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Abstract We define the notion of singular support of a coherent sheaf on a quasi-
smooth-derived scheme or Artin stack, where “quasi-smooth” means that it is a locally
complete intersection in the derived sense. This develops the idea of “cohomological”
support of coherent sheaves on a locally complete intersection scheme introduced by
D. Benson, S. B. Iyengar, and H. Krause. We study the behavior of singular support
under the direct and inverse image functors for coherent sheaves. We use the theory of
singular support of coherent sheaves to formulate the categorical geometric Langlands
conjecture. We verify that it passes natural consistency tests: It is compatible with
the geometric Satake equivalence and with the Eisenstein series functors. The latter
compatibility is particularly important, as it fails in the original “naive” form of the
conjecture.
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1 Introduction

1.1 What we are trying to do

1.1.1. Let G be a connected reductive group, and X a smooth, connected, and com-
plete curve over a ground field k, assumed algebraically closed and of characteristic 0.
Let BunG(X) be the moduli stack of G-bundles on X , and consider the (DG) category
D-mod(BunG(X)).

The goal of the (classical, global, and unramified) geometric Langlands program
is to express the category D-mod(BunG(X)) in terms of the Langlands dual group Ǧ;
more precisely, in terms of the (DG) category of quasi-coherent sheaves on the (DG)
stack LocSysǦ of local systems on X with respect to Ǧ.

The naive guess, referred to by A. Beilinson and V. Drinfeld for a number of years
as “the best hope,” says that the category D-mod(BunG(X)) is simply equivalent to
QCoh(LocSysǦ). For example, this is indeed the case when G is torus, and the required
equivalence is given by the Fourier transform of [18,19] and [35,36].

However, the “best hope” does not hold for groups other than the torus. For example,
it fails in the simplest case of G = SL2 and X = P

1. An explicit calculation showing
this can be found in [17].

1.1.2. There is a heuristic reason for the failure of the “best hope”:
In the classical theory of automorphic forms, one expects that automorphic represen-

tations are parametrized not just by Galois representations, but by Arthur parameters,
i.e., in addition to a homomorphism from the Galois group to Ǧ, one needs to specify
a nilpotent element in ǧ centralized by the image of the Galois group.

In addition, there has been a general understanding that the presence of the commut-
ing nilpotent element must be “cohomological in nature.” As an incarnation of this,
for automorphic representations realized in the cohomology of Shimura varieties, the
nilpotent element in question acts as the Lefschetz operator of multiplication by the
Chern class of the corresponding line bundle.

So, in the geometric theory one has been faced with the challenge of how to mod-
ify the Galois side, i.e., the category QCoh(LocSysǦ), with the hint being that the

solution should come from considering the stack of pairs (σ, A), where σ is a Ǧ-local
system, and A its endomorphism, i.e., a horizontal section of the associated local
system ǧσ .

The general feeling, shared by many people who have looked at this problem, was
that the sought-for modification has to do with the fact that the DG stack LocSysǦ
is not smooth; i.e., we need to modify the category QCoh(LocSysǦ) by taking into
account the singularities of LocSysǦ .

1.1.3. The goal of the present paper is to provide such a modification and to formulate
the appropriately modified version of the “best hope.”

In fact, one does not have to look very far for the possibilities to “tweak” the
category QCoh(LocSysǦ). Recall that for any reasonable algebraic DG stack Z, the
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category QCoh(Z) is compactly generated by its subcategory QCoh(Z)perf of perfect
complexes.

Now, if Z is non-smooth, one can enlarge the category QCoh(Z)perf to that of
coherent complexes, denoted Coh(Z). By passing to the ind-completion, one obtains
the category IndCoh(Z), studied in [6] and [10].

(We emphasize that the difference between QCoh(Z) and IndCoh(Z) is not a
“stacky” phenomenon: It is caused not by automorphisms of points of Z, but rather
by its singularities.)

Thus, one can try IndCoh(LocSysǦ) as a candidate for the Galois side of geomet-
ric Langlands. However, playing with the example of X = P

1 shows that, whereas
QCoh(LocSysǦ) was “too small” to be equivalent to D-mod(BunG), the category
IndCoh(LocSysǦ) is “too large.”

So, a natural guess for the category on the Galois side is that it should be a (full)
subcategory of IndCoh(LocSysǦ) that contains QCoh(LocSysǦ). This is indeed the
shape of the answer that we will propose. Our goal is to describe the corresponding
subcategory.

1.1.4. Let us go back to the situation of a nice (=QCA, in the terminology of [6])
algebraic DG stack Z. In general, it is not so clear how to describe categories that
lie between QCoh(Z) and IndCoh(Z). However, the situation is more manageable
when Z is quasi-smooth, that is, if its singularities are modeled, locally in the smooth
topology, by a complete intersection.

For every point z ∈ Z, we can consider the derived cotangent space T ∗z (Z), which
is a complex of vector spaces lying in cohomological degrees ≤ 1. The assumption
that Z is quasi-smooth is equivalent to that the cohomologies vanish in degrees < −1
(smoothness is equivalent to the vanishing of H−1 as well).

It is easy to see that the assignment z �→ H−1
(
T ∗z (Z)

)
forms a well-defined

classical1 stack, whose projection to Z is affine, which carries a canonical action of
Gm by dilations. We will denote this stack by Sing(Z).

We are going to show (see Sect. 4) that to every F ∈ IndCoh(Z), one can assign
its singular support, denoted SingSupp(F), which is a conical Zariski-closed subset
in Sing(Z). It is easy to see that for F ∈ QCoh(Z), its singular support is contained in
the zero-section of Sing(Z). It is less obvious, but still true (see Theorem 4.2.6) that if
F is such that its singular support is the zero-section, then F belongs to QCoh(Z) ⊂
IndCoh(Z). Thus, the singular support of an object of IndCoh(Z) exactly measures
the degree to which this object does not belong to QCoh(Z).

For a fixed conical Zariski-closed subset Y ⊂ Sing(Z), we can consider the full
subcategory IndCohY (Z) ⊂ IndCoh(Z) consisting of those objects, whose singular
support lies in Y (The paper [37] implies that the assignment Y �→ IndCohY (Z)

establishes a bijection between subsets Y as above and full subcategories of IndCoh(Z)

satisfying certain natural conditions.).
We should mention that the procedure of assigning the singular support to an object

F ∈ IndCoh(Z) is cohomological in nature: We read if off (locally) from the action

1 “Classical” as opposed to “DG.”



6 D. Arinkin, D. Gaitsgory

of the algebra of Hochschild cochains (on smooth affine charts of Z) on our object.
This loosely corresponds to the cohomological nature of the Arthur parameter. To the
best of our knowledge, the general idea of using cohomological operators to define
support is due to Benson et al. [4].

The singular support for (ind)coherent complexes on a quasi-smooth DG scheme
is similar to the singular support (also known as the “characteristic variety”) of a
coherent D-module on a smooth variety, and also, perhaps in a more remote way, to
the singular support of constructible sheaves on a manifold. Because of this analogy,
we use the name “singular support” (rather than, say, “cohomological support”) for
the support of ind-coherent sheaves.

1.1.5. Returning to the Galois side of geometric Langlands, we note that the DG
stack LocSysǦ is indeed quasi-smooth. Moreover, we note that the corresponding stack
Sing(LocSysǦ) classifies pairs (σ, A), i.e., Arthur parameters. Thus, we rename

ArthǦ := Sing(LocSysǦ).

Our candidate for a category lying between QCoh(LocSysǦ) and IndCoh(LocSysǦ)

corresponds to a particular closed subset of ArthǦ . Namely, let

Nilpglob ⊂ ArthǦ,

be the subset of pairs (σ, A) with nilpotent A.
So, we propose the following modified version of the “best hope”:

Conjecture 1.1.6 There exists an equivalence of categories

D-mod(BunG) � IndCohNilpglob
(LocSysǦ).

Thus, given M ∈ D-mod(BunG), one cannot really speak of “the Arthur parameter”
corresponding to M. However, one can specify a conical closed subset of Nilpglob over
which M is supported.

1.1.7. Geometric Langlands correspondence is more than simply an equivalence of
categories as in Conjecture 1.1.6. Rather, the sought-for equivalence must satisfy a
number of compatibility conditions.

Two of these conditions are discussed in the present paper: Compatibility with the
geometric Satake equivalence and compatibility with the Eisenstein series functors.

Two other conditions have to do with the description of the Whittaker D-module
on the automorphic side, and of the construction of automorphic D-modules by local-
ization from Kac-Moody representations.

On the Galois side, the Whittaker D-module is supposed to correspond to the struc-
ture sheaf on LocSysǦ . The localization functor should correspond to the direct image
functor with respect to the map to LocSysǦ from the scheme of opers.

Both of the latter procedures are insensitive to the singular aspects of LocSysǦ ,
which is why we do not discuss them in this paper. However, we plan to revisit these
objects in a subsequent publication.
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1.1.8. Conjecture 1.1.6 contains the following statement (which can actually be
proved unconditionally):

Conjecture 1.1.9 The monoidal category QCoh(LocSysǦ) acts on D-mod(BunG).

The above corollary allows one to take fibers of the category D-mod(BunG) at
points of LocSysǦ , or more generally S-points for any test scheme S. Namely, for
σ : S → LocSysǦ we set

D-mod(BunG)σ := QCoh(S) ⊗
QCoh(LocSysǦ )

D-mod(BunG).

In particular, for a k-point σ of LocSysǦ , the corresponding category
D-mod(BunG)σ is that of Hecke eigensheaves with eigenvalue σ .

However, we do not know (and have no reasons to believe) that this procedure can
be refined to ArthǦ . In other words, we do not expect that the category QCoh(ArthǦ)

should act on D-mod(BunG) and that it should be possible to take the fiber of
D-mod(BunG) at a specified Arthur parameter.

1.1.10. Let Z be a quasi-smooth DG stack and let Y ⊂ Sing(Z) be a conical Zariski-
closed subset. If Y contains the zero-section of Sing(Z), then the category IndCohY (Z)

contains QCoh(Z) as a full subcategory.
In particular, IndCohNilpglob

(LocSysǦ) contains QCoh(LocSysǦ) as a full subcat-
egory.

Accepting Conjecture 1.1.6, we obtain that QCoh(LocSysǦ) corresponds to a cer-
tain full subcategory of D-mod(BunG), consisting of objects whose support in ArthǦ
is contained in the zero-section. In other words, its support only contains Arthur para-
meters (σ, A) with A = 0.

We denote this category by D-modtemp(BunG). In Corollary 12.8.7, we give an
intrinsic characterization of this subcategory in terms of the action of the Hecke func-
tors.

1.2 Results concerning Langlands correspondence

The main theorems of this paper fall into two classes. On the one hand, we prove some
general results about the behavior of the categories IndCohY (Z). On the other hand,
we run some consistency checks on Conjecture 1.1.6.

We will begin with the review of the latter.

1.2.1. Recall that the Hecke category Sph(G, x) � D-mod(GrG,x )
G(Ôx ) is a

monoidal category acting on D-mod(BunG) by the Hecke functors.
The (derived) geometric Satake equivalence identifies Sph(G, x) with a certain

subcategory of the category of ind-coherent sheaves on the DG stack

pt /Ǧ ×
ǧ/Ǧ

pt /Ǧ,

which is a monoidal category under convolution.
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We prove (Theorem 12.5.3) that the resulting subcategory of IndCoh(pt /Ǧ ×
ǧ/Ǧ

pt /Ǧ) is determined by a singular support condition.
Namely, there is a natural isomorphism

Sing(pt /Ǧ ×
ǧ/Ǧ

pt /Ǧ) � ǧ∗/Ǧ,

which allows us to view

Nilp(ǧ∗)/Ǧ

as a conical subset of Sing(pt /Ǧ ×
ǧ/Ǧ

pt /Ǧ). Here, Nilp(ǧ∗) ⊂ ǧ∗ is the cone of nilpo-

tent elements. We show that the geometric Satake equivalence identifies Sph(G, x)

with the full subcategory

IndCohNilp(ǧ∗)/Ǧ(pt /Ǧ ×
ǧ/Ǧ

pt /Ǧ) ⊂ IndCoh(pt /Ǧ ×
ǧ/Ǧ

pt /Ǧ)

corresponding to this conical subset.
We also show (see Proposition 12.7.3) that the conjectural equivalence of “modified

best hope” (Conjecture 1.1.6) is consistent with the geometric Satake equivalence.
Namely, we construct a natural action of the monoidal category

IndCohNilp(ǧ∗)/Ǧ(pt /Ǧ ×
ǧ/Ǧ

pt /Ǧ)

on the category IndCohNilpglob
(LocSysǦ). This action should correspond to the action

of the monoidal category Sph(G, x) on D-mod(BunG) under the equivalence of Con-
jecture 1.1.6.

1.2.2. The following fact was observed in [17], and independently, by
R. Bezrukavnikov.

Take X = P
1, and let δ1 ∈ D-mod(BunG) be the D-module of δ-functions at

the trivial bundle 1 ∈ BunG . Then, the Hecke action of Sph(G, x) on δ1 defines an
equivalence

Sph(G, x) → D-mod(BunG).

It is easy to see that the action of IndCoh(pt /Ǧ ×
ǧ/Ǧ

pt /Ǧ) on the sky-scraper of

the unique k-point of LocSysǦ defines an equivalence

IndCoh(pt /Ǧ ×
ǧ/Ǧ

pt /Ǧ) → IndCoh(LocSysǦ).

Thus, Theorem 12.5.3 implies the existence of an equivalence as stated in Conjec-
ture 1.1.6 for X = P

1.
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To show that this equivalence is the equivalence, one needs to verify the addi-
tional properties that one expects the equivalence of Conjecture 1.1.6 to satisfy, see
Sect. 1.1.7. Only some of these properties have been verified so far. So, an interested
reader is welcome to tackle them.

1.2.3. A fundamental construction in the classical theory of automorphic functions
is that of Eisenstein series. In the geometric theory, this takes the form of a functor

EisP
! : D-mod(BunM ) → D-mod(BunG),

defined for every parabolic subgroup P with Levi quotient M .
The Eisenstein series functor EisP

! is defined as

(pP )! ◦ (qP )∗,

where pP and qP are the maps in the diagram

BunG BunM .

BunP

pP

����
��

��
��

�
qP

���
��

��
��

��

(1.1)

It is not obvious that the functor EisP
! makes sense, because the functors (qP )∗ and

(pP )! are being applied to D-modules that need not be holonomic. For some non-trivial
reasons, the functor EisP

! is defined on the category D-mod(BunM ); See Sect. 13.1.1
for a quick summary and [8, Proposition 1.2] for a proof.

On the spectral side, one has an analogous functor

EisP
spec : IndCoh(LocSysM̌ ) → IndCoh(LocSysǦ),

defined as

(pP
spec)

IndCoh∗ ◦ (qP
spec)

!

using the diagram

LocSysǦ LocSysM̌ .

LocSysP̌
pP

spec

����
��

��
�� qP

spec

���
��

��
��

�

(1.2)

The Langlands correspondence for groups G and M is supposed to intertwine the
functors EisP

! and EisP
spec (up to tensoring by a line bundle).

Thus, a consistency check for Conjecture 1.1.6 should imply:
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Theorem 1.2.4 The functor EisP
spec maps

IndCohNilpglob
(LocSysM̌ ) → IndCohNilpglob

(LocSysǦ).

We prove this theorem in Sect. 13 (see Proposition 13.2.6).

1.2.5. The main result of this paper is Theorem 13.3.6, which is a refinement of
Theorem 1.2.4.

Essentially, Theorem 13.3.6 says that the choice of IndCohNilpglob
(LocSysǦ) as a

subcategory of IndCoh(LocSysǦ) containing QCoh(LocSysǦ) is the minimal one, if
we want to have an equivalence with D-mod(BunG) compatible with the Eisenstein
series functors.

More precisely, Theorem 13.3.6 says that the category IndCohNilpglob
(LocSysǦ) is

generated by the essential images of QCoh(LocSysM̌ ) under the functors EisP
spec for

all parabolics P (including P = G).

1.3 Results concerning the theory of singular support

1.3.1. As was already mentioned, the idea of support based on cohomological oper-
ations was pioneered by Benson et al. in [4].

Namely, let T be a triangulated category (containing arbitrary direct sums), and
let A be an algebra graded by non-negative even integers that acts on T. By this, we
mean that every homogeneous element a ∈ A2n defines a natural transformation from
the identity functor to the shift functor F �→ F[2n]. Given a homogeneous element
a ∈ A, one can attach to it the full subcategory TSpec(A)−Ya ⊂ T consisting of a-local
objects, and its left orthogonal, denoted TYa , to be thought of as consisting of objects
“set-theoretically supported on the set of zeroes of a.” More generally, one can attach
the corresponding subcategories

TY ⊂ T ⊃ TSpec(A)−Y

to any conical Zariski-closed subset Y ⊂ Spec(A).
It is shown in loc.cit. that the categories TY ⊂ T are very well-behaved. Namely,

they satisfy essentially the same properties as when T = A-mod, and we are talking
about the usual notion of support in commutative algebra.

1.3.2. Let us now take T to be the homotopy category of the DG category IndCoh(Z),
where Z is an affine DG scheme. There is a universal choice of a graded algebra acting
on T, namely HH(Z), the Hochschild cohomology of Z .

We note that when Z is quasi-smooth, there is a canonical map of graded algebras

�(Sing(Z),OSing(Z)) → HH(Z),

where the grading on OSing(Z) is obtained by scaling by 2 the action of Gm along the
fibers of Sing(Z) → Z .
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Thus, by [4], we obtain the desired assignment

Y ⊂ Sing(Z) � IndCohY (Z) ⊂ IndCoh(Z).

For a given F ∈ IndCoh(Z), its singular support is by definition the smallest Y
such that

F ⊂ IndCohY (Z).

Remark 1.3.3 We chose the terminology “singular support” by loose analogy with
the theory of D-modules. In the latter case, the singular support of a D-module is a
conical subset of the (usual) cotangent bundle, which measures the degree to which
the D-module is not lisse.

Remark 1.3.4 We do not presume to make a thorough review of the existing literature
on the subject. However, in Appendix H we will indicate how the notion of singular
support developed in this paper is related to several other approaches, due to D. Orlov,
L. Positselski, G. Stevenson, and M. Umut Isik, respectively.

1.3.5. If the above definition of singular support sounds a little too abstract, here is
how it can be rewritten more explicitly.

First, we consider the most basic example of a quasi-smooth (DG !) scheme.
Namely, let V be a smooth scheme, and let pt → V be a k-point. We consider the
DG scheme

Gpt /V := pt×
V

pt .

Explicitly, let V denote the tangent space to V at pt. Then for every parallelization
of V at pt, i.e., for an identification of the formal completion of OV at pt with ̂Sym(V ),
we obtain an isomorphism

Gpt /V � Spec(Sym(V ∗[1])).

Now, Koszul duality defines an equivalence of DG categories

KDpt /V : IndCoh(Gpt /V) � Sym(V [−2])-mod

(this equivalence does not depend on the choice of a parallelization).
It is easy to see that Sing(Gpt /V) � V ∗. In terms of this equivalence, the singular

support of an object in IndCoh(Gpt /V) becomes the usual support of the corresponding
object in Sym(V [−2])-mod (By definition, the support of a Sym(V [−2])-module M
is the support of its cohomology H•(M) viewed as a graded Sym(V )-module.).

For example, for F = OGpt /V
, its singular support is {0}. By contrast, for F being

the skyscraper at the unique k-point of Gpt /V, its singular support is all of V ∗.
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1.3.6. Suppose now that a quasi-smooth DG scheme Z is given as a global complete
intersection. By this, we mean that

Z = pt×
V

U,

where U and V are smooth (Any quasi-smooth DG scheme can be locally written in
this form, see Corollary 2.1.6.).

Then, it is easy to see that there exists a canonical closed embedding

Sing(Z) ↪→ V ∗ × Z , (1.3)

where V ∗ is as above.
Now, we have a canonical isomorphism of DG schemes

Z ×
U

Z � Gpt /V× Z

(see Sect. 5.3.1), so we have a map, denoted

actpt /V,Z : Gpt /V× Z → Z .

We show in Corollary 5.6.7(a) that an object F ∈ IndCoh(Z) has its singular support
inside Y ⊂ Sing(Z) ⊂ V ∗ × Z if and only if the object

(KDpt /V⊗ Id) ◦ act!pt /V,Z (F) ∈ Sym(V [−2])-mod⊗ IndCoh(Z)

is supported on Y in the sense of commutative algebra.

1.3.7. Here is yet another, even more explicit, characterization of singular support
of objects of Coh(Z), suggested to us by V. Drinfeld.

Let (z, ξ) be an element of Sing(Z), where z is a point of Z and 0 �= ξ ∈
H−1(T ∗z (Z)). We wish to know when this point belongs to SingSupp(F) for a given
F ∈ Coh(Z).

Suppose that Z is written as in Sect. 1.3.6. Then by (1.3), ξ corresponds to a
cotangent vector to V at pt. Let f be a function on V that vanishes at pt, and whose
differential equals ξ . Let Z ′ ⊂ U be the hypersurface cut out by the pullback of f to
U . Note that Z ′ is singular at pt. Let i denote the closed embedding Z ↪→ Z ′.

We have:

Theorem 1.3.8 The element (z, ξ) does not belong to SingSupp(F) if and only if
i∗(F) ∈ Coh(Z ′) is perfect on a Zariski neighborhood of z.

This theorem will be proved as Corollary 7.3.6
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1.3.9. Here are some basic properties of the assignment

Y �→ IndCohY (Z):

(a) As was mentioned before,

F ∈ QCoh(F) ⇔ SingSupp(F) = {0};

this is Theorem 4.2.6.
(b) The assignment Y � IndCohY (Z) is Zariski-local (see Corollary 4.5.7). In par-

ticular, this allows us to define singular support on non-affine DG schemes.
(c) For Z quasi-compact, the category IndCohY (Z) is compactly generated. This is

easy for Z affine (see Corollary 4.3.2) and is a variant of the theorem of [38] in
general (see Appendix C).

(d) The category IndCohY (Z) has a t-structure whose eventually coconnective part
identifies with that of QCoh(Z). Informally, the difference between IndCohY (Z)

and QCoh(Z) is “at −∞.” This is the content of Sect. 4.4.
(e) For F ∈ Coh(Z),

SingSupp(F) = SingSupp(DSerre
Z (F)),

where D
Serre
Z is the Serre duality anti-involution of the category Coh(Z). This is

Proposition 4.7.2.
(f) Singular support can be computed point-wise. Namely, for F ∈ IndCoh(Z) and a

geometric point Spec(k′) iz−→ Z , the graded vector space H•(i !z(F)) is acted on
by the algebra Sym(H1(Tz(Z)), and

SingSupp(F) ⊂ Y ⇔ ∀ z, suppSym(H1(Tz(Z))

(
H•(i !z(F))

)
⊂ Y ∩ H−1(T ∗z (Z)).

This is Proposition 6.2.2.
(g) For Z1 and Z2 quasi-compact, and Yi ⊂ Sing(Zi ), we have

IndCohY1(Z1)⊗ IndCohY2(Z2) = IndCohY1×Y2(Z1 × Z2)

as subcategories of

IndCoh(Z1)⊗ IndCoh(Z2)⊗ IndCoh(Z1 × Z2).

This is Lemma 4.6.4.
(h) An estimate on singular support ensures preservation of coherence. For example,

if F′,F′′ ∈ Coh(Z) are such that the set-theoretic intersection of their respective
singular supports is contained in the zero-section of Sing(Z), then the tensor
product F′ ⊗ F′′ lives in finitely many cohomological degrees. This is proved in
Proposition 7.2.2.
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1.3.10 Functoriality Let f : Z1 → Z2 be a map between quasi-smooth (and quasi-
compact) DG schemes. We have the functors

f IndCoh∗ : IndCoh(Z1) → IndCoh(Z2) and f ! : IndCoh(Z2) → IndCoh(Z1)

(they are adjoint if f is proper).
We wish to understand how they behave in relation to the categories IndCohY (Z).
First, we note that there exists a canonical map

Z1 ×
Z2

Sing(Z2) → Sing(Z1);

we call this map “the singular codifferential of f ,” and denote it by Sing( f ).
The singular support behaves naturally under direct and inverse images:

Theorem 1.3.11 Let Yi ⊂ Sing(Zi ) be conical Zariski-closed subsets.

(a) If Sing( f )−1(Y1) ⊂ Y2 ×
Z2

Z1, then the functor f IndCoh∗ maps IndCohY1(Z1) to

IndCohY2(Z2).
(b) If Y2 ×

Z2

Z1 ⊂ Sing( f )−1(Y1), then f ! maps IndCohY2(Z2) to IndCohY1(Z1).

This is proved in Proposition 7.1.3.
Suppose now that the map f is itself quasi-smooth. According to Lemma 2.4.3,

this is equivalent to the condition that the singular codifferential map Sing( f ) be a
closed embedding. For Y2 ⊂ Sing(Z2), let

Y1 := Sing( f )(Y2 ×
Z2

Z1)

be the corresponding subset in Sing(Z1).
In Corollary 7.6.2, we will show:

Theorem 1.3.12 The functor f ! defines an equivalence

QCoh(Z1) ⊗
QCoh(Z2)

IndCohY2(Z2) → IndCohY1(Z1).

Finally, we have the following crucial result (see Theorem 7.8.2):

Theorem 1.3.13 Assume that f is proper, and let Yi ⊂ Sing(Zi ) be such that the
composed map

Sing( f )−1(Y1) ↪→ Z1 ×
Z2

Sing(Z2) → Sing(Z2)

is surjective onto Y2. Then, the essential image of IndCohY1(Z1) under f IndCoh∗ gen-
erates IndCohY2(Z2).
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Remark 1.3.14 Theorems 1.3.12 and 1.3.13 are deeper than Theorem 1.3.11. Indeed,
Theorem 1.3.11 provides upper bounds on the essential images f IndCoh∗ (IndCohY2(Z2))

and f !(IndCohY1(Z1)); to a large extent, these bounds formally follow from defin-
itions. On the other hand, Theorems 1.3.12 and 1.3.13 give a precise description of
this image under some additional assumptions on the morphism f ; they are more
“geometric” in nature.

1.3.15. Finally, we remark that Theorem 1.3.12 ensures that the assignment Y �→
IndCohY (Z) is local also in the smooth topology. This allows us to develop the theory
of singular support on DG Artin stacks.

For a quasi-smooth DG Artin stack Z, we introduce the classical Artin stack Sing(Z)

by descending Sing(Z) over affine DG schemes Z mapping smoothly to Z (any such
Z is automatically quasi-smooth).

Given Y ⊂ Sing(Z), we define the category IndCohY (Z) as the limit of the cate-
gories

IndCohZ×
Z

Y (Z)

over Z → Z as above.
One easily establishes the corresponding properties of the category IndCohY (Z)

by reducing to the case of schemes. The one exception is the question of compact
generation.

At the moment, we cannot show that IndCohY (Z) is compactly generated for a
general nice (=QCA) algebraic DG stack. However, we can do it when Z can be
presented as a global complete intersection (see Corollary 9.2.7). Fortunately, this is
the case for Z = LocSysG for any affine algebraic group G.

However, we do prove that the category IndCohY (Z) is dualizable for a general Z

which is QCA (see Corollary 8.2.12).

1.4 How this paper is organized

This paper is divided into three parts. Part I contains miscellaneous preliminaries,
Part II develops the theory of singular support for IndCoh, and Part III discusses the
applications to geometric Langlands.

1.4.1. In Sect. 2, we recall the notion of quasi-smooth DG scheme and morphism.
We show that this condition is equivalent to that of locally complete intersection. We
also introduce the classical scheme Sing(Z) attached to a quasi-smooth DG scheme
Z .

In Sect. 3, we review the theory of support in a triangulated category acted on by a
graded algebra. Most results of this section are contained in [4] (Note, however, that
what we call support is the closure of the support in the terminology of loc.cit.).
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1.4.2. In Sect. 4, we introduce the notion of singular support of objects of IndCoh(Z),
where Z is a quasi-smooth DG scheme, and establish the basic properties listed in
Sect. 1.3.9.

In Sect. 5, we study the case of a global complete intersection and prove the descrip-
tion of singular support via Koszul duality, mentioned in Sect. 1.3.6.

In Sect. 6, we show how singular support of an object F ∈ IndCoh(Z) can be read
off the behavior of the fibers of F at geometric points of Z .

In Sect. 7, we establish the functoriality properties of categories IndCohY (Z) men-
tioned in Sect. 1.3.10.

In Sect. 8, we develop the theory of singular support on Artin DG stacks.
In Sect. 9, we prove that if a quasi-compact algebraic DG stack Z is given as a

global complete intersection, then the subcategories of IndCoh(Z) defined by singular
support are compactly generated.

1.4.3. In Sect. 10, we recall the definition of the DG stack of G-local systems on
a given scheme X , where G is an algebraic group. The reason we decided to include
this section rather than refer to some existing source is that, even for X a smooth and
complete curve, the stack LocSysG is an object of derived algebraic geometry, and
the relevant definitions do not seem to be present in the literature, although seem to
be well known in folklore.

In Sect. 11, we introduce the global nilpotent cone

Nilpglob ⊂ ArthǦ = Sing(LocSysǦ)

and formulate the geometric Langlands conjecture.
In Sect. 12, we study how our proposed form of geometric Langlands conjecture

interacts with the geometric Satake equivalence.
In Sect. 13, we study the functors of Eisenstein series on both the automorphic and

the Galois side of the correspondence, and prove a consistency result (Theorem 13.3.6)
with Conjecture 1.1.6.

1.4.4. In Appendix A, we list several facts pertaining to the notion of action of an
algebraic group on a category, used in several places in the main body of the paper.
These facts are fully documented in [31].

In Appendix B, we discuss the formation of mapping spaces in derived algebraic
geometry, and how it behaves under deformation theory.

In Appendix C, we prove a version of the Thomason-Trobaugh theorem for cate-
gories defined by singular support.

In Appendix D, we prove a certain finite generation result for Exts between coherent
sheaves on a quasi-smooth DG scheme.

In Appendix E, we make a brief review of the theory of E2-algebras.
In Appendix F, we collect some facts concerning the E2-algebra of Hochschild

cochains on an affine DG scheme, and its generalization that has to do with groupoids.
In Appendix G, we study the connection between the E2-algebra of Hochschild

cochains and Lie algebras, and its generalization to the case of groupoids.
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In Appendix H, we review the relation of the theory of singular support developed
in this paper with several other approaches.

1.5 Conventions

1.5.1. Throughout the text, we work with a ground field k, assumed algebraically
closed and of characteristic 0.

1.5.2 ∞-categories and DG categories Our conventions follow completely those
adopted in the paper [7], and we refer the reader to Sect. 1, where the latter are
explained.

In particular:

(i) When we say “category” by default, we mean “(∞, 1)-category.”
(ii) For a category C and objects c1, c2 ∈ C, we will denote by MapsC(c1, c2) the

∞-groupoid of maps between them. We will denote by HomC(c1, c2) the set
π0(MapsC(c1, c2)), i.e., Hom in the ordinary category Ho(C).

(iii) All DG categories are assumed to be pretriangulated and, unless explicitly stated
otherwise, cocomplete (that is, they contain arbitrary direct sums). All functors
between DG categories are assumed to be exact and continuous (that is, commut-
ing with arbitrary direct sums, or equivalently, with all colimits). In particular,
all subcategories are by default assumed to be closed under arbitrary direct sums.
Note that our terminology for functors follows [20] in that a colimit-preserving
functor is called continuous, rather than co-continuous.

(iv) For a DG category C equipped with a t-structure, we will denote by C≤0

(resp. C≥0) the corresponding subcategories of connective (resp. coconnective)
objects. We let C♥ denote the heart of the t-structure. We also let C+ (resp. C−)
denote the subcategory of eventually coconnective (resp. connective) objects.

(v) We let Vect denote the DG category of complexes of vector spaces; thus, the
usual category of k-vector spaces is denoted by Vect♥. The category of ∞-
groupoids is denoted by ∞-Grpd.

(vi) If C is a DG category, let MapsC(c1, c2) denote the corresponding object
of Vect. Sometimes, we view MapsC(c1, c2) as a spectrum. In particular,
MapsC(c1, c2) is recovered as the 0-th space of MapsC(c1, c2). We can also
view

MapsC(c1, c2) � τ≤0(MapsC(c1, c2)) ∈ Vect≤0,

where Vect≤0 maps to ∞-Grpd via the Dold-Kan correspondence.
(vi’) We will denote by Hom•

C(c1, c2) the graded vector space H•(MapsC(c1, c2)).
By definition,

H•(MapsC(c1, c2)) = ⊕
i

HomHo(C)(c1, c2[i]).
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We sometimes use the notation Hom•(−,−) when instead of a DG category
we have just a triangulated category T. That is, we use Hom•

T(t1, t2) in place
of the more common Ext•T(t1, t2).

(vii) Let C′ ⊂ C be a full subcategory of the DG category C (Recall that C is assumed
to be cocomplete, and C′ is assumed to be closed under direct sums.). Suppose
that the inclusion C′ → C admits a left adjoint, which is automatically exact
and continuous. We call this adjoint the localization functor.
In this case, we let C′′ := ⊥(C′) be the left orthogonal complement of C′. The
inclusion C′′ → C admits a right adjoint, which is easily seen to be continuous
(see Lemma 3.1.5, which contains the version of this claim for triangulated
categories). We call the right adjoint functor C → C′′ the colocalization functor.
The resulting diagram

C′′ � C� C′

is a short exact sequence of DG categories.
(viii) For a monoidal DG category C, we use the terms “a DG category with an action

of C” and “a DG category tensored over C” interchangeably (see [20, A.1.4]
for definition).

(ix) For a (DG) associative algebra A, we denote by A-mod the corresponding DG
category of A-modules.

1.5.3 DG schemes and Artin stacks Conventions and notation regarding DG schemes
and DG Artin stacks (and, more generally, prestacks) follow [28]. In particular, Schaff ,
DGSchaff , Sch, DGSch, and PreStk stand for the categories of classical affine schemes,
affine DG schemes, classical schemes, DG schemes, and (DG) prestacks, respectively.
A short review of the conventions can be found also in [6, Sect. 0.6.4-0.6.5].

We denote pt := Spec(k).
By default, all schemes/Artin stacks are derived. When they are classical, we will

emphasize this explicitly.
All DG schemes and DG Artin stacks in this paper will be assumed locally almost of

finite type over k (see [28, Sect. 1.3.9, 2.6.5, 3.3.1 and 4.9]), unless specified otherwise.
We denote by DGSchaft ⊂ DGSch the full subcategory of DG schemes that are locally
almost of finite type.

We will also use the following convention: We will not distinguish between the
notions of classical scheme/Artin stack and that of 0-coconnective DG scheme/Artin
stack (see [28, Sect. 4.6.3] for the latter notion).

By definition, classical schemes/Artin stacks form a full subcategory among func-
tors (Schaff)op → ∞-Grpd, while 0-coconnective DG schemes/Artin stacks form a
full subcategory among functors (DGSchaff)op → ∞-Grpd. However, the two cate-
gories are equivalent: The equivalence is given by restriction along the fully faithful
embedding (Schaff)op ⊂ (DGSchaff)op; the inverse procedure is left Kan extension,
followed by sheafification.

A more detailed discussion of the notion of n-coconnectivity can be found in [11,
Sect. 0.5].
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For a given DG scheme/Artin stack Z, we will denote by clZ the underlying classical
scheme/classical Artin stack.

1.5.4. Conventions regarding the categories QCoh(−) and IndCoh(−) on DG
schemes/Artin stacks follow those of [30] and [10], respectively. Conventions regard-
ing the category D-mod(−) follow [12].
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Part I: Preliminaries

2 Quasi-smooth DG schemes and the scheme of singularities

We remind that all DG schemes in this paper are assumed locally almost of finite type
over the ground field k, unless explicitly stated otherwise.

In this section, we will recall the notions of quasi-smooth (DG) scheme and quasi-
smooth morphism between DG schemes. To a quasi-smooth DG scheme Z , we will
attach a classical scheme Sing(Z) that “controls” the singularities of Z .

Quasi-smoothness is the “correct” DG version of being locally a complete inter-
section.

2.1 The notion of quasi-smoothness

In this subsection, we define quasi-smoothness in terms of the cotangent complex. We
will show that any quasi-smooth morphism is, locally on the source, a composition of
a morphism that can be obtained as a base change of pt → A

n , followed by a smooth
morphism.

2.1.1. Recall the notion of smoothness for a map between DG schemes:
A map Z1 → Z2 is called smooth if the DG scheme clZ2 ×

Z2

Z1 is classical, and the

resulting map

clZ2 ×
Z2

Z1 → cl Z2

is a smooth map of classical schemes.
In particular, a DG scheme is called smooth if its map to pt := Spec(k) is smooth.

We summarize the properties of smooth maps below.
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Lemma 2.1.2 (a) A DG scheme Z is smooth if and only if its cotangent complex
T ∗(Z) is a vector bundle, that is, T ∗(Z) is Zariski-locally isomorphic to On

Z .
(b) A smooth DG scheme is classical, and a smooth classical scheme is smooth as a

DG scheme (see, e.g., [11, Sect. 8.4.2 and Proposition 9.1.4] for the proof).
(c) A map f : Z1 → Z2 between DG schemes is smooth if and only if its relative

cotangent complex T ∗(Z1/Z2) is a vector bundle.

2.1.3 The definition of quasi-smoothness A DG scheme Z is called quasi-smooth2

if its cotangent complex T ∗(Z) is perfect of Tor-amplitude [−1, 0].
Equivalently, we require that, Zariski-locally on Z , the object T ∗(Z) ∈ QCoh(Z)

could be presented by a complex

O⊕m
Z → O⊕n

Z .

This is equivalent to the condition that all geometric fibers of T ∗(Z) are acyclic in
degrees below −1.

Remark 2.1.4 We should emphasize that if Z is a quasi-smooth DG scheme, the under-
lying classical scheme clZ need not be a locally complete intersection. In fact, any
classical affine scheme can be realized in this way for tautological reasons.

2.1.5. The following is a particular case of Corollary 2.1.11:

Corollary 2.1.6 A DG scheme Z is quasi-smooth if and only if it can be Zariski-locally
presented as a fiber product (in the category of DG schemes)

Z −−−−→ A
n

⏐⏐�
⏐⏐�

pt
{0}−−−−→ A

m .

For future reference, we record:

Corollary 2.1.7 Let f : Z1 → Z2 be a smooth morphism between quasi-smooth DG
schemes. Then, Zariski-locally on Z1, there exists a Cartesian diagram

Z1 −−−−→ U1

f

⏐
⏐�

⏐
⏐� fU

Z2 −−−−→ U2
⏐⏐
�

⏐⏐
�

pt −−−−→ V,

where the DG schemes U1,U2,V are smooth, and the map fU is smooth as well.

2 A.k.a. “l.c.i.”= locally complete intersection.
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Proof This easily follows from the fact that, given a smooth morphism f : Z1 → Z2
between DG schemes, and a closed embedding Z2 ↪→ U2 with U2 smooth, we can,
Zariski-locally on Z1, complete it to a Cartesian square

Z1 −−−−→ U1

f

⏐⏐�
⏐⏐� fU

Z2 −−−−→ U2

with fU smooth. ��

2.1.8 Quasi-smooth maps We say that a morphism of DG schemes f : Z1 → Z2 is
quasi-smooth if the relative cotangent complex T ∗(Z1/Z2) is perfect of Tor-amplitude
[−1, 0].

We note:

Lemma 2.1.9 A quasi-smooth morphism can be, Zariski-locally on the source, fac-
tored as a composition of a quasi-smooth closed embedding, followed by a smooth
morphism.

Proof With no restriction of generality, we can assume that both Z1 and Z2 are affine.
Decompose f : Z1 → Z2 as

Z1
f ′→ Z2 × A

n → Z2,

where the first arrow is a closed embedding.
It follows tautologically that the fact that f is quasi-smooth implies that f ′ is

quasi-smooth. ��
The following gives an explicit description of quasi-smooth closed embeddings:

Proposition 2.1.10 Let f : Z1 → Z2 be a quasi-smooth closed embedding. Then,
Zariski-locally on Z2, there exists a Cartesian diagram (in the category of DG
schemes)

Z1
f−−−−→ Z2

⏐⏐�
⏐⏐�

pt
{0}−−−−→ A

m .

Proof Note that T ∗(Z1/Z2)[−1] is the derived conormal sheaf N∗(Z1/Z2) to Z1
inside Z2. The conditions imply that N∗(Z1/Z2) is a vector bundle.

Consider the restriction

clN∗(Z1/Z2) := N∗(Z1/Z2)|clZ1
.
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This is the classical conormal sheaf to clZ1 in clZ2. Locally on Z2, we can choose
sections

{cl f1, . . . ,
cl fm} ∈ ker(OclZ2

→ f∗(OclZ1
)),

whose differentials generate clN∗(Z1/Z2). Lifting the above sections to sections
f1, . . . , fm of OZ2 , we obtain a map

Z1 → pt ×
Am

Z2.

We claim that the latter map is an isomorphism. Indeed, it is a closed embedding and
induces an isomorphism at the level of derived cotangent spaces. ��

Combining the statements of Lemma 2.1.9 and Proposition 2.1.10, we obtain:

Corollary 2.1.11 A morphism f : Z1 → Z2 is quasi-smooth if and only if, Zariski-
locally on the source, it can be included in a diagram

Z1
f ′−−−−→ Z2 × A

n pr−−−−→ Z2
⏐⏐�

⏐⏐�

pt
{0}−−−−→ A

m,

in which the square is Cartesian (in the category of DG schemes), and f ′ is a closed
embedding.

2.2 Cohomological properties of quasi-smooth maps

2.2.1. First, we note:

Corollary 2.2.2 Let f : Z1 → Z2 be quasi-smooth. Then, it is of bounded Tor
dimension, locally in the Zariski topology on Z1.

Proof Follows from Corollary 2.1.11 by base change. ��

2.2.3. Recall now the notion of eventually coconnective morphism, see [10, Def-
inition 3.5.2]. Namely, a morphism f : Z1 → Z2 between quasi-compact DG
schemes is eventually coconnective if f ∗ sends Coh(Z2) to QCoh(Z1)

+ (equivalently,
to Coh(Z1)).

We will say a morphism f is locally eventually coconnective if it is eventually
coconnective locally in the Zariski topology on the source.

Evidently, a morphism of bounded Tor-dimension is eventually coconnective.3

Hence, from Corollary 2.2.2, we obtain:

3 In fact, for maps between quasi-compact eventually coconnective schemes, the converse is also true, see
[10, Lemma 3.6.3].
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Corollary 2.2.4 A quasi-smooth morphism is locally eventually coconnective.

Corollary 2.2.5 Suppose f : Z1 → Z2 is a quasi-smooth map between DG schemes.
Then, the functor

f IndCoh,∗ : IndCoh(Z2) → IndCoh(Z1),

left adjoint to f IndCoh∗ : IndCoh(Z1) → IndCoh(Z2) is well defined.

Proof Follows from Corollary 2.2.4 by [10, Proposition 3.5.4 and Lemma 3.5.8].4 ��

2.2.6. Finally, let us recall the notion of Gorenstein morphism between DG schemes,
see [10, Definition 7.3.2]. We have:

Corollary 2.2.7 A quasi-smooth morphism f : Z1 → Z2 between DG schemes is
Gorenstein.

Proof The claim is local in the Zariski topology on Z1. By Corollary 2.1.11, locally we
can write f as a composition of a smooth morphism and a morphism which is obtained
by base change from the embedding pt → A

n . Now the statement follows from the
combination of the following facts: (i) the property of being Gorenstein survives
compositions (obvious from the definition), (ii) smooth morphisms are Gorenstein
(see [10, Corollary 7.5.2]); (iii) the map pt → A

n is Gorenstein (direct calculation);
and (iv) the base change of a Gorenstein morphism is Gorenstein (see [10, Sect.
7.5.4]). ��

As a particular case, we have:

Corollary 2.2.8 A quasi-smooth DG scheme is Gorenstein (that is, its dualizing com-
plex ωZ ∈ IndCohZ is a cohomologically shifted line bundle).

Remark 2.2.9 If Z is a DG scheme and n ∈ Z is such that ωZ [−n] is a line bundle,
one can call n the “virtual dimension of Z .”

2.3 The scheme of singularities

In this subsection, we will introduce one of the main characters of this paper. Namely,
if Z is a quasi-smooth DG scheme, we will attach to it a classical scheme Sing(Z)

that measures how far Z is from being smooth.

2.3.1. Let Z be a DG scheme such that T ∗(Z) ∈ QCoh(Z) is perfect (as is the case
for quasi-smooth DG schemes). We define the tangent complex T (Z) ∈ QCoh(Z)

to be the dual of T ∗(Z). Since T ∗(Z) is perfect, so is T (Z), and the dual of T (Z)

identifies with T ∗(Z).

4 Technically, the corresponding assertions in [10] are made under the assumption that Z1 and Z2 be
quasi-compact. However, this restriction is immaterial because the question of existence of f IndCoh,∗ is
Zariski-local on Z1.
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Remark 2.3.2 Of course, the tangent complex can be defined for a general DG scheme
Z locally almost of finite type. However, to avoid losing information, one has to use
Serre’s duality instead of the “naive” dual. Thus, we obtain a variant of the tangent
complex that belongs to the category IndCoh(Z). This will be addressed in more detail
in [13].

2.3.3. Let Z be quasi-smooth. Note that in this case, T (Z) is perfect of Tor-amplitude
[0, 1]. In particular, it has cohomologies only in degrees 0 and 1; moreover, H1(T (Z))

measures the degree to which Z is non-smooth.
For a quasi-smooth DG scheme Z , we define the classical scheme Sing(Z) which

we will refer to as “the scheme of singularities of Z” as

cl(SpecZ

(
SymOZ

(T (Z)[1]))) .

Note that since we are passing to the underlying classical scheme, the above is the
same as

SpecclZ

(
SymOclZ

(
H1(T (Z))

))
,

where H1(T (Z)) is considered as a coherent sheaf on clZ .
The scheme Sing(Z) carries a canonical Gm-action along the fibers of the projection

Sing(Z) → clZ ; the action corresponds to the natural grading on the symmetric algebra
SymOZ

(T (Z)[1]).
2.3.4. By definition, k-points of Sing(Z) are pairs (z, ξ), where z ∈ Z(k) and
ξ ∈ H−1(T ∗z (Z)).

2.3.5. Suppose that Z is presented as a fiber product

Z
ι−−−−→ U

⏐⏐�
⏐⏐�

pt −−−−→ V,

where U and V are smooth. In this situation, we say that Z is given as a global complete
intersection.

Let V denote the tangent space to V at pt ∈ V. We have

T (Z) � Cone(ι∗(T (U)) → V ⊗ OZ )[−1].

Hence, we obtain a canonical map

V ⊗ OZ → T (Z)[1],

which gives rise to a surjection of coherent sheaves

V ⊗ OclZ → H1(T (Z)),
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and, hence, we obtain a Gm-equivariant closed embedding

Sing(Z) ↪→ cl(V ∗ × Z) ↪→ V ∗ × Z , (2.1)

where V ∗ is the scheme Spec(Sym(V )).

2.4 The singular codifferential

In this subsection, to a map between quasi-smooth DG schemes we will attach its
singular codifferential, which can be thought as the “H−1-version” of the usual cod-
ifferential, the latter being the map between classical cotangent spaces.

2.4.1. Let f : Z1 → Z2 be a map between quasi-smooth DG schemes. Define

Sing(Z2)Z1 := cl
(

Sing(Z2) ×
Z2

Z1

)
� cl

(
SpecZ1

(
SymOZ1

(
f ∗(T (Z2)[1])

)))
.

Note that f induces a morphism T (Z1) → f ∗(T (Z2)). Taking the Zariski spectra
of the corresponding symmetric algebras, we obtain a map

Sing( f ) : Sing(Z2)Z1 → Sing(Z1). (2.2)

We will refer to this map as the “singular codifferential.”

2.4.2. We have the following characterization of quasi-smooth maps between quasi-
smooth DG schemes.

Lemma 2.4.3 Let f : Z1 → Z2 be a morphism between quasi-smooth DG schemes.
Then, f is quasi-smooth if and only if the singular codifferential Sing( f ) is a closed
embedding.

Proof The relative cotangent complex T ∗(Z1/Z2) is the cone of the codifferential

f ∗(T ∗(Z2)) → T ∗(Z1).

Thus, f is quasi-smooth if and only if the induced map

(d fx )
∗ : H−1(T ∗(Z2) f (x)) → H−1(T ∗(Z1)x )

is injective for every x ∈ Z1. The latter condition is equivalent to surjectivity of the
morphism H1(T (Z1)) → H1( f ∗(T (Z2))), which is equivalent to Sing( f ) being a
closed embedding. ��
Lemma 2.4.4 Let f : Z1 → Z2 be a morphism between quasi-smooth DG schemes.
Then, f is smooth if and only if the following two conditions are satisfied:
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• The (classical) differential d fx : H0(T (Z1)x ) → H0(T (Z2) f (x)) is surjective for
all k-points x ∈ X;

• The singular codifferential Sing( f ) is an isomorphism.

Proof The argument is similar to the proof of Lemma 2.4.3; we leave it to the
reader. ��

3 Support in triangulated and DG categories

In this section, we will review the following construction. Given a triangulated category
T and a commutative graded algebra A mapping to its center, we will define full
subcategories in T corresponding to closed (resp. open) subsets of Spec(A) in the
Zariski topology.

This construction is a variant of that from [4]. Unlike [4], we do not assume that
the categories are compactly generated. Also, we use a coarser notion of support; see
Remark 3.3.5.

3.1 Localization with respect to homogeneous elements

3.1.1. Let T be a cocomplete triangulated category. Let A be a commutative algebra,
graded by even integers, and equipped with a homomorphism to the graded center of
T. That is, for every t ∈ T, we have a homomorphism of graded algebras

A →
⊕

n

HomT(t, t[2n]), (3.1)

and for every φ : t′ → t′′[m], the diagram

A −−−−→ ⊕

n≥0
HomT(t′, t′[2n])

⏐⏐�
⏐⏐�φ◦−

⊕

n≥0
HomT(t′′, t′′[2n]) −◦φ−−−−→ ⊕

n≥0
HomT(t′, t′′[2n + m])

commutes. In this situation, we say that A acts on the triangulated category T.

3.1.2. Let a ∈ A be a homogeneous element. We let Ya ⊂ Spec(A) be the conical
(i.e., Gm-invariant) Zariski-closed subset of Spec(A) cut out by a. Here, Spec(A) is
the Zariski spectrum of A (where A is viewed as a plain commutative algebra).

We define the full subcategory TSpec(A)−Ya ⊂ T to consist of those objects t ∈ T
for which the map

a : t → t[2k]

is an isomorphism, where 2k = deg(a).
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Clearly, the subcategory TSpec(A)−Ya is thick (i.e., triangulated and closed under
direct summands) and closed under taking arbitrary direct sums.

The inclusion T ←↩ TSpec(A)−Ya admits a left adjoint, explicitly given by

t �→ hocolim
(

t
a→ t[2k] a→ . . .

)
. (3.2)

We denote the resulting endofunctor

T → TSpec(A)−Ya → T

by Loca .

Remark 3.1.3 Although taking a homotopy colimit in a triangulated category is an
operation that is defined only up to a non-canonical isomorphism, the expression in
(3.2) is canonical by virtue of being a left adjoint.

3.1.4. Recall that a full thick subcategory T′ ⊂ T is said to be left admissible if the
inclusion T′ ↪→ T admits a left adjoint. If this is the case, we let T′′ := ⊥(T′) be its
left orthogonal; the inclusion T′′ ↪→ T admits a right adjoint. We say that the resulting
diagram

T′′ � T� T′

is a short exact sequence of triangulated categories if T′ is closed under direct sums.
Note that T′′, being a left orthogonal, is automatically closed under direct sums.

Lemma 3.1.5 Let

T′′
F ′′
�
G ′′

T
F ′
�
G ′

T′

be a short exact sequence of categories. Then, all four functors F ′, F ′′, G ′, and G ′′ are
triangulated (preserve exact triangles and shifts) and continuous (preserve arbitrary
direct sums).

Proof The inclusion functors F ′′, G ′ are triangulated and continuous for tautological
reasons. The functor F ′ is continuous because it is a left adjoint; it is triangulated
because its right adjoint G ′ is triangulated.

We now see that the composition G ′ ◦ F ′ is continuous. Therefore, the composition
F ′′◦G ′′ is continuous as well, being the cone of the adjunction map between the identity
functor and G ′ ◦ F ′. This implies that G ′′ is continuous. Finally, G ′′ is triangulated
because it is the right adjoint of a triangulated functor. ��

3.1.6. Let
TYa := ⊥(TSpec(A)−Ya ) ⊂ T

be the left orthogonal of TSpec(A)−Ya . We obtain an exact sequence of triangulated
categories

TYa � T� TSpec(A)−Ya .
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Denote the composition

T → TYa → T

by co-Loca .

3.1.7. Suppose T1 and T2 are two cocomplete triangulated categories equipped
with actions of A. Let F : T1 → T2 be a continuous triangulated functor between
triangulated categories, compatible with the A-actions (in the obvious sense). It is
clear that it sends (T1)Spec(A)−Ya to (T2)Spec(A)−Ya .

In addition, since F is continuous and triangulated, it preserves homotopy colimits.
Thus, if t1 ∈ T1 satisfies Loca(t1) = 0, then Loca(F(t1)) = 0. Hence, the functor F
sends (T1)Ya to (T2)Ya .

This formally implies that the diagram

(T1)Ya
��

F
��

T1 ����

F
��

(T1)Spec(A)−Ya��

F
��

(T2)Ya
�� T2 ���� (T1)Spec(A)−Ya��

is commutative.

3.2 Zariski localization

In this subsection, we will show how localization with respect to individual homoge-
neous elements can be organized into localization with respect to the Zariski topology
on Spec(A). This will not involve much beyond the usual constructions in commutative
algebra.

3.2.1. Let a1, a2 ∈ A be two homogeneous elements.

Lemma 3.2.2 The functor Loca2 preserves both TYa1
and TSpec(A)−Ya1

Proof Follows from Sect. 3.1.7 applied to the tautological embeddings TYa1
↪→ T

and TSpec(A)−Ya1
↪→ T for the action of a2. ��

Remark 3.2.3 Note that Lemma 3.2.2 did not use the fact that the actions of a1 and
a2 commute.

3.2.4. From Lemma 3.2.2, we obtain that the short exact sequences

TYa1
� T� TSpec(A)−Ya1

and TYa2
� T� TSpec(A)−Ya2
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are compatible in the sense of [5], Sect. 1.3. Thus, we obtain a commutative diagram
in which every row and every column is a short exact sequence:

TYa1
∩ TYa2

��

��

TYa1
����

��

TYa1
∩ TSpec(A)−Ya2��

��
TYa2

��

��

��

T ��

��

��

�� TSpec(A)−Ya2

��

��

��

TSpec(A)−Ya1
∩ TYa2

��

��

TSpec(A)−Ya1
��

��

�� TSpec(A)−Ya1
∩ TSpec(A)−Ya2

.

��

��
(3.3)

In particular, the functors Loca1 , Loca2 , co-Loca1 and co-Loca2 pairwise commute.

3.2.5. Note that the fact that a1 and a2 commute implies that

TSpec(A)−Ya1
∩ TSpec(A)−Ya2

= TSpec(A)−Ya1·a2
.

Our next goal is to prove the following:

Proposition 3.2.6 If a ∈ A is a homogeneous element contained in the radical of the
ideal generated by a1, . . . , an, then

TYa1
∩ · · · ∩ TYan

⊂ TYa .

Prior to giving the proof, we will need the following more explicit description of
the category TYa .

3.2.7. We start with a remark about A-modules, valid for an arbitrary commutative
graded ring A.

Consider the (DG) category of graded A-modules, i.e., (A-mod)Gm . Fix a homo-
geneous element a ∈ A. We identify the DG category of graded modules over the
localization, i.e., (Aa-mod)Gm , with a full subcategory of (A-mod)Gm .

Lemma 3.2.8 For M ∈ (A-mod)Gm , the following conditions are equivalent:

(a) HomA(Aa( j), M[i]) = 0, ∀i, j ∈ Z. Here, Aa( j) refers to Aa with grading
shifted by j .

(b) For any N ∈ (Aa-mod)Gm , HomA(N , M) = 0.
(c) The map

∞∏

i=0

M →
∞∏

i=0

M : (m0, m1, . . . ) �→ (m0 − a(m1), m1 − a(m2), . . . )

is an isomorphism. Here,
∏

stands for the product in the category of graded
A-modules.



30 D. Arinkin, D. Gaitsgory

(d) The homotopy limit

holim
(

M
a← M

a← . . .
)

vanishes.

Proof Since the objects Aa( j) generate (Aa-mod)Gm , (a) and (b) are equivalent. More-
over, the space HomA(Aa( j), M[i]) identifies with the j-th graded component of the
i-th cohomology of the cone of the map from (c); therefore, (a) and (c) are equivalent.
Finally, (c) and (d) are equivalent by definition. ��

3.2.9. Let us denote the full subcategory of (A-mod)Gm , satisfying the equivalent
conditions of Lemma 3.2.8 by

(A-mod)
Gm〈a〉 ⊂ (A-mod)Gm .

By condition (b), this subcategory is the right orthogonal of (Aa-mod)Gm . Note that
(A-mod)

Gm〈a〉 is a thick subcategory that is closed under products, but not coproducts.

Remark 3.2.10 One should think of (A-mod)
Gm〈a〉 as the category of a-adically complete

A-modules.

We now return to the setting of Sect. 3.1.1.

Lemma 3.2.11 For an object t ∈ T, the following conditions are equivalent:

(a) t ∈ TYa .

(b) For any t′ ∈ T, the graded A-module Hom•
T(t, t′) belongs to (A-mod)

Gm〈a〉 .

Proof Indeed, using Lemma 3.2.8(c), we see that (b) is equivalent to

Hom•
T(Loca(t), t′) = 0.

��

3.2.12. We are now ready to prove Proposition 3.2.6:

Proof By Lemma 3.2.11, it suffices to show that

(A-mod)
Gm〈a1〉 ∩ · · · ∩ (A-mod)

Gm〈an〉 ⊂ (A-mod)
Gm〈a〉 .

Using Lemma 3.2.8(b), we see that it is enough to prove that (Aa-mod)Gm is contained
in the full subcategory of (A-mod)Gm generated by the subcategories (Aai -mod)Gm

for i = 1, . . . , n. But this is obvious from the Čech resolution (In fact, the latter
subcategory identifies with the category of Gm-equivariant modules on the scheme
Spec(A)−⋂

i Yai .). ��
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3.3 The definition of support

In this subsection, we will finally define the support of an object, and study how
this notion behaves under functors between triangulated categories and morphisms
between algebras.

3.3.1. Let Y be a conical (i.e., Gm-invariant) Zariski-closed subset of Spec(A).
We define the full subcategory

TY := ∩
a

TYa ,

where the intersection is taken over the set of homogeneous elements of a ∈ A that
vanish on Y .

Suppose Y1, Y2 ⊂ Spec(A) are two closed conical subsets. By Proposition 3.2.6,

TY1∩Y2 = TY1 ∩ TY2 . (3.4)

3.3.2. We give the following definitions:

Definition 3.3.3 Given a conical Zariski-closed subset Y ⊂ Spec(A) and t ∈ T, we
say that

suppA(t) ⊂ Y

if t ∈ TY .

Definition 3.3.4 Given t ∈ T, we define suppA(t) to be the minimal conical Zariski-
closed subset Y ⊂ Spec(A) such that t ∈ TY .

Remark 3.3.5 The definition of support given in Definition 3.3.3 differs from the one
in [4]. When T is compactly generated, so that the definition of [4] applies, what we
call “support” is the Zariski closure of the support from [4].

3.3.6. It is clear that

suppA(t) = ∩
a

Ya,

where the intersection is taken over the set of homogeneous elements a such that
t ∈ TYa .

Lemma 3.3.7 Let Y ⊂ Spec(A)be a conical Zariski-closed subset whose complement
Spec(A)−Y is quasi-compact (If A is Noetherian, this condition is automatic.). Then,
the embedding TY ↪→ T admits a continuous right adjoint.

Proof By the assumption, there exists a finite collection of homogeneous elements
a1, . . . , an ∈ A such that

Y = Ya1 ∩ · · · ∩ Yan . (3.5)
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By Proposition 3.2.6, we then have:

TY = TYa1
∩ · · · ∩ TYan

.

Iterating the diagram (3.3), we see that the embedding

TYa1
∩ · · · ∩ TYan

↪→ T

admits a continuous right adjoint such that the composed functor

T → TYa1
∩ · · · ∩ TYan

↪→ T

is isomorphic to the composition

co-Loca1 ◦ · · · ◦ co-Locan .

��

3.3.8. Let Y ⊂ Spec(A) be a conical Zariski-closed subset whose complement is
quasi-compact. From Lemma 3.3.7, we obtain a short exact sequence of categories

TY � T� TSpec(A)−Y ,

where TSpec(A)−Y is the right orthogonal to TY . We also see that TSpec(A)−Y is gen-
erated by categories TSpec(A)−Ya , where a ∈ A runs over homogeneous elements
such that Ya ⊃ Y (In fact, it suffices to consider a = ai for a finite collection of
homogeneous elements a1, . . . , an ∈ A satisfying (3.5).).

Corollary 3.3.9 Suppose Y1, Y2 ⊂ Spec(A) are conical Zariski-closed subsets whose
complements are quasi-compact. Then, the category TY1∪Y2 is generated by TY1 and
TY2 .

Proof Similar to (3.3), we have a diagram

TY1 ∩ TY2
��

��

TY1
����

��

TY1 ∩ TSpec(A)−Y2��

��
TY2

��

��

��

T ��

��

��

�� TSpec(A)−Y2

��

��

��

TSpec(A)−Y1 ∩ TYa2
��

��

TSpec(A)−Y1
��

��

�� TSpec(A)−Y1 ∩ TSpec(A)−Y2

��

��

(3.6)

with exact rows and columns. In order to prove the corollary, it suffices to check that

TSpec(A)−Y1 ∩ TSpec(A)−Y2 = TSpec(A)−Y1∪Y2 .
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Clearly, the right-hand side is contained in the left-hand side. On the other hand,

TSpec(A)−Y1 ∩ TSpec(A)−Y2 =
(
TSpec(A)−Y1

)
Spec(A)−Y2

is generated by the essential images

Loca1·a2(T) = Loca2 ◦Loca1(T),

where a1, a2 ∈ A run over homogeneous elements such that Y1 ⊂ Ya1 and Y2 ⊂ Ya2 .
This proves the converse inclusion. ��

3.3.10. Let F : T1 → T2 be a continuous triangulated functor compatible with the
actions of A. Let Y ⊂ Spec(A) be a conical Zariski-closed subset whose complement
is quasi-compact. It is clear from Sect. 3.1.7 that F induces a commutative diagram
of functors:

(T1)Y ��

F
��

T1 ����

F
��

(T1)Spec(A)−Y��

F
��

(T2)Y �� T2 ���� (T2)Spec(A)−Y .��

Thus, for any t ∈ T1, we have suppA(t) ⊃ suppA(F(t)). If we assume that F is
conservative, then suppA(t) = suppA(F(t)).

In particular if T′ ⊂ T is a full triangulated subcategory closed under direct sums,
then

T′Y = TY ∩ T′ and T′Spec(A)−Y = TSpec(A)−Y ∩ T′

as subcategories of T.

3.3.11. The notion of support behaves functorially under homomorphisms of alge-
bras. Namely, let φ : A′ → A be a homomorphism of evenly graded algebras. Let 

denote the resulting map Spec(A) → Spec(A′). For T as above, the algebra A′ maps
to the graded center of T by composing with φ.

We have:

Lemma 3.3.12 For t ∈ T and Y ′ ⊂ Spec(A′) and Y := −1(Y ′),

suppA′(t) ⊂ Y ′ ⇔ suppA(t) ⊂ Y.

Equivalently for t ∈ T,

suppA′(t) = (suppA(t)).
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3.4 The compactly generated case

In this subsection, we will show that if T is compactly generated, we can measure
supports of objects more explicitly.

3.4.1. Assume that T is compactly generated.

Lemma 3.4.2 Let Y ⊂ Spec(A)be a conical Zariski-closed subset whose complement
Spec(A)− Y is quasi-compact. Then, the category TY is compactly generated.

Proof By induction and (3.3), we can assume that Y is cut out by one homogeneous
element a. It is easy to see that the objects

Cone(t
a−→ t), t ∈ Tc

generate TYa . Indeed, the right orthogonal to the class of these objects coincides with
TSpec(A)−Ya . ��

3.4.3. One can use compact objects to rewrite the definition of support:

Lemma 3.4.4 Let Y be an arbitrary conical Zariski-closed subset of Spec(A).

(a) For t ∈ T, its support is contained in Y if and only if for a set of compact generators
tα ∈ T, the support of the A-module

Hom•
T(tα, t)

is contained in Y for all α (cf. [4, Corollary 5.3].)
(b) If t is compact, its support is contained in Y if and only if the support of the

A-module Hom•
T(t, t) is contained in Y .

(c) If t is compact, and a ∈ A is a homogeneous element that vanishes on suppA(t),

then there exists an integer i such that t
ai→ t[2k · i] vanishes. Here, 2k = deg(a).

Proof Let a be a homogeneous element of A of degree 2k. Suppose that a vanishes
on Y . The fact that supp(t) ⊂ Ya is equivalent to the colimit

t
a→ t[2k] a→ . . .

being zero, which can be tested by mapping the generators tα[m], m ∈ Z into this
colimit. Since the tα’s are compact, the above Hom is isomorphic to the colimit

HomT(tα, t[−m]) a→ HomT(tα, t[2k − m]) a→ . . . ,

taken in the category Vect♥. The vanishing of the latter is equivalent to

Hom•
T(tα, t)
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being supported over Y as an A-module, which is the assertion of point (a) of the
lemma.

For point (b), the “only if” direction follows from point (a). The “if” direction holds
tautologically for any t (with no compactness hypothesis).

Point (c) follows from point (b): The unit element in HomT(t, t) is annihilated by
some power of a. ��

3.5 Support in DG categories

From now on, we will assume that T is the homotopy category of a DG category C,
equipped with an action of an E2-algebra A (see Sect. E.3.2, where the notion of action
of an E2-algebra on a DG category is discussed).

We will show that the notion of support in C can be expressed in terms of the
universal situation, namely for C = A-mod. In addition, we will study the behavior
of support under tensor products of the C’s.

3.5.1. Set
A :=

⊕

n

H2n(A).

Since A has an E2-structure, the algebra A is commutative. The action of A on C gives
rise to a homomorphism from A to the graded center of T.

3.5.2. For a conical Zariski-closed subset Y ⊂ Spec(A), we let

CY ⊂ C

be the full DG subcategory of C defined as the preimage of TY ⊂ T.

3.5.3. In particular, we can consider C = A-mod. It is clear that the resulting
subcategory

A-modY ⊂ A-mod

is a (two-sided) monoidal ideal (In fact, any full cocomplete subcategory of A-mod is
a monoidal ideal, since A-mod is generated by A, which is the unit object.).

3.5.4. The following assertion will play a crucial role:

Proposition 3.5.5 Let Y be such that its complement is quasi-compact. Then for any
DG category C equipped with an action of A, we have

CY = A-modY ⊗
A-mod

C

as full subcategories of

C � A-mod ⊗
A-mod

C.
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Proof Note that if
C1 � C2 � C3

is a short exact sequence of right modules over a DG monoidal category O, and C′ is
a left module, then

C1 ⊗
O

C′ � C2 ⊗
O

C′ � C3 ⊗
O

C′

is a short exact sequence of DG categories.
This observation together with (3.3) for C and A-mod reduces the proposition to the

case when Y = Ya for some homogeneous element a ∈ A. In this case, it is sufficient
to show that

CSpec(A)−Ya and A-modSpec(A)−Ya ⊗
A-mod

C

coincide as subcategories of C.
First, let us show the inclusion⊃, i.e., we have to show that the element a acts as an

isomorphism on objects from A-modSpec(A)−Ya ⊗
A-mod

C. This property is enough to

establish on the generators, which we can take to be of the form M⊗ c, where c ∈ C
and M ∈ A-modSpec(A)−Ya . The action of a on such an object equals

aM⊗ idc,

and the assertion follows from the fact that a is an isomorphism on M.
In particular, we obtain a natural transformation of endofunctors

Loca,C → Loca,A-mod⊗ IdC,

viewed as acting on

C � A-mod ⊗
A-mod

C.

It suffices to show that this natural transformation is an isomorphism. The latter follows
immediately from (3.2). ��

3.5.6. Suppose now we have two E2-algebras Ai acting on DG categories Ci , respec-
tively (i = 1, 2). Let Yi ∈ Spec(Ai ) be conical Zariski-closed subsets whose comple-
ments are quasi-compact.

Set C := C1 ⊗C2, A = A1 ⊗A2. We then have a natural graded homomorphism

φ : A1 ⊗ A2 → A,

where

Ai :=
⊕

n

H2n(Ai ) (i = 1, 2).
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It induces a map

Spec(A) → Spec(A1)× Spec(A2);

let Y ⊂ Spec(A) be the preimage of Y1 × Y2 ⊂ Spec(A1)× Spec(A2).
As in Proposition 3.5.5, one shows:

Proposition 3.5.7 The subcategories

(C1)Y1 ⊗ (C2)Y2 and CY

of C1 ⊗ C2 = C coincide.

3.5.8. Let Ci , Ai , Ai (i = 1, 2) be as in Sect. 3.5.6. Suppose that C1 is dualizable.
Let F : C1 → C2 be a continuous functor. Such functors are in a bijection with
objects

c′ ∈ C′ := C∨1 ⊗ C2.

Note that C∨1 is acted on by A
op
1 (see Sect. E.3.3).

We can regard C∨1 ⊗ C2 as acted on by the E2-algebra A′ := A
op
1 ⊗A2. Let A be

the corresponding graded algebra; we have a natural morphism φ : A1 ⊗ A2 → A
(Note that the graded algebra corresponding to A

op
1 coincides with A1.). Let p1, p2

be the two components of the corresponding map

(p1, p2) : Spec(A) → Spec(A1)× Spec(A2).

We have:

Proposition 3.5.9 Let Yi ⊂ Spec(Ai ) (for i = 1, 2) be conical Zariski-closed subsets
such that the complement of Y1 is quasi-compact. Let c′ be the object of C∨1 ⊗ C2
corresponding to F. Suppose that

p2(suppA(c′) ∩ p−1
1 (Y1)) ⊂ Y2.

Then, the functor F maps (C1)Y1 to (C2)Y2 .

Proof Set Y ′1 = p−1
1 (Y1) ⊂ Spec(A). It is a conical Zariski-closed subset whose com-

plement is quasi-compact. Consider the corresponding exact sequence of categories

C′Y ′1 � C′ � C′Spec(A)−Y ′1
.

It is clear that the objects of C′Spec(A)−Y ′1
correspond to functors C1 → C2 that vanish

on (C1)Y1 . Therefore, we may replace c′ by its colocalization and assume that c′ ∈ C′Y ′1 .

We then have p2(suppA(c′)) ⊂ Y2. For such c′, it is clear that the essential image of
the corresponding functor C1 → C2 is contained in (C2)Y2 . ��
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3.6 Grading shift for E2-algebras

In this subsection, we will show how to relate the notion of support developed in
the previous subsections to the more algebro-geometric notion of support over an
algebraic stack.

This subsection may be skipped on the first reading and returned to when necessary.

3.6.1. Suppose that the E2-algebra A carries an action of Gm such that the corre-
sponding E2-algebra Ashift (see Sect. A.2.2) is classical.

In particular, Ashift has a canonical E∞ (i.e., commutative algebra) structure, which
restricts to the initial E2-structure. Hence, the same is true for A.

We thus obtain a canonical isomorphism

Ashift � A

as classical commutative algebras, which is compatible with the grading after scaling
the grading on the left-hand side by 2.

3.6.2. Consider the stack SA = Spec(Ashift/Gm). Given a conical Zariski-closed
subset

Y ⊂ Spec(A),

we regard Y/Gm as a closed substack in SA.
Recall that by Sect. A.2.2, we have a canonical equivalence of DG categories

(A-mod)Gm � QCoh(SA).

This equivalence naturally extends to an equivalence of (symmetric) monoidal
categories.

Proposition 3.6.3 We have

A-modY = A-mod ⊗
QCoh(SA)

QCoh(SA)Y/Gm

as full subcategories of

A-mod = A-mod ⊗
(A-mod)Gm

(A-mod)Gm � A-mod ⊗
QCoh(SA)

QCoh(SA).

Proof Note first that an action of Gm on an associative DG algebra A defines a bi-
grading on A. Suppose that A is an E2-algebra, and let Y ⊂ Spec(A) be a Zariski-
closed subset conical with respect to the cohomological grading. Then, the corre-
sponding subcategory A-modY is Gm-invariant (see Sect. A.1.2) if and only if Y is
conical with respect to both gradings.
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Note, however, that the assumptions of the proposition imply that the two gradings
on A coincide. Hence, for any conical Y , the subcategory A-modY is Gm-invariant.

By Sect. A.1.4, it suffices to show that

(A-modY )Gm and QCoh(SA)Y/Gm

coincide as subcategories of (A-mod)Gm � QCoh(SA).
Note that by (A.1), the category (A-modY )Gm identifies with the full subcategory

of (A-mod)Gm consisting of modules supported on Y as plain A-modules. This makes
the required assertion manifest. ��

3.6.4. Let C be a DG category acted on by A, where A is as in Sect. 3.6.1. In
particular, we obtain that C is a module category over QCoh(SA). Let Y ⊂ Spec(A)

be a conical Zariski-closed subset such that its complement is quasi-compact.
Combining Propositions 3.5.5 and 3.6.3, we obtain:

Corollary 3.6.5 CY � C ⊗
QCoh(SA)

QCoh(SA)Y/Gm as subcategories of C.

In particular, for c ∈ C we can express suppA(c) in terms of the more familiar
notion of support of an object in a category tensored over QCoh of an algebraic stack.

3.6.6. Suppose that the algebra A is Noetherian. Let us show that in this case, we
can use fibers to study supports of objects.

Let is : Spec(k′) → Spec(A) be a geometric point of Spec(A). We have natural
monoidal functors

QCoh(SA) → A-mod → Vectk′ ,

where Vectk′ is the category of vector spaces over k′. This defines an action of the
monoidal category QCoh(SA) on Vectk′ .

Given c ∈ C, we define i∗s (c) to be the object

c ⊗ k′ ∈ C ⊗
QCoh(SA)

Vectk′ .

By Noetherian induction, one proves the following.

Lemma 3.6.7 If i∗s (c) = 0 for all geometric points s of A, then c = 0.

As a consequence, we obtain:

Corollary 3.6.8 Let Y ⊂ Spec(A) be a conical Zariski-closed subset. Fix c ∈ C.
Then,

(a) c ∈ CY if and only if i∗s (c) = 0 for all s /∈ Y ;
(b) c ∈ CSpec(A)−Y if and only if i∗s (c) = 0 for all s ∈ Y ;
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(c) suppA(c) is the Zariski closure of the set

{s ∈ Spec(A) : i∗s (c) �= 0}.

Proof Recall that we have an exact sequence of categories

CY � C� CSpec(A)−Y , (3.7)

which identifies with

C ⊗
QCoh(SA)

QCoh(SA)Y/Gm � C ⊗
QCoh(SA)

QCoh(SA)

� C ⊗
QCoh(SA)

QCoh(SA− Y/Gm).

The “only if” direction in part (a) follows because

QCoh(SA)Y/Gm ⊗
QCoh(SA)

Vectk′ = 0

for any point is : Spec(k′) → Spec(A) not contained in Y . Similarly, the “only if”
direction in part (b) follows because

QCoh(SA− Y/Gm) ⊗
QCoh(SA)

Vectk′ = 0

for any point is : Spec(k′) → Spec(A) contained in Y . Now the “if” directions in
both parts follow from the sequence (3.7) and Lemma 3.6.7. Part (c) follows from
part (a). ��

Part II: The theory of singular support

4 Singular support of ind-coherent sheaves

For the rest of the paper, we will be working with DG schemes locally almost of finite
type over a ground field k, which is assumed to have characteristic 0.

In this section, we introduce the notion of singular support for objects of IndCoh(Z),
where Z is a quasi-smooth DG scheme, and study the basic properties of the corre-
sponding categories IndCohY (Z), where Y ⊂ Sing(Z) is a conical Zariski-closed
subset.

4.1 The definition of singular support

Throughout this section, Z will be a quasi-smooth DG scheme. It will be assumed
affine until Sect. 4.5.11.
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4.1.1. Consider the E2-algebra of Hochschild cochains HC(Z); see Sect. F.1 where
the definition of HC(Z) is recalled (and see also Sect. E for some background material
on E2-algebras).

As is explained in Sect. F.1, the E2-algebra HC(Z) identifies canonically with the
E2-algebra of Hochschild cochains HC(Z)IndCoh of the category IndCoh(Z).

Let HH•(Z) denote the classical graded associative algebra
⊕

n

Hn (HC(Z))) . (4.1)

Let HHeven(Z) denote the even part of HH•(Z), viewed as a classical graded asso-
ciative algebra. As was mentioned in Sect. 3.5.1, the algebra HHeven(Z) is commuta-
tive, and HHeven(Z) maps to the graded center of Ho(IndCoh(Z)).

4.1.2. Since Z was assumed quasi-smooth, T ∗(Z) is perfect, and we can regard
T (Z)[−1] as a Lie algebra5 in QCoh(Z), see Corollary G.2.7. Note that from Corol-
lary G.2.7, we obtain a canonical map of commutative algebras

�(Z ,OclZ ) → HH0(Z),

and of �(Z ,OclZ )-modules

�
(

Z , H1(T (Z))
)
→ HH2(Z).

It induces a homomorphism of graded algebras

�
(
Sing(Z),OSing(Z)

) = �
(

Z , SymOclZ

(
H1(T (Z))

))
→ HHeven(Z), (4.2)

where we assign to �
(
Z , H1(T (Z))

)
degree 2.

4.1.3. We are now ready to give the main definitions of this paper:

Definition 4.1.4 The singular support of F ∈ IndCoh(Z), denoted SingSupp(F), is

supp�(Sing(Z),OSing(Z))
(F) ⊂ Sing(Z).

Definition 4.1.5 Let Y be a conical Zariski-closed subset of Sing(Z). We let

IndCohY (Z) ⊂ IndCoh(Z)

denote the full subcategory spanned by objects whose singular supports are contained
in Y .

5 For reasons of tradition, while we call Lie algebras in an arbitrary symmetric monoidal ∞-category O
“Lie algebras,” we refer to Lie algebras in Vect as “DG Lie algebras.”
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4.1.6. The following assertion (borrowed from [4, Theorem 11.3]) gives an explicit
expression for singular support:

Lemma 4.1.7 For F ∈ IndCoh(Z)c := Coh(Z), its singular support is equal to the
support of the graded �(Sing(Z),OSing(Z))-module End•Coh(Z)(F).

Proof Follows immediately from Lemma 3.4.4(b). ��
In addition, we have the following result:

Theorem 4.1.8 For two objects F1,F2 ∈ Coh(Z), the graded vector space
Hom•

Coh(Z)

(F1,F2), regarded as a module over �(Sing(Z),OSing(Z)), is finitely generated.

In particular, for F ∈ Coh(Z), the �(Sing(Z),OSing(Z))-module End•Coh(Z)(F)

appearing in Lemma 4.1.7 is finitely generated.

Remark 4.1.9 If Z is a classical scheme, the assertion of Theorem 4.1.8 is due to
Gulliksen [15]; also see references in the proof of [4, Theorem 11.3]. For completeness,
we will present a proof of Theorem 4.1.8 in Appendix D.

4.2 Basic properties

4.2.1. First, we note:

Lemma 4.2.2 The subcategory IndCohY (Z) ⊂ IndCoh(Z) is stable under the
monoidal action of QCoh(Z) on IndCoh(Z).

Proof For any module category C over QCoh(Z), any full cocomplete subcate-
gory C′ ⊂ C is stable under the action, since QCoh(Z) is generated by its unit
object, OZ . ��

4.2.3. It is easy to see that the dualizing sheaf ωZ ∈ IndCoh(Z) belongs to
IndCoh{0}(Z), where {0} ⊂ Sing(Z) denotes the zero-section.

Indeed, the construction of the isomorphism of Corollary G.2.7 shows that the
action of �(Z , T (Z)[−1]) → HC(Z) on ωZ ∈ IndCoh(Z) is trivial.

4.2.4. Recall the fully faithful functor

�Z : QCoh(Z) → IndCoh(Z)

(see [10, Proposition 1.5.3]), which is defined since Z is eventually coconnective.
Note that since Z is quasi-smooth, and hence Gorenstein (see Corollary 2.2.8), ωZ

is the image of a line bundle under �Z . Hence, by Lemma 4.2.2, the essential image
of all of QCoh(Z) under �Z is contained in IndCoh{0}(Z).

4.2.5. In Sect. 5.7, we will prove the converse inclusion:

Theorem 4.2.6 The subcategory IndCoh{0}(Z) ⊂ IndCoh(Z) coincides with the
essential image of QCoh(Z) under �Z .
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4.3 Compact generation

4.3.1. Lemma 3.4.2 (or [4, Theorem 6.4]) immediately implies the following claim.

Corollary 4.3.2 Let Z be a quasi-smooth affine DG scheme. For any conical Zariski-
closed subset Y ⊂ Sing(Z), the category IndCohY (Z) is compactly generated.

Define

CohY (Z) := IndCohY (Z) ∩ Coh(Z).

Corollary 4.3.2 can be rephrased as follows:

Corollary 4.3.3 IndCohY (Z) � Ind(CohY (Z)).

4.3.4. Let Y1 ⊂ Y2 be two conical Zariski-closed subsets.
We have a tautologically defined fully faithful functor

�
Y1,Y2
Z : IndCohY1(Z) → IndCohY2(Z)

that sends CohY1(Z) identically into CohY2(Z).
Since this functor sends compact objects to compacts, it admits a continuous right

adjoint. We denote this right adjoint by �
Y1,Y2
Z . Thus, the functor �

Y1,Y2
Z realizes

IndCohY1(Z) as a colocalization of IndCohY2(Z).
Note that the functor �

Y1,Y2
Z is (tautologically) compatible with the action of

QCoh(Z). Hence, the functor �
Y1,Y2
Z acquires a structure of being lax compatible.

However, we claim:

Lemma 4.3.5 The functor �
Y1,Y2
Z is compatible with the action of QCoh(Z), i.e., the

lax compatibility is strict.

Proof Same as that of Lemma 4.2.2. ��

4.3.6. In particular, we can take Y2 to be all of Sing(Z), in which case IndCohY2(Z)

is all of IndCoh(Z).
We will denote the resulting pair of adjoint functors

IndCohY (Z)� IndCoh(Z)

by (�
Y,all
Z , �

Y,all
Z ).

4.3.7. Similarly, for any Y that contains the zero-section, we obtain the correspond-
ing pair of adjoint functors

�Y
Z : QCoh(Z)� IndCohY (Z) : �Y

Z

with �Y
Z being fully faithful.
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By definition, the functor �Y
Z is the ind-extension of the natural embedding

QCoh(Z)c = QCoh(Z)perf ↪→ CohY (Z) ↪→ IndCohY (Z),

and �Y
Z is the ind-extension of

CohY (Z) ↪→ Coh(Z) ↪→ QCoh(Z).

Note that according to Theorem 4.2.6, the latter functors are a particular case of
(�

Y1,Y2
Z , �

Y1,Y2
Z ) for Y1 = {0} and Y2 = Y .

4.4 The t-structure

Let Y be a conical Zariski-closed subset of Sing(Z) containing the zero-section.

4.4.1. We define a t-structure on IndCohY (Z) by declaring that

F ∈ IndCohY (Z)≤0 ⇔ �Y
Z (F) ∈ QCoh(Z)≤0.

Note that for Y = Sing(Z), this t-structure coincides with the canonical t-structure
on IndCoh(Z) of [10, Sect. 1.2].

Lemma 4.4.2

F ∈ IndCohY (Z)≤0 ⇔ �
Y,all
Z (F) ∈ IndCoh(Z)≤0.

Proof Follows from the fact that

�Y
Z � �Y

Z (F) ◦�
Y,all
Z ◦�

Y,all
Z � �Z ◦�

Y,all
Z .

��
Corollary 4.4.3 The functors �

Y,all
Z and �Y

Z are t-exact.

Proof The previous lemma implies that �
Y,all
Z is right t-exact. Hence, �

Y,all
Z is left

t-exact by adjunction. The fact that �
Y,all
Z is right t-exact follows from the fact that

�Y
Z ◦�

Y,all
Z � �Z .

The functor �Y
Z is right t-exact by definition. To show that it is left t-exact, it is

enough to show that �Y
Z is right t-exact. The latter is equivalent, by definition, to the

fact that �Y
Z ◦ �Y

Z is right t-exact. However, the latter functor is isomorphic to the
identity. ��
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4.4.4. We will now prove:

Proposition 4.4.5 The functors �
Y,all
Z and �Y

Z induce equivalences

IndCoh(Z)≥0 → IndCohY (Z)≥0 → QCoh(Z)≥0.

Proof Note that the fact that the composed functor �Y
Z ◦ �

Y,all
Z � �Z induces an

equivalence

IndCoh(Z)≥0 → QCoh(Z)≥0

is [10, Proposition 1.2.4]. In particular, the functor

�
Y,all
Z : IndCoh(Z)≥0 → IndCohY (Z)≥0

is conservative.
The left adjoint to �

Y,all
Z |IndCoh(Z)≥0 is given by

F �→ τ≥0
(
�

Y,all
Z (F)

)
.

It is enough to show that this left adjoint is fully faithful, i.e., that the adjunction
map

F → �
Y,all
Z

(
τ≥0

(
�

Y,all
Z (F)

))

is an isomorphism.
Since �

Y,all
Z is t-exact, we have:

�
Y,all
Z

(
τ≥0

(
�

Y,all
Z (F)

))
� τ≥0

(
�

Y,all
Z ◦�

Y,all
Z (F)

)
.

However, since �
Y,all
Z is fully faithful, the latter expression is isomorphic to

τ≥0(F) � F, as required. ��

4.4.6. Recall that a t-structure on a triangulated category T is said to be compactly
generated if

F ∈ T>0 ⇔ HomT(F1,F) = 0, ∀F1 ∈ T≤0 ∩ Tc.

Proposition 4.4.7 The t-structure on IndCohY (Z) is compactly generated.

Proof Let F ∈ IndCohY (Z) be an object that is right orthogonal to

CohY (Z) ∩ Coh(Z)≤0.
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Let us prove that F ∈ IndCohY (Z)>0. Truncating, we may assume that F ∈
IndCohY (Z)≤0; we need to show that F = 0.

By assumption, F is right orthogonal to the essential image of QCoh(Z)perf ∩
Coh(Z)≤0 under �Y

Z . Hence, �Y
Z (F) ∈ QCoh(Z)>0. However, since F ∈

IndCohY (Z)≤0, we have also that �Y
Z (F) ∈ QCoh(Z)≤0, so �Y

Z (F) = 0.
Thus, F is right orthogonal to the essential image of all of QCoh(Z)perf under �Y

Z .
To prove that F = 0, we need to show that

HomIndCohY (Z)(F1,F) = 0

for any F1 ∈ CohY (Z). However, for any such F1, there exists F2 ∈ QCoh(Z)perf and
a map F2 → F1, such that

Cone(F2 → F1) ∈ CohY (Z) ∩ Coh(Z)≤0.

This implies the required assertion by the long exact sequence. ��

4.5 Localization with respect to Z

4.5.1. Let V
i

↪→ Z be a closed DG subscheme. Let IndCoh(Z)V be the correspond-
ing full subcategory of IndCoh(Z) (see [10, Sect. 4.1.2]), i.e., IndCoh(Z)V consists
of those objects that vanish when restricted to Z − V .

Equivalently, we can then produce IndCoh(Z)V in the framework of Sect. 3.5, using
the action of �(Z ,OZ ) on the category IndCoh(Z).

Consider the scheme

Sing(Z)V = cl(Sing(Z)×
Z

V ) ⊂ Sing(Z).

Consider the corresponding subcategory

IndCohSing(Z)V (Z) ⊂ IndCoh(Z).

The next assertion results immediately from Lemma 3.3.12:

Corollary 4.5.2 The subcategories IndCohSing(Z)V (Z) and IndCoh(Z)V of
IndCoh(Z) coincide.

4.5.3. Let Y ⊂ Sing(Z) be a conical Zariski-closed subset. Set

YV := cl(Y ×
Z

V ).

From Corollary 4.5.2 and (3.4), we obtain:
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Corollary 4.5.4 The subcategories

IndCohYV (Z) and IndCoh(Z)V ∩ IndCohY (Z)

of IndCoh(Z) coincide.

4.5.5. Let now U
j

↪→ Z be an open affine. By [10, Lemma 4.1.1], we have a pair of
adjoint functors

j IndCoh,∗ : IndCoh(Z)� IndCoh(U ) : j IndCoh∗ ,

which realize IndCoh(U ) as a localization of IndCoh(Z). By [10, Corollary 4.4.5],
we have a commutative diagram with vertical arrows being equivalences:

IndCoh(Z) ⊗
QCoh(Z)

QCoh(U )
Id⊗ j∗−−−−→ IndCoh(Z) ⊗

QCoh(Z)
QCoh(Z)

⏐⏐�
⏐⏐�

IndCoh(U )
j IndCoh∗−−−−→ IndCoh(Z).

In particular, we obtain that IndCoh(U ) can be interpreted as the full subcategory
of IndCoh(Z) corresponding to clU ⊂ clZ with respect to the action of �(Z ,OclZ ) on
IndCoh(Z) in the sense of Sect. 3.1.2.

Let Y ⊂ Sing(Z) be a conical Zariski-closed subset. Set

YU := cl(Y ×
Z

U ) ⊂ Sing(Z)U � Sing(U ).

From (3.3), we obtain:

Corollary 4.5.6 (a) The functors j IndCoh∗ and j IndCoh,∗ define an equivalence between
IndCohYU (U ) and the intersection of IndCohY (Z) with the essential image of
IndCoh(U ) under j IndCoh∗ .

(b) The functors ( j IndCoh,∗, j IndCoh∗ ) map the categories

IndCohY (Z)� IndCohYU (U )

to one another, and are mutually adjoint.
(c) We have a commutative diagram with vertical arrows being isomorphisms:

IndCohY (Z) ⊗
QCoh(Z)

QCoh(U )
Id⊗ j∗−−−−→ IndCohY (Z) ⊗

QCoh(Z)
QCoh(Z)

⏐⏐
�

⏐⏐
�

IndCohYU (U )
j IndCoh∗−−−−→ IndCohY (Z).
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Corollary 4.5.7 Let Ui be a cover of Z by open affine subsets. An object F ∈
IndCoh(Z) belongs to IndCohY (Z) if and only if F|Ui belongs to IndCohYUi

(Ui )

for every i .

Proof The “only if” direction follows immediately from Corollary 4.5.6(b). The “if”
direction follows from the Čech complex. ��

4.5.8. For U as above, let V be a complementary closed DG subscheme. By [10,
Corollary 4.1.5], we have a short exact sequence of categories

IndCoh(Z)V � IndCoh(Z)
j IndCoh,∗
� IndCoh(U ). (4.3)

It can be obtained from the short exact sequence of categories

QCoh(Z)V � QCoh(Z)
j∗
� QCoh(U ), (4.4)

by the operation

IndCoh(Z) ⊗
QCoh(Z)

−.

(Here, QCoh(Z)V ⊂ QCoh(Z) is the full subcategory consisting of objects set-
theoretically supported on V .)

Hence, we obtain:

Corollary 4.5.9 There exists a short exact sequence of DG categories

IndCohYV (Z)� IndCohY (Z)� IndCohYU (U ),

which can be obtained from the short exact sequence (4.4) by the operation

IndCohY (Z) ⊗
QCoh(Z)

−.

Corollary 4.5.10 Let Y1 ⊂ Y2 be two conical Zariski-closed subsets. Then, the func-
tors

�
Y1,Y2
Z : IndCohY1(Z)� IndCohY2(Z) : �Y1,Y2

Z

induce (mutually adjoint) functors

IndCoh(Y1)V (Z)� IndCoh(Y2)V (Z) and IndCoh(Y1)U (U )� IndCoh(Y2)U (U ).
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4.5.11. From Corollary 4.5.7, we obtain that the notion of singular support of an
object of IndCoh(Z) makes sense for any quasi-smooth DG scheme Z (not necessarily
affine).

Namely, we choose an affine cover Uα , and we set

SingSupp(F) ∩ Sing(Z)Uα := SingSupp(F|Uα ),

where we identify

Sing(Z)Uα � Sing(Uα),

and F|Uα := j IndCoh,∗
α (F), where jα : Uα ↪→ Z .

Corollary 4.5.7 implies that SingSupp(F) is well defined, an in particular, indepen-
dent of the choice of the cover.

Furthermore, to Y ⊂ Sing(Z) we can attach a full subcategory

IndCohY (Z) ⊂ IndCoh(Z),

by the requirement

F ∈ IndCohY (Z) ⇔ F|Uα ∈ IndCohYUα
(Uα), ∀α.

4.6 Behavior with respect to products

4.6.1. Recall (see [10, Proposition 4.6.2]) that if Zi , i = 1, 2 are two quasi-compact
DG schemes, the natural functor

IndCoh(Z1)⊗ IndCoh(Z2) → IndCoh(Z1 × Z2) (4.5)

is an equivalence.

Remark 4.6.2 This simple statement uses the assumption that k is perfect (recall that
we assume char(k) = 0).

4.6.3. Assume now that Zi are both quasi-smooth. It is easy to see that we have a
natural isomorphism

Sing(Z1)× Sing(Z2) � Sing(Z1 × Z2).

Let Yi ⊂ Sing(Zi ) be conical Zariski-closed subsets, and consider the correspond-
ing subset

Y1 × Y2 ⊂ Sing(Z1 × Z2).
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Lemma 4.6.4 We have:

IndCohY1(Z1)⊗ IndCohY2(Z2) = IndCohY1×Y2(Z1 × Z2)

as subcategories of IndCoh(Z1 × Z2).

Proof This follows immediately from Proposition 3.5.7. ��

4.7 Compatibility with Serre duality

4.7.1. Recall (see, e.g., [10, Sect. 9.5]) that the category Coh(Z) carries a canonical
anti-involution given by Serre duality, denoted D

Serre
Z .

Proposition 4.7.2 For any conical Zariski-closed subset Y ⊂ Sing(Z), the anti-
involution D

Serre
Z preserves the subcategory CohY (Z) ⊂ Coh(Z).

One proof is given in Sect. G.3.4. Another (in a sense more hands-on, but logically
equivalent) proof is given in Sect. 5.5.

Corollary 4.7.3 For F ∈ Coh(Z), we have

SingSupp(F) = SingSupp(DZ (F)).

4.7.4. We obtain that there exists a canonical identification

(IndCohY (Z))∨ � IndCohY (Z),

obtained by extending D
Serre
Z |CohY (Z).

Let Y1 ⊂ Y2 be two conical Zariski-closed subsets, and consider the pair of adjoint
functors

(�
Y1,Y2
Z )∨ : IndCohY1(Z)� IndCohY2(Z) : (�Y1,Y2

Z )∨,

obtained from

�
Y1,Y2
Z : IndCohY1(Z)� IndCohY2(Z) : �Y1,Y2

Z

by passing to the dual functors.

Lemma 4.7.5 We have canonical isomorphisms

(�
Y1,Y2
Z )∨ � �

Y1,Y2
Z and (�

Y1,Y2
Z )∨ � �

Y1,Y2
Z .

Proof Follows from [29], Lemma 2.3.3 using the fact that

�
Y1,Y2
Z ◦ D

Serre
Z � D

Serre
Z ◦�

Y1,Y2
Z .

��
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Remark 4.7.6 Note that if Y = {0} is the zero-section, the resulting self-duality on
IndCoh{0}(Z) � QCoh(Z) is different from the “naive” self-duality: The two differ
by the automorphism of QCoh(Z) given by tensoring with ωZ .

5 Singular support on a global complete intersection and Koszul duality

In this section, we analyze the behavior of singular support on a DG scheme Z which
is a “global complete intersection.” Recall that this means that Z is presented as a
Cartesian square

Z
ι−−−−→ U

⏐⏐�
⏐⏐�

pt −−−−→ V,

where U and V are smooth affine schemes. In this case, we will reinterpret the notion
of singular support in terms of Koszul duality.

Our basic tool will be the group DG scheme Gpt /V := pt×
V

pt.

5.1 Koszul duality

5.1.1. Consider the groupoid

Gpt /V := pt×
V

pt

over pt, that is, a group DG scheme:

pt pt .

Gpt /V

p1

����
��

��
�� p2

���
��

��
��

�

(5.1)

Let �pt denote the diagonal map

pt → pt×
V

pt = Gpt /V.

The object

(�pt)
IndCoh∗ (k) ∈ IndCoh(Gpt /V)

is the unit in the monoidal category IndCoh(Gpt /V).
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5.1.2. By Sect. F.4, the above groupoid gives rise to an E2-algebra

AGpt /V
=: HC(pt /V),

whose underlying associative DG algebra identifies canonically with

MapsIndCoh(Gpt /V)

(
(�pt)

IndCoh∗ (k), (�pt)
IndCoh∗ (k)

)
.

Remark 5.1.3 The E2-algebra that we denote here by AGpt /V
is what should be prop-

erly denoted AIndCoh
Gpt /V

. This is done for the purpose of unburdening the notation. As

was explained in Remark F.4.5, it is the IndCoh version (and not the QCoh one) that
we use in this paper.

Let V denote the tangent space to V at pt. We have:

Lemma 5.1.4 The associative DG algebra underlying HC•(pt /V) identifies canoni-
cally with Sym(V [−2]).
Proof This is a special case of Corollary G.4.6, since a groupoid over pt is canonically
a group DG scheme. ��

In particular, we see that

HH•(pt /V) :=
⊕

n

Hn (HC(pt /V))

identifies canonically with Sym(V ) as a classical graded algebra, where the elements
of V have degree 2. Geometrically,

Spec
(
HH•(pt /V)

) � V ∗.

5.1.5. Note that according to [10, Proposition 4.1.7(b)], (�pt)
IndCoh∗ (k) is a compact

generator of IndCoh(Gpt /V).
Hence, from Sect. E.2.4 we obtain a natural monoidal equivalence

HC(pt /V)op-mod → IndCoh(Gpt /V). (5.2)

We will denote the inverse functor IndCoh(Gpt /V) → HC(pt /V)op-mod by
KDpt /V, and refer to is as the Koszul duality functor. Explicitly,

KDpt /V = MapsIndCoh(Gpt /V)((�pt)
IndCoh∗ (k),−). (5.3)

The functor KDpt /V intertwines the forgetful functor HC(pt /V)-mod → Vect and

�!
pt : IndCoh(Gpt /V) → IndCoh(pt) = Vect .
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5.1.6. Recall the set-up of Sect. 3.5.3 with the E2-algebra being HC(pt /V)op.
In particular, to an object

F ∈ IndCoh(Gpt /V) � HC(pt /V)op-mod

we can associate its support, which is a conical Zariski-closed subset of V ∗. Conversely,
to a conical Zariski-closed subset Y ⊂ V ∗ we associate a full subcategory

(
IndCoh(Gpt /V)

)
Y ⊂ IndCoh(Gpt /V).

Lemma 5.1.7 The support of F ∈ IndCoh(Gpt /V) is equal to the support of the graded
Sym(V [−2])-module

Hom•((�pt)
IndCoh∗ (k),F) = H• (

KDpt /V(F)
)
.

Proof Since (�pt)
IndCoh∗ (k) is a compact generator of IndCoh(Gpt /V), this follows

from Lemma 3.4.4. ��
Remark 5.1.8 The DG scheme Gpt /V is quasi-smooth and V ∗ = Sing(Gpt /V). It is
easy to see that the support of F ∈ IndCoh(Gpt /V) is nothing but SingSupp(F) ⊂ V ∗
(see Lemma 5.3.4 for a more general statement).

5.1.9. Note that by combining Lemma 5.1.4 and (5.2), we obtain:

Corollary 5.1.10 The categories IndCoh(Gpt /V) and Sym(V [−2])-mod are canoni-
cally equivalent as plain DG categories.

Remark 5.1.11 Both sides in Corollary 5.1.10 are naturally monoidal categories. How-
ever, the equivalence of Corollary 5.1.10 does not come with a monoidal structure (cf.
Remark G.4.7). We will see in Corollary 5.4.3 that a choice of a parallelization of V

at pt upgrades the above equivalence to a monoidal one.

5.2 Functoriality of Koszul duality

The material in this section will be needed for the proof of some key properties of
singular support in Sect. 7.

However, as it will not be used for the discussion of singular support in the rest of
this section, the reader might choose to skip it on the first pass.

5.2.1. Let f = fV : V1 → V2 be a map between smooth classical schemes. Fix
a point pt → V1. Set Vi = Tpt(V) and g = (d fpt)

∗ : V ∗
2 → V ∗

1 . Now consider the
morphism of DG group schemes

fG : Gpt /V1 → Gpt /V2 .

(Note that g = Sing( fG).) The following lemma is obvious.
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Lemma 5.2.2 The following three conditions are equivalent:

(a) g is injective;
(b) f is smooth at pt;
(c) fG is quasi-smooth.

The following two conditions are also equivalent:

(a’) g is surjective;
(b’) f is unramified (and then a regular immersion) at pt.

5.2.3. The map fG induces a monoidal functor

( fG)IndCoh∗ : IndCoh(Gpt /V1) → IndCoh(Gpt /V2),

and a homomorphism of E2-algebras

fHC : HC(pt /V1) → HC(pt /V2).

It is easy to see that the corresponding homomorphism of graded algebras

HH•(pt /V1) → HH•(pt /V2)

corresponds to the homomorphism

g∗ : �(V ∗
1 ,OV ∗

1
) → �(V ∗

2 ,OV ∗
2
)

under the isomorphism

HH•(pt /Vi ) � Sym(Vi ) � �(V ∗
i ,OV ∗

i
) (i = 1, 2).

In terms of the equivalence of (5.2), the functor ( fG)IndCoh∗ corresponds to the
extension of scalars functor

HC(pt /V1)
op-mod → HC(pt /V2)

op-mod.

5.2.4. Consider now the right adjoint functor

( fG)! : IndCoh(Gpt /V2) → IndCoh(Gpt /V1),

which can also be thought of as the forgetful functor

HC(pt /V2)
op-mod → HC(pt /V1)

op-mod (5.4)

along the homomorphism fHC.
We have:
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Proposition 5.2.5 (a) Suppose the support of F2 ∈ IndCoh(Gpt /V2) equals Y2 ⊂ V ∗
2 .

Then, the support of

( fG)!(F2) ∈ IndCoh(Gpt /V1)

equals g(Y2) ⊂ V ∗
1 .

(b) Suppose the support of F1 ∈ IndCoh(Gpt /V1) equals Y1 ⊂ V ∗
1 . Then, the support

of

( fG)IndCoh∗ (F1) ∈ IndCoh(Gpt /V2)

is contained in g−1(Y1) ⊂ V ∗
2 .

(b’) The support in (b) equals all of g−1(Y1) if Y1 ⊂ g(V ∗
2 ).

(b”) The support in (b) equals all of g−1(Y1) if F1 ∈ Coh(Gpt /V1).

Remark 5.2.6 As we will see in the proof, point (b”) of the proposition is the only
non-tautological one, but it is not essential for the main results of this paper.

Proof By Lemma 5.1.4, the statement reduces the corresponding assertion about mod-
ules over symmetric algebras. Let f : W1 → W2 be a map of finite-dimensional vector
spaces, and consider the corresponding homomorphism

Sym(W1[−2]) → Sym(W2[−2]).

Let M2 be an object of Sym(W2[−2])-mod, and let M1 be its image under the
forgetful functor

Sym(W2[−2])-mod → Sym(W1[−2])-mod.

It is clear that

suppSym(W1)
(H•(M1)) ⊂ W ∗

1

equals the closure of the image of

suppSym(W2)
(H•(M2)) ⊂ W ∗

2

under the map g : W ∗
2 → W ∗

1 . This proves point (a) of the proposition.
Let now M1 be an object of Sym(W1[−2])-mod and set

M2 := Sym(W2[−2]) ⊗
Sym(W1[−2])

M1.

First, it is clear that

suppSym(W2)
(H•(M2)) ⊂ g−1

(
suppSym(W1)

(H•(M1))
)

. (5.5)



56 D. Arinkin, D. Gaitsgory

It remains to show that the above containment is an equality if either

suppSym(W1)
(H•(M1)) ⊂ g(W ∗

2 )

or if M1 is perfect.
Both assertions are easy when g is surjective. Moreover, if they hold for two com-

posable maps f ′ and f ′′, then they hold for their composition. This allows us to reduce
the statement to the case when g is an embedding of codimension one. Thus, let us
assume that W2 is the cokernel of t : k → W1.

Denote N1 := H•(M1), viewed as an object in Sym(W1)-mod♥. Denote

N2 := Sym(W2) ⊗
Sym(W1)

N1 ∈ Sym(W2)-mod.

The object N2 has cohomologies in two degrees:

N ′
2 := H0(N2) = coker(t : N1 → N1) and N ′′

2 := H−1(N2) = ker(t : N1 → N1).

We claim that

suppSym(W2)
(H•(M2)) = suppSym(W2)

(N ′
2) ∪ suppSym(W2)

(N ′′
2 ).

This follows from the short exact sequence in Sym(W2)-mod♥

0 → N ′
2 → H•(M2) → N ′′

2 → 0.

Now, if

suppSym(W1)
(H•(M1)) = suppSym(W1)

(N1) ⊂ W ∗
2 ,

we have

suppSym(W1)
(N1) = suppSym(W2)

(N ′
2) ∪ suppSym(W2)

(N ′′
2 ),

which implies the desired equality in (5.5) in this case.
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If M1 is perfect, it is easy to see that the module N1 is finitely generated (this is in
fact a particular case of Theorem 4.1.8). Then, by the Nakayama Lemma,

suppSym(W2)
(N ′

2) =
(

suppSym(W1)
(H•(M1))

)
∩ W ∗

2 ,

which again implies the equality in (5.5). ��
Corollary 5.2.7 (a) ( fG)! : IndCoh(Gpt /V2) → IndCoh(Gpt /V1) is conservative.
(b) Set Y1,can = g(V ∗

2 ) ⊂ V ∗
1 . Then, the restriction of ( fG)IndCoh∗ to(

IndCoh(Gpt /V1)
)

Y1,can
is conservative.

Proof Follows immediately from Proposition 5.2.5 (It is easy also to give a direct
proof.). ��
Corollary 5.2.8 (a) For a conical Zariski-closed subset Y1 ⊂ V ∗

1 , set Y2 :=
g−1(Y1) ⊂ V ∗

2 . Then, the essential image of
(
IndCoh(Gpt /V1)

)
Y1

under the func-

tor ( fG)IndCoh∗ is contained in the subcategory

(
IndCoh(Gpt /V2)

)
Y2
⊂ IndCoh(Gpt /V2)

and generates it.
(b) Suppose f is a smooth morphism at pt, so that g is injective. For a conical

Zariski-closed subset Y2 ⊂ V ∗
2 , set Y1 := g(Y2) ⊂ V ∗

1 . Then, the essential image
of

(
IndCoh(Gpt /V2)

)
Y2

under the functor ( fG)! is contained in the subcategory

(
IndCoh(Gpt /V1)

)
Y1
⊂ IndCoh(Gpt /V1)

and generates it.

Proof For part (a), note that we have a pair of adjoint functors

( fG)IndCoh∗ : IndCoh(Gpt /V1)� IndCoh(Gpt /V2) : ( fG)!.

By Proposition 5.2.5, they restrict to a pair of adjoint functors

( fG)IndCoh∗ : IndCoh(Gpt /V1)Y1 � IndCoh(Gpt /V2)Y2 : ( fG)!.

Since f !G is conservative by Corollary 5.2.7(a), the claim follows (Note that the cate-
gories involved are compactly generated.).

For part (b), note that fG is quasi-smooth; therefore, we have a pair of adjoint
functors

( fG)IndCoh,∗ : IndCoh(Gpt /V2)� IndCoh(Gpt /V1) : ( fG)IndCoh∗ .
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Moreover, f IndCoh,∗
G can be obtained from f !G by twisting by a cohomologically shifted

line bundle (by Corollary 2.2.7). By Proposition 5.2.5, restriction produces a pair of
adjoint functors

( fG)IndCoh,∗ : IndCoh(Gpt /V2)Y2 � IndCoh(Gpt /V1)Y1 : ( fG)IndCoh∗ .

Note that Y1 ⊂ g(V ∗
2 ) = Y1,can , so by Corollary 5.2.7(b’), ( fG)IndCoh∗ is conservative

on IndCoh(Gpt /V1)Y1 . The claim follows. ��

5.2.9. The particular usefulness of Proposition 5.2.5 and Corollaries 5.2.7 and 5.2.8
for us is explained by the following observation:

Lemma 5.2.10 (a) Let Z be a quasi-smooth DG scheme such that clZ � pt. Then, Z
is (non-canonically) isomorphic to pt×

V
pt for some smooth classical scheme V.

(b) If Zi = pt×
Vi

pt, i = 1, 2 where Vi are vector spaces, then any map Z1 → Z2 can

be realized as coming from a linear map V1 → V2.

Proof We have

OZ � C·(L),

where L is the DG Lie algebra Tz(Z)[−1], where z is the unique k-point of Z . By
assumption, L has only cohomology in degree +2. Hence,

H•(OZ ) � Sym(V [1]),

where V is the vector space dual to H2(L). This implies that OZ is itself non-
canonically isomorphic to Sym(V [1]). This establishes point (a).

Point (b) follows from the fact that the space of maps of commutative DG algebras

Sym(V1[1]) → Sym(V2[1])

is isomorphic to

Maps(V1[1], Sym(V2[1])).

In particular, the set of homotopy classes of such maps is in bijection with
Hom(V1, V2). ��
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5.3 Singular support via Koszul duality

In this subsection, we let Z be a quasi-smooth DG scheme, presented as a fiber product
in the category of DG schemes

Z
ι−−−−→ U

⏐
⏐�

⏐
⏐�

pt −−−−→ V,

(5.6)

with smooth U and V, as in Sect. 2.3.5. We will also assume that U and V are affine.

5.3.1. Note that we have a Cartesian diagram

Z Z

Z ×
U

Z

pt pt .

pt×
V

pt

��������������

		������������

��������������

		�����������

��

�� ��

(5.7)

In particular, we obtain that the group DG scheme Gpt /V canonically acts on Z ,
preserving its map to U.

In other words, we have a canonical isomorphism of groupoids

GZ/U � Gpt /V× Z

acting on Z , commuting with the map to U:

Z Z

GZ/U

Z Z .

Gpt /V× Z


����������������

������������������

pr



����������������

actGpt /V ,Z

������������������

∼

��

id

��

id

��

Here, actGpt /V ,Z : Gpt /V× Z → Z is the action morphism.
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5.3.2. In particular, we obtain a canonical homomorphism of monoidal categories

IndCoh(Gpt /V)⊗ QCoh(U) → IndCoh(GZ/U), (5.8)

and hence a homomorphism of E2-algebras

A := HC(pt /V)⊗ �(U,OU) → HC(Z/U ) → HC(Z), (5.9)

where HC(Z/U ) := AGZ/U , see Sect. F.4.10.
Note that

A =
⊕

k

H2k(A) = HHeven(pt /V)⊗ �(U,OU) = Sym(V )⊗ �(U,OU).

5.3.3. Thus, we find ourselves in the paradigm of Sect. 3.5.1 with the DG category
in question being IndCoh(Z).

In particular, to an object F ∈ IndCoh(Z), we can assign a conical Zariski-closed
subset

suppA(F) ⊂ Spec(A) = V ∗ × U.

The following lemma shows that this recovers the singular support of F.

Lemma 5.3.4 For any F, the support suppA(F) ⊂ V ∗ × U is the image of

SingSupp(F) ⊂ Sing(Z)

under the embedding Sing(Z) ↪→ V ∗ × Z ↪→ V ∗ × U, where the first map is given
by (2.1).

Proof It suffices to verify that the diagram

Sym(V )⊗ �(U,OU) �(Sing(Z),OSing(Z))

HHeven(Z)

��

����
��

��
��

��

			
		

		
		

	

commutes. This is straightforward. ��
From Proposition 3.5.5, we obtain:

Corollary 5.3.5 For a conical Zariski-closed subset Y ⊂ Sing(Z), we have:

IndCohY (Z) � IndCoh(Z) ⊗
HC(pt /V)-mod⊗QCoh(U)

(HC(pt /V)-mod⊗ QCoh(U))Y .
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5.4 Koszul duality in the parallelized situation

In this subsection, we will assume that the formal completion of V at pt has been
parallelized, i.e., that it is identified with the formal completion of V at 0.

5.4.1. In this case, we have:

Lemma 5.4.2 The E2-algebra structure HC•(pt /V) is canonically commutative (i.e.,
comes by restriction from a canonically defined E∞-structure), and, as such, identifies
with Sym(V [−2]).
Proof The Gm-action on V by dilations gives rise to a Gm-action on the E2-algebra
HC(pt /V). The computation of the cohomology of HC(pt /V) puts us in the framework
of Sect. 3.6.1. ��
Corollary 5.4.3 A parallelization of V upgrades the monoidal structure on the cate-
gory IndCoh(Gpt /V) � HC(pt /V)op-mod to a symmetric monoidal structure, and as
such it is canonically equivalent to Sym(V [−2])-mod.

5.4.4. Thus, we see that in the parallelized situation, we can use Corollary 3.6.5 to
study support in the category IndCoh(Gpt /V) as follows.

The category

IndCoh(Gpt /V) � HC(pt /V)op-mod � Sym(V [−2])-mod

is naturally a module category over QCoh(V ∗/Gm). For a conical Zariski-closed
subset Y ⊂ V ∗, we have:

Corollary 5.4.5

IndCoh(Gpt /V)Y = IndCoh(Gpt /V) ⊗
QCoh(V ∗/Gm )

QCoh(V ∗/Gm)Y/Gm .

5.4.6. Let Z be as in Sect. 5.3. By Sect. 3.6.1, the category IndCoh(Z) carries an
action of the monoidal category QCoh(SA) for the stack

SA = Spec(Sym(V )⊗ �(U,OU))/Gm = V ∗/Gm × U.

This allows us to study the singular support of objects in IndCoh(Z) using Corollar-
ies 3.6.5 and 3.6.8. In particular, we have:

Corollary 5.4.7 For a conical Zariski-closed subset Y ⊂ Sing(Z), we have:

IndCohY (Z) � IndCoh(Z) ⊗
QCoh(V ∗/Gm×U)

QCoh
(
V ∗/Gm × U

)
Y/Gm

.

In the rest of this section, we will use the viewpoint on singular support via Koszul
duality and prove some results stated earlier in the paper.
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5.5 Proof of Proposition 4.7.2

Recall that Proposition 4.7.2 says that for F ∈ Coh(Z), its singular support equals
that of D

Serre
Z (F).

5.5.1. With no restriction of generality, we can assume that Z is affine and fits into
the Cartesian square (5.6). By Corollary 5.3.4, it suffices to show that the supports of
F and D

Serre
Z (F) for the action of the graded algebra A := Sym(V )⊗ �(U,OU) are

equal, where the grading on Sym(V ) is such that deg(V ) = 2.

5.5.2. By Lemma 3.4.4, it suffices to show that the supports of the A-modules
Hom•

Coh(Z)

(F,F) and Hom•
Coh(Z)(D

Serre
Z (F), D

Serre
Z (F)) are equal. This follows from the next

assertion:

Lemma 5.5.3 The diagram

Sym(V )⊗ �(U,OU) −−−−→ Hom•
Coh(Z)(F,F)

⏐⏐�
⏐⏐�

Sym(V )⊗ �(U,OU) −−−−→ Hom•
Coh(Z)(D

Serre
Z (F), D

Serre
Z (F))

is commutative, where the right vertical arrow is the isomorphism given by the anti-
equivalence

D
Serre
Z : Coh(Z)op → Coh(Z),

and the left vertical arrow is the automorphism that acts as identity on �(U,OU) and
as −1 on V ⊂ Sym(V ).

5.5.4. Since the action map Gpt /V× Z → Z is proper, and hence commutes with
Serre duality, the assertion of Lemma 5.5.3 follows from the next one:

Lemma 5.5.5 The equivalence D
Serre
Gpt /V

: Coh(Gpt /V)op → Coh(Gpt /V) induces the

automorphism of

Hom•
Gpt /V

(
(�pt)

IndCoh∗ (k), (�pt)
IndCoh∗ (k)

)
� Sym(V [−2]),

given by v �→ −v : V → V .

5.6 Constructing objects with a given singular support

The material in this subsection is not strictly speaking necessary for the rest of the
paper.

Let Z fit into a Cartesian square as in (5.6). In this subsection, we will give an
explicit procedure for producing compact objects in IndCohY (Z).
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5.6.1. Consider the action of the group DG scheme Gpt /V on Z as in Sect. 5.3.1,
and recall that actGpt /V ,Z denotes the corresponding action map

Gpt /V× Z → Z .

Clearly, the map actGpt /V ,Z is proper. This gives rise to a pair of adjoint functors:

(actGpt /V ,Z )IndCoh∗ : IndCoh(Gpt /V× Z)� IndCoh(Z) : (actGpt /V ,Z )!. (5.10)

We will also use the notation

F := (actGpt /V ,Z )IndCoh∗ and G := (actGpt /V ,Z )!,

and identify

IndCoh(Gpt /V× Z) � IndCoh(Gpt /V)⊗ IndCoh(Z).

The functor G is conservative because it admits a retract (given by the pullback
along the unit of Gpt /V).

Therefore, the essential image of F generates IndCoh(Z).

5.6.2. Let us regard IndCoh(Gpt /V) ⊗ IndCoh(Z) as a module category over
QCoh(U) via the second factor.

In addition, we can regard IndCoh(Gpt /V) ⊗ IndCoh(Z) as acted on by
IndCoh(Gpt /V) via the first factor.

Combining, we obtain that the monoidal category

IndCoh(Gpt /V)⊗ QCoh(U)

acts on IndCoh(Gpt /V)⊗ IndCoh(Z).
In particular, we obtain a map of E2-algebras

A = HC(pt /V)⊗ �(U,OU) → HC(IndCoh(Gpt /V)⊗ IndCoh(Z)).

Thus, by Sect. 3.5.1, to an object

F ∈ IndCoh(Gpt /V)⊗ IndCoh(Z)

we can assign its support

suppA(F) ⊂ Spec(A) � V ∗ × U.

Conversely, a conical Zariski-closed subset Y ⊂ V ∗ ×U yields a full subcategory

(
IndCoh(Gpt /V)⊗ IndCoh(Z)

)
Y = {F ∈ IndCoh(Gpt /V× Z), suppA(F) ⊂ Y }.
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5.6.3 Warning The above notation may seem abusive, because Gpt /V× Z is itself a
quasi-smooth affine DG scheme, which has its own notion of singular support. Note
that

Sing(Gpt /V× Z) � Sing(Gpt /V)× Sing(Z) � V ∗ × Sing(Z) ⊂ V ∗ × V ∗ × U.

Thus, for

F ∈ IndCoh(Gpt /V× Z) � IndCoh(Gpt /V)⊗ IndCoh(Z),

its singular support is a conical subset

SingSupp(F) ⊂ V ∗ × V ∗ × U.

It follows from Lemma 3.3.12 that suppA(F) is the closure of the projection
p13(SingSupp(F)). To avoid confusion, we never consider this singular support for
objects of

IndCoh(Gpt /V)⊗ IndCoh(Z)

and only deal with the “coarse” support contained in V ∗ × U.

5.6.4. It is clear that the functor F is compatible with the action of the monoidal
category IndCoh(Gpt /V) ⊗ QCoh(U) on IndCoh(Gpt /V) ⊗ IndCoh(Z) given above,
and the action of IndCoh(Gpt /V)⊗ QCoh(U) on IndCoh(Z) given by (5.8).

Hence, the functor G, being the right adjoint of F, is lax compatible with the above
actions.

Lemma 5.6.5 The lax compatibility of G with the actions of IndCoh(Gpt /V) ⊗
QCoh(U) on IndCoh(Z) and IndCoh(Gpt /V)⊗ IndCoh(Z) is strict.

Proof It is easy to see that the monoidal category IndCoh(Gpt /V)⊗QCoh(U) is rigid
(see [29], Sect. 6, where the notion of rigidity is discussed). Now, the assertion follows
from the fact that if F : C1 → C2 is a functor between module categories over a rigid
monoidal category, which admits a continuous right adjoint as a functor between plain
DG categories, then the lax compatibility structure on this right adjoint is automatically
strict. ��

From Sect. 3.3.10, we obtain:

Corollary 5.6.6 Let Y ⊂ V ∗×Ube a conical Zariski-closed subset. Then, the functors
F and G restrict to an adjoint pair of functors

(
IndCoh(Gpt /V)⊗ IndCoh(Z)

)
Y � IndCohY∩Sing(Z)(Z).
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Moreover, the diagram

IndCoh(Gpt /V)⊗ IndCoh(Z) ��

��

IndCoh(Z)��

�
Y,all
Z

��(
IndCoh(Gpt /V)⊗ IndCoh(Z)

)
Y

�� IndCohY∩Sing(Z)(Z).��

commutes as well, where the left vertical arrow is the right adjoint to the inclusion

(
IndCoh(Gpt /V)⊗ IndCoh(Z)

)
Y ↪→ IndCoh(Gpt /V)⊗ IndCoh(Z).

Corollary 5.6.7 Suppose Y is a conical Zariski-closed subset of Sing(Z) ⊂ V ∗ ×U.

(a) For any F ∈ IndCoh(Z), we have:

F ∈ IndCohY (Z) ⇔ G(F) ∈ (
IndCoh(Gpt /V)⊗ IndCoh(Z)

)
Y .

(b) The essential image under F of the category
(
IndCoh(Gpt /V)⊗ IndCoh(Z)

)
Y

generates IndCohY (Z).

Proof Both claims formally follow from the conservativeness of G. Indeed, F ∈
IndCohY (Z) if and only if the natural morphism �

Y,all
Z (F) → F is an iso-

morphism. Since G is conservative, this happens if and only if the morphism
G(�

Y,all
Z (F)) → G(F) is an isomorphism; by Corollary 5.6.6, this is equivalent to

G(F) ∈ (
IndCoh(Gpt /V)⊗ IndCoh(Z)

)
Y . We have therefore proved part (a). Now

note that the restriction

F : (IndCoh(Gpt /V)⊗ IndCoh(Z)
)

Y → IndCohY∩Sing(Z)(Z)

is left adjoint to a conservative functor; this proves part (b). ��

5.6.8. Note that by (5.2), we can identify the category IndCoh(Gpt /V) with the
category HC(pt /V)op-mod. Hence, we obtain an equivalence

IndCoh(Gpt /V)⊗ IndCoh(Z) � HC(pt /V)op-mod⊗ IndCoh(Z)

� HC(pt /V)op-mod(IndCoh(Z)). (5.11)

Using the equivalence (5.11), we can translate the functors (5.10) into the language
of E2-algebras. Recall homomorphisms of E2-algebras

HC(pt /V) → HC(Z/U) → HC(Z).

Thus, any F ∈ IndCoh(Z) carries a natural structure of HC(pt /V)op-module, i.e.,
we have a functor
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IndCoh(Z) → HC(pt /V)op-mod(IndCoh(Z)).

It follows from the definitions that this functor identifies with the functor G.
Since IndCoh(Z) is tensored over HC(pt /V), we obtain a functor

HC(pt /V)op-mod⊗ IndCoh(Z) → IndCoh(Z).

This is our functor F.

5.7 Proof of Theorem 4.2.6

The proof of Theorem 4.2.6, given in this subsection, relies on the material of Sect. 5.6.
The reader who skipped Sect. 5.6 will find a proof of the most essential point of the
argument in Remark 7.4.4. Yet another proof, which uses a different idea, is given in
Sect. 6.1.4.

5.7.1. Let us recall that Theorem 4.2.6 asserts that for an affine quasi-smooth DG
scheme Z , the essential image of

�Z : QCoh(Z) → IndCoh(Z)

coincides with IndCoh{0}(Z). Here by a slight abuse of notation, {0} denotes the zero-
section of Sing(Z). We are now ready to prove this theorem, using Corollary 5.6.7.

5.7.2. Note that the statement is local on Z . Indeed, recall that �Z is fully faithful
and has a right adjoint

�Z : IndCoh(Z) → QCoh(Z).

Theorem 4.2.6 is equivalent to conservativeness of the restriction

�Z |IndCoh{0}(Z) : IndCoh{0}(Z) → QCoh(Z),

which can be verified locally. Thus, we may assume that Z fits into a Cartesian diagram
(5.6).

By Corollary 5.6.7(b), it is enough to show that the essential image of �Z contains
the essential image of the functor

F : (IndCoh(Gpt /V)⊗ IndCoh(Z)
)
{0}×U → IndCoh{0}(Z).

5.7.3. Consider the projection pGpt /V
: Gpt /V → pt. We claim that the essential

image of the functor

(pGpt /V
× idZ )! : IndCoh(Z) → IndCoh(Gpt /V× Z)

� IndCoh(Gpt /V)⊗ IndCoh(Z)

is contained in the category
(
IndCoh(Gpt /V)⊗ IndCoh(Z)

)
{0} and generates it.
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By Proposition 3.5.7,

(
IndCoh(Gpt /V)⊗ IndCoh(Z)

)
{0} = IndCoh(Gpt /V){0} ⊗ IndCoh(Z).

So, it is sufficient to see that the essential image of

p!Gpt /V
: Vect = IndCoh(pt) → IndCoh(Gpt /V)

is contained in the category IndCoh(Gpt /V){0} and generates it. However, this is a
particular case of Corollary 5.2.8(b).

5.7.4. Hence, we obtain that it is sufficient to show that the essential image of the
composed functor

IndCoh(Z)
(pGpt /V

×idZ )!
−→ IndCoh(Gpt /V)⊗ IndCoh(Z)

F−→ IndCoh(Z) (5.12)

is contained in the essential image of �Z .
We have the following assertion:

Lemma 5.7.5 The composition (5.12) is canonically isomorphic to ι! ◦ ιIndCoh∗ , where
ι : Z ↪→ U.

Proof By the definition of the functor F, the lemma follows by base change along the
Cartesian square

GZ/U −−−−→ Z
⏐⏐�

⏐⏐�ι

Z
ι−−−−→ U.

��

5.7.6. By Lemma 5.7.5, it is sufficient to show that the essential image of the functor
ι! is contained in the essential image of �Z .

However, since U is smooth, the monoidal action of QCoh(U) on ωU ∈ IndCoh(U)

generates the latter category. So, it is enough to show that ι!(ωU) belongs to the
essential image of �Z . However, ι!(ωU) = ωZ , and the assertion follows from the fact
that Z is Gorenstein.

6 A point-wise approach to singular support

6.1 The functor of enhanced fiber

6.1.1. Let Z be an affine DG scheme with a perfect cotangent complex, and let
iz : pt ↪→ Z be a k-point.
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Consider the functor

i !z : IndCoh(Z) → Vect .

We claim that this functor can be naturally enhanced to a functor

ienh,!
z : IndCoh(Z) → Tz(Z)[−1]-mod, (6.1)

where the DG Lie algebra Tz(Z)[−1] is the fiber of T (Z)[−1] at z, and where we
remind that T (Z)[−1] is a Lie algebra by Corollary G.2.7.

Indeed, let us interpret i !z as

MapsIndCoh(i
IndCoh∗ (k),−). (6.2)

Now, it is easy to see that the canonical action of the DG Lie algebra �(Z , T (Z)[−1])
on i IndCoh∗ (k), given by Corollary G.2.7, factors through

k ⊗
�(Z ,OZ )

�(Z , T (Z)[−1]) � Tz(Z)[−1].

This endows the functor in (6.2) with an action of the DG Lie algebra Tz(Z)[−1], as
desired.

We will refer to the functor (6.1) as that of enhanced fiber.

6.1.2. Let us reinstate the assumption that Z is quasi-smooth.
For an object M ∈ Tz(Z)[−1]-mod, we can consider the graded vector space of its

cohomologies H•(M) as a module over the graded Lie algebra H•(Tz(Z)[−1]-mod).
In particular, H•(M) is a module over Sym

(
H1(Tz(Z))

)
, viewed as a graded

commutative algebra whose generators are placed in degree 2. Therefore, to M we
can associate the support

suppSym(H1(Tz(Z)))

(
H•(M)

) ⊂ Spec
(

Sym
(

H1(Tz(Z))
))

.

Note that

Spec
(

Sym
(

H1(Tz(Z))
))
� Sing(Z){z} := cl

(
{z} ×

Z
Sing(Z)

)
.

Lemma 6.1.3 For F ∈ IndCoh(Z), set M = ienh,!
z (F) ∈ Tz(Z)[−1]-mod. Then,

(a) SingSupp(F) ∩ Sing(Z){z} ⊃ suppSym(H1(Tz(Z))) (H•(M)).
(b) If F ∈ IndCoh(Z){z}, then

SingSupp(F) = suppSym(H1(Tz(Z)))

(
H•(M)

)
.
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Proof With no restriction of generality, we can replace Z by an open affine that
contains the point z.

Consider the graded vector space H•(i !z(F)) as acted on by HHeven(Z). Since the
action of the subalgebra �(Z ,OclZ ) ⊂ HHeven(Z) on this space factors through the
morphism

�(Z ,OclZ ) → k,

the action of HHeven(Z) factors through the quotient

cl(HHeven(Z) ⊗
�(Z ,OclZ )

k)

of HHeven(Z). Here, k is considered as a �(Z ,OclZ )-module via iz .
Similarly, the resulting action of �(Sing(Z),OSing(Z)) on H•(i !z(F)) factors

through

�(Sing(Z){z},OSing(Z){z}) � Sym
(

H1(Tz(Z)))
)

,

which is equal to the action of the latter on

H•(i !z(F)) � H•(M).

Now, point (a) of the lemma follows from the interpretation of H•(i !z(F)) as

Hom•
IndCoh(Z)((iz)∗(k),F),

since (iz)∗(k) is compact in IndCoh(F) (see Lemma 3.4.4).
Suppose now that F ∈ IndCoh(Z){z}. Then, SingSupp(F) coincides with the sup-

port of F computed using the action of �(Sing(Z),OSing(Z)) on IndCoh(Z){z} (by
Sect. 3.3.10). But (iz)∗(k) generates IndCoh(Z){z} (see [10, Proposition 4.1.7(b)]),
and the required equality follows from Lemma 3.4.4. ��

6.1.4 An alternative proof of Theorem 4.2.6 Let us sketch an alternative proof of
Theorem 4.2.6.

By Corollary 4.3.2, IndCoh{0}(Z) is generated by Coh{0}(Z). Therefore, it suffices
to check that Coh{0}(Z) coincides with the essential image �Z (QCoh(Z)perf). It suf-
fices to show that for F ∈ Coh{0}(Z) and every k-point z of Z , the object i !z(F) ∈ Vect
is perfect.

Consider the action of Sym(H1(Tz(Z))) on H•(i !z(F)). On the one hand, this mod-
ule is finitely generated by Theorem 4.1.8. On the other hand, by assumption and
Lemma 6.1.3(a), it is supported at

0 ∈ H1(Tz(Z))∗ = Spec
(

Sym(H1(Tz(Z)))
)

.

Hence, it is finite dimensional, as desired. ��
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6.2 Estimates from below

Lemma 6.1.3 says that the support of ienh,!
z (F) is bounded from above by the singular

support of F. In this subsection, we will prove some converse estimates.

6.2.1. The next assertion describes the singular support of an arbitrary object F ∈
IndCoh(Z) in terms of its !-fibers.

Note that for every geometric point iz : Spec(k′) → Z , we can consider the DG
Lie algebra Tz(Z)[−1] ∈ Vectk′ and the functor

ienh,!
z : IndCoh(Z) → Tz(Z)[−1]-mod.

We can do this by viewing Z ′ := Z ×
Spec(k)

Spec(k′) as a quasi-smooth DG scheme

over k′ and viewing z′ as a k′-rational point iz′ : Spec(k′) → Z ′. The functor i !z is the
composition of i !z′ preceded by the tensoring-up functor IndCoh(Z) → IndCoh(Z ′).
Proposition 6.2.2 Let Y be a conical Zariski-closed subset Y ⊂ Sing(Z). An object
F ∈ IndCoh(Z) belongs to IndCohY (Z) if and only if for every geometric point
iz : Spec(k′) → Z, the object

ienh,!
z (F) ∈ U (Tz(Z)[−1])-mod

is such that the subset

suppSym(H1(Tz(Z)))

(
H•(ienh,!

z (F))
)
⊂ Sing(Z){z}

is contained in
Y{z} := {z} ×

Z
Y ⊂ Sing(Z){z}.

Proof The “only if” direction was established in Lemma 6.1.3. Let us prove the “if”
direction. With no restriction of generality, we can assume that Y is cut out by one
homogeneous element a ∈ �(Sing(Z),OSing(Z)). Set 2n = deg(a).

Recall that we have a pair of adjoint functors

�
Y,all
Z : IndCohY (Z)� IndCoh(Z) : �Y,all

Z .

Without loss of generality, we may replace F with the cone of the morphism

�
Y,all
Z ◦�

Y,all
Z (F) → F.

Note that this cone is the localization Loca(F) introduced in Sect. 3.1.2. Thus, we can
assume that a acts as an isomorphism

F
a→ F[2n].

Let us show that in this case F = 0.
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Fix a point z as above, and consider H•(ienh,!
z (F)) as a quasi-coherent sheaf on

Sing(Z){z}. On the one hand, the action of a on it is invertible; on the other, its support
is contained in Y{z}, which is the zero locus of a ∈ �(Sing(Z){z},OSing(Z){z}). Hence,
the quasi-coherent sheaf vanishes and i !z(F) = 0.

The assertion now follows from the next lemma (which in turn follows from
[10, Proposition 4.1.7(a)]). ��
Lemma 6.2.3 If F ∈ IndCoh(Z) is such that i !z(F) = 0 for all geometric points z,
then F = 0.

6.2.4 The coherent case We have the following variant of Proposition 6.2.2:6

Proposition 6.2.5 For F ∈ Coh(Z), and z ∈ Z(k), the inclusion

suppSym(H1(Tz(Z)))

(
H•(ienh,!

z (F))
)
⊂ SingSupp(F) ∩ Sing(Z){z}

is an equality.

We note that Proposition 6.2.5 is not essential for the main results of this paper.

Remark 6.2.6 We can reformulate Propositions 6.2.2 and 6.2.5 as follows. Fix F ∈
IndCoh(Z), and consider the union

Y ′ :=
⋃

z∈Z

suppSym(H1(Tz(Z)))

(
H•(ienh,!

z (F))
)
⊂ Sing(Z).

Here, the union is over all (not necessarily closed) points of Z . Proposition 6.2.2 says
that

SingSupp(F) = Y ′.

Proposition 6.2.5 says that SingSupp(F) = Y ′ for F ∈ Coh(Z).

6.2.7. The rest of this subsection is devoted to the proof of Proposition 6.2.5
Let f be a function on Z such that z belongs to the set of its zeros; let Z ′ denote

the corresponding DG subscheme of Z ,

Z ′ := pt ×
A1

Z ,

where Z → A
1 is given by f .

Consider the closed subset

Sing(Z)Z ′ := cl(Sing(Z)×
Z

Z ′) ⊂ Sing(Z).

For F ∈ Coh(Z), let F′ ∈ Coh(Z) denote the object Cone( f : F → F) ∈ Coh(Z).

6 Which also follows from [4, Theorem 11.3 and Remark 11.4].
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Taking into account Lemma 6.1.3(b), the statement of the proposition follows by
induction from the next assertion:

Lemma 6.2.8 For F ∈ Coh(Z),

SingSupp(F) ∩ Sing(Z)Z ′ = SingSupp(F′)

as subsets of Sing(Z)Z ′ .

6.2.9 Proof of Lemma 6.2.8 The assertion is local, so with no restriction of generality,
we can assume that Z fits into a Cartesian diagram as in (5.6).

Note that the map

actGpt /V ,Z : Gpt /V× Z → Z

is quasi-smooth; therefore, its Tor-dimension is bounded. Hence, for F ∈ Coh(Z), the
object

act!Gpt /V ,Z (F) =: G(F) ∈ IndCoh(Gpt /V× IndCoh(Z))

is compact by [10, Lemma 7.1.2].
Now, the required assertion follows from the next one:

Lemma 6.2.10 For a compact object M ∈ Sym(V [−2])-mod ⊗ IndCoh(Z), the
support of Cone( f : M → M) in V ∗ × Z ′ equals

(V ∗ × Z ′) ∩ suppV ∗×Z (M).

The lemma is proved by the argument given in the proof of Proposition 5.2.5(b”).

Remark 6.2.11 Denote by i the closed embedding Z ′ ↪→ Z . Clearly, i is quasi-smooth.
In particular, the map

Sing(i) : Sing(Z)Z ′ → Sing(Z ′)

is a closed embedding. Clearly, the object F′ above is canonically isomorphic to
i IndCoh∗ (i !(F))[1].

Thus, Lemma 6.2.8 computes the singular support of i IndCoh∗ (i !(F)).
More generally, for any morphism of quasi-smooth DG schemes f : Z ′ → Z

and any F ∈ Coh(Z) (resp., F′ ∈ Coh(Z ′)), there is a formula for SingSupp(i !(F))

(resp., SingSupp(i∗(F)), assuming that f is finite), see Theorems 7.7.2 and 7.3.3,
respectively.
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6.3 Enhanced fibers and Koszul duality

Let iz : pt → Z be a quasi-smooth DG scheme and a k-point. In this subsection, we
will assume that Z is written as a fiber product

Z
ι−−−−→ U

⏐
⏐�

⏐
⏐�

pt −−−−→ V,

(6.3)

as in (5.6).

6.3.1. The action of Gpt /V on Z gives rise to a map of Lie algebras

V [−2] ⊗ OZ → T (Z)[−1]

in QCoh(Z), where V is the tangent space to V at pt. This follows from the functoriality
of the construction in Corollary G.2.4 with respect to the groupoid.

In particular, we obtain a map of DG Lie algebras V [−2] → Tz(Z)[−1].
Composing, from ienh,!

z we obtain a functor

IndCoh(Z) → V [−2]-mod. (6.4)

In this subsection, we will give a different interpretation of the functor (6.4).

6.3.2. Consider the morphism

(id×(ι ◦ iz)) : Gpt /V = pt×
V

pt → pt×
V

U = Z;

we denote it by iz,V. It can be viewed as the action of the group DG scheme Gpt /V on
the point z. It is easy to see that iz,V is quasi-smooth.

Thus, restriction defines a functor

i !z,V : IndCoh(Z) → IndCoh(Gpt /V).

Note that iz can be written as a composition

iz = iz,V ◦�pt, (6.5)

where

�pt : pt → pt×
V

pt = Gpt /V

is the diagonal. Let us observe the following:
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Lemma 6.3.3 For F ∈ IndCoh(Z), i !z(F) = 0 if and only if i !z,V(F) = 0.

Proof Indeed, by (6.5), we have i !z = �!
pt ◦ i !z,V. Therefore, it suffices to check that the

functor �!
pt is conservative. Equivalently, we need to prove that the essential image of

(�pt)
IndCoh∗ generates the category IndCoh(Gpt /V). This follows from [10, Proposition

4.1.7(b)] (or, in the case at hand, from Corollary 5.2.8(a)). ��

6.3.4. Combining the functor i !z,V with the equivalence

IndCoh(Gpt /V) � Sym(V [−2])-mod � V [−2]-mod,

we thus obtain a functor

IndCoh(Z) → IndCoh(Gpt /V) → V [−2]-mod. (6.6)

Proposition 6.3.5 The functors (6.6) and (6.4) are canonically isomorphic.

Proof The lemma easily reduces to the case when Z = Gpt /V, and z is given by �pt.
In this case, the assertion is tautological from the definitions. ��

6.3.6. As was mentioned in Remark 5.1.8, Gpt /V is a quasi-smooth DG scheme and

Sing(Gpt /V) = V ∗,

where V is the tangent space to V at pt. In addition, for

F ∈ IndCoh(pt×
V

pt) � HC(pt /V)op,

we have an equality of Zariski-closed conical subsets:

SingSupp(F) = suppSym(V [−2])(F) ⊂ V ∗.

6.3.7. Note that the diagram (6.3) yields an embedding

Sing(Z){z} ↪→ V ∗,

which can be viewed as the singular codifferential of iz,V (The fact that Sing(iz,V) is
an embedding also follows from quasi-smoothness of iz,V by Lemma 2.4.3.).

From Proposition 6.3.5, we obtain that for F ∈ IndCoh(Z), the support of
H•(i !z(F)) as a module over Sym

(
H1(Tz(Z))

)
, considered as a subset of

Spec
(

Sym
(

H1(Tz(Z))
))
= Sing(Z){z} ⊂ V ∗,

equals the singular support of

i !z,V(F) ∈ IndCoh(Gpt /V).
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7 Functorial properties of the category IndCohY (Z)

So far, we have studied the category IndCohY (Z) for a given quasi-smooth DG scheme
Z . In this section, we will establish a number of results on how these categories inter-
act under pullback and pushforward functors for maps between quasi-smooth DG
schemes. The main results of this section are stated in the introduction as Theo-
rems 1.3.11, 1.3.12, and 1.3.13, corresponding to Proposition 7.1.3, Corollary 7.6.2,
and Theorem 7.8.2 below.

7.1 Behavior under direct and inverse images

Recall that a map f between DG schemes induces the following functors between
the categories of ind-coherent sheaves: the “ordinary” pushforward, which is denoted
by f IndCoh∗ (the notation f ∗ is reserved for the pushforward on the category of quasi-
coherent sheaves), and the “extraordinary” pullback f ! (Actually, we need f to be
quasi-compact for f IndCoh∗ to exist.). If f is eventually coconnective, the “ordinary”
pullback, denoted by f IndCoh,∗, makes sense as well.

7.1.1. Let f : Z1 → Z2 be a map between quasi-smooth DG schemes. Consider
the functor

f ! : IndCoh(Z2) → IndCoh(Z1),

(see [10, Sect. 5.2.3]) and, assuming that f is quasi-compact, the functor

f IndCoh∗ : IndCoh(Z1) → IndCoh(Z2)

(see [10, Sect. 3.1]).
Recall also that if f is proper, the above functors ( f IndCoh∗ , f !) are naturally adjoint.

7.1.2. Recall that f gives rise to the singular codifferential

Sing( f ) : Sing(Z2)Z1 → Sing(Z1),

where

Sing(Z2)Z1 = cl
(

Sing(Z2) ×
Z2

Z1

)
.

Proposition 7.1.3 Let Yi ⊂ Sing(Zi ) be conical Zariski-closed subsets.

(a) Suppose

Sing( f )(Y2 ×
Z2

Z1) ⊂ Y1.

Then, f ! sends IndCohY2(Z2) to IndCohY1(Z1).
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(b) Suppose that f is quasi-compact, and that

Sing( f )−1(Y1) ⊂ Y2 ×
Z2

Z1.

Then, f IndCoh∗ sends IndCohY1(Z1) to IndCohY2(Z2).

Proof First of all, in both claims we may assume that Z1 and Z2 are affine. Indeed,
claim (a) is clearly local on both Z1 and Z2. On the other hand, claim (b) is clearly
local on Z2. By Corollary 4.5.6(b), it is also local on Z1: An open cover of Z1 can be
used to compute the direct image f IndCoh∗ using the Čech resolution.

Since the functor

f ! : IndCoh(Z2) → IndCoh(Z1)

is continuous, it corresponds to an object of

IndCoh(Z2)
∨ ⊗ IndCoh(Z1).

By Serre’s duality,

IndCoh(Z2)
∨ ⊗ IndCoh(Z1) � IndCoh(Z2)⊗ IndCoh(Z1) � IndCoh(Z1 × Z2),

and it is clear that f ! corresponds to the object

�( f )IndCoh∗ (ωZ1) ∈ IndCoh(Z1 × Z2),

where �( f ) : Z1 → Z1 × Z2 is the graph of f . Similarly, the continuous functor

f IndCoh∗ : IndCoh(Z1) → IndCoh(Z2)

corresponds to the same object under the identification

IndCoh(Z1)
∨ ⊗ IndCoh(Z2) � IndCoh(Z1)⊗ IndCoh(Z2) � IndCoh(Z1 × Z2).

Now the assertion follows from Proposition 3.5.9 and Lemma 7.1.4 below. ��
Lemma 7.1.4 The singular support

SingSupp
(
�( f )IndCoh∗ (ωZ1)

)
⊂ Sing(Z1 × Z2) = Sing(Z1)× Sing(Z2)

is contained in the image of

Sing(Z2)Z1 = Z1 ×
Z2

Sing(Z2)

under the natural map of the latter to Sing(Z1)× Sing(Z2).
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Proof The statement is clearly local on both Z1 and Z2, so we may assume that Z1
and Z2 are affine without losing generality. Since �( f )IndCoh∗ (ωZ1) is compact, by
Lemma 3.4.4(b), it is enough to show that the homomorphisms

�(Sing(Zi ),OSing(Zi )) → End•IndCoh(Z1×Z2)

(
�( f )IndCoh∗ (ωZ1)

)

for i = 1, 2 factor through a map

�(Sing(Z2)Z1 ,OSing(Z2)Z1
) → End•IndCoh(Z1×Z2)

(
�( f )IndCoh∗ (ωZ1)

)

and the natural homomorphisms

�(Sing(Zi ),OSing(Zi )) → �(Sing(Z2)Z1 ,OSing(Z2)Z1
).

We have

MapsIndCoh(Z1×Z2)

(
�( f )IndCoh∗ (ωZ1), �( f )IndCoh∗ (ωZ1)

)

� �
(

Z1, UOZ1
(T (Z2)[−1]|Z1)

)

(established in the course of the proof of Proposition G.2.2 due to the retraction
Z1 × Z2 → Z1).

Moreover, the homomorphisms of E1-algebras

HC(Zi ) → MapsIndCoh(Z1×Z2)

(
�( f )IndCoh∗ (ωZ1), �( f )IndCoh∗ (ωZ1)

)

identify with the naturally defined maps

�
(

Zi , UOZi
(T (Zi )[−1])

)
→ �

(
Z1, UOZ1

(T (Z2)[−1]|Z1)
)

.

This establishes the desired assertion. ��

7.1.5. Assume now that both Z1 and Z2 are quasi-compact. Recall (see [10, Sect.
9.2.3]) that under the self-duality

DSerre
Zi

: IndCoh(Zi )
∨ � IndCoh(Zi ),

the dual of the functor f ! is f IndCoh∗ , and vice versa.
Hence, from Proposition 7.1.3 and Lemma 4.7.5, we obtain:

Proposition 7.1.6 Let Yi ⊂ Sing(Zi ) be conical Zariski-closed subsets.

(a) Suppose

Sing( f )(Y2 ×
Z2

Z1) ⊂ Y1.
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Then, we have a commutative diagram of functors:

IndCoh(Z1)
�

Y1,all
Z1−−−−→ IndCohY1(Z1)

f IndCoh∗
⏐⏐
�

⏐⏐
�

IndCoh(Z2)
�

Y2,all
Z2−−−−→ IndCohY2(Z2).

That is, the counter-clockwise composition functor factors through the colocal-
ization �

Y1,all
Z1

.
(b) Suppose that

Sing( f )−1(Y1) ⊂ Y2 ×
Z2

Z1.

Then, we have a commutative diagram of functors:

IndCoh(Z1)
�

Y1,all
Z1−−−−→ IndCohY1(Z1)

f !
�⏐⏐

�⏐⏐

IndCoh(Z2)
�

Y2,all
Z2−−−−→ IndCohY2(Z2).

That is, the clockwise composition functor factors through the colocalization
�

Y2,all
Z2

.

7.2 Singular support and preservation of coherence

In this subsection, all DG schemes will be quasi-compact.

7.2.1. Let Z be a quasi-smooth DG scheme. In turns out that the knowledge of the
singular support of an object F ∈ Coh(Z) allows one to predict when certain functors
applied to it produce a coherent object. Namely, we will prove the following assertion:

Proposition 7.2.2 (a) For F′,F′′ ∈ Coh(Z) such that, set-theoretically,

SingSupp(F′) ∩ SingSupp(F′′) ⊂ {0},

their internal Hom object

HomQCoh(Z)(F
′,F′′) ∈ QCoh(Z)

belongs to Coh(Z) (equivalently, is cohomologically bounded above).
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(b) Under the assumptions of point (a), the tensor product

F′ ⊗ F′′ ∈ QCoh(Z)

belongs to Coh(Z) (equivalently, is cohomologically bounded below).
(c) Let f : Z1 → Z2 be a morphism of quasi-smooth DG schemes. Let us denote by

ker(Sing( f )) ⊂ Sing(Z2)Z1 the preimage of the zero section under

Sing( f ) : Sing(Z2)Z1 → Sing(Z1).

For any F2 ∈ Coh(Z2) such that, set-theoretically,

(
SingSupp(F2) ×

Z2

Z1

)
∩ ker(Sing( f )) ⊂ {0},

we have f !(F2) ∈ Coh(Z1).
(d) Under the assumptions of point (c), we have f ∗(F2) ∈ Coh(Z1) (equivalently,

f ∗(F2) ∈ QCoh(Z1) is bounded below).
(e) Under the assumptions of point (c), the partially defined left adjoint f IndCoh,∗ to

f IndCoh∗ : IndCoh(Z1) → IndCoh(Z2),

is defined on F2.

Remark 7.2.3 One can show, mimicking the proof of Theorem 7.7.2 below, that the
assertions in the above proposition are actually “if and only if.”

The rest of this subsection is devoted to the proof of the above proposition. First,
we notice that all assertions are local in the Zariski topology, so we can assume that
the DG schemes involved are affine.

7.2.4 Proof of point (a) Since Z is affine, it suffices to show that the graded vector
space

Hom•(F′,F′′)

is cohomologically bounded above.
By Theorem 4.1.8, Hom•(F′,F′′) is finitely generated as a module over �(Sing(Z),

OSing(Z)). Note that the �(Sing(Z),OSing(Z))-action on Hom•(F′,F′′) factors through
both its action on End•(F′) and End•(F′′). Hence, we obtain that

supp�(Sing(Z),OSing(Z))
(Hom•(F′,F′′)) ⊂ SingSupp(F′) ∩ SingSupp(F′′) ⊂ {0}.

The latter implies that Hom•(F′,F′′) is finitely generated as a module over
�(Z ,OZ ). This implies the desired assertion. ��
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7.2.5 Proof of point (c) Replacing Z2 by Z1 × Z2 and F2 by ωZ1 � F2, we can
assume that f is a closed embedding.

It suffices to show that f !(F2) is cohomologically bounded above. The latter is
equivalent to

Hom•
Coh(Z2)

( f∗(OZ1),F2)

living in finitely many cohomological degrees.
Now, Proposition 7.1.3(b) implies that SingSupp( f∗(OZ1)) is contained in the

image of ker(Sing( f )) under the projection

Sing(Z2)Z1 → Z2.

Therefore, the condition on SingSupp(F2) implies that

SingSupp(F2) ∩ SingSupp( f∗(OZ1)) = {0}Z2 .

Hence, the required assertion follows from point (a) of the proposition. ��

7.2.6 Proof of point (e) By Corollary 4.7.3, the object D
Serre
Z2

(F2) ∈ Coh(Z2) satis-
fies the condition of point (c). We claim that the object

D
Serre
Z1

(
f !(DSerre

Z2
(F2))

)
∈ Coh(Z1)

satisfies the required adjunction property. Indeed, for F1 ∈ IndCoh(Z1), we have

HomIndCoh(Z1)(D
Serre
Z1

(
f !(DSerre

Z2
(F2))

)
,F1) � 〈 f !(DSerre

Z2
(F2)),F1〉IndCoh(Z1)

� 〈DSerre
Z2

(F2), f IndCoh∗ (F1)〉 � HomIndCoh(Z2)(F2, f IndCoh∗ (F1)),

where

〈−,−〉IndCoh(Z1) and 〈−,−〉IndCoh(Z2)

denote the canonical pairings corresponding to the Serre duality equivalences

DSerre
Zi

: IndCoh(Zi )
∨ � IndCoh(Zi ),

i = 1, 2. ��

7.2.7 Proof of point (d) Consider the object

f IndCoh,∗(F2) ∈ IndCoh(Z1),
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whose existence is guaranteed by point (e). In particular, for F1 ∈ IndCoh(F1)
+ we

have a functorial isomorphism

HomIndCoh(Z1)( f IndCoh,∗(F2),F1) � HomIndCoh(Z2)(F2, f IndCoh∗ (F1)).

By construction, f IndCoh,∗(F2) ∈ Coh(Z1) (this also follows because it is the value
on a compact object of a partially defined left adjoint to a continuous functor).

From the commutative diagram

IndCoh(Z1)
+ ∼−−−−→ QCoh(Z1)

+

f IndCoh,∗
⏐⏐�

⏐⏐� f ∗

IndCoh(Z2)
+ ∼−−−−→ QCoh(Z2)

+

we obtain an adjunction

HomQCoh(Z1)( f IndCoh,∗(F2),F
′
1) � HomQCoh(Z2)(F2, f∗(F′1))

for F′1 ∈ QCoh(Z1)
+. Now, the fact that QCoh(Zi ), i = 1, 2 is left-complete in its

t-structure implies that the above adjunction remains valid for any F′1 ∈ QCoh(Z1).
Hence, f IndCoh,∗(F2), viewed as an object of

Coh(Z1) ⊂ QCoh(Z1),

is isomorphic to f ∗(F2). In particular, the latter belongs to Coh(Z1), as desired. ��

7.2.8 Proof of point (b) This follows formally from point (d) applied to the diagonal
morphism Z → Z × Z and

F′ � F′′ ∈ Coh(Z × Z).

��
7.3 Direct image for finite morphisms

In this subsection, we let f : Z1 → Z2 be a finite morphism between quasi-smooth
DG schemes (Z1 and Z2 need not be quasi-compact). For instance, f may be a closed
embedding.

7.3.1. Define Y1,can ⊂ Sing(Z1) to be the image of the singular codifferential

Sing( f ) : Sing(Z2)Z1 = Sing(Z2) ×
Z2

Z1 → Sing(Z1).

Note that Y1,can is constructible, but not necessarily Zariski closed. If f is quasi-
smooth, Sing( f ) is a closed embedding and Y1,can is closed.
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7.3.2. Let F be an object of IndCoh(Z1), and let Y1 ⊂ Sing(Z1) be its singular
support. Let Y2 ⊂ Sing(Z2) be the conical Zariski-closed subset equal to the projection
of

Sing( f )−1(Y1) ⊂ Sing(Z2) ×
Z2

Z1

under p : Sing(Z2)×
Z2

Z1 → Sing(Z2). It is automatically closed since p is finite and

therefore proper.
Consider the object f IndCoh∗ (F) ∈ IndCoh(Z2). Note that by Proposition 7.1.3(b),

we have:

SingSupp( f IndCoh∗ (F)) ⊂ Y2.

Theorem 7.3.3 (a) Suppose that Y1 ⊂ Y1,can. Then, SingSupp( f IndCoh∗ (F)) = Y2.
(b) Suppose that F ∈ Coh(Z1). Then, SingSupp( f IndCoh∗ (F)) = Y2.

Remark 7.3.4 Point (b) of the theorem will be used in Corollary 7.3.6 to give an explicit
characterization of singular support of coherent sheaves, due to Drinfeld. However, it
is not essential for the main results of this paper.

Proof As in Remark 6.2.6, consider the union

Y ′1 :=
⋃

z1∈Z1

suppSym
(
H1(Tz1 (Z1))

)
(

H•(ienh,!
z1

(F))
)
⊂ Sing(Z1).

By Proposition 6.2.2, Y1 = Y ′1. Similarly, consider the union

Y ′2 :=
⋃

z2∈Z2

suppSym
(
H1(Tz2 (Z2))

)
(

H•(ienh,!
z2

( f IndCoh∗ (F)))
)
⊂ Sing(Z2);

then SingSupp( f IndCoh∗ (F)) = Y ′2. It suffices to verify that under the hypotheses of
the theorem, Y ′2 is equal to the projection of Sing( f )−1(Y ′1).

Let us reduce the assertion of the theorem to the case when clZ2 is a single point.
Let z2 ∈ Z2 be a point of Z2, which we may assume to be a k-point after extending
scalars. Choose a quasi-smooth map

i2 : Z ′2 → Z2,

as in Sect. 6.3.2, so that Z ′2 is a DG scheme of the form pt ×
V2

pt, with V2 smooth, and

such that the unique k-point of Z ′2 goes to z2.
Denote

Z ′1 := Z1 ×
Z2

Z ′2,
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and let i1 denote the corresponding map Z ′1 → Z1. The map i1 is also quasi-smooth
by base change. Since Z1 itself is quasi-smooth, we obtain that Z ′1 is quasi-smooth.
Note also that Z ′1 is finite; therefore, by Lemma 5.2.10(a), Z ′1 is isomorphic to a finite
disjoint union of DG schemes of the form pt ×

V1

pt.

By Sect. 6.3.6, we know that

SingSupp(i !2( f IndCoh∗ (F))) = Y ′2 ∩ Sing(Z2)Z ′2 ⊂ Sing(Z2)Z ′2
= Sing(Z2){z2} ⊂ Sing(Z ′2),

and

SingSupp(i !1(F)) = Y ′1 ∩ Sing(Z1)Z ′1 ⊂ Sing(Z1)Z ′1 ⊂ Sing(Z ′1).

Base change allows us to replace Z1, Z2, and F by Z ′1, Z ′2, and i !1(F), respectively. Note
that i !1(F) satisfies the hypotheses of the theorem (this relies on i1 being eventually
coconnective, so that i !1 preserves coherence).

Thus, we assume that clZ2 is a single point. It suffices to check the claim with Z1
replaced by each of its connected components, so we may assume that clZ1 is a single
point as well. Now the claim follows from Lemma 5.2.10(b) and Proposition 5.2.5(b’
and b”). ��

7.3.5. From Theorem 7.3.3(b), we can derive an explicit characterization of singular
support for objects of Coh(Z) ⊂ IndCoh(Z).

Let (z, ξ) be a point of Sing(Z), where z ∈ Z(k) and 0 �= ξ ∈ H−1(T ∗z (Z)).
We would like to determine when this point belongs to SingSupp(F) for a given
F ∈ Coh(Z).

Let Z be written as

Z
ι−−−−→ U

⏐⏐�
⏐⏐�

pt −−−−→ V,

with smooth U and V, as in Sect. 2.3.5.
Using the embedding Sing(Z) ↪→ V ∗ × Z , we can view ξ as a cotangent vector to

V at pt. Choose a function V → A
1 that sends pt �→ 0, and whose differential equals

ξ . Let Z ′ be the fiber product

Z ′ −−−−→ U
⏐⏐
�

⏐⏐
�

pt −−−−→ A
1.

Let f denote the closed embedding Z ↪→ Z ′.
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We have the following characterization of singular support, suggested to us by
V. Drinfeld.

Corollary 7.3.6 The element (z, ξ) belongs to SingSupp(F) if and only if f∗(F) ∈
Coh(Z ′) is not perfect on a Zariski neighborhood of z.

Proof Note that Sing(Z ′){z} = Span(ξ).
Let us first prove the “only if” direction. As was mentioned above, Proposi-

tion 7.1.3(b) implies that if (z, ξ) /∈ SingSupp(F), then (z, ξ) /∈SingSupp( f IndCoh∗ (F)).
Hence, on a Zariski neighborhood of z, we have

SingSupp( f IndCoh∗ (F)) ⊂ {0}.

Therefore, by Theorem 4.2.6, f IndCoh∗ (F) belongs to the essential image of the functor

�Z ′ : QCoh(Z ′) → IndCoh(Z ′).

Now, the assertion follows from the following general lemma ([10, Lemma 1.5.8]):

Lemma 7.3.7 For an eventually coconnective DG scheme Z, the intersection

Coh(Z) ∩�Z (QCoh(Z)) ⊂ IndCoh(Z)

equals �Z (QCoh(Z)perf).

Proof The assertion is local, so we can assume that Z is quasi-compact. Since the
functor �Z is fully faithful and continuous, if �Z (F) is compact in IndCoh(Z), then
F is compact in QCoh(Z), i.e., F ∈ QCoh(Z)perf . ��

For the “if” direction, assume that (z, ξ) ∈ SingSupp(F). By Theorem 7.3.3,
we obtain that (z, ξ) belongs to SingSupp( f IndCoh∗ (F)), considered as an object of
Coh(Z ′). Hence, f IndCoh∗ (F) is not perfect on any Zariski neighborhood of z by the
easy direction in Theorem 4.2.6. ��
Remark 7.3.8 We note that the assertion of Corollary 7.3.6 makes sense also when
ξ = 0. It is easy to adapt the proof to show that it is valid in this case as well.

7.3.9. Let Y1 ⊂ Sing(Z1) be conical Zariski-closed subset, and assume that Y1
is contained in the image of Sing(Z1)Z2 under Sing( f ) (Recall that the image is
constructible, but not necessarily closed.).

From Theorem 7.3.3(a), we obtain the following corollary.

Corollary 7.3.10 The restricted functor

f IndCoh∗ |IndCohY1 (Z1) : IndCohY1(Z1) → IndCoh(Z2)

is conservative.
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7.4 Conservativeness for finite quasi-smooth maps

7.4.1. Let us remain in the setting of Sect. 7.3, and let us assume in addition that f
is quasi-smooth. For instance, f could be a quasi-smooth closed embedding, so that
Z1 is a “locally complete intersection in Z2.”

In this case, Sing( f ) is a closed embedding. As before, let Y1,can ⊂ Sing(Z1) be
the image of Sing( f ), which is a conical Zariski-closed subset.

7.4.2. Recall now that f is eventually coconnective, so by Corollary 2.2.5, the
functor f IndCoh∗ admits a left adjoint, f IndCoh,∗. Moreover, f is Gorenstein by Corol-
lary 2.2.7, so the functors f IndCoh,∗ and f ! can be obtained from one another by
tensoring by a cohomologically shifted line bundle (see [10, Proposition 7.3.8]).

By Proposition 7.1.3(a), we have two pairs of adjoint functors

f IndCoh∗ : IndCohY1,can (Z1)� IndCoh(Z2) : f !

and

f IndCoh,∗ : IndCoh(Z2)� IndCohY1,can (Z1) : f IndCoh∗ .

Proposition 7.4.3 Suppose f : Z1 → Z2 is a finite quasi-smooth morphism between
quasi-smooth DG schemes. Then,the essential image of IndCoh(Z2) under the functor
f ! generates IndCohY1,can (Z1).

Proof Since the functors f ! and f IndCoh,∗ differ by tensoring by a cohomologi-
cally shifted line bundle, the statement is equivalent to the claim that the restriction
f IndCoh∗ |IndCohY1,can (Z1) is conservative. This is a particular case of Corollary 7.3.10.

��
Remark 7.4.4 Proposition 7.4.3 is a generalization of Theorem 4.2.6. Indeed, if we
assume that Z is a global complete intersection, it admits a quasi-smooth closed embed-
ding ι : Z → U, where U is smooth. The key step in the proof of Theorem 4.2.6 (see
Sect. 5.7) is to show that the essential image ι!(IndCoh(U)) generates IndCoh{0}(Z).
But this is exactly the assertion of Proposition 7.4.3 applied to ι.

7.4.5. Let now Y2 be an arbitrary conical Zariski-closed subset of Sing(Z2). Let
Y1 ⊂ Sing(Z1) be the image of Y2 ×

Z2

Z1 under the singular codifferential

Sing( f ) : Sing(Z2)Z1 → Sing(Z1).

By Proposition 7.1.3, we have two pairs of adjoint functors:

f IndCoh∗ : IndCohY1(Z1)� IndCohY2(Z2) : f !

and

f IndCoh,∗ : IndCohY2(Z2)� IndCohY1(Z1) : f IndCoh∗ .
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Then from Corollary 7.3.10, we obtain:

Corollary 7.4.6 Under the above circumstances,

(a) The functor f IndCoh∗ : IndCohY1(Z1) → IndCohY2(Z2) is conservative.
(b) The essential image of IndCohY2(Z2) under f ! (or under f IndCoh,∗) generates

IndCohY1(Z1).

7.4.7 A digression Let f : W1 → W2 be a locally eventually coconnective mor-
phism and that W2 is quasi-compact. Let QCoh(W2) act on IndCoh(W1) via the homo-
morphism of monoidal categories f ∗ : QCoh(W2) → QCoh(W1). The functors f !
and f IndCoh,∗ are QCoh(W2)-linear, and therefore induce two functors

QCoh(W1) ⊗
QCoh(W2)

IndCoh(W2)⇒ IndCoh(W1).

Lemma 7.4.8 Let f : W1 → W2 be a locally eventually coconnective morphism with
W2 quasi-compact. Then, the functors

QCoh(W1) ⊗
QCoh(W2)

IndCoh(W2)⇒ IndCoh(W1)

induced by the functors f ! and f IndCoh,∗ are fully faithful.

Proof This is [10, Propositions 4.4.2 and 7.5.9]. ��

7.4.9. Let f : Z1 → Z2 be as above, with Z1 (and hence Z2) quasi-compact.
As in Sect. 7.4.5, we let Y2 be a conical Zariski-closed subset of Sing(Z2), and let
Y1 ⊂ Sing(Z1) be the image of Y2 ×

Z2

Z1 under Sing( f ).

Since the restriction

f ! : IndCohY2(Z2) → IndCohY1(Z1)

is QCoh(Z2)-linear, it induces a functor

QCoh(Z1) ⊗
QCoh(Z2)

IndCohY2(Z2) → IndCohY1(Z1). (7.1)

Corollary 7.4.10 The functor (7.1) is an equivalence.

Proof The functor is fully faithful by Lemma 7.4.8, and its essential image generates
IndCohY1(Z1) by Corollary 7.4.6(b). ��

7.5 Behavior under smooth morphisms

7.5.1. Let f : Z1 → Z2 be a smooth map between DG schemes, and assume that
Z2 is quasi-compact. Recall (see [10, Proposition 4.5.3]) that the functor

f IndCoh,∗ : IndCoh(Z2) → IndCoh(Z1)
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gives rise to an equivalence of categories

IndCoh(Z2) ⊗
QCoh(Z2)

QCoh(Z1) → IndCoh(Z1).

Similarly,the functor f ! : IndCoh(Z2) → IndCoh(Z1) gives rise to an equivalence

IndCoh(Z2) ⊗
QCoh(Z2)

QCoh(Z1) → IndCoh(Z1) (7.2)

see [10, Corollary 7.5.7].

7.5.2. Assume now that Z2 (and, hence, Z1) is quasi-smooth. Recall from
Lemma 2.4.4 that in this case, the singular codifferential

Sing( f ) : Sing(Z2)Z1 := cl(Sing(Z2) ×
Z2

Z1) � Sing(Z2) ×
Z2

Z1 → Sing(Z1)

is an isomorphism.
Fix a conical Zariski-closed subset Y2 ⊂ Sing(Z2), and let Y1 ⊂ Sing(Z1) be the

image

Sing( f )

(
Y2 ×

Z2

Z1

)
.

We have:

Proposition 7.5.3 Under the equivalence of (7.2), we have

IndCohY2(Z2) ⊗
QCoh(Z2)

QCoh(Z1) = IndCohY1(Z1)

as subcategories of IndCoh(Z1).

Proof Since QCoh(Z2) is rigid and IndCohY2(Z2) is dualizable, the formation of

IndCohY2(Z2) ⊗
QCoh(Z2)

−

commutes with limits (see [29, Corollary 4.3.2 and 6.4.2]). Hence, the assertion is
local on Z1. Similarly, it is easy to see that the assertion is local on Z2.

Hence, by Corollary 2.1.7, we can assume that f fits into a commutative diagram

Z1 −−−−→ U1

f

⏐⏐�
⏐⏐� fU

Z2 −−−−→ U2
⏐
⏐�

⏐
⏐�

pt −−−−→ V,
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where U1,U2, and V are smooth affine schemes, fU is a smooth morphism, and all
squares are Cartesian.

We can view

IndCoh(Z2) ⊗
QCoh(Z2)

QCoh(Z1) � IndCoh(Z1)

as a category tensored over

QCoh(U1)⊗ HC(pt /V)op-mod,

and both subcategories in the proposition correspond to the condition that the support
be contained in Y1 ⊂ U1 × V ∗ (see Proposition 3.5.7). ��

7.5.4. Let Y2 and Y1 be as above. From Proposition 7.5.3, we obtain:

Corollary 7.5.5 We have the following commutative diagrams:

IndCohY1(Z1)

�
Y1,all
Z1 ��

��

IndCoh(Z1)
�

Y1,all
Z1

��

f IndCoh∗
��

IndCohY2(Z2)

�
Y2,all
Z1 �� IndCoh(Z2)

�
Y2,all
Z1

��

and

IndCohY1(Z1)

�
Y1,all
Z1 �� IndCoh(Z1)

�
Y1,all
Z1

��

IndCohY2(Z2)

�
Y2,all
Z1 ��

��

IndCoh(Z2).
�

Y2,all
Z1

��

f !
��

7.5.6. As another corollary of Proposition 7.5.3, we obtain the following. Let f :
Z1 → Z2 be as above, and assume moreover that it is surjective, i.e., f is a smooth
cover.

Let Z• denote the Čech nerve of f . Fix Y2 ⊂ Sing(Z2), and for each i , let Y i ⊂
Sing(Zi ) be the corresponding subset of Sing(Zi ).

We can form the cosimplicial category IndCohY •(Z•) using either the !-pullback
or (IndCoh, ∗)-pullback functors. In each case, the resulting cosimplicial category is
augmented by IndCohY2(Z2).

Proposition 7.5.7 Under the above circumstances, the augmentation functor

IndCohY2(Z2) → Tot
(
IndCohY •(Z•)

)

is an equivalence.
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Proof This follows from the fact that

QCoh(Z2) → Tot
(
QCoh(Z•)

)

is an equivalence, combined with the fact that the operation

IndCohY1(Z2) ⊗
QCoh(Z2)

−

commutes with limits. ��
Corollary 7.5.8 For F ∈ IndCoh(Z2), we have

SingSupp(F) ⊂ Y2 ⇔ SingSupp( f !(F)) ⊂ Y2 ×
Z2

Z1,

and also

SingSupp(F) ⊂ Y2 ⇔ SingSupp( f IndCoh,∗(F)) ⊂ Y2 ×
Z2

Z1.

Remark 7.5.9 From Theorem 7.7.2, one can derive a more precise statement: If f :
Z1 → Z2 is a smooth map and F ∈ IndCoh(Z2), then

SingSupp( f !(F)) = SingSupp( f IndCoh,∗(F)) = SingSupp(F) ×
Z2

Z1.

7.6 Quasi-smooth morphisms, revisited

In this subsection, we will establish a generalization of Corollary 7.4.10 for arbitrary
quasi-smooth maps. We will treat the case of the !-pullback, while the (IndCoh, ∗)-
pullback is similar.

7.6.1. Let f : Z1 → Z2 be a quasi-smooth morphisms between quasi-smooth DG
schemes, and assume that Z2 is quasi-compact. For a conical Zariski-closed Y2 ⊂
Sing(Z2), let

Y1 = Sing( f )(Y2 ×
Z2

Z1) ⊂ Sing(Z1),

where we regard Y2 ×
Z2

Z1 as a subset of Sing(Z2)Z1 .

By Proposition 7.1.3(a), we have a well-defined functor

f ! : IndCohY2(Z2) → IndCohY1(Z1).

It extends by QCoh(Z2)-linearity to a functor

QCoh(Z1) ⊗
QCoh(Z2)

IndCohY2(Z2) → IndCohY1(Z1). (7.3)
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Corollary 7.6.2 The functor (7.3) is an equivalence.

Proof As in the proof of Proposition 7.5.3, the statement is local on both Z1 and Z2.
By Lemma 2.1.9, locally, the map f can be decomposed as a composition of a quasi-
smooth closed embedding followed by a smooth map. Now the assertion follows by
combining Proposition 7.5.3 and Corollary 7.4.10. ��

7.6.3. We can now generalize the results of Sect. 7.4 as follows.

Proposition 7.6.4 Suppose that Z1 and Z2 are quasi-smooth DG schemes, and let
f : Z1 → Z2 be an affine quasi-smooth morphism. For a conical Zariski-closed
Y2 ⊂ Sing(Z2), let

Y1 = Sing( f )(Y2 ×
Z2

Z1) ⊂ Sing(Z1),

where we regard Y2 ×
Z2

Z1 as a subset of Sing(Z2)Z1 . Then, Corollary 7.4.6 holds:

(a) The functor f IndCoh∗ : IndCohY1(Z1) → IndCohY2(Z2) is conservative.
(b) The essential image of IndCohY2(Z2) under f ! (or under f IndCoh,∗) generates

IndCohY1(Z1).

Proof As in the proof of Corollary 7.4.6, the claim is local on Z2, so we may assume
that Z2 (and, therefore, Z1) is quasi-compact. Assertions (a) and (b) are equivalent,
so it suffices to verify (b). But it follows from Corollary 7.6.2, because the essential
image of QCoh(Z2) under f ∗ generates QCoh(Z1). ��

7.7 Inverse image

Let us now consider the behavior of singular support under the operation of inverse
image. Let f : Z1 → Z2 be a morphism between quasi-smooth DG schemes (Z1 and
Z2 need not be quasi-compact).

7.7.1. Let F be an object of IndCoh(Z2), and let Y2 ⊂ Sing(Z2) be its singular
support. Let Y1 ⊂ Sing(Z1) be the Zariski closure of Sing( f )(p−1(Y2)), where

p : Sing(Z2)Z1 = Sing(Z2) ×
Z2

Z1 → Sing(Z2)

is the projection.
Consider the object f !(F) ∈ IndCoh(Z1). Note that by Proposition 7.1.3(a), we

have:

SingSupp( f !(F)) ⊂ Y1.

Theorem 7.7.2 Suppose that either F ∈ Coh(Z2) or f is a topologically open mor-
phism (e.g., flat). Then,

SingSupp( f !(F)) = Y1.
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Remark 7.7.3 The assertion of Theorem 7.7.2 is not necessary for the main results of
this paper.

Proof As in Remark 6.2.6, consider the union

Y ′2 :=
⋃

z2∈Z2

suppSym
(
H1(Tz2 (Z2))

)
(

H•(ienh,!
z2

(F))
)
⊂ Sing(Z2).

By Proposition 6.2.2, Y2 = Y ′2; if F ∈ Coh(Z2), then Y2 = Y ′2 by Proposition 6.2.5.
Similarly, consider the union

Y ′1 :=
⋃

z1∈Z1

suppSym
(
H1(Tz1 (Z1))

)
(

H•(ienh,!
z1

( f !(F)))
)
⊂ Sing(Z1);

then SingSupp( f !(F)) = Y ′1.
Let us show that

Y ′1 = Sing( f )(p−1(Y ′2)),

which would imply the assertion of the theorem.
Let z1 ∈ Z1 be a point of Z1, which we may assume to be a k-point after extending

scalars. Set z2 = f (z2) ∈ Z2. Choose a quasi-smooth map

i2 : Z ′2 → Z2

as in Sect. 6.3.2, so that Z ′2 is a DG scheme of the form pt ×
V2

pt, with V2 smooth, and

such that the unique k-point of Z ′2 goes to z2.
Set

Z ′1 := Z1 ×
Z2

Z ′2.

Since DG scheme Z1 and the morphism Z ′1 → Z1 are quasi-smooth, Z ′1 is quasi-
smooth. Also, z1 ∈ Z ′1. We can therefore choose a quasi-smooth map

Z ′′1 → Z ′1

as in Sect. 6.3.2, so that Z ′′1 is a DG scheme of the form pt ×
V1

pt, with V1 smooth, and

such that the unique k-point of Z ′′1 goes to z1. Let i1 be the composition Z ′′1 → Z ′1 →
Z1. Being a composition of quasi-smooth maps, i1 is quasi-smooth.

By Sect. 6.3.6, we know that

SingSupp(i !1( f !(F))) = Y ′1 ∩ Sing(Z1)Z ′′1 ⊂ Sing(Z1)Z ′′1 = Sing(Z1){z1} ⊂ Sing(Z ′′1 ),
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and

SingSupp(i !2(F)) = Y ′2 ∩ Sing(Z2)Z ′2 ⊂ Sing(Z2)Z ′2 = Sing(Z2){z2} ⊂ Sing(Z ′2).

Now we can replace Z1, Z2, and F with Z ′′1 , Z ′2, and i !2(F), respectively. Note that if
F is coherent, then so is i !2(F).

Thus, we assume that clZ1 and clZ2 are both isomorphic to pt. The claim now follows
from Lemma 5.2.10(b) and Proposition 5.2.5(a). ��

7.8 Conservativeness for proper maps

7.8.1. Suppose now that f : Z1 → Z2 is a proper morphism between quasi-
smooth DG schemes. Let Y1 ⊂ Sing(Z1) be a conical Zariski-closed subset, and let
Y2 ⊂ Sing(Z2) be the image of (Sing( f ))−1(Y1) under the projection

Sing(Z2)Z1 → Sing(Z2).

The subset Y2 is automatically closed since the above map is proper.
By Proposition 7.1.3(b), the functor f IndCoh∗ sends IndCohY1(Z1) to IndCohY2(Z2).

Our goal is to prove the following result.

Theorem 7.8.2 Under the above circumstances, the essential image of IndCohY1(Z1)

under f IndCoh∗ generates IndCohY2(Z2).

We will derive Theorem 7.8.2 from the following more general statement:

Proposition 7.8.3 Let f : Z1 → Z2 be a (not necessarily proper) morphism of
quasi-smooth DG schemes. Let Y1 ⊂ Sing(Z1) and Y2 ⊂ Sing(Z2) be conical Zariski-
closed subsets. Suppose that Y2 is contained in the image of Sing( f )−1(Y1) under the
projection

Sing(Z2)Z1 → Sing(Z2).

Suppose F ∈ IndCoh(Z2) is such that �
Y2,all
Z2

(F) �= 0. Then,

�
Y1,all
Z1

◦ f !(F) �= 0.

Proof of Theorem 7.8.2 The statement of the theorem is equivalent to the claim that
the functor right adjoint to

f IndCoh∗ : IndCohY1(Z1) → IndCohY2(Z2)

is conservative.
The right adjoint in question is equal to the composition

IndCohY2(Z2)
�

Y2,all
Z2−→ IndCoh(Z2)

f !−→ IndCoh(Z1)
�

Y1,all
Z1−→ IndCohY1(Z1). (7.4)
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Suppose F ∈ IndCohY2(Z2) is annihilated by the composition (7.4). But by Propo-
sition 7.8.3, the vanishing

�
Y1,all
Z1

◦ f ! ◦�
Y2,all
Z2

(F) = 0

implies

0 = �
Y2,all
Z2

◦�
Y2,all
Z2

(F) = F,

as required. ��
The rest of this subsection is devoted to the proof of Proposition 7.8.3.

7.8.4 Step 1 We are going to reduce the statement of the proposition to the case
when Z2 is of the form pt ×

V2

pt for a smooth scheme V2 and a point pt ↪→ V2.

Indeed, by Lemma 6.2.3, there exists a geometric point z2 of Z2 such that
i !z2

(�
Y2,all
Z2

(F)) �= 0. Extending the ground field, we may assume that iz2 : pt ↪→ Z2
is a rational point.

As in Sect. 6.3.2, we now extend the morphism iz2 to a quasi-smooth morphism of
quasi-smooth DG schemes

i ′2 = iz2,V2 : Z ′2 → Z2,

where

Z ′2 = pt ×
V2

pt

for a smooth scheme V2 with a marked point pt ↪→ V2. Then,

(i ′2)!(�
Y2,all
Z2

(F)) �= 0

by Lemma 6.3.3.
Recall that the singular codifferential Sing(i ′2) is an embedding

Sing(Z2){z2} ↪→ V ∗
2 = Sing(Z ′2),

where V2 = Tpt(V2). Set

Y ′2 = Sing(i ′2)
(
Y2 ∩ Sing(Z2){z2}

) ⊂ V ∗
2 .

Set now Z ′1 = Z1 ×
Z2

Z ′2. The morphism i ′1 : Z ′1 → Z1 is quasi-smooth, so by

Lemma 2.4.3,

Sing(i ′1) : Sing(Z1)Z ′1 = Sing(Z1) ×
Z1

Z ′1 → Sing(Z ′1)
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is a closed embedding. Set

Y ′1 = Sing(i ′1)
(

Y1 ×
Z1

Z ′1
)
⊂ Sing(Z ′1).

From Proposition 7.1.6(b), we obtain a commutative diagram of functors

IndCohY2(Z2)
�

Y2,all
Z2←−−−− IndCoh(Z2)

f !−−−−→ IndCoh(Z1)
�

Y1,all
Z1−−−−→ IndCohY1(Z1)

(i ′2)!
⏐⏐� (i ′2)!

⏐⏐� i ′1
!
⏐⏐� i ′1

!
⏐⏐�

IndCohY ′2(Z ′2)
�

Y ′2,all

Z ′2←−−−− IndCoh(Z ′2)
( f ′)!−−−−→ IndCoh(Z ′1)

�
Y ′1,all

Z ′1−−−−→ IndCohY ′1(Z ′1),

where f ′ : Z ′1 → Z ′2 is the natural morphism. Hence, it suffices to show that

�
Y ′1,all
Z ′1

◦ ( f ′)! ◦ (i ′2)!(F) �= 0.

Note that f ′ satisfies the conditions of Proposition 7.8.3 with respect Y ′2 ⊂ Sing(Z ′2)
and Y ′1 ⊂ Sing(Z ′1).

Thus, we obtain that the statement of proposition is reduced to the case when Z2 is
replaced by Z ′2, Y2 with Y ′2, F by (i ′2)!(F), Z1 by Z ′1, and Y1 by Y ′1.

In other words, we can assume that Z2 = pt ×
V2

pt, as desired.

7.8.5 Step 2 We are now going to reduce the assertion of the proposition to the case
when Z1 is also of the form pt ×

V1

pt.

To do so, let us fix a parallelization of the formal neighborhood of pt in V2. As
explained in Sect. 5.4.6, this equips IndCoh(Z2) with an action of the monoidal cate-
gory QCoh(V ∗

2 /Gm). By Lemma 3.6.7, there exists a geometric point y2 ∈ V ∗
2 such

that the fiber i∗y2
(�

Y2,all
Z2

(F)) �= 0. By Corollary 3.6.8(a), we see that

y2 ∈ Y2 ⊂ V ∗
2 .

Extending the ground field, we may assume that

iy2 : pt ↪→ V ∗
2 = Sing(Z2)

is a k-rational point.
Since Y2 is contained in the image of Sing( f )−1(Y1) under the projection

Sing(Z2)Z1 → Sing(Z2),
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there is a k-point z1 ∈ Z1 such that Sing( f ) sends

(y2, z1) ∈ V ∗
2 × cl(Z1) = cl

(
Sing(Z2) ×

Z2

Z1

)
= Sing(Z2)Z1

into Y1 ⊂ Sing(Z1).
Now extend the morphism iz1 : pt → Z1 to a quasi-smooth morphism of quasi-

smooth DG schemes

ĩ1 = iz1,V1 : Z̃1 → Z1,

where

Z̃1 = pt ×
V1

pt

for a smooth scheme V1 with a marked point pt ↪→ V1. Set f̃ = f ◦ ĩ1.
The singular codifferential Sing(ĩ1) is an embedding

Sing(Z1){z1} ↪→ V ∗
1 = Sing(Z̃1).

Let Ỹ1 be the image

Sing(ĩ1)(Y1 ∩ Sing(Z1){z1}) ⊂ V ∗
1 .

The singular codifferential Sing( f̃ ) is a linear map V ∗
2 → V ∗

1 . Set

Ỹ2 := Y2 ∩ Sing( f̃ )−1(Ỹ1) ⊂ V ∗
2 .

By construction, y2 ∈ Ỹ2. By Corollary 3.6.8(b),

i∗y2
(�

Ỹ2,all
Z2

(F)) � i∗y2
(F) � i∗y2

(�
Y2,all
Z2

(F)) �= 0,

and hence

�
Ỹ2,all
Z2

(F) �= 0.

Thus, it suffices to prove the assertion of the proposition after replacing Y2 by Ỹ2,
Z1 by Z̃1, and Y1 by Ỹ1, while keeping F and Z2 the same.

7.8.6 Step 3 Thus, we can assume that Zi � pt×
Vi

pt for i = 1, 2. In this case, the

assertion of the proposition follows from Lemma 5.2.10(b) and Corollary 5.2.8(a).
��[Proposition 7.8.3]
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8 Singular support on stacks

In this section, we develop the notion of singular support for objects of IndCoh(Z),
where Z is a quasi-smooth Artin stack. This will not be difficult, given the good
functorial properties of IndCoh(−) on DG schemes under smooth maps.

Essentially, all this section amounts to is showing that for Artin stacks things work
just as well as for DG schemes. For this reason, this section, as well as Sect. 9, may
be skipped on the first pass.

Recall that all schemes and stacks are assumed derived by default. To simplify the
terminology, from now on we discard the words “differential graded” for stacks. Thus,
“Artin stack” stands for “DG Artin stack.”

8.1 Quasi-smoothness for stacks

8.1.1. Let Z be an Artin stack (see [28], Sect. 4). We say that it is quasi-smooth if
for every affine DG scheme Z equipped with a smooth map Z → Z, the DG scheme
Z is quasi-smooth.

Equivalently, Z is quasi-smooth if for some (equivalently, every) smooth atlas f :
Z → Z, the DG scheme Z is quasi-smooth.

Recall that for a k-Artin stack Z, its cotangent complex T ∗(Z) is an object of
QCoh(Z)≤k . We have:

Lemma 8.1.2 A k-Artin stack Z is quasi-smooth if and only if T ∗(Z) is perfect of
Tor-amplitude [−1, k].
Proof Let f : Z → Z be a smooth atlas. Then, T ∗(Z) is perfect of Tor-amplitude
[−1, k] if and only if f ∗(T ∗(Z)) has this property. Besides, we have an exact triangle

f ∗(T ∗(Z)) → T ∗(Z) → T ∗(Z/Z),

where T ∗(Z/Z) is perfect of Tor-amplitude [0, k − 1]. Thus, f ∗(T ∗(Z)) is perfect of
Tor-amplitude [−1, k] if and only if T ∗(Z) is perfect of Tor-amplitude [−1, k]. The
latter condition is equivalent to Z being quasi-smooth. ��

We say that a map f : Z1 → Z2 between Artin stacks is quasi-smooth if T ∗(Z1/Z2)

is perfect of Tor-amplitude bounded from below by −1.

8.1.3. Recall the property of local eventual coconnectivity for a morphism between
DG schemes (see Sect. 2.2.3). Clearly, this property is local in the smooth topology
on the source and on the target. Hence, it makes sense for morphisms between Artin
stacks.

Lemma 8.1.4 A quasi-smooth morphism f : Z1 → Z2 of Artin stacks is locally
eventually coconnective. In particular, a quasi-smooth Artin stack is locally eventually
coconnective.

Proof Follows from Corollary 2.2.4. ��
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8.1.5. IfZ is a quasi-smooth Artin stack, we introduce a classical Artin stack Sing(Z),
equipped with an affine (and, in particular, schematic) map to clZ. We call Sing(Z)

the stack of singularities of Z. It is constructed as follows:
For every affine DG scheme Z with a smooth map to Z, we set

Sing(Z)×
Z

Z := Sing(Z),

and this assignment satisfies the descent conditions because of Lemma 2.4.4. Equiv-
alently, Sing(Z) can be defined as

cl(SpecZ

(
SymOZ

(T (Z)[1]))) . (8.1)

8.1.6 The singular codifferential for stacks Let f : Z1 → Z2 be a map between
quasi-smooth Artin stacks. We claim that we have a naturally defined singular codif-
ferential map

Sing( f ) : Sing(Z2)Z1 := Sing(Z2) ×
Z2

Z1 → Sing(Z1). (8.2)

It can be obtained from the differential of f using (8.1).
As in the case of DG schemes, it is easy to see that a map f is quasi-smooth (resp.,

smooth) if and only if the map Sing( f ) is a closed embedding (resp., isomorphism).

8.2 Definition of the category with supports for stacks

8.2.1. Recall ([10, Sect. 11.2]) that we have a well-defined category IndCoh(Z),
and that it can be recovered as

IndCoh(Z) � lim
Z∈DGSchaff

/Z,smooth

IndCoh(Z), (8.3)

where DGSchaff
/Z,smooth denotes the non-full subcategory of (DGSchaff

aft )/Z, where the

objects are restricted to pairs (Z ∈ DGSchaff
aft , f : Z → Z) where f is smooth, and

where 1-morphisms are restricted to maps g : Z1 → Z2 that are smooth as well.
In the formation of the above limit, we can use either the !-pullback functors or

the (IndCoh, ∗)-pullback functors, as the two differ by the twist by a cohomologically
shifted line bundle (this is due to the smoothness assumption on the morphisms).

8.2.2. We let Coh(Z) ⊂ IndCoh(Z) be the full (but not cocomplete) subcategory
defined as

Coh(Z) � lim
Z∈DGSchaff

/Z,smooth

Coh(Z).
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Note that we can think of Coh(Z) also as a full subcategory of QCoh(Z), where
the latter, according to [30, Proposition 5.1.2], is isomorphic to

lim
Z∈DGSchaff

/Z,smooth

QCoh(Z).

8.2.3. Let Y be a conical Zariski-closed subset of Sing(Z). We define the full sub-
category

IndCohY (Z) ⊂ IndCoh(Z)

as
IndCohY (Z) � lim

Z∈DGSchaff
/Z,smooth

IndCohY×
Z

Z (Z), (8.4)

where we view Y ×
Z

Z as a closed subset of

Sing(Z)×
Z

Z � Sing(Z).

From Lemmas 4.2.2 and 4.3.5, we obtain:

Corollary 8.2.4 The action of QCoh(Z) on IndCoh(Z) preserves IndCohY (Z).

8.2.5. From Corollary 7.5.5, we obtain:

Corollary 8.2.6 There exists a pair of adjoint functors

�
Y,all
Z : IndCohY (Z)� IndCoh(Z) : �Y,all

Z ,

with �
Y,all
Z being fully faithful. Moreover, for a smooth map f : Z → Z, we have

commutative diagrams

IndCohY×
Z

Z (Z)
�

Y×
Z

Z ,all

Z−−−−−→ IndCoh(Z)

�⏐⏐
�⏐⏐ f !

IndCohY (Z)
�

Y,all
Z−−−−→ IndCoh(Z)

and

IndCohY×
Z

Z (Z)
�

Y×
Z

Z ,all

Z←−−−−− IndCoh(Z)

�⏐⏐
�⏐⏐ f !

IndCohY (Z)
�

Y,all
Z←−−−− IndCoh(Z)
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8.2.7. Recall from [10, Sect. 11.7.3] that for an eventually coconnective Artin stack,
we have a fully faithful functor

�Z : QCoh(Z) → IndCoh(Z).

From Theorem 4.2.6, we obtain:

Corollary 8.2.8 If Y is the zero-section, the subcategory

IndCoh{0}(Z) ⊂ IndCoh(Z)

coincides with the essential image of QCoh(Z) under the functor

�Z : QCoh(Z) → IndCoh(Z).

8.2.9. Let V ↪→ Z be a closed substack (not necessarily quasi-smooth), and let
j : U ↪→ Z be the complementary open.

Corollary 8.2.10 Let Y ⊂ Sing(Z) be a closed conical subset. Set

YV = cl
(

Y ×
Z

V

)
⊂ Sing(Z).

(a) The subcategory

IndCohY (Z) ∩ IndCoh(ZV) ⊂ IndCoh(Z)

is equal to IndCohYV (Z).
(b) We have a short exact sequence of categories

IndCohYV (Z)� IndCohY (Z)� IndCohY×
Z

U(U).

Proof The two claims follow from Corollaries 4.5.2 and 4.5.9 ��

8.2.11. We have no reason to expect that the category IndCohY (Z) is compactly
generated for an arbitrary Z.

Assume now that Z is a QCA algebraic stack in the sense of [6] Definition 1.1.87

(in particular, Z is a 1-Artin stack).
It is shown in loc.cit., Theorem 3.3.4, that in this case the category IndCoh(Z) is

compactly generated by Coh(Z). In particular, IndCoh(Z) is dualizable.
By Corollary 8.2.6, the category IndCohY (Z) is a retract of IndCoh(Z). Hence, by

[6, Lemma 4.3.3], we obtain:

Corollary 8.2.12 Under the above circumstances, the category IndCohY (Z) is dual-
izable.

7 QCA means quasi-compact, and the automorphism group of any geometric point is affine.
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Remark 8.2.13 We do not know whether under the assumptions of Corollary 8.2.12,
the category IndCohY (Z) is compactly generated. In fact, we do not know this even
for Y = {0}, i.e., we do not know whether QCoh(Z) is compactly generated. We will
describe two cases when this holds: One is proved in Appendix C (when Z = Z is a
quasi-compact DG scheme) and the other in Sect. 9.2.

8.3 Smooth descent

8.3.1 Smooth maps of stacks It follows from Lemma 2.4.3 that if Z1 → Z2 is
smooth, the singular codifferential

Sing( f ) : Sing(Z2)Z1 = Sing(Z2) ×
Z2

Z1 → Sing(Z1)

is an isomorphism.
For a conical closed subset Y2 ⊂ Sing(Z2), set

Y1 := Sing( f )

(
Y2 ×

Z2

Z1

)
⊂ Sing(Z1).

Lemma 8.3.2 Let f : Z1 → Z2 be a smooth map between quasi-smooth Artin stacks.
Then, we have the following commutative diagram

IndCohY1(Z1)

�
Y1,all
Z1 �� IndCoh(Z1)

�
Y1,all
Z1

��

IndCohY2(Z2)

�
Y2,all
Z1 ��

��

IndCoh(Z2).
�

Y2,all
Z1

��

f !
��

If in addition f is quasi-compact and schematic, we also have a commutative diagram

IndCohY1(Z1)

�
Y1,all
Z1 ��

��

IndCoh(Z1)
�

Y1,all
Z1

��

f IndCoh∗
��

IndCohY2(Z2)

�
Y2,all
Z1 �� IndCoh(Z2).

�
Y2,all
Z1

��

Proof Both assertions follow formally from Corollary 7.5.5. ��

8.3.3. Let f : Z1 → Z2 be a smooth map between quasi-smooth Artin stacks. Let
Z•1 denote its Čech nerve. Consider the co-simplicial DG category IndCoh(Z•1) formed
by using either !- or (IndCoh, ∗)-pullback functors, augmented by IndCoh(Z2).
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Let Y2 ⊂ Sing(Z2) be a conical Zariski-closed subset. Set Y •1 ⊂ Z•1 to be equal to

Z•1 ×
Z2

Sing(Z2).

According to Lemma 8.3.2, we have a well-defined full cosimplicial subcategory

IndCohY •1 (Z•1) ⊂ IndCoh(Z•1),

augmented by IndCohY2(Z2).

Proposition 8.3.4 Suppose that f is surjective on k-points. Then, the augmentation
functor

IndCohY2(Z2) → Tot
(

IndCohY •1 (Z•1)
)

is an equivalence.

Proof The statement formally follows from Proposition 7.5.7: Smooth descent for
schemes implies smooth descent for stacks. To make the argument precise, we consider
an auxiliary category of “inputs for IndCoh.” Namely, the objects of the category are
pairs (Z , Y ), where Z is a quasi-smooth affine DG scheme, and Y ⊂ Sing(Z) is
a conical Zariski-closed subset. Morphisms (Z1, Y1) to (Z2, Y2) are smooth maps
Z1 → Z2 whose singular codifferential induces an isomorphism Y2 ×

Z2

Z1 → Y1.

Denote this category by DGSchaff
aft,q-smooth+ supp.

Let Z′ be a quasi-smooth Artin stack, and let Y ′ ⊂ Sing(Z′) be a conical Zariski-
closed subset. This pair defines a presheaf (Z′, Y ′) on DGSchaff

aft,q-smooth+ supp. Namely,

for any (Z , Y ) ∈ DGSchaff
aft,q-smooth+ supp, the groupoid

Maps((Z , Y ), (Z′, Y ′))

is the full subgroupoid in Maps(Z ,Z′) consisting of maps Z → Z′ that are smooth
and whose singular codifferential induces an isomorphism

Z ×
Z′

Y ′ → Y.

The assignment (Z , Y ) �→ IndCohY (Z) is a functor

IndCohsupp : (DGSchaff
aft,q-smooth+ supp)

op → DGCatcont .

It follows from [10, Proposition 11.2.2] that the category IndCohY ′(Z′) identifies with
the value on

(Z′, Y ′) ∈ PreShv(DGSchaff
aft,q-smooth+ supp)
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of the right Kan extension of IndCohsupp along the Yoneda embedding

(DGSchaff
aft,q-smooth+ supp)

op ↪→ (PreShv(DGSchaff
aft,q-smooth+ supp))

op.

Now, Proposition 7.5.7 says that the functor IndCohsupp satisfies descent with
respect to surjective maps. This implies the assertion of the lemma by [20, 6.2.3.5].

��

8.3.5. Proposition 8.3.4 allows us to reduce statements concerning morphisms of
Artin stacks f : Z′ → Z to the case when Z is a DG scheme. Such proofs proceed by
induction along the hierarchy

DGSchaft → Alg. Spaces → Stk1-Artin → Stk2-Artin → . . . .

Namely, we choose an atlas Z → Z with Z being a DG scheme that is locally
almost of finite type. Now if Z is a k-Artin stack, then the terms of the Čech nerve Z•
are (k − 1)-Artin stacks.

8.4 Functorial properties

Let Z1 and Z2 be two quasi-smooth Artin stacks, and let

f : Z1 → Z2

be a map.

8.4.1 Functoriality under pullbacks Let Yi ⊂ Sing(Zi ) be conical Zariski-closed
subsets.

Lemma 8.4.2 Assume that the image of Y2 ×
Z2

Z1 under the singular codifferential

(8.2) is contained in Y1. Then, the functor f ! sends IndCohY2(Z2) to IndCohY1(Z1).

Proof By Sect. 8.3.5, we reduce the statement to the case when Z2 is a DG scheme.
In the latter case, the statement from Proposition 7.1.3(a). ��

Similarly, we have:

Lemma 8.4.3 Assume that the preimage of Y1 under the singular codifferential (8.2)
is contained in Y2 ×

Z2

Z1. Then, the functor

IndCoh(Z2)
f !−→ IndCoh(Z1)

�
Y1,all
Z1−→ IndCohY1(Z1)

factors through the colocalization

IndCoh(Z2)
�

Y2,all
Z2−→ IndCohY2(Z2).
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Proof Again, by Sect. 8.3.5, we reduce the statement to the case when Z2 is a DG
scheme. In the latter case, the statement from Proposition 7.1.6(b). ��

8.4.4 Functoriality under pushforwards Let now

f : Z1 → Z2

be schematic and quasi-compact. Recall (see [10, Sect. 10.6]) that in this case, we
have a well-defined functor

f IndCoh∗ : IndCoh(Z1) → IndCoh(Z2),

which satisfies a base-change property with respect to !-pullbacks for maps Z′2 → Z2.

Lemma 8.4.5 Let f : Z1 → Z2 be schematic and quasi-compact. Assume that the
preimage of Y1 under the singular codifferential (8.2) is contained in Y2 ×

Z2

Z1. Then,

the functor f IndCoh∗ sends IndCohY1(Z1) to IndCohY2(Z2).

Proof Follows from Proposition 7.1.3(b) by base change. ��
Similarly, we have:

Lemma 8.4.6 Let f : Z1 → Z2 be schematic and quasi-compact. Assume that the
image of Y2 ×

Z2

Z1 under the singular codifferential (8.2) is contained in Y1. Then, the

functor

IndCoh(Z1)
f IndCoh∗−→ IndCoh(Z2)

�
Y2,all
Z2−→ IndCohY2(Z2)

factors through the colocalization

IndCoh(Z1)
�

Y1,all
Z1−→ IndCohY1(Z1).

Proof Follows from Proposition 7.1.6(a) by base change. ��

8.4.7 Preservation of coherence We have the following generalization of Proposi-
tion 7.2.2:

Corollary 8.4.8 (a) Let F′,F′′ ∈ Coh(Z) be such that, set-theoretically,

SingSupp(F′) ∩ SingSupp(F′′) = {0}.

Then, both

F′ ⊗ F′′ and Hom(F′,F′′)

belong to Coh(Z).
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(b) Let f : Z1 → Z2 be a morphism and F2 ∈ Coh(Z2) such that, set-theoretically,

(
SingSupp(F2) ×

Z2

Z1

)
∩ ker

(
Sing( f ) : Sing(Z2)Z1 → Sing(Z1)

)
⊂ {0} ×

Z2

Z1.

Then, f !(F2) ∈ IndCoh(Z1) belongs to Coh(Z1) ⊂ IndCoh(Z1), and f ∗(F2) ∈
QCoh(Z1) belongs to Coh(Z1) ⊂ QCoh(Z1).

8.4.9 Conservativeness for finite maps Let now f : Z1 → Z2 be a finite (and, in
particular, affine) map of quasi-smooth Artin stacks. Let Y1 ⊂ Sing(Z1) be a conical
Zariski-closed subset contained in the image of Sing( f ).

From Corollary 7.3.10, we obtain:

Corollary 8.4.10 The functor f IndCoh∗ |IndCohY1 (Z1) : IndCohY1(Z1) → IndCoh(Z2)

is conservative.

8.4.11 Conservativeness for quasi-smooth affine maps Let us prove an extension of
Proposition 7.6.4. Suppose Z1 and Z2 are quasi-smooth Artin stacks, and f : Z1 → Z2
is a quasi-smooth affine map; in particular, f is schematic and quasi-compact. As in
the case of schemes, the singular codifferential

Sing( f ) : Sing(Z2)Z1 → Sing(Z1)

is a closed embedding; this follows from Lemma 2.4.3 by base change.

Proposition 8.4.12 Let Y2 ⊂ Sing(Z2) be a conical closed subset. Set

Y1 = Sing( f )

(
Y2 ×

Z2

Z1

)
⊂ Sing(Z1).

(a) The essential image of IndCohY2(Z2) under the functor f ! generates
IndCohY1(Z1).

(b) The restriction of the functor f IndCoh∗ to IndCohY1(Z1) is conservative.

Proof By [10, Proposition 10.7.7], we have a pair of adjoint functors

f IndCoh∗ : IndCoh(Z1)� IndCoh(Z2) : f !.

From Lemmas 8.4.2 and 8.4.5, we see that they restrict to a pair of functors

f IndCoh∗ : IndCohY1(Z1)� IndCohY2(Z2) : f !.

Moreover, since f is locally eventually coconnective and Gorenstein, we have another
pair of adjoint functors

f IndCoh,∗ : IndCohY2(Z2)� IndCohY1(Z1) : f IndCoh∗ ,
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where f ! differs from f IndCoh,∗ by tensoring with the relative dualizing sheaf (see [10,
Proposition 7.3.8]). Therefore, the two claims of the proposition are equivalent.

By Sect. 8.3.5, claim (b) is local in smooth topology on Z2; hence, we may assume
that Z2 is a DG scheme. This reduces the proposition to Proposition 7.6.4. ��

8.4.13 Quasi-smooth maps of stacks Let f : Z1 → Z2 be a quasi-smooth map of
Artin stacks. Assume now that Z2 is quasi-compact and has an affine diagonal. In
particular Z2 is QCA, and by [6, Corollary 4.3.8], the category QCoh(Z2) is rigid as
a monoidal category.

Let Y2 ⊂ Sing(Z2) and let

Y1 := Sing( f )

(
Y2 ×

Z2

Z1

)
⊂ Sing(Z1).

Proposition 8.4.14 Under the above circumstances, the functor

IndCohY2(Z2) ⊗
QCoh(Z2)

QCoh(Z1) → IndCohY1(Z1),

induced by the QCoh(Z2)-linear functor

f ! : IndCoh(Z2) → IndCoh(Z1),

is an equivalence.

Proof By definition, we have

IndCohY1(Z1) � lim
Z1∈DGSchaff

/Z,smooth

IndCohY1 ×
Z1

Z1(Z1).

In addition, by [30, Proposition 5.1.2(b)]

QCoh(Z1) � lim
Z1∈DGSchaff

/Z,smooth

QCoh(Z1).

Since the category IndCohY2(Z2) is dualizable, and QCoh(Z2) is rigid, by [29,
Corollaries 4.3.2 and 6.4.2], the formation of

IndCohY2(Z2) ⊗
QCoh(Z2)

−

commutes with limits. This reduces the assertion of the proposition to the case when
Z1 = Z1 is an affine DG scheme.

Choose a smooth atlas Z2 → Z2, and let Z•2 be its Čech nerve. Note that the
assumption on Z2 implies that the terms of Z•2 are DG schemes (and not Artin stacks).
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By Proposition 8.3.4, we obtain that IndCohY2(Z2) is the totalization of
IndCohY •2 (Z•2), where

Y •2 := Y2 ×
Z2

Z•2 .

Since QCoh(Z1) is dualizable and QCoh(Z2) is rigid, we obtain that

IndCohY2(Z2) ⊗
QCoh(Z2)

QCoh(Z1)

maps isomorphically to the totalization of

IndCohY •2 (Z•2) ⊗
QCoh(Z2)

QCoh(Z1). (8.5)

However,

IndCohY •2 (Z•2) ⊗
QCoh(Z2)

QCoh(Z1)

� IndCohY •2 (Z•2) ⊗
QCoh(Z•2)

QCoh(Z•2) ⊗
QCoh(Z2)

QCoh(Z1).

Now, we claim that the natural functor

QCoh(Z•2) ⊗
QCoh(Z2)

QCoh(Z1) → QCoh(Z•2 ×
Z2

Z1)

is an equivalence. This follows from Lemma 8.4.15 below.
Thus, we obtain that the cosimplicial category (8.5) identifies with

IndCohY2 ×
Z2

Z•2 (Z•2) ⊗
QCoh(Z•2)

QCoh(Z•2 ×
Z2

Z1) � IndCohY2 ×
Z2

(Z•2 ×
Z2

Z1)(Z•2 ×
Z2

Z1),

where the last isomorphism takes place due to Proposition 7.5.3.
Now, Z•2 ×

Z2

Z1 is the Čech nerve of the smooth cover Z2 ×
Z2

Z1 → Z1, and by

Proposition 7.5.7, the totalization of

IndCohY2 ×
Z2

(Z•2 ×
Z2

Z1)(Z•2 ×
Z2

Z1)

is isomorphic to IndCohY1(Z1), as required. ��
Lemma 8.4.15 Let Z be a quasi-compact stack with an affine diagonal. Then for any
two prestacks Z1 and Z2 mapping to Z, the naturally defined functor

QCoh(Z1) ⊗
QCoh(Z)

QCoh(Z2) → QCoh(Z1 ×
Z

Z2)

is an equivalence, provided that one of the categories QCoh(Z1) or QCoh(Z2) is
dualizable.
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Proof This follows by combining [30, Proposition 3.3.3] and [6, Corollary 4.3.8]. ��

8.4.16. Let Z be again a quasi-compact stack with an affine diagonal. Let V ⊂ Z

and Y ⊂ Sing(Z) be as in Corollary 8.2.10.
In a way analogous to the proof of Proposition 8.4.14, one shows:

Proposition 8.4.17 Under the above circumstances, the short exact sequence of cat-
egories

IndCohYV (Z)� IndCohY (Z)� IndCohY×
Z

U(U)

is obtained from

QCoh(Z)V� QCoh(Z)
j∗
� QCoh(U)

by tensoring with IndCohY (Z) over QCoh(Z).

8.4.18 Conservativeness for proper maps of stacks Suppose now that f : Z1 →
Z2 is a schematic proper morphism between quasi-smooth Artin stacks. Let Y1 ⊂
Sing(Z1) be a conical closed subset, and let Y2 be the image of

(Sing( f ))−1(Y1) ⊂ Sing(Z2)Z1

under the projection

Sing(Z2)Z1 → Sing(Z2).

Since the projection is proper, Y2 ⊂ Sing(Z2) is a closed subset.
By Lemma 8.4.5, the functor f IndCoh∗ sends IndCohY1(Z1) to IndCohY2(Z2). We

have the following generalization of Theorem 7.8.2.

Proposition 8.4.19 Under the above circumstances, the essential image of IndCohY1

(Z1) under f IndCoh∗ generates IndCohY2(Z2).

Proof It is enough to verify that the claim is local on Z2 in the smooth topology; one
can then use Theorem 7.8.2. Indeed, the proposition is equivalent to the claim that the
functor right adjoint to

f IndCoh∗ : IndCohY1(Z1) → IndCohY2(Z2)

is conservative. The right adjoint in question is the composition

IndCohY2(Z2)
�

Y2,all
Z2−→ IndCoh(Z2)

f !−→ IndCoh(Z1)
�

Y1,all
Z1−→ IndCohY1(Z1).

The locality of this assertion follows from Sect. 8.3.5. ��
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9 Global complete intersection stacks

In this section, we adapt the approach of Sect. 5 to stacks. Our main objective is to show
that for a quasi-compact algebraic stack Z, globally given as a “complete intersection,”
and Y ⊂ Sing(Z), the corresponding category IndCohY (Z) is compactly generated.
The precise meaning of the words “global complete intersection stack” is explained
in Sect. 9.2.

As was mentioned earlier, this section may be skipped on the first pass.
In this section, all Artin stacks will be quasi-compact with an affine diagonal (in

particular, they all are QCA algebraic stacks in the sense of [6]).

9.1 Relative Koszul duality

9.1.1. Let us consider a relative version of the setting of Sect. 5. Let X be a smooth
stack, V → X a smooth schematic map, and let X → V be a section.

Consider the fiber product

GX/V = X×
V

X.

As in Sect. 5.6.1, it is naturally a group DG scheme over X.

9.1.2. The group structure onGX/VoverX turns IndCoh(GX/V) into a monoidal cate-
gory over the symmetric monoidal category QCoh(X); the operation on IndCoh(GX/V)

is the convolution. The unit object of IndCoh(GX/V) is

(�X)IndCoh∗ (ωX) ∈ IndCoh(GX/V),

where ωX is the dualizing complex on X. Its endomorphisms naturally form an E2-
algebra in the symmetric monoidal category QCoh(X) (see Sect. E.2). Denote this
E2-algebra by HC(X/V).

Moreover, (�X)IndCoh∗ (ωX) generates IndCoh(GX/V) over QCoh(X). Therefore,
taking maps from (�X)IndCoh∗ (ωX) defines an equivalence of monoidal categories:

KDX/V : IndCoh(GX/V) → HC(X/V)op-mod.

This equivalence is the relative version of the Koszul duality (5.3).

Lemma 9.1.3 The monoidal category HC(X/V)op-mod is rigid and compactly gen-
erated.

Proof First, note that QCoh(X) is compactly generated, that is, that X is a perfect stack.
Indeed, X is smooth, so it suffices to show that IndCoh(X) is compactly generated.
The latter statement holds because X is a QCA stack, (see [6, Theorem 0.4.5]).

To show that HC(X/V)op-mod is rigid and compactly generated, we must show
that it admits a family of compact dualizable generators (see [29, Lemma 5.1.1 and



Singular support of coherent sheaves 109

Proposition 5.2.3]). It is not hard to see that HC(X/V)op-modules induced from per-
fect objects of QCoh(X) form such a family. Let us prove the corresponding general
statement.

Let O be a symmetric monoidal category that is compactly generated and rigid as a
monoidal category. Then for any E2-algebra A in O, the monoidal category A-mod(O)

is rigid and compactly generated.
Indeed, for o ∈ Oc, the object A ⊗ o is compact in A-mod(O). Clearly, such

compact objects generate A-mod(O).
Since O is rigid, its compact objects are dualizable. Hence, A⊗o is also dualizable:

Its dual is A⊗o∨. Thus, A-mod(O) admits a family of compact dualizable generators,
as required. ��

9.1.4. As in Lemma 5.1.4, we obtain that the E1-algebra underlying HC(X/V) is
canonically isomorphic to SymOX

(V [−2]), where V is the pullback along X → V of
the relative tangent sheaf to V → X.

In particular, we have a canonical identification

HC(X/V)op-mod � SymOX
(V [−2])-mod (9.1)

as module categories over QCoh(X).

Remark 9.1.5 A remark parallel to Remark 5.1.11 applies in the present situation.

9.1.6. Clearly, Sing(GX/V) � V ∗, where V ∗ denotes the total space of the corre-
sponding vector bundle over X.

Let Y ⊂ V ∗ be a conical Zariski-closed subset. Let us denote by

HC(X/V)op-modY ⊂ HC(X/V)op-mod � SymOX
(V [−2])-mod

the full subcategory of objects supported on Y . If X is an affine scheme, it can be
defined via the formalism of Sect. 3.5.1; in general, we define it using an affine atlas
X → X.

Corollary 9.1.7 The functor KDX/V provides an equivalence between
IndCohY (GX/V) and HC(X/V)op-modY .

Proof The claim is local in the smooth topology on X. Therefore, we may assume that
X is affine, and the assertion follows from the definition. ��
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9.2 Explicit presentation of a quasi-smooth stack

9.2.1. Let Z be an Artin stack, and assume that we have a commutative diagram

Z U

X V

X

ι ��

�� ��
��

id
��















����
��
��
��

(9.2)

where the upper square is Cartesian, the lower portion of the diagram is as in Sect. 9.1,
and U is a smooth stack. Recall that X is assumed to be smooth, and that V is smooth
and schematic over X.

In this situation, we say that Z is presented as a global complete intersection stack.
It is easy to see that such Z is quasi-smooth.

9.2.2. We have a commutative diagram:

Z Z

GZ/U

X X,

GX/V

��������������

		������������

��������������

		������������

��

�� ��

(9.3)

in which both parallelograms are Cartesian.
In particular, as in Sect. 5.3.1, we obtain that the relative group DG scheme GX/V

canonically acts on Z.

9.2.3. We obtain homomorphisms of monoidal categories

HC(X/V)-mod ⊗
QCoh(X)

QCoh(U)

� IndCoh(GX/V) ⊗
QCoh(X)

QCoh(U) → IndCoh(GZ/U).

This allows us to view IndCoh(Z) as a category tensored over

HC(X/V)-mod ⊗
QCoh(X)

QCoh(U).
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9.2.4. Let Y ⊂ V ∗ ×
X

U be a conical Zariski-closed subset. We can attach to it a full

subcategory

(
HC(X/V)-mod ⊗

QCoh(X)
IndCoh(U)

)

Y

⊂ HC(X/V)-mod ⊗
QCoh(X)

IndCoh(U)

(9.4)
by interpreting

HC(X/V)-mod ⊗
QCoh(X)

IndCoh(U) � IndCoh(GX/V) ⊗
QCoh(X)

QCoh(U)

� IndCoh(GX/V×
X

U),

where the latter equivalence follows from Lemma 8.4.15 and Proposition 8.4.14 by

IndCoh(GX/V) ⊗
QCoh(X)

QCoh(U)

= IndCoh(GX/V) ⊗
QCoh(GX/V)

QCoh(GX/V) ⊗
QCoh(X)

QCoh(U)

� IndCoh(GX/V) ⊗
QCoh(GX/V)

QCoh(GX/V×
X

U) � IndCoh(GX/V×
X

U).

Finally, we note that

Sing(GX/V×
X

U) � V ∗ ×
X

U,

and we let the subcategory (9.4) correspond to

IndCohY (GX/V×
X

U) ⊂ IndCoh(GX/V×
X

U).

9.2.5. We have a canonical closed embedding

Sing(Z) ↪→ V ∗ ×
X

Z. (9.5)

The following assertion is parallel to Corollary 5.3.5.

Lemma 9.2.6 For a conical Zariski-closed subset Y ⊂ Sing(Z),

IndCohY (Z)

� IndCoh(Z) ⊗
HC(X/V)-mod ⊗

QCoh(X)
QCoh(U)

(
HC(X/V)-mod ⊗

QCoh(X)
QCoh(U)

)

Y

.

Proof First, Lemma 8.4.15 reduces the assertion to the case when U is an affine DG
scheme.
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Note that for any morphism f : X1 → X2 of prestacks and an associative algebra
A2 ∈ QCoh(X2), the natural functor

A2-mod ⊗
QCoh(X2)

QCoh(X1) → A1-mod

is an equivalence (here A1 := f ∗(A2)). This follows from [29, Proposition 4.8.1].
This observation, combined with Lemma 8.4.15, reduces the assertion to the case

when X is an affine DG scheme. In the latter case, the assertion follows from Corol-
lary 5.3.5. ��
Corollary 9.2.7 For any conical Zariski-closed subset Y ⊂ Sing(Z), the category
IndCohY (Z) is compactly generated.

Proof Since the monoidal category HC(X/V)-mod ⊗
QCoh(X)

QCoh(U) is rigid, and

IndCoh(Z) is compactly generated, it suffices to show that

(
HC(X/V)-mod ⊗

QCoh(X)
QCoh(U)

)

Y

is compactly generated. By (9.1), the latter is equivalent to

(
SymOX

(V [−2])-mod ⊗
QCoh(X)

QCoh(U)

)

Y

being compactly generated, which in turn would follow from the compact generation
of

(
SymOX

(V [−2])-mod ⊗
QCoh(X)

QCoh(U)

)Gm

Y

,

where Gm acts on V by dilations.
Let us now compare the categories SymOX

(V [−2])-mod and SymOX
(V )-mod.

While the two categories are not equivalent, they differ only by a shift of grading; this
implies that their categories of Gm-equivariant objects are naturally equivalent (we
discuss the framework of the grading shift in Sect. A.2.2). The same applies to the
categories

SymOX
(V [−2])-mod ⊗

QCoh(X)
QCoh(U)

and

SymOX
(V )-mod ⊗

QCoh(X)
QCoh(U).
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Hence,

(
SymOX

(V [−2])-mod ⊗
QCoh(X)

QCoh(U)

)Gm

Y

�
(

SymOX
(V )-mod ⊗

QCoh(X)
QCoh(U)

)Gm

Y

� QCoh((V ∗/Gm)×
X

U)Y/Gm ,

and the latter is easily seen to be compactly generated by

Coh((V ∗/Gm)×
X

U)Y/Gm =QCoh((V ∗/Gm)×
X

U)perf ∩ QCoh((V ∗/Gm)×
X

U)Y/Gm ,

since the stack (V ∗/Gm)×
X

U is smooth. ��

Corollary 9.2.8 Under the circumstances of Corollary 9.2.7, we have:

IndCohY (Z) � Ind(CohY (Z)),

where CohY (Z) := IndCohY (Z) ∩ Coh(Z).

Proof By Corollary 9.2.7, it suffices to show that

(IndCohY (Z))c = IndCohY (Z) ∩ Coh(Z),

as subcategories of IndCohY (Z).
However, this follows from the fact that the functor IndCohY (Z) ↪→ IndCoh(Z)

admits a continuous right adjoint and hence sends compacts to compacts, is fully
faithful, and

Coh(Z) = IndCoh(Z)c

(the latter is [6, Proposition 3.4.2(b)]). ��

9.3 Parallelized situation

Assume now that in diagram (9.2), the map V → X has been parallelized. That is,
assume that V is a vector bundle V over X, and the section X → V is the zero-section.

9.3.1. The diagram (9.2) can then be simplified, at least assuming that the rank of
the vector bundle V is constant on X (for instance, this is true if X is connected).
Indeed, suppose that rk(V ) = n. By definition, the vector bundle V on X defines a
morphism from X into the classifying stack pt / GL(n). Clearly,

V = X ×
pt / GL(n)

(An/ GL(n)).
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Consider the composition

U → V → (An/ GL(n));

we then have

Z = U ×
An/ GL(n)

(pt / GL(n)),

where we embed pt into A
n as the origin. In other words, we may assume that X =

pt / GL(n) and V = A
n/ GL(n) in (9.2).

In more explicit terms, U is equipped with a rank n vector bundle and a section,
and Z is the zero locus of this section. That is, we may assume that X = U in (9.2)
and that the composition U → V → X is the identity map.

9.3.2. As in Lemma 5.4.2, we obtain that HC(X/V) is canonically isomorphic to
SymOX

(V [−2]) as an E2-algebra.
In particular, we obtain that for Z in (9.2), the category IndCoh(Z) is tensored over

the monoidal category

QCoh(V ∗/Gm) ⊗
QCoh(X)

QCoh(U) � QCoh((V ∗/Gm)×
X

U).

Moreover, we have the following version of Lemma 9.2.6:

Corollary 9.3.3 For a conical Zariski-closed subset Y ⊂ Sing(Z), we have

IndCohY (Z) = IndCoh(Z) ⊗
QCoh((V ∗/Gm )×

X
U)

QCoh((V ∗/Gm)×
X

U)Y/Gm (9.6)

as full subcategories of IndCoh(Z).

Proof Follows from the fact that

Vect ⊗
QCoh(pt /Gm )

QCoh((V ∗/Gm)×
X

U) � QCoh(V ∗ ×
X

U)

as monoidal categories, and

Vect ⊗
QCoh(pt /Gm )

QCoh((V ∗/Gm)×
X

U)Y/Gm � QCoh(V ∗ ×
X

U)Y

as modules over them. ��
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9.4 Generating the category defined by singular support on a stack

9.4.1. As in Sect. 5.6.1, we have a tautologically defined functor

G : IndCoh(Z) → HC(X/V)-mod ⊗
QCoh(X)

IndCoh(Z),

and its left adjoint

F : HC(X/V)-mod ⊗
QCoh(X)

IndCoh(Z) → IndCoh(Z).

These functors are obtained as pullback and pushforward, respectively, for the
action map

actGX/V ,Z : GX/V×
X

Z → Z.

We have the following versions of Corollaries 5.6.6 and 5.6.7.

Proposition 9.4.2 For any conical Zariski-closed subset Y ⊂ V∗ ×
X

U, the functors F

and G restrict to a pair of adjoint functors

F :
(

HC(X/V)-mod ⊗
QCoh(X)

IndCoh(Z)

)

Y

� IndCohY∩Sing(Z)(Z) : G.

Moreover, the diagram

HC(X/V)-mod ⊗
QCoh(X)

IndCoh(Z) ��

��

IndCoh(Z)��

�
Y,all
Z

��(
HC(X/V)-mod ⊗

QCoh(X)
IndCoh(Z)

)

Y

�� IndCohY∩Sing(Z)(Z).��

commutes. Here, the left vertical arrow is the right adjoint to the inclusion
(

HC(X/V)-mod ⊗
QCoh(X)

IndCoh(Z)

)

Y

↪→ HC(X/V)-mod ⊗
QCoh(X)

IndCoh(Z).

Proof Reduces to the case of DG schemes as in the proof of Lemma 9.2.6. ��
Corollary 9.4.3 Suppose Y is a conical Zariski-closed subset of Sing(Z) ⊂ V∗ ×

X
U.

(a) For any F ∈ IndCoh(Z), we have:

F ∈ IndCohY (Z) ⇔ G(F) ∈
(

HC(X/V)-mod ⊗
QCoh(X)

IndCoh(Z)

)

Y

.
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(b) The essential image under F of the category

(
HC(X/V)-mod ⊗

QCoh(X)
IndCoh(Z)

)

Y
generates IndCohY (Z).

Proof The corollary formally follows from the conservativeness of G, similarly to the
proof of Corollary 5.6.7. Namely, F ∈ IndCohY (Z) if and only if the natural morphism
�

Y,all
Z (F) → F is an isomorphism. Since G is conservative, this happens if and only

if the morphism G(�
Y,all
Z (F)) → G(F) is an isomorphism; by Proposition 9.4.2, this

is equivalent to

G(F) ∈
(

HC(X/V)-mod ⊗
QCoh(X)

IndCoh(Z)

)

Y

.

We have therefore proved part (a). Also, by Proposition 9.4.2, the restriction

F :
(

HC(X/V)-mod ⊗
QCoh(X)

IndCoh(Z)

)

Y

→ IndCohY∩Sing(Z)(Z)

is left adjoint to a conservative functor; this proves part (b). ��

Part III: The geometric Langlands conjecture

10 The stack LocSysG: recollections

In this section, G is an arbitrary affine algebraic group. Given a DG scheme X , we
will recall the construction of the stack LocSysG(X) of G-local systems on X . We
will compute its tangent and cotangent complexes. When X is a smooth and complete
curve, we will show that LocSysG(X) is quasi-smooth and calculate the corresponding
classical stack Sing(LocSysG(X)). We will also show that LocSysG(X) can in fact be
written as a “global complete intersection” as in Sect. 9.

This section may be skipped if the reader is willing to take the existence of the stack
LocSysG(X) and its basic properties on faith.

10.1 Definition of LocSysG

As the stack LocSysG(X) of local systems is in general an object of derived algebraic
geometry, some extra care is required. In this subsection, we give the relevant defini-
tions. Since the discussion will be purely technical, the reader can skip this subsection
and return to it when necessary.

For the duration of this subsection, we remove the a priori assumption that all
prestacks are locally almost of finite type.

10.1.1. Let X be an arbitrary DG scheme almost of finite type. We define the
prestacks BunG(X) and LocSysG(X) using the general framework of Appendix B.
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Namely, for S ∈ DGSchaff , we set

Maps(S, BunG(X)) := Maps(S × X, pt /G)

and

Maps(S, LocSysG(X)) := Maps(S × XdR, pt /G),

respectively. Here, XdR denotes the de Rham prestack of X , see [12, Sect. 1.1.1].
The natural projection X → XdR defines the forgetful map

LocSysG(X) → BunG(X). (10.1)

10.1.2. The following is tautological:

Lemma 10.1.3 Suppose that X is classical. Then, the classical prestack clBunG(X)

is the usual prestack of G-bundles on X, i.e., for S ∈ Schaff ,

Maps(S, BunG(X)) = Mapscl PreStk(S × X, pt /G).

Remark 10.1.4 Note that when X is not classical, the classical prestack clBunG(X)

cannot be recovered from classical algebraic geometry. For instance, take X to be
a DG scheme with clX = pt. Then, the ∞-groupoid Maps(pt, BunG(X)) is that of
G-bundles on X , which can can have nonzero homotopy groups up to degree n + 1 if
X is n-coconnective.

10.1.5. Similarly, we have:

Lemma 10.1.6 Let X be arbitrary (but still almost of finite type). Then, the classical
prestack clLocSysG(X) is the usual prestack of G-local systems on X, i.e., for S ∈
Schaff ,

Maps(S, LocSysG(X)) = Mapscl PreStk(S × XdR, pt /G).

Proof Follows from the fact that XdR ∈ PreStk is classical, see [12, Proposition
1.3.3(b)]. ��
Remark 10.1.7 For a more familiar description of clLocSysG(X) via the Tannakian
formalism, see Sect. 10.2.5.

10.2 A Tannakian description

One can describe the ∞-groupoids

Maps(S × X, pt /G) and Maps(S × XdR, pt /G)

in more intuitive terms using Tannakian duality.
The material in this subsection will not be used elsewhere in the paper.
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10.2.1. Let X be any prestack (which we will take to be either S × X or S × XdR).
Then by [23, Theorem 3.4.2], the∞-groupoid Maps(X, pt /G) identifies with the full
subcategory of symmetric monoidal functors

Rep(G) := QCoh(pt /G)
→ QCoh(X)

that satisfy:

•  is continuous;
•  is right t-exact, i.e., sends Rep(G)≤0 to QCoh(X)≤0 (see [30, Sect. 1.2.3] for

the definition of the t-structure on QCoh over an arbitrary prestack);
•  sends flat objects to flat objects (an object of QCoh on a prestack is said to be

flat if its pullback to an arbitrary affine DG scheme is flat.8)

Remark 10.2.2 The above description of Maps(X,−) is valid for pt /G replaced by
any geometric stack (see [23, Definition 3.4.1]). Note that any quasi-compact algebraic
stack with an affine diagonal is geometric.

10.2.3. Since Rep(G) identifies with the derived category of its heart, the above
category of symmetric monoidal functors can be identified with that of symmetric
monoidal functors

Rep(G)♥,c = Rep(G)♥ ∩ Rep(G)c → QCoh(X)≤0,

such that:

•  takes short exact sequences in Rep(G)♥,c to distinguished triangles in
QCoh(X)≤0.

Remark 10.2.4 Note that every object of Rep(G)♥,c is dualizable. Therefore, the same
holds for its image under such . From this, it is easy to see that the essential image of
Rep(G)♥,c automatically belongs to the full subcategory QCoh(X)loc.free of QCoh(X)

spanned by locally free sheaves of finite rank (i.e., those objects whose pullback to
any affine DG scheme S is a direct summand of O⊕n

S for some integer n).

10.2.5. Assume for a moment that X is classical. We obtain that Sect. 10.2.3 recovers
the usual description of the classical prestack clBunG(X). Namely, for S ∈ Schaff , the
groupoid Maps(S, BunG(X)) is that of exact symmetric monoidal functors

 : Rep(G)♥,c → QCoh(S × X)♥.

Note that by Remark 10.2.4, the essential image of such  consists of vector bundles
on S × X .

8 If A is a connective ring, an A-module M is flat if M is connective, and H0(A)⊗
A

M is acyclic off degree

0 and is flat over H0(A).
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Similarly, for an arbitrary X , we obtain the usual description of the classical prestack
clLocSysG(X). Namely, for S ∈ Schaff , the groupoid Maps(S, LocSysG(X)) is that
of exact symmetric monoidal functors

 : Rep(G)♥,c → QCoh(S × XdR)♥.

By Remark 10.2.4, the essential image of such  belongs to the subcategory of
QCoh(S × XdR) that consists of S-families of local systems on X .

Remark 10.2.6 To obtain the above Tannakian description of clBunG(X) (for X clas-
sical) and clLocSysG(X) (for X arbitrary), one needs something weaker than the full
strength of [23, Theorem 3.4.2]. Namely, one can make do with its classical version,
given by [24, Theorem 5.11].

10.3 Basic properties of BunG and LocSysG

In this subsection, we will calculate the (pro)-cotangent spaces of BunG(X) and
LocSysG(X). In addition, we will show that if X is classical and proper, the forgetful
map LocSysG(X) → BunG(X) is schematic and affine.

Throughout this subsection we will assume that X is eventually coconnective.

10.3.1. Let X be l-coconnected. It follows from Proposition B.3.2 that BunG(X)

admits a (−l − 1)-connective deformation theory.
Similarly, since XdR is classical, we obtain that LocSysG(X) admits a (−1)-

connective deformation theory.

10.3.2. The pro-cotangent spaces of BunG(X) and LocSysG(X) can be described
as follows:

The stack pt /G admits co-representable (−1)-connective deformation theory, and
its cotangent complex identifies with g∗

Puniv [−1], where Puniv is the universal G-
bundle on pt /G, and g∗

Puniv is the vector bundle on pt /G associated with the coadjoint
representation.

Let P (resp., (P,∇)) be an S-point of BunG(X) (resp., LocSysG(X)). Then by
Proposition B.3.2(b), the pro-cotangent space to BunG(X) (resp., LocSysG(X)) at the
above point, viewed as a functor

QCoh(S)≤0 →∞-Grpd,

identifies with
M �→ �(S × X,M⊗ gP)[1] (10.2)

and
M �→ �(S × XdR,M⊗ gP)[1], (10.3)

respectively, where gP denotes the bundle associated with the adjoint representation.
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The relative pro-cotangent space to the map (10.1) at the above point is the functor

M �→ ker
(
�(S × XdR,M⊗ gP)[1] → �(S × X,M⊗ gP)[1]

)
. (10.4)

All of the above functors commute with colimits.

10.3.3. Note that by Corollary B.3.4, if X is proper, the pro-cotangent spaces to
BunG(X) and LocSysG(X) are co-representable by objects of QCoh(S)−.

In other words, BunG(X) (resp., LocSysG(X)) admits a co-representable (−l−1)-
connective (resp., (−1)-connective) deformation theory.

For S → BunG(X) (resp., S → LocSysG(X)), we will denote the resulting cotan-
gent spaces, viewed as objects of QCoh(S), by

T ∗(BunG(X))|S, T ∗(LocSysG(X))|S, and T ∗(LocSysG(X)/ BunG(X))|S,

(10.5)
respectively.

10.3.4. We claim:

Lemma 10.3.5 Assume that X is classical. Then, the relative pro-cotangent spaces
of LocSysG(X) → BunG(X) are connective.

Proof We need to show that the functor (10.4), viewed as a functor QCoh(S) → Vect,
is left t-exact.

By [12, Proposition 3.4.3], the object �(S×XdR,M⊗gP) ∈ Vect can be calculated
as the totalization of the co-simplicial object of Vect whose n-simplices are

�
(

S × (Xn)∧X ,M⊗ gP|S×(Xn)∧X

)
,

where (Xn)∧X is the DG ind-scheme equal to the formal completion of Xi along the
main diagonal.

In particular, the projection onto the 0-simplices is the canonical map

�(S × XdR,M⊗ gP) → �(S × X,M⊗ gP).

Hence, it suffices to show that for every n and M ∈ QCoh(S)≥0, we have

�
(

S × (Xn)∧X ,M⊗ gP|S×(Xn)∧X

)
∈ Vect≥0 . (10.6)

The key observation is that the assumption that X be classical implies that the DG
ind-scheme (Xn)∧X is classical, see [11, Proposition 6.8.2]. That is, it can be written
as a colimit of classical schemes Zα .

Hence,

�
(

S × (Xn)∧X ,M⊗ gP|S×(Xn)∧X

)
� lim

α
�

(
S × Zα,M⊗ gP|S×Zα

)
.
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Now (10.6) follows from the fact that, for each α,

�
(
S × Zα,M⊗ gP|S×Zα

) ∈ Vect≥0 .

��
Corollary 10.3.6 For a proper (classical) scheme X and any S → LocSysG(X), the
object T ∗(LocSysG(X)/ BunG(X))|S belongs to QCoh(S)≤0.

10.3.7. Finally, we claim:

Proposition 10.3.8 (a) If X is a classical scheme, the map (10.1) is ind-schematic
and in fact ind-affine.

(a’) If X is a proper classical scheme, the map (10.1) is schematic and affine.
(b) The prestacks BunG(X) and LocSysG(X) are locally almost of finite type.

Proof The fact that BunG(X) is locally almost of finite type is a particular case of
Corollary B.4.4.

Assume now that X is classical. Let S be an affine DG scheme almost of finite type
equipped with a map to BunG(X). We will prove that

S ×
BunG (X)

LocSysG(X) (10.7)

is an ind-affine DG ind-scheme locally almost of finite type and is in fact an affine
DG scheme if X proper. This implies (a) and (a’). It also implies (b): To show that
LocSysG(X) is locally almost of finite type, we can replace the initial X by clX .

The fact that

cl(S ×
BunG (X)

LocSysG(X))

is an ind-affine ind-scheme (resp., affine scheme for X proper) and that it is locally of
finite type follows from Lemmas 10.1.3 and 10.1.6, since the corresponding assertions
in classical algebraic geometry are well known.9

To prove that (10.7) is a DG ind-scheme/DG scheme, we use Theorem B.2.14.
Indeed, the required condition on the pro-cotangent spaces follows from Lemma 10.3.5.

The fact that (10.7) is locally almost of finite type follows from Lemma B.4.2. ��

10.4 The case of curves

From now on, let us assume that X is a smooth, complete, and connected curve. In
what follows, we will omit X from the notation in BunG(X) and LocSysG(X), unless
an ambiguity is likely to occur.

9 In the case when X is smooth, this is obvious, using the description of local systems as bundles with a
connection. For a general X , it is enough to consider the case of G = GLn . Then, the “locally of finite
type” assertion is a general property of the category of D-modules. The (ind)-representability can be proved
using the infinitesimal groupoid as in Lemma 10.3.5.
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We will show that BunG is a smooth classical stack. We will also show that LocSysG
is quasi-smooth and compute the corresponding classical stack Sing(LocSysG).

10.4.1. First, we note that BunG is an algebraic stack (a.k.a. 1-Artin stack in the
terminology of [28]). Indeed, the usual proof that clBunG is a classical algebraic
stack (see, e.g., [1]) applies in the context of derived algebraic geometry to show the
corresponding property of BunG .10

We claim:

Lemma 10.4.2 The stack BunG is smooth (and, in particular, classical).

Proof By Lemma 2.1.2, this follows from the fact that BunG is an Artin stack locally
almost of finite type and from the description of the cotangent spaces to BunG given
by (10.2). ��

10.4.3. From the fact that BunG is an algebraic stack and the fact that the map (10.1)
is schematic (see Proposition 10.3.8), we obtain that LocSysG is also an algebraic stack.
Since BunG has an affine diagonal, we obtain that the same is true for LocSysG , since
the map (10.1) is separated (in fact, it is affine).

Moreover, it is easy to see that the image of LocSysG in BunG is contained in a
quasi-compact open substack of BunG .11 This implies that LocSysG itself is quasi-
compact. Thus, LocSysG is a QCA stack in the terminology of [6].

Again, from Proposition 10.3.8 we obtain that LocSysG is locally almost of finite
type.

But, of course, LocSysG is not smooth.

10.4.4. We now claim:

Proposition 10.4.5 The stack LocSysG is quasi-smooth.

Proof This follows immediately from the description of the cotangent spaces given by
(10.3). Namely, for any S-point of LocSysG , the object T ∗(LocSysG)|S ∈ QCoh(S)

is given, by Verdier duality along X , by

�(S × XdR, g∗P)[1], (10.8)

which lives in cohomological degrees ≥ −1, as required. ��
Note that by the same token, we obtain a description of the tangent complex of

LocSysG : For an S-point of LocSysG , the object T (LocSysG)|S ∈ QCoh(S) is given
by

�(S × XdR, gP)[1]. (10.9)

10 Another way to see this is to choose sufficiently deep level structure (over every fixed quasi-compact
open substack in BunG ) and apply Theorem B.2.14.
11 Here is a sketch of the proof. It is enough to consider the case of G = GLn . Now, if a rank n-bundle E
splits as a direct sums E= E1 ⊕ E2, then a connection on E gives rise to connections on Ei . However, it
follows from the Riemann-Roch Theorem that every rank n-bundle outside a certain quasi-compact open
substack of Bunn admits a direct sum decomposition as above with either deg(E1) �= 0 or deg(E2) �= 0.



Singular support of coherent sheaves 123

10.4.6 The stack Sing(LocSysG) The above description of the tangent complex of
LocSysG implies the following description of the classical stack Sing(LocSysG):

Corollary 10.4.7 The stack Sing(LocSysG) admits the following description: Given
a classical affine scheme S ∈ Schaff ,

Maps(S, Sing(LocSysG)) = (P,∇, A),

where (P,∇) ∈ Maps(S, LocSysG), and A is an element of

H0 (
�(S × XdR, g∗P)

)
.

Proof By definition, Sing(LocSysG) is the classical stack underlying

SpecLocSysG

(
SymOLocSysG

(
T (LocSysG[1])

))
.

The assertion of the corollary follows from (10.9), since for (P,∇) as in the corollary,
by the Serre duality,

HomCoh(S)

(
T (LocSysG[1])S,OS

) � H0 (
�(S × XdR, g∗P)

)
.

��

10.4.8. We denote the stack Sing(LocSysG) by ArthG .

Remark 10.4.9 As was explained in the introduction, if G is reductive, the Arthur
parameters for the automorphic side are supposed to correspond to points (P,∇, A) ∈
ArthG where A is nilpotent; see Sect. 11 for details.

10.5 Accessing LocSysG via an affine cover

In this subsection, we will show how to make sense in the DG world of such opera-
tions as adding a 1-form to a connection, and taking the polar part of a meromorphic
connection.

10.5.1. Let U ⊂ X be a non-empty open affine subset. Consider the prestack

LocSysG(X;U ) := LocSysG(U ) ×
BunG (U )

BunG(X).

It is clear that if X = U1 ∪U2, we have

LocSysG := LocSysG(X) � LocSysG(X;U1) ×
LocSysG (X;U1,2)

LocSysG(X;U2),

(10.10)
where U1,2 = U1 ∩U2.
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The description of LocSysG via (10.10) will be handy for establishing certain of
its properties.

10.5.2. The main observation is:

Proposition 10.5.3 The prestack LocSysG(X;U ) is classical.

Proof Since BunG is a smooth classical algebraic stack, it suffices to show that for
any smooth classical affine scheme S and any map S → BunG , the fiber product

S ×
BunG

LocSysG(X;U ) (10.11)

is classical.
First, we claim that the DG ind-scheme (10.11) is formally smooth. For that it

suffices to show that LocSysG(X;U ) is formally smooth over BunG . By [11, Propo-
sition 8.2.2], this is equivalent to showing that for any S′ ∈ DGSchaff

aft with a map to
LocSysG(X;U ) and any M ∈ QCoh(S′)<0, we have

π0
(
T ∗(LocSysG(X;U )/ BunG)|S′(M)

) = 0,

where T ∗(LocSysG(X;U )/ BunG)|S is viewed as a functor

QCoh(S′)≤0 →∞-Grpd.

By (10.4), we have:

T ∗(LocSysG(X;U )/ BunG)|S′(M)

� Cone
(
�(S′ ×UdR,M⊗gP) → �(S′ ×U,M⊗ gP)

)
� �(U,M⊗ gP⊗ ωX ),

(10.12)

and the required vanishing follows from the fact that U is affine.12

Consider now the classical ind-scheme

cl(S ×
BunG

LocSysG(X;U )).

This is the classical moduli problem corresponding to endowing a given G-bundle
(given by a point of S) with a connection defined over U ⊂ X . It is easy to see that,
locally on S, we have an isomorphism

cl(S ×
BunG

LocSysG(X;U )) � S × A
∞,

12 The fact that (10.11) is formally smooth already implies that its classical via [11, Theorem 9.1.6]. Below
we give a more explicit proof which avoids (the non-trivial) [11, Theorem 9.1.6] and instead uses (the more
elementary) [11, Proposition 9.1.4].
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where

A
∞ = colim

n∈Z≥0
A

n .

In particular, cl(S ×
BunG

LocSysG(X;U )), when viewed as a DG ind-scheme, is

formally smooth.
The assertion of the proposition follows now from [11, Proposition 9.1.4].13 ��

10.5.4. As a first application of Proposition 10.5.3, we will prove the following.
Consider the following group DG scheme over BunG , which we denote by HitchG :

For an S-point P of BunG , the ∞-groupoid of its lifts to an S-point of HitchG is
by definition

τ≤0
(
�(S × X, gP⊗ ωX )

)
.

By Serre duality, we have

S ×
BunG

HitchG = Spec
(

SymOS

(
�(S × X, g∗P)[1])

)
.

Note that HitchG is naturally a DG vector bundle14 (and therefore a DG group scheme)
over BunG .

Corollary 10.5.5 There exists a canonical action of HitchG on LocSys(G) over
BunG; the action is simply transitive in the sense that the induced map

HitchG ×
BunG

LocSys(G) → LocSys(G) ×
BunG

LocSys(G)

is an isomorphism.

Remark 10.5.6 This corollary is a triviality for the underlying classical stacks: Any
two connections on a given bundle over a curve differ by a 1-form. However, it is less
obvious at the derived level, since the procedure of adding a 1-form to a connection
is difficult to make sense of in the ∞-categorical setting.

Proof As in the case of LocSysG(X;U ), we can define a relative ind-scheme,
Hitch(X;U ), over BunG , whose S-points are pairs (P, α), where P is an S-point
of BunG and α is a point of

�(S ×U, gP⊗ ωX ),

13 The assertion if [11, Proposition 9.1.4] says that if Z is a formally smooth DG ind-scheme, such that
the underlying classical ind-scheme clZ is formally smooth when viewed as a derived ind-scheme, then the
canonical map clZ→ Z is an isomorphism, up to sheafification.
14 By a DG vector bundle over a prestack Z, we mean a prestack of the form Spec(SymOZ

(F)) for

F ∈ QCoh(Z)≤0.
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considered as an ∞-groupoid. As in the case of LocSysG(X;U ), we show that
Hitch(X;U ) is classical. Similarly,

Hitch(X;U ) ×
BunG

LocSysG(X;U )

is classical.
Since we are dealing with classical objects, it is easy to see that Hitch(X;U )

acts simply transitively on LocSysG(X;U ) over BunG . Moreover, these actions are
compatible under restrictions for U ↪→ U ′.

Covering X = U1 ∪U2, we have

HitchG � Hitch(X;U1) ×
Hitch(X;U1,2)

Hitch(X;U2),

as prestacks. Now, the required assertion follows from (10.10). ��

10.5.7. Let now x be a k-point of X outside of U . Consider the following relative DG
ind-scheme over BunG(X), denoted Polar(G, x), whose S-points are pairs (P, APolar),
where P is an S-point of BunG(X), and APolar is a point of

�(S × X, gP⊗ ωX (∞ · x)/ωX ),

considered as an ∞-groupoid via Vect≤0 →∞-Grpd.
One easily shows that Polar(G, x) is formally smooth and classical as a prestack:

Locally in the fppf topology on BunG , the stack Polar(G, x) looks like the product of
BunG and A

∞.

10.5.8. Note that since LocSysG(X;U ) and Polar(G, x) are both classical prestacks,
the usual operation of taking the polar part of the connection defines a map

LocSysG(X;U ) → Polar(G, x).

Proposition 10.5.9 Set U ′ := U ∪ {x}, and suppose that it is still affine. Then, there
exists a canonical isomorphism

LocSysG(X;U ′) � LocSysG(X;U ) ×
Polar(G,x)

BunG(X),

where BunG(X) → Polar(G, x) is the zero-section.

Proof Note that since U ′ is affine and hence LocSysG(X;U ′) is classical, there exists
a canonically defined map

LocSysG(X;U ′) → LocSysG(X;U ) ×
Polar(G,x)

BunG(X),

which is an isomorphism at the classical level. To show that this map is an isomorphism,
it is enough to show that it induces an isomorphism at the level of cotangent spaces at
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S-points for a classical affine scheme S ∈ Schaff . The latter, in turn, follows from the
computation of the cotangent spaces in Sect. 10.3.1. ��

10.5.10. Let now U = X − x . We claim:

Corollary 10.5.11 There exists a canonical isomorphism

LocSysG(X) � LocSysG(X;U ) ×
Polar(G,x)

BunG(X).

Proof Let U ′ be another open affine of X that contains the point x . Applying Propo-
sition 10.5.9, we obtain:

LocSysG(X;U ′) � LocSysG(X;U ∩U ′) ×
Polar(G,x)

BunG(X),

so

LocSysG � LocSysG(X;U ) ×
LocSysG (X;U∩U ′)

LocSysG(X;U ′)

� LocSysG(X;U ) ×
LocSysG (X;U∩U ′)

(
LocSysG(X;U ∩U ′) ×

Polar(G,x)
BunG(X)

)

� LocSysG(X;U ) ×
Polar(G,x)

BunG(X),

as required.
It is equally easy to see that the constructed map does not depend on the choice of

U ′: For U ′′ ⊂ U ′, the corresponding diagram commutes. ��

10.6 Presentation of LocSysG as a fiber product

In this subsection, we will show how to define the notion of connection that has a pole
of order ≤ 1 at a given point, and how to represent of LocSysG as a fiber product of
smooth stacks.

10.6.1. Fix a point x ∈ X , and let

Polar≤1(G, x) ⊂ Polar(G, x)

be the closed substack corresponding to

gP⊗ ωX (x)/ωX ⊂ gP⊗ ωX (∞ · x)/ωX .

That is, this substack corresponds to pairs (P, APolar) where APolar has at most a simple
pole.
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It is easy to see that we have a canonical identification (the residue map)

Polar≤1(G, x) � g/G ×
pt /G

BunG ,

where BunG → pt /G is the canonical map corresponding to the restriction of a
G-bundle to x ∈ X .

10.6.2. We define the stack LocSysR.S.
G of local systems with (at most) a simple pole

at x by

LocSysR.S.
G := LocSysG(X; X − x) ×

Polar(G,x)
Polar≤1(G, x).

By Corollary 10.5.11, we have a canonical map

ι : LocSysG ↪→ LocSysR.S.
G

and a canonical map

res : LocSysR.S.
G → g/G ×

pt /G
BunG

that fit into a Cartesian square

LocSysG −−−−→ LocSysR.S.
G⏐

⏐�
⏐
⏐�res

BunG −−−−→ g/G ×
pt /G

BunG,

(10.13)

where the bottom horizontal arrows comes from the zero-section map pt /G → g/G.

10.6.3. From (10.12), we obtain the following description of the relative cotangent
spaces of LocSysR.S.

G over BunG :
For an S-point (P,∇, A), the cotangent space T ∗(LocSysR.S.

G / BunG)|S , viewed
as a functor

QCoh(S)≤0 →∞-Grpd

is given by

M �→ �(S × X,M⊗ gP⊗ ωX (x)).

In particular,

T ∗(LocSysR.S.
G / BunG)|S ∈ QCoh(S)≤0.
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In fact, by the Serre duality,

T ∗(LocSysR.S.
G / BunG)|S � �(S × X, g∗P(−x))[1]. (10.14)

10.6.4. By Theorem B.2.14, we obtain that the map

LocSysR.S.
G → BunG

is schematic (The same argument applies to connections with poles of any fixed order
instead of simple poles.). This map is also easily seen to be separated (and, in fact,
affine). This implies that LocSysR.S.

G has an affine diagonal.
Note that, unlike LocSysG , the stack LocSysR.S.

G is not quasi-compact (unless G is
unipotent). However, for our applications the stack LocSysR.S.

G may be replaced by a
Zariski neighborhood of the image ι(LocSysG) ⊂ LocSysR.S.

G ; we can choose such a
neighborhood to be quasi-compact, and therefore QCA.

10.6.5. From (10.14), we obtain that the map

LocSysR.S.
G → BunG

is quasi-smooth.
Since BunG is smooth, we obtain that the stack LocSysR.S.

G is quasi-smooth. We
now claim:

Proposition 10.6.6 (a) The stack LocSysR.S.
G is smooth in a Zariski neighborhood of

the image of the closed embedding ι : LocSysG ↪→ LocSysR.S.
G .

(b) If G is unipotent,15 then LocSysR.S.
G is smooth.

Proof Let Z be an Artin stack with a perfect cotangent complex (For instance, this is
the case if Z is quasi-smooth.). It is easy to see that smoothness of Z can be verified
at k-points. Namely, a point z : Spec(k) → Z belongs to the smooth locus of Z if and
only if T ∗z (Z) ∈ Vect≥0.

A k-point of LocSysR.S.
G is a pair z = (P,∇), where P is a G-bundle on X , and ∇

is a connection on P with a simple pole at x .
We have the following description of T ∗z (LocSysR.S.

G ), parallel to that of (10.8):

T ∗z (LocSysR.S.
G ) � Cone

(∇ : �(X, g∗P(−x)) → �(X, g∗P⊗ ωX )
)
. (10.15)

Therefore, a point z belongs to the smooth locus if and only if the map of (classical)
vector spaces

∇ : H0 (
�(X, g∗P(−x))

) → H0 (
�(X, g∗P⊗ ωX )

)

is injective.

15 S. Raskin has observed that the assertion and its proof remain valid under the weaker assumption that
the identity connected component of G is solvable.
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In other words, smooth points correspond to pairs (P,∇) such that g∗P has no
nonzero horizontal sections that vanish at x . Recall that the connection on g∗P has a
simple pole at x ; the condition automatically holds if none of the eigenvalues of the
coadjoint action of the residue res(∇) ∈ g/G is a negative integer.

In particular, if (P,∇) is a point of ι(LocSysG), then res(∇) = 0 and the condition
trivially holds; this proves part (a). On the other hand, if G is unipotent, the coadjoint
action of g is nilpotent, and the condition is satisfied as well; this proves part (b). ��

10.6.7. By (9.5), from Proposition 10.6.6(a), we obtain a canonical closed embed-
ding

ArthG ↪→ g∗/G ×
pt /G

LocSysG . (10.16)

Recall that by Corollary 10.4.7, ArthG is isomorphic to the moduli stack (in the clas-
sical sense) of triples (P,∇, A), where (P,∇) ∈ LocSysG and A ∈ H0(�(XdR, g∗P)).
It is easy to see that (10.16) is given by

(P,∇, A) �→ (A(x), (P,∇)).

11 The global nilpotent cone and formulation of the conjecture

As before, let X be a connected smooth projective curve. From now on, we assume
that the algebraic group G is reductive. Let Ǧ be its Langlands dual.

In this section, we will formulate the geometric Langlands conjecture, whose auto-
morphic (a.k.a. geometric) side involves the category D-mod(BunG), and the Galois
(a.k.a. spectral) side, an appropriate modification of the category QCoh(LocSysǦ).

11.1 The global nilpotent cone

11.1.1. Recall that Proposition 10.4.7 provides an isomorphism between
Sing(LocSysǦ) and the (classical) moduli stack ArthǦ , which parametrizes triples

(P,∇, A). Here, P is a Ǧ-bundle on X , ∇ is a connection on P, and A is a horizontal
section of ǧ∗P.

We define a Zariski-closed subset

Nilpglob ⊂ ArthǦ (11.1)

to correspond to triples (P,∇, A) with nilpotent A.
That is, we require that for every local trivialization of P, the element A viewed

(locally) as a map S × X → ǧ∗ hit the locus of nilpotent elements Nilp(ǧ∗) ⊂ ǧ∗.
The latter is defined as the image of the locus of nilpotent elements Nilp(ǧ) ⊂ ǧ under
some (or any) Ǧ-invariant identification ǧ � ǧ∗.

11.1.2. Let c(ǧ) denote the characteristic variety of ǧ, i.e.,

c(ǧ) := Spec(Sym(ǧ)Ǧ),
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and let � denote the Chevalley map

� : ǧ∗ = Spec(Sym(ǧ)) → Spec(Sym(ǧ)Ǧ) = c(ǧ).

For (P,∇, A) ∈ Maps(S, ArthǦ), we thus obtain a map

�(A) : S × X → c(ǧ).

The nilpotence condition can be phrased as the requirement that �(A) should factor
through

{0} ⊂ c(ǧ).

11.1.3. We can also express the nilpotence condition locally:

Lemma 11.1.4 For an S-point (P,∇, A) of ArthǦ , the element A is nilpotent if and
only if for some (and then any) point x ∈ X, the value A|S×{x} of A at x is nilpotent
as a section of ǧ∗Px

:= ǧ∗P|S×{x}.
Proof The fact that A is horizontal implies that the map �(A) is infinitesimally
constant along X (i.e., factors through a map S × XdR → c(ǧ)), and therefore is
constant (since X is connected). This implies the assertion of the lemma. ��

Recall that by (10.16), we have a canonical closed embedding

ArthǦ ↪→ ǧ∗/Ǧ ×
pt /Ǧ

LocSysǦ .

Thus, Lemma 11.1.4 can be reformulated as the equality between

Nilpglob ⊂ ArthǦ

and the preimage of the closed subset

Nilp(ǧ∗)/Ǧ ×
pt /Ǧ

LocSysǦ ⊂ ǧ∗/Ǧ ×
pt /Ǧ

LocSysǦ

under the above map.

11.1.5 The spectral side of the geometric Langlands conjecture Our main object of
study is the category

IndCohNilpglob
(LocSysǦ).

By definition, this is a full subcategory of IndCoh(LocSysǦ), which contains the
essential image of QCoh(LocSysǦ) under the functor

�LocSysǦ
: QCoh(LocSysǦ) → IndCoh(LocSysǦ).
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We propose the category IndCohNilpglob
(LocSysǦ) as the category appearing on the

spectral side of the geometric Langlands conjecture.

11.1.6. By Corollary 9.2.7 and Proposition 10.6.6, the category IndCohNilpglob

(LocSysǦ) is compactly generated.
By Sect. 9.3.2, Proposition 10.6.6 allows us to view IndCoh(LocSysǦ) as ten-

sored over the monoidal category QCoh(ǧ∗/(Ǧ ×Gm)). We emphasize that the latter
structure depends on the choice of a point x ∈ X .

By Lemma 11.1.4 and Corollary 9.3.3, we have:

IndCohNilpglob
(LocSysǦ)

� IndCoh(LocSysǦ) ⊗
QCoh(ǧ∗/(Ǧ×Gm))

QCoh(Nilp(ǧ∗)/(Ǧ ×Gm)).

11.2 Formulation of the Geometric Langlands conjecture

11.2.1. We propose the following form of the geometric Langlands conjecture:

Conjecture 11.2.2 There exists an equivalence of DG categories

D-mod(BunG) � IndCohNilpglob
(LocSysǦ).

Since the DG categories appearing on both sides of Conjecture 11.2.2 are compactly
generated, it can be tautologically rephrased as follows:

Conjecture 11.2.3 There exists an equivalence of non-cocomplete DG categories

D-mod(BunG)c � CohNilpglob
(LocSysǦ).

11.2.4. In what follows, we will refer to the essential image in D-mod(BunG) of

�LocSysǦ

(
QCoh(LocSysǦ)

) ⊂ IndCohNilpglob
(LocSysǦ)

under the above conjectural equivalence as the “tempered part” of D-mod(BunG), and
denote it by D-modtemp(BunG).

11.2.5. Of course, one needs to specify a lot more data to fix the equivalence of Con-
jecture 11.2.2 uniquely. This will be done over the course of several papers following
this one. In the present paper, we will discuss the following aspects:

(i) The case when G is a torus;
(ii) Compatibility with the geometric Satake equivalence (see Sect. 12);

(iii) Compatibility with the Eisenstein series (see Sect. 13).
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11.2.6 The case of a torus Let G be a torus T . This case offers nothing new. The
subset Nilpglob is the zero-section of Sing(LocSysŤ ), so by Corollary 8.2.8,

IndCohNilpglob
(LocSysŤ ) = �LocSysǦ

(
QCoh(LocSysǦ)

)
,

as subcategories of IndCoh(LocSysŤ ).
In this case, the equivalence

QCoh(LocSysŤ ) � D-mod(BunT )

is a particular case of the Fourier transform for D-modules on an abelian variety (see
[18,19] and [35,36]), appropriately adjusted to the DG setting.

Remark 11.2.7 In more detail, for G = Gm , a choice of x ∈ X identifies

BunGm � Pic× pt /Gm × Z and LocSysGm
� P̃ic× (pt ×

A1
pt)× pt /Gm,

where Pic is the Picard scheme and P̃ic is its universal additive extension. Then, the
classical Fourier-Mukai-Laumon transform identifies

D-mod(Pic) � QCoh(P̃ic),

and we have explicit equivalences of categories

D-mod(pt /Gm) � QCoh(pt ×
A1

pt) and D-mod(Z) � QCoh(pt /Gm).

Note that the compact generator of D-mod(pt /Gm) is the direct image with compact
supports of k ∈ Vect under the map pt → pt /Gm . It corresponds to the structure sheaf
of QCoh(pt ×

A1
pt).

Note also that under this equivalence, the constant sheaf kpt /Gm ∈ D-mod(pt /Gm)

is not compact, and it corresponds to the sky-scraper on pt ×
A1

pt, which is an object of

Coh(pt ×
A1

pt), but not of QCoh(pt ×
A1

pt)perf , i.e., it is not compact in QCoh(pt ×
A1

pt).

12 Compatibility with geometric satake equivalence

One of the key properties of the geometric Langlands equivalence is its behavior with
respect to the Hecke functors on both sides of the correspondence. In this section, we
will study how this is compatible with the proposed candidate for the spectral side:
the category IndCohNilpglob

(LocSysǦ).
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12.1 Main results of this section

12.1.1 The geometric Satake equivalence As before, X is a smooth connected pro-
jective curve, G is a reductive group, and Ǧ is its Langlands dual. Fix a point x ∈ X .
The category of Hecke functors at x (“the spherical Hecke category at x”) is the cate-
gory of G(Ôx )-equivariant D-modules on the affine Grassmannian GrG,x , which we
denote by

Sph(G, x) := D-mod(GrG,x )
G(Ôx ).

We regard it as a monoidal category with respect to the convolution product.
In Corollary 12.5.5, we will construct a monoidal equivalence

Sat : IndCohNilp(ǧ∗)/Ǧ(Hecke(Ǧ)spec) � Sph(G, x)

between Sph(G, x) and a certain category constructed from the group Ǧ. Explicitly,
IndCohNilp(ǧ∗)/Ǧ(Hecke(Ǧ)spec) is the category of ind-coherent sheaves on the stack

Hecke(Ǧ)spec := pt /Ǧ ×
ǧ/Ǧ

pt /Ǧ

whose singular support is contained in

Nilp(ǧ∗)/Ǧ ⊂ ǧ∗/Ǧ � Sing(Hecke(Ǧ)spec),

where Nilp(ǧ∗) ⊂ ǧ∗ is the nilpotent cone.
We refer to Sat as the geometric Satake equivalence. It is naturally related to the

other versions of the Satake equivalence, constructed in [26] and [2] (which are given
below as (12.2) and Theorem 12.3.3, respectively).

12.1.2 The geometric Langlands conjecture and the geometric satake equivalence
We show that the “modified” geometric Langlands conjecture (Conjecture 11.2.2)
agrees with the geometric Satake equivalence Sat: There is a natural action of the
monoidal category

IndCohNilp(ǧ∗)/Ǧ(pt /Ǧ ×
ǧ/Ǧ

pt /Ǧ)

on the category IndCohNilpglob
(LocSysǦ), see Corollary 12.7.3. Under the equivalence

of Conjecture 11.2.2, this action should correspond to the action of the monoidal
category Sph(G, x) on D-mod(BunG) by the Hecke functors; this is Conjecture 12.7.6.

12.1.3 Tempered D-modules Recall that Conjecture 11.2.2 implies the existence of
a certain full subcategory D-modtemp(BunG) ⊂ D-mod(BunG), the “tempered part”
of D-mod(BunG), defined as the essential image in D-mod(BunG) of
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�LocSysǦ

(
QCoh(LocSysǦ)

) ⊂ IndCohNilpglob
(LocSysǦ).

Assuming the compatibility of Conjecture 12.7.6, we will be able to describe the
subcategory D-modtemp(BunG) in purely “geometric” terms, using the Hecke functors
at a fixed point x ∈ X . The description is independent of the Langlands conjecture;
we denote the resulting full subcategory by

D-modx
temp(BunG) ⊂ D-mod(BunG).

However, it is not clear that the subcategory D-modx
temp(BunG) is independent of

the choice of the point x . This is the content of Conjecture 12.8.5, which follows from
Conjectures 11.2.2 and 12.7.6.

12.2 Preliminaries on the spherical Hecke category

12.2.1. Recall that the spherical Hecke category at a point x ∈ X is defined as

Sph(G, x) := D-mod(GrG,x )
G(Ôx ),

regarded as a monoidal category with respect to the convolution product. We claim
that as a DG category, Sph(G, x) is compactly generated.

Indeed, we can represent GrG,x as a union of G(Ôx )-invariant finite-dimensional
closed subschemes Zα . We have

D-mod(GrG,x )
G(Ôx ) � colim−→

α

D-mod(Zα)G(Ôx ),

where for α1 ≥ α2, the functor

D-mod(Zα1)
G(Ôx ) → D-mod(Zα2)

G(Ôx )

is given by direct image along the corresponding closed embedding. In particular, for
every α, the functor

D-mod(Zα)G(Ôx ) → D-mod(GrG,x )
G(Ôx )

sends compacts to compacts. By [29, Lemma 1.3.3], this reduces the assertion to
showing that each D-mod(Zα)G(Ôx ) is compactly generated.

Let Gα be a finite-dimensional quotient of G(Ôx ) through which it acts on Zα . With
no restriction of generality, we can assume that ker(G(Ôx ) → Gα) is pro-unipotent.
Hence, the forgetful functor

D-mod(Zα)Gα → D-mod(Zα)G(Ôx )

is an equivalence.
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Now, Zα/Gα is a QCA algebraic stack, and the compact generation of D-mod
(Zα)Gα follows from [6, Theorem 0.2.2] (Since Zα/Gα is a global quotient, the
compact generation follows more easily from the results of [3].).

Note that the monoidal operation on Sph(G, x) preserves the subcategory of com-
pact objects (this follows from the properness of GrG,x ). Hence, Sph(G, x)c acquires
a structure of non-cocomplete monoidal DG category.

12.2.2. Consider the heart
(

D-mod(GrG,x )
G(Ôx )

)
♥ of the natural t-structure on

the category D-mod(GrG,x )
G(Ôx ).

(
D-mod(GrG,x )

G(Ôx )
)
♥ is the abelian category of

G(Ôx )-equivariant D-modules on GrG,x . The geometric Satake isomorphism of [26]

gives an equivalence between
(

D-mod(GrG,x )
G(Ôx )

)
♥ and the abelian category of

representations of Ǧ, which we denote by Rep(Ǧ)♥.
We let Sph(G, x)naive be the derived category (considered as a DG category) of

the abelian category

(
D-mod(GrG,x )

G(Ôx )
)♥.

We have a canonical (but not fully faithful) monoidal functor

Sph(G, x)naive → Sph(G, x) (12.1)

(see [21, Theorem 1.3.2.2]).
The Satake equivalence of [26] induces a canonical t-exact equivalence of monoidal

categories
Satnaive : Rep(Ǧ) � Sph(G, x)naive. (12.2)

We will refer to it as the “naive” version of the geometric Satake equivalence.
In order to describe Sph(G, x), it is convenient to first introduce and describe its

“renormalized” version. Here, “renormalization” refers to the process of changing (in
this case, enlarging) the class of compact objects of the category.

12.2.3. Let Sph(G, x)loc.c denote the full subcategory of Sph(G, x) consisting of
those objects of Sph(G, x) � D-mod(GrG,x )

G(Ôx ) that become compact after apply-
ing the forgetful functor

D-mod(GrG,x )
G(Ôx ) → D-mod(GrG,x ).

(The superscript “loc.c” stands for “locally compact.”)
The category Sph(G, x)loc.c ⊂ Sph(G, x) is stable under the monoidal operation,

and hence acquires a structure of (non-cocomplete) monoidal DG category. We define

Sph(G, x)ren := Ind(Sph(G, x)loc.c),

which thus acquires a structure of monoidal DG category.



Singular support of coherent sheaves 137

12.2.4. We have a canonically defined monoidal functor

�Sph : Sph(G, x)ren → Sph(G, x),

obtained by ind-extending the tautological embedding Sph(G, x)loc.c ↪→ Sph(G, x).
Since Sph(G, x)loc.c is closed under the truncations with respect to the (usual)

t-structure on Sph(G, x), we obtain that Sph(G, x)ren acquires a unique t-structure,
compatible with colimits,16 for which the functor �Sph is t-exact.

The functor �Sph admits a left adjoint, denoted �Sph, obtained by ind-extending the
tautological embedding Sph(G, x)c ↪→ Sph(G, x)loc.c. By construction, the functor
�Sph is fully faithful. So, �Sph makes Sph(G, x) into a colocalization of Sph(G, x)ren.

Finally, note that �Sph has a natural structure of a monoidal functor. Indeed, it
is clearly co-lax monoidal, being the left adjoint of a monoidal functor. Since the
category Sph(G, x) is compactly generated, it suffices to check that �Sph is (strictly)
monoidal after restriction to the category of compact objects Sph(G, x)c. However,
this restriction identifies with the embedding of monoidal categories Sph(G, x)c ↪→
Sph(G, x)loc.c.

12.2.5. We claim that the tautological functor Sph(G, x)naive → Sph(G, x) of
(12.1) canonically factors as

Sph(G, x)naive → Sph(G, x)ren �Sph−→ Sph(G, x).

Indeed, we construct the functor

Sph(G, x)naive → Sph(G, x)ren (12.3)

as the ind-extension of a functor (Sph(G, x)naive)c → Sph(G, x)loc.c. The latter is
obtained by noticing that the essential image of (Sph(G, x)naive)c under the functor
(12.1) is contained in Sph(G, x)loc.c.

By construction, the functor (12.3) sends compact objects to compact ones. By
contrast, the functor (12.1) does not have this property.

We will denote by Satnaive,ren the resulting functor

Rep(Ǧ) → Sph(G, x)ren.

12.3 The Hecke category on the spectral side

12.3.1. Consider now the stack

Hecke(Ǧ)spec := pt /Ǧ ×
ǧ/Ǧ

pt /Ǧ,

16 A t-structure on a cocomplete DG category is called compatible with colimits if the subcategory of
coconnective objects is closed under filtered colimits.
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where both maps pt → ǧ correspond to 0 ∈ ǧ. In the notation of Sect. 9.1.1,

Hecke(Ǧ)spec = G
(pt /Ǧ)/(ǧ/Ǧ)

.

The stack Hecke(Ǧ)spec is naturally a groupoid acting on pt /Ǧ. This groupoid
structure equips

IndCoh(Hecke(Ǧ)spec)

with a structure of monoidal category via convolution.
We can also consider the subcategory

Coh(Hecke(Ǧ)spec) ⊂ IndCoh(Hecke(Ǧ)spec),

which is stable under the monoidal operation, and thus acquires a structure
of (non-cocomplete) monoidal category, whose ind-completion identifies with
IndCoh(Hecke(Ǧ)spec).

12.3.2. The following description of Sph(G, x)loc.c is given by [2, Theorem 5]17:

Theorem 12.3.3 There is a canonical equivalence of (non-cocomplete) monoidal cat-
egories

Coh(Hecke(Ǧ)spec) � Sph(G, x)loc.c.

This equivalence tautologically extends to an equivalence between the ind-
completions of these categories, giving the following “renormalized” geometric Satake
equivalence.

Corollary 12.3.4 There exists a canonical equivalence of monoidal categories

Satren : IndCoh(Hecke(Ǧ)spec) � Sph(G, x)ren.

Under this equivalence, the functor Satnaive,ren : Rep(Ǧ) → Sph(G, x)ren corre-
sponds to the canonical functor

Rep(Ǧ) → IndCoh(Hecke(Ǧ)spec),

given by the direct image along the diagonal map

�pt /Ǧ : pt /Ǧ → pt /Ǧ ×
ǧ/Ǧ

pt /Ǧ = Hecke(Ǧ)spec.

17 The statement in loc.cit. is the combination of Theorem 12.3.3 as stated below and Proposition 12.4.2.
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Remark 12.3.5 The category Sph(G, x), as well as Sph(G, x)ren, has a richer structure,
namely that of factorizable monoidal category, when we allow the point x to move
along X . One can see this structure on the category IndCoh(Hecke(Ǧ)spec) as well,
and one can show that the equivalence of (12.3.4) can be naturally upgraded to an
equivalence of factorizable monoidal categories.18

12.4 A Koszul dual description

12.4.1. Consider the commutative DG algebra Sym(ǧ[−2])-mod, which is acted on
canonically by Ǧ. Consider the category

(Sym(ǧ[−2])-mod)Ǧ

as a monoidal category via the usual tensor product operation of modules over a
commutative algebra.

We claim:

Proposition 12.4.2 There exists a canonical equivalence of monoidal categories

KDHecke(Ǧ)spec
: IndCoh(Hecke(Ǧ)spec) � (Sym(ǧ[−2])-mod)Ǧ .

Proof Consider V = ǧ/Ǧ as a vector bundle over X = pt /Ǧ. Then, SymOX
(V [−2])

is a commutative (i.e., E∞) algebra in QCoh(X), and we have a natural equivalence

(Sym(ǧ[−2])-mod)Ǧ � SymOX
(V [−2])-mod.

Note that we are in the setting of Sect. 9.3; therefore, we have an isomorphism of
E2-algebras in QCoh(X):

SymOX
(V [−2]) � HC(X/V ).

Now the claim follows from Koszul duality of Corollary 9.1.7. ��
Remark 12.4.3 Being a symmetric monoidal category, (Sym(ǧ[−2])-mod)Ǧ also has
a structure of factorizable monoidal category over X . However, the equivalence of
Proposition 12.4.2 is only between mere monoidal categories: It is not compatible
with the factorizable structure. In fact, one can show that IndCoh(Hecke(Ǧ)spec) does
not admit an E2-structure which is compatible with the factorizable structure, even if
G is a torus.19

18 The latter statement is known as “derived Satake”; it was conjectured by V. Drinfeld and proved by
J. Lurie and the second author (unpublished) by interpreting IndCoh(Hecke(Ǧ)spec) as the E3-center of

Rep(Ǧ), viewed as an E2-category.
19 This is more convenient to see on the geometric side. The key fact is that the transgression map
H•(pt /Gm ) ⊗ H•(X) → H•(BunGm ) does not commute with the maps H•(BunGm ) → H•(BunGm )

given by translation by points of X . Here, H•(pt /Gm ) appears as the endomorphism algebra of the unit
object of Sph(Gm , x).
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12.4.4. Combining Corollary 12.3.4 and Proposition 12.4.2, we obtain:

Corollary 12.4.5 There exists a canonical equivalence of monoidal categories

Satren ◦(KDHecke(Ǧ)spec
)−1 : (Sym(ǧ[−2])-mod)Ǧ � Sph(G, x)ren.

Moreover, from Sect. 12.2.4, we obtain:

Corollary 12.4.6 There exists a canonically defined monoidal functor

(Sym(ǧ[−2])-mod)Ǧ → Sph(G, x),

which is, moreover, a colocalization.

12.4.7. In fact, the equivalence of Corollary 12.4.5 can be made more explicit:
Let δ1 be the unit object of

Sph(G, x)loc.c ⊂ Sph(G, x),

given by the delta-function at 1 ∈ GrG,x . Theorem 12.3.3 implies that there exists a
canonical isomorphism of E2-algebras

MapsSph(G,x)loc.c(δ1, δ1) � Sym(ǧ[−2])Ǧ, (12.4)

and that for any M ∈ Sph(G, x)loc.c, we have an isomorphism of Sym(ǧ[−2])Ǧ-
modules

(
KDHecke(Ǧ)spec

(
(Satren)−1(M)

))Ǧ � MapsSph(G,x)loc.c(δ1,M). (12.5)

12.4.8. Thus, KDHecke(Ǧ)spec

(
(Satren)−1(M)

)
is a Ǧ-equivariant module over

Sym(ǧ[−2]), and (12.5) recovers Ǧ-invariants in this module.
One can reconstruct the entire module KDHecke(Ǧ)spec

(
(Satren)−1(M)

)
by consid-

ering convolutions of M with objects of the form Satnaive,ren(ρ) for ρ ∈ Rep(Ǧ)c:

(
KDHecke(Ǧ)spec

(
(Satren)−1(M)

)
⊗ ρ

)Ǧ�MapsSph(G,x)loc.c(δ1,M � Satnaive,ren(ρ)).

12.4.9. Note that since 1 is a closed G(Ôx )-invariant point of GrG,x ,

MapsSph(G,x)loc.c(δ1, δ1) � MapsSph(G,x)(δ1, δ1)

� MapsD-mod(pt)G(Ôx ) (δ, δ) � MapsD-mod(pt)G (δ, δ), (12.6)

where δ denotes the generator k ∈ Vect � pt, which is naturally equivariant with
respect to any group.
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We note that the last isomorphism in (12.6) is due to the fact that ker(G(Ôx ) → G)

is pro-unipotent.
By definition, the algebra MapsD-mod(pt)G (δ, δ) is the equivariant cohomology of

G, which we denote by HdR(pt /G), and we have a canonical isomorphism

HdR(pt /G) � Sym(h∗[−2])W � Sym(ȟ[−2])W � Sym(ǧ[−2])Ǧ .

Now, it follows from the construction of the isomorphism of Theorem 12.3.3 that
the resulting isomorphism

Sym(ǧ[−2])Ǧ � HdR(pt /G) � MapsD-mod(pt)G (δ, δ) � MapsSph(G,x)loc.c(δ1, δ1)

equals one given by (12.4).

12.5 A description of Sph(G, x)

12.5.1. Recall that the stack

Hecke(Ǧ)spec = pt /Ǧ ×
ǧ/Ǧ

pt /Ǧ = G
(pt /Ǧ)/(ǧ/G)

is quasi-smooth, and

Sing(Hecke(Ǧ)spec) � ǧ∗/Ǧ,

see Sect. 9.1.6.
Moreover, by Corollary 9.1.7, the equivalence of Proposition 12.4.2 calculates the

singular support of objects of Hecke(Ǧ)spec:
For F ∈ Hecke(Ǧ)spec, we have

SingSupp(F) = supp(KDHecke(Ǧ)spec
(F)), (12.7)

as subsets of ǧ∗/Ǧ.

12.5.2. We will prove:

Theorem 12.5.3 Under the equivalence

Satren : IndCoh(Hecke(Ǧ)spec) � Sph(G, x)ren

of Corollary 12.3.4, the colocalization

�Sph : Sph(G, x)� Sph(G, x)ren : �Sph

identifies with

IndCohNilp(ǧ∗)/Ǧ(Hecke(Ǧ)spec)� IndCoh(Hecke(Ǧ)spec).
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We remind that the functors (�Sph, �Sph) appearing in Theorem 12.5.3 are those
from Sect. 12.2.4.

In terms of Corollary 12.4.6, the assertion of Theorem 12.5.3 can be reformulated
as follows:

Corollary 12.5.4 The colocalization

Sph(G, x)� (Sym(ǧ[−2])-mod)Ǧ

of Corollary 12.4.6 identifies with

(
(Sym(ǧ[−2])-mod)Ǧ

)

Nilp(ǧ∗)/Ǧ
� (Sym(ǧ[−2])-mod)Ǧ .

Theorem 12.5.3, in particular, implies:

Corollary 12.5.5 There exists a canonical equivalence of monoidal categories

Sat : IndCohNilp(ǧ∗)/Ǧ(Hecke(Ǧ)spec) � Sph(G, x),

and of non-cocomplete monoidal categories20

CohNilp(ǧ∗)/Ǧ(Hecke(Ǧ)spec) � Sph(G, x)c.

12.6 Proof of Theorem 12.5.3

By (12.7), we need to show that the essential image of Sph(G, x) under the equivalence

KDHecke(Ǧ)spec
◦(Satren)−1 : Sph(G, x)ren � (Sym(ǧ[−2])-mod)Ǧ .

coincides with the subcategory

(Sym(ǧ[−2])-modNilp(ǧ∗))
Ǧ ⊂ (Sym(ǧ[−2])-mod)Ǧ .

12.6.1. Let

D-mod(GrG,x )
G(Ôx )-mon ⊂ D-mod(GrG,x )

be the full subcategory generated by the essential image of the forgetful functor

Sph(G, x)loc.c → D-mod(GrG,x ).

20 The fact that CohNilp(ǧ∗)/Ǧ (Hecke(Ǧ)spec) is preserved under the monoidal operation follows, e.g.,

from Proposition 12.4.2.
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Since Sph(G, x)loc.c is closed under the truncation functors, we obtain that the
category D-mod(GrG,x )

G(Ôx )-mon is compactly generated by the essential image of

(Sph(G, x)loc.c)♥ ⊂ Sph(G, x)loc.c.

Since the generators of D-mod(GrG,x )
G(Ôx )-mon are holonomic, the forgetful func-

tor

oblvG(Ôx )
: Sph(G, x) → D-mod(GrG,x )

G(Ôx )-mon

admits a left adjoint, given by !-averaging with respect to G(Ôx ). We denote this
functor by AvG(Ôx ),!.

12.6.2. Since the functor oblvG(Ôx )
is conservative, the essential image of AvG(Ôx ),!

generates Sph(G, x). Moreover, being a left adjoint of a continuous functor, AvG(Ôx ),!
sends compact objects to compact ones.

Thus, we obtain that Sph(G, x) is compactly generated by the objects

AvG(Ôx ),!
(

oblvG(Ôx )
(M)

)

for M ∈ (Sph(G, x)loc.c)♥.

12.6.3. Note also that for

M1 ∈ D-mod(GrG,x )
G(Ôx )-mon and M2 ∈ Sph(G, x),

we have:
AvG(Ôx ),!(M1) � M2 � AvG(Ôx ),!(M1 � M2). (12.8)

In particular, if M1 ∈ D-mod(GrG,x )
c, and M2 ∈ Sph(G, x)loc.c, then

M1 � M2 ∈ D-mod(GrG,x )
c,

and therefore in this case

AvG(Ôx ),!(M1) � M2 ∈ Sph(G, x)c.

12.6.4. Let δ̃ be the object of D-mod(pt)G equal to AvG,!(k), where AvG,! is the left
adjoint to the forgetful functor

D-mod(pt)G → D-mod(pt) = Vect . (12.9)

The following is well known:
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Lemma 12.6.5
δ̃ � δ ⊗

Sym(ǧ[−2])Ǧ

l, (12.10)

where δ is as in Sect. 12.4.9, and l is a graded line (placed in the cohomological degree

− dim(G)), acted on trivially by Sym(ǧ[−2])Ǧ .

Proof Let a be the object of Vect such that A := Sym(ǧ[−2])Ǧ � Sym(a). It is well
known (see, e.g., [6, Example 6.5.5]) that D-mod(pt)G , equipped with the forgetful
functor (12.9), identifies with the category B-mod, where B = Sym(a∗[−1])-mod. In
particular, the object δ̃ corresponds to B itself, and δ corresponds to the augmentation
B → k.

This makes the assertion of the lemma manifest, where l is the graded line such
that

B � B∗ ⊗ l,

where B∗ is the linear dual of B regarded as an object of B-mod. ��

12.6.6. Let δ̃1 denote the corresponding object of Sph(G, x) obtained via

D-mod(pt /G) � D-mod(pt)G � D-mod(pt)G(Ôx ) 1
↪→ D-mod(GrG,x )

G(Ôx )

= Sph(G, x).

via the inclusion of the point 1 ∈ GrG,x .
By construction,

δ̃1 � AvG(Ôx ),!(δ1),

so from (12.8), we obtain that the category Sph(G, x) is compactly generated by
objects of the form

δ̃1 � M

for M ∈ (Sph(G, x)loc.c)♥. Such M are of the form Satnaive,ren(ρ) for ρ ∈
(Rep(Ǧ)c)♥, by the construction of Satnaive,ren(ρ).

12.6.7. By (12.10) and Sects. 12.4.7 and 12.4.9, for ρ ∈ Rep(Ǧ)c we have

KDHecke(Ǧ)spec
◦(Satren)−1

(
δ̃1 � Satnaive,ren(ρ)

)
�

(

Sym(ǧ[−2]) ⊗
Sym(ǧ[−2])Ǧ

l

)

⊗ ρ,

regarded as an object of (Sym(ǧ[−2])-mod)Ǧ .
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So, the essential image of Sph(G, x) under KDHecke(Ǧ)spec
◦(Satren)−1 is compactly

generated by objects of form

(

Sym(ǧ[−2]) ⊗
Sym(ǧ[−2])Ǧ

k

)

⊗ ρ, ρ ∈ Rep(Ǧ)c.

However, as

Sym(ǧ) ⊗
(Sym(ǧ))Ǧ

k � ONilp(ǧ∗),

it is clear that the subcategory generated by such objects is exactly

(Sym(ǧ[−2])-modNilp(ǧ∗))Ǧ .

��[Theorem 12.5.3]

12.7 The action on D-mod(BunG) and IndCohNilpglob
(LocSysǦ)

Recall that the monoidal category Sph(G, x) canonically acts on D-mod(BunG). In
this subsection, we will study the corresponding action on the spectral side.

12.7.1. First, we claim that the monoidal category IndCoh(Hecke(Ǧ)spec) canoni-
cally acts on IndCoh(LocSysǦ). This follows from the fact that we have a commutative
diagram in which both parallelograms are Cartesian:

LocSysǦ LocSysǦ

LocSysǦ ×
LocSysR.S.

Ǧ

LocSysǦ

pt /Ǧ pt /Ǧ,

pt /Ǧ ×
ǧ/Ǧ

pt /Ǧ

�����������

		���������

����������

		��������

��

�� ��

(12.11)

indeed, this a special case of diagram (9.3).
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12.7.2. The next proposition shows that the several different ways to define an action
of the monoidal category IndCohNilp(ǧ∗)/Ǧ(Hecke(Ǧ)spec)on IndCohNilpglob

(LocSysǦ)

give the same result.

Proposition 12.7.3 (a) For any conical Zariski-closed subset Y ⊂ ArthǦ , the action

of the monoidal category IndCoh(Hecke(Ǧ)spec) sends IndCohY (LocSysǦ) to
IndCohY (LocSysǦ). Moreover, the diagram

IndCoh(Hecke(Ǧ)spec)⊗ IndCohY (LocSysǦ)
action−−−−→ IndCohY (LocSysǦ)

Id⊗�
Y,all
LocSys

Ǧ

�⏐
⏐

�⏐
⏐�

Y,all
LocSys

Ǧ

IndCoh(Hecke(Ǧ)spec)⊗ IndCoh(LocSysǦ)
action−−−−→ IndCoh(LocSysǦ)

commutes as well (i.e., the functor �Y,all, which is a priori lax compatible with
the action of IndCoh(Hecke(Ǧ)spec), is strictly compatible).

(b) The action of IndCohNilp(ǧ∗)/Ǧ(Hecke(Ǧ)spec) sends IndCoh(LocSysǦ) to the
subcategory IndCohNilpglob

(LocSysǦ).
(c) The composed functor

IndCoh(Hecke(Ǧ)spec)⊗ IndCoh(LocSysǦ)
action−→

IndCoh(LocSysǦ)
colocalization−→ IndCohNilpglob

(LocSysǦ)

factors through the colocalization

IndCoh(Hecke(Ǧ)spec)⊗ IndCoh(LocSysǦ)

→ IndCohNilp(ǧ∗)/Ǧ(Hecke(Ǧ)spec)⊗ IndCohNilpglob
(LocSysǦ).

Proof To prove point (a), it is enough to do so on the generators of
IndCoh(Hecke(Ǧ)spec), i.e., on the essential image of

(�pt /Ǧ)IndCoh∗ : IndCoh(pt /Ǧ) → IndCoh(pt /Ǧ ×
ǧ/Ǧ

pt /Ǧ).

However, forF∈ IndCoh(pt /Ǧ), the action of (�pt /Ǧ)IndCoh∗ (F)on IndCoh(LocSysǦ)

is given by tensor product with the pullback of

F ∈ IndCoh(pt /Ǧ) � QCoh(LocSysǦ)

under the map

LocSysǦ → pt /Ǧ,

corresponding to the point x . Hence, the assertion follows from Corollary 8.2.4.
Points (b) and (c) are a particular case of Corollary 9.4.2. ��
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As a corollary, we obtain:

Corollary 12.7.4 There exists a canonically defined action of IndCohNilp(ǧ∗)/Ǧ

(Hecke(Ǧ)spec) on IndCohNilpglob
(LocSysǦ), which is compatible with the

IndCoh(Hecke(Ǧ)spec)-action on IndCoh(LocSysǦ) via any of the functors

�
Nilpglob
LocSysǦ

: IndCohNilpglob
(LocSysǦ)� IndCoh(LocSysǦ) : �Nilpglob

LocSysǦ

and

�
Nilp(ǧ∗)/Ǧ,all

Hecke(Ǧ)spec
: IndCohNilp(ǧ∗)/Ǧ(Hecke(Ǧ)spec)

� IndCoh(Hecke(Ǧ)spec) : �Nilp(ǧ∗)/Ǧ,all

Hecke(Ǧ)spec
.

12.7.5. The compatibility of Conjecture 11.2.2 with the geometric Satake equiva-
lence reads

Conjecture 12.7.6 The action of Sph(G, x) on D-mod(BunG) corresponds via

Sat : IndCohNilp(ǧ∗)/Ǧ(Hecke(Ǧ)spec) � Sph(G, x)

to the action of IndCohNilp(ǧ∗)/Ǧ(Hecke(Ǧ)spec) on IndCohNilpglob
(LocSysǦ).

Remark 12.7.7 The above conjecture is not yet the full compatibility of the geomet-
ric Satake equivalence with the geometric Langlands equivalence. The full version
amounts to formulating Conjecture 12.7.6 in a way that takes into account the factor-
izable structure of

IndCohNilp(ǧ∗)/Ǧ(Hecke(Ǧ)spec) � Sph(G, x)

as x moves along X .

12.8 Singular support via the Hecke action

12.8.1. If Conjecture 11.2.2 holds, an object M ∈ D-mod(BunG) can be assigned its
singular support, which by definition is equal to the singular support of the correspond-
ing object of IndCohNilpglob

(LocSysǦ). The singular support is a conical Zariski-closed
subset SingSupp(M) ⊂ Nilpglob.

It turns out that Conjecture 12.7.6 implies certain relation between SingSupp(M)

and the action of the Hecke category Sph(G, x) on M. Let us explain this in more
detail.
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12.8.2. The equivalence

KDHecke(Ǧ)spec
: IndCoh(Hecke(Ǧ)spec) � (Sym(ǧ[−2])-mod)Ǧ

of Proposition 12.4.2 and Proposition 12.7.3(a) makes the categories IndCoh(LocSysǦ)

and IndCohNilpglob
(LocSysǦ) into categories tensored over QCoh(ǧ∗/(Ǧ ×Gm)).

By construction, this is the same structure as that given by the embedding

ι : LocSysǦ ↪→ LocSysR.S.

Ǧ

in terms of Sect. 9.3.2.
Thus, we can determine the singular support of objects of IndCoh(LocSysǦ) via

the above action of IndCoh(Hecke(Ǧ)spec).

12.8.3. On the other hand, Corollary 12.4.6 defines on D-mod(BunG) a structure of
category tensored over

QCoh(ǧ∗/(Ǧ ×Gm)).

Hence, we can attach to an object M ∈ D-mod(BunG) its support

suppx (M) ⊂ ǧ∗/(Ǧ ×Gm),

which is a Zariski-closed subset (The superscript x indicates that this support depends
on the choice of the point x ∈ X .).

Conjectures 11.2.2 and 12.7.6 would imply that suppx (M) is the Zariski closure of
the image of

SingSupp(M) ⊂ ArthǦ = Sing(LocSysǦ)

under the map

ArthǦ → ǧ∗/(Ǧ ×Gm) : (P,∇, A) �→ A(x).

(This easily follows from Lemma 3.3.12.). Here, we use the explicit description of
ArthǦ given in Corollary 10.4.7.

12.8.4. In particular, consider the full subcategory

D-modx
temp(BunG) := {M ∈ D-mod(BunG) : suppx (M) = {0}}.

Equivalently, we can define it as the tensor product

D-modx
temp(BunG) = D-mod(BunG) ⊗

QCoh(ǧ∗/(Ǧ×Gm))

QCoh(ǧ∗/(G×Gm)){0}.

(12.12)
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Conjectures 11.2.2 and 12.7.6 imply that under the equivalence

D-mod(BunG) � IndCohNilpglob
(LocSysǦ),

the category D-modx
temp(BunG) corresponds to the subcategory

IndCoh{0}(LocSysǦ) ⊂ IndCohNilpglob
(LocSysǦ),

which is the same as the essential image of QCoh(LocSysǦ) under the functor

�LocSysǦ
: QCoh(LocSysǦ) → IndCoh(LocSysǦ).

Thus, D-modx
temp(BunG) should be equal to the subcategory

D-modtemp(BunG) ⊂ D-mod(BunG)

of Sect. 11.2.4.
In particular, we obtain:

Conjecture 12.8.5 The subcategory D-modx
temp(BunG) ⊂ D-mod(BunG) is indepen-

dent of the choice of the point x ∈ X.

12.8.6. Let us provide a more explicit description of the subcategory D-modx
temp

(BunG).
Recall that D-mod(BunG) is compactly generated (see [7]). Now (12.12) implies

that D-modx
temp(BunG) is compactly generated by

D-modx
temp(BunG)c = D-modx

temp(BunG) ∩ D-mod(BunG)c.

For this reason, it suffices to describe the compact objects of D-modtemp(BunG).
By Theorem 12.3.3, there exists a canonical map in Sph(G, x):

α : Satnaive(ǧ)[−2] → Satnaive(k) = δ1,

where k ∈ Rep(Ǧ) is the trivial representation.
Moreover, for any n ∈ N we can consider its “symmetric power”

αn : Sat(Symn(ǧ))[−2n] → δ1.

From Lemma 3.4.4(c), we obtain:

Corollary 12.8.7 For M ∈ D-mod(BunG)c, the following conditions are equivalent:

(a) M ∈ D-modx
temp(BunG);
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(b) The induced map

(αn � idM) : Satnaive(Symn(ǧ)) � M[−2n] → M

vanishes for some integer n ≥ 0;
(c) The map αn � idM vanishes for all sufficiently large integers n.

Remark 12.8.8 One can show unconditionally that when we view D-mod(BunG) as
tensored over QCoh(ǧ∗/(Ǧ ×Gm)), i.e., as of category over the stack ǧ∗/(Ǧ ×Gm),
it is supported over

Nilp(ǧ∗)/(Ǧ ×Gm) ⊂ ǧ∗/(Ǧ ×Gm).

This fact is equivalent to the following. In the situation of Corollary 12.8.7, consider
the map of Ǧ-representations

Symn(ǧ)Ǧ ⊗ k → Symn(ǧ),

where Symn(ǧ)Ǧ is regarded as a mere vector space and k is the trivial representation.
Composing, for M ∈ D-mod(BunG), we obtain a map

Symn(ǧ)Ǧ ⊗M[−2n] → M. (12.13)

We claim that this map vanishes for any M ∈ D-mod(BunG)c whenever n is suffi-
ciently large.

To prove this, we note that by Sect. 12.4.9, the map (12.13) comes from the com-
position

Symn(ǧ)Ǧ ↪→ H2n
dR(pt /G) → H2n

dR(BunG),

where HdR(pt /G) → HdR(BunG) is the homomorphism given by the map BunG →
pt /G, given, corresponding to the restriction along x → X .

Now, one can show that for any (connected) algebraic stack Y and any M ∈
D-mod(Y)c, the map

HdR(Y)⊗M → M

vanishes on a sufficiently high power of the augmentation ideal of HdR(Y).

12.8.9. Using Lemma 3.4.4(a), one can give the following characterization of the
entire subcategory D-modx

temp(BunG) ⊂ D-mod(BunG) (and not just its compact
objects):
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Lemma 12.8.10 An object M ∈ D-mod(BunG) belongs to D-modx
temp(BunG) of and

only for a set of compact generators Mα ∈ D-mod(BunG) and any Mα → M, for all
sufficiently large n the composition

Mα → M → Satnaive(Symn(ǧ∗)) � M[2n]

vanishes.

From here, we obtain:

Corollary 12.8.11 The constant sheaf kBunG ∈ D-mod(BunG) is not tempered.

Proof Follows from the fact that for any n, the map

kBunG [−2n] → Satnaive(Symn(ǧ∗)) � kBunG

� H
(

GrG,x , Satnaive(Symn(ǧ∗))
)
⊗ kBunG

is the inclusion of a direct summand. ��

13 Compatibility with Eisenstein series

A crucial ingredient in the formulation of the geometric Langlands equivalence is the
interaction of G with its Levi subgroups. Such interaction is given by the functors of
Eisenstein series on both sides of the correspondence. In this section, we will study
how these functors act on our category IndCohNilpG

glob
(LocSysǦ).

13.1 The Eisenstein series functor on the geometric side

13.1.1. Let P be a parabolic subgroup of G with the Levi quotient M . Let us recall
the definition of the Eisenstein series functor

EisP
! : D-mod(BunM ) → D-mod(BunG)

(see [8]).
By definition,

EisP
! = (pP )! ◦ (qP )∗,

where pP and qP are the maps in the diagram

BunG BunM .

BunP

pP

����
��

��
��

�
qP

���
��

��
��

��

(13.1)
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We note that the functor (qP )∗ is defined because the morphism qP : BunP →
BunM is smooth and that the functor (pP )!, left adjoint to (pP )!, is defined on the
essential image of (qP )∗, as is shown in [8, Proposition 1.2].

Note that the functor EisP
! sends compact objects in D-mod(BunM )c to compact

objects in D-mod(BunG)c, since it admits a continuous right adjoint

CTP∗ = (qP )∗ ◦ (pP )!.

13.1.2. Let D-modEis(BunG) be the full subcategory of D-mod(BunG) generated
by the essential images of the functors EisP

! for all proper parabolic subgroups P .
Let D-modcusp(BunG) denote the full subcategory of D-mod(BunG) equal to the right
orthogonal of D-modEis(BunG).

Since the functors EisP
! preserve compactness, the category D-modEis(BunG) is

compactly generated. Therefore, D-modcusp(BunG) is a localization of D-mod(BunG)

with respect to D-modEis(BunG), so we obtain a short exact sequence of DG categories

D-modEis(BunG)� D-mod(BunG)� D-modcusp(BunG).

13.2 Eisenstein series on the spectral side

13.2.1. Fix a parabolic subgroup P ⊂ G, and consider the corresponding parabolic
subgroup P̌ ⊂ Ǧ, whose Levi quotient M̌ identifies with the Langlands dual of M .
Consider the diagram:

LocSysǦ LocSysM̌ .

LocSysP̌
pP

spec

����
��

��
�� qP

spec

���
��

��
��

�

(13.2)

We define the functor

EisP
spec : IndCoh(LocSysM̌ ) → IndCoh(LocSysǦ),

to be

(pP
spec)

IndCoh∗ ◦ (qP
spec)

!.

First, we note:

Lemma 13.2.2 (a) The map qP
spec is quasi-smooth.

(b) The map pP
spec is schematic and proper.

Proof For part (a), we claim that for any surjective homomorphism of algebraic groups

Ǧ1 → Ǧ2,
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the corresponding map LocSysǦ1
→ LocSysǦ2

is quasi-smooth. This relative version
of Proposition 10.4.5 can be proved in the same way as Proposition 10.4.5. Part (b) is
straightforward (and well known). ��
Corollary 13.2.3 The functor EisP

spec sends Coh(LocSysM̌ ) to Coh(LocSysǦ).

Proof First, we claim that the functor (qP
spec)

! sends Coh(LocSysM̌ ) to Coh(LocSysP̌ ).
This follows from [10, Lemma 7.1.2] and Lemma 13.2.2(a).

Now, (pP
spec)

IndCoh∗ sends Coh(LocSysP̌ ) to Coh(LocSysǦ) by [10, Lemma 3.3.5]
and Lemma 13.2.2(b). ��

13.2.4. Let us now analyze the singular codifferential of the morphisms pP
spec and

qP
spec. To avoid confusion, let us introduce superscripts and write

NilpG
glob ⊂ ArthǦ and NilpM

glob ⊂ ArthM̌

to distinguish between the global nilpotent cones for M̌ and Ǧ.
By Lemma 13.2.2(a), the singular codifferential

Sing(qP
spec) : ArthM̌ ×

LocSysM̌

LocSysP̌ → Arth P̌

is a closed embedding. Consider the subset

NilpM
glob ×

LocSysM̌

LocSysP̌ ⊂ ArthM̌ ×
LocSysM̌

LocSysP̌

and let

NilpP
glob := Sing(qP

spec)

(

NilpM
glob ×

LocSysM̌

LocSysP̌

)

⊂ Arth P̌

be its image. Here is an explicit description.

Lemma 13.2.5 Let us identify Arth P̌ with the moduli stack (in the classical sense) of

triples (PP̌ ,∇, AP̌ ∈ H0(�(XdR, p̌∗
PP )) using Corollary 10.4.7. Then,

NilpP
glob = {(PP̌ ,∇, AP̌ ), AP̌ is a nilpotent section of m̌∗

PP̌
⊂ p̌∗

PP̌
.}.

Proof Indeed, ArthM̌ ×
LocSysM̌

LocSysP̌ is identified with the classical moduli stack

of triples (P̌ P̌ ,∇, AM̌ ), where (PP̌ ,∇) ∈ LocSysP̌ and AM̌ ∈ H0(�(XdR, m̌∗
PP̌

)).

Here, we use the natural action of P̌ on m̌ (and m̌∗).
Under this identification,

Sing(qP
spec)(P

P̌ ,∇, AM̌ ) = (PP̌ ,∇, AP̌ ),



154 D. Arinkin, D. Gaitsgory

where AP̌ is the image of AM̌ under the natural embedding m̌∗ ↪→ p̌∗. The claim
follows. ��
Proposition 13.2.6 The functor EisP

spec sends the subcategory

IndCohNilpM
glob

(LocSysM̌ ) ⊂ IndCoh(LocSysM̌ )

to the subcategory

IndCohNilpG
glob

(LocSysǦ) ⊂ IndCoh(LocSysǦ)

The proposition provides a commutative diagram of functors

IndCohNilpM
glob

(LocSysM̌ ) −−−−→ IndCoh(LocSysM̌ )
⏐⏐
�

⏐⏐
�EisP

spec

IndCohNilpG
glob

(LocSysǦ) −−−−→ IndCoh(LocSysǦ),

where the horizontal arrows are the tautological embeddings. In particular, the resulting
functor

EisP
spec : IndCohNilpM

glob
(LocSysM̌ ) → IndCohNilpG

glob
(LocSysǦ)

also sends compact objects to compact objects, that is, it restricts to a functor

CohNilpM
glob

(LocSysM̌ ) → CohNilpG
glob

(LocSysǦ).

13.2.7 Proof of Proposition 13.2.6 By Lemma 8.4.2, we see that

(qP
spec)

! (IndCohNilpM
glob

(LocSysM̌ )
)
⊂ IndCohNilpP

glob
(LocSysP̌ ).

Therefore, it is enough to check that

(pP
spec)

IndCoh∗
(

IndCohNilpP
glob

(LocSysP̌ )
)
⊂ IndCohNilpG

glob
(LocSysǦ).

By Lemma 8.4.5, it suffices to show that the preimage of NilpP
glob under the singular

codifferential

Sing(pP
spec) : ArthǦ ×

LocSysǦ

LocSysP̌ → Arth P̌
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is contained in

NilpG
glob ×

LocSysǦ

LocSysP̌ ⊂ ArthǦ ×
LocSysǦ

LocSysP̌ .

Using Corollary 10.4.7, we can identify ArthǦ ×
LocSysǦ

LocSysP̌ with the clas-

sical moduli stack of triples (PP̌ ,∇, AǦ), where (PP̌ ,∇) ∈ LocSysP̌ and AǦ ∈
H0(�(XdR, ǧ∗

PP̌
)). Under this identification, Sing(pP

spec) sends such a triple to the
triple

(PP̌ ,∇, AP̌ ) ∈ H0(�(XdR, p̌∗PP )),

where AP̌ is obtained from AǦ via the natural projection ǧ∗ → p̌∗.
It remains to notice that if a ∈ ǧ∗ is such that its projection to p̌∗ is a nilpotent

element of m̌∗ ⊂ p̌∗, then a itself is nilpotent. ��

13.2.8 Compatibility between geometric Langlands correspondence and Eisenstein
series The following is one of the key requirements on the equivalence of Conjec-
ture 11.2.2:

Conjecture 13.2.9 For every parabolic P, the following diagram of functors

D-mod(BunG) −−−−→ IndCohNilpG
glob

(LocSysǦ)

EisP!
�⏐⏐

�⏐⏐EisP
spec

D-mod(BunM ) −−−−→ IndCohNilpM
glob

(LocSysM̌ )

commutes, up to an auto-equivalence of IndCohNilpM
glob

(LocSysM̌ ) given by tensoring

by a line bundle.

13.3 The main result

13.3.1. Let LocSysred
Ǧ

denote the closed substack of LocSysǦ equal to the union of

the images of the maps pP
spec for all proper parabolics P , considered, say, with the

reduced structure. Let LocSysirred
Ǧ

be the complementary open; we denote by j the
open embedding

LocSysirred
Ǧ

↪→ LocSysǦ .
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By Corollary 8.2.10, we obtain a diagram of short exact sequences of DG categories

IndCoh(NilpG
glob)

LocSysred
Ǧ

(LocSysǦ) −−−−→ IndCoh(LocSysǦ)LocSysred
Ǧ

⏐⏐�
⏐⏐�

IndCohNilpG
glob

(LocSysǦ) −−−−→ IndCoh(LocSysǦ)

j IndCoh,∗
⏐
⏐�

⏐
⏐�j IndCoh,∗

IndCohNilpG
glob

(LocSysirred
Ǧ

) −−−−→ IndCoh(LocSysirred
Ǧ

)

(13.3)

obtained from IndCohNilpG
glob

(LocSysǦ) ↪→ IndCoh(LocSysǦ) by tensoring over

QCoh(LocSysǦ) with the short exact sequence

QCoh(LocSysǦ)LocSysred
Ǧ
� QCoh(LocSysǦ)� QCoh(LocSysirred

Ǧ
).

In particular, the vertical arrows in the diagram (13.3) admit right adjoints, and the
horizontal arrows are fully faithful embeddings. Moreover, all the categories involved
are compactly generated; in particular,

IndCoh(LocSysǦ)LocSysred
Ǧ

and IndCoh(NilpG
glob)

LocSysred
Ǧ

(LocSysǦ)

are compactly generated by

Coh(LocSysǦ)LocSysred
Ǧ

and Coh(LocSysǦ)LocSysred
Ǧ
∩ CohNilpG

glob
(LocSysǦ),

respectively.

13.3.2. We have:

Proposition 13.3.3 The inclusion

QCoh(LocSysirred
Ǧ

) ↪→ IndCohNilpG
glob

(LocSysirred
Ǧ

)

is an equality.

Proof This follows from Corollary 8.2.8 using the following observation: ��
Lemma 13.3.4 The preimage of LocSysirred

Ǧ
in NilpG

glob consists of the zero-section.

Proof Indeed, an irreducible Ǧ-local system admits no non-trivial horizontal nilpotent
sections of the associated bundle of Lie algebras. ��
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13.3.5. We are now ready to state the main result of this paper:

Theorem 13.3.6 The subcategory

IndCoh(NilpG
glob)

LocSysred
Ǧ

(LocSysǦ) ⊂ IndCohNilpG
glob

(LocSysǦ)

is generated by the essential images of the functors

EisP
spec : IndCohNilpM

glob
(LocSysM̌ ) → IndCohNilpG

glob
(LocSysǦ)

for all proper parabolics P.

13.3.7. Note that from Theorem 13.3.6, combined with Proposition 13.3.3 and
(13.3), we obtain:

Corollary 13.3.8 The subcategory QCoh(LocSysǦ) and the essential images of

EisP
spec |IndCoh

NilpM
glob

(LocSysM̌ )

for all proper parabolics P, generate the category IndCohNilpG
glob

(LocSysǦ).

Now, the transitivity property of Eisenstein series and induction on the semi-simple
rank imply:

Corollary 13.3.9 The subcategory QCoh(LocSysǦ), together with the essential
images of the subcategories QCoh(LocSysM̌ ) ⊂ IndCohNilpM

glob
(LocSysM̌ ) under the

functors EisP
spec for all proper parabolics P, generate IndCohNilpG

glob
(LocSysǦ).

Still equivalently, we have:

Corollary 13.3.10 The essential images of QCoh(LocSysM̌ ) ⊂ IndCohNilpM
glob

(LocSysM̌ ) under the functors EisP
spec for all parabolic subgroups P (including the

case P = G) generate IndCohNilpG
glob

(LocSysǦ).

13.3.11. Let us explain the significance of this theorem from the point of view of
Conjecture 11.2.2. We are going to show that IndCohNilpG

glob
(LocSysǦ) is the small-

est subcategory of IndCoh(LocSysǦ) that contains QCoh(LocSysǦ), which can be
equivalent to D-mod(BunG), if we assume compatibility with the Eisenstein series as
in Conjecture 13.2.9.

More precisely, let us assume that there exists an equivalence between
D-mod(BunG) and some subcategory

QCoh(LocSysǦ) ⊂ IndCoh?(LocSysǦ) ⊂ IndCoh(LocSysǦ),
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for which the diagrams

D-mod(BunG)
∼←−−−− IndCoh?(LocSysǦ)

EisP!
�⏐⏐

�⏐⏐EisP
spec

D-mod(BunM ) ←−−−− QCoh(LocSysM̌ )

(13.4)

commute for all proper parabolics P , up to tensoring by a line bundle as in Conjec-
ture 13.2.9.

We claim that in this case, IndCoh?(LocSysǦ) necessarily contains IndCohNilpG
glob

(LocSysǦ). Indeed, this follows from Corollary 13.3.9.

13.3.12. Recall (Sect. 13.1.2) that D-modcusp(BunG) ⊂ D-mod(BunG) is the full
subcategory of D-modules that are right orthogonal to the essential images of the
Eisenstein series functors EisP

! for all proper parabolic subgroups P ⊂ G. Let us note
the following corollary of Conjecture 13.2.9 and Theorem 13.3.6:

Corollary 13.3.13 The equivalence of Conjecture 11.2.2 gives rise to an equivalence

D-modcusp(BunG) � QCoh(LocSysirred
Ǧ

).

13.4 Proof of Theorem 13.3.6

13.4.1. We will prove a more precise result. For a given parabolic P , let LocSysredP

Ǧ
denote the closed substack of LocSysǦ equal to the image of the map pP

spec, considered,
say, with the reduced structure. Let

IndCoh(NilpG
glob)

LocSys
redP
Ǧ

(LocSysǦ)

denote the corresponding full subcategory of IndCohNilpG
glob

(LocSysǦ).

Clearly, the functor

EisP
spec : IndCohNilpM

glob
(LocSysM̌ ) → IndCohNilpG

glob
(LocSysǦ)

factors through IndCoh(NilpG
glob)

LocSys
redP
Ǧ

(LocSysǦ).

We will prove:

Theorem 13.4.2 The essential image of the functor

EisP
spec : IndCohNilpM

glob
(LocSysM̌ ) → IndCoh(NilpG

glob)
LocSys

redP
Ǧ

(LocSysǦ)

generates the target category.

Theorem 13.4.2 implies Theorem 13.3.6 by Corollary 3.3.9.
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13.4.3. Theorem 13.4.2 follows from the combination of the following two state-
ments:

Proposition 13.4.4 The essential image of the functor

(qP
spec)

! : IndCohNilpM
glob

(LocSysM̌ ) → IndCohNilpP
glob

(LocSysP̌ )

generates the target category.

Proposition 13.4.5 The essential image of the functor

(pP
spec)

IndCoh∗ : IndCohNilpP
glob

(LocSysP̌ ) → IndCoh(NilpG
glob)

LocSys
redP
Ǧ

(LocSysǦ)

generates the target category.

13.4.6 Proof of Proposition 13.4.4 Recall that the map qP
spec is quasi-smooth, so

that its singular codifferential

Sing(qP
spec) : ArthM̌ ×

LocSysM̌

LocSysP̌ → Arth P̌

is a closed embedding. Moreover, NilpP
glob ⊂ Arth P̌ is equal to the image of the closed

subset

NilpM
glob ×

LocSysM̌

LocSysP̌ ⊂ ArthM̌ ×
LocSysM̌

LocSysP̌

under Sing(qP
spec). Therefore, Proposition 8.4.14 implies that (qP

spec)
! induces an

equivalence

QCoh(LocSysP̌ ) ⊗
QCoh(LocSysM̌ )

IndCohNilpM
glob

(LocSysM̌ )→ IndCohNilpP
glob

(LocSysP̌ ).

It remains to show that the essential image of the usual pullback functor

(qP
spec)

∗ : QCoh(LocSysM̌ ) → QCoh(LocSysP̌ )

generates the target category.
Since (qP

spec)
∗ is the left adjoint to (qP

spec)∗, we need to show that the pushforward
functor

(qP
spec)∗ : QCoh(LocSysP̌ ) → QCoh(LocSysM̌ )

is conservative. But this is true because the map qP
spec can be presented as a quotient

of an schematic affine map by an action of a unipotent group scheme (i.e., qP
spec is

cohomologically affine). ��[Proposition 13.4.4]
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13.4.7 Proof of Proposition 13.4.5 We will deduce the proposition from Proposi-
tion 8.4.19.

We need to show that the map

(Sing(pP
spec))

−1(NilpP
glob) → NilpG

glob

is surjective at the level of k-points.

Concretely, this means the following: let (PǦ ,∇) be a Ǧ-bundle on X , equipped
with a connection∇, which admits a horizontal reduction to the parabolic P̌ . Let A be
a horizontal section of ǧ

PǦ , which is nilpotent (here, we have chosen some Ǧ-invariant
identification of ǧ with ǧ∗). We need to show that there exists a horizontal reduction
of PǦ to P̌ such that A belongs to p̌

PǦ .

Let Sect∇(X,PǦ/P̌) be the (classical) scheme of all horizontal reductions of PǦ

to P̌ . By assumption, this scheme is non-empty, and it is also proper, since it embeds

as a closed subscheme into PǦ
x /P̌ for any/some x ∈ X .

The algebraic group Aut(PǦ ,∇) acts naturally on Sect∇(X,PǦ/P̌). Note that

the Lie algebra of Aut(PǦ,∇) identifies with H0(�(XdR, ǧ
PǦ )). By assumption, the

element

A ∈ H0(�(XdR, ǧ
PǦ ))

is nilpotent (as a linear operator on the algebra of functions on Aut(PǦ,∇)). Hence,

it comes from a homomorphism Ga → Aut(PǦ ,∇).

By properness, the resulting action of Ga on Sect∇(X,PǦ/P̌) has a fixed point,
which is the desired reduction.21 ��[Proposition 13.4.5]

Appendix A: Action of groups on categories

Operations explained in this appendix have been used several times in the main body
of the paper. They are applicable to any affine algebraic group G over a ground field
of characteristic 0.

A.1 Equivariantization and de-equivariantization

A.1.1. Let BG• be the standard simplicial model of the classifying space of G. Quasi-
coherent sheaves on BG• form a cosimplical monoidal category, which we denote by
QCoh(BG•). By definition, a DG category acted on by G is a cosimplicial category
C• tensored over QCoh(BG•) which is co-Cartesian in the sense that for every face

21 This argument was inspired by the proof that every nilpotent element in a Lie algebra (over a not
necessarily algebraically closed field) is contained in a minimal parabolic that we learned from J. Lurie. It
can also be used to reprove [14, Lemma 6] which is a key ingredient of the proof in loc.cit. that the global
nilpotent cone in T ∗(BunG ) is Lagrangian.
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map [k] → [l], the functor

QCoh(BGl) ⊗
QCoh(BGk )

Ck → Cl

is an equivalence.
We will regard this as an additional structure over a plain DG category C := C0. We

denote the 2-category of DG categories acted on by G (regarded as an (∞, 1)-category)
by G-mod.

For C as above, we let CG denote the category Tot(C•).

A.1.2. It is easy to see that for C acted on by G and a full subcategory C′ ⊂ C, there is at
most one way to define a G-action on C′ in a way compatible with the embedding to C;
this condition is enough to check at the level of the underlying triangulated categories
and for 1-simplices. If this is the case, we will say that C′ is invariant under the action
of G.

It is easy to see that in this case (C′)G is a full subcategory of CG that fits into the
pullback square

C′G −−−−→ CG

⏐⏐�
⏐⏐�

C′ −−−−→ C.

(A.1)

A.1.3. Let C be acted on by G. By construction, CG is a module category over

Tot(QCoh(BG•)) � Rep(G).

Thus, we obtain a functor

C �→ CG : G-mod → Rep(G)-mod, (A.2)

where Rep(G)-mod is the 2-category of module categories over Rep(G).
The above functor admits a left adjoint given by

C̃ �→ de-EqG(C̃) := Vect ⊗
Rep(G)

C̃, (A.3)

where Vect is naturally regarded as a DG category endowed with the trivial G-action
and the trivial structure of a Rep(G)-module with the natural compatibility structure
between the two.

Note that we also have the naturally defined functors between plain DG categories
CG → C or, equivalently, C̃ → de-EqG(C̃).

A.1.4. We have the following assertion ([31, Theorem 2.2.2]):

Theorem A.1.5 The two functors (A.2) and (A.3) are mutually inverse.
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A.1.6 Several comments are in order:
The fact that for C ∈ G-mod, the adjunction map

de-EqG(CG) → C

is an equivalence is easy. It follows from the fact that the functor de-EqG commutes
with both colimits and limits, which in turn follows from the fact that the monoidal
category Rep(G) is rigid (see [29, Corollaries 4.3.2 and 6.4.2]).

For C̃ ∈ Rep(G)-mod, the fact that the adjunction map

C̃ → (de-EqG(C̃))G

is an isomorphism is also easy to see when C̃ is dualizable.
The above two observations are the only two cases of Theorem A.1.5 that have

been used in the main body of the text.
The difficult direction in Theorem A.1.5 implies that if C is dualizable (as an abstract

DG category), then so is CG . 22

A.2 Shift of grading

A.2.1. Consider the symmetric monoidal category Rep(Gm) � QCoh(pt /Gm). We
may view its objects as bigraded vector spaces equipped with differential of bidegree
(1, 0). Here in the grading (i, k), the first index refers to the cohomological grading,
and the second index to the grading coming from the Gm-action.

The symmetric monoidal category Rep(Gm) carries a canonical automorphism
which we will refer to as the “grading shift”

M �→ Mshift, where Mshift
(i,k) = Mi+2k,k .

In particular, the 2-category Rep(Gm)-mod of DG categories tensored over
Rep(Gm) carries a canonical auto-equivalence, which commutes with the forgetful
functor to the 2-category DGCatcont of plain DG categories. We denote it by

C̃� C̃shift. (A.4)

A.2.2. For example, suppose A is a Z-graded associative DG algebra, and set C =
(A-mod)Gm . That is, C is the DG category of graded A-modules.

In this case,

((A-mod)Gm )shift � (Ashift-mod)Gm .

22 We do not know whether the fact that C is compactly generated implies the corresponding fact for CG .
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The categories (Ashift-mod)Gm and (A-mod)Gm are equivalent as DG categories (but
not as categories tensored over Rep(Gm)) with the equivalence given by

M �→ Mshift for M ∈ (A-mod)Gm .

A.2.3. By Theorem A.1.5, the shift of grading auto-equivalence of Rep(Gm)-mod
induces an auto-equivalence of the 2-category Gm-mod, which we denote by

C� Cshift. (A.5)

Note, however, that the auto-equivalence (A.4) of Gm-mod does not commute with
the forgetful functor to DGCatcont.

For example, for a graded associative DG algebra A as above, we have:

(A-mod)shift � Ashift-mod.

Appendix B: Spaces of maps and deformation theory

In this appendix, we drop the assumption that our DG schemes/Artin stacks/prestacks
be locally almost of finite type.

B.1 Spaces of maps

Let Z ∈ PreStk be an arbitrary prestack (see [28, Sect. 1.1.1]), thought of as the target,
and let X be another object of PreStk, thought of as the source.

B.1.1. We define a new prestack Maps(X,Z) ∈ PreStk, by

Maps(S, Maps(X,Z)) := Maps(S × X,Z)

for S ∈ DGSchaff .

Remark B.1.2 Note that the above procedure is a particular case of restriction of scalars
à la Weil: We can start with a map X1 → X2 in PreStk and Z1 ∈ PreStk/X1 , and define

Z2 = ResX1
X2

(Z1) ∈ PreStk/X2

by

Maps(S,Z2) := MapsPreStk/X1
(S ×

X2

X1,Z1).

In our case X1 = X and X2 = pt.
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B.1.3. For example, we define:

BunG(X) := Maps(X, pt /G) and LocSysG(X) := Maps(XdR, pt /G),

where XdR is the de Rham prestack of X (see [12, Sect. 1.1.1]).

B.2 Deformation theory

Let us recall some basic definitions from deformation theory. We refer the reader to
[22, Sect. 2.1] or [11, Sect. 4] for a more detailed treatment.

B.2.1. Recall that for S ∈ DGSchaff , we have a canonically defined functor

QCoh(S)≤0 → DGSchaff
S/

that assigns to F ∈ QCoh(S)≤0 the corresponding split square-zero extension SF of
S, i.e.,

F �→ SF := Spec (�(S,OS)⊕ �(S,F)) .

B.2.2. Let Z be an object of PreStk, and let z be a point of Maps(S,Z). Consider the
following functor QCoh(S)≤0 →∞-Grpd

F �→ Maps(SF,Z) ×
Maps(S,Z)

{z}. (B.1)

Definition B.2.3 Let k be a non-negative integer.

(a) We will say that Z admits (−k)-connective pro-cotangent spaces if for any (S, x)

the functor (B.1) is pro-representable by an object of Pro(QCoh(S)≤k).
(b) We will say that Z admits (−k)-connective cotangent spaces if for any (S, x) the

functor (B.1) is co-representable by an object of QCoh(S)≤k .

For Z as in Definition B.2.3(a) (resp., (b)), we will denote the resulting object of
Pro(QCoh(S)≤k) (resp., QCoh(S)≤k) by T ∗z (Z) and refer to it as the “cotangent space
to Z at the point z.”

That is, if we regard

MapsQCoh(S)(T
∗
z (Z),F)

as an object of Vect, and consider its truncation

MapsQCoh(S)(T
∗
z (Z),F) := τ≤0 (

MapsQCoh(S)(T
∗
z (Z),F)

)

as an ∞-groupoid via Vect≤0 → ∞-Grpd, the result is canonically isomorphic to
(B.1).
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B.2.4. Let α : S1 → S be a map in DGSchaff . Consider the corresponding functor

Pro(α∗) : Pro(QCoh(S)) → Pro(QCoh(S1)).

By definition, for an object  ∈ Pro(QCoh(S)), viewed as a functor QCoh(S) →
Vect, the object Pro(α∗)() ∈ Pro(QCoh(S1)), viewed as a functor QCoh(S1) →
Vect, is given by the left Kan extension of  along α∗ : QCoh(S) → QCoh(S1).

Let Z be an object of PreStk that admits (−k)-connective pro-cotangent spaces.
Then for z : S → Z and z1 := z ◦ α, we obtain a map

T ∗z1
(Z) → Pro(α∗)(T ∗z (Z)) (B.2)

in Pro(QCoh(S1)).
If Z admits (−k)-connective cotangent spaces, then

T ∗z (Z) ∈ QCoh(S)≤k and T ∗z1
(Z) ∈ QCoh(S1)

≤k,

and the map (B.2) is a map

T ∗z1
(Z) → α∗(T ∗z (Z)) ∈ QCoh(S1).

Definition B.2.5 (a) We will say thatZ admits a (−k)-connective pro-cotangent com-
plex if it admits (−k)-connective pro-cotangent spaces and the map (B.2) is an
isomorphism for any z and α.

(b) We will say that Z admits a (−k)-connective cotangent complex if it admits
(−k)-connective cotangent spaces and the map (B.2) is an isomorphism for any z
and α.

If Z admits a (−k)-connective cotangent complex, it gives rise to a well-defined
object in QCoh(Z)≤−k that we will denote by T ∗(Z). For a given z : S → Z, we will
also use the notation

T ∗(Z)|S := T ∗z (Z).

B.2.6. Let now S be an arbitrary object of PreStk and let z : S → Z. Consider the
functor

F �→ SF : QCoh(S)≤0 → PreStkS/,

defined by

Maps(U, SF) = {s : U → S, f : U → Us∗(F)}

for U ∈ DGSchaff (here, the notation Us∗(F) is as in Sect. B.2.1).
The following is tautological from the definitions:



166 D. Arinkin, D. Gaitsgory

Lemma B.2.7 Assume that Z admits a (−k)-connective cotangent complex. For any
S ∈ PreStk and a map z : S → Z, consider the functor QCoh(S)≤0 →∞-Grpd given
by

Maps(SF,Z) ×
Maps(S,Z)

{z}.

This functor is canonically isomorphic to

τ≤0 (
MapsQCoh(S)(T

∗
z (Z),F)

)
.

B.2.8. Let S′ be a square-zero extension of S ∈ DGSchaff , not necessarily split. Such
S′ corresponds to an object I ∈ QCoh(S)≤0 (the ideal of S ⊂ S′) and a map

T ∗(S) → I[1],

where T ∗(S) is the cotangent complex of S (see [11, Sect. 4.5]).
Let Z admit (−k)-connective pro-cotangent spaces. Let z : S → Z be a map. As

in [11, Lemma 4.6.6], we obtain a map

Maps(S′,Z) ×
Maps(S,Z)

{z} → τ≤0
(
MapsQCoh(S)

(
Cone(T ∗z (Z)

(dz)∗−→ T ∗(S)), I[1]
))

,

(B.3)
where (dz)∗ : T ∗z (Z) → T ∗(S) is the dual of the differential, see [11, Sect. 4.4.5].

Definition B.2.9 We will say that Z is infinitesimally cohesive if the map (B.3) is an
isomorphism for any S, z and S′.

Remark B.2.10 The meaning of the above definition is that (pro)-cotangent spaces
control not only maps out of split square-zero extensions, but from all square-zero
extensions. Iterating, we obtain that infinitesimal cohesiveness of Z implies that its
(pro)-cotangent spaces effectively control extensions of a given map S → Z to maps
S′ → Z for any nil-immersion S ↪→ S′.

B.2.11. Finally, we define:

Definition B.2.12 We will say that Z ∈ PreStk admits a (−k)-connective deformation
theory (resp., co-representable (−k)-connective deformation theory) if:

• Z is convergent (see [28], Sect. 1.2.1);
• Z admits a (−k)-connective pro-cotangent complex (resp., (−k)-connective cotan-

gent complex);
• Z is infinitesimally cohesive.

B.2.13. We record the following result for use in the main body of the paper.

Theorem B.2.14 An object Z ∈ PreStk is a DG ind-scheme (resp., DG scheme) if
and only if the following conditions hold:
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• The classical prestack clZ is a classical ind-scheme (resp., scheme).
• Z admits a 0-connective (resp., co-representable 0-connective) deformation the-

ory.

The above theorem for DG ind-schemes is [11, Theorem 5.1.1]. The case of DG
schemes can be proved similarly (see [22, Theorem 3.1.2]).

The same proof also shows that if clZ is an ind-affine ind-scheme (i.e., is a filtered
colimit of affine classical schemes under closed embeddings), or an affine scheme,
then Z is an ind-affine DG ind-scheme, or an affine DG scheme, respectively.

B.3 Deformation theory of spaces of maps

B.3.1. Let X and Z be as in Sect. B.1. We are going to show:

Proposition B.3.2 Assume that Z admits a co-representable (−k)-connective defor-
mation theory. Assume that X is l-coconnective for some l ∈ Z

≥0. Then:

(a) The prestack Maps(X,Z) admits a (−k − l)-connective deformation theory.
(b) For z̃ ∈ Maps(S, Maps(X,Z)) corresponding to z ∈ Maps(S × X,Z), the pro-

cotangent space T ∗̃z (Maps(X,Z)), viewed as a functor QCoh(S)≤0 → Vect≤0,
identifies with

F �→ τ≤0 (
MapsQCoh(S×X)(T

∗
z (Z),F � OX)

)
. (B.4)

Proof The fact that the pro-cotangent spaces of Maps(X,Z) are given by the functor
(B.4) follows from Lemma B.2.7.

Let us show that these pro-cotangent spaces are (−k − l)-connective. That is, we
need to show that the functor

F �→ MapsQCoh(S×X)(T
∗
z (Z),F � OX), QCoh(S) → Vect

sends QCoh(S)≥0 to Vect≥−k−l .
Since X is l-coconnective, we can write X as colim

U∈≤l DGSchaff
/X

U , and hence

MapsQCoh(S×X)(T
∗
z (Z),F � OX)

� lim
U∈(≤l DGSchaff

/X)op
MapsQCoh(S×U )(T

∗
z (Z)|S×U ,F � OU ).

However, F ∈ QCoh(S)≥0 implies F�OU ∈ QCoh(S×U )≥−l , and the assertion
follows.

The fact that (B.2) and (B.3) are isomorphisms follows from the definitions. Finally,
the fact that Maps(X,Z) is convergent follows tautologically from the fact that Z is
convergent. ��



168 D. Arinkin, D. Gaitsgory

B.3.3. Let now X be an l-coconnective DG scheme, proper over Spec(k). Let Z be
again a prestack that admits a co-representable (−k)-connective deformation theory.

Corollary B.3.4 The prestack Maps(X,Z) admits a co-representable (−k − l)-
connective deformation theory and the prestack admits Maps(XdR,Z) admits a co-
representable (−k)-connective deformation theory.

Proof Let X be either X or XdR.
We need to show the existence of a left adjoint functor to

F �→ F � OX : QCoh(S) → QCoh(S × X).

Since QCoh(S × X) � QCoh(S) ⊗ QCoh(X) (see [30, Proposition 1.4.4]), it is
sufficient to consider the case S = pt.

Since the category QCoh(X) is compactly generated, it suffices to construct the
left adjoint on compact objects of QCoh(X). This amounts to showing that for E ∈
QCoh(X)c, the object

MapsQCoh(X)(E,OX) ∈ Vect (B.5)

is compact (i.e., has finitely many nonzero cohomologies, all of which are finite-
dimensional); then the left adjoint in question sends k ∈ Vect to the dual of (B.5).

The compactness of (B.5) follows easily from the assumption on X. ��

B.4 The “locally almost of finite type” condition

B.4.1. Recall the notion of prestack locally almost of finite type, see [28, Sect. 1.3.9]).
We have the following assertion:

Lemma B.4.2 Let Z ∈ PreStk be a prestack that admits a (−k)-connective deforma-
tion theory for some k. Then, Z is locally almost of finite type if and only if:

• The underlying classical prestack clZ is locally of finite type (see [28, Sect. 1.3.2]
for what this means).

• Given any classical scheme of finite type S ∈ Schaff
ft , a morphism z : S → Z, and

an integer k ≥ 0, the cotangent space T ∗z (Z), viewed as a functor

QCoh(S)≥−k,≤0 →∞-Grpd,

commutes with filtered colimits.

The proof is essentially the same as that of [11, Proposition 5.3.2].

B.4.3. Let Z be a prestack that is locally almost of finite type. Let X be an eventually
coconnective quasi-compact DG scheme almost of finite type.

Corollary B.4.4 The prestack Maps(X,Z) is locally almost of finite type, provided
that the classical prestack clZ satisfies Zariski descent.
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Proof The description of the cotangent spaces to Maps(X,Z) given by Proposi-
tion B.3.2(b) implies that the second condition of Lemma B.4.2 is satisfied. So, it
remains to show that the classical prestack clMaps(X,Z) is locally of finite type. By
definition, this means that the functor

S �→ Maps(S, Maps(X,Z)) (B.6)

on the category (Schaff)op should commute with filtered colimits.
Any quasi-compact and quasi-separated scheme can be expressed as a finite colimit

of affine schemes in the category of Zariski sheaves (i.e., the full subcategory of PreStk
consisting of objects that satisfy Zariski descent). Since finite limits commute with
filtered colimits, the assumption on Z reduces the assertion to the case when X is
affine.

Let n be such that X ∈ ≤nDGSchaff . The functor

S �→ S × X : Schaff → ≤nDGSchaff

commutes with filtered limits, and the required property of (B.6) follows from the fact
that Z is locally almost of finite type (namely, that for every n, it takes filtered colimits
in (≤nDGSchaff)op to colimits in ∞-Grpd). ��

Appendix C: The Thomason-Trobaugh theorem “with supports”

In this appendix, we will prove the following result:

Theorem C Let Z be a quasi-compact DG scheme, and Y ⊂ Sing(Z) a conical
Zariski-closed subset. Then, the category IndCohY (Z) is compactly generated.

The proof is an easy adaptation of the argument of [38] for the compact generation
of QCoh(Z). Let us sketch the proof following [27].

Proof Recall that the objects of CohY (Z) are compact in IndCohY (Z). Hence, it
suffices to check that CohY (Z) generates IndCohY (Z).

The proof proceeds by induction on the number of affine open subsets covering
Z . The base case is when Z itself is affine. In this case, the assertion follows from
Corollary 4.3.2.

Suppose now Z is arbitrary, and let Wi be an affine cover of Z . Fix F ∈ IndCohY (Z),
F �= 0. Set

Ui = ∪
j �=i

W j ,

and choose i so that F|Ui �= 0. We now drop the index i and write simply U and W
for Ui and Wi .

By the induction hypothesis, we can assume that IndCohY×
Z

U (U ) is compactly

generated. Therefore, there exists a compact object

G̃U ∈ CohY×
Z

U (U )
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together with a nonzero map ι̃U : G̃U → F|U . Set GU := G̃U ⊕ G̃U [1] and let
ιU : GU → F|U be equal to

G̃U ⊕ G̃U [1] → G̃U
ι̃U→ F|U .

We will extend the pair (GU , ιU ) to G ∈ CohY (Z) and a map ι : G → F.
Indeed, by [27, Theorem 3.1], there exists an object

GW ∈ CohY×
Z

W (W )

together with an isomorphism

(GW )|U∩W � (GU )|U∩W

and a map ιW : GW → F|W whose restriction to U ∩ W equals ιU |U∩W .
Define

G := Cone
(

jU,∗(GU )⊕ jW,∗(GW ) → jU∩W,∗((GW )|U∩W )
)
[−1].

Here jU , jW , and jU∩W are the natural embeddings U ↪→ Z , W ↪→ Z , and U ∩W ↪→
Z , respectively. We have

G|U � GU and G|W � GW ,

so G ∈ CohY (Z). The morphisms ιU , ιW induce a map ι : G → F, whose restrictions
to U and W identify with ιU and ιW , respectively. ��

Appendix D: Finite generation of Exts

In this appendix, we will prove Theorem 4.1.8. Let us recall its formulation:

Theorem D Let Z be a quasi-smooth affine DG scheme Z. Given F1,F2 ∈ Coh(Z),
consider the graded vector space Hom•

Coh(Z)(F1,F2) as a module over the graded
algebra �(Sing(Z),OSing(Z)). We claim that the module is finitely generated.

If Z is classical, this is due to Gulliksen [15], and the extension to DG schemes is
straightforward.

D.1. It is easy to see that the statement is Zariski-local on Z . So, we can assume that
Z is as in (6.3). Let

pt = V0 ⊂ V1 ⊂ ... ⊂ Vn = V

be a flag of smooth closed subschemes whose dimensions increase by one. With no
restriction of generality, we can assume that Vi−1 is cut out by one function inside Vi .
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Set

Zi := Vi ×
V

U.

All these DG schemes are quasi-smooth, and Zi−1 is cut out inside of Zi by one
function. We have Z0 = Z and Zn = U. Let gi denote the closed embedding Z → Zi .

D.2. We will argue by descending induction on i , assuming that

Hom•
Coh(Zi )

((gi )∗(F1), (gi )∗(F2))

is finitely generated as a module over �(Sing(Zi ),OSing(Zi )).
The base of induction is i = n. In this case, Zn = U is smooth, and the assertion

is obvious.
To carry out the induction step, we can thus assume that we have a quasi-smooth

closed embedding

g : Z ↪→ Z ′,

that fits into a Cartesian diagram

Z
g−−−−→ Z ′

⏐⏐�
⏐⏐�

{0} −−−−→ A
1.

By induction, we can assume that

Hom•
Coh(Z ′)(g∗(F), g∗(F))

is finitely generated as a module over �(Sing(Z ′),OSing(Z ′)).

D.3. Note that the generator of T{0}(A1) gives rise to an element η ∈ HH2(Z).
Since the grading on the �(Sing(Z),OSing(Z))-module Hom•

Coh(Z)(F1,F2) is
bounded below, it is sufficient to show that

coker
(
η : Hom•

Coh(Z)(F1[2],F2) → Hom•
Coh(Z)(F1,F2)

)

is finitely generated.
However, from the long exact sequence we obtain that the above cokernel is a

submodule in
Hom•

Coh(Z)

(
Cone(F1

η−→ F1[2]),F2[1]
)

. (D.1)

Since the algebra �(Sing(Z),OSing(Z)) is Noetherian, it is enough to show that the
graded �(Sing(Z),OSing(Z))-module given by (D.1), is finitely generated.
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D.4 Note that for any F ∈ QCoh(Z), the corresponding object

Cone(F
η−→ F[2])

identifies with g∗ ◦ g∗(F).
Hence, the module (D.1) identifies with

Hom•
Coh(Z)(g

∗ ◦ g∗(F1),F2),

up to a shift of grading.
We have an isomorphism of vector spaces:

Hom•
Coh(Z)(g

∗ ◦ g∗(F1),F2) � Hom•
Coh(Z ′)(g∗(F1), g∗(F2)). (D.2)

Note that the right-hand side in (D.2) is acted on by �(Sing(Z ′),OSing(Z ′)), and
this action factors through the surjection

�(Sing(Z ′),OSing(Z ′))� �(Sing(Z ′)Z ,OSing(Z ′)Z ).

In particular, this gives an action of �(Sing(Z),OSing(Z)) on right-hand side in
(D.2) via the closed embedding

Sing(g) : Sing(Z ′)Z ↪→ Sing(Z).

Now, it follows from the construction that the above action of �(Sing(Z),OSing(Z))

on the right-hand side in (D.2) is compatible with the canonical action on the left-hand
side.

Now, as was mentioned above, by the induction hypothesis, Hom•
Coh(Z ′)(g∗(F1),

g∗(F2)) is finitely generated over �(Sing(Z ′),OSing(Z ′)), which implies that
Hom•

Coh(Z)(g
∗ ◦ g∗(F1),F2) is finitely generated over �(Sing(Z),OSing(Z)), as

required. ��

Appendix E: Recollections on E2-algebras

In this appendix, we recall some basic facts regarding E2-algebras and their actions
on categories.

E.1 E2-algebras

The main reference to the theory of E2-algebras is [21, Sect. 5.1]. Here, we will
summarize some basic facts. All monoidal categories, E1-algebras and E2-algebras
will be assumed unital.

We will use the terms “E1-algebra” and “associative DG algebra” interchangeably;
and similarly for the terms “monoidal functor” and “homomorphism of monoidal DG
categories.”
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E.1.1. For the purposes of the paper, we set

E2-Alg := E1-Alg(E1-Alg).

An E2-algebra is an associative algebra object in the category E1-Alg of associative
algebras.

The fact that this definition is equivalent to the definition of E2-algebras as modules
over the little disks operad is the Dunn Additivity Theorem, see [21, Theorem 5.1.2.2].

E.1.2. For an object A ∈ E2-Alg, we will refer to the associative algebra structure on
the underlying object of E1-Alg as the interior multiplication.

We will refer to the associative algebra structure on the image of A under the
forgetful functor

E2-Alg = E1-Alg(E1-Alg) → E1-Alg(Vect) = E1-Alg

as the exterior multiplication.
Unless specified otherwise, for A ∈ E2-Alg, by the underlying E1-algebra we will

mean the result of the application of the forgetful functor that remembers the interior
multiplication.

In particular, we will denote by A-mod the category of left A-modules, where A is
regarded as an E1-algebra with the interior multiplication.

E.1.3. We will denote by Aint-op (resp., Aext-op) the E2-algebra obtained by revers-
ing the first (resp., second) multiplication. Note, however, because of [21, Theorem
5.1.2.2], the choice of orientation on S1 (the real circle) gives rise to a canonical
isomorphism

Aint-op � Aext-op

of E2-algebras.
Having made the choice of orientation once and for all, we will sometimes use the

notation Aop for the resulting E2-algebra, with one of the multiplications reversed.

E.2 E2-algebras and monoidal categories

E.2.1. We recall the following construction, explained to us by J. Lurie.
On the one hand, we consider the symmetric monoidal ∞-category E1-Alg of

E1-algebras. On the other hand, we consider the symmetric monoidal ∞-category

(DGCatcont)Vect/,

i.e., the category of pairs (c, C), where C ∈ DGCatcont and c ∈ C.
We have a fully faithful symmetric monoidal functor

E1-Alg → (DGCatcont)Vect/, A �→ (A, Aop-mod). (E.1)
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The essential image of this functor consists of those (c, C) for which c is a compact
generator of C.

The functor (E.1) has a right adjoint, given by

(c, C) �→ MapsC(c, c). (E.2)

Tautologically, the functor (E.2) is right-lax symmetric monoidal. In particular, it
naturally upgrades to a functor between the categories of algebras (for any operad).

E.2.2. Since the functor (E.1) is symmetric monoidal, we obtain that for A ∈ E2-Alg,
the category Aint-op-mod acquires a monoidal structure, for which A is the unit.

We denote this operation by

M1,M2 �→ M1 ⊗
A

M2,

Informally, if we view A as an associative DG algebra with respect to the interior
multiplication, the tensor product is induction with respect to the homomorphism

A⊗A → A

given by the exterior multiplication.
In fact, since the functor (E.1) is fully faithful, the structure of E2-algebra on a

given A ∈ E1-Alg is equivalent to a structure on Aint-op-mod of monoidal category
with the unit being A.

E.2.3. For a given symmetric monoidal category O, the functor (E.2) sends it to the E2-
algebra whose underlying E1-algebra is MapsO(1O, 1O). We denote this E2-algebra
by AO.

It is easy to see that we have a canonical isomorphism of E2-algebras:

AOop-mon � A
ext-op
O , (E.3)

where Oop-mon denotes the monoidal category obtained from O by reversing the
monoidal structure.

E.2.4. By adjunction, a datum of a homomorphism of E2-algebras

A → AO

is equivalent to that of a continuous monoidal functor

Aint-op-mod → O.

In particular, the unit of the adjunction is the tautological isomorphism

A → MapsAint-op(A,A).
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The co-unit of the adjunction is a canonically defined monoidal functor

MapsO(1O, 1O)int-op-mod → O.

The latter functor is an equivalence if and only if 1O is a compact generator of O.

E.3 Hochschild cochains of a DG category

E.3.1. For C ∈ DGCatcont, we consider the monoidal category

Functcont(C, C).

We let HC(C) denote the resulting E2-algebra.
By definition, the E1-algebra underlying HC(C) is

MapsFunctcont(C,C)(IdC, IdC).

E.3.2. Let A be an E2-algebra. By adjunction, the following pieces of data are equiv-
alent:

• an action of the monoidal category A-mod on C;
• a homomorphism of monoidal categories A-mod → Functcont(C, C);
• a map of E2-algebras Aint-op → HC(C).

We will refer to such data as a (left) action of A on C.
By a right action of A on C, we will mean a left action of Aint-op, or, equivalently,

a homomorphism of E2-algebras A → HC(C).

E.3.3. Assume now that C is dualizable. In this case, we have a canonical equivalence:

Functcont(C∨, C∨) � (Functcont(C, C))op-mon .

Hence, from (E.3), we obtain a canonical isomorphism of E2-algebras

HC(C∨) � HC(C)ext-op.

In particular, if an E2-algebra A acts on C, then Aext-op naturally acts on C∨.

Appendix F: Hochschild cochains of a DG scheme and groupoids

In this appendix, we collect some facts and constructions regarding the E2-algebra
of Hochschild cochains of a DG scheme Z . We will also review a variant of this
construction, when we produce an E2-algebra out of a groupoid acting on Z .
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F.1 Hochschild cochains of a DG scheme

Let Z be a quasi-compact DG scheme. We put

HC(Z) := HC(QCoh(Z)).

The main result of this subsection is that we can equivalently realize HC(Z) as the
E2-algebra of Hochschild cochains of the category IndCoh(Z).

Remark F.1.1 The assertion regarding the comparison of the two versions of HC(Z)

is not essential for the contents of this paper. The object that we are really interested in
is the E2-algebra of Hochschild cochains of the category IndCoh(Z), denoted below
by HCIndCoh(Z).

So, the reader can skip this subsection, substituting HCIndCoh(Z) for HC(Z) in any
occurrence of the latter in the main body of the paper, in particular, in Sect. 4.

F.1.2. Recall that the category QCoh(Z) is canonically self-dual

Dnaive
Z : QCoh(Z)∨ � QCoh(Z), (F.1)

where the corresponding functor on the compact objects

(QCoh(Z)c)op → QCoh(Z)c

is the “naive” duality functor D
naive
Z (−) = HomQCoh(Z)(−,OZ ) on QCoh(Z)c =

QCoh(Z)perf .
In particular, from Sect. E.3.3, we obtain a canonical identification

HC(Z) � HC(Z)ext-op. (F.2)

F.1.3. Consider now the category IndCoh(Z). Denote

HCIndCoh(Z) := HC(IndCoh(Z)).

Recall (see [10, Sect. 9.2.1]) that the category IndCoh(Z) is also canonically self-
dual

DSerre
Z : IndCoh(Z)∨ � IndCoh(Z), (F.3)

where the corresponding functor on the compact objects

(IndCoh(Z)c)op → IndCoh(Z)c

is the Serre duality functor D
Serre
Z on IndCoh(Z)c = Coh(Z).

Hence, we obtain a canonical isomorphism:

HCIndCoh(Z) � HCIndCoh(Z)ext-op. (F.4)
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F.1.4. Recall now that there exists a canonically defined functor

�Z : IndCoh(Z) → QCoh(Z),

obtained by ind-extending the tautological embedding Coh(Z) ↪→ QCoh(Z), see [10,
Sect. 1.1.5].

We let

ϒZ : QCoh(Z) → IndCoh(Z)

be its dual with respect to the identifications (F.1) and (F.3).
Recall also (see [10, Proposition 9.3.3]) that

ϒZ (F) = F ⊗ ωZ , F ∈ QCoh(Z),

where ωZ ∈ IndCoh(Z) is the dualizing complex and “⊗” stands for the action of the
monoidal category QCoh(Z) on IndCoh(Z), see [10, Sect. 1.4].

Proposition F.1.5 There exist uniquely defined isomorphisms

�HC : HC(Z) → HCIndCoh(Z) and ϒHC : HCIndCoh(Z) → HC(Z),

the former compatible with the functor �Z , and the latter compatible with the functor
ϒZ . Moreover, the following diagram commutes:

HC(Z)ext-op ∼−−−−→ HC(Z)

(ϒHC)ext-op

�⏐⏐
⏐⏐��HC

HCIndCoh(Z)ext-op ∼←−−−− HCIndCoh(Z)

(F.5)

(in the sense that the composition map starting from any corner is canonically iso-
morphic to the identity map).

F.2 Proof of Proposition F.1.5

F.2.1. We will need the following general construction.
Let C1 and C2 be two DG categories, and let  : C1 → C2 be a continuous functor.

Assume that C1 is compactly generated, and assume that |Cc
1

is fully faithful.
We claim that in this case, there exists a unique map of E2-algebras

HC : HC(C2) → HC(C1),

compatible with , i.e., the functor  intertwines the action of HC(C2)
int-op on C1,

induced by HC, and the tautological action of HC(C2)
int-op on C2.
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Indeed, consider the object

(, Functcont(C1, C2)) ∈ (DGCatcont)Vect/.

It is acted on the right and on the left by

(IdCi , Functcont(Ci , Ci )), i = 1, 2,

respectively.
Applying the functor (E.2), we obtain the object

MapsFunctcont(C1,C2)
(,) ∈ E1-Alg,

equipped with an action of HC(C2) ∈ E1-Alg(E1-Alg), as well as a right commuting
action of HC(C1) ∈ E1-Alg(E1-Alg).

Furthermore, the assumption on  implies that the action on the unit defines an
isomorphism of right modules over HC(C1):

HC(C1) → MapsFunctcont(C1,C2)
(,).

Since

HC(C1) → EndHC(C1)ext-op-mod(HC(C1))

is an isomorphism of E2-algebras, the left action of HC(C2) defines the desired homo-
morphism HC.

The following assertion results from the construction:

Lemma F.2.2 Assume that in the above situation the category C2 is also compactly
generated and that the dual functor ∨ : C∨2 → C∨1 is such that ∨|(C∨2 )c is also fully
faithful. Then, the resulting diagram

HC(C1)
ext-op ∼−−−−→ HC(C∨1 )


ext-op
HC

�⏐⏐
⏐⏐�∨

HC

HC(C2)
ext-op ∼←−−−− HC(C∨2 )

commutes.

Corollary F.2.3 In the situation of Lemma F.2.2, the maps HC and ∨
HC are isomor-

phisms.

Proof of Proposition F.1.5 We apply Lemma F.2.2 to C1 := QCoh(Z), C2 :=
IndCoh(Z),  := ϒZ , and so ∨ = �Z . By definition, �|Coh(Z) is fully faithful.
It also easy to see that ϒZ |QCoh(Z)perf is fully faithful, as required. ��
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F.3 Further remarks on the relation between HC(Z) and HCIndCoh(Z)

In what follows we will identify HC(Z) and HCIndCoh(Z), and unless specified oth-
erwise, we will do so using the isomorphism ϒHC.

F.3.1. Assume that Z is eventually coconnective. Recall that in this case the functor
�Z admits a fully faithful left adjoint, denoted �Z .

In particular, by the first paragraph of the proof of Proposition F.1.5, we obtain that
there exists a unique homomorphism

�HC : HCIndCoh(Z) → HC(Z),

compatible with �Z .
Note, however, that the isomorphism �HC is also compatible with �Z , by adjunc-

tion. So, we obtain that �HC provides an explicit inverse to �HC.

F.3.2. Assume now that Z is eventually coconnective and Gorenstein (that is, ωZ ∈
Coh(Z) is a cohomologically shifted line bundle). For example, this is the case for
quasi-smooth DG schemes.

In this case, we can regard the tensor product by ωZ as a self-equivalence of the
category QCoh(Z). We have a commutative diagram

QCoh(Z)
�Z−−−−→ IndCoh(Z)

ωZ⊗−
�⏐⏐

�⏐⏐Id

QCoh(Z)
ϒZ−−−−→ IndCoh(Z).

Let ωHC denote the automorphism of HC(Z) compatible with the functor ωZ ⊗−.
Thus, we obtain:

Lemma F.3.3 We have

ϒHC � ωHC ◦�HC

as isomorphisms HCIndCoh(Z) → HC(Z).

F.4 E2-algebras arising from groupoids

F.4.1. Let Z be an affine DG scheme, and let

Z Z

G

Z

p1

����
��

��
��

�
p2

���
��

��
��

��

unit

��

(F.6)

be a groupoid acting on Z , where G is itself an affine DG scheme.



180 D. Arinkin, D. Gaitsgory

The category QCoh(G) acquires a natural monoidal structure via the convolution
product, and as such it acts on QCoh(Z). The unit object in QCoh(G) is

unit∗(OZ ) ∈ QCoh(G).

Hence, its endomorphism algebra

AG := MapsQCoh(G)(unit∗(OZ ), unit∗(OZ ))

is naturally an E2-algebra.

F.4.2. The category IndCoh(G) also acquires a natural monoidal structure, and as
such it acts on IndCoh(Z), where we use the functor f ! for pullback, f IndCoh∗ for

pushforward and
!⊗ for tensor product, where

F1
!⊗ F2 := �!(F1 � F2).

The unit object in IndCoh(G) is

unitIndCoh∗ (ωZ ) ∈ IndCoh(G),

and we let

AIndCoh
G = MapsIndCoh(G)(unitIndCoh∗ (ωZ ), unitIndCoh∗ (ωZ ))

denote the E2-algebra of its endomorphisms.

F.4.3. We have the following assertion:

Proposition F.4.4 There exists a canonical isomorphism of E2-algebras.

AG → AIndCoh
G .

The proof will be given in Sect. F.5.

Remark F.4.5 As is the case with HC(Z) vs. HCIndCoh(Z), the assertion of Proposi-
tion F.4.4 is not essential for the contents of the paper. Namely, the object that we
need to work with is AIndCoh

G . So, the reader who is not interested in the proof of

Proposition F.4.4 can simply substitute AIndCoh
G for AG for any occurrence of the latter

in the main body of the paper.

F.4.6. Hochschild cochains via groupoids Let Z be a quasi-compact DG scheme.
Consider the groupoid G = Z × Z ; the unit section is the diagonal morphism

�Z : Z → Z × Z .
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The resulting E2-algebra AZ×Z (resp., AIndCoh
Z×Z ) identifies with HC(Z) (resp.,

HCIndCoh(Z)), using the identifications of the monoidal categories

QCoh(Z × Z) → Functcont(QCoh(Z), QCoh(Z))

and

IndCoh(Z × Z) → Functcont(IndCoh(Z), IndCoh(Z)),

respectively.

Remark F.4.7 It will follow from the proof of Proposition F.4.4 that the resulting
isomorphism

HC(Z) → HCIndCoh(Z)

identifies with the one given by ϒHC.

F.4.8. For an arbitrary groupoid G, the algebra AG (resp., AIndCoh
G ) naturally maps to

HC(Z) (resp., HCIndCoh(Z)).
This can be viewed as a corollary of the functoriality of the assignment G � AG.

Namely, a homomorphism of groupoids f : G1 → G2 induces homomorphisms of
monoidal categories

f∗ : QCoh(G1) → QCoh(G2) and f IndCoh∗ : IndCoh(G1) → IndCoh(G2),

and hence of E2-algebras

AG1 → AG2 and AIndCoh
G1

→ AIndCoh
G2

.

We apply this to G1 = G and G2 = Z × Z and use Sect. F.4.6.
Equivalently, the monoidal category (AG)int-op-mod (resp., (AIndCoh

G )int-op-mod)
acts on the category QCoh(Z) (resp., IndCoh(Z)) via the canonical action of QCoh(G)

on QCoh(Z) (resp., of IndCoh(G) on IndCoh(Z)) by convolution.

Remark F.4.9 Again, from the construction of the isomorphism of Proposition F.4.4,
it will follow that for a homomorphism of groupoids f : G1 → G2, the following
diagram of E2-algebras naturally commutes:

AG1

∼−−−−→ AIndCoh
G1

f∗
⏐
⏐�

⏐
⏐� f IndCoh∗

AG2

∼−−−−→ AIndCoh
G2

.
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F.4.10. Relative Hochschild cochains Let Z → U be a morphism of affine DG
schemes. Consider the groupoid

GZ/U := Z ×
U

Z .

By a slight abuse of notation, we will continue to denote by �Z the diagonal map
Z → Z ×

U
Z , which is the unit of the above groupoid.

The groupoid gives rise to E2-algebras AGZ/U
and AIndCoh

GZ/U
of endomorphisms of the

unit objects �Z ,∗OZ ∈ QCoh(GZ/U) and �IndCoh
Z ,∗ ωZ ∈ IndCoh(GZ/U), respectively.

We put

HC(Z/CU ) := AGZ/U

HCIndCoh(Z/U) := AIndCoh
GZ/U

and refer to these E2-algebras as “the algebras of Hochschild cochains on Z relative
to U.”

It is easy to see that HC(Z/U) identifies with the E2-algebra

HC(QCoh(Z))QCoh(U)

of endomorphisms of the identity functor on QCoh(Z) as a DG category tensored over
QCoh(U), i.e., the E2-algebra of endomorphisms of the unit in the monoidal category

FunctQCoh(U)(QCoh(Z), QCoh(Z)).

(This is because the natural homomorphism from QCoh(GZ/U) to the above category
is an equivalence.)

By essentially repeating the proof of Proposition F.1.5, one can construct an iso-
morphism of E2-algebras

HC(Z/U) = HC(QCoh(Z))QCoh(U)
∼→ HC(IndCoh(Z))QCoh(U).

Here, HC(IndCoh(Z))QCoh(U) is the E2-algebra of endomorphisms of the identity
functor on IndCoh(Z) as a DG category tensored over QCoh(U), that is, the E2-
algebra of endomorphisms of the unit in the monoidal category

FunctQCoh(U)(IndCoh(Z), IndCoh(Z)).

The content of Proposition F.4.4 in this case is that the natural map

AIndCoh
GZ/U

→ FunctQCoh(U)(IndCoh(Z), IndCoh(Z))

is an isomorphism.
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F.5 Proof of Proposition F.4.4

F.5.1. We will need the following variant of the construction of the assignment O �→
AO of Sect. E.2.

Let ′O be a non-cocomplete DG category equipped with a monoidal structure. The
datum of such a monoidal structure is, by definition, equivalent to a datum of monoidal
structure on the cocomplete DG category O := Ind(′O) such that the monoidal oper-
ation O×O → O sends ′O× ′O ⊂ O×O to ′O ⊂ O.

We set, by definition, A′O := AO. The assignment ′O → A′O is clearly functorial.
In addition, it has the following property:

Let ′ : ′O → ′O1 be a monoidal functor, where O1 is another monoidal DG
category, not necessarily cocomplete. Then, ′ induces a continuous monoidal functor

 : O → O1,

where O1 = Ind(′O1), and provides a homomorphism

A′O = AO → AO1 = A′O1 .

Assume now that the original functor ′ is fully faithful (but  does not have to be).
Then, the above homomorphism A′O → A′O1 is an isomorphism. In fact, it suffices
to assume that ′ induces an isomorphism

Maps ′O(1′O, 1′O) → Maps‘O1
(1′O1, 1′O1).

Equivalently, ′ needs to be fully faithful on the full subcategory of ′O that is strongly
generated by the unit object 1′O ∈ ′O (that is, on the smallest full DG subcategory of
′O containing 1′O).

F.5.2. Consider the full, but not cocomplete, subcategory

QCoh(G)bdd.Tor ⊂ QCoh(G),

consisting of the objects whose Tor-amplitude with respect to p2 is bounded on the
left. That is, F ∈ QCoh(G) if and only if the functor

F′ �→ F ⊗ p∗2(F), QCoh(Z) → QCoh(G)

is of bounded cohomological amplitude on the left. For example, the object unit∗(OZ )

belongs to QCoh(G)bdd.Tor (In what follows, we could actually replace the cate-
gory QCoh(G)bdd.Tor by its full subcategory strongly generated by the unit object
unit∗(OZ ).).

The monoidal structure on QCoh(G) preserves QCoh(G)bdd.Tor, which therefore
acquires a structure of a monoidal (non-cocomplete) DG category. Similarly, the
monoidal structure on IndCoh(G) preserves IndCoh(G)+, and therefore IndCoh(G)+
acquires a structure of a monoidal (non-cocomplete) DG category.
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By Sect. F.5.1, it is sufficient to construct a monoidal functor

QCoh(G)bdd.Tor → IndCoh(G)+

and verify that it is fully faithful on the subcategory strongly generated by the unit
object.

F.5.3. The operation of convolution in QCoh(G) defines an action of the monoidal
category QCoh(G)bdd.Tor on QCoh(G)+.

Recall that the functor �G defines an equivalence IndCoh(G)+ → QCoh(G)+.
Hence, we obtain a monoidal action of QCoh(G)bdd.Tor on IndCoh(G)+.

Lemma F.5.4 The above action of QCoh(G)bdd.Tor on IndCoh(G)+ commutes with
the right action of IndCoh(G)+ on itself that is induced by the monoidal structure on
IndCoh(G).

Proof Follows from [10, Lemma 3.6.13]. ��
On the other hand, the monoidal category of endomorphisms of the right

IndCoh(G)+-module IndCoh(G)+ is identified with IndCoh(G)+ via its left action
on itself. Thus, we obtain a monoidal functor

QCoh(G)bdd.Tor → IndCoh(G)+.

If one ignores the monoidal structure, the functor can be given explicitly by

F �→ F ⊗ p∗2(�Z (ωZ )) ∈ QCoh(G)+ � IndCoh(G)+ (F ∈ QCoh(G)bdd.Tor).

(F.7)
The advantage of using Lemma F.5.4 to construct the functor (rather than treating (F.7)
as its definition) is that the monoidal structure appears naturally.

F.5.5. It remains to show that the map

MapsQCoh(G)(unit∗(OZ ), unit∗(OZ ))

→ MapsIndCoh(G)(unitIndCoh∗ (ωZ ), unitIndCoh∗ (ωZ )) (F.8)

induced by (F.7) is an isomorphism.

F.5.6. More generally, let f : Z ′ → Z be a map between affine DG schemes, and
consider the corresponding subcategory

QCoh(Z ′)bdd.Tor /Z ⊂ QCoh(Z),

consisting of objects F′ ∈ QCoh(Z ′), for which the functor

F �→ F′ ⊗ f ∗(F), QCoh(Z) → QCoh(Z ′)
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is of bounded cohomological amplitude on the left (i.e., these are objects whose Tor-
dimension over Z is bounded on the left).

Consider the corresponding functor

 : QCoh(Z ′)bdd.Tor /Z → IndCoh(Z ′),

defined by

(F′) := F′ ⊗ f ∗(�Z (ωZ )) ∈ QCoh(Z ′)+ � IndCoh(Z ′)+ ⊂ IndCoh(Z ′).

We will claim:

Proposition F.5.7 The functor  induces an isomorphism

MapsQCoh(Z ′)(F
′
1,F

′
2) → MapsIndCoh(Z ′)((F′1),(F′2)),

whenever F′2 ∈ QCoh(Z ′)bdd.Tor /Z ∩ QCoh(Z ′)−.

Proof Since Z ′ was assumed affine, we can take F′1 = OZ ′ . Denote F′2 by F′. By the
projection formula, it suffices to show that the map

�(Z , f∗(F′)) → MapsQCoh(Z)(�Z (ωZ ), f∗(F′)⊗�Z (ωZ ))

is an isomorphism.
The assumption that F′ ∈ QCoh(Z ′)bdd.Tor /Z implies that the right-hand side iden-

tifies with MapsIndCoh(Z)(ωZ ,F ⊗ ωZ ), where F := f∗(F′), and ⊗ denotes the
monoidal action of QCoh(Z) on IndCoh(Z). ��

Hence, the required assertion follows from the next general lemma:

Lemma F.5.8 Let Z be a DG scheme. Then the map

�(Z ,F) → MapsIndCoh(Z)(ωZ ,F ⊗ ωZ ) (F.9)

is an isomorphism, provided that F ∈ QCoh(Z)−.

Proof of Lemma F.5.8 Recall that if Z is eventually coconnective, (F.9) is an isomor-
phism for any F ∈ QCoh(Z), see [10, Corollary 9.6.3]. Let ik : Zk → Z be the
k-coconnective truncation of Z . Then

ωZ = colim−→ (ik)
IndCoh∗ (ωZk ).

Therefore, the right-hand side of (F.9) can be evaluated as

HomIndCoh(Z)(ωZ ,F ⊗ ωZ ) � lim←− HomIndCoh(Zk )(ωZk , (ik)
!(F ⊗ ωZ ))

� lim←− HomIndCoh(Zk )(ωZk , (ik)
∗(F)⊗ ωZk ) � lim←− HomQCoh(Zk )(OZk , (ik)

∗(F))

� lim←− HomQCoh(Z)(OZ , (ik)∗ ◦ (ik)
∗(F)).



186 D. Arinkin, D. Gaitsgory

It remains to notice that F maps isomorphically to the inverse limit

lim←−(ik)∗ ◦ (ik)
∗(F),

which is true because F ∈ QCoh(Z)−: indeed, if F ∈ QCoh(Z)≤0, then the map

F → (ik)∗ ◦ (ik)
∗(F)

induces an isomorphism in the cohomological degrees ≥ −k. ��

Appendix G: Hochschild cohomology and Lie algebras

In this appendix, we connect E2-algebras arising from groupoids as in Sect. F to Lie
algebras in the symmetric monoidal category IndCoh.23

G.1 Lie algebras arising from group DG schemes

In this subsection, we quote (without proof) two facts (Propositions G.1.2 and G.1.5)
about the relationship between group DG schemes and Lie algebras. The full exposition
appears in [13, Part IV.3, Sect. 3].

G.1.1. Let Z be an affine DG scheme, and let

p : G� Z : unit

be a group DG scheme over Z . We claim:

Proposition G.1.2 The object unit∗(T ∗(G/Z)) ∈ QCoh(Z) has a natural structure
of Lie co-algebra in the symmetric monoidal category QCoh(Z).

G.1.3. Recall that all DG schemes are assumed to be almost of finite type. We have

T ∗(G/Z) ∈ QCoh(Z)−,

and note that it has coherent cohomologies. Serre duality identifies this category with
a full subcategory of QCoh(Z)+ � IndCoh(Z)+ consisting of objects with coherent
cohomologies.

Hence,

T IndCoh(G/Z) := DSerre
Z (T ∗(G/Z)) ∈ IndCoh(Z)

23 As we will be dealing with Lie algebras, the assumption that our ground field k has characteristic 0 is
crucial.
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acquires a structure of Lie algebra, where IndCoh(Z) is regarded as a symmetric

monoidal category under the
!⊗ tensor product.

G.1.4. Let IndCoh(G)Z ⊂ IndCoh(G) be the full subcategory of objects set-
theoretically supported on the unit section. The embedding IndCoh(G)Z ↪→
IndCoh(G) admits a right adjoint, which we denote by

F �→ F∧ : IndCoh(G) → IndCoh(G)Z .

Consider the object

ω∧G ∈ IndCoh(G),

and its direct image pIndCoh∗ (ω∧G) ∈ IndCoh(Z).

The group structure on G makes pIndCoh∗ (ω∧G) into an associative algebra object
in IndCoh(Z) (where IndCoh(Z) is, as always, considered as a symmetric monoidal

category under the
!⊗ tensor product). We claim:

Proposition G.1.5 There is a canonical isomorphism of associative algebras in
IndCoh(Z)

pIndCoh∗ (ω∧G) � U (T IndCoh(G/Z)).

G.1.6. Assume now that G is such that T ∗(G/Z) belongs to QCoh(Z)perf . Denote by
T (G/Z) ∈ QCoh(Z)perf its monoidal dual.

By Proposition G.1.2, the object T (G/Z) acquires a structure of Lie algebra in the
symmetric monoidal category QCoh(Z).

Recall also that the functor

ϒZ = −⊗ ωZ : QCoh(Z) → IndCoh(Z)

is symmetric monoidal. By construction, we have

T IndCoh(G/Z) � ϒZ (T (G/Z)),

as Lie algebras in IndCoh(Z), and hence

U (T IndCoh(G/Z)) � ϒZ
(
UOZ (T (G/Z))

)
,

as associative algebras in IndCoh(Z).
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G.2 Lie algebras arising from groupoids

In this subsection, we will relate the E2-algebra HCIndCoh(Z) to the tangent sheaf of Z .
This relationship is convenient for the direct invariant definition of singular support,
as is given in Sect. 4.1.

G.2.1. Consider now the following situation. Let i : Z → W be a proper map of affine
DG schemes, equipped with a retraction, i.e., a map s : W → Z and an isomorphism
s ◦ i ∼ idZ .

Note that in this case, the groupoid GZ/W := Z ×
W

Z over Z is actually a group DG

scheme over Z .
Assume now that T ∗(Z/W ) is perfect, and consider its monoidal dual T (Z/W ) ∈

QCoh(Z)perf . We will prove:

Proposition G.2.2 (a) The object T (Z/W ) ∈ QCoh(Z) has a structure of Lie alge-
bra.

(b) There is a canonically defined homomorphism of DG associative algebras

�
(
Z , UOZ (T (Z/W ))

) → MapsIndCoh(W )(i
IndCoh∗ (ωZ ), i IndCoh∗ (ωZ )),

which is an isomorphism if Z is eventually coconnective.

G.2.3. Before proving Proposition G.2.2 let us show how we are going to apply it.
Suppose we are in situation of Sect. F.4.1; thus, G is a groupoid acting on Z , where
both Z and G are affine DG schemes. Assume that the relative cotangent complex
T ∗(G/Z) (with respect to, say, projection p1) is perfect; let T (G/Z) ∈ QCoh(G)perf

denote its monoidal dual.
From Proposition G.2.2, we obtain:

Corollary G.2.4 (a) The object unit∗(T (G/Z))[−1] ∈ QCoh(Z) has a natural
structure of Lie algebra.

(b) There exists a canonically defined homomorphism

�
(
Z , UOZ (unit∗(T (G/Z))[−1])) → AIndCoh

G ,

which is an isomorphism if Z is eventually coconnective.

Proof Apply Proposition G.2.2 to W := G with the map i being the unit map Z → G

and the retraction being, say, the first projection p1 : G → Z . It remains to use the
canonical identification

unit∗(T (G/Z))[−1] � T (Z/G).

��
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Remark G.2.5 Note that the structure of Lie algebra on unit∗(T (G/Z)[−1] depends
on the choice of the retraction of the map unit : Z → G. If we chose a different
retraction, namely p2 instead of p1, the resulting Lie algebra structure would be
different. In general, there does not exist an isomorphism between the two resulting
Lie algebras that induces the identity map on the underlying object of QCoh(Z).

G.2.6. Consider the particular case when G = Z × Z . Assume that the cotangent
complex of Z is perfect. We obtain the following basic identification:

Corollary G.2.7 (a) The object T (Z)[−1] has a natural structure of Lie algebra in
the symmetric monoidal category QCoh(Z).

(b) The associative DG algebra underlying the E2-algebra HCIndCoh(Z) receives a
canonical homomorphism from �(Z , UOZ (T (Z)[−1])). This homomorphism is
an isomorphism if Z is eventually coconnective.

More generally, for a map Z → U whose relative cotangent complex T ∗(Z/U) is
perfect, we obtain:

Corollary G.2.8 (a) The object T (Z/U)[−1] has a natural structure of Lie algebra
in the symmetric monoidal category QCoh(Z).

(b) The associative DG algebra underlying the E2-algebra HCIndCoh(Z/U) receives a
canonical homomorphism from �(Z , UOZ (T (Z/U )[−1])). This homomorphism
is an isomorphism if Z is eventually coconnective.

G.2.9. Proof of Proposition G.2.2 Let us start with a map i : Z → W . Consider the
groupoid GZ/W = Z ×

W
Z :

Z Z .

GZ/W

Z

p1

����
��

��
��

�
p2

���
��

��
��

�

unit

��

(G.1)

By proper base change (see also [13, Part II.2, Sect. 5.3]), the monad i ! ◦ i IndCoh∗
acting on IndCoh(Z) identifies with the monad (p2)

IndCoh∗ ◦ p!1.
In particular, for F ∈ IndCoh(Z), the structure of associative DG algebra on

MapsIndCoh(Z)(F, (p2)
IndCoh∗ ◦ p!1(F)) (G.2)

identifies canonically with

MapsIndCoh(W )(i
IndCoh∗ (F), i IndCoh∗ (F)).

In particular, we obtain an identification of associative DG algebras

MapsIndCoh(Z)(ωZ , (p2)
IndCoh∗ ◦ p!1(ωZ ))�MapsIndCoh(W )(i

IndCoh∗ (ωZ ), i IndCoh∗ (ωZ )).

(G.3)
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Assume now that the map i : Z → W is equipped with a retraction. In this case,
GZ/W is a group DG scheme over Z , and by Sect. G.1.6, the object

unit∗(T (GZ/W /Z)) ∈ QCoh(Z)

acquires a Lie algebra structure. Point (a) of Proposition G.2.2 follows now by noticing
that

unit∗(T (GZ/W /Z)) � T (Z/W ).

Denote G := GZ/W and let p denote its projection to Z (which is canonically
identified with both p1 and p2). To prove point (b), we note that the associative algebra
structure on (G.2) comes from the structure of associative algebra on IndCoh(Z) on
pIndCoh∗ (ωG), induced by the group structure on G.

Note now that the existence of the retraction s implies that the map i : Z → W
is a closed embedding. Hence, the maps p : G → Z and unit : Z → G induce
isomorphisms of the underlying reduced classical schemes. In particular, ωG � ω∧G.
Therefore, combining Proposition G.1.5 and (G.3), we obtain an identification of
associative DG algebras

MapsIndCoh(Z)

(
ωZ , U (T IndCoh(G/Z))

)
�MapsIndCoh(W )(i

IndCoh∗ (ωZ ), i IndCoh∗ (ωZ )).

(G.4)
Finally, the symmetric monoidal functor ϒZ defines a homomorphism

�
(
Z , U (unit∗(T (G/Z))[−1])) � MapsQCoh(Z)

(
OZ , UOZ (T (G/Z))

)

→ MapsIndCoh(Z)

(
ωZ , U (T IndCoh(G/Z))

)
. (G.5)

Composing (G.4) and (G.5), we obtain the desired map

�
(
Z , U (unit∗(T (G/Z))[−1])) → MapsIndCoh(W )(i

IndCoh∗ (ωZ ), i IndCoh∗ (ωZ )).

(G.6)
If Z is eventually coconnective, the functor ϒZ is fully faithful, which implies that

(G.5) is an isomorphism. Hence, (G.5) is an isomorphism as well. ��

G.3 Compatibility with duality

G.3.1. Consider the homomorphism of E1-algebras

�(Z , UOZ (T (Z)[−1])) → HCIndCoh(Z),

and the resulting map in Vect

�(Z , T (Z))[−1] → HCIndCoh(Z). (G.7)
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G.3.2. We claim:

Lemma G.3.3 The following diagram commutes

�(Z , T (Z))[−1] (G.7)−−−−→ HCIndCoh(Z)

ξ �→−ξ

⏐⏐�
⏐⏐�(F.4)

�(Z , T (Z))[−1] (G.7)−−−−→ HCIndCoh(Z)ext-op

in Vect.

Proof The map (G.7) is the composition of the natural morphism

�(Z , T (Z))[−1] � �(Z , NZ/Z×Z )[−1]
→ MapsIndCoh(Z×Z)((�Z )IndCoh∗ (ωZ ), (�Z )IndCoh∗ (ωZ )),

and the homomorphism of objects of Vect (in fact, E1-algebras)

MapsIndCoh(Z×Z)((�Z )IndCoh∗ (ωZ ), (�Z )IndCoh∗ (ωZ )) � HCIndCoh(Z).

Unwinding the definitions, we obtain that the isomorphism (F.4) corresponds to
the automorphism of MapsIndCoh(Z×Z)((�Z )IndCoh∗ (ωZ ), (�Z )IndCoh∗ (ωZ )), induced
by the transposition involution σ on Z × Z .

The assertion of the lemma follows now from the commutativity of the diagram

T (Z) −−−−→ NZ/Z×Z

ξ �→−ξ

⏐⏐�
⏐⏐�σ

T (Z) −−−−→ NZ/Z×Z .

��

G.3.4. We are now ready to give a more direct proof of Proposition 4.7.2:

Proof The assertion is local, so we can assume that Z is affine. Fix F ∈ Coh(Z). It
suffices to show that the action maps

�(Z , T (Z))[−1] ⊗ F → F and �(Z , T (Z))[−1] ⊗ D
Serre
Z (F) → D

Serre
Z (F)

correspond to each other under the automorphism of �(Z , T (Z))[−1] given by ξ �→
−ξ (In this statement, �(Z , T (Z))[−1] appears merely as an object of Vect: we make
no statement about compatibility with the Lie algebra structure.).

The required statement follows from Lemma G.3.3 and the following observation:
Let C be a dualizable DG category, and c ∈ C a compact object. Let c∨ denote the

corresponding compact object of C∨. Then under the isomorphism of E2-algebras

HC(C)ext-op � HC(C∨)
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(see Sect. E.3.3), the diagram

HC(C)op −−−−→ MapsC(c, c)op

⏐⏐�
⏐⏐�

HC(C∨) −−−−→ MapsC∨(c
∨, c∨),

commutes, where the horizontal arrows use the external forgetful functor E2-Alg →
E1-Alg. ��

G.4 The case of group schemes

G.4.1. Suppose that in the setting of Sect. F.4.1, G is a group DG scheme over Z .
In addition, we continue to assume that the relative cotangent complex T ∗(G/Z) is
perfect. In this case, we claim:

Proposition G.4.2 The Lie algebra structure on unit∗(T (G/Z))[−1] ∈ QCoh(Z),
given by Corollary G.2.4(a), is canonically trivial.

Proof We will deduce the assertion of the proposition from the following lemma:24

Lemma G.4.3 Let L be a Lie algebra in a symmetric monoidal category O over a
field of characteristic 0. Then the loop object �(L), considered as a plain Lie algebra
in O is canonically abelian, i.e., identifies with object L[−1] ∈ O with the trivial Lie
algebra structure.

Namely, we claim that the Lie algebra unit∗(T (G/Z))[−1] ∈ QCoh(Z), given by
Corollary G.2.4(a), is canonically isomorphic to

�(unit∗(T (G/Z))),

where unit∗(T (G/Z)) is the Lie algebra of Sect. G.1.6.
For the latter, it suffices to notice that we have an identification of group DG schemes

over Z :

Z ×
G

Z � �(G).

Remark G.4.4 We emphasize that the isomorphism between �(L) and the abelian Lie
algebra L[−1] given by Lemma G.4.3 does not respect the structure of group objects
in the category of Lie algebras.

24 This lemma is probably well known; the proof is given in [13, Part IV.2, Theorem 2.2.2].
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G.4.5. Combining Proposition G.4.2 with Corollary G.2.4(b), we obtain:

Corollary G.4.6 The associative DG algebra underlying the E2-algebra AIndCoh
G

receives a canonically defined homomorphism from �(Z , SymOZ
(LG[−1])). This

homomorphism is an isomorphism if Z is eventually coconnective.

Remark G.4.7 Let us note that each side in the homomorphism

�(Z , SymOZ
(LG[−1])) → AIndCoh

G

of Corollary G.4.6 has a structure of E2-algebra. However, this homomorphism does
not respect this structure: It is a homomorphism of mere E1-algebras.

Appendix H: Other approaches to singular support

H.1 IndCoh(Z) via the category of singularities

H.1.1. Let us assume that Z is an affine DG scheme, which is a global complete
intersection. That is, Z can be included in a Cartesian diagram

Z
ι−−−−→ U

⏐
⏐�

⏐
⏐�

pt −−−−→ V,

where U and V are smooth. Moreover, we assume that V is parallelized; this allows
us to replace V with its tangent space at the fixed point. Thus, we will assume that
V = V is a finite-dimensional vector space.

Remark H.1.2 In fact, the construction of this section remains valid in the setting of
Sect. 9.3: That is, we may replace Z with the zero locus of a section of a vector bundle
on a smooth stack. However, one can use affine charts of a stack to deduce this more
general case from the special case that we consider here.

H.1.3. Consider the product V ∗ × U. The map s : U → V defines a function

V ∗ × U → A
1 : (u, φ) �→ 〈φ, s(u)〉,

which we still denote by s. Let

H := (V ∗ × U) ×
A1

pt

be the zero locus of s. Note that H is a classical scheme (and then a closed hypersurface
in V ∗ × U) unless s vanishes identically on a connected component of U. Clearly, H
is conical, that is, it carries a natural action of Gm lifting its action on V ∗ × U by
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dilations. Moreover, it is easy to see that the singular locus of H is identified with
Sing(Z) ⊂ V ∗ × U.

Let

H := H/Gm �
(
(V ∗/Gm)× U

) ×
A1/Gm

(pt /Gm)

be the quotient stack. The following theorem is due to M. Umut Isik:

Theorem H.1.4 There is a natural equivalence

IndCoh(Z) � IndCoh(H)/QCoh(H), (H.1)

where QCoh(H) is viewed as a full subcategory of IndCoh(H) using the functor �H.

Theorem H.1.4 is a version of [39, Theorem 3.6]. In [39], it is assumed that Z
is classical (that is, that the coordinates of the map s form a regular sequence of
functions), but this assumption is not used in the proof.

Remark H.1.5 Let S be a quasi-compact DG scheme. The category IndCoh(S)/

QCoh(S) is compactly generated by the quotient

Coh(S)/QCoh(S)perf .

The category Coh(S)/QCoh(S)perf is known as the category of singularities of S,
introduced in [32]. Then IndCoh(S)/QCoh(S) identifies with the ind-completion of
the category of singularities. The category IndCoh(S)/QCoh(S) was introduced in
[16] under the name “stable derived category.” (As a minor detail, both [32] and [16]
work with Noetherian classical schemes.)

H.1.6 Theorem H.1.4 is about the “stable derived category” IndCoh(H)/QCoh(H)

of the stack H.
Note that both IndCoh(H) and QCoh(H) are compactly generated: The former

because H is QCA (see [6]), the latter because H is a quotient of an affine DG scheme
by a linear group, which is a perfect stack (see [3]). (Alternatively, the two categories
are compactly generated by Corollary 9.2.7, since H is a global complete intersection.)
Therefore, IndCoh(H)/QCoh(H) is equivalent to the ind-completion of the “category
of singularities”

Coh(H)/QCoh(H)perf .

In fact, [39, Theorem 3.6] gives an equivalence between the categories of compact
objects

Coh(Z) � Coh(H)/QCoh(H)perf ,

rather than between their ind-completions, as in Theorem H.1.4.
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H.1.7. Singular support via category of singularities The category IndCoh(H)/

QCoh(H) is naturally tensored over the monoidal category QCoh(H). Using the nat-
ural morphism

H → (V ∗/Gm)× U,

we can consider IndCoh(H)/QCoh(H) as a category tensored over QCoh((V ∗/Gm)×
U). Recall from Sect. 5.4.6 that the category IndCoh(Z) is tensored over the category
QCoh((V ∗/Gm) × U) as well. It is not hard to check that (H.1) is an equivalence of
QCoh((V ∗/Gm)× U)-modules.

In particular, fix F ∈ IndCoh(Z) and let F′ ∈ IndCoh(H)/QCoh(H) be its image
under (H.1). We claim that

SingSupp(F) = supp(F′). (H.2)

Note that

SingSupp(F) ⊂ Sing(Z) ⊂ V ∗ × U,

while the support of F′ can be defined naively, as the minimal closed subset of H (that
is, a conical Zariski-closed subset of H ⊂ V ∗ × U ) such that F′ restricts to zero on
its complement. It is clear that for any F′ ∈ IndCoh(H)/QCoh(H), its support is a
conical Zariski-closed subset of the singular locus of H (recall that the singular locus
of H is identified with Sing(Z)).

H.2 The category of singularities of Z

H.2.1. Denote by

(IndCoh(H)/QCoh(H)){0} ⊂ IndCoh(H)/QCoh(H)

the full subcategory of objects of IndCoh(H)/QCoh(H) supported on the zero-section

{0} × U ⊂ V ∗ × U.

Under the equivalence (H.1), it corresponds to the full subcategory QCoh(Z) ⊂
IndCoh(Z) (where we identify QCoh(Z) with its image under �Z ). This claim is
not hard to check directly, but it also follows from (H.2): indeed, F ∈ IndCoh(Z)

belongs to the essential image of QCoh(Z) if and only if its singular support is con-
tained in the zero-section (Theorem 4.2.6).

H.2.2. Therefore, Theorem H.1.4 induces an equivalence between the quotients

IndCoh(Z)/QCoh(Z) � (IndCoh(H)/QCoh(H))/(IndCoh(H)/QCoh(H)){0}.
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Set

H′ := H − ({0}/Gm)× U ⊂ H.

Note that H′ is a DG scheme rather than a stack (in fact, H′ is a classical scheme unless
the map s : U → V vanishes on a connected component of U). We can identify

IndCoh(H′)/QCoh(H′) � (IndCoh(H)/QCoh(H))/(IndCoh(H)/QCoh(H)){0}

(cf. [16, Proposition 6.9]). Therefore, Theorem H.1.4 implies the following equiva-
lence, due to D. Orlov.

Theorem H.2.3 There is a natural equivalence

IndCoh(Z)/QCoh(Z) � IndCoh(H′)/QCoh(H′).

Theorem H.2.3 is a variant of [33, Theorem 2.1]. Some minor differences include
that [33] works with the category of compact objects, and assumes that Z is classical.
Besides, the equivalence of Theorem H.2.3 is constructed in a different and more
explicit way than the equivalence of Theorem H.1.4; in fact, while the introduction to
[39] mentions the similarity between the two results, it also states that the agreement
between the two constructions is not immediately clear.

Remark H.2.4 Fix F ∈ IndCoh(Z). Just like Theorem H.1.4 can be used to determine
SingSupp(F) (using (H.2)), Theorem H.2.3 determines

SingSupp(F) ∩ (V ∗ − {0})× U,

that is, the complement to the zero-section in SingSupp(F). However, one can easily
reconstruct the entire singular support, because

SingSupp(F) ∩ {0} × U = {0} × supp(F).

H.2.5. Let Y be a conical Zariski-closed subset of Sing(Z) that contains the zero-
section. Such subsets are in one-to-one correspondence with Zariski-closed subsets of
the singular locus of H′: The correspondence sends Y to

Y ′ := (Y − {0} × U)/Gm ⊂ H′.

Since Y contains the zero-section, the corresponding full subcategory IndCohY (Z)

contains QCoh(Z). Therefore, we can consider the quotient IndCohY (Z)/QCoh(Z),
which embeds as a full subcategory into IndCoh(Z)/QCoh(Z).

G. Stevenson provides a complete classification of localizing subcategories of
the triangulated category Ho(IndCoh(Z)/QCoh(Z)) in [37, Corollary 10.5] (a tri-
angulated subcategory is localizing if it is closed under arbitrary direct sums).
Such subcategories are in one-to-one correspondence with subsets of H′. Subcate-
gories that are generated by objects that are compact in Ho(IndCoh(Z)/QCoh(Z))
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correspond to specialization-closed subsets. Under this correspondence, the cat-
egory Ho(IndCohY (Z)/QCoh(Z)) corresponds to the subset Y ′ ⊂ H′ (This is
almost obvious because [37] uses Orlov’s equivalence of Theorem H.2.3 to study
IndCoh(Z)/QCoh(Z).).

To summarize, we can also reconstruct the singular support of an object F ∈
IndCoh(Z) using the results of [37]. Technically, this only allows us to reconstruct the
support of the image of F in IndCoh(Z)/QCoh(Z), that is, the complement to the zero-
section in SingSupp(F); the entire SingSupp can be recovered using Remark H.2.4.

H.3 IndCoh(Z) as the coderived category

Let us comment on the relation between the results in the main body of the present
paper and the nonlinear Koszul transform introduced by L. Positselski in [34].

H.3.1. The key notion that we need from [34] is that of coderived category of modules
over a curved DG algebra. To simplify the exposition, we do not give the definitions
in maximal generality, and only work with curved DG algebras whose curvature is
central. This class of curved DG algebra suffices for our purposes.

Let A be a DG algebra. Fix a central element c ∈ A2 such that d(c) = 0. We refer
to the pair (A, c) as a “curved DG algebra”; c is called the curvature of A.

A (left) module over the curved DG algebra (A, c) is by definition a graded vector
space M equipped with an action of A and a degree one map d : M → M that
satisfies the Leibniz rule and the identity d2 = c. Modules over (A, c) form a DG cat-
egory, which we denote by A-modc. Consider the corresponding triangulated category
Ho(A-modc).

Definition H.3.2 The full subcategory of coacyclic modules

Acyclco(A-modc) ⊂ Ho(A-modc)

is the subcategory generated by the total complexes of exact sequences

0 → M1 → M2 → M3 → 0

of (A, c)-modules. The coderived category Dco(A-modc) is defined to be the quotient

Dco(A-modc) := Ho(A-modc)/ Acyclco(A-modc)

H.3.3. Suppose Z is as in Sect. H.1.1. We consider two curved DG algebras: one is

A := Sym(V ∗)⊗ �(U,OU)

with differential given by s ∈ �(U,OU⊗ V ) and curvature zero. The other is
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B := Sym(V [−2])⊗ �(U,OU)

with zero differential and curvature s.
The following is a variant of a special case of [34, Theorem 6.5a] (see also [34,

Theorem 6.3a])

Theorem H.3.4 There is a natural equivalence between the coderived categories

Dco(A-mod0) � Dco(B-mods).

Remark H.3.5 We state Theorem H.3.4 with algebras on both sides of the equivalence.
This is one point of difference from [34], where the equivalence relates algebras and
coalgebras. However, note that A is free of finite rank over �(U,OU), so it is easy
to pass from modules over A to comodules over the dual coalgebra. Another point of
difference with [34] is that Theorem H.3.4 is “relative” the correspondence is linear
over the algebra �(U,OU).

H.3.6. Let us explain the relation between Theorem H.3.4 and Theorem H.1.4.
Indeed, Z = Spec(A), and it follows from [34, Theorem 3.11.2] that Dco(A-mod0)

can be identified with Ho(IndCoh(Z)). On the other hand, (B, s)-modules are similar
to “equivariant matrix factorization” (cf. [34, Example 3.11]), and it is natural that they
can be used to study the “equivariant category of singularities” IndCoh(H)/QCoh(H).
Finally, note that, just as the equivalence of Theorem H.3.4 is given by a (nonlinear)
Koszul transform, the equivalence of Theorem H.1.4 (constructed in [39]) is derived
using a (linear) Koszul transform, namely the linear Koszul transform of I. Mirković
and S. Riche [25].

References

1. Avni, N.: Why Bun(G) is an algebraic stack. http://www.math.harvard.edu/~gaitsgde/grad_2009/
2. Bezrukavnikov, R., Finkelberg, M.: Equivariant Satake category and Kostant-Whittaker reduction.

Mosc. Math. J., 8(1), 39–72, 183 (2008)
3. Ben-Zvi, D., Francis, J., Nadler, D.: Integral transforms and Drinfeld centers in derived algebraic

geometry. J. Am. Math. Soc. 23(4), 909–966 (2010)
4. Benson, D., Iyengar, S.B., Krause, H.: Local cohomology and support for triangulated categories. Ann.

Sci. Éc. Norm. Supér. 41(4), 573–619 (2008)
5. Beilinson, A., Vologodsky, V.: A DG guide to Voevodsky’s motives. Geom. Funct. Anal. 17(6), 1709–

1787 (2008)
6. Drinfeld, V., Gaitsgory, D.: On some finiteness questions for algebraic stacks. GAFA 23, 149–294

(2013)
7. Drinfeld, V., Gaitsgory, D.: Compact generation of the category of D-modules on the stack of G-bundles

on a curve. Preprint arXiv:1112.2402
8. Drinfeld, V., Gaitsgory, D.: Geometric constant term functor(s). Preprint arXiv:1311.2071
9. Francis, J., Gaitsgory, D.: Chiral Koszul duality. Sel. Math. (New Series) 18(1), 2–87 (2012)

10. Gaitsgory, D.: Sheaves of categories and the notion of 1-affineness. Preprint arXiv:1306.4304
11. Gaitsgory, D.: Ind-coherent sheaves. Mosc. Math. J. 13, 399–528 (2013)
12. Gaitsgory, D., Rozenblyum, N.: DG indschemes. Contemp. Math. 610, 139–251 (2014)
13. Gaitsgory, D., Rozenblyum, N.: Crystals and D-modules. Preprint arXiv:1111.2087
14. Gaitsgory, D., Rozenblyum, N.: Notes on Geometric Langlands: studies in derived algebraic geometry.

Book in preparation. http://www.math.harvard.edu/~gaitsgde/Nantes14/
15. Ginzburg, V.: The global nilpotent variety is Lagrangian. Duke Math. J. 109(3), 511–519 (2001)

http://www.math.harvard.edu/~gaitsgde/grad_2009/
http://arxiv.org/abs/1112.2402
http://arxiv.org/abs/1311.2071
http://arxiv.org/abs/1306.4304
http://arxiv.org/abs/1111.2087
http://www.math.harvard.edu/~gaitsgde/Nantes14/


Singular support of coherent sheaves 199

16. Gulliksen, T.H.: A change of ring theorem with applications to Poincaré series and intersection mul-
tiplicity. Math. Scand. 34, 167–183 (1974)

17. Krause, H.: The stable derived category of a Noetherian scheme. Compos. Math. 141(5), 1128–1162
(2005)

18. Lafforgue, V.: Quelques calculs reliés à la correspondance de Langlands géométrique pour P
1 (version

provisoire). http://www.math.jussieu.fr/~vlafforg/
19. Laumon, G.: Transformation de Fourier généralisée. Preprint alg-geom/9603004
20. Laumon, G.: Transformation de Fourier géométrique. Preprint IHES/85/M/52 (1985)
21. Lurie, J.: Higher topos theory, Volume 170 of Annals of Mathematics Studies. Princeton University

Press, Princeton, NJ (2009)
22. Lurie, J.: Higher algebra. http://www.math.harvard.edu/~lurie
23. Lurie, J.: DAG-XIV: Representability theorems. http://www.math.harvard.edu/~lurie
24. Lurie, J.: DAG-XVIII: Quasi-coherent sheaves and Tannaka duality theorems. http://www.math.

harvard.edu/~lurie
25. Lurie, J.: Tannaka duality for geometric stacks. http://www.math.harvard.edu/~lurie
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