearity. To summarize, we
have shown that∫∫

DR

|Zk F |2r2+αdxdt � R(2N−3)ε1+α+ε−1 + R−1+ε1+ε−β + R−2β−α.

If we take
β = 1 − 2α, ε = α

20
, ε1 = α

2N
, (17)
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we then have

∫∫
DR

|Zk F |2r2+αdxdt � R−β− 1
5α.

According to our notations, the implicit constant in the above estimate depends only
on α. Hence, let the constant R be sufficiently large, depending only on α, we then
can improve the bootstrap assumption (10). Once we have improved the bootstrap
assumption (10), the proof for the existence of a unique solution of the Eq. (1) on the
region {r ≥ R + t} is standard, see the end of Yang [33].

Remark 2 In particular, the small constant ε0 in the main Theorem can be ε0 = 1
2N .

4 The solution on {r ≤ R + t}

We have constructed the solution of the Eq. (1) outside the light cone {r ≥ R + t}. In
this section, we will prove that the solution also exists globally in the future inside the
light cone which is the region {r ≤ R + t}. We use the foliation

Sτ :=
{
u = uτ = τ − R

2
,

τ + R

2
= vτ ≤ v

}
, �τ := {t = τ, r ≤ R} ∪ Sτ .

The energy flux through �τ for the scalar field φ is E[φ](τ ). For τ2 ≥ τ1, we define

I ε[φ]τ2τ1 :=
∫ τ2

τ1

∫
�τ

|∂̄φ|2
(1 + r)1+ε

dxdτ, Dε[F]τ2τ1 :=
∫ τ2

τ1

∫
�τ

(1 + r)1+ε |F |2dxdτ.

We have the integrated energy estimate and the energy estimate

E[φ](τ2) + I ε[φ]τ2τ1 +
∫ τ2

τ1

∫
Sτ

|∇/φ|2
1 + r

dxdτ � E[φ](τ1) + Dε[F]τ2τ1 , (18)

see Proposition 1 of Yang [34] or Proposition 2 of Yang [33]. As before, the implicit
constant here depends only on ε.

4.1 The p-weighted energy inequality

As we have discussed in the introduction, the smallness needed to close the bootstrap
argument for nonlinear problem in this paper comes from the radius R while in the
previous work, e.g., [33] the smallness comes from the data. In particular, the previous
argument cannot be applied directly to the settings in this paper. Instead, we need an
argument with all the dependence of the constants on the radius R. To be more precise,
we first consider one of the key ingredients the p-weighted energy inequality.We recall
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the p-weighted energy identity originally introduced by Dafermos and Rodnianski [4]

∫
Sv
τ2

r p(∂vψ)2dvdω +
∫ τ2

τ1

∫
Sv
τ

2r p+1F · ∂vψdvdτdω

+
∫ τ2

τ1

∫
Sv
τ

r p−1
(
p(∂vψ)2 + (2 − p)|∇/ψ |2

)
dvdτdω

+
∫
C̄(τ1,τ2,v)

r p|∇/ψ |2dudω

=
∫
Sv
τ1

r p(∂vψ)2dvdω +
∫ τ2

τ1

r p
(
|∇/ψ |2 − (∂vψ)2

)
dωdτ |r=R,

where ψ = rφ, F = �φ. Note that the boundary term on {r = R} is proportional to
Rp. Hence, we can simply take p = 0 to estimate it. First for any τ , we have

∫
Sv
τ

(∂vψ)2dvdω ≤ 5E[φ](τ ).

For the proof of this inequality, see e.g., Corollary 1 in [33]. For the inhomogeneous
term F∂vψ when p = 0, we can estimate it as follows:

∣∣∣∣∣
∫ τ2

τ1

∫
Sv
τ

r F · ∂vψdvdτdω

∣∣∣∣∣ � Dε[F]τ2τ1 + E[φ](τ1).

Therefore for general p, we have the estimate for the boundary term

∣∣∣∣
∫ τ2

τ1

r p
(
|∇/ψ |2 − (∂vψ)2

)
dωdτ |r=R

∣∣∣∣ � Rp(Dε[F]τ2τ1 + E[φ](τ1)).

Since the boundary term on the incoming null hypersurface C̄(τ1, τ2, v) has a good
sign, to obtain a useful estimate from the p-weighted energy identity, it suffices to
estimate the integral of the inhomogeneous term r p+1F∂vψ in the above p-weighted
energy identity. On Sτ , we control it as follows

2r p+1|F∂vψ | ≤ r p|∂vψ |2τ−1−ε+ + r p+2|F |2τ 1+ε+ , τ+ = 1 + τ.

The integral of the first term r p|∂vψ |2τ−1−ε+ will be bounded by using Gronwall’s
inequality. Thus, we derive
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∫
Sτ2

r p(∂vψ)2dvdω +
∫ τ2

τ1

∫
Sτ

r p−1
(
p|∂vψ |2 + (2 − p)|∇/ψ |2

)
dvdωdτ

� Rp(E[φ](τ1) + Dε[F]τ2τ1) +
∫
Sτ1

r p|∂vψ |2dvdω

+
∫ τ2

τ1

τ ε+Dp−1
+ [F]τ2τ dτ + (τ1)

1+ε+ Dp−1
+ [F]τ2τ1 , (19)

where

Dα+[F]τ2τ1 :=
∫ τ2

τ1

∫
Sτ

(1 + r)1+α|F |2dxdτ.

4.2 The data

To study the equation in the interior region {r ≤ t + R}, we need the initial data on
the boundary which consists of the outgoing null hypersurface S0, that is {v ≥ R

2 , u =
− R

2 } and the initial ball with radius R. However, we are not able to get the desired
estimates of the solution on the particular cone SR,∞. The idea is that we instead
find some one nearby. Since the data on the ball with radius R can be arbitrarily small
according to our assumptions, the results in the Sect. 3 also hold if we replace R with R

2
(the data between are small). As long as R is sufficiently large, we still can construct
the solutions satisfying the estimates in Sect. 3 on the larger region {r ≥ t + R

2 }.
Therefore from the p-weighted energy inequality (11), we have

∫
Sr1,∞

r1+α|∂vZ
kψ |2dvdω � R−β, β = 1 − 2α, k ≤ 4, ∀r1 ≥ R

2
, (20)

∫ ∞
1
2 R

∫
Sr,∞

rα|∂vZ
kψ |2dvdωdr � R−β. (21)

Here, note thatwe have fixedβ in line (17). From the integral version of the p-weighted
energy estimate (21), we in particular can choose a slice Sr0,∞ for some r0 ∈ [ 12 R, R]
such that ∫

Sr0,∞
rα|∂vZ

kψ |2dvdω � R−1−β.

Therefore for the energy flux through Sr0,∞, we can show that

∑
|k|≤4

E[Zkφ](Sr0,∞) ≤
∑
|k|≤4

∫
Sr0,∞

|∂vZ
kψ |2dvdω +

∑
|k|≤4

r0

∫
ω

|φ|2(0, r0, ω)dω

� r−α
0 R−β−1 +

∑
|k|≤4

∫
|x |≤R

|∂Zkφ|2dx � R−2+α. (22)
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Here, we used the Sobolev embedding on the ball with radius R on the initial hyper-
surface.

In summary, we have constructed the solution on the extended exterior region
{r ≥ t + R

2 } and we can find some cone Sr0,∞ for some r0 ∈ [ 12 R, R] such that the
solution on this cone satisfies the estimates (20), (22). The data on the ball with radius
r0 remain small. So, in the sequel, we will construct solutions on the interior region
{r ≤ t + r0}. However, to avoid too many constants, we still use R to denote r0.

4.3 Bootstrap argument

We now use the above initial data to establish the decay of the energy flux. We impose
the following bootstrap assumptions on the nonlinearity F for all k ≤ 4

Dε
[
Zk F

]τ2
τ1

≤ 2min
{
R−β(τ1)

−1−α+ , R−2+α, R−1−β−ε(τ1)
−α+

}
,

Dα+
[
Zk F

]τ2
τ1

≤ 2τ−1−α+ R−β. (23)

We show the decay of E[Zkφ](τ ). Let p = 1+α in the p-weighted energy inequality
(19). We have

∫
Sτ2

r1+α|∂vψ |2dvdω +
∫ τ2

τ1

∫
Sτ

rα|∂vψ |2dvdωdτ � R1+α−2+α + R−β = R−β.

Hence, we can choose a dyadic sequence {τn} such that

∫
Sτn

rα|∂vψ |2dvdω � (τn)
−1+ R−β.

Interpolation leads to

∫
Sτn

r |∂vψ |2dvdω � R−β(τn)
−α+ .

Then, take p = 1 in the p-weighted energy inequality (19). We derive

∫ τ ′

τn

E[φ](τ )dτ � R−β(τn)
−α+ + RE[φ](τn) + R1+ε

(
E[φ](τn) + (τn)

−α+ R−1−β−ε
)

� R−β(τn)
−α+ + R1+εE[φ](τn), τ ′ ≥ τn .

In the energy estimate (18), set τ1 = 0. We have

E[φ](τ ) � R−2+α.
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For τ ′ ≥ τ , we have

E[φ](τ ′) � E[φ](τ ) + R−βτ−1−α+ .

We thus can conclude that

(τ ′ − τn)E[φ](τ ′) � R−β(τn)
−α+ + R1+εE[φ](τn).

In particular, we have

E[φ](τ ) � τ−1+
(
R−β + R1+εR−2+α

)
� τ−1+ R−β.

This then implies that

E[φ](τn+1) � R−β(τn)
−1−α+ + R1+ε−β(τn)

−2+ .

As τn is dyadic, we then infer that

E[φ](τ ) � R−βτ−1−α+ + R1+ε−βτ−2+ .

Summarizing, we have the following energy decay estimate

Proposition 2 For any k ≤ 4, we have

I ε[Zkφ]τ2τ1 + Dε[Zk F]τ2τ1 + E[Zkφ](τ ) � A(τ ),

where

A(τ ) := min
{
R−βτ−1−α+ + R1+ε−βτ−2+ , R−2+α, R−βτ−1+

}
.

In particular, we have

E[Zkφ](τ ) � min
{
R−γ τ−1−α+ , R−2+α

}
, γ = β − (1 + ε)α.

Proof The estimate for the energy flux E[φ](τ ) follows from the above argument.
The estimate for the integrated energy I ε[Zkφ]τ2τ1 follows from (18) and the bound for
the inhomogeneous term F is a restatement of the bootstrap assumption (23). 	


The following lemma will be used to show the C1 estimate of the solution.

Lemma 1 ∫ τ2

τ1

∫
�τ ∩{r≥1}

r1−ε |∂u∂vZ
kφ|2dxdτ � A(τ1), ∀k ≤ 3.

Proof Using the equation for Zkφ (commutation of the equation (1) with Zk), we
have
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∫ τ2

τ1

∫
�τ ∩{r≥1}

r1−ε |∂u∂vZ
kφ|2dxdτ �

∫ τ2

τ1

∫
�τ ∩{r≥1}

r1−ε(r−1|∂Zkφ|

+ |�/ Zkφ| + |Zk F |)2dxdτ
� I ε[Zkφ]τ2τ1 + I ε[	Zkφ]τ2τ1 + Dε[Zk F]τ2τ1
� A(τ1)

for all k ≤ 3. 	

Next, we improve the bootstrap assumption (23). We mainly consider the quadratic

nonlinearity Q(φ, φ), which satisfies the null condition. We first estimate Dα+[F]τ2τ1 .
On Sτ , we can estimate∫

ω

|r Zkφ|2(τ, r, ω)dω ≤
∫

ω

|r Zkφ(τ, R, ω)|2dω

+
∫
Sτ

r1+α|∂v(r Z
kφ)|2dvdω · α−1R−α

�
∫

ω

|r Zkφ(τ, R, ω)|2dω + R−β R−α � R−1+α.

Let C̄τ1,τ2,v1 be the incoming null hypersurface between �τ1 and �τ2 , defined as
follows:

C̄τ1,τ2,v1 := {v = v1, uτ1 ≤ u ≤ uτ2}.

The energy estimate on the region {v ≥ v1, uτ1 ≤ u ≤ uτ2} then implies that

∫
Cτ1,τ2,v1

|∂u Zkψ |2dudω � A(τ1), k ≤ 4.

For the detailed proof of this estimate, we refer to, e.g., Lemma 8 in [33] or Lemma
11 in [32]. Then from estimate (15), we can show that

Dα+[ZkQ]τ2τ1 � R−1+α

∫ τ2

τ1

∫
Sτ

|∂̄ψ1|2r−3+αdrdtdω

+
∑
k1≤2

R−β

∫ τ2

τ1

sup
v

r−2
∫

ω

|∂uψ1|2dωdτ

+ A(τ1)
∑
k2≤2

∫ ∞

vτ1

sup
u

rα−1
∫

ω

|∂vψ2|2dωdv

+
∫ τ2

τ1

∫
Sτ

|∇/ Z4ψ |2rαE[Z3φ](τ )drdωdτ.

here, we still use the notation that φ1 = Zk1φ, φ2 = Zk2φ,ψ1 = rφ1. Now on
Sτ , τ1 ≤ τ ≤ τ2, we can estimate
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r−α

∫
ω

(∂uψ1)
2dω � r−α

∫
ω

(∂uψ1)
2dω

∣∣∣∣
v=vτ2

+
∫
Sτ

r−1−α|∂uψ1|2dvdω

+
∫
Sτ

r−1−α(∂uψ1)
2dvdω +

∫
Sτ

r1−α(∂v∂uψ1)
2dvdω

�
∫

ω

(∂uψ1)
2dω

∣∣∣∣
v=vτ2

+
∫
Sτ

r−1−ε(|∂ψ1|2 + |∂	ψ1|2)dvdω

+
∫
Sτ

r3−α|Zk1F |2dvdω.

Similarly, on C̄τ1,τ2,v , we have

rα

∫
ω

(∂vψ2)
2dω � rα

∫
ω

(∂vψ2)
2dω

∣∣∣∣
u=uτ1

+
∫
C̄τ1,τ2,v

rα(∂vψ2)
2dudω

+
∫
C̄τ1,τ2,v

rα(∂u∂vψ2)
2dudω +

∫
C̄τ1,τ2,v

rα−1(∂vψ2)
2dudω

� rα

∫
ω

(∂vψ2)
2dω

∣∣∣∣
u=uτ1

+
∫
C̄τ1,τ2,v

rα(∂vψ2)
2 + rα(�/ψ2)

2

+ rα+2|Zk2F |2dudω.

Therefore we can show that

Dα+[ZkQ]τ2τ1 � R−3+2α+ε A(τ1) + R−β−2+αA(τ1) + A(τ1)R
−1−β + A(τ1)R

−β

� A(τ1)R
−β.

The estimate for cubic or higher-order nonlinearities is better and we can conclude
that

Dα+[Zk F]τ2τ1 � A(τ1)R
−β, k ≤ 4. (24)

Next, we estimate the integral inside the cylinder with radius R. We have

∫ τ2

τ1

∫
r≤R

(1 + r)1+ε |Zk F |2dxdτ �
∫ τ2

τ1

∫
r≤R

(1 + r)1+ε |∂φ1|2|∂φ2|2dxdτ

�
∫ τ2

τ1

∫
r≤1

|∂φ1|2|∂φ2|2dxdτ

+
∫ τ2

τ1

∫
1≤r≤R

r1+ε |∂φ1|2|∂φ2|2dxdτ.

Here, we omitted the summation sign for simplicity and the right-hand side should
be interpreted as the sum for all k1 + k2 ≤ k ≤ 4. The integral on the cylinder with
radius 1 can be estimated by using elliptic estimates together with the wave equation
and Sobolev embedding. This will rely on the commutator ∂t . More specifically, we
have the elliptic equation for the solution on the disk with radius one at a fixed time.
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Then, the estimate of ∂t tφ will lead to the desired estimate of φ inside the disk. For
much more detailed argument, we refer to, e.g., Proposition 6 in [33]. To estimate the
second part, we claim that

∫
ω

r |∂(Zkφ)|2dω � A(τ ), k ≤ 2, 1 ≤ r ≤ R. (25)

In fact from Lemma 1, we have

∫
1≤r≤R

r1−ε |∂u∂vZ
kφ|2dx � A(τ ), k ≤ 2,∫

1≤r≤R
|∂u∂t Zkφ|2dx � E[∂t Zkφ](τ ) � A(τ ), k ≤ 3.

This implies that

∫
1≤r≤R

|∂u∂r Zkφ|2dx � A(τ ), k ≤ 2.

In particular, we can show that

r
∫

ω

|∂u Zkφ|2dω ≤ A(τ ), 1 ≤ r ≤ R, k ≤ 2.

This leads to the above claim (25). Hence, we can show that

∫ τ2

τ1

∫
1≤r≤R

r1+ε |∂φ1|2|∂φ2|2dxdτ � Rε

∫ τ2

τ1

A(τ )2dτ � A(τ1)R
ε−β.

Inside the cylinder with radius 1, by using elliptic theory, we can show that

|∂Zkφ|2 � A(τ ), k ≤ 2.

For the details, we refer to, e.g., the end of the second last section of Yang [34].
Therefore, we can estimate

∫ τ2

τ1

∫
r≤1

|∂φ1|2|∂φ2|2dxdτ �
∫ τ2

τ1

A(τ )2dτ � A(τ1)R
−β+ε .

Combined with the estimate (24), we then have shown that

Dε[Zk F]τ2τ1 ≤ Dα+[Zk F]τ2τ1 +
∫ τ2

τ1

∫
r≤R

(1 + r)1+ε |Zk F |2dxdτ

� A(τ1)R
ε−β, ∀k ≤ 4.
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Simply considering the total decay in R and (τ1)+, we see from the definition of A(τ )

in Proposition 2 that

A(τ ) ≤ 2τ−1−α+ Rε+α−β.

Therefore, we have the estimate for Dα+[Zk F]τ2τ1
Dα+[Zk F]τ2τ1 � (τ1)

−1−α+ R−β Rε+α−β, ∀k ≤ 4.

For Dε[Zk F]τ2τ1 , when (τ1)+ ≤ R, we have

A(τ1) ≤ R−2+α ≤ Rε min{R−β(τ1)
−1−α+ , R−2+α, R−1−β−ε(τ1)

−α+ }.

Here, recall that β = 1 − 2α, ε = α
20 . When (τ1)+ ≥ R, we can show that

A(τ1) ≤ R−β(τ1)
−1−α+ + R1+ε−β(τ1)

−2+ ≤ 2R1+ε−β(τ1)
−2+

≤ 2R2ε+α min
{
R−β(τ1)

−1−α+ , R−2+α, R−1−β−ε(τ1)
−α+

}
In any case, we have

A(τ1) ≤ 2R2ε+α min
{
R−β(τ1)

−1−α+ , R−2+α, R−1−β−ε(τ1)
−α+

}
Therefore, we have

Dε[Zk F]τ2τ1 � A(τ1)R
ε−β � R3ε+α−β min

{
R−β(τ1)

−1−α+ , R−2+α, R−1−β−ε(τ1)
−α+

}

for all k ≤ 4. Recall that ε = α
20 , β = 1 − 2α and α < 1

4 . We conclude that for
sufficiently large R, depending only on α, we can improve the bootstrap assumption
(23). Then, the construction of the solution on the region {r ≤ t + R} will be the same
as that in, e.g., [33] (the last section).

Finally for the pointwise bound of the solution, the case inside the cone t + R ≥ r
can be obtained in the same way as that in, e.g., [34]. The pointwise estimate for the
solution in the region t + R < r is derived from the estimate (12) after using Sobolev
embedding on the unit sphere. We are not able to get the pointwise estimate for the
full derivative of the solution in the region t + R < r as initially we are lack of this
pointwise estimate.
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