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Abstract We construct a genus one analogue of the theory of associators and the
Grothendieck—Teichmiiller (GT) group. The analogue of the Galois action on the
profinite braid groups is an action of the arithmetic fundamental group of a moduli
space of elliptic curves on the profinite braid groups in genus one. This action factors
through an explicit profinite group GT 11, Which admits an interpretation in terms of
decorations of braided monoidal categories. This group acts on the tower of profinite
braid groups in genus one and has the structure of a semidirect product of the profinite
GT group GT by an explicit radical. We relate GT,.y toits prounipotent group scheme
version GT,;;(—), which also has a semidirect product structure. We construct a tor-
sor over this group, the scheme of elliptic associators. An explicit family of elliptic
associators is constructed, based on earlier joint work with Calaque and Etingof on the
universal KZB connexion. The existence of elliptic associators enables one to show
that the Lie algebra of GT.;;(—) is isomorphic to a graded Lie algebra, on which
we obtain several results: it is a semidirect product of the graded GT Lie algebra grt
by an explicit radical; we exhibit an explicit Lie subalgebra. Elliptic associators also
allow one to compute the Zariski closure of the mapping class group in genus one
(isomorphic to the braid group B3) in the automorphism groups of the prounipotent
completions of braid groups in genus one. The analytic study of the family of ellip-
tic associators produces relations between MZVs and iterated integrals of Eisenstein
series.
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1 Introduction

The theory of associators and of the Grothendieck—Teichmiiller group has been devel-
oped by Drinfeld [9] in relation to certain problems of quantum groups. This theory was
based on several previous pieces of work: on the one hand, on the approach proposed
by Grothendieck to the study of Gy, the absolute Galois group of Q, via its action on
the Teichmiiller tower in genus zero, and in particular on the profinite completions of
the braid groups [10]; on the other hand, on rational homotopy theory, in particular
the computation by Kohno of the prounipotent completions of the pure braid groups,
based on the study of a particular connexion on the configuration spaces of the plane,
which may be identified with a universal version of the Knizhnik—Zamolodchikov
(KZ) connection.

The main actors of associator theory are as follows: a profinite group GT, of cat-
egorical origin, containing Gg; pro-/, proalgebraic variants of this group, and the
associated Lie algebra gt; a principal homogeneous space, the space of associators,
which enables one to prove that gt is isomorphic to a graded Lie algebra grt; a par-
ticular associator, the KZ associator, whose study allows one both to derive a system
of relations between multizeta values (MZVs) and a collection of generators for grt.
The theory of associators is therefore related to the theory of MZVs and motives [1];
it allows one to exhibit conditions satisfied by elements of motivic Lie algebras.

The purpose of the present work is to construct the analogous theory in genus
one. On the Galois side, the object of interest is the arithmetic fundamental group of

the moduli space of elliptic curves with n marked points M ;@n which gives rise to

an action of the arithmetic fundamental group of the moduli space of elliptic curves
M 91 on the profinite completions of braid groups in genus one; when n = 2, this
action is studied in Nakamura [24], Sect. 5.1, and a higher genus analogue is studied
in Oda [27], on the basis of [11]. The analogue of the rational homotopy part is the
computation of the prounipotent completion of braid groups in genus one, first obtained
by Bezrukavnikov using minimal model theory, and later rederived in Calaque et al. [7]
using an analogue of the KZ connection, the universal KZB connection (this connection
was independently obtained in Levin and Racinet [19]). A new feature of the KZB
connection is its horizontal part (related to variation of the elliptic modulus), which
corresponds to an extension of the holonomy Lie algebra t; , by a Lie algebra of
derivations (67,,n > —1).

Our construction of the genus one analogue of Grothendieck—Teichmiiller theory
consists of several steps. We first construct a genus one analogue of the theory of
braided monoidal categories (BMCs). This enables us to define the genus one analogue
GT 11 Of GT, which is a profinite group containing w1 (M ;@T)' We construct the pro-/
and proalgebraic variants of this group; the associated Lie élgebra is denoted as gt,;;.
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We construct a torsor under this proalgebraic group: the scheme of elliptic associators.
We present two constructions of elliptic associators: (a) we define an explicit map from
the set of associators to its elliptic analogue; (b) the KZB connection gives rise to a
map T — e(t) from the Poincaré half-plane to the set of elliptic associators. We study
the properties of this map: differential system, modular behaviour, and behaviour at
infinity; this shows in particular that the constructions (a) and (b) are related to each
other by suitable specializations and limiting procedures. The existence of elliptic
associators then enable us to construct an isomorphism between gt,;; and an explicit
Lie algebra grt,;;. We prove several results on grt,;;: (a) grt,; is a semidirect product
of grt by a Lie algebra t,;;, which is therefore acted upon by grt; (b) we construct an
explicit Lie subalgebra of t,;.

Beside these results, which may be viewed as internal to the theory, our work leads
to the following results:

(a) The outer action of the arithmetic fundamental group of M i@I on the Q;-points

of the prounipotent completions of the braid group in gends one with various
numbers of strands factors through the action of the group of (;-points of one
and the same proalgebraic group, which is GT¢;;(—);

(b) The mapping class group of surfaces of genus one with one boundary component,
which is isomorphic to the group B3 of braids with three strands, naturally acts
on the pure braid groups in genus one. We compute the Zariski closure of B3 in
the automorphism group of their prounipotent completions, in terms of the Lie
algebra (52, n > —1);

(c) The study of the above-mentioned map from the Poincaré half-plane to the space
of elliptic associators leads to relations between MZVs and iterated integrals of
Eisenstein series.

This paper is organized as follows. In Sect. 2, we define the genus one counterpart
of the notion of braided monoidal category. This enables us to define the group GT 17 1N
Sect. 3, as well as its pro-/ and prounipotent variants. In Sect. 4, we introduce the space
of elliptic associators, prove its nonemptiness, and study its torsor structure. This leads
us to the definition of the group scheme GRT,;; (—) in Sect. 5; we prove the announced
results on its Lie algebra grt,;;: isomorphism with gt, generators, semidirect product
structure. In Sect. 6, we introduce the map t +— e(7) and study its properties. In
Sect. 7, we carry out the computation of Zariski closure of B3 explained above. We
define the iterated integrals of Eisenstein series in Sect. 8 and prove there their relations
with MZVs. In Sect. 9, we recall the relations between G, GT and the Teichmiiller
groupoid in genus zero, and generalize these results to genus one. Section 10 raises a
question on the structure of the kernel t,;; of a natural morphism grt,; — grt, and
its relation with a transcendence conjecture on the KZ associator (which is related to
the Grothendieck period conjecture); namely, it is shown that an affirmative answer to
both questions imply the same (also conjectural) statement on the behaviour of certain
isomorphisms arising from associators (see Propositions 10.4 and 10.5).

Let us now mention some works and projects related to the present work. Hain
and Matsumoto [14] construct a theory of “mixed elliptic motives”. This gives
rise to a proalgebraic QQ-group scheme Gpppy(—), equipped with a morphism
Gyuem(=) — Gyrpu(—). One may expect a commutative diagram from this
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morphism to GT,;;(—) — GT(—). The Lie algebra (§»,,n > —1) is a Lie subal-
gebra of the graded version of the kernels of both morphisms and was studied in
Pollack’s Ph.D. thesis [28]. On the other hand, Brown and Levin [6] develop a parallel
theory of elliptic motives; the elliptic multiple zeta values arising from this theory
could be related to the family t + e(7) of elliptic associators studied here.

The author expresses his thanks to P. Etingof, H. Furusho, R. Hain, and L. Schneps
for useful discussions related to this work, to the referee for useful comments, as well
as to D. Calaque and P. Etingof for collaboration in Calaque et al. [7].

2 Elliptic structures over braided monoidal categories

InCalaqueetal. [7], we introduced a notion of elliptic structure over a braided monoidal
category (BMC) C. It consists in a category &, a functor £ — C, and additional data.
In this section, we introduce a variant of this notion, which consists in a category C ,a
functor C — C , and additional data. The two definitions can be related by adjunction,
as will be explained in forthcoming joint work with P. Etingof. As is the notion from [7],
the variant presented here is related with elliptic braid groups in the same way as BMCs
are related to usual braid groups.

2.1 Definition

Let (C, ®, B...,a.., 1) be abraided monoidal category (seee.g. [17]). Here ® : C x C is
the tensor product, By .y : X®Y — Y®Xandayyz: (XQY)®Z - X®(Y ®Z)
are the braiding and associativity isomorphisms and 1 is the unit object. They satisfy
in particular the pentagon and hexagon identities

ax,y,zeTdxey.z.,7 = (dxy ®ay z.r)ax yezr(ax,y,z ®idr),
. + + . +
(dy ®B zlav,x,z(Bx y ®1dz) = ay,z, xBx yg79X.v.2,

n - -1
where By y = Bx,v, Byy = By x-

Definition 2.1 An elliptic structure over the braided monoidal category C is a set
(C, F, Af, A7), where C is a category, F : C — Cisa functor,! and Ai are natural?
assignments (ObC)2 3 (X,Y) — A;Y € Auté(F(X ® Y)), such that:

+ + + .
a7 x y% 7 x% y.z = ldxer)ez. (1

L ForCa category, Ob C is its class of objects; for X, Y € ObC, Isoc(X,Y) C C(X,Y) are the sets of
isomorphisms and morphisms X — Y; Autc (X) = Isoc (X, X).

2 Natural means that if ¢ € Co(X, X), ¥ € Co(Y. Y'). then A, |, F(p ® ¥) = F(¢ ® ¥)AY ;.
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+ + +
where oy y ; = F(BX yo7)Ax yoz Flax.y.2),

F(Br.xBx.y ®idz) = (Flayly )Ax yor Flax.y.2),
F((,Bily ® idz)ailxyz)(z‘\;xg,z)_l F(aY,X,Z(ﬂZ]X ® idz)))’ (2)
(identities® in Auts(F(X ® Y) ® Z))), for any X, Y, Z € Ob(, and
C
Ajy =idragx) forany X € ObC. 3)

Dropping associativity constraints and the functor ' (which can be put in automat-
ically), the two first conditions mean that the cycles

+ +
AX,Y®Z ﬁX,Y®Z
XQYQZ ——> XQY®Z ——> YRZ®X and
+ +
ﬁZ,X@YT iAY,Z(XJX
ZRXQY <T ZRXQY <T YRZRKX
AZ xev By.zex
Ay x®z Brx®idz
YRXQZ ——> YRXQZ —— XQYRZ
ﬁ;)l(@dZT iB;,ly@az
XQRYRZ XQYeZzZ
Bx.sz iﬂ;;(@idz
XQRYRZ <l— YRXRZ <l— YRXRZ
Bxy®idz A;X@Z

are identity morphisms, where A... = AT, B.=A".
A morphism (C,C, F, A%Y) — (C',C’, F', A’F) is then the data of a tensor func-

N C—C
tor C % ¢ and a functor ¢ % C’, such that | J commutes, and <Z>(A§ y) =
C—C
==
AW(X),W(Y)'

Remark 2.2 By setting Z = 1, the axioms (1)—(3) imply

F(By ) Ay x F(Bx p)Axy = idrixay). F(BrxBxy) = (Ayy. A% y). ()

which in their turn imply

Ay, =1dpixel) - ()

3 (2) and later, we set (g, h) := ghgilhfl.



496 B. Enriquez

b+ b
[ ] [ ]
[ ) [ )
[ ] [ ]
x-
1 1.
.'2.
+ . 7
1 Xy e i1 o
. e ° . 7
e O TL.
[ ] [ ]

Fig. 1 Generators of the elliptic braid group By

Taking these identities, (3) and the hexagon identities into account, axiom (1) can be
replaced by

AZ)%@YZ F((ﬂyx ® le)ayx Z)AY X®Z

F(ayx, Z(,BXY®1dZ)aXYz)AX’y@,ZF(aX,Y,Z)- (6)

2.2 Relation with elliptic braid groups

For n > 1, the reduced pure elliptic braid group on n strands P , is the fundamental
group of the reduced configuration space Cf,(T) := Cf,(T)/T, where Cf,(T) =

— (diagonals) is the configuration space of n points on the topological torus 7' :=
R?/Z?, on which T acts diagonally. The reduced elliptic braid group Bj , is the
fundamental group of the quotient ﬁ[,,](T) := Cf,(T)/S,. We then have an exact
sequence

- Piy— Biy— Sy —~ L.

These definitions are extended by Pj o = B0 = {1}.
The group By ,(n > 1) can be presented by generators 0;(i = 1,...,n — 1), XE,
and relations
@ X2 = (XFo)?, (Xf,on =1 fori=2,....,n—1,
X7, (X)) H =of, X?E---xni: I, (oi,0p) =1 forli—jl>1,
0;0j4+10; = 0jy10i0;41 fori=1,...,n—2,

N

where Xii—i-l = aijth?EUiil fori = 1,...,n — 1 (see [4] and Fig. 1). In particular,
P11 = B11 = {1}, and P 3 is the free group with two generators XljE

The braid group B, on n strands (n > 1) is presented by generators o;, i =
1, ..., n—1and the Artin relations (7). Its definition is extended ton = O by By = {1}.
There is a unique morphism B;,, — By , such that o; > o;. If C is a braided monoidal
category and X € Ob(C, then there is a unique group morphism ¢ : B, — Autc(X®")
(X®" is defined by right parenthesization, so X®" = X ® X®"~1) such that



Elliptic associators 497

0i > ai ((idyei-1 ®Bx.x) @ idyeni-)a; ",

where a; : (X®~1 @ X®2) @ x® =1 5 X®" is the associativity constraint.

Proposition 2.3 If ((f L F, A_ﬁf_) is an elliptic structure over C and X € ObC(, then there
is a unique group morphism By , — Aut(:,(F(X®”)), such that

X{ > A

Xx®n 1 Gi = F(gp(al))

Proof Let us check that (o XJ“)2 (X+01)2 ie., (X, X+) =1is preserved (for
simplicity, we omit the associativity constraints). By naturality, (Bx.y ®idz) A} Xov.z =

A;F®X’Z(,BX,Y ® idz). Plugging in this equality the relation (6) and its analogue with
X, Y exchanged, we obtain

(A% yoz F(Brx ®id2)AY yo, F(Bx.y ®idz)) = 1;

if weset Y := X, Z := X®"~2, this says that (X|", XJ) = lis preserved. Similarly,
one proves that (1) with sign implies that (cf] X 7)2 (X, o, )2 is preserved. (2)
immediately 1mphes that (X, (X +) hy = o# is preserved. The naturality assumption
1mphes that (X 1,01) =10 > 1) is preserved One shows by induction that the image

oka is F(ﬂX@ . X®ldx®n k)A xen- 1F(,B x®k-1 ®id yen—«); therefore, the image
of XljE in is A;w yon—k- 1t follows that the image of XjE -XEis AX®,1 1» Which

is id p(xeny by (5). Finally, as B, — Autc(F(X ®1)) is a group morphism, the Artin
relations are preserved. O

2.3 Universal elliptic structures

Let PaB be the braided monoidal category of parenthesized braids (see [3,16]).
Its set of objects is Par := L,~oPar,, where Par, = {parenthesizations of the
word e...e of length n}, so Parg = {1}, Par; = {e}, Par, = {ee}, Par; =
{(e0)e, 0(00)}, Pary = {((ee)e)e, (e(0e))e, (00)(0e), o((ee)e), o(e(ee))}, ctc. For
0, O’ € Par, we set |0O| := the integer such that O € Par|¢|, and Cy(O, O') :=
Bjo if 0| =10
#d  otherwise
is defined at the level of objects, as the juxtaposition, and at the level of morphisms,
by the group morphism B, x B, — Bpiy, (0i,1) = o;, (1,0;) — 0,1 ;. We

. The composition is the product in B|g|. The tensor product

set ap, 0,07 = 1 € Bjo|4+0/1+|0" = PaB((0O ® 0) ® 07,0 ® (0’ ® 0"))
and Bp o = 001,101 € Bioj+j01 = PaB(O ® O’, 0’ ® O), where Opp ‘=
(on -+ 01)(Ont1--02) = (Ontw—1"+0nw) € Bpyn.

Let now PaB,; be the category with the same objects, PaB,; (O, O') =
By, if |0 = |0/ . e . .
[ ’ otherwise and whose product is the composition in By |g|. Let F :
PaB — PaB,; be the functor induced by the identity at the level of objects,

and by B, — B, 0; +> o; at the level of morphisms. For O, O’ € Par, set
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AjOE’O, = Xli e X‘%‘ € Bj,0|+|0|- Then (PaB,y, F, Af) is an elliptic structure
over PaB. Indeed, relations (1) and (2) for objects O, O’, O” are consequences of the
identities (O'ZZth'l:tIXit)s = land (X, (aleLal)’l) = 012 in P; 3 under the mor-
phism Py 3 — P |0|+|0|+|0”| induced by the replacement of the first (respectively,
second, third) strand by |O| (respectively, |O’|, |O”|) consecutive strands.

The pair (PaB, e) has the following universal property: for any pair (C, M), where
C is a braided monoidal category and M € ObC, there exists a unique tensor functor
@o : PaB — C, such that F(e) = M. Proposition 2.3 immediately implies that this
property extends as follows.

Proposition 2.4 I]‘C~ is anelliptic structure over C, then there exists a unique morphism
(PaB, PaB,;;) — (C, C), extending ¢.

3 The elliptic Grothendieck—Teichmiiller group

In this section, we introduce the group GT,;; of universal automorphisms of elliptic
structures over BMCs, which we call the elliptic Grothendieck-Teichmiiller group. We
compute the “naive” version of this group and then introduce its variants (profinite,
pro-/, proalgebraic) by playing on the classes of considered BMCs. We study the
relations between these groups and the corresponding variants of GT; we construct in
particular, in the various frameworks, a section of the natural morphism GT,;; — GT.
This shows that GT,;; and its variants have semidirect product structures.

3.1 Reminders about GT and its variants

According to [9], GT is the set of pairs (A, f) € (1 + 2Z) x F>, F> being the free
group with generators X and Y, such that
m m m A—1
f(X3, XD X5 f(Xo, X3) X5 f(X1, X)) X' =1, m= — X1X7X3 =1,

FOX) = FXN7 (N0 = 00()()oa(f), ®)

where* 9; : F» C Py — P4 are simplicial morphisms. It is equipped with a semigroup
structure with (A, )V, f') = (A", f”), with

Vo=, XL Y) = FPX DX X)L Y)Y P Y).

One defines similarly semigroups @ , GT;, GT(k) by replacing in the above defi-
nition (Z, F») by their profinite, pro—’l,\ k-prounipotent versions (where K is a Q-ring).
We then have morphisms GT — GT — GT; — GT(Q;) and GT — GT(k) for
any k.

4 Py, = Ker(B, — Sy, 0; — (i,i + 1)) is the pure braid group on 7 strands.
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GT acts on {braided monoidal categories (BMCs)} by (A, f)(Co, B..,a..) :
(Co, B’ . a’ ), where

Bx.y = Bx.,y (Br.xBx. )",
dyyz = axyzf(BrxPxy ®idz, a;(’ly,z(idx ®BzyBrz)axy,z)-
Similarly, @ (respectively, GT,;, GT (k)) acton {BMCs Cy such that Aut¢, (X) is finite

forany X € ObCy} (respectively, such that the image of P, — Autc (X1 ®---® X,,)
is an /-group and is contained in a unipotent group).

3.2 The semigroup GT,; and its variants

Let us define GT,; as the set of all (A, f, g+), where (A, f) € GT, g4 € F> are such
that
(05 o7 (010701 g (X, X)) f (0, 0)3 = 1, ©)
u? = (g—,u"" g u™h (10)
(identities in By 3) where u = f(alz, azz)af‘f(alz, 022)_1, g+ = gi(XfL, XD

If C is a BMC and (é, F, A.i,,) is an elliptic structure over C, then (C~, F, Af?) is an
elliptic structure over C’, where

Ci= (. f)*C. Ay =ge(Afy Ay (€ Auc(X @Y)). (1)

The following statement is then the analogue of Egs. (4).

Lemma 3.1 The conditions (9), (10) imply the identities
O ex(XT. X7 =1, o = (e (X{. XD, g+ (X[, X7) (12

in By 2.

Proof Let oy = azila]il(o]ozzo])im, g+ = gi(Xfr, X)), f:= f(alz, (722), then
the first equation of (9) is rewritten as Ad(ai)_l(gif) -g+f - Ad(op)(g+f) =
oL 3, an identity in Pj 3. There is a unique morphism P; 3 — Pj 2, corresponding
to the erasing of the third point, i.e. to the map Cf3(7T) — Cf2(T), (x1, x2, x3)
(x1, x2). It is given by Xli — XT, X;E — 1, X3i — (Xli)’l, 012 — 012, 022 —
1, (6102)° > of. The image of the above identity in P 3 by this morphism is the
identity g1 (X], X7)-Ad(07™) (g (X, X7)) = 07> in Py 5, which is equivalent to
the first equations of (12). The same morphism similarly takes (10) to the last equation
of (12). O

For ()‘" fv gi)a ()\'/7 f/, g/i) € ﬂe”, we set

A, frg0), fg) =@, f7, g), where gl (X, Y)=g+(g/ (X,Y), g (X,Y)).
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Proposition 3.2 This defines a semigroup structure on GT,;;. We have a semigroup
inclusion GT,;; C GT xEnd(F2)?, (A, f, g+) = (A, f),0,.), where Oy, = (X >
g+ (X, Y)Y = g_(X,Y)),

Proof We first prove: O

Lemma 3.3 If (A, f, g+) € GT,;, then there is a unique endomorphism of By 3, such
that

o1 > 61 1= f(of, oo fof,09)7 , ori> 62 i=0F, XT > ge(X], X)).
For any )\ € 27 + 1, we then have

/
+1 :I:l e -t
(0102 o1) =0, ol (010 61) (13)

f (U 1:02 )U
Proof Recall that we have an elliptic structure (PaB, PaB,;, F, Af). Applying
(A, f, g+) to it, we get an elliptic structure (PaB, PaB¢/, F, A_ﬂf). An endomorphism
of Bj 3 is given by the composition

Bi3 — Autp,gei(e(ee)) ~ By 3,

where the first morphism arises from the elliptic structure of PaB¢/ , and the second
morphism arises from the isofunctor PaB*”/ ~ PaB¢!. One checks that this endomor-
phism of By 3 is given by the above formulas.

We now prove (13). The hexagon identity implies

(D" f(of, 05) (o)™ f((0}03) ™", of)(0f03) ™ f (03, (of03) ™) = 1.
Now, since (012022)*1 = 0‘10‘220’1_1 = 0'2_10'120’2 mod Z(B3), since f(a,b) = f(a’,b’)

for any group G and any a,a’,b,b’ € G witha = a’, b = b’ mod Z(G) (as
f € F, = (F,, F»)), and by the duality identity, this is rewritten

2 1 2 2\—1 _—1 2 _2\— —1 2 25\—1
(Uz)mf(glaﬁz)a mt f(<71,02) 28] (0102) mUQ f(<71,02) oy =1,

which yields (13) with (£, 1)) = (+, 1).
(13) with &= = + then follows from

516561 = (o10501)*, (14)

whichis proved as follows. The hexagon identity (8) implies thatif X | X» X3 commutes
with all the X;, then

f(X3, XD X5 (X2, X3) X5 f(X1, X2) = (X2X3)".
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Applying this to X; = 022, Xy, = olazzafl, X3 = 012, and using 012 =

Ad(a{lafl)(ozz), this implies

~ ~ 2 2 2 2\, 2 2 -1 2 2 -1 2 2 -1

0102f(01 s 02)=f(c71,02)(01 )mf(Ulaszl ,02)(010201 )mf(02,010201 )o102
= (01 02201 Y'o107.

Using the same identity with X| = 022, X, = 012, X3 = 01_1 2201, one proves

similarly that

2 2\~ ~ 2
flo3,07)6261 = or01(o10501)™.

The product of these identities yields (14).
Each side of (13) with £ = — identifies with the same side of (13) with £ = +
and A’ replaced by —A’. This implies (13) with £ = —. a

End of proof of Proposition 3.3 It suffices to prove that (A", f”, g/{) € GT,;;,i.e. that
it satisfies conditions (9) and (10). O

Condition (9) is expressed as follows

/1

(05 o1 (010301 T ga gl (XT. XT). 8L (XT. X)) F(AA(F (07, o) (o),

’ 3
05") f'(a1,03))” =1,
i.e. according to (13), as follows
_ _ ~ ~ ~ ~ ~ ) ~1D ~ 3
(e=(gy (XT, X)), &L (X, X0 F6 P, 619557 61 (G{a261)*") = 1,

where 61, 6, are the analogues of 1,62 from Lemma 3.3 with (1, f') instead of
(X, f). The latter identity is the image of identity (9) satisfied by (X, f, g+) by the
endomorphism of By 3 attached to (1, /7, g/.) by Lemma 3.3.

Condition (10) is the image of identity (10) satisfied by (, f, g+) under the endo-
morphism of B) 3 attached to (', f’, g/.) by Lemma 3.3. O

The operation (4, f, g+)(C, C,F, Af) .= (C',C, F, Af,j_t), where C’, A/i are as in
(11) defines an action of GT;; on {(C, C,F, Af) |CisaBMC, (C, F, A_jf) is an elliptic
structure over it}.

As before, we define semigroups @ell’ GT f”, GT(k) by replacing in the def-
inition of GT,;;, (GT, F») by’ (GT, F»), (GT,, (F»);), (GT(k), F>(k)). They act
on the sets of pairs (C, é), such that C satisfies the same conditions as above,
together with: Aut;(F (X)) is finite for any X € ObC (respectively, the image of

S ForGa group (other than GT, GT,; or Ry;), Gisits profinite completion. If G is a free or pure (elliptic)
braid group, G;, G (k) are its pro-/, k-prounipotent completions. Here G (—) is the prounipotent Q-group
scheme associated to G; it is characterized by Homgroups (G, U(Q)) =~ Homg) scpemes (G(—), U) for
any unipotent group scheme U. If G = B, or By ,, then G; := P; xp G, G(k) := P(k) xp G, where
P = Ker(G — Sy) and *p denotes the amalgamated product over the group P.
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P — Auts(F(X1®---® Xy)) is an [-group and is contained in a unipotent group).
We have morphisms GT,;; < GT,;; — GT{" < GT,;;(Q) and GT,;; — GT,;; (k)
compatible with the similar ‘non-elliptic’ morphisms.

Remark 3.4 Specializing the morphism in Proposition 5.22, 2) to the object o(. . . (ee)),
one shows that the formulas from Lemma 2.3 generalize to an action of GT,; on the
tower of elliptic braid groups Bj ,, given by

(Oh, fog2) - Xi = g (X, X7,
(A, f.8+) - 0i == f (07, 0i110i42 -~ O -+ 01420i41) - 0]
'f(Gl-z, 0iiq1 O 0ip107) L
Composing this action with the morphism GT — GT,;, (Proposition 2.20), one obtains
an action of GT on the tower of elliptic braid groups, given by
O )X = T X X)) - (XM Foxd Xl
_ _ Al
O )Xy = (X X))
VLG CUCCOIC CR RN CUD COIED CUl L0 SN0 e 60) I
(hy f) - 01 == f(0F, 01410142+ 07 -+ - 014201 41) - T}
f (07, 01410142 - 0 -+ 0i420741) .
The profinite, pro-/, and prounipotent versions of GT,;; and GT acts on the profinite,

pro-/, and prounipotent versions of the tower of elliptic braid groups by the same
formulas.

3.3 Computation of GT;,

Recall that the braid group B3 is presented by generators W, and relations W, W_\W, =
W_W,W_ (Vg are the o1, oo of the standard presentation and are used in order to
avoid confusion with previous notation). Its centre Z(B3) is isomorphic to Z and

generated by (W, W_)3. There is a central exact sequence
1 = 2Z(B3) — By — SLy(Z) — 1,
given by W +— ((1) }) V_ > (1_1 (1))
Proposition 3.5 Let B3 be the group generated by W, ¢ and relations
W W W, =W W, W_, eW,eW_=1 & =1.

There is an exact sequence 1 — B3 — B; — Z]2 — 1, where B3 — Z.]2 is given
by W1 +— 1, ¢ = —1. There is also a (noncentral) exact sequence 1 — 2Z(B3) —
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l~33 — GLy(Z) — 1, where l~?3 — GL2(Z) extends B3 — SLo(Z) by € >+ ((1) (1))

All these morphisms fit in the diagram

1 ——=2Z(B3) B3 SLy(Z) 1

| —2Z(B3) —— E3 —GLy(Z) —— 1

72

72

The proof is straightforward.
Proposition 3.6 1) There is a unique semigroup morphism By — GT,;;,
such that:
\IJ+ = (4, f7 8+ g—) = (1,1, g+(X9 Y)=X, g_(X, Y) =YX),
Vo (b figeg) =L g (X, V) = XYL g (X, V) =),
& ()"7 f& 8+ g—) = (_17 1’ g+(X7 Y) = Y? g—(X9 Y) = X)!

It fits in a commutative diagram

B3 — GT,;,
l b
72 - GT

2) The horizontal maps in this diagram are isomorphisms.

Proof Set X; := X l+ , ¥; := X, . Using the commutation of o, with X and the braid
relation between o and 0, one obtains (o207 X1)? = X3X>X; = 1 (relation in B 3).
In the same way, (o, 101_1 Y1X1)3 expresses as an element of P 3 as

Y3X30, ‘o %05 'YaXa0 Y1 X
Since (Y1, X, 1) = 012, X 201_2Y 1 can bereplaced by Y X7; in the resulting expression,
Y>Y1 X7 X1 can then be replaced by Y;l X5 ' The above expression is therefore equal

to

—1_—2 _—ly—1ly—I
Y3X30, 0, "0, Y3 X5 .
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One has (¥; ', X3 = (Y1, X;H) = vi(Ya, X3 HY (Y1, X51); one computes
(Y2, X3 = 02, (Y1, X3") = 0, '002, which implies that (Y; ', X3 = op020s
and therefore that

(05 'o;'Y1X1)? =1 (equality in By 3).

Finally, (Y1 X1, 0, 'X{ o7 = (11 X1, X571 = (Y1, X5 1) = o} (equality in By 3),
where the second equality uses the commutation of X and X»,. All this implies that
(1,1, X,YX) € GT,;;. O

If (A, f,8+,.8-) =(—1,1,7, X), then m = —1, therefore

(0 o (o10f0) g (X, XT) f(0F, 03))°

= (050 X)) =1 (relation in By 3).
The relation u? = (g_, u_lgj_lu_l) follows from 01_2 = (Xy, Yz_l) (relation in
By 3). All this implies that (—1, 1, Y, X) € GT,

One checks that (1,1, XY~ Y) = (-1,1,Y, X)(1, 1, X, YX)" ' (-1, 1,7, X),
therefore

-1
(1,1, xy~'Y) e GT,,.

Finally, one checks that the relations between W, W_ and ¢ are also satisfied by their
images in GT,;;. All this proves 1).

Let us prove 2). The bijectivity of Z/2 — GT is proved in Drinfeld [9], Proposition
4.1. Set R,;; := Ker(GT,; — GT), then the commutativity of the above diagram
implies that its upper map restricts to a morphism B3 — R,;, and we need to prove
that it is bijective. According to the second identity in (12), R,;; C {(g+,8-) €
(F2)?1(g—(X,Y), g+ (X, Y)) = (¥, X)}. We now recall some results due to Nielsen.

Theorem 3.7 ([25])

1) The morphism Out(F,) — GL,(Z) induced by abelianization is an isomorphism.
2) Im(Aut(F2) — (F2)*) = {(g+,g-) € (F)?|3k € F>, 3¢ € {£1}, (g-(X, V),
g+ (X, Y)) = k(Y,X)k™'}, where the map Aut(F») — (F»)? is 0 >
O(X), 6(Y)).
The bijectivity of B3 — R, together with the equality R,;, = {(g4+,g-) €
(Fz)zl(g_ (X,Y),g+(X,Y)) = (Y, X)} are then proven in the following corollary to
Theorem 3.7:

Corollary 3.8 We have bijections
B3 — Autx.y)(F2) = {(g1.8-) € (F)*|(g—(X, Y), g+ (X, ¥)) = (¥, X)},

where Aut(x yy(F2) = {6 € Aut(F2)[0((X,Y)) = (X, Y)}, the first map is as in
Proposition 3.6 and the second map is 0 — (6(X), 0(Y)).
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Proof of Corollary 3.8 The bijectivity of the second map follows from the injectivity
of Aut(F2) — (F2)2, 0 — (6(X), 6(Y)) and from Theorem 3.7, 2). Let us now prove
the bijectivity of the map B3 — Aut(x y)(F2). The kernel of B3 — Aut(x,y)(F2) is
contained in Ker(B3; — Aut(x,y)(F2) — Out(F2) — GL2(Z)) = (WL W_)0).
On the other hand, B3 — Aut(x y)(F2) takes (WL W_)0 to® Ad((X,Y) 1), so the
restriction of B3 — Auty y)(F2) to ((\L/pll,)é) is injective. It follows that B3 —
Aut(x,y)(F>) is injective.

Let us now show that B3 — Aut(x y)(F?) is surjective. We have a commutative
diagram

Aut(Fp) —— Out(F>) —— GL»(Z)

)

Aut(x,y)(F2) SL2(Z)

where the isomorphism follows from Theorem 3.7, 1), and the bottom map is given by
abelianization. It follows that Ker(Aut(x y)(F2) — SL2(Z)) = Ker(Aut(x y)(F2) —
Out(F)) = Autxy)(F2) NInn(F) = {# € Aut(F)|3k € F2,0 = Ad(k)
and k£ commutes with (X, Y)}. The subgroup of F> generated by k and (X, Y) is
abelian and, according to [26], free, and therefore isomorphic to Z. If (X,Y) is
a power of an element i of F,, then the sum of the degrees of 4 in X and in
Y is zero, and comparing coefficients in [log X,log Y] in log(X, Y) and logh in
the Lie algebra of the prounipotent completion of F>, one sees that 4 is (X, Y)
or its inverse; therefore, (X, Y) is not the power of an element of F, other that
itself or its inverse. All this implies that & should be a power of (X, Y); therefore,
Ker(Aut(x,y)(F2) — SL2(Z)) = (Ad(X,Y)) = (W, W_)%). On the other hand, as
the composition B3 — Aut(x,y)(F2) — SL»(Z) is surjective, so is the morphism
Aut(x y)(F2) — SLy(Z). All this implies that there is an exact sequence

1 — (VL W)%) = Aut(x.y)(F2) = SL2(Z) — 1.

Let us denote this exact sequence as 1 — K — G — H — 1, and let G :=
Im(Bs — G) C G. To prove that G’ = G, it suffices to prove that In(G’ C G —
H) = H and that G’ D K. The first statement follows from the surjectivity to
B3 — Aut(x y)(f2) — SL»(Z), while the second statement follows from the fact
that (W4 W_)% € Im(B3 — Aut(x.y)(F2)). o

Remark 3.9 As GL,(Z) is the nonoriented mapping class group of the topological
torus, we have amorphism GL2(Z) — Out(Bj ,), obtained by applying mapping class
group elements to elliptic braids; its target is an outer automorphism group because
the mapping class group does not preserve a base point of the elliptic configuration
space. This morphism lifts to a morphism

B3 — Aut(By ), (15)

6 Here and later, Ad(g) is the inner automorphism x > gxgil.
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givenby ¥y — (X1 +— X1, Y1 — 1X1,0i = 0i), V_ — (X| — XlYf],o,- >
i), e > (X1 < Yi,0; > ofl). It is such that (\IJ+‘IJ_)6 > (conjugation by the
image of z € P, — Bj,), where z is a generator of Z(P,) =~ Z. The assignment
{elliptic structures over BMCs} — {representations of By ,} is then B3 -equivariant.

Remark 3.10 The morphisms By — Aut(By ;) and GT,; — End(B; 3) from Lemma
3.3 admit a common generalization to a morphism GT,; — End(Bj,), taking
(A, f, g+, g—) to the endomorphism X| — g4+(X1, Y1), Y1 — g-(X1. Y1), 0, —
Ad(f (criz, Ojg] - 63_1 e Oy 1))(0}); this corresponds to the identification of By ,
with Autp,g,, (e(e - - - (ee))). This morphism extends to the various setups (profinite,
etc.).

3.4 The semigroup scheme GT,;;(—)

For k a Q-ring, we set’ Ry (K) 1= Ker(GT,,; (k) — GT(k)). The assignments k +—
GT ;) (K), Reir(k) are functors {Q-rings} — {semigroups}, i.e. semigroup schemes
over Q.

Proposition 3.11 We have a commutative diagram of morphisms of semigroup
schemes

Reii(=) = GT (=) — GT(-)
1 1 1

SLa(—) —> Ma(—) B Al
: : o By
where GT(K) — kis (A, f) > Aand GT,;(k) — Ma(K) is (i, f, g2) > (a_ b )
where log g+(X,Y) = a+log X + B log Y mod® [flz‘ %‘]

Proof 1t suffices to show that the right square is commutative, which follows by
abelianization from the second part of (12). O

Recall that’ GT (k) = GT(k)*. We set
Definition 3.12 GT,; (k) := GT,;;(k)*.

Proposition 3.13 /) GT.; (k) = GT,;;(K) xm,x) GL2(K) (Cartesian product in the
category of proalgebraic varieties).
2) R (K) is a group.

Proof Let (X, f, g+) € GT,;; (k) beinvertible as an element of GT (k) x End (F> (k))°?,
with inverse (1/, f’, g/t). Then, the endomorphism of Lemma 3.3 attached to

7 The kernel of a morphism of semigroups with unit is the preimage of the unit of the target semigroup; it
is again a semigroup with unit.

8 Recall that F» (k) = exp(%‘), where ;‘15 is the topologically free k-Lie algebra in two generators log X
and logY.

9IfSisa semigroup with unit, $* is the group of its invertible elements.
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(x, f. g+) is an automorphism of B 3(k). The identities (05" o;"' X{)® = 1, 07 =
(X, (X; )~ in Bj 3(k) are the images by this automorphism of the identities
expressing that (1, /7, g/.) belongs to GT,; (k). It follows that (A', f',g/,) €
GT,;; (k). The element (A, f, g+) is invertible iff the image of (A, f,g+) €

—_—e.

GT,;; (k) — Ma(k) lies in GL; (k). All this proves 1). 2) is then immediate. O

—_—e.

Recall that for any Q-ring k, GT (k) = Ker(GT (k) — k). We also set

GT¢! (k) := Ker(GT,;; (k) - Ma(k)), RS/ (k) := Ker(Rei (k) — SLy(k)).

Then, k — GT?Z”) k), R;’;Z (k) are Q-group schemes. It is known that GT(—) is
prounipotent.

Proposition 3.14 The group schemes GT%Z(—) and Rzl (—) are prounipotent.

Proof GT%I (k) € GTy(k)xAuty, (F»(k))°?, where Aut, (F2(k)) = Ker(Aut(f2(k))
— GL2(k)); k — Auty, (F2(k)) is prounipotent, so k +— GT%I (k) is prounipotent
as the subgroup of a prounipotent group scheme. The same argument implies that
Rfil(—) is prounipotent. O

Proposition 3.15 We have exact sequences 1 — Rzl (k) = R (k) — SLo(k) — 1
and 1 — GT¢ (k) - GT.;(k) = GLy(k) — 1.
16}

Proof We need to prove that R.;(k) — SLy(k) is surjective. Set G(k) :=
Im(Re (k) — SL»(Kk)), then k — G(K) is a group subscheme of SL,. We have
two morphisms G, — R.;;(—), extending Z — B3, 1 — Wy

in the sense that

B3 — Rei(K)

1 )
Z — Gu(k)

commutes; then, G, — R.; — SL; are the morphisms ¢ +— ((]) ll), (Lz (1)) So

the Lie algebra of G(—) contains both (8 (1)) and ((1) 8) and hence is equal to sy,

so G = SL,.

Let us now prove that GT.;(k) — GLa(k) is surjective. Set G(k) =
Im(GT.;; (k) — GL3(Kk)), then SL, C G(—) C GLj. We will construct in Sect.
3.6 a semigroup scheme morphism GT(—) 5 GT,;;(—), such that

GT(-) — Al(—)
ol N
ﬂeu(—) — Mz (—)

t 0
01
GT(-) 5 GT,.;;(—) — GLy, where G,, — GT(—) is a section of GT(—) — Gy,

commutes, where A! — My is7 ( ) Then G(—) contains the image of G,,, —
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(see [9]), which is the image of G,, — GLo, t (6 (1)) Then Lie(G) = gly, so
G= GL,, as wanted. O

3.5 The Zariski closure (B3) C R.;(—)

Recall that we have a group morphism B3 = Ry — R (Q). The Zariski closure
(B3) C Ry (—) is then the subgroup scheme'? defined as

(Bs) = N G
GCR(—) subgroup scheme |
G(Q)DIm(B3— R.1(Q))

Let us compute the Lie algebra11 inclusion Lie{B3) C Lie R,;;(—). First, Lie Ry (—)
is a Lie subalgebra of

Lie Aut(F(—))% ~ Lie Aut(})” ~ (Der ) ~ f3.

where:

° %2 = %Q is the Lie algebra freely generated by £ :=log X and n :=logY;
o the first map is based on the isomorphism F, (k) =~ exp(flz‘);
e the Lie algebra structure on % is given by

[, B), (@, B)] := (Do g (@), Do, p(B)) — (Da,p (@), Do p(B')),

where Dy g € Der(fz) isgivenby & — «a, n +— B;
o the last isomorphism (Der fg)”” ~ % has inverse («, ) > Dy p.

Lemma 3.16 Lie R,;;(—) C Lie Aut(F>(—))? identifies with the set of (a, B) € f%
such that

a(X1, Y1) 4+ @(X20, %, Ya) + &(X307 'o; 207!, ¥3) =0,
B(X1, Y1) + B(X2, Yao}) + B(X3, Y3010%01) =0,
(AdX; ' = DAX1, Y1) + (1 — Ad Y[ Ha(Xa0, %, 07 Y2) =0

(relations in Lie Py 3(—)). Here (X1, Y1), ... are the images of the elements

1 — ¢—2dé —adp

——— (@&, ), B, e = IL(,B(E n)
ad & B ’ ' adn ’

a(ef, e =

10 According to Conjecture 10.1, the inclusion (B3) C R,;;(—) is an equality (see Proposition 10.2).
1 Recall that the Lie algebra of a Q-group scheme G is Ker(G(Q[s]/(az)) — G(Q)).
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ofgz by the morphism fz — Lie P13(—), § = log X1, n — logYy, etc., and X; :=
Xl.+, Y; .= X, (elements of Py ).
The above relations imply the relations

aX, YD +aX o 27 =0, Xy, YD)+ B Y‘lah =0,
(AdX) — DAX1, YD+ (1 —AdY HaX o2 0fY,H =0

in Lie Py 2(—).

Proof (a, B) € % ~ (Der %2)”/’ induces the infinitesimal automorphism of F>(Q)
givenby X —» g4 (X, V)= X1 +ea(X,Y)), Y —» g (X, Y)=Y(1 + e,g(X, Y)),
where €2 = 0. The condition that (1, 1, g+, g—) belongs to R,y (Q[e]/(€2)) linearizes
as follows

(id + Ad(0201X1) + Ad(0201 X1)?) (@(X1, 1)) = 0,
(id+Ad(o, "o YD) + Ad(o; o' YD) (B(X1, Y1) = 0,
(Yi(1 + €B(X1, YD), (1 — €d(o; 2 X2, V2o X5 1) = (Y1, X5,

which are equivalent to the announced identities using the relationsin Py 3: (X;, X ;) =
(Y;, Y)) =1,

(Y1, X)) = 010301, (Y1, X;H)=of =@ X)), (Y1,X3") =05 'ofon,
X1, Y3 H=0mo 05!, (1, X3h=0f = ;1 X2), (5, X3 H=00(0s.

O
We now compute Lie(B3) C Lie Ry (—).
L adn ad & op
Lemma 3.17 Letu := W@) , W—(n) 0) in Lie Aut(F»(—))

~ % then u, v € Lie(B3).

Proof We have morphisms G, — (B3) C Aut(F>(—))°, extending Z — B3z, 1 —
\Ilf. The corresponding morphisms (k, +) — Aut(F,(k))? are t — (X +—
X, Y » YX)andt — (X — XY', Y — Y). The equality XY’ = ¢fe!? =

exp (E +t 1_1(1_%“15 (n)), valid for 2 = 0, and the similar equality for ¥ X, imply that

the associated Lie algebra morphisms are Q — Lie Aut(F,(—))°", 1 — u, v, which
proves that u, v € Lie(B3). O

Proposition 3.18 Lie(B3) C Lie Aut(F>(—))% =~ f% is the smallest closed Lie sub-
algebra containing u and v. In particular, the image of Lie(B3) by the morphism
Der(f2)?? — gl, induced by the abelianization map f, — Q7 is sly.

We first prove:
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Lemma 3.19 Let G be a proalgebraic group over Q fittinginl — U — G — Gy —
1, where G is semisimple and U is prounipotent. Let 0 — u — g — go — 0 be the
corresponding exact sequence of Lie algebras. Then H +— Lie H sets up a bijection
{proalgebraic subgroups H C G, such that Im(H C G — Go) = Gy} > {closed
Lie subalgebras by C g, such that Tm(h C g — @go) = go}-

Proof If H is in the first set, then we have an exact sequence | - HNU — H —
Gy — 1, where H N U is necessarily prounipotent, hence connected, which implies
that H is connected. According to [31], Prop. 24.3.5, ii), if G is an algebraic group,
then the map {connected algebraic subgroups of G} — {Lie subalgebras of Lie G}
defined by taking Lie algebras is injective. Applying this to the algebraic quotients of
G, one derives the injectivity of the map H +— Lie H. O

Let us prove its surjectivity. Let f belong to the second set.

Firstly, note that according to the Levi-Mostow decomposition ([5,23] prop. 5.1),
there exists a section 6 : Gop — G of G — Go. We denote by o : go — g its
infinitesimal. Any section of g — g is then conjugate to o by an element of U (Q).

Then, we have an exact sequence 0 — hNu — h — go — O0; applying the
Levi decomposition theorem for Lie algebras, and we obtain a section t : gog — b of
h — go. Now the composite map go = h < gis a section of g — go, hence of the
form Ad(x) oo, where x € U(Q).If v := hNu, we then have [Ad(x) (o (go)), v] C v.

Let then V. C U be the subgroup with Lie algebra v; if we set H = V .
Ad(x)(6(Go)) = Ad(x)(6(Go)) - V, then H is in the first set, and has Lie alge-
bra b.

Proof of Proposition 3.18 Let Lie(u, v) be the smallest closed Lie subalgebra of
Lie Aut(F>(—))?

containing u and v. Then Lie(B3) D Lie(u, v). Apply now Lemma 3.19 with G =
Reii(—), Go = SLy. The map g — go = slp is such that u — (? 8) and v —

(8 (1)) so if b := Lie(u, v), then Im(h C g — go) = go. Let then H C R (—) be

the proalgebraic subgroup corresponding to h by Lemma 3.19; then (B3) D H.On the
other hand, we have group morphisms G, — H correspondingto Q — 0§, 1 > u, v,
whose versions over Q are (Q, +) — H(Q) C Aut(F>(Q))?, t — W Setting t =
1, we obtain H(Q) > W4, and as W, W_ generate Bz, H(Q) D B3.So (B3) = H.
Taking Lie algebras, we obtain Proposition 3.18. O

Remark 3.20 Letd := [[u, v], u]+2u, e := [[u, v], v]—2v. Then for any (&, B, y) €
N3,

Xa, By = ad(u)” ad(v)ﬂ ad([u, v])7 (d),

Yap.y = ad(@)® ad(v)? ad([u, v])” (e) € Ker(Lie(B3) — sb).

Then, Ker(Lie(B3) — sly) is topologically generated by these elements, and more
precisely, it is equal to {anl Pn((xa,ﬂ,y)oz,ﬁ,y, (ya,ﬂ,y)a,ﬂ,y)l(Pn)n € anl fn},
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where f, is the part of degree n of the free Lie algebra with generators indexed
by N® U N3 (each generator having degree 1). Then, Lie(B3) = Ker(Lie(B3) —
sly) @ Spangy (u, v, [u, v]).

3.6 A morphism GT — GT,;; and its variants

We now construct a section of the semigroup morphism GT,; — GT and of its
variants.

Proposition 3.21 There exists a unique semigroup morphism GT — GT,;;, defined
by (A, f) — (X, f, g+), where
g+(X,Y) = f(X, (v, X)X* f(X, (¥, X))~
Azl l— —
(X, V) =, X) 7 farx Yy L, XY FX, v x)h
The same formulas define semigroup morphisms @ — @”, GT, - GT le”, and a
semigroup scheme morphism GT(—) — GT,;;(—), compatible with the natural maps

between the various versions of GT ).
There are commutative diagrams

ﬂﬁﬂell and ﬂ(_) Hﬂell(_)

o4

Z/2*> BS Al M2

where the bottom morphisms are 1 — eW W_W, and ) — (3 (1))

Proof 1) As the centre Z(B,+1) of B,4+1 is contained in the pure braid group
Pyy1 = Ker(By4+1 — Sy+1), the morphism B,1; — S,4+1 descends to a
morphism B, +1/Z(By+1) — Su+1. Identify S,,+1 =~ Perm({0, ..., n}) and let
Sy C Sp+1 be {o]o(0) = 0}. The Cartesian product

(Bn+1/Z(Bn+1)) X Spt1 Sn

then identifies with the quotient (B, 1 X, Sx)/Z(By+1) relative to the sequence
of inclusions Z(By+1) C Buy+1 Xs,,, Sn C Bp41. The middle subgroup identifies
with a type B braid group and is generated by ag, o1, ...,0,—1, where the gen-
erators of B,y are labelled oy, ..., 0,—1. Using the presentation of the type B
group, one proves that there is a unique morphism By, 1 Xs,.; S — Bp1, such
that of — X{, 0i +> o; (i > 1). Moreover, this morphism takes a generator
of Z(By41) >~ Z to X?‘ . X,‘f = 1 € Bj,. It follows that it factors though a

morphism (B, 1 xs,,; S2)/Z(Byy1) — B, ie.

(Bn+1/Z(Bnt1)) X Spt1 Sp — By . (16)
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This morphism admits the following interpretation. If X is a topological additive
group, let Cp,1(X) := Inj([n], X)/S,, where Inj means the space of injections,
[n] == {1,...,n}, and E[n](X) := Cn)(X)/ X, where X acts by addition of a
constant function. We then have the identifications

71 (Cin(C™)) 2 Byt X8, Sns T1(Cn(CX)) = (Bys1 X541 Sn)/Z(But1),
71(Cu(C* /g%)) = By,

where g is a real number with 0 < ¢ < 1. The canonical projection C* — C* /g%
and then induces a group morphism 7 (Co(C*)) = 71(CH(C* /qZ)), which turns
out to coincide with (16).

Any (A, f) € GT induces an endomorphism Fj, ¢ of PaB, such that for any object
O and z € PaB(0),

For@) =2

if z corresponds to an element of Z(B|¢)).
The element oy0 ag € By corresponds to

(ide ®Ba,ee)lere 00 (B2 4 ® idea)dy ) oo (ide @ata o0) € PaB(o((00)9)). (17)

The image of (17) by this endomorphism is the product of the images of its factors,
namely

Fy f(ide ®Pe.ee) = ide ®Pe.ee(Bes.ePs.ee)” € PaB(e(e(00)), o((00)e))
< 0701 (0102201)’" € By,
Fo. (o0 00) = G eeef (B2 4 ®idee,a” ' (ide @ Bue.efe,e0)a)
€ PaB((ee)(0e), o(e(00)))
<~ f(aoz, 0102201) € By,
Fop (B2, ®ides) = B, ®ides € PaB((e0)(00)) <> 03" € B,
Fi.f(ide ®e 00) = ide @tle o0 f (B2, @ide,a” (ide ®B2,)a)
€ PaB(e((ee)e), o(e(00)))
< f(o},0%) € By.

Therefore,

Fy. r((17)) € PaB(e((00)e))

2 2 2 20 p—1 2 2 2 2
<—>ogol(alazol)mf(oo,010261)00 [~ (og,010501) f(0of,05) € By.

Now, (0201 002)3 generates Z(Ba), therefore

(17)% € PaB(e((e0)e)) < (020103)° € Z(By).
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2)

It follows that Fy £((17)%) = (17)*. The image of this equality in By is

3
2 2 2 20 p—1,_2 2 2 2 2734
(Uzcl(alazol)mf(do,010201)00 f (Go,alagol)f(al,az)) =(0201045)™".

As Z(By) is in the kernel of B4 x5, S4 — Bj 3, the image of the left-hand side of
this equality under this morphismis 1 € By 3. It follows that

3
(20110300 XL (X7 XKD A XL (X XD ot 0D)
—1 (18)

in B; 3. This means that identity (9) is satisfied with £ = +.
We show that g_ satisfies (9) with £ = —, i.e.

3
(0507 or0don ™ e (X1, Y1) f(0F.0D)) =1

in By 3 (we set X; = Xi+, Y; := X, ). Substituting the given expression for
g— (X1, Y1), using (Y1, X1) = 0102201, the identities ((72_101_1)Y1X1_1Y1_l =
X3_l (02_101_1), (02_101_1)01 02201 = 0201202(02_101_1), and after a suitable con-
jugation, this equality is equivalent to

3
(n /7' K owodon fot.od) f(X5 oofonar o) = 1. (19)
As f € F), f(aa,b) = f(a,b) if @ commutes with both @ and b. In par-
ticular, 012 commutes (in By) with both 0001200 and 0201202. It follows that

fo90}00, 020102) = f((6700)*, 0207 0). Since (6700)* = (0107)?, f (000700,
0201202) = f((o1 002)2, 0’2(7120’2). Substituting this identity in the pentagon identity

2 2 2 2 2 2 2 2 2 2
floi,05) f(ogoioo, 0207 02) f (o, 07) = f(oy, o10501) f (010501, 05)

in P4 := Ker(Bs — S4), taking the image of the resulting identity by the morphism
P4 C B4 xs, 83 — Bi 3, and using the identity X» X = X3_1 in Bj 3, one obtains

fof, o) (X3! o0f0or) f(X1,00) = f(X1,010501) f (X2, 03)
(identity in By 3). Using this identity, (19) is equivalent to
(Y1Ao, tor ) =1,

where A = f(X2,09)f ' (X1,0}). Using Y3 = o5 ‘o] ' Yioy oy, Vo =
02010, ]Uf ! Yio, ]of ! the latter identity is equivalent to

Y1AY3(0201 Aoy Loy D Ya(o100 A0y to ) = 1. (20)
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As YV1X, = (Xzafz)yl, Y1022 = (722Y1, X1Y3 = Y3(02012051X1), 012Y3 =
Y3c712, and Y Y3 = Y{l,

YIAYs = f(X20; %, 0D)Y, ' f N ooloy ' Xy, o).

As Ad(0201)(X2) = 020705 X1, Ad(0201)(0F) = o, Ad(e201)(X1) =

-1 _-2 -1 -1
X30, 0, "0, ,Ad(azal)(af)zozalzoz ,

-1_-1 2 _—1 2\ p—1 -1 _-2 -1 2 -1
ox01A0, ‘0, = f(o20i0, X1,0{)f (X30, o0, 0, ,020{0, ).

As Ad(0102)(X2) = X305 ‘07202, Ad(0102)(03) = 0020, |, Ad(0102)(X1)
= Xa0, %, Ad(0102)(0}) = 03,

-1 _—1 -1_-2 2 _—1y g1 -2 2
010240, o] = f(X30, o0, 02,000{0, )f  (X20,°,05).

Taking these equalities into account and after simplification and conjugation, (20)
is equivalent to

—1 -1 -1 _-2 -1 2 _—1 -1 _-2 2 _—1
Y, fT (X30, 0,70, ,000{0, )Y2f(X30, o] “02,000{0, ) =1,

which follows from Y, L X30, 101_ 202_ L Y> = X30, 10'1_20’2 and from the fact

that ¥, commutes with 020205 g

3) Since o2 commutes with both o»020» and 000200 and since f € F}, one has
1 1 1 2

2 2 2 2,2
f(o20{ 02, 0001 00) = f(020{02, (0007)")

(equality in By). Since (00012)2 = (02010020102)’1 mod Z(Py) and f € F,, one
has

[(020702, (0007)?) = f (020702, (0201040162) ")
(equality in By). Plugging these equalities in the pentagon equation
flor0501,03) 7104, o1) f (020{ 02, 000{00) (07, 09) f (05 o105 01) = 1
(in By) and multiplying by f~! (002, 0102201) from the right, one obtains

2 2 —-1,_2 2 2 2 -1 -1, 2 2
floro501,05) f (0g, 07) f(o20{ 02, (0201050102) ) f~ (01, 0%)
—1 2 2
=f (0'()’0’1020'1)

(in Byg). As 0 commutes with both 002 and 0102201, the right side of this equality,
and therefore also its left side, commutes with a%. It follows that the equality also
holds with the left side replaced by its conjugation of a%; multiplying the resulting
equality by f (002, 0102201) from the right, and using the identities 0201202 =
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1 1

—1 _—1 2 2 -1 -1 _—1 2 2\—1
0, o, (010501)0102, (0201050102) = 0, o, (01050104) 0102, one

obtains
A 2 2N p—1,_2 2y . —1 _—1 2
o5 f(o104501,05) [~ (0g, 04 )02 [of] f(o1o501,

(o1030108) Doroaf 02, 0h)oy " f(0d, o10%01) = 1. (21)

On the other hand, o 102201 = 0201202_ I = (022012)_1 mod Z(P3) (equalities in

P3); together with f € F}, this implies f((6702)~!, 0}) = f(o20?0, ', 03) and
f(ol, (0}oD)™) = f(o?, 07 '0301) (equalities in P3). Plugging these equalities
in the hexagon equation

1= (@)" f((0F0) ™ o) (050]) ™ f(o}, (0301) (o) f(o7, o)

(in P3), using the equalities f (02070, ', 07) =02 f (02, 0305 ', (o}, o) 'aFa1)
=0 f(alz, 022)01, (622)02 = 02)‘, o] (012)’" = crf‘, multiplying by o102 f 1(012,

_ . _ 1= .
022)02 * from the left and using o (022012)_’"01 1_ (o1 02201) 2A, one obtains
—1,.2 2y _—h 2\ Isk 2 2\ hp—1,.2 2
o102 f " (07,03)0, " = (010501) 2 f(of,05)01 f~ (0f,0%).

Plugging this equality in (21), one obtains

A 2 2y =1, 2 2y —1 _—1 2 -2 _—-1_-2_—1
o5 f(orogo1,05) f~ (0g,01)0, o f(o10501,0y 0, 0, 0, ")

2 (152 20 2\ Ap—1,2 2 2 2
(010201) 2 f(0’1,0’2)(71f (Ul,Uz)f(UO,UIUzal)Zl

(in B4 x s, S3). Taking the image of this equality under B4 xg, S3 — Bj 3 and
multiplying the resulting equality by o f ~! (X2, 022)02_ * from the left, one obtains

o2 f (X2, 09)0y " = oy [ (Xa0 % 0 f (N1, X1, X
— a2 —
(Y1, X)X, X0)'7 fof 00 [ (07, 03) f (X1, (Y1, X))
(in By 3). As both 07 and X, commute with X, the left side of this equality
commutes with X lk and therefore so does its right side. Expressing the equality

of X i‘ with its conjugate by the right side, and conjugating the resulting equality,
one obtains

Ad (. X0 X7 00, X0 ™o X0 fef, odet 17 6 o)

XL (LX) ) () = Ad (£ (a0 %, D)o ) (X)) 22)

(in By 3).
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The equality

Gaee.0(Bo.0eBoee @ida)ay,,
= Cl;l’..(id. ®ao,o,o)(ido ®(ﬁo,o & ldo))(ldo ®a:’l’.)ao,o,oo : (ﬁ.z’. ® ides)
'a:,i,..(id. ®ao,o,o)(ido ®(,30,0 ® 1do))(1do ®a;i,.)ao,o,oo
in PaB((ee)(ee)) follows from the fact that both sides correspond to the element

010301 € By. Applying the automorphism F;_ to this equality, one obtains an
equality in PaB((ee)(ee)), which translates into the equality

2 2 2 A 2 2
f(U]U()O'l,Uz)(O'IO'()O'l) f(U]UOUI,Uz)
2 2 —1 2 2N A 2 2\—1 2 2 2)
= f(ogy,010501)" f(of,03)07 f(of,05)" " f(oy,010501) - 09" -
2 2 —1 2 2N A 2 25\—1 2 2
flog,010501)" fof,05)o1 f(of,05)" flog,010501)

in By x5, S3 C By.
As (Y1, X)) = 0102201 (relation in By 3), the image of this equality in By 3 is

f(Xa, o) X5 (X2, 097 = f(Xy1, (Y1, X)) " tugruf (X1, (Y1, X1)),
where
u:= f(of, 0ol fot, o™ gr = F(X1, (Y1, XO)XP £ (X1, (Y1, X)) ™!

(elements of By 3). Conjugating by Y7 and using ¥ X2Y1_1 = Xzo'l_z, Y1012Y1_1 =

012, one obtains

f(Xa072, 03 (Xa0; D f (X207 %, o)
=Yif(X1, (Y1, X)) ugruf (X1, (Y1, X))y,

As X207 % = 01 X0, ', the left side of this identity identifies with the right side
of (22). Combining these identities, one gets

- 1= —
Ad (£, X0, XY, X' egu )
=Ad (Ylf(Xl, (Y1, Xl))_l)(Mng),
which gives after conjugation
-1 _ —1
ugiu " = g-ugiug_,

where g_ := g_(X1, Y1), which is equivalent to u? = (ugllu_l, ng), so the
pair (g4, g—) defined in the statement of the Proposition satisfies (10).
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4) The fact that GT — GT,;;, (A, f) = (A, f, g+) is a morphism of semigroups
follows from the identity (g_ (X, Y), g+ (X, Y)) = (¥, X)*. Itis straightforward
to check the commutativity of the first diagram; the second diagram follows from
(A, ) € GT(k)) = (log f € [}5. 5.

5) The arguments used in the case of GT,;;y extend mutatis to their profinite, pro-/,
and prounipotent versions. O

Remark 3.22 There are compatible group morphisms GT — Aut(R.;), GT; —
Aut(R""), GT(k) — Aut(R.;(k)) (where R{" = Ker(GT¢" — GT))), defined
by (A, f) = 0, 5 := conjugation by the image of (A, f) +— (&, f, g+)
from Proposition 3.21. One computes 0, r(Vy) = llql_/)” and Q;L,f((\IJ+\ll_)3) =
(W W_)3/* where (W, W_)3 is a generator of Z(B3) = Z and (W, w_)3(1+2m) —
(WL W) (W, W )0 = (W W )3 Ad(Y, X)™.

The semigroup scheme morphism from Proposition 3.21 restricts to a group scheme
morphism, which yields an action of GT(—) on R, (—). The group scheme GT;;(—)
has then a semidirect product structure, fitting in the diagram

GTei (=) = Rei (=) x GT(—)
\: 2
GL, =~ SLy xG,,

where the bottom map is induced by G,, — GL2, A — (3 O).

4 Elliptic associators

In this section, we introduce the notion of elliptic associator. This notion yields par-
ticular elliptic structures over BMCs. It gives rise to a scheme of elliptic associators,
which appears to be a torsor under the action of the group scheme GT,;;(—). We con-
struct a morphism of torsors from the scheme of associators to its elliptic analogue,
which enables us to establish the existence of rational elliptic associators.

4.1 Lie algebras t, and t; ,

Letk be a Q-ring. If S is a finite set, we define tl§ as the k-Lie algebra with generators
tij, I # j € Sandrelations tj; = t;;, [t;j, tix +1tjx] = Ofori, j, k distinct, [t;;, tx;] =
0 for i, j, k, [ distinct. We define %'g as its degree completion, where deg(#;;) = 1.

For S D Dy 4 S a partially defined map, there is a unique Lie algebra morphism
th — t';,,. x = x?, deﬁn.ed by (t,-j)"’.:z Dired-1G).j'es-1()) firjr- Then, S > tXisa
contravariant functor (finite sets, partially defined maps) — {Lie algebras}.

We also define tli 5 as the k-Lie algebra with generators xii, i € § and rela-
tions 3 ;csx = 0, [x5, %71 = Ofori # j, v\, x;1 = [x],x7] fori #

j, [xki, [)cl.‘|r , xj_]] = 0 for i, j, k distinct. We then have a Lie algebra morphism
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t'§ — tll‘ 5 tLij = [xl.+ ,x;], which we denote by x — {x}. We will also write
tij = [xi+ , xj_]. We define i'f 5 as the degree completion of tlf 5> Where deg(xii) =1.

ForS' 5 Sa map, there is a unique Lie algebra morphism £ ¢ — t ¢, x > x?,
such that ()cl.jt)"5 = Diep-1 () xiﬂ,[. Then, S > t§ ¢ is a contravariant functor (finite

sets, maps) — {Lie algebras}. By restriction, S t'§ may be viewed as a contravariant
functor of the same type, and the morphism t]§ — tll‘ s is then functorial; that is, we

have {x}? = {x?} for x € t5 and any map S’ 4 S.
We set tl,i = t%‘n], tin = tl]‘ ()’ where [n] = {1, ...,n}, and we write x? as
In where I; = ¢_1(i) for x € tl,f orx € tll"n.

4.2 Elliptic associators

Recall that the set M (k) of associators defined over k is the set of (u, ®) € kx exp(%‘),
such that @321 = o1,

232 p1.2.3 puti2/2 3, 1.2 p1u131/2 2,3, 1 e#(t12+113+t23)/2’ (23)
@234l B3 4pl23 = pl234 1234, (24)
where @ is viewed as an element of exp(g‘) via the inclusion flz‘ ct A B 1, 3.

Definition 4.1 The set E/I/(k) of elliptic associators defined over k is the set of quadru-
ples (u, ®, A4, A_), where (u, ) € M(k) and A+ € exp(tll"z), such that:

a3t Mol = 1, where ay = {eTH12H1/2) 4139123y (25)
12y = ((@) 1 ALP @), fem 2 (@ 1) AT !
[@> 3¢ 1n2/2y), (26)

Remark 4.2 We then have {eﬂ”’““z/z}Ai’l{eﬂ”"lz/z}Ai2 = land {e*"?} = (A_, A});
here as in (26), the notation (g, &) stands for the group commutator ghg~'h~".

Then k — M(K), ElI(k) are functors {Q-rings} — ({sets}, i.e. Q-schemes. We
have an obvious scheme morphism Ell — M, (u, ®, A4, A_) — (u, D).

Define also a scheme morphism Ell — M; by (u, ®, Ay, A_) — (Z“: zf),

where u4, vy are the coefficients arising from logAy = uixr + v+x; mod
[11,2, %1,2]. Then, relation (26) implies that the diagram

Ell - M
+ \

Mng

commutes.
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4.3 Categorical interpretations

Definition 4.3 (see [9]) An infinitesimally braided monoidal category (IBMC) over

kisaset (C,®,c._,a._,U._,t_),such that:

1) (C,®,c..,a._)isasymmetric monoidal category (i.e., cy xcxy = idxgy);

2) ObC > X — Uyx < Aute(X) is such that Uy is a k-prounipotent group, and
iUxi~! = Uy for any i € Isoc(X,Y);

3) (ObC)? > (X,Y) —~ tx,y € Lie Uxgy is a natural assignment;

4) tyx = CX’YIX’YC)_(’IY and

: -1
Ixey,z = ax,y,z(idx ®ty z)ay y ,

+ (cy.x ®idz)ay. x. z(idy ®1x.z)((cy.x ®idz)ay x.z)~"

A functor f : C — (' between IBMCs is then a tensor functor, such that
f(Ux) C U,/f(X) and f(rxy) = t}(X),f(Y)' An example of IMBC is constructed as
follows: C = PaCD is the category with the same objects as PaB, PaCD(0, O') :=
[exp(%o,) x S if 0] =10'|

) otherwise
0)isthe permutationi — i+|O’|fori € [1, |O|], i = i—|O|fori € [|O|+]1,|0|+
10/l 0,007 = 1, Up = exp(,) < Aute(0), 10,01 = S/ T2 13
The pair (PaCD, e) is initial among pairs (an IBMC, a distinguished object).

We then set:

, €0,0" = 8)01,10"] € Sjol+0'| C Autpacp(0 ®

Definition 4.4 An elliptic structure over the IBMC C is a set (C~ , F, 0, x_df), where
Cisa category, F : C — C is a functor, ObC > X > 0;( < Auté()?) is the
assignment of a k-prounipotent group, where iU Xf_l = Uy fori e Isoc:(f( . Y)
and F(Ux) C Up(x). and (ObC)? 5 (X, Y) > xi, € Lie Up(xgy) is a natural
assignment, such that

x;X = F(cx,y)x;YF(c;(}Y), x;l =0,
x§®y 7t Flcx yezax.y z)_lx;t@,z XF(CX Y®RZAX,Y,Z)
+F(az X, YX®Y, Z) xZ®X YF(CIZ X, YCX®Y, z) =0,
F(tx,y ®idz) = [F(ax,y,z)~ XX,Y®ZF(61X,Y,Z),

F((ex,y ®idz) lay x.2)xy yg, F(ayy s (cx,y ® id2))].

Functors between pairs (an IBMC, an elliptic structure over it) are defined in
an obvious way. An elliptic structure over PaCD is defined as follows: C =
PaCD,;; is the category with the same objects as PaB, PaCD.; (0, O') :=

exp(t‘fwl) x Sjo| if 0] =|0'|

[ otherwise,
by the morphism t,, — t1.n, x — {x} and the identity between symmetric groups,
xO o 210‘1 x;~ € Lie 170@0/ The triple (PaCD, PaCD,;;, o) is universal for
trlples (an IBMG, an elliptic structure over it, a distinguished object).

Uo = exp(’q |0]) <Autpacp,, (O), F isinduced
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Let us say that a k-BMC is a braided monoidal category (BMC) C, such
that the image of each morphism P, — Autc(X; ® --- ® X,) is contained
in a k-prounipotent group. Then, each (u,®) € M (k) gives rise to a map
{IBMCs} — {k-BMCs}, C — (u, @) * C, where (u, ) *xC := (C,®, Bx.y =
cx,yet X2 Gy y 7 = ®lax,y,z(tx,y ® idz)a;_(,ly,z, idx ®ty,z)ax,y,z).

In the same say, a k-elliptic structure over a k-BMC is an elliptic structure, such
that the image of each morphism P; , — Auté(F (X1 ®--- ® X)) is contained in
a k-prounipotent group. Then, each (u, ®, Ay, A_) € ElI(Kk) gives rise to a map
{(an IBMC, an elliptic structure over it)} — {(a k-BMC, an elliptic structure over
1t)} , 0) — (u,tb Ay, A) x (C, C) = (C’ C), where C' = (u, ®) * C and

= (C.F. A} . Ay y). where Ay, i= Ax(x¥ ;. xy y).

4.4 Action of GT,;;(—) on Ell
Recall first that there is an action of GT (k) on M (k), defined by

s f) % (, ®) = (e, DA, B) f (", D(A, B) P D (A, B))) = (1, ).
For (A, f. g+.g-) € GT,(k) and (11, @, A4, A_) € ELI(K), we set

A frgr. 8 )% (u, @, AL, A) = (u/, @ A, A])
where A/, := g4+ (A4, A).
Proposition 4.5 This defines an action of GT (k) on EIlI(K).

Proof For g.;; € GT,;;(k), and (C, é) € {(ak-BMC, an elliptic structure over it)}, we
have geip * (0, @, A, A_) % (C,C)) = (gen * (0, @, A1) * (C, C). When (C,C) =
(Pa(;D, PaCD,;;), (u, ®, Ay, A_)canberecovered uniquely from (i, ®, Ay, A_)x*
C,0), as etz = ,32 D = de e, and AL = A, .» Which implies that the above
formula defines an action. O

Remark 4.6 The actions of GT (k) on {k-BMCs} and on M (k) are compatible, in the
sense that for g € GT(k), g * ((i, ®) *C) = (g * (i, D)) * C. In the same way, the
actions of GT,;; (k) on {(a k-BMC, an elliptic structure over it)} and on EI/(k) are
compatible.

Remark 4.7 The morphism Ell — M; from Sect. 4.2 is compatible with the semi-
group scheme morphism GT,;;(—) — M3 from Proposition 3.11, with the action of
GT,, on Ell, and with the left multiplication action of M, on itself.

4.5 A morphism M — EIl

The scheme morphism Ell — M, (u, ®, Ay, A_) — (u, ®) is clearly compatible
with the semigroup scheme morphism GT,;;(—) — GT(—). We now construct a
section of this morphism.
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Proposition 4.8 There is a unique scheme morphism o : M — EIll, (u, ®) —
(n, ®, Ay, A_), where

adx = () adx -
Ap =0 (m()’z)»tlz) e AT g —aam 022

ead X1

ad x ad x; -
A_ = M22g (m()q), tzl) e (m(”)’ “2)

(we set x; 1= xl.+, yi = x; ). It is compatible with the semigroup scheme morphism
GT(-) — GT,;;(—) from Proposition 3.21.

One checks that o fits in a diagram

X

[

o
—

> =
\:
£

where the bottom map is p +—> ((1) (; ’ ) This diagram is compatible with the last
diagram of Proposition 3.21.

Proof By Calaque et al. [7], Prop. 5.3, (i1, ®, A4, A_) satisfies
A1i2»3 — {eiul]2/2(q)*1)2,1,3}Ail3{¢)2,1,3e:|:[u‘12/2q)71}Ai23{q>}’

and therefore (25).

The last identity of loc. cit. can be rewritten as follows (using the commutation of
{12} with A1>?)

Az_'13{c1>2’1’3}Af’3{(<1>2’1’3)’1 }(A2_’13)*1

— {(®3,1,2)—leut12/2®3,2,le/,tt23 @1,2,36—,1”12/2}14:_2,3{@3,1,2}.

Now, the hexagon and duality identities imply

(@3,2,1)—161,6[12/2@3,2,le/,ctz3q>1,2,3e—u[12/2 — e—utl3/2cb2,3,leulz3/2(cb3,2,l)—l
eut3,12/2’ @3,1,2 — el”3,21/2q)3!2vle_ﬂt23/2(q)213v1)_le_lﬂl3/2’ (27)

and

cb2,1,3 — €:':Mtl3/2(132’3’le:FMt23/2((D3’2’1)_16:.:1”3'12/2
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s0 (27) is rewritten (using the commutation of {#13} with A%B)

{6’_’”13/2}14%]3{¢2’3'1€_H123/2(CD3’2’1)_l€'u[3’12/2}A}‘_2’3
{e“’3112/2¢>3*2’le*“t23/2(c[>2’3’1)*1}(A%B)*l{g*l””ﬂ}
—ut13/2 52,3,1 j1ut23/2 ¢ 53,2, 1\—1 ut 244123
={e n3/2 g e/ (® YLt 3,21/ JAL

{eﬂtlz]/2@3,2,16_14“‘23/2(@2’3’1)_16_#“3/2}. (28)

As Aile”’12/2A+e“’12/2 = 1, we have e“’3»12/2A£’3eW3-12/2 = (Ailz)_l; using this
identity and performing the transformation of indices (1, 2, 3) — (3, 1, 2), (28) yields
(26). So (u, @, A+, A_) € ElI(K). The compatibility of o : M (k) — Ell(k) with
the semigroup morphism GT (k) — GT;; (k) follows from (A_, A}) = e/"12. m|

4.6 A subscheme Ell C EII and its torsor structure under GT(—)

Set M(K) := {(n, ®)|u € k*} € M(Kk) and Ell(k) := {(u, P, Ap)|u € kK*} C
Ell(k). The actions of GT ,;; restrict to actions of GT(k) on M (k) and GT,; (k) on
Ell(k). Recall that M (Q) # ¢ and that M (k) is a principal homogeneous space under
the action of GT (k) ([9]). Similarly:

Proposition 4.9 1) The map Ell(K) — M (K) is surjective ;
2) Ell(K) # @ (in particular, EIL(Q) # @) ;
3) EIl(K) is a principal homogeneous space under the action of GT ¢ (K).

Proof The scheme morphism o : M — EIl restricts to a morphism M — Ell, which
yields a map M (k) — EIl(k), which is a section of the map Ell(k) — M(k). It
follows that the latter map is surjective, which proves 1). The nonemptiness of E//(Q)
then follows from that of M(Q) and from the surjectivity of EII(Q) — M(Q). It
follows that Ell(k) is also nonempty. This proves 2). O

Let us show that the action of GT,; (k) on Ell(K) is free. If (A, f, g+,8-) €
Stab(u, @, A4, A_), then by the freeness of the action of GT(k) on M (k), (A, f) =
1. Then, A+ = g+(A4, A_). Relation (26) implies that if a4+, b+ € k are such
that log Ay = aifo + b+x; mod degree > 2 (where xfE have degree 1), then
ayb_ —a_by = p, which implies that (log A4, log A_) generate f'iz, and therefore
that g4 = 1.

We now prove that the action is transitive. As the action of GT(k) on M (K) is tran-
sitive, and as GT,;; (k) — GT(K) is surjective (as the morphism defined in Proposition
3.21 restricts to a section of it), it suffices to prove that for any (u, ®) € Ell(k), the
action of Ry (K) on {(A4+, A_)|(u, D, A1, A_) € Ell(k)} is transitive. If (A4, A_)
and (A, , A’ ) belong to this set, then there is a unique (g, g_) € F2(k)> =~ Py 1 (k)?
such that A/, = g+ (Ay, A_). Then,

ali’z’3ozi’l’2ai’3’l =1, where a4 = gi(AiB, A1_’23){d>1’2’3ei“’12v3/2}.



Elliptic associators 523

The canonical morphism Bj3 — Aut, o A, A_)sPacD(e(ee)) = exp(@lfﬁ) X
S3 extends to an isomorphism Bj3(k) =~ exp(@f’?’) x S3, given by Xf —
AP, o) 1 (@e122)(12)(@) 7!, 07 > {eH3/2)(23). Tt is such that oflo ! 1>
{PeT(W/D1312}(23)(12). The preimage of the above identity by this isomorphism then
yields (g+(X f’, X 1‘)(72i1c71"—L1)3 = 1. Similarly, the preimage of the identity

(e"2) = (07 )g-al®, AL (@), (e (/21

(q)2,1,3)—1}g;1(Ai,13’ A2_,13){q)2,1,36—(u/2)t12})

yields of = (017 (X, X)o1, g- (XT, X7)).
Recall the following definition:

Definition 4.10 A Q-torsor is the data of: Q-group schemes G, H, a Q-scheme X,
commuting left and right actions of G, H on X, such that: for any k with X (k) # @,
the action of G (k) and H (k) on X (k) is free and transitive.

Morphisms of torsors are then defined in the obvious way.
The above Q-scheme morphisms between Ell and M restrict to a torsor morphism

Ell — M and a section of it M > ElI, fitting in commutative diagrams

M — Ell
Ell M
- J J

\ I and 0 —1

det =
0

GL, — Gy, G, (i ) GL,

5 The group GRT,;; (k) and isomorphisms of Lie algebras

In this section, we study the group scheme GRT,;;(—) of GT,;;(—)-automorphisms
of the scheme of elliptic associators. We show that its Lie algebra grt,; is graded
and equipped with a graded morphism grt,;; — grt. We construct a section of this
morphism, which brings to light the semidirect product structure of grt,;;. We show
that the Lie subalgebra sl C Der(t; 2) and the derivations 82, k > 0 of t; > from
[7] give rise to a family of elements of the kernel v, := Ker(grt,; — grt) (which
according to Conjecture 10.1, should generate it as a Lie algebra). The existence of
rational elliptic associators enables us to construct an isomorphism between the group
schemes GT;; (—) and GRT,;; (—), compatible with their semidirect product structures
and with their actions on the elliptic braid groups and their graded versions.

5.1 Reminders about GRT (k)

Let k be a Q-ring. Recall [9] that GRT (k) is defined as the set of all g € exp(f‘z‘) C
exp(@;), such that:
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g3’2’1 = g_l, g3’1’2£f;2’3’1g1’2’3 = 1(relations in exp(%‘)),

o + Ad(g1’2’3)71(l‘23) + Ad(gz’l’s)il(tw) = t1p + t13 + tp3 (relation in ilg),

g2,3,4gl,23,4g1,2,3 — g1,2,34812,3,4 (relation in exp(a{)).

This is a group with law (g1 * g2)(A, B) := g1(Ad(g2(A, B))(A), B)g2(A, B). Note
that g € GRT (k) gives rise to 0, € Aut(tl3‘), defined by

O it > 112, 13 > Ad(g" 2 (13), 13 > Ad(g* ) T 3).
Then g1 * g2 = g10g,(g1), and O, o, = 04,0,,, 50 g > 6, is a group antimorphism.

The group k* acts on GRT| (k) by (c - g)(A, B) := g(c"'A, ¢! B), and one sets
GRT (k) := GRT; (k) x k*. GRT(—) is a prounipotent group scheme.

5.2 The group GRT,; (k)

Define GRT{" (k) as the set of all (g, u,u_), such that g € GRT(K), us+ € & ,,
and

Ad(gl,Z,S)—l(ult,Zis‘) +Ad(g2’l’3)_1(u§:’13) + ui,lZ — 0’ (29)
[Ad(g" ) k), ukP1 =0, (30)
[Ad(g"2H T wl?), Ad@> ) w2 ) =1, 31)

(relations in %'1"3). Set (g1, uﬂr ul_) * (g2, ui u2_) = (g, Uy, u_), where

we(xr, y1) = uk @l (xr, y1), u? (x1, 1)) (32)

(where t'fyz is viewed as the free Lie algebra generated by x1, y;).
We first prove:

Lemma 5.1 (g,u4,u_) € GRT?” (K) iff there exists an automorphism of fll‘ﬁ (hence-
forth denoted 0, ), such that

+ 1,2,3y—1,,,1,23 + 2,1,3y—1,,,2,13 + 3,12
x; = Ad(g )T @™, x5 — Ad(g )T W), x3 > ouyt,

t > 112, 13> Ad(g' ) ), f3 e Ad(e*1) 7).

Proof The condition that the relations )cljE + )czjE + x3i = 0 (resp., [xf—L, x3i] =
0, [xfr,x; ] = t1p) are preserved is equivalent to condition (29) (resp., (30),
(31)), and the relation [#2, x3i] = 0 is automatically preserved. Then, the relation
g3 12g23 10123 — 1 implies that 6, (x**1) = Ad(g"?3) 71 (0,4, (x)*31) for
X € {xl.i, 1;j}. So the other relations [7;;, xki] = 0 are also preserved. |

Proposition 5.2 GRT‘f” (K), equipped with the above product, is a group.
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Proof The product is that of the group GRT (k) x Aut(i‘l"z)"p , SO it remains to prove
that GRT?” (k) is stable under the operations of product and inverse. If (g;, u;) €
GRTT” (k) (i =1, 2), then the action of ng,uziegl’ uE on the generators of i'fj is given
by the formulas of Lemma 5.1, with g = g1 % g2 and u4 as in (32). So (g, u+) €

GRT$ (k), as claimed. Similarly, if (g, u+) € GRT{" (k), then the action of 6, }, on
the generators of @1‘,3 is as in Lemma 5.1, with (g, u+) replaced by (inverse of g in
GRT (k), inverse of (., u_) in Aut(¥ ,)), so (g, u+) is invertible. o

In particular, we have

0(g2.u2)01.u%) = Olgr.uF)x(gr.ud)- (33)

The assignments k — GRT (k), GRT‘I"” (k) are then Q-group schemes.
For (g, uy) € GRTT”(k), define ay, b+ € k by ur(x1, y1) = axx; + b1y mod
.8
Lemma 5.3 1) There is a unique group scheme morphism GRTT” (=) — SLo,
ay by
(g, ut) — (a, b,)'
2) This morphism has a section SL, — GRT¢!(-), given by (Z’: Zt) —
(L usCxr, y1) = asxi + biyr).
Proof 1)ayb_ —a_by = 1 follows from (31); the morphism property is clear. 2) is
straightforward. O
We now set GRT%I (k) := Ker (GRT?” (k) — SLg(k)). This defines a group
scheme GRT%I (-).

Lemma 5.4 GRT%Z(—) is a prounipotent group scheme; we have GRTT” (=) =
GRT$ (=) x SL,.

Proof GRT?;I (k) is a subgroup of GRT (k) x Ker (Aut(ill‘yz) — GL, (k)); the assign-
ment k — (the latter group) is a prounipotent group scheme, hence so is GRT%I (—).
The second statement follows from Lemma 5.3. m]

The group k> acts on GRTf”(k) byc-(g,us):=(c-g,c-us), wherec- gisas
above, (c - u+)(x1+, x| ) = u+(x{’_, c_lxl_), (c- u,)(xl"", x| ) = cu,(xr, c_lxl_).
We then set GRT,; (k) := GRT¢(k) x k*. Then, k > GRT,;(k) is a Q-group
scheme, and GRT,y (=) = GRT¢ (=) x G,y

There is a unique group scheme morphism GRT?”(—) — GRT/(—), given by
(g,u+) — g;itextends to a group scheme morphism

GRT,;(—) — GRT(—-), (34)

whose restriction to G, is the identity.
To elucidate the structure of GRT,;;(—), we use the following statement on iterated
semidirect products:
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Lemma 5.5 Let G; be groups (i = 1,2, 3). The following data are equivalent:

(a) actions'? G — Aut(G)) fori < j, suchthat g3%(g2%g1) = (g3%g2)*(g3%g1);
(b) actions G; — Aut(G;) for (i, j) = (1,2) and (2, 3), and an action Go3 —
Aut(G12) (where Gij := G; x G ), compatible with the actions of G j on G; for
@, j) = (1,2) or (2, 3), and with the adjoint action of G, on itself.
These equivalent data yield actions G3 — Aut(G12) and Go3 — Aut(Gy), and
we then have a canonical isomorphism (G1 X G32) X G3 =~ G1 X (G X G3).

Proof Straightforward. O

We then have an action of GL, on GRTf”(—), givenby y - (g, u4,u_) := (dety -
S ey o~ u (X1, 51) Yy ._ . (x :
g, Uy, u_), where (ﬁ_(xl,yl)) =y (u_(i],yl)) and (il) = y(yl ) It satisfies
the conditions of Lemma 5.5, (b), where: G| = GRT‘;;Z(—), Gy = SLy, Gz = Gy,

! O).We

the isomorphism G, x G3 =~ GLj being given by G,, — GLj, ¢ — (O .

have therefore an isomorphism
GRTy(—) ~ GRT{! (—) x GLo,

where we recall that GRT%I (—) is prounipotent.
The morphism (34) then fits in a commutative diagram

GRT,;;(—) — GRT(-)
2 ¥

GL, % g,

as the morphism G, x G3 — G3 coincides with det.

5.3 A morphism GRT (k) — GRT,; (k)

We now construct a section of the morphism (34). We first set

ad

Xi A .
_eadm_il(y,-) etd, forief{l,..n). (35)

foi ==
For g = g(A, B) € exp(f%),

0,1,2 .

we set g = g(to1, t12) € exp(%¥,2)80’2’1

= g(tn, 1) € exp(ilfyz)'

Lemma-Definition 5.6 Forg € exp(%‘), there exists ag € Aut(f‘f’z), uniquely defined
by ag(x1) = log(g"'e™ (8117, agtor) = g% 2101 (8% )71 We set

@S u®) = (1), ag () € ()%

12 The action of gj€Gjong; €Gjisdenoted g; * g; € G;.
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Proof This follows from the fact that tll"z is freely generated by x; and #p;. O

Proposition 5.7 There exists a unique group morphism GRT(k) — GRT‘f” (k),
given by g — (g, uf_, u®). It is compatible with the action of k*, hence extends
to a group morphism GRT(K) — GRT; (K), which is a section of (34) and fits in a
commutative diagram

GRT(—) — GRT.;(—)

\: \:
Gn — GL,,

. . 1
where the bottom morphism is ¢ +— ( 0 (C))

Proof We first prove: O
Lemma 5.8 i']‘n admits the following presentation: generators x;, tup (i € {1, ..., n},

a %= B €10, ...,n}); one sets X; := e*i; relations (i, j, ... run over {1, ..., n} while
o, B, ... runover {0, ..., n}):

tga = tapfora # B, [tap.tys]l = [tap, tay + 18,1 =0 fora, .., 3§ all different,

(36)
log (X;, X;) = log (H Xi) =0, 37)
i
Xiltoj + ) X; =10 ifi #j, Xitoi X' =D tai (38)
oFi
XitjX; ' =tji fori, j, kdistinct, (X;Xtj(X;X) ™" = tjfori # j, (39)
Z tap = 0. (40)

0<a<pB=<n

Proof One first checks that if one defines #y; as in (35), then the above relations are
ead X;

satisfied; conversely, if one sets y; := — d Xfl (t0i), then the above relations lead to

the defining relations of %'1‘ 0 O

Lemma 5.9 Ler (g, ut) € GRTT” (k) and o € Aut(%lf)z) be defined by a(xf—L) = uy.
Then 0q ,, € Aut(i‘l‘ﬁ) (see Lemma 5.1) may be defined by

Ogus » X1 > Ad(g" )N a(X)1?), Xa > Ad(g>) N a(X)>P), X3
a(XD>2, 101 > Ad(gM?) T o), 12 > Ad(g* ) T @)™ ),
t03 = (o), tin > 112, 123 > Ad(ghE) T (13), tiz AdEH ) 7).

Proof Tmmediate. O
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Lemma 5.10 Let g € GRT (k). There is a unique ég € Aut(%lfﬁ), such that

ég . Xl — (g1’2’3)_1g0’23’1X1(g0’1’23)_1g1’2’3,
X2 — (g2,1,3)—1g(),13,2X2(g0,2,13)—182,1,37
X3 — g0,12,3X3(g0,3,12)717
to1 > Ad((g") 7 g% ) (t01), o2 > Ad((g>') g% ) (102),
to3 > Ad(g"* 1) (103), (41)
to > 112, 03 > Ad(gh23) 7 (13), 113 > Ad(g>1) 7 (13). (42)

Proof Let us first prove that relations (36) and (40) (for n = 3) are preserved. In
Sect. 5.4, we will construct an elliptic IBMC g « PaCD with distinguished object e,
which gives rise to a functor PaCD — g * PaCD. One derives from there an auto-
morphism exp(iﬁ) X S = Autpacp(0) — Autgupacp(0) = exp(%',j) x S, for any
0O € PaCD(0), |O| = n. When O = e((ee)e), the resulting automorphism of %};
is given by (41), (42). So relations (36) are preserved. The automorphism necessarily
preserves Z (%ﬂf) =k- Za< g lap> SO relation (40) is also preserved.
Note for later use that

O, (x> 1) = Ad(g" ) 710, ()1 for x € {xi, tup). (43)
‘We have

G (X2)By(X3) = (g213) 71 g0 132, (g0213)=1 g213 0203 ¢ (003,121
= (g213) 10132, (0213 (002, 1) =1y (,0.3,12)1
= (g213) 101324013 x) x, (g03.21) =1 (40.3.12)—1
= (213 (g132) 71 g0 1320132y ) (03,251 (40,3211 (43.2,1y-1
= (g1 1(g132) 710132y, 3 (g0321) =1 321y -1

while

ég(Xg,)ég(Xz) — g0,21,3X3(g0,3,12)71(g2,1,3)71g0,13,2X2(g0,2,]3)71g2,1,3
— g0,21,3X3g03,1,2(g0,3,1)—1X2(g0,2,13)—1g2,1,3
— g0,12,3g0,1,2X3X2(g02,3,1)—1(g0,2,13)—1g2,1,3
— (g1,2,3)—1gO,1,23g01,2,3X3X2(g0,2,3)—1(g0,23,1)—1(g2,3,1)—1g2,1,3
— (g],2,3)71gO,],23.X3X2(g0,23,1)71(g2,3,])71g2,1,37

which implies (04(X2), 0,(X3)) = 1. Then, (43) implies that (0, (X;), (X)) = 1
for any i, j.
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The above computation of ég (Xz)ég(X 3) implies that

0o (X1)0y(X2)0,(X3)
— (gl,2,3)—lgo,23,lxl (gO,1,23)—1g1,2,3(g2,1,3)—1(g1,3,2)—1
X2X3(g0,32,1)—1(g3,2,1)—1 =1

as X1X2X3 = 1. So X1 X»X3 = 11is preserved.

9 (X3) clearly commutes with 9 (t12), which 1mplles that X ; t]kX = tj; is
preserved in view of (43), as well as X ; Xyt (X X' = = tjk (as the X; commute
and X1 X, X3 =1).

Now,

O (ton + 112) = Ad((g> 1) 1% 23 (100) + 112 = Ad(g*?1*)(Ad (g% V) (102) + 112)
= Ad(gorz”)(tm + 102 + 112 — Ad(g™ 1) (101))
= 112 + Ad(g"?13) (101 + 102) — Ad(g"'*3g% ) (101).

Then,

Gy (X1)0 (to2 + t12)
=(g1’2’3)_1g0’23’1X1((g0’1’23)_1g1’2’3t12+(g0123) 141:2350,123

(to1 + t02) (g
_ (g1,2,3)—1g0,23,1X1(g01,2,3(g0,1,2)—1t12(g0,12,3)—1 + 0123

0,12,3y—1 0,1,23y-1,1,2,3 0,12,3 /0,1,2 0,1,2y=1,,0,12,3y—-1
)7 = (g1 g1 23012302y (901271 (5012371

(gO,l,Z)—l(tm +t02)(g0,12,3)—1 _g01,2,3t01(g0,1,2)—1(80,12,3)—1)

_ (g1’2’3)_1g0’23’1X1g01’2’3(t02 + tlz)(g0,1,2)—1(g0,12,3)—1

( 123) 1 023 1g023t02X1(gO,l,Z)—l(gO,IZ,?’)—l’

while

ég(IOZ)ég(Xl) — (gZ,1,3)71g0,2,31toz(gO,2,31)71g2,1,3(g1,2,3)71g(),23,IXl (g0,1,23)71
1,23 _ (gz’1’3)_1g0’2’31t02g02’3’1(g0’2’3)_1X (g0,1,23)—1 1,2,3

— (g2,1,3)—1g0,2,31g02,3,11‘02}(1 (g

3,1,2 2,3,1_0,23,1_0,2,3
=ggrTg g X1 (g

8
0123)—1(g0123) 1,123

012) (80123)7,

so the relation X (tgp +112) X 1_1 = to is preserved. (43) then implies that the relations
Xi(toj+1i) X, I = to; are preserved. Together with the other relations, these relations
imply the relations X;to; X;” 1 - D i Tais which are therefore also preserved. O

End of proof of Proposition 5.7 1f ¢ € GRT (k) then one checks that the automor-
phisms 6 from Lemma 5.10 and o, € Aut(’t1 ,) from Lemma-Definition 5.6 are

related in the same way as 6, ,, and o are in Lemma 5.9. It follows that if ul.
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are as in Lemma-Definition 5.6, then (g, u%, u®) € GRT¢" (k). This defines a map
GRT; (k) — GRT¢ (k). O

Let us show that GRT| (k) — GRTT” (k) is a group morphism. In view of (33), it
suffices to prove that égzég] = ég] «g»» Which can be checked directly, e.g.,

Og, (Bg, (X1)) = O, (877" X1 (81D ™) = g, (g1 (102, 21) X187 (t01, 112))
= g1(Ad(gy > ) (t02). 21)gy > X1(g5 > T gy (Ad (g3 P ) (1), 112)
= (g1 % g P X1((g1 % 82)" ") 7" = Oy (X0,

etc.

Let us prove that GRT (k) — GRTT” (k) is compatible with the actions of k*. If
c-(g,ux) = (g, lix), then6; ;, and O, ,, arerelated by 6; 7, = yCOg,uiyc_l, where
Ve € Aut(i‘l‘ﬁ) is given by yc(x;r) = xi+, ve(x; ) = c’]xlf. It then suffices to prove
that 5§ = ycégyc’l, where we recall that g(A, B) = g(c’lA, c’lB), which follows

from y.(x;) = x;i, ve(tap) = c’lta,g forO0 <o # 8 <3.
The final commutative diagram follows from

GRT¢ (k) x k*
I

SL, (k) x kX ———= GLy(k)

We set
R (k) := Ker (GRT,1(k) — GRT(k)). (44)

Explicitly,
RS ) = {(up, u) € @) u® +ud’ +ud? =0, [uh?, w21 =0,

[wl® u>P] = 115} € Aut(E ). 45)

Then, k — Rflrl (k) is Q-group scheme, and we have a commutative diagram

1 — R%(~) = GRTy(~) — GRT(-) — 1

\ \ \

1> SL, - GL, % g, —1

The lift of GRT,;;(—) — GL restricts to a morphism SL, — RS/ (—), and the
structure of R%),(—) is therefore
R%), (=) = Ker (RS (=) — SL3 ) x SL,,

in which the kernel is prounipotent.
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The morphism from Proposition 5.7 enables us to define an action of GRT(—) on
Rflr[(—). GRT,;;(—) has then the structure of a semidirect product, fitting in
GRTe(—) =~ R (=) x GRT(-)
\ \
GL» ~ SLy 4Gy,

where the bottom morphism is induced by G,, — GL», ¢ — ( (1) (c))

Remark 5.11 Foranyn > 1,the algebra U(Ell"n) X Sy, is generated by x]i, Sy evesSn_l,
where s; is the transposition (i,i + 1) of S, (a presentation is si2 = 1 for any i,
(sl-s,-+1)3 =1fori <n—1,s;s; =sjs; for |i — j| > 2, xlis,- = sl-xllL fori > 1,
[xf,s1x1is1] =0, [xfr,swcfsl] = [slersl,xf], [szsletslsz, [xf,slesl]] =0,
xljE + s1x1is1 + -8 -s1x1is1 ---sp—1 = 0). Specializing the morphism from
Proposition 5.23, 2) to the object o(. . . (ee)), one shows that the formulas from Lemma
5.10 generalize to an action to GRT,;; (k) on the tower of algebras U (i‘l‘, 2) X Sy, given
by

1,2..n

+. ol L2, ii+1,i42..ny—1
(g u) Xy i=ug™™", (goug,u_)-sp=gh TR g (gt LI TL

fori = 1,...,n — 1. These actions preserve the group exp(ill‘yn) x S, and the Lie

algebra f'l"n. Composing this action with the morphism GRT(k) — GRT,;(k), one
obtains an action of GRT (k) on the same objects given by

1,2...n

+ + ii+1,0+2... ii+1,i+2..n\—1
g X ::Olg(xl) , g-si::g”+ i+ ”-s,--(g”+ i+ n) ,

where o, (xf—L) are defined in Lemma-Definition 5.6.

5.4 Categorical interpretations

A left action of GRT(k) on {IMBCs} is defined as follows: g € GRT(k)
acts on (C,c._,a.,t.) by only modifying ayyz into a%’Y’Z = axyzg(txy ®
idyz, ag;z(idx ®tyz)axyz) and ¢ € k* acts by only modifying txy into ctyy.
Similarly, one can show that a left action of GRT,;; (k) on {(an IBMC, an ell~iptic
structure over it)} is defined as follows: (g, uy,u_) € GRT?” (k) acts on (C,C) as

(g, ur,u_)*(C, 0) = (g*C, C"), where forC = (C, F, x.ﬂf),we setC’ = (C, F, gf),
where ﬁ?’y = ui(x;y, x;’},), andc € k< actson (C,C) asc % (C,C) := (cxC, ("),

51 _ (7 + -
where C' = (C, F, Xy ys ch’Y).

5.5 Action of GRT,; (k) on Ell(k)

Recall that GRT (k) acts on M (k) fr~0m the right as follows: for g € GRT;(k) and
(1, ®) € M(K), (u, @) * g := (u, ), where
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D112, 123) = P(Ad(g"*) (112), 123)8 "7,

and for ¢ € kK*, (u, ®) % ¢ := (cu, c * ), where (¢ * ®)(A, B) = P(cA, cB).
This action is compatible with the maps {IBMCs} — {BMCs} induced by elements
of M(K): ®x (g xCop) = (P xg)*Co forany ® € M(k), g € GRT(k) and IBMC (.

For (g, u+) € GRT$" (k) and (11, @, Ay) € Ell(k), weset (11, ®, Ay) (g, us) =
(e, &D, Ai), where

Ay (x1, y1) 1= A (uy(xr, Y1), u—(x1, 1))

(in other terms, Ai = 6(AL1), where 0 € Aut(i']‘)z) is x]jE > ui(xf, x,)) and for
c € kKX, we set (u, ®,Ax) x ¢ := (u,c *x O, cfAL), where (cjiAi)(xf, xp) =
Ai(xr, cxy).

Proposition 5.12 This defines a right action of GRT .y (K) on EIL(K), commuting with
the left action of GT,;; (k) and compatible with the right action of GL, (k) on Mz (k).

Proof Let us show that (1, D, Ay) e Ell(k).If0 € Aut(ilfqz) is defined by 9(xli) =
U4, and 0= 0g u. » then one checks that

' ?) = Ad(g"*) MO ),
0> = Ad(g™) 1O,
6(x>12) = (x)>12

for any x € @'1"2. Applying 6 to (25), one gets

9({e:|:;L112/2}Ai)3,12§(q)3,1,2)(g2,1,3)—19({e:tu.[]z/z}Ai)2,3l
g2,l,39~(q>2,3,1)(g1,2,3)—19({e:|:;u12/2}Ai)1,23
g1 23G(@123) = 1,

Using the identities 6(®>12)(g213)~1 = @312 g2135(p231)(gh23H)~1 =
P231 g123G(@l23) = §1.23 and O ({eFH12/2} A1) = {eFHN12/2} A4, one obtains
that (u, ®, A1) satisfies (25).

Applying now 6 to (26), one gets

el/‘tlz — (é(q))_lg_IQ(A,)1’23g§(CD), e—utlz/Zé(q)Z,l,?))—l
(g2,1,3)71 (G(A)2,13)7]g2,1,3é(q>2,1,3)efﬂt12/2).

Using again gé(@) = d~>~and g2*1'3§(©2'1’3) = @13, together with (A1) = Ai,
one obtains that (u, ®, Ay) satisfies (26).

Similarly, applying the automorphism xi+ — xl.+, X

. P> cx; to identities (25),
(26), one obtains that (u, ®, A1) * ¢ satisfies the same identities, hence belongs to
Ell(k). It is then immediate to check that this defines a right action of GRT,;;(k),

commuting with the left action of GT,;; (k). O
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Proposition 5.13 The action of GRT.;(K) on EIL(K) restricts to an action on
Ell(k) C ElL(K), which is free and transitive.

Proof Given that the action of GRT (k) on M (k) is free and transitive, it suffices to
prove that the action of Rcll (k) on Ell(,, o)(K) := EII(K) X p) {(n, D)} is free and
transitive for any (u, ®) € Ell(Kk).

Recall that Rflrl (k) is explicitly described by (45); its inclusion into Aut(i‘l"z) is given
by (uy,u) > Oy, = ()c?E > u+). On the other hand, Ell(,, ¢)(k) = {(A4, A_)
satisfying (25), (26)}. Then,

(A+7 A—) * (M+, l/t_) = (Gui(A-i-)s eui(A—))’ (46)

Relation (26) implies that (A_, A) = e#*"12, which together with . € k™ implies that
%ll(,z is generated by log A, log A_. Together with (46), this implies that the action of
RS (k) on Ell(;, ¢)(K) is free.

Let us now show that this action is transitive. We first observe that Rgrl (k) can
be described as {0 € Aut(t 2)|E!9 € Aut(t 3) with 9(t,]) =tfjforl <i #j<
3 and O(x"%) = 0(x)"Jk for {i, j.k} = {1,2,3} and x € ). Let (A4, A0)
and (Ay, A_) € Ell,)(k) and let § € Aut(t ) be the automorphism such that
0(Ay) = Ai. Let us show that there exists 6 € Aut(@ll‘j), such that

6(t;j) =tijfor1 <i #j<3 and O(x"7%) =0(x)"* for
{i,j.k} = {1,2,3} and x € T ,. (47)

Let iy 0y @ B3(k) — exp(t3) X S5, iu.o.ay) @ Bi3(k) — exp(t3) x S5 be the
isomorphisms induced by (1, @), (u, ®, A1) and the object e(ee). We have a com-
mutative diagram

e T s

- =< -
P3(k) — exp(¥5) B3 (k) ——=exp({3) x S3

| | l ]

At) (1. @,Ax)

(j, @, A
Py 3(k) ——= exp(i¥ 5) By 3(k) — exp(tl 3) % S3
The— T T

where the maps ‘i’ are isomorphisms. Note that foro € B3, iw,@(o)[o]’l € exp(%‘)
(where o + [o] is the canonical morphism Bz — S3).
Then,

.d.AL) (XT) = ALZ, f.d.As) (X3) = lio(o7 )Sl}Ai {Slld>((71 Hl,

+1 :I:l

l(MCDAi)(X ) = {io(0; )S1sz}Ai {S2511<I>(<7 )},

where we recall that x + {x} is induced by the canonical morphism t3 —
t13. Also, i(,0,4.)(07) = {ige) (0}, for i = 1,2 and i, 0,4, (010501) =
{i(u.0) (010501}
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Letd := 1 o f&l’d)‘Ai). Then, 0 ¢ Aut(i'fﬁ), and

(14, ®,A+)

(@) 6 I?aves {Al(“’d)) (aiz)} (i =1,2)and {17(“@) (0102201)} fixed, so it leaves the image
of t3 — t; 3 pointwise fixed;

(b) 6(AL™) = AL,

6 ({iwmb)(fffl)ﬂ}f‘im {Sliw,@)(fﬁﬂ)})

. 213 [ .
=i @FHn ) 22" fsiige @FH].

which implies, as {i(,, ¢)(01 )sl} and {s1i,, q))(alil)} € im(exp({k) —

exp(tk 3)), that G(Aim) = Aiw one proves similarly that O(Ailz) 3 12,

(b) implies that 0(x"7%) = 6(x)"/¥ holds for x = A, therefore also for x in the
topological group generated by Ax. As u € kK*, this group is equal to exp(tlf’z),
so 0 satisfies 47).So 0 € R (k) O

Proposition 5.14 The scheme morphisms Ell — M and M 5 Ell (see Proposition
4.8) are compatible with the morphisms GRT¢;;(—) — GRT(—) and GRT(—) —
GRT,;;(—) (see Proposition 5.7).

Proof We need to prove the second statement only. Let M (k) 5 EIll(K) be given by
(n, ®) — (u, ©, AL (e, ®)), then we must show that for g € GRT; (k) and (u, ) =
(n, @) * g, we have AL (i, ) = ag(A(u, @)), where oy is as in Lemma-Definition
5.6. This follows from the fact that o, satisfies og (f02) = Ad(g%2 1) (t2), ot (t12) =

t12. It is also clear that M (k) 5 Ell(k) is compatible with the action of k*. O
o
TR
Remark 5.15 In fact, the commutative diagrams J { and 0 —c
det c— —¢
M; — A (1 0 )
— M,

are compatible with the right actions of the diagrams

GRT.y(=) — GRT(—) o) = GRTai(=)

det c—
0
GL, — Gy G, 0 c GL,

5.6 Lie algebras
The graded Grothendieck-Teichmiiller Lie algebra is'>

gty = {¥ € ply + 97> = 0, gy H 92 = 0, [3, 912 )+ 13, > )
=0, 1//2,3,4 _ W12’3’4 + W1’23’4 _ W1’2’34 + W1’2’3 =0},

13 Ag before, f, = )‘9, etc.
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where we use the inclusion f, C {3, A — t12, B +— 1p3; it is equipped with the

Lie bracket (Y1, ¥2) = [¥1, ¥2] + Dy, (Y1) — Dy, (¥2), where Dy, : A — [y, A],
B — 0.

The Lie algebra QQ acts on grt; by [1, ¥]=—(deg ¥ )y (where deg A=deg B=1),
and we set grt := grt; x Q.

The Lie algebras grt, grt; are N-graded (where deg is extended to be 0 on Q), we
then have Lie GRT()(—) = g/a(l) (the degree completions).

Let

grt! = {(Y, ax) € f2 x (12)*|¥ € grty,

123, 231, 312 1,123 2 2137
oy oy fay T g, YT+ L, Y =0,
1,23

Lok o221+ [0h?, el = el el VT =0,

el o P - 2, ol = 2 Lt - L 2, 2 )
For a4 € ty 7, define Dy, € Der(t; 2) by xf—L +— a4. Then,
(Y1, @), (P2, 09)] = (Y1, Y2), Dyr (@) — Dyt (@5))
defines a Lie bracket on gtte” ,and
gttﬁ” C gty x Der(t)2)".
The Lie algebra Qe acts on gttﬁ” by

lex, (V. @y, )] = (—(deg Y)Y, —(deg_a)ay, (1 —deg_a)a-),

where deg v is as above, and deg_ o4 is defined by deg_ xf =0, deg_x; =1.We
then set gtt,;; := gttf” X Qenn.

The Lie algebras gttﬁl) are N-graded, where (y, 4) has degree n if 2degy =
degar — 1 = n (degas being defined by deg )cljE = 1 and degy by degtip =
deg 3 = 1) and ep> has degree 0. Then Lie GRT¢! (-) = g’\ttfil)

(D
We have a morphism gttf” — sh, (W, a4, 0_) — (ZJ: Zi), where oy =

a+x1 + biy; modulo degree >2. It extends to a morphism grt,; — gl, via

ey (8 (1)) We denote by gttﬁil the common kernel of these morphisms; it coin-
cides with the part of grt,;; (or gttf” ) of positive degree.

These morphisms admit sections sl — gttﬁ” given by (ZJ: Zi) = (0, a+x +

biy1) and gl, — grt iven by its extension b 00 > e2. We then have
2 ell & y Y \o 1
gets!! > getf!! % sly, ety ~ gets!! x gby.
7?-gradings may be defined on gttf{l) as follows. We have a Lie algebra

inclusion gt/ C grt; @ Der(t;2) =: &. Recall that grt, is N-graded while
gty gry . g
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Der(ty2) is Zz—graded by the Zz-grading of t;» given by (deg+,deg_)(xf“) =
(1,0), (deg,,deg_)(x; ) = (0, 1). We then define a Zz-grading on & by B[p, q] :=
Der(t12)[p, q] ifg#p . - 2 .
: . . This restricts to a Z--grading (deg_ , deg_
[gttl [p] ® Der(ti 2)[p, pl if g = p grading (deg.., deg-_)
of gtte”, which extends to grt,; by (deg, , deg_)(e22) = (0, 0).
The Z?-grading of grt,;, is compatible with the action of the Cartan subalgebra of

10
gly: we have [eq1, x] = —(deg, x)x, [ex2, x] = —(deg_x)x for ey = (0 0) € gl
and x € grt,; homogeneous.
We have a morphism gttf” — grty, (Y, ux) — . It extends to a morphism
grt,; — grt by exo — 1. Using Proposition 5.7, sections of these morphisms are
constructed as follows:

Proposition 5.16 There is a unique Lie algebra morphism get; — 5&7“, o
(, ui, u'f), where ui = D¢(xft) and Dy, € Der(il,z) is defined by

Dw(e)m) — w0,2‘lex1 _ e)CIwO,],2, D]//(t()]) — [wo,],z, t()l];
recall that

adx,-

wo‘l’z = W(tOh t12)7 w0)2’1 = W(IOL t21)» foi = _m()’z)a i = 11 2.

It extends to a Lie algebra morphism gtt — g/ﬁe” by 1 +— ep. It is homogeneous,
gtt being equipped with its degree and grt,;; with degree deg_.

Set now ¢}y, := Ker(grt,; — get). We have
2 123 231 312
oy = (e a) € (t12)7] ay™ i’ +ay T =0,

1 2,13 1,23 .2
[Xi,“i ]+[05j: ,xi]=0,

[x), a2 P14 [}, %21 = 0} C Der(t; ).

This is a Z?-graded Lie subalgebra of gtt,;; it is also N-graded by deg 4 +deg_. We
have t§),[0] = s[> and v¥), > (Bg=ot%)[d]) x sl,. Its completion for the N-degree is
isomorphic to Lie RS/ ().

Define a partial completion ftflrl =@, (1 » tfl’l [p, q]). Proposition 5.16 gives rise
to a Lie algebra morphism grt — Der(%flrl). We then have grt,; ~ f?flrl x grt, where
grt,, = Dy Hp get,[p, gl is a partial completion.

Set gt,;; = Lie GTey(—), gt¢! := Lie GT¢(-), then gt,; = gt§!! x Q. The
Lie algebra gtﬁ‘“ admits a description as a subspace of fz X (11,2)2 similar to that of
Lemma 3.16 and s filtered as follows: gt,;; = gt‘f” xQ, where gtf” := Lie GTi” (=) C
§2x (11.2)2. We then set (gtsh=" .= gts'In (%"/2 x ((t1,2)2)=" 1) forn > 0, where the
degree in fz isinduced by deg(#12) = deg(23) = 1 and the degree in fl,z by deg(xli) =
1. The Lie algebra gt,; is similarly filtered by (gt,;)=° = gty (gty)=" = (gt§)="
if n > 0. It follows from the form of the conditions under which (¥, 4+, a_) €
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fz x (t1.2)? belong to gtf“ that there is a canonical morphism gr(gt,;;) — gtt,;,
restricting to gr(te;) — tflrl and Wednesday, August 7, 2013 at 8:09 pmcompatible
with gr(gt) — grt. In Sect. 5.8, we will see that all these morphisms are isomorphisms.

Remark 5.17 The relations between Lie groups and algebras are summarized as fol-
lows:

GRT; (k) = exp(grt}), GRT(k) = exp(gely) x k*,
GRT (k) = exp(get)™) x SLa(k), GRTe(k) = exp(grty ) x GLa(k),

R (k) = exp (H o d] @ k) % SLa (K).

d=>0

Remark 5.18 Any (ay,0_) € tflrl satisfies o4 + ai‘l = 0, which implies that the
total degree (in which xft have degree 1) of w4 is odd. So tflrl [d] = O unless d is even.

Remark 5.19 (Relation with the work of H. Tsunogai.) In Tsunogai [32], a “stable
derivation algebra” in genus one is described. This is a graded Lie algebra version of
the intersection over n > 1 of the images of the morphisms Out*(P; ,,) — Out*(Py 1),
where Out* C Out are certain subgroups. This is a Lie subalgebra Grs C Der(t; 2),
which may be defined as the set of all (o, @_) € (t1,2)2, such that there exists ¢ € {3,
such that

A A Ut A A U G B
[xl, a1+ [} % xl 1 =0,

3,12 1,23 3 + +
L, a1+ [er™, 231 = x5, [k, w23,

Lel, @2 P14 (), 220 = [, 9132 4 [, 62, 932

(the relation between the present formalism and that of [32] is as follows: t3 <
EEZ)O, t1o < Eiz), op, o < S, T, Ulz3 o w2,1,3; the present relations are
obtained from those of [32] by some changes of indices). This system of conditions
is a consequence of the system expressing that (Y, o4, ) € gttﬁ”; the latter is
more restrictive as it contains additional conditions, namel?/ the pentagon and hexagon
conditions on 1/, as well as the conditions al_;23 + 051’3 + ai’]z + [, w231 +
[xi, Iﬂz’l’S] = 0. It follows that there is a double inclusion

im(gttf” — Der(t12)) C grs C Der(t;2).

5.7 A Lie subalgebra b3 C %),

Proposition 5.20 Forn > 0, set

(g = ad(e) > 2 (y1), @
1
S DL (=DPI@dx)? (). (adx))? (y))). (48)
2

0<p<2n+1,

p+Hg=2n+1

Sop -
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Then 8y, € tflrl [2n+1, 1]. The element & is central in gtte”, such that [e114e22, 80] =
—280, and it coincides with ad t1 as an element of Der (1 2)°P.

Proof In Calaque et al. [7], Proposition 3.1, we constructed derivations 8§’:) S
Der(ty ), such that

8 < xi > 0,45 v 17, (adx) ™ (1)1, i
1
> D05 2 Lada) ). (—adx)? (@),

Jjij#i  p+q=2n—1

Let then 8521) = Sé':) + [Z (ad x)>" (t;), —]. Then

i<j

85, () = | D (ada) (@), xi | = (ad ) () = ol 8D (1) =0,
J#i

sy (i) = 85 (i) + | D (adx )" (210, i

Jj<k
=50 + S lad ) )yl + > [adx ) (1), vl
J#i J<k;jksi
=5 () + Z[(adxi)zn(lij), yil
J#i

+ 0D D (adxp)Ply, (adxj)? ()]
Jj<ksjk#i p+q=2n—1
= ng)(yi) + Z[(adxi)2" (i), yil
J#L
- D D> I(=adx)P (@), (ad x) (tix)]
j<k;j.k#i p+q=2n—1
=59 (i) + D_[(ad xi)*" (1) i]
J#L
D D (—adx) ), D (ad xi) (1)
prq=2n—1| j#i ki
1
+52 2 l(-adx) @), dx) ()]
J#i p+q=2n—1

1
= —l@dx)* o, yil+ 5 > (=adx) o0, (adxi) T (30)]
p+q=2n—1

N =

1 o
= E Z [(—ad x)? (y;), (ad x))1(yi)] = Otl_’l”""'".

p+q=2n+1
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Then 0 = 58)([x1i,x2i]) = [xli,oti’m] + [al_uB,xzi] and 0 = 851)(1‘12) =
[fo’ 0&13] + [O‘L%’ X, |, which implies that 65, € tf{l.

If (Y, 1) € gttﬁ”, then applying the morphism t; » — t; 3 corresponding to the
map {1, 2} — {1,2,3}, 1 — 1, 2 > 2tothefirstdefining condition of grt,;;, one gets
ozli’2 + ozi’l = 0. Applying the same morphism to the last defining condition of grt,;,
one gets [x}r, ozz’l] —[x2, oulr’z] =0,s0 [x}r, 011_’2]+[aJ1r’2, x11 = 0. It follows that the
derivation Dy, of t; > such that xli — o is such that Dy, (f12) = 0, so there is a Lie
algebra inclusion gttﬁ” C grty x Der; (t1,2)°7 (where the index ¢ means the derivations
taking 12 to zero). Since 89 = (0,adr2) € grt; x Der;(t12)°7, §o is central in
grty x Der; (t12)°P, therefore also in gttﬁ”. Finally, [e11 + e, D] = —deg(D) - D
for any D € Der,(t 2), where the degree is D corresponds to the degree on t; » for
which x| and y; have degree 1. Therefore [e1] + €22, §0] = —2 - 8¢. O

We define b3 := (slp, 87,5 n > 0) C tflrl as the Lie subalgebra14 generated by sl
and the §;,,. A basis of sl C b3 is

er = (ayr =0, =x1), e_:=(aty=y,a_=0),
h:=(eq =x1, 00 = —y_). 49)

The Lie algebra b3 is N-graded and corresponds to the subgroup exp(ﬁg’k) xSLa (k) C
Rflrl (k) (where the hat denotes the degree completion and + means the positive degree
part).

5.8 Isomorphisms of Lie algebras

Letk be a Q-ring. As ElI(K) is a torsor, each e € EII(K) gives rise to an isomorphism
ie : GTe(K) — GRT,y(K), defined by g x e = e xi.(g) for any g € GTe;(K).
Similarly, any d e M(K) gives rise to an isomorphism iz : GT(k) — GRT(K)
defined by the same conditions. We then have a commutative diagram

GT.r(k) “5 GRT,; (k)
L (50)
GT(k) -2 GRT(k)

where & = im(e € Ell(k) — M(K)). In particular, i, restricts to an isomorphism
ie : Rey(k) — RS, (k). When e € im(M (k) 5 EII(K)), the isomorphism R (k) L
Rflrl (k) is compatible with i g and the actions of GT(k), GRT(k) on both sides via the
lifts GT(K) — GT,y(k), GRT(K) = GRT,y; (k).

The isomorphisms i, induce Lie algebra isomorphisms gt:f” — ﬁ\ttl;”, restricting

to tfl = fflrl’k, compatible with the filtrations and whose associated graded isomor-

14 Conjecture 10.1 is the statement that this inclusion is an equality, and Proposition 9.2 shows that this
statement is equivalent to the conjectural equality (B3) = R,j;(—) discussed in Sect. 3.5.
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phisms are the canonical morphisms from the end of Sect. 5.6. Since ElI(Q) # 0 (e.g.
because it contains o (M (Q))), we obtain:

Proposition 5.21 There are isomorphisms gt,; ~ gr(gt,;) = gt\tell and ve >~
gr(ven) = 5.

5.9 Actions on prounipotent completions of elliptic braid groups

Let k be a Q-ring. We recall that P, (k) (respectively, P ,(Kk)) is the prounipotent
completion of the pure (respectively, elliptic) braid group P, (respectively, Py ),
where n > 1 and that B, (k) (respectively, By ,(k)) to be the relative completion of
the full (respectively, elliptic) braid group with n strands with respect to the canonical
morphism to §,,; it identifes with the pushout B, *p, P,(k) (respectively, By, *p, ,
P1y (K)).

Proposition 5.22 1) The action of GT = Z /27 on By, via (—1) - 0; = ai_l extends
to the following objects:

e a morphism pto : GT(K) — Aut(B, (K)) for each O € Pa,;
e amap

GT(k) x Pa, x Pa, — P,(k), (g,0,0") boo(g),
related by the identities

mo(g) =Inn(bpo(g)) o no(g), (5D
boo(gh) =boo(g) - mo(g)boo(h)), boo(g) =bo o (gboo(g).
(52)

2) The action of GTey = 33 on By, given by (15) extends to a collection of mor-
phisms

1 GTer(k) — Aut(By (k)
indexed by O € Pa,, related to the morphisms o by the identity
1o (et beir) = o () B)er. (53)
and satisfying
wy (gen) = Inn(boor ()ei) o 13 (8), (54)
for any ge € GTg(k) and b € B, (K), where g := im(g.; € GTey(k) —
GT(Kk)) and by :=im(b € B, (k) — Bj ,(k)).

3) The restriction /folll Roy (K) is independent of O € Pa,, and will be denoted

Hell = Reri(K) — Aut(By ,(K)).
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If gen = (1,1, g4, 8-) € Rei(K), where g+ = g+(Xy, Y1) € Py 2(K), then the
action of gey on By, (K) induced by iy is such that

ot - X¥ = ge(X{, X)), ge-oi=o0; for i=1,...,n— 1.

Proof 1) Let C := PaByg be the k-prounipotent version of the BMC PaB, G :=

2)

3)

GT(k). For g € G, g *C is a BMC with distinguished object e. By the universal
property of C, one derives from there a functor a, : C — g * C, uniquely defined
by the condition that it is tensor and that it induces the identity on objects. As a
category, g *C canonically identifies with C;leti, : gxC — C be thisisomorphism.
One then defines B, 1= ig o oy : C — C. The identity BB, = B, follows from
the commutativity of

in which the commutativity of the central square follows from that of

g*CJﬁpg*D
~J i/N
c £

for any braided monoidal categories C, D and any tensor functor ¢ : C — D.

It follows that g — B,-1 defines a morphism from G to the group of autofunctors
of C,i.e. an action of G on C.

Let O, O’ € Pa,,. There is a canonical isomorphism iy : Aute(0O) — B, (k) and
a canonical element igo € Isoc(0O, O') (corresponding to the unit in B, (Kk)).
Then, for f € Autc(0), ip(f) = io/(ioo/fi(;b,).

Define the action o of G on By ,(Kk) as the transport via ip of its action on
Autc (0), namely o (g)(b) :=ip(g * ial(b)). The claimed identities then hold

with boor(8) == io(iyp o (8 *i00)).

The collection of morphisms u%l is then defined in the same way: G is replaced
by Gy := GTey(k), C by Copy := PaBi”, the isomorphisms ip by ieO” and ig o
by F(ipo’), where F : C — Cg is the canonical functor. The claimed identity
follows from i (F (x)) = io (F (x))eu, for x € Autc(0).

follows from identity (54), from the fact that ¢ = lgrk) if gen € Re(k), and
from bo o' (1gT(x)) = 1P, ), Which follows from the first part of (52). O
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Proposition 5.23 1) There are morphisms
u‘g : GRT(kK) — Aut(exp(il,;) X Sy) foreach O € Pa,
and a map

GRT(k) x Pa, x Pa, — exp(¥), (g.0,0") — b¥,.(2),

satisfying the analogues of the identities of Proposition 5.22, 1).
2) There are morphisms

uole" GRT(k) — Aut(exp(¥ ) % 5,,)

for each O € Pa,, satisfying the analogues of the identities of Proposition 5.22,
2).

.. 1,
3) The restriction ue ggrr
O|R?

® is independent of O and will be denoted
11

1S RS (k) — Aut(exp(tf ) % Sy).

This morphism factors as Reglrl (k) — Aut(ill"n)sn — Aut(exp(i‘l"n) X S,). The Lie
algebra morphism associated to the first factor is

; S + ideion
o), — Der(tin)™, (ay,a )~ (i — af ).

Proof Similar to that of Proposition 5.22. O

Remark 5.24 In Calaque et al. [7], we introduced the Lie algebra ? := 04 X slp,
where 0 is the slp-Lie algebra freely generated by a family (82,,)m>0, subject to the
only constraint that for any m > 0, 85, generates a simple (2m + 1)-dimensional
slp-module, for which it is a highest weight vector. There is a surjective morphism
0 — b3, which is the identity on sl, and given by Szm > 8omm. In Calaque et al. [7],
we also constructed a morphism

2 — Der(ty )5,

According to Proposition 5.23, 3), this morphism factors as 0 — tﬁlrl — Der(t; ,)%".
Asim(0 — tflrl) = b3, the morphism from [7] factors through b3.

Let us set By (k) := exp(t) x S, Blg;(k) = exp(%‘l"n) X S,. We define
Py (k), P{ (k) as the “pure” versions of these groups (i.e. the kernels of their maps
to S,). '

Proposition 5.25 1) There is a family of isomorphisms ig’ : B,(kK) — B3 (k) for
each ® = (n, ®) € M(K), and a family of maps

M(k) x Pa, x Pa, - P§ (k), (®,0,0) b, (P),
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such that

iy =Inn(b5, (@) oiy, b ,,/(®)=b5, (DS (D),

“1xd

~ C'I')* —_l
.d .g L P*E
igono(g) =i, u

) Még(ggr)oig=lo )
where g € GT(K), g € GRT(K).

2) Eache € EIlI(K) gives rise to a family ofisomorphismsieoll’e : B (k) — Bfrn (k),
indexed by O € Pa,,. They satisfy

ig(b)ell = ieoll,e(bell)v l-eol{,e = Inl’l(boyor((i’))e”) o ieoll’e
forb € B,(K), if ® := im(e € Ell(k) - M(K)), and

-1
.ell,e 1l cell,g 7 xe ell,gr .ell,e cell,exg
Lo OMEO (8)210 » Mo (ggr)Olo =l -,
for g € GT(K), ggr € GRT¢y(K).
There is a commutative diagram

gr
Hell

Ry (K) —— Aut(By,,(K))

ie l \L (ie,O)*

ell
RE (k) —> Aut(BY" (k)

Proof Let C8 := PaCDy, C%, := PaCDy i, then there are compatible functors

C— ® *Cqr > Cyr, Cott — € *Cflrl ~ Cflrl, where in each case, the first functor arises
from universal properties and the second tensor forgets about the IBMC (or elliptic
IBMC) structures. The statements follow from the compatibility of these functors with
the actions of GT,;;(k), GRT,.; (k). O

6 A family of elliptic associators, T — e(7)

In this section, we construct an analytic family of elliptic associators t +— e(7),
indexed by the Poincaré half-plane. This family arises from the KZB connection [7]
and may therefore be viewed as an analogue of the KZ associator. We study various
functional properties of this family: modular properties, behaviour at infinity, and
differential system.

6.1 The KZ associator

Let Go(z), G1(z) be the analytic solutions of

) A B
G'(z) = (—+—) G(z)
Z z—1
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in ]0, 1[, valued in exp(féc), with asymptotic behaviour Go(z) ~ 74 asz — 0and
Gi1(z2) ~ (1 — 2)8 as 7 — 1. The KZ associator is defined by

iz = G1(2) " Go(z) € exp(fa).

Then! 271, ®xz) € M(C) [9].

6.2 Definition of e(t) = (A(), B(1))

Let $ := {r € C|3(r) > 0} be the Poincaré half-plane. Let (z, t) — 6(z|7) be the
holomorphic function on C x §, such that 8(z + 1|t) = —60(z|t) = 0(—z|7), O(z +
T|7) = —e2T 1 TTHTTY(717), {z|0(z]T) =0} = Z + tZ, 3.0(0|7) = 1.

For t € 9, let F(z|t) be the holomprphic functionon {z = a + btla,b € R, a or
b €]0, 1]}, valued in exp(i&) ~ exp(féc), such that

0. F(zfr) = — e adx e and Fizlr) ~ (<22 as z — O;
L F(z]t) = B0 @A) y) - F(z|r) and F(z|T wiz) asz ;

here x := x;, y =Xy, t:=t12. We then set

A(r) = F@lO) "Fz + 1]7), B(r) := F(zlt) ' " F(z + |7).

6.3 Algebraic properties of e(t)

We set Ellg 7 := EIlI(C) X M(C) {2mi, Pgy)}.
Proposition 6.1 7 — e(t) := (A(t), B(1)) is an analytic map ) — Ellk 7.

Proof In Calaque et al. [7], Sect. 4.3, we introduced A~, B e exp(i(fz). We set A+ =
A, A_:=B, A, () := A(1), A_(x) := B(1), then

Ax(r) = Ad((=27 1) ") (Aq),

So (A4 (1), A_(7)) satisfies (22), (23), (26) in Calaque et al. [7]. (22), (23) imply
that (A4 (t), A_(7)) satisfies (25). (26) implies that

A-He A @) T} AL ()P = (07T M @)
and using (23) in Calaque et al. [7], we rewrite this as
({efint|2q>3,2,1}A_(T)2,13{q)2,1,3efintlz}, A+(T)12,3) — {q>71627‘[i123q)}’

which as in the proof of Proposition 4.8 implies that (A (), A_(7)) satisfies (26).
O

15 We seti:= +/—1.
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6.4 Analytic properties of e(7)
Proposition 6.2 One has
.0
27 i ——e(1) = e(1) % (—e— = D (2k + 1)Gaorsa(1)820),
at
k>0
where G(t) are the Eisenstein series defined by

Gr(t) = Z a_kfor keven >4, Gy(t) = Z (Z(n + mt)_z),

ae(Z+t7Z)—{0} meZ
where Y means Y,y if m > 0 and Znezi{o} if m = 0 (notation as in (48), (49)).

Proof R.;;(C) C Aut(f(c)"” acts from the righton Ellx 7z by (A4, A_) * (u4,u_) :=
(A4 (u4,u_), A_(u4,u_)). The same formula defines a left action of R.;;(C)”” C
Aut(fg) on Ellkz. To prove that

2w idze(t) = e(t) * x(1)
for x(7) € GS[ C Der(f%)"p , it therefore suffices to prove that
2ri0; A(t) = x(1)(A(7)), 2mid;B(t) = x(1)(B(1)),

where x(7) is now viewed as an element of Der(f2

In Calaque et al. [7], Lemma 23, we constructed a function F @ (zl), defined on
{(z,7) € C x Hlz = a+ br, (a,b) €]0, I[xRURX]O0, 1[} and valued in exp(fz) X
Aut(fg), such that

f(z+adx|r)adx
9 F(Z) — _F(2) ,
2 (zl7) 000 ad x[7) ) (zl7)
.0 )
2mi = FO () = —(e_+ > (2k+ 1) G2 ()52 — gz adx|t)(t)) CFO(z0)
k>0

= —(e= + D@k + DGu2(08 — DM - FA o),
k>0

and FO(z]t) ~ 2’ exp(55 (e + ZM 20k + DECk + 2)55))) as z — 0 and

T — ico. Here g(z, x|7) = ggﬁjg(‘jl’t)( @ +x17) — (lr) + 5. and g(z]7) =
g(z,adx|7)(¢) — £(0, ad x|7)(7); in the notation of loc. cit., e— = Ao

These conditions imply that the image of F @ (z|t) in Aut(féc) is independent of z.
Then

AL (1) = FP @z [) FP (z0l0) " € exp(f)
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and satisfies

2119 A (D) = — [ e— + D 2k + DGaura (D)8 | (AL (D)
k=0

+g(zilt) - AL (1) — A (1) - g(zolD).
The function F (z|t), basic to the definition of (A(t), B(t)), is related to the func}ion
F® (z]T) by F® (z|lt) = F(z|t)e(t), where ¢(7) takes values in exp(fg) X Aut(fg),
as both satisfy the same differential equation in z. It follows that

Ail(t) = F(z1|0)F(z0l) ™.
Therefore, A(t) = F(z|t) "' AT (1) F(z]7). In the limit z — 0, this gives

A1) = limeo(—2m i)~ (AT (0)).

¢ being fixed, (—2m i 6)’ad’(Al+€(r)) satisfies the same differential equation in
as Aéé (1), with g(zo|7) replaced by (—2x ie)_ad(t)(g(dt)) and g(z1|t) replaced by

(—2mie)~ @ (g(14€|7)), which both tend to 0 as € — 0. It follows that these terms
disappear from the differential equation satisfied by A(t), so

2ri0:A(r) = — [ e + D (2k + 1)Goya(1)8x | (A(T)).
k>0

Similarly, B(t) = F(z|t)~'e*" ¥ AZ*7 (1) F (z]7), hence
B(t) = lime_o(—2mie) 'e*T T AT (v)(—2m i),

One computes

—1
3 (ATt (1)) = S+ ;@k + 1)Go2(1)821) (AL (7))

1 0(t +e€+adx|t)ad
+(—g(r+e|r)— ( x|r) adx

T+e€
i 0(t + ¢|1)0(ad x|7) (y)) AT

1
—AZ“(T)%g(GIf)-

S0 X (1) 1= (—2mie)"e? X ATTE(1) (=2 i €)' satisfies (e being fixed)

27mi0: (Xe(1)) = —(e- + Z(Zk + D Go42(0)821) (Xe (7)) — Xe(7) -
k=0
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((—2mie)"glelr)(—2mie))

Nt 2mix .0 +etadx|r)adx
+(Ad(( 2mwie) e )(g(r+e|1') 2mi 8t T cl0)0d D) (y))

—2rie) e <e_+2(2k+1>62k+2<r>52k) (TN E2rie)) - (Xe(@).

k>0

Identity (7) in Calaque et al. [7] implies that the parenthesis in the two last lines equals
Ad((—2mie) ") (g(e|r)). As before, we get in the limit e — 0

2m18:B(x) = — [ e~ + D2k + DGaoxr2(0)820) (B(1)
k=0

Proposition 6.3

. T
O(Pk2)jyo2nis, = M e(@)xexp | (e + >k + DEk+2)5%)

yeQri~ly k>0
Proof In Calaque et al. [7] (proof of Prop. 24 and Lemma 29), is it proved that

A(t) = Pk z(y, t)ez’”chKz(y, l‘)_1 + O(e2”if),
B(x) =M Dxy(—5 —1,0)e e T dp (5, 1) 7 + 0¥ TU9),

for any € > 0, where

ad x

V= a0

T p2miadx _

Let (Apoi(t), Bpoi (1)) be the principal parts of the right sides of these equalities;
A poi(7) is constant in T, while each coordinate of B,(7) in a basis of U(f,) is a
polynomial in 7.

It is proved in Calaque et al. [7] that ¥, ¢ are in the kernel of e_ + >, _((2k + 1)
¢(2k 4 2)82x, while -

exp L(€*+Z(2k+1)§(2k+2)82k (eZHierNiry)zeZHix.
2w i =
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It follows that

T
exp m(e_+§<2k+1>c(2k+2)azk (Aol (T), Bpol (7))

=0(Pk2)0(Pk7z) |x>2rix,

y>@ri)~ly
which implies that statement. O
Note that the operatione > €|y 25 i x, amounts the action of diag (27 1, (27 1)~ b c

y>@ri)~ly

SLy(C) C Ry;(C)on Ellg y.

6.5 Modularity properties of e(t)

We now describe the behaviour of the map t + e(7) under the action of SL»(Z)

on $).
Define log : C* — C by the condition that its image is contained in R + i[—, 7 [.
We define group morphisms ¢ : C* — SL,(C) and ny : C — SL,(C) by t(1) :=

(371 2), ny(a) = ((11 (1)), n_(a) = ((1) (f)

Proposition 6.4 1) There is a unique map
f:B3x$H—C,

such that

flo1, 1) =0, f((Tz,‘[):—log(:)

and with the cocycle property f(gg', 7) = f(g, 8 - 1)+ f(g, ), where g > g is

the morphism B3 — S, (Z) and the action on SLo(Z) on $) is (‘; g T = O}Z—i’g
2) Forany g € Bz and t € $), one has
o3 1) = Ad(ef<g’r)’)<g 5 (a(@. 1) 0 e(t))), (55)

where:
o for o € C, Ad(e™) is the self-map of Ellkxz given by Ad(e*')(e) =
(¥ Ae™ ¥ ¥ Be™) fore = (A, B);

e a: Sly(Z) x H — SLy(C) is given by a(g, ) = (

T+ ig= (5 5):

e x and e are the commuting left actions of B3 = R.j; C Rej1(C) and SLy(C) C
RS (C)?P on Ellg z, given as follows:

yt+46 0 _
2riy  (yr+68)7!
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o fore = (A,B) € Ellkz and g € B3, g x e := (04(a)|(a,b)—(A,B)> Og
(D) |(a,b)—(A,B)), where 0 : B3 — Aut(F,) is the action of B3 on the free group
F, generated by a, b, and x > X|(a,by— (A, B) IS the morphism F) — exp(%c),
givenbya,b— A, B;

e fore = (A, B) € Ellgz and a € SLy(C), a e e := (ay(A), ay(B)), where

a : SLr(C) — Aut(exp(%:))"p is induced by aa();) = (f z)()yc) if
a=(11).

Remark 6.5 Let g € Bz and g = (;‘j g) is its image in SL»(Z), then exp f(g, ) =
yt+S§forany t € 9.

Remark 6.6 For g = (6102)° (a generator of the kernel of B3 — SL»(Z)),
g *e=(Ad(B, A)(A), Ad(B, A)(B)) = (Ad(¢*™ ")(A), Ad(¢*™ ')(B)),

while f(g, ) = —2m i. One checks this way that the r.h.s. of (55) does not depend of
the choice of a lift g of g to B3.

Proof Statement 1) can be checked using the presentation of B3. It follows from the
cocycle identity for f(g, ) and from the cocycle identity

athh',t) =a',v)ah,h' - 1), h,h' €SLy(Z),T€H

thatI" := {g € Bs3|identity (55) holds forany t € $} is a subgroup of B3. So statement
2) follows from its particular cases g = o1, g = 01020]. O

Recall that
A(r) = lim (—27ie) "AlTe(r)(—2mie),
e—0t

B(1) = lim+(—27'rie)_tez”ixA§+€(T)(—2nie)’,
e—0

where AZ)(t) be the solution of 9., A7) (1) = K (z1|t) A% () such that AX(7) = 1,
6(z+ad x|t)ad x

R TETICEIE) (v) and where the chosen branches of Aﬁ(‘,(r) are as

where K (z|t) =
in Fig. 2.

The identity K (z|t) = K(z|t + 1) implies A!T¢(r + 1) = Al*¢(1), and using
the decomposition of Fig. 3, it also implies A7 %€ (¢ + 1) = A[ T (n) AL+ (1) =
AT (D) AT€(1). S0 A(T+1) = A(1), B(t+1) = B(1)A(1),50e(t+1) = oy%e(1),
which shows (55) in the case g = o7.

Let w := —z/7, then

0 -1 _ —2mwizx 0 -7 0 2w izx
ﬁ—K(w|7)——‘L’e (a_z_ Coni _Tl .K(Z|T))€ .
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T+e

0 = 11+e

Fig. 2 Analytic continuation of z — AZ(7)

Fig. 3 Proof of T+1
B(r + 1) = B()A(r) T THl4e

0 ¢ 11+

So
—1 o 0 i
Al (T) = ¢ 2miva (zm J) o (AU(1)) - 7100,
Then
-1 -1
A (—) = lim (—2mie)'ATE(—)(—2mie)
T e—0t T

_ lir(r)1+(—2nie)_’-(:T . 0_1).(e—z’fi(”f)XA:;;”(r)eZ”i“)-(—2nie)f
e—

2ri —

-1 —T 0 —1 -1
= exp(— log (T) t)- (—Zni _1) e B(t)  -exp (log(T)t) ,

see Fig. 4; and

1 ozl -1

B (—) — lim (=27ie)fe¥mivar € (—) (=2mie)
T e—0t T

-7 01) ° Ai—r:e(r) _e—2nixte(_2n,i€)—l

1 . s o\~ 2mixTe |
= 11m+( 2mrie) e (—Zni

e—0

_1 _
— exp(— log (T) ) - (_;ni 0_1) . (82%1+(2nire)_’Al__rzg(r)(Znira)t)

(=)
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Fig. 4 Relation between A(_Tl) 0 1
and (A(1), B(1)) path for
—er A AZICT(T)
—T
—T—ET«/
Fig. 5 Relation between B(%l) path for
and (A(1), B(1)) 1—
AT TT(T)
o 1
—ET > l—eT
—T /]
—T—E€T cL»/ &l—7—¢cT

= exp (— log (_Tl) t) . (:;ni 0{1) ° (B(‘E)A(‘L')B(‘E)_l) - exp (log (_Tl) t) ,

see Fig. 5. It follows that

, (—_1) _ Ad (exp(—Tog (—_1) 0) (10201 % ((‘;n Y ) een))

The result for g = 010707 then follows.

7 Computations of Zariski closures

The action of the mapping class group B3 in genus one on the braid groups in genus
one [see (15)] restricts to an action on the pure braid subgroups. In this section, we
compute the Zariski closure of the image of B3 in the automorphism groups of their
prounipotent completions. This computation relies on the relation between the action
of GT,;; (—) on these prounipotent completions and its the graded counterpart (Sect. 5),
and on the properties of the elliptic analogues of the KZ associator (Sect. 6). There
properties enable us to establish the key result that the lift ex 7 of ® g7 is compatible
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with the inclusion of certain subgroups in R.;;(—) and Rell( ) (see Proposition 6.3);
under Conjecture 10.1, any element of E//(C) has the same property.

7.1 Automorphisms of group schemes

We will view a Q-group scheme as a functor {(Q-algebras} — {groups}. The Lie alge-
bra of a Q-group scheme G (—) is then Lie G(—) := Ker(G(Q[e]/(€?)) — G(Q)).

If T is a finitely generated group, let I'(—) be its Q-prounipotent completion and let
Lie I" be its Lie algebra (a pronilpotent QQ-Lie algebra). Let Aut I"(—) be the Q-group
scheme defined by Aut'(k) := Aut(Lie '®Kk) for k a Q-ring, where Lie '®k :=
lim_ (Lie'/(Lie")>") @ k, and Lie " = (Lie ')Z° > (LieI")=! > - - - is the lower
central series filtration of Lie I.

Any automorphism of I" gives rise to an automorphism of Lie I', so there are natural
morphisms

Autl - AutI'(Q) — Aut(I'(k))
for any Q-ring k. One checks that there is a morphism of Q-group schemes
o : GT(—=) — Aut P,(—)

such that the resulting morphism GT(k) — Aut(P,(k)) is compatible with GT(k) —
Aut(Bj; (k)), and morphisms

1§ GRT(=) — Aut Py (=), u%': GTeoi(=) — Aut Py ,(—),

o " GRTy (=) — Aut P (=),

el : Ret(—=) = Aut Py, (=), RS (=) — Aut P ( )

with similar properties.

7.2 Results on Zariski closures

Define the Q-group scheme (B3) to be the Zariski closure of the composite group
morphism B3 — Aut F; — Aut F»(Q); this is a group subscheme of Aut F»(—).

Theorem 7.1 Any elliptic associator of the form e(t), T € $), or ek z, gives rise to
an isomorphism of C-group schemes (B3) ® C =~ (exp(b;) X SL2) ® C. Any two
isomorphisms arising in this way are related by an inner automorphism. There exists
an analogous isomorphism for Q-group schemes.

Forn > 1, define (B3), to be the Zariski closure of the composite group morphism
B3 — Aut P1, — Aut Py ,(Q); this is a group subscheme of Aut P; ,(—).

Theorem 7.2 For any n > 1, there is an isomorphism (B3) =~ (B3), of Q-group
schemes, which is compatible with the maps from B3 to both sides.
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7.3 Proof of Theorem 7.1

Composing (50) with the morphism 1§3 — GT,(Kk), we obtain a commutative diagram
B3 — GTei(k) — GRTe (k)
N N N inducing morphisms B3 — R, (K) — Reglrl (k).
{£1} - GT(k) — GRT()

Set

exz =0 (Pgz)xs2rnix,-
y>@ri)y~ly

Whenk = Cande = e(1), ex 7, the morphism B3 — R¥),(C) is computed as follows.
Define F(t) as the map $H — exp([;;“(c) X SL,(C) such that

2mi8:F(1) = [ e- + D 2k + DGor2(®)dax | F(7) (56)
k>0

and F(t) ~ exp(#(e_ + ZkZO(Zk + 1)2¢ (2k +2)82k)) as T — i00. Then the map
T +— e(7) * F(7) is a constant, and

exz =e(t)* F(r) forany 7 € 9. &7

Moreover, for any g € B3 with image g = (z f ) € SL,(Z), one has

) =3 Gy (VTS O -
e(0) %o (@) = g xe(r) = Ade T EN (T D ) ee(gn)

-1
_ +4§ 0 —f(s
— e(v) % F(1)F(g7) l(g;iy (WH),I) e @D% - (sg)

where the third equality follows from (57) for t and gt. It follows that

-1
. ~ — +45 0 — (s
i@ = FOFo ™ (57000 ) e @, (59)

Acting from the right by F'(7) in the equality between the second and the fourth terms

—1
yr+6 0 ) F(t)e T@D% g0

of (58), one gets g xex z = exz* F(gr) ™! (Zniy (yr+8)~!

—1
. ~ — +45 0 — (s
e, @ = Fen) (3000 pt) (e /Eo (60)

for any € §). It follows that the images of i,(7), i¢y, are contained in exp(fa;”(c) X

SL»(C) C R%(C). The composite morphism B3 — exp(fag“(c) xSL,(C) — SL,(C)

o (e —p/@x i)
is g > (72ﬂiy ; )
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Recall that B3 C Aut(F3) is generated by W, W_ givenby W, : X, Y > X, Y X
andW_ : X, Y > XY~ V. Let® := (W, W _W,) ! then ¥_ = OV, O ! and
O:X, Y Xyx-! x-L

Then

i, (W1) = F(t+1)'F(r)

exp(—(2m )7 (e= + D 22k + )¢ (2k + 2)3))e T
k>0

= Vv,

a1 N
and since i, (©) € (gni 8(2” D )eXp(b;’C),

lep,(W_) =%_, where logvy_ =2mi(es + element of 6(3C’+).

We then prove:

Proposition 7.3 For e = eg 7, the isomorphism i, : R.;(C) — R® I(C) restricts to
an isomorphism (B3)(C) — exp([;+’(c) x SLy (C).

Proof i.({B3)(C)) is the Zariski closure of the subgroup of R® l((C) generated by 4.

These are elements of the subgroup exp(b;r ) % SL,(C), which is Zariski closed,
s0 i, ({B3)(C)) is contained in this group. On the other hand, the Lie algebra of this
Zariski closure is the topological Lie algebra generated by log 1. It then suffices to
prove that this Lie algebra coincides with b(c

Equip Aut(F,(C)) with the topology for which a system of neighbourhoods of 1
is Aut” (F>(C)) = {0|Vg € F>(C),6(g) = g mod Fz(n)((C)} C Aut(F>(C)), where
F(C) = F(C) and F"(C) = (F{""V(C), F»(C)). This induces a topology on
R (C), which we call the prounipotent topology. O

Lemma 7.4 (B3)(C) C R.;;(C) is closed for this topology.

Proof We have (B3)(C) = NgegG, where G = {G(C)|G C R (—) is a subgroup
scheme such that G(Q) D Bs}. It then suffices to show that each G(C) is closed in
the prounipotent topology. Define coordinates on R,;;(C) as follows: R, (C) 2 6 <
(cp, dp)p, where b runs over a homogeneous basis of f» (generated by & = log X, n =
logY), e.g., (b} = {£,n,[£,7],...}, and logA(ef) = >y cpb, logh(e™) = >, dpb.

Then G(C) is a finite intersection of sets of the form {#|P(ct, ¢y, ..., de, dy, ...) =
0}, where P is a polynomial in (cp, dp)p, vanishing at the origin. Such a G(C) neces-
sarily contains R.;;(C) N Aut” (F,(C)) for a large enough n. O

Sequel of proof of Proposition 7.3 It follows that i.((B3)(C)) C exp(fl;’(c) x SL, (C)
is closed in the prounipotent topology of R ol " (C) (as in the case of R.;(C), and it is

defined by the inclusion in Aut(f2 )), so Lie i, ({B3)(C)) C B is closed.
Recall thatlog ¥y = —2m i)~ !+ (e— + X 4= andox) + 3150 € Lie le(<B3)((C))
where ay; 1= 22k + 1)¢(2k + 2) # 0, while logy_ € 2w i-(e4+ + b3 ). O
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Lemma 7.5 Let g C [Aléc be a closed (for the total degree topology) Lie subalgebra,
such that g > e, where: é4 = eq+ terms of degree > 0, é_ = e_+ >, axdok —

%80 + zpzl,q>l degree (p, q), where ayr # 0. Then g = [Aaéc

Proof Set G = @i>002%k = béc (decomposition w.r.t. the total degree), G = [Awéc

Set C;zgk = Hk’>k G, then Q = on D QZZ D ...1s a complete descending Lie
algebra filtration of G, with associated graded Lie algebra G. Set g=2x := gNGax, then
g=9>0 D g>2 D ...isacomplete descending filtration of g. Let gr(g) := ®r>09>2-
where gr(g) := g>21/9>2(k+2). We then have an inclusion gr(g) C G of graded Lie
algebras. We now prove that gr(g) = G.

As ex € g = go, gr(go) contains ex. Set h := [e4, e_]. Then [e4,e_] = h +
zp g>1 terms of degree (p, q), and [h,e_] = —2e_, [h, §2,] = 2nd7,. Then g >
P(ad[éy,e_1)(e-) = P(=2)A¢ + 2,20 @2n P(21)82, + ZI,>1 4~ terms of degree
(p,q) (withag = — 2). Taking P such that P(—=2) = P(0)=...=PR2k—2)=0
and agi P(2k) = 1, we see that g contains an element of the form 8o + > p=1g>1
terms of degree (p, ¢). Applying (ad _)?¥ to this element, and using the fact that
(ad &_)**(x) = Oforx € G of total degree < 2(k—1), we see that g contains an element
of the form (ad e_)* (82) + > (terms of total degree > 2(k + 2)). As the latter sum
belongs to g>2+1), we obtain that (ad e )2k (8y) € gr(g)2k+1)- The Lie subalgebra
gr(g) C G then contains e+ and (ade_)*(8x), k > 0. As (ade_)**T1(8y) =
0, (ad e+)2k (ad e_)2k (862%) is a nonzero multiple of §2x. So gr(g) = G. It follows that

g=0. ]
End of proof of Proposition 7.3 Applying Lemma 7.5 with ey = 2w ilogy_, e— =
—Q2r i)~} log ¥, we get i, (Lie(B3)(C)) = b3 , as wanted. O

The last part of Theorem 7.1 is a consequence of the following statement, applied
to a torsor of isimorphisms of Lie algebras. It was communicated to the author by P.
Etingof; it is inspired by the results of [9].

Proposition 7.6 Let U = lim._ U; be a prounipotent Q-group scheme (where
Up = 1)andlet T := lim T;, where T; are a compatible system of torsors under U,

defined over Q. If T(C) # @, then T (Q) # @.

Proof Letl7 =im(U — Uj),thenU = lim _ l?,,where - — 02 — 171 — 170 =
1 is a sequence of epimorphisms of unipotent groups. We set K; := Ker(U — Up);
then K; < U. If we set Tl = 1m(T — T;), then T< ~ T/K; is a torsor over U,, T is

the inverse limit of - - - — T» — T1, where the morphisms are onto. ]

We may therefore assume w.l.0.g. that the morphisms U; 1 — U;, Tj41 — T; are
onto; if K; := Ker(U — Uj;), then T; = T/K;.

We now show that the projective systems - -- — T, — 17, --- — U, — Uj may
be completed so that forany i, Ker(U;+; — U;) ~ G,.Indeed, forU;+1 — U’ — U;
a sequence of epimorphisms, we set K’ := Ker(U — U’) and T’ := T/K’. Then
T;1 — T’ — T; is asequence of epimorphisms, compatible with U; | — U’ — Uj.

Let t € T(C). We construct a sequence (k;);>0, where k; € K;(C), such that
im(k; - -- kot € T(C) — T;(C)) € T;(Q). Then k := lim; (k; - - - ko) € U(C) is such
that ktr € T (Q).
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We first construct kg. 77(C) is nonempty as it contains t; := im(t €
T(C) — T1(C)), hence by Hilbert’s Nullstellensatz 7; Q) is nonempty. Using then
HI(GQ, Q) = 0 ([30]), we obtain that 77(Q) is nonempty; let 1{ € T1(Q). Let
u; € Uy(C) be such that 1 = uyt. Let kg € U(C) = Ko(C) be a preimage of u,
then im(kot € T(C) — T1(C)) € T1(Q).

Assume that ko, . .., k;_; have been constructed and let us construct k;. Let 7 :=
ki_i---kot,thenti_; :=im(f € T(C) — T;_1(C)) € T;_1(Q). Then, T; (C) X T, 1(C)
{t;_1} is nonempty as it contains 7 := im(f € T(C) — T;(C)). As t;_1 € T;_1(Q),
we define a functor {Q-rings} — {sets}, k = X (k) := T;(K) x7,_, @) {ti—1};itisa
Q-scheme and a torsor under K;/K;+| = G,. We have seen that X (C) # ¢, from
which we derive as above that X (Q) # #. Let v’ € X(Q) and let k; € K;(C) be such
that kjz = t/, where k; := im(k; € K;(C) — Ki/K;_1(C)); then im(k; - - - kot €
T(C) — Ti(C)) = im(k;f € T(C) - Ti(C)) = kit =1’ € T;(Q).

7.4 Proof of Theorem 7.2

The morphism B3 — Aut Py ,(Q) factors as B3 — R.;1(Q) 2l Aut P12, (Q).
The elliptic associator exz transports the morphism R, (—) — Aut Py ,(—) to

the morphism Rflrl(—) — Aut Plg; (—), whose Lie algebra morphism is

# + il.di.n
o) = Der(tn), (a4, 0-) > (x> ok ).

The morphism t; , — t; 2, )cl.jE — )cilL ifi =1,2, xl.i — 0ifi € {3, ..., n}canthen
be used to prove that this Lie algebra morphism is injective. It follows that that the
group morphism R, (—) — Aut Py ,(—) is injective.

One has (B3), = Ny HcAut Py, (-). H(Q)>im(B3) H, therefore

(B3)n N Reti(—) = Ny HCAut Py, (=), HQ)>im(B3) (H N Rerr(—)).

The map

{H|H algebraic subgroup of Aut Py ,(—), s.t. H(Q) D im(B3)}
— {G|G algebraic subgroup of R.;;(—), s.t. G(Q) D im(B3)},

givenby H — G := HN R, (—),1s surjective (a preimage of G is G itself). Therefore
(B3)n N Reti (=) = NGIGC Ry (-).G@Q)oim(By) G = (B3).
The Zariski closure of im(B3; — Aut P; ,(Q)) is contained in the Zariski closure

of im(R.;(Q) — Aut P1,(Q)), which is R.;(—) as the morphism R (—) —
Aut Py ,(—) is injective. So

(B3)n C Rey(—) C Aut Py, (—).

All this implies that (B3) — (B3), is an isomorphism.
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8 Iterated integrals of Eisenstein series and MZVs

In this section, we define regularized iterated integrals of modular forms. This construc-
tion generalizes both that of iterated integrals of cusp forms ([Ma]) and the definition
of the Mellin transform of Eisenstein series ([Za]): itis based on a truncation procedure
and the use of modular properties. We study the relations between these numbers aris-
ing from modular invariance. We show that the relations (26)-(27) from [7], obtained
by the study of a monodromy morphism, can be recovered from formula (60) for the
isomorphism i, ,. The study of these relations leads to a family of algebraic relations
between the iterated integrals of Eisenstein series and the MZVs.

8.1 Iterated Mellin transforms of modular forms

Iterated Mellin transforms of cusp modular forms were studied in [20]. On the other
hand, Mellin transforms of noncusp (e.g. Eisenstein) modular forms were studied
in [33]. In this section, we study iterated Mellin transforms of general (i.e. nonneces-
sarily cusp) modular forms.

Proposition 8.1 Let £ := {f : iR_T_ — C|f is smooth and f(it) = a + O(e™>"")
ast — oo for some a € C}. Set

Fl I (se, o s) = / fiGmg " dn - G dr,, 0

1=11=...<1;, =00

where fi,..., fa € € and ty € RZ. This function is analytic for R(s;) < 0 and
admits a meromorphic prolongation to C", where the only singularities are simple
poles at the hyperplanes s; +---+s; =0(1 <i < j <n).

Proof Set&y :={f € £la =0}.Then& = EoDC1. When f1, ..., fu € &0, FfieJn

1o

is analytic on C". Letnow f1, ..., f, € £, and set f; = fl + a;, with f; € &. Using

/ ' ey e

1< <<ty <t
n
!
=2
k=0

we get

(t/)Sk+1+~+sn SISk

Sk 1 (Sk1F5k42) = (Skp1 -+ - +50) Sk (Sk+sk—1) -+ (Sk+- -+ +51)°

. n
F,gl """ f"(sl,...,sn)zz Z H aj

k=1 1<ij<..<ix<n \je{l,..n}—{i1, ix}
> (1)l AT A2 e H A

= 17k =
jre(l, ... i1}, [Tz 5a: [ 1izs 3,

Je€lik—1,...ix—1}

Ty
to (Si|+SBl +SA1’ s Sig +SBk +SAk)a
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where A; = {ij—1+1, ..., i}, Br:={ji+1,....ig—1}forl =1, ...k, and Agy| :=
{ix + 1,0}, 54 =2 yeaSa» Sa = 5p(Sp +Sp—1)...(Sa + ... +5p), S4 = 5a(5a +
Sa+1)--(8qg + ... +sp), for A = {a,a + 1, ..., b}. This implies the result in general. O

. — n e
Note that thl """ fo — (S(IJ:?_+)"Z”SISI+ 4 01 e7270) as tg — oo, where o
Sn)nSm

depends on t~he N(s;i).
Letnow & :={f € £|IAN >0, f(it) = Ot N)asr — 0}. Set

G I (s, o sn) 1= / G dn e fu G d,

0=t ==ty =<ty

for fi, ..., f» € £. This function is analytic for R (s;) > 0.

Proposition 8.2 For fi, ..., f, € &, the function
n
(Slv ceey sn) = Z Gt]:)hm’fk (Slv ceey sk)Ft{:kJrl ...... fVl (Sk+1’ ceey Sn)
k=0

is analytic for R(s;) > 0 and independent of ty. We denote it L*}] v f (STs oees Sp)-

Proof The analyticity follows from the fact that F,{"“’""'f” (Sk1s +-.» Sp) may be
viewed as an analytic function for % (s;) >> 0. The independence of #y follows from

where the former identity in valid in the domain 9i(s; ) > 0, and the latter is analytically
extended from the domain N(s;) < 0 to N(s;) > 0. O

Recall thatif f(7)isamodular form of weightk,then (r — f(it)) € g, f(r+1) =
f@and () = f (o).

Proposition-Definition 8.3 Let f; be modular forms of weight k; (i = 1, ..., n), then
the function L’}l f (s1, ..., 8,) extends to a meromorphic function on C", whose
only possible singularities are simple poles at the hyperplanes s; + ... +s; = 0 and
Si+..+s; =k +---+kj(where 1 <i < j < n). We call it the iterated Mellin

transform of f1, ..., fu. O

.....

Proof By modularity,

Gl (st sy = (—) KOl TGy gy = s).

fo

Plugging this equality in the definition of L?} £ (s1, ..., s,) and using the poles

.....

structures of the functions F lf/’ , we obtain the result. O

1o [ (1}
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When n = 1, we now relate L;‘p(s) with the Mellin transform L*(f, s) defined
in [33]. Let f be a modular form with f(t) — a as t — ioo. Then L*(f,s) is
defined for R(s) > 0 by L*(f,s) = [;~(f(it) — a)r*~'dz. Then:

Proposition 8.4 L*(f,s) = Lj- (s).
Proof L*(f,s) = [,* f0)*~'dr — a%é + [ (fin) — a)t*~1dt for R(s) > 0.

On the other hand, G},(s) = [ f(0)r"~"dr for R(s) > 0, while F (s) =
ftooo faners—ldr = fto"o(f(i 1) —a)ts~Ldt —a%’r for M (s) < 0. The second expression
of F,{: (s) is meromorphic on C with as its only possible singularity, a simple pole at

s = 0; in particular, this expression coincides with F,'({ (s) for R(s) > 0. Then for
R(s) > 0. L3(s) = G () + F (5) = L*(f.5). 0

For sy, ..., s, € Z, one sets

Li}mf” CITAEES Ll A

;;;;;

According to Proposition-Definition 8.3, the numbers

Gk”(lla'~-7ln)v (61)

------

forky, ..., k,evenintegers > 4, [; € {1, ..., k; — 1}, are well-defined. One can prove
that Lj (b1, ....by) € i+ Hi R,

8.2 Monodromy relations and the isomorphism i,

(60) defines a morphism
ieg, : By = exp(b]) x SLo(C)(C Aut(j5)),
such that
Vg3 € B3, gxexz =egz *ieg;(8) = (leg,(8)(Akz),lex,(8)(Bkz)), (62)

where exz = (Akz, Bkz).
Specializing to g = W, this gives

leg, (V1) : Axz = Akz, Bkz > BxzAkz,
and for g = O, this gives

iex,(©): Agz + Byy, Bkzw> BxzAxzBgy.



560 B. Enriquez

In Calaque et al. [7], we introduced A, Be exp(%lgz) related to Axz, Bgxz by
A= Qn/) Akz@n/D)", B=Qn/i)BxkzQ2n/D)7",

and elements [V], [®] € exp(f);') x SL,(C), and studying a monodromy morphism,
showed relations (numbered (26), (27) in Calaque et al. [7])

(W]l 68" . Ag, > Akz, Bkz— BrzAkz,
[@]6173(“ : AKZ [ad BI;]Z’ BKZ = BKZAKZBlzlz-

One checks that [W]e' s A" = i, (W), [O]e! 74" = i, (©). So (60) allows to
recover relations (26), (27) from [7].

8.3 Relations between iterated Mellin transforms and MZVs
Another consequence of (62) is the behaviour of the automorphism i, , (W_), namely
feg, (W) 1 Axz — AKZBEIZ» Bgz +— Bkz. (63)

Notice that W_ = @W_ ! and that log i, xz (W) is a well-defined derivation of %C
Set

A A

C
XKZ ‘:logAKZ|X|—>(2ni)—lx,y|—>2niy €f2 . Ykz =log BKZ\xr—)(Zni)—]x,yr—)Zniy € fg’
soo (®gz) = (€K%, eYKZ). Then, (63) is equivalent to the statement that the derivation
D := Ad(diag((2m Dl 27i)o leg,(®))(ogie,, (V1)) € Der(fg:)

acts as follows

adeZ

D:ixgkz > ——m7
Kz 1_e—adx1<z

(ykz), Ykz+ 0,

where ¢t (27 1) = diag((2w )~!, 277 1) € SLo(C) is viewed as an automorphism of %g
(see Proposition 6.4).

There is a decomposition Der(féc) = Hk! 17 Der(fg) [k, 1], where the bracket indi-
cates the bidegree in x, y. Let D = >, ; D[k, [] be the corresponding decomposition

of D. One has Der(f$)[k, 1] = Der(f)[k, [] ® C.
Set Zy := Q and for [ > 1, set

Z ::SpanQ{g‘(ll,...,lS)|s >1,h=>1,..., i1 =>11>2 1L+ --+l=I} C C,
where

tlhn ..oy = > kk

1<ki<...<kg



Elliptic associators 561

For V C C a Q-vector subspace and k € Z, set V (k) := (27 )V
Proposition 8.5 D[k, I] has the following properties:
o itliesin 6oLk, 1@ Q() ifk = 1,1 > —1;
o itlies in bY[k, 11 ® (Z1(0) + Z11(=1)) ifk > 2,1 > 1;
e it is equal to zero in all the other cases.
Proof logie,, (V) € Zkz—l Q) ® b?[k, 1], and diag((2r DL 27 i) Oley,(®) =

(element of exp([;;')) X (x = y,y — x), and the support of [AJQL is contained in
{1,2,...}%. All this implies that

pe [[ewevdine [] oSk

I>—1 k>2,1>0

Since D lies in BC, whose support is contained in {(1, —1), (0,0), (=1, 1)} U

{1,2,...}%, this statement can be improved by changing the second product into

szz, I>1 béc[k, []. This implies the first and the last statement of the proposition.
Recall that

w2 = Ad (2.0 (271 ),

. ad ad x
Ykz =17t *log <IDKZ(—W()’), 1) % x * log CI’I(Z(m(y) +1,1),

where x is the CBH product a b := 1ogAe“eb .
There exists a unique derivation D of fg, such that

1 eadx _

Dixrs0, yH—%Txlgﬁ(ad( o (y)))(x),

where ¢(t) = (—1)/(1 —e™"), and a unique automorphism 6 of the same Lie algebra,
such that

1 edykz |

0:x—ykz, Yy —z—————(Xkz);
271 adygz

then D = DO~ !. One has

D eQ(-D)®Der(f)[l, =11+ [] Q) ® Der(f)Ik, 1. (64)

k>1,1>0
One computes

ad x ad x Q
log q>1<z(—m(y), 1), log ka(m()’) +1,1) € k>11_1[>2 Z1 ®f, [k, 1],

it € Q() ® f2[1, 1],
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which implies

vkzex+ [[ @&+ Z-100) @2k 11. (65)
k>1,1>1

It also implies

1
——xkz=y+ [] Z ® Der f3 [k, 1],

2w i i1
which then implies
1 edykz Q
——————(xp ey + [[ @+ 20 @ f5 k. 1. (66)
271 adygz Py

(65) and (66) imply that 6 — id € szo,lzl(zl +Z1(1)® End(f;Q)[k, [], so that
log 6 belongs to the same space. Together with the estimate on D, this implies that for
any k > 1,

ad(log0)“(D) €[] Der(GHIk. 11® (21 + Zr41(-1)).
k>1,1>0

Combining this with the estimate on D, one obtains that D = D6~ belongs to the
direct sum of Der(f;Q)[l, —1] ® Q(—1) with this space, which together with the first

and third statements of the proposition, and the fact that D € 6%3 implies the second
statement of the proposition. O

For A € C*, set w(A) := (0 _rl) € SL,(C).

A0
Lemma 8.6
. 1\l 1\t
leg,(®) =w2mi) - ; kl!.zknzl (%) . (%)
1;€(0,....2k;}
Liisnoisa L+ 1 1)

2k + 1
I!

2k, + 1
1!

ad(e—)"" (82k,) - - - ad(e—)" (k)

in exp(B;’C) X SLo(C), up to multiplication by an element of exp(Cdy).

Proof ieg,(©) = F(=H)~w (@ i) F(1)e*2)%  where w = (? 51) and F (1) :=
n_(#)_lF(r). As F(7) satisfies
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2k

- 2k
0 F@=—(2 D sz(t)(—)’“ + ad(e)! (5200) F (o),

k>0 1=0

and taking into account the behaviour of F(t) at T — i 00, one obtains

~ _ Gy 42+ Gokp+2 —1\"*!
Fo=> > > ¢ U+1 e+ 1)

2ri
n>0ki,....kn>11;€{0,...,2k;}

I\ 2k 41 2k, + 1
(—) LT ad(e ) (8a,) -+ - T ad(e_ )" (8xz,).

21 i 0! I!
where ¢1;0 (s, sy) = S Ff]""’f" (s1,...,S,). Combining this with
the similar formula for F (—) 1 one obtains the result. O

Set w := w(l) € SLy(C).

Lemma 8.7
1 27_[1 _1 ll+1 _] ln+1
Ad oD =—— —4 — ol —
@™o i Tt g(:) (Zni) (Zni)
Kiyees kp>1
1;€{0,...,2k; }
ft .
. _L2k1+2 ’’’’ 2k,,+2(11+1"-"l"+1)'lﬂ ifl, #0 }
L2k1+2 ’’’’’ 2kn71+2(ll +1,..., 01+ 1)-20QRk, +2)ifl, =0
2k + 1 2k + 1
x[ (ade ) (Sa,). ... ———(ad e_)" (8, >}
}'l
where L%(V)) = 1 by convention, and [ay, . ..,a,] :=adaj o---oada,—1(ay).

Proof One has t(2m i) owRmi) = w(l) = win Aut(fz). One also has

logieg, (W) = =80 — 7 — (e + X 22k + )£ 2k +2)8).
k>0

The result then follows from the expansion of i..,(®) and from the identity
Ad(g)(y)zznz()ail ..... in[xi17--~»xina }’]f()fg:znzozil ,,,,, lnelall ,,,,, inXip * Xy
agroup-likeelementof Ugand y € g, where gis atopological Lie algebraand x;, i € 1
are positive degree elements of g. O

Combining Proposition 8.5 and Lemma 8.7, one obtains the following family of
relations between iterated integrals of Eisenstein series and MZVs:

Proposition 8.8 Let I := {(a, b)la,b > 1,a + b is even}. For (a, b) € I, let

a+b-—1 _
eah = W(ad e ) Sutp-2) € b;Q[a, b].
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Let A>2,B>1.Any€ € b;@[A, B1* gives rise to a relation

> > (€. [Carbrs - > €ap ) X

n>0 (a1,b1),....(an,by)l

X

,,,,,

€ ZA(B) + Z441(B — D).

8.4 Modular and shuffle relations

.....

LY i b)LL o (bugts e bam)
#
= D Livikomem o Darm), (67)

oE€Sum

where S, = {0 € Spgmlo(i) <o(j)ifi < j<norn+1<i < j}, which
can be reexpressed as the following statement: let 91 := @;>4CGr ® Clt]<k—2,
then the linear map 7 : T(9M) — C such that I (Gy, b, .., Gy, ()t =
L,j( ¢ (b1 +1,..., by +1)is an algebra morphism, 7' (9) being equipped with

----- n

the shuffle algebra product ;
(b) the modular relations

126 (1d®S) 0 A =J® 60 ((IdQU @ U?) 0o AP =¢ (68)

(equalities in Homg;g (T'(OMN), C), T (M) being equipped with the shuffle product),
where:

e J:T(OM) — Cisdefinedby J := (I @) o A, ¥ : T(M) — C being defined
by

2¢(ky) - - - 28 (kn) .
bi(by +b2)--- (b1 + -+ by)’

V(G T ® - @ Gt =

S = (? 81),U - (i 51) € PSLy(Z) act on M by S - tP71G, =

tk_z(_Tl)b_le’ U - tb—IGk — tk_2(1 _ %)b—le;

e ¢ : T(MM) — C is the augmentation morphism, A : T(MM) — T (9)®2 is the
shuffle coproduct morphism x| @ -+ @ x, > > j_o(X1 @ -+ @ xx) ® (xk+1 ®
e Qxp), AP = (A®id)o A.
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The relations (68) are proved as follows. Let by := Lie(®a.b>1,a+b evenCéy,p) X
slp, where Lie(—) means the free Lie algebra generated by a vector space, and
Da,b>1,a+b evenCéa,b = Dk even(@a,bzl,a+h:kCEa,h) is the direct sum of all the odd-
dimensional simple s[;-modules, the action being normalized by e_ -4, = bés—1.p+1-
There is a unique morphism b3 — b3, such that it induces the identity on sl and such
that e, p > e4.p. The SLo(Z)-equivariant connection on ) with values in the trivial
principal bundle with group exp([;;“(c) x SL»(C) defined by (56) admits a lift to a
similar connection, where this group is replaced by its analogue withA[~13 replacing bs.

This connection therefore gives rise to a morphism SL(Z) — exp(fag“(c) x SLy(C)
to this group. The relations (68) express the fact that the relations between the usual
generators of SL,(Z) are satisfied by their images.

Remark 8.9 Relations (68) are generalizations of the modular relations satisfied by the
period polynomials of Eisenstein series ([33], Proposition p. 453). The contribution
of ¢ to J is the analogue of the contributions of the values at cusps to the period
polynomials of Eisenstein series as defined in [33], (9).

Remark 8.10 Let 3 = ®r>03k be the Q-algebra of formal MZVs, i.e., the Q-algebra
generated by formal versions of 277 i and of the ¢(ky, ..., k), subject to the asso-
ciator relations. Define 3* as the 3-algebra generated by formal analogues of the
L,El ..... kn(bl, b)), ki, ... kpeven> 4, b; € {1,...,k; — 1}, modulo the shuffle
relations (67), the modular relations (68), and the relations from Proposition 8.8, in
which the right-hand side is replaced by any lift in 34(B) + 34+1(B — 1). Then 3*

,,,,,

8.5 Computation of some regularized iterated integrals

Denote by Sh(9) the vector space T (9), equipped with its (commutative) shuffle
algebra structure. Let Lie(®7) C T (9M) be the (free) Lie subalgebra of 7' (9J7) gen-
erated by 901, T (9) being equipped with its tensor algebra structure. This inclusion
gives rise to a commutative algebra morphism S(Lie(¥7)) — Sh(I7), which can be
shown to be an isomorphism. As / : Sh(?t) — C is an algebra morphism, it is
uniquely determined by its restriction

I :Lie(M) — C.

Lie(™) decomposes as M @ Liea (M) @ - - - . The restriction of I to M has been
determined in [33]: for k even > 4,

(572G = —1(Gy) = %ak —1),

69
(=D Buyy Brouos (69)

k—D!'a+1k—a—

1(t°Gy) = 1(2ni)k fora=1,...,k—3.
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The grading 9 = @ =49, where M = CG @ Spang(1,1¢, ..., *=2), induces a
grading Lie(9) = @i>4 k even Lie(MM)x. The restriction of I to Lie(M); for the first
values of k can be carried out as follows.

e k = 4,6. In these cases, Lie(9)ry = MMy, so (69) determines the restriction of 7
to Lie(9)g.

e k = 8.Lie(M)g = MgPLier(IMy). (69) determines the restriction of I to Mg, so it
remains to compute its restriction to Liea (9t4) = Spanc([Ga, tG4], [G4, 12G4],
[tG4, 1*G4]). The modular relations imply that

s 2 2 418
I([G4,1°G4]) = — T§(3) —E§(4),

and that I ([G4, 1G4]) + I ([t G4, t>G4]) = 0. Proposition 8.8 for (A, B) = (4, 4),
together with the fact that the restriction of the morphism b3y — b3 to degree
8 is an isomorphism, then implies that 1([G4,1G4]) € 2Z503) + Z4(4) =
Spang (27 1)3¢(5), 2 )°¢(3), 27 )®). As I([G4., 1G4]) is pure imaginary, one
even has

1([G4,1G4)) = —1([tG4, *G4]) € Q27 )*¢(5) + Q27 i)°¢(3)

(the rational coefficients can be determined from the expression of the components
of the derivation D in a generating family of MZVs).

e k = 10. Lie(MM) 10 = Mo ® M4 @ M, and as a SL,(C)-module, Ny @ Ng
decomposes as a direct sum V7 @ V5 @ V3 of irreducible modules of the indicated
dimensions, generated by the highest weight vectors

[G4, Gel, [tG4, Gel — [G4,1Ggl, [t*Ga, Gg] — 2[tGa4, 1Gg] + [Ga, G
(70)

The modular relations determine the restriction of 7 to 1-codimensional subspaces
of V; (i =3,5,7), for which the highest weight vectors (70) span supplementary
subspaces.

On the other hand, the expansion of log(w (27w D, xz(©)) up to degree 10 yields
the identity

Ad(w™)(D)

-1\*
= Adexp (Z (%) 1" Gagp)ean
a,b

1 —1 by b—1 b —1
+7 2 (—) I Gayp. 1™ Gaf+b/]>[ea,b,ea/,bf])-

a,b,a’ b’ 2mi

.(%(3_ + 3200k +25))

k>1
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modulo degree > 12, from where one derives the expression in terms of MZVs of

—1\"" .
e, > (%) I(1"'Gaypo " GarpwDlea s €a i)
a,b,a’ b’ |abta’+H'=10
(71)
On the other hand, let \7/( := Spanc(€x,1, ..., €1,2k) C [;3; the degree 10 part

of 53 decomposes as (53)10 = ‘710 ® ‘74 ® \76. This SL,(C)-module is dual to
Lie(9M) 19, in particular

1 b+b'
> — ) "7 Gagpr T G ® [eap. Earnr] (72)
i a+b a’+b €ab, €a'h’
a,b,a’,b'la+b+a’+b'=10

is the canonical element of (M ® M) @ (Va4 @ Vp). Decompose Vi ® Vg as
a direct sum W7 & Ws @ W3 of irreducible SL,(C)-modules of the indicated
dimensions, then (72) is the sum of the canonical elements in each summand of
(V7@ W7) @ (Vs @ Ws) & (V3 ® W3); these canonical elements have the form

[G4, G¢] ® (lowest weight vector of W7)
+ a sum of tensors of different weights,
([tG4, Ge] — [G4, tGs]) ® (lowest weight vector of W5)
+ a sum of tensors of different weights,
(>G4, Gol — 2[tGa, tGg] + [Ga, 1> G6]) @ (Lw.v. of W3)
+tensors of different weights.

Lemma 8.11 The composite maps W7 C (63)10 — (63)10, W5 C (63)10 — (b3)10
and W3 — (b3)10 — (b3)10 are injective.

Proof The images of the highest weight vectors of W7, Ws in by C Der; (f2)
can be partially computed (here + = —[x, y] and Der; means the derivations
taking ¢ to zero) as follows. The commutator of derivations induces a map
Der, (f2, ,)%* — Der,(f2. f;) (where f, = [f2.f2]. f = [fs. f5]). which in its
turn induces a map D?z — D, where D; := Der;(f2, f5)/ Der;(f2, §3), D2 :=
Der; (f2, )/ Der; (f2, f5') (where 5" := [f;, f51). There is a natural map Dy — f,/f;
induced by Der; (f2, f,) — 5/f5, D > (the class of an element a € f, such that D—
ada € Der(f2,f5)) and Dy — f5/f; defined similarly. There are isomorphisms
Clu,v] =~ f,/f;, defined by u"v™ > (the class of (adx)"(ad y)"[x, y]), and
/\2 Clu, v] ~ §5 /15, induced by the Lie bracket /\2 f, — 5. The map D‘?z — D
is then compatible with an explicit map Clu, v]®? — /\2 Clu, v]. The images in b3
of the highest weight vectors of W7, Ws in fact lie in Der;(f7, f’z’), and their images
in /\2 Clu, v] can be computed using the above map Clu, v]®% - /\2 Clu, v] and
shown to be nonzero. On the other hand, the image in /\2 Clu, v] of the highest
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weight vector of W3 is zero, so the image of this highest weight vector in b3 lies in
Der; (f2, f3'). This derivation can be computed explicitly (by computer) and shown to
be nonzero (this can also be derived from [28], Thm. 3, where Ker(D‘l82 — D») is
computed). Note that [Der; (2, /2/ )10 : 3] = 1, where 3 is the irreducible 3-dimension
representation of SL,(C), so this multiplicity space is spanned by the image of the
highest weight vector of W;.

The expression of (71) in terms of MZVs therefore allows one to express
1([G4, Ge)), 1([tGa, G6l—[Ga, 1Gg]) and I ([t* G4, G]—2[t G4, tG6l+[G4, 1*G))
in terms of MZVs, thereby completing the computation of the restriction of 7 to V7, Vs
and V3. To summarize, the results of Sects. 8.3, 8.4 allow one to determine the restric-
tion of [ to Lie(M) ¢ in terms of MZVs of weight 10. O

e k = 14. It has been shown in [28] that [§2, 53] = 3[é4, §¢]. Using the same
techniques as for k = 10, one can prove that 81 - I ([G4, G10]) +35- I ([Ge, G3])
is a MZV of weight 14. These techniques do not give any information on the
individual values of I ([G4, G19]) and I ([Gg, Gg]).

9 Galois aspects

In this section, we recall the links between G, GT and the Teichmiiller groupoids
in genus zero. We then establish the analogous results in genus one: they relate the
arithmetic fundamental group 7ty (M 91 ), GT,y; and the Teichmiiller groupoid in genus
one.

9.1 Galois groups and Teichmiiller groupoids in genus zero

9.1.1 Profinite Galois representations

Letn > 3 and M(% be the moduli stack over Q of genus zero smooth projective

curves with n marked points and M((%n its Deligne-Mumford compactification. Maxi-
mally degenerate curves are rational points of this stack and correspond bijectively to
planar unrooted trivalent trees with leaves indexed bijectively by {1, ..., n}, modulo
‘mirror’ symmetry. For T such a tree, let X (% the corresponding curve. The formal
neighbourhood of X g is a fibration X7 — Spec Q[[¢., e inner edge of T']]. Then the
pull-back X7 ®qyi(4.}.11 Qllg1] corresponding to the morphism given by g, > ¢ is a

rational tangential base point of M(% (recall that a rational tangential base point of a
scheme X is a morphism X — Spec Q((q))); see [15,22].

Let S be this set of rational tangential base points. The fundamental groupoid

T(),n = nfeom (M(()@n, S) relative to this base set is the profinite completion of the

groupoid Ty ,, described in [29]. There is a split exact sequence

1= Tou — mi(Mg,. 5) 5 Gg — 1
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with section induced by S. It results in a group morphism Gg = Gal(Q/Q) —
Aut(Tp,,) (see [9,10]).

Theorem 9.1 ([9,29]) This morphism factors as Gg — GT — Aut(ﬁ),n).
9.1.2 Pro-l and prounipotent completions

Let 7 be a finitely generated group, and let p(—) denote its Q-prounipotent com-
pletion. It has the following properties: g (—) is a prounipotent Q-group scheme;
there is a group morphism 7 — 7 (Q); any morphism 7 — U (Q), where U(—) is a
unipotent Q-group scheme, induces a Q-group scheme morphism 7g(—) — U(-),
such that (1 — U(Q)) = (7 — Q) — U(Q)).

If k is a Q-ring, then 7k (—) := m(—) ® k is a prounipotent k-group scheme (it
is the functor {k-rings} — {groups}, K +— m@(K)). There is a morphism (7 —
x(k) = (1 — 7@(Q) — ng(k) = 7k(k)). Any morphism 7 — U (k), where
U (—) is a prounipotent k-group scheme, gives rise to a morphism g (—) — U(—),
such that (m — U(K)) = (& — mx(k) = U(K)) ([12], Sect. 4).

Let / be a prime number, and let 77; be the pro-/ completion of 7. According to
[13], Lemma A.7, there exists a morphism 7; — 7(Q;), compatible with the maps
from 7.

If 7, 7' are finitely generated groups, then a continuous morphism 7; — 7; gives
rise to the morphism 7 — 7; — ”l/ — n@ (Qy), and hence to a ;-group scheme

morphism g, (—) — 71(/@[(—), such that (m — n@(@l)) = (7 - g Q) —
rr(’@/ (Q)). The resulting map Hom(zr;, 7;) — Homg,group (7, » n@) is compatible

schemes

with compositions and hence gives rise to a group morphism

Aut(my) = AutQ,-group (TQ,)- (73)

schemes

Let U(—) be a prounipotent Q-group scheme. Let Aut U be the Q-group scheme
defined as the functor {Q-rings} — {groups}, k > AutU(K) := Autg.group(U ®

schemes

k) = Autyri (u ® k), where u = Lie U. Then, Aut U is an extension of a group

algebras

Q-subscheme G C GL(u“?) by a prounipotent Q-group scheme, explicitly

1> At U - AwtU —> G — 1.

Namely, G is the intersection of the decreasing sequence of group schemes
Im(Aut U/ U™ — GL(u%)), which is stationary.
The morphism (73) may therefore be interpreted as a morphism

Aut(m;) — Aut 7 (Q)).

Let G == B be a groupoid where for any b € B, G, := Gy, is finitely generated.
We denote by G; = B, Gg(—) = B its pro-/ and Q-prounipotent completions, given
by (GD)be 1= (Gp)i Xg,, Gbe and Go(K)pe := Gp(K) xg, Gpe.
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Assume that G is connected (i.e. for any b, c € B, Gp. # @). Define the group
scheme AutG by Autg (k) := Aut(G(k)). If Gap, X Goe = Gac: (8abs 8be) > 8be8ab
is the composition of G, then Aut(G(k)) = {6,p : Gup — Gup (K)|Va, b, ¢, Ygup, &be»
Ouc(8bc&ab) = Obc(8he)Bab(gap)}- The choice of b € B and of particular elements
g%, € Gup foranya € B—{b} givesrise to anisomorphism Aut(G (k)) =~ G (k)5~{")
AutGy (K), the inverse isomorphism taking ((X,),, ) to the automorphism such that
Gpr(K) > gp — 6(gp) € Gp(k), and G,p, > ggb — Xaggb € Gup (k). The morphisms
m — m(Qy) and Aut(m;) — Autm (Qy), where m = Gp, give rise to a morphism

Aut(G) — Aut G(Q)).

9.1.3 Pro-l Galois representations
The following statement can be derived from [9,29].

Proposition 9.2 There exist morphisms GT; — Aut(Té’n), GT(—) — AutTp ,(—),
such that the squares in the following diagram commute

GT GT; GT(Q)

. |

Aut(Tp ) —= Aut(T§ ) — Aut T, (Q)

9.2 Arithmetic fundamental groups and Teichmiiller groupoids in genus one

The Galois theoretic counterpart of the theory of elliptic associators is the action of the
arithmetic fundamental group 71 (M ;@T) on the completions of elliptic braid groups,

based on the fibration M i@n - M 91, as studied in [11,27]. We first recall the main
points of this study.

9.2.1 Arithmetic fundamental groups of moduli spaces

Let M 9] (resp., M ;@T’ M 91) be the moduli space of elliptic curves with one puncture

(respectively, with one puncture and a nonzero tangent vector at the puncture, with
one puncture and a formal coordinate at the puncture).

A rational tangential base point £ of M% is defined as follows. The Deligne-
Mumford compactification M?l of M% contains a unique curve X 0 which cor-
responds to the tadpole graph. A formal neighbourhood of X in M% is a curve
X — Spec Q[[¢]], whose generic fibre is the Tate elliptic curve G, /¢% with marked
point [1] = qZ. This may be viewed as a morphism Spec Q[[¢]] — M%, which
restricts to & : Spec Q((g)) — M%.
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Alift& of & to MQl is defined by choosing the local coordinate log z at [1] = ¢%, z

belng the canonical coordinate on G, (such that the function ring is Q[z, z~']). Let
5 be the lift of & to M| ; given by the expansion of the local coordinate of £ at order
one.

The isomorphism ngeom (M Q S )~ B3 gives rise to a split exact sequence

1= B> mM% &) 5 Gy — 1, (74)

where the section is provided by the base point “§ the induced morphism Gg —
Aut(Bg) has been computed explicitly in [24], Cor. 4.15 (it is recalled in Sect. 9.3).
The result of [24] can be complemented as follows.

Proposition 9.3 There is a morphism from (74) to the split exact sequence
1 - SLy(Z) — GL,(Z) 5 7* — 1, (75)

where the second morphism is the determinant det and the section is the morphism
A ((); (1)) The rightmost morphism in (74)— (75) is the cyclotomic character

Gg — Zx.
The proof will be carried out in Sect. 9.3.

9.2.2 Profinite representations

Let M Q be the moduli space of elliptic curves with n punctures. There is a fibration
Q
M

1,n

7Q . 7@ Q
My, =My %0 My,

- M 91 defined by forgetting all the punctures except the first one. One sets

1,n

A tangential section of a morphism X — Y of Q-schemes is defined to be a
morphism Y x Spec Q((t)) — X, such that its composition with X — Y is the
canonical projection.

Ann-tree T is defined to be a rooted trivalent planar tree, equipped with a bijection
it : {leaves} — {I1, ..., n} (therootis not a leaf), such that the leftmost leaf is labelled
1. Such a tree gives rise to the assignment, to each i € {1, ..., n}, of a pair (d;, s;),
where d; is an integer > 1 (the distance between the leaf labelled i and the root), and
of amaps; € {/, ryd describing the path from the root to the leaf labelled i (s; (k) =
or r according to whether the kth interval of the path is a left or right descendant).
It also gives rise to a permutation s7 € S, such that s7(1) = 1: sy is the composite

map {1,...,n} — {leaves} =z {1, ..., n}, where the first map is the inverse of the
lexicographic (according to the order left < right) indexation of the leaves.
Q M Q | may be associated with

A tangential section o7 of the morphism M In

each n-tree T as follows: o7 is the morphism M% X Spec Q((t)) — A;Ilyn, taking a
pair ((E, p,z),t) to (E, p1, ..., pn, 2), Where p; := z*‘(zkesfl(r) t%).
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Let F¢ be the fibre over & of M% — M(l%. There is a split exact sequence of
groupoids

1= 7" (Fe {or©)) — m M2, forE) 5 m12, &) — 1.
(see [11,27] and also [24], Sect. 5.1), which gives rise to a morphism
a1 (MY, &) — Aut(rf " (Fe. (o7 (€))). (76)

The fibre at (E, p) of M% — M% is(E—{pH" ! — (diagonals), whose geometric
fundamental group is the profinite completion of P , (the quotient of the elliptic braid

group with n strands Py, by the central Z?). The geometric fundamental groupoid
geom

b (Fe, {or(&)}) is the profinite completion of the groupoid 7, ,, where objects
are n-trees and the set of morphisms from T to 7’ is Py, Xs, {srsp h, equipped
with the composition of morphisms induced from the product in P ,. On the other
hand, there is an isomorphism 7} (M 91 ) > m(M i@i’ 5). (76) therefore gives rise
to a morphism

T (M E) > Aut(Torp). (77)

Theorem 9.4 There exists a morphism wy(M ;@T’ § ) — GT o1l and an action of GT ell

on Teyy p, such that:

(a) the morphism (77) factors as 11 (M;@T’ 5) — G"\I‘ell — Aut(i”,n);
(b) the morphism of split morphisms induced by (74)— (75) factors as (71 (Mi@i’ 5:) =
Gg) — (GTy 5 GT) — (GL.(Z) 5 7).

The proof will be carried out in Sect. 9.4.

9.2.3 Pro-l representations

Proposition 9.5 There exist morphisms GTéH —  Aut TEZH’”, GTe(—-) —

Aut T, ,(—), such that the squares in the following diagram commute

GTu GT., GTen(Qr)

| | |

Aut(Tyy ) — Aut(T), ) — Aut Ty » (Q))

ell,n
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9.3 Proof of Proposition 9.3

Asin [24], let 50 : Gg — m (M i@T’ § ) be the section induced by § . The diagram
(M ;@T’ 5: ) A G givesrise to the semidirect product decomposition 71 (M ;@T’ g? ) >~
§3 x Gq, where the action Ggp — Aut(§3) is g *x x = s0(g)xs0(g)”". On

the other hand, the diagram GL2(Z) AS 7> gives rise to the semidirect product
decomposition GLy(Z) ~ SLy(Z) x Z*, where the action Z>* — Aut(SL(Z)) is

-1
_(*0 A0
Lem = (0 1)m(o 1) .

Let o1, 02 be the Artin generators of B3 (denoted ai, ap in [24]). As SL; (Z) is
profinite, there is a unique morphism

By - SLo(Z), x> % (78)

. . . 11
extending the quotient morphism Bz — B3/Z(B3) >~ SL2(Z), o1 — (0 1 ) oy
1 0
(40)

The action of G on B3 can be made explicit as follows. Denote the map Gg —
GT c Z* x 1?2 by g = (x(g), fg). Using the formula Bo(g) = afm(g)so(g) in [24]
before Proposition 4.12, and Corollary 4.15 in the same paper, one obtains

gxo|l =0

lx(g)’ o

B x(8)
g*oy = Adafgpz(wfg(af,azz)’l( > )

(here p2 : Gg — Z is the Kummer cocycle related to the roots of 2).
Then

- —1
_ I 0\ (1 1 0 1 _
g*01=01X(g)=(0 )l((g))=(§(g) 1)(0 1)(é(g) 1) =x(g)-(0 l)=X(g)-m;

on the other hand, Corollary 4.15 in [24] says that

L2y (1 0Y)_ (1 0\ (x@™ ' o 1 —8p2(g)
(o 1) (5 1) =% (G DG 50) (0 )

(identity in SL» (Z)), therefore

e — x(@) _ 1 0
gx0p = Adafspz(g)fg(alz,azz)—l 03 = Adi(X(g) 0 )(1 0) (*X(g) 1)
0 x@ ')\ 8m(e 1

—(! 0\ _ (x(& O (1 0)(x(e 0\ ' _ _
_(—x(g)‘1 1)_<0 1)(71 1)(0 1) = x(g) e 02.

It follows that (78) intertwines the actions of G and 7> , which proves Proposition
9.3.
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9.4 Proof of Theorem 9.4

Theorem 9.4 states the existence of a morphism 71 (M ;@T’ § ) —> GT 11, which will
now be constructed. ’

Proposition 9.6 Ser ﬁeu = Ker(C’fFe” — C/ﬁ“).

(a) There is a unique mozphism §3 — ﬁe”, extending the canonical morphism Bz >~
Reil = Rei1(C Aut(F2)).

(b) There is a unique morphism 11 (M é) — GTe”, such that the diagram

50
1> By > mMZ ) 5 Gy — 1
i \ ¥

o
—~ ~ A
1 — R — GT.y; — GT —> 1
commutes.

Proof (a)Recall that ]/?\g” 1s asubgroup of Aut( I?z) Aut(I?z) is profinite ([8], Thm. 5.3),
and the map Aut(Fg) — F2, 00— ((X),0(Y))is contlnuous (loc. c1t Ex. 2, p. 96).
As Re” is the preimage of 1 by a contlnuous map (F2)2 (31 3)2 X Fz, it is closed
o) Rell is a closed subgroup of Aut(Fg) hence is profinite. The morphism B3 — Rell
therefore extends to a morphism §3 — I/Q\ell.

Statement (b) is equivalent of the compatibility of the morphism §3 — I/Q\e” with
the actions of Gg and GT on both sides via 50 and o and the morphism Gg — GT R
i.e. to the commutativity of

G x §3 — §3
R (79)
GT x Ry — Rey

Consider the following cubic diagram

GQ % ngeam(Mqu’ ";:) nlgeom(M 1 S)

T T

G x Aut{*"(Cs, &c) l Aut " (Ce, &)
R,

| T

GT x Aut fz Aut 1?2

ﬁ X i?\d]
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where Ct is the fibre of M (1@2 - M Ql at & (which identifies with the fibre of M Q

Qﬁ where MQ = M Q M@ M 2) &c is a tangential base point of Cg supported

at the marked pomt and the maps are defined as follows :

e the upper horizontal maps are the Ga101s actlons the map GT x I/?\ell — ﬁell
is the actlon 1nduced by the sectlon of GTell — GT defined in Pro/posmon 3. 21 the
map GT X Aut F>, — Aut F, is induced by the composite map GT — Aut B —
Aut(Aut Fz) where the second map is is the i inner actlon of Aut F2 on 1tse1f and the
ﬁrst map is the composite morphism GT — GTe” C GT x Aut F2 — Aut Fz, where
GTe” — GT is the same morphism as above and GT x Aut F2 — Aut F2 is the
second projection;

eom
Fmm

Ny
~

e the vertical maps are induced by the morphisms Gg — GT, b

B3 — Ry, m{“" (Ce. &) — Fa:
e the diagonal maps are induced by the canonical inclusion Re” — Aut F5, and by
the action of ngeom M, 5, é,-‘) on ngeom (C¢, &c) induced by the fibration MQﬂ —

MQA.

The square corresponding to the upper face of the cube commutes because the
action of ngeom M 11 E ) on ngeom (C¢, &c) is compatible with the Galois action.

The square corresponding to the sides of the cube commute because this action
identifies with the profinite completion of the action of B3 on F5.

The square corresponding to the lower face of the cube commutes by construction
of the map GT x Aut F2 — Aut Fz

The square corresponding to the lower front face commutes for the following reason.
According to [24], Corollary 4.5, the action of G on ng eom (C¢, &c) may be described
as follows. " (C¢, &c) is topologically free, generated by x1, x2. The action of
y € Ggon thls group is

v = £, e z0x Y £y ez 7 (80)

x(y)f

y*(x2) = f, (x1, 21)x, 1y, 2z a7 (2L @81

where z1 = (x2, x1) = xlexgle], y = (x(¥), fy) is the map Gg — G"\F, and

f;ol(a, b) = f, (b, )bX I =V/2 £ (a, b) for abc = 1.

Under the identification x; — X, xo + Y, formula (80) corresponds to the expres-
sion of g4 in Proposition 3.21. It follows from the hexagon and duality identities that
any (A, f) € GT satisfies the octagon identity

fx'z7h nyzxy iz, x 7tz Yz px, o xt fz, X))z = 1,

where Z := (Y, X). This identity implies

f(X, (¥, X))lekfczl(x, XLy lyx M, (v, X))t
=Z0 D2 p(x=1z7 )Y F(X, (Y, X))~ !
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so that (81) corresponds to g_ in Proposition 3.21. All this implies the commutativity
of

Gg — Autm{®"(Cs, &c)

Yt v
GT.y — Aut F»

Composing this square with the commutative square

Aut " (Ce, &) — Aut(Aut i (Ce, &¢))
Vo Vo
Aut F» — Aut(Aut F>)

where the horizontal maps are inner action morphisms, one obtains the commutativity
of the square corresponding to the lower front face.
The commutativity of all these squares implies that the two composite maps

Gg x ngeom(M L1 %‘) — Re” — Aut F2

coincide, where the maps G x ngeom M L1 E ) — Rell are the two composite maps
which can be obtained from the upper front face. As Rell — Aut Fz is injective, this
implies the commutativity of the square corresponding to the upper front face, and
therefore of (79). O

The next statement of Theorem 9.4 is the existence of an action of GT, 1] ON /fe;l, "
which will now be constructed (Definition 9.8).

If C is a category, let Aut(C) be its group of automorphisms (as a category, even if
C has a braided monoidal structure).

For (A, f) € GT letiy, s be the composite functor PaB e , f )*PaB = PaB
where the first functor is the unique tensor functor which induces the identity on
objects, and the second functor is the identity functor (which is not tensor). iy s is

then an endofunctor of ﬁ.
Lemma 9.7 (A, f) — l;; is a morphism GT — Aut(ﬁ).

Proof The identity iy, i, f) = iG, o, r) follows from the commutativity of the
diagram

O, f) =

/\/\

C = O, HO! [ =C

{a. e s
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in which the commutativity of the central square follows from that of

. frxc "B oL D
~| J,N
c % D
for any braided monoidal categories C, D and any tensor functor ¢ : C — D. O

One constructs in the same way a morphism
GT,; — Aut(PaB,;). (82)

If Cp is a braided monoidal category, then Ob(Cy is a magma (i.e. a set equipped
with a composition map and a unit). Let ¢ : M — Ob(Cy be a magma mor-
phism, then a braided monoidal category ¢ * Cy can be constructed by Ob¢*Cy =
M, ¢*Co(m, m") := Co(¢p(m), ¢ (m’)) and by the condition that the obvious functor
¢*Cop — Cp is tensor. If Cy — C is an elliptic structure over Cp, then one defines an
elliptic structure ¢*Co — ¢*C over ¢*Cp in the same way. Then, there are natural
group morphisms

AutCy — Aut ¢*Cy, AutC — Auto*C. (83)

Let 1(S) be the free magma generated by a set S. S.The unlque map S — {0} induces a
magma morphism ¢ : u(S) — w({e}) >~ Ob PaB Set PaBs = ¢*PaB PaBeH s =
¢* PaBe” The morphisms (84) then specialize to morphisms

Aut(PaB) — Aut(PaBs), Aut(PaB,;) — Aut(PaB,; g). (84)

7\}11, » may be viewed as the full subcategory of ﬁe”,[n], where the objects are the

preimages of 14 - - - +-n under the map p([n]) Y N[n], extending the identity on [n],
where N[n] is the free abelian semigroup generated by [n] = {1, ..., n} (in which the
addition is denoted +). If C is any category and C’ is any full subcategory, then there
is a natural morphism Aut(C) — Aut(C’). It specializes to a group morphism

Aut(PaB,;; (n)) — Aut(Teysn). (85)
Definition 9.8 The action of GT 011 ON 7\}11," is given by the composite morphism
G’\re” — Autﬁg” — Autﬁe”’[n] — Aut(i”,n).

obtained from (82), (84) and (85).

Theorem 9.4 next states the compatibility of the ‘arithmetic’ action

m(Ml 1 &) = Aut(r{“" (Fe, {or (5)})
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(see (76)) with its ‘algebraic model’ GT oll = Aut(i;lﬂ) (see Definition 9.8), namely
the commutativity of

w1 (M2, E) —= Aut(r{" (Fs. (o €))) (86)

| |

G’\Tell - Aut(ﬁll,n)

The commutativity of the restriction of (86) to §3 - 711(117[ 1 £) can be proved
as follows. Let Bell be the category with Ob Be” = N Bell (n, m) =@if m # n,
and Be” (n,n) = 31 n. There is a natural functor PaBeu — Beu, defined as the
length map [ : u({o}) — N at the level of objects and as the identity at the level of
morphisms; actually PaBe” ~ [* Bell As Reu C GTe” acts trivially on the images of
the ass001at1v1ty constralnts under PaB — PaBe”, its action on @L” is the lift of an
action of Re” on Bell One checks explicitly that the composmon of this action with
the morphism B3 — Re” coincides W1th the action of B3Be][, which arises from its
geometric action on the various groups B 1,n-

The commutativity of the composition of (86) with Gg 5 ”1(M1,T’ ;;? ) can be
shown as follows. As the diagram

G ——>m(M 2. &)

é’\T - GTell

commutes, it suffices to proves that its composition with (86) commutes, i.e. that

G — Aut(F;. {o7(6))

| |

GT —— Aut(Tur.n)

commutes. According to [21], the morphism G — Aut(Fg, {o7(§)}) can be derived
explicitly from the actions of Gg on 71(Ce, §c) and on the profinite braid groups
in genus zero. The former action has been computed in [24], Cor. 4.5. The resulting
f(\)rmulas for the action of Gg can be shown to match those for the action of GT on
Tell,n-

The last statement of Theorem 9.4 says that the morphism (71 (M i@i’ 5 ) AN Go) —

(Go AN Zx) factors through (G"\[‘ ol 26T ). This can be proved as follows. Firstly,
one checks that the morphism B3 e SL,(Z) factors through R,;;. The three mor-
phisms between B3, Ry, and SL;(Z) are compatible with the actions of Gg, GT,
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and Z*; and the morphism Gg — 7 factors through GT. This ends the proof of
Theorem 9.4.

9.5 Proof of Proposition 9.5

This statement follows from the form taken by the action of GT ¢l] ON ﬁll,n.

10 A question

In this section, we ask whether t,;; is generated by the elements §,,, arising from [7].
This question is analogous to the problem of whether gtt; is generated by its Drinfeld
generators, which is also open. We give an indication in favour of a positive answer:
such an answer would imply a statement which is also implied by a transcendence
conjecture about MZVs; this last conjecture would follow from Grothendieck’s tran-
scendence conjecture for the category of mixed Tate motives and the equality of the
motivic Galois group Gy (—) with GT(—) (see [2]). We record that in contrast
with the fact that the Drinfeld generators of grt; generate a free Lie algebra (Brown),
and several families of relations between the 8, have been found (see [28]).

10.1 A generation conjecture (GC)

The Drinfeld generators of grt; are obtained from the homogeneous decomposition of

the logarithm of im(—1 € GT e GRT(C)) - can(—1), where can : C* — GRT(C)
is the canonical morphism. The analogue of the conjecture that these elements generate
grt; is then:

Conjecture 10.1 (Generation Conjecture) bz C tflrl is an equality, i.e., tflrl is gener-
ated by sly and the §2,, n > 0.

This conjecture is equivalent to the inclusion exp([;;“k) x SLy(K) C Rflrl (k) being
an equality.

Proposition 10.2 GC is equivalent to the Zariski density of B3 C R (—), i.e., (B3) =
Reir ().

Proof According to Lemma 3.19, (B3) is uniquely determined by its Lie algebra. This
fact and Proposition 3.18 immediately imply that (B3) = R, (—) iff the inclusion
Lie(uq,u_) = (logy4,logy—) C Lie R, (—) is actually an equality. Tensoring
with C, this holds iff

(log 4, log ) c &5,
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is an equality. On the other hand, GC holds iff b+ Cc tell is an equality. Now 7.,
sets up a diagram

(log ¥y, log )€ <> <,

~| =
¢+.C ~gr.C
b = T
It follows that the upper inclusion is an equality iff the lower is. O

10.2 Relation with a transcendence conjecture
We first present the transcendence conjecture.

10.2.1 The coordinate ring of associators

The functors {Q-rings} — {sets}, k — M(k), M (k) may be represented as fol-
lows. Let penty : exp(fk) — exp(@k) hex : k x exp(flz‘) — exp(ilg), dual :
exp(f ) — exp(tk) be the maps pent(P) := lhs((24))~! rhs((24)), hex(u, ®) =
lhs((23)) rhs((23)) !, dual(®) := & P21,

Let B, B’, C be homogeneous bases of f,, t3, t4. Let u, ¢ (b € B) be free com-
mutative variables and set kg := Q[gp, b g Bl k| = Q[u ©p, b € B]. Then
ko C Kki. Let @ := exp(D>_,cp 9pb) € exp(fz‘)) C exp(f2 ).Forb' € B',c € C,
define pent,., dual, € kg C k; by > .. pent, ¢ = log(pent(®)), >, p dualy b’ =
log(dual(®)), >, g hexy b’ = log(hex (i, P)).

We then set Q[M] := k;/(pent,, dualy, hexy, b’ € B',c € C) and Q[M] :=
QIMI[k "1 = Q[u*!", ¢p, b € B]/{ideal with the same generators}. Then, for any

M (k) >~ Homq.rings (Q[M], k)
Q-ring k, we have (functorial in k) bijections c| Jc
M(K) >~ Hom(@—rings (Q[M]v k)

10.2.2 The transcendence conjecture

The KZ associator 27 i, g z) € M(C) gives to a morphism ¢k z : Q[M] — C.

Conjecture 10.3 (Transcendence Conjecture) @k 7 is injective.

Letkyzy = im(Q[M] oKz C). This is a subring of C (according to [18], this is
the subring generated by (277 i)*! and the MZVs).

10.3 Consequences of GC

Proposition 10.4 The inclusion

ie(B3) C exp(b"©) % SLy(C) (87)
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holds:

(a) forany e € EII(C) x pc)y {Pxz) iff b3 <1t§lrl;

(b) forany e € o (M(C)) iff [0 (get), b3] C b3,

(c) forany e € ElI(C) iff b3 < gtt,y, i.e., iff the two above-mentioned conditions are
realized.

Moreover, GC implies that (87) holds for any e € EIl(C).

We do not know whether the Lie algebraic statements in (a), (b), (c) hold, so they
may be viewed as conjectures implied by GC.

Proof Note first that for any ¢ € EIlI(C), and by Zariski density, (87) <
(ie((B3)(C)) = exp(b1"C) x SL2(0)).

(a) is proved as follows. e € EII(C) x p(c) {Pk 7z} iff e = 0(Pg7z) * g for some
g € R%,(C). So

((87) holds for any e € ElI(C) xp () {Pkz})

& (8(in(wr,) ({B3)(©)) = exp(b3°) 3 SLy(C) for any g € R%,(C))
& (g(I') =T forany g € R (C), where I = exp([?;“(c) x SL1(C))
& (b3 <ard)).

Here, the second equivalence follows from Proposition 7.3.
(b), (c) are then proved in the same way, using

(e € (M(C))) & (e =0(Pgz) *0(g) for some g € GRT(C)),
(e € EII(C)) & (e = o (Pgyz) * g for some g € GRT,;(C)).

The equivalence (c) < ((a) and (b)) follows from grt,; = o (grt) & tfl’l, Finally, GC
means that (sl, §2¢) = t¥,, which immediately implies (a), (b), and (c) as 5, <gtt,;;.
O

10.4 Consequences of the transcendence conjecture (TC)

Proposition 10.5 [fTC holds, then for any Q-ring Kk and any ® € M(K), iy (o)(B3) C
exp(b3*) x SLa (k).

Proof Recallthat (B3)(—) < Re(—), exp(b3)xSLa(—) <> R (—) areinclusions

of Q-group schemes, and EIl — M, M 5 M are morphisms of Q-group schemes.

In the notation of Definition 4.10, any x € X (K) gives rise to a morphism iy :
G(k) — H(k), defined by g x x = x *xi,(g) for any g € G(Kk). The assignment
X > iy is functorial in the following sense: if k — Kk’ is a morphism of Q-rings and
x':=im(x € X(kK) — X (k')), then
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Gk 5 Hk)
Lo
G = HEK)

commutes.

For any Q-scheme X and any Q-ring k, let X ® k be the k-scheme (X @ k) (K') :=
X (k') for any k' € {k-rings}. Again with the notation of Definition 4.10, a torsor

-k

even gives rise to an assignment X(k) > x — (G ® k 5 oH ® k), where i)](‘ is a
morphism of k-group schemes, defined by: VK’ € {k-rings}, g * ¥ = X * i)]c‘(g) for
any g € (G ® k)(K') = G(K'), where x := im(x € X(k) - X(kK')).

In particular, ®x 7 € M(kyzy) gives rise to an isomorphism i (¢ ,) : Reyi(—) ®
Kyzy — R (=) ® kyzvy, and therefore to a Lie algebra isomorphism Lie ig (o) :

to1 Ky zy — (tflrl ®Kkprzv)", whose Q,,,, Cis the infinitesimal of the isomorphism
of Proposition 7.3. )

The group scheme inclusions (B3)(—) C Re;(—) and exp(b3) x SL, C R%),(—)
give rise to Lie algebra inclusions Lie(B3)(—) C t.y and 6; C fflrl, and Proposition
7.3 implies that Lie i (¢4 ;) ®k,,,, C restricts to an isomorphism Lie(B3)(—) g C —
(b3 ®g C)". This implies that Lie iy (¢, restricts to a Lie algebra isomorphism

Lie(B3)(—) ®q knzv — (b3 g kmzv)".

There are Lie subalgebras Q log ¥+ ® kyszy in the Lh.s., mapping to (Qer+ terms
of degree > 0) ® kyszy inthe r.h.s. (where e = e, e— = f, ¥4 = ). This induces
a diagram

lo(@g7) s
(B3)(—) ®@kyzv  —" (exp(by) X SL2) @ kyzv
J J

Ga @ kyzv = Ga @ kpzyv

If now ® € M(Kk), the transcendence conjecture says that there exists a Q-ring mor-

phism Ky zy % k, such that & = ¢« (®gz). Applying this morphism to the above
diagram, one gets

(Bs)(—) @k 72 (exp(6T) » SLy) ®k

J J

Taking k-points, one obtains a commutative diagram

(B3) (k) 2
i)

k = k

exp(b] %) x SLa (k)
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The image of 1 € k is Wi C (B3)(K); then iy (@) (¥x) € exp(b™*) x SLy(k) C

exp(67°C) x SLy(C). O
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