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Abstract We construct a genus one analogue of the theory of associators and the
Grothendieck–Teichmüller (GT) group. The analogue of the Galois action on the
profinite braid groups is an action of the arithmetic fundamental group of a moduli
space of elliptic curves on the profinite braid groups in genus one. This action factors
through an explicit profinite group ̂GTell , which admits an interpretation in terms of
decorations of braided monoidal categories. This group acts on the tower of profinite
braid groups in genus one and has the structure of a semidirect product of the profinite
GT group ̂GT by an explicit radical. We relate ̂GTell to its prounipotent group scheme
version GTell(−), which also has a semidirect product structure. We construct a tor-
sor over this group, the scheme of elliptic associators. An explicit family of elliptic
associators is constructed, based on earlier joint work with Calaque and Etingof on the
universal KZB connexion. The existence of elliptic associators enables one to show
that the Lie algebra of GTell(−) is isomorphic to a graded Lie algebra, on which
we obtain several results: it is a semidirect product of the graded GT Lie algebra grt
by an explicit radical; we exhibit an explicit Lie subalgebra. Elliptic associators also
allow one to compute the Zariski closure of the mapping class group in genus one
(isomorphic to the braid group B3) in the automorphism groups of the prounipotent
completions of braid groups in genus one. The analytic study of the family of ellip-
tic associators produces relations between MZVs and iterated integrals of Eisenstein
series.
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1 Introduction

The theory of associators and of the Grothendieck–Teichmüller group has been devel-
oped by Drinfeld [9] in relation to certain problems of quantum groups. This theory was
based on several previous pieces of work: on the one hand, on the approach proposed
by Grothendieck to the study of GQ, the absolute Galois group of Q, via its action on
the Teichmüller tower in genus zero, and in particular on the profinite completions of
the braid groups [10]; on the other hand, on rational homotopy theory, in particular
the computation by Kohno of the prounipotent completions of the pure braid groups,
based on the study of a particular connexion on the configuration spaces of the plane,
which may be identified with a universal version of the Knizhnik–Zamolodchikov
(KZ) connection.

The main actors of associator theory are as follows: a profinite group ̂GT, of cat-
egorical origin, containing GQ; pro-l, proalgebraic variants of this group, and the
associated Lie algebra gt; a principal homogeneous space, the space of associators,
which enables one to prove that gt is isomorphic to a graded Lie algebra grt; a par-
ticular associator, the KZ associator, whose study allows one both to derive a system
of relations between multizeta values (MZVs) and a collection of generators for grt.
The theory of associators is therefore related to the theory of MZVs and motives [1];
it allows one to exhibit conditions satisfied by elements of motivic Lie algebras.

The purpose of the present work is to construct the analogous theory in genus
one. On the Galois side, the object of interest is the arithmetic fundamental group of
the moduli space of elliptic curves with n marked points MQ

1,n , which gives rise to
an action of the arithmetic fundamental group of the moduli space of elliptic curves
MQ

1,1 on the profinite completions of braid groups in genus one; when n = 2, this
action is studied in Nakamura [24], Sect. 5.1, and a higher genus analogue is studied
in Oda [27], on the basis of [11]. The analogue of the rational homotopy part is the
computation of the prounipotent completion of braid groups in genus one, first obtained
by Bezrukavnikov using minimal model theory, and later rederived in Calaque et al. [7]
using an analogue of the KZ connection, the universal KZB connection (this connection
was independently obtained in Levin and Racinet [19]). A new feature of the KZB
connection is its horizontal part (related to variation of the elliptic modulus), which
corresponds to an extension of the holonomy Lie algebra t1,n by a Lie algebra of
derivations 〈δ2n, n ≥ −1〉.

Our construction of the genus one analogue of Grothendieck–Teichmüller theory
consists of several steps. We first construct a genus one analogue of the theory of
braided monoidal categories (BMCs). This enables us to define the genus one analogue
̂GTell of ̂GT, which is a profinite group containing π1(M

Q

1,�1). We construct the pro-l
and proalgebraic variants of this group; the associated Lie algebra is denoted as gtell .
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We construct a torsor under this proalgebraic group: the scheme of elliptic associators.
We present two constructions of elliptic associators: (a) we define an explicit map from
the set of associators to its elliptic analogue; (b) the KZB connection gives rise to a
map τ → e(τ ) from the Poincaré half-plane to the set of elliptic associators. We study
the properties of this map: differential system, modular behaviour, and behaviour at
infinity; this shows in particular that the constructions (a) and (b) are related to each
other by suitable specializations and limiting procedures. The existence of elliptic
associators then enable us to construct an isomorphism between gtell and an explicit
Lie algebra grtell . We prove several results on grtell : (a) grtell is a semidirect product
of grt by a Lie algebra rell , which is therefore acted upon by grt; (b) we construct an
explicit Lie subalgebra of rell .

Beside these results, which may be viewed as internal to the theory, our work leads
to the following results:

(a) The outer action of the arithmetic fundamental group of MQ

1,�1 on the Ql -points
of the prounipotent completions of the braid group in genus one with various
numbers of strands factors through the action of the group of Ql -points of one
and the same proalgebraic group, which is GTell(−);

(b) The mapping class group of surfaces of genus one with one boundary component,
which is isomorphic to the group B3 of braids with three strands, naturally acts
on the pure braid groups in genus one. We compute the Zariski closure of B3 in
the automorphism group of their prounipotent completions, in terms of the Lie
algebra 〈δ2n, n ≥ −1〉;

(c) The study of the above-mentioned map from the Poincaré half-plane to the space
of elliptic associators leads to relations between MZVs and iterated integrals of
Eisenstein series.

This paper is organized as follows. In Sect. 2, we define the genus one counterpart
of the notion of braided monoidal category. This enables us to define the group ̂GTell in
Sect. 3, as well as its pro-l and prounipotent variants. In Sect. 4, we introduce the space
of elliptic associators, prove its nonemptiness, and study its torsor structure. This leads
us to the definition of the group scheme GRTell(−) in Sect. 5; we prove the announced
results on its Lie algebra grtell : isomorphism with gt, generators, semidirect product
structure. In Sect. 6, we introduce the map τ �→ e(τ ) and study its properties. In
Sect. 7, we carry out the computation of Zariski closure of B3 explained above. We
define the iterated integrals of Eisenstein series in Sect. 8 and prove there their relations
with MZVs. In Sect. 9, we recall the relations between GQ, ̂GT and the Teichmüller
groupoid in genus zero, and generalize these results to genus one. Section 10 raises a
question on the structure of the kernel rell of a natural morphism grtell → grt, and
its relation with a transcendence conjecture on the KZ associator (which is related to
the Grothendieck period conjecture); namely, it is shown that an affirmative answer to
both questions imply the same (also conjectural) statement on the behaviour of certain
isomorphisms arising from associators (see Propositions 10.4 and 10.5).

Let us now mention some works and projects related to the present work. Hain
and Matsumoto [14] construct a theory of “mixed elliptic motives”. This gives
rise to a proalgebraic Q-group scheme G M E M (−), equipped with a morphism
G M E M (−) → G MT M (−). One may expect a commutative diagram from this
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morphism to GTell(−) → GT(−). The Lie algebra 〈δ2n, n ≥ −1〉 is a Lie subal-
gebra of the graded version of the kernels of both morphisms and was studied in
Pollack’s Ph.D. thesis [28]. On the other hand, Brown and Levin [6] develop a parallel
theory of elliptic motives; the elliptic multiple zeta values arising from this theory
could be related to the family τ �→ e(τ ) of elliptic associators studied here.

The author expresses his thanks to P. Etingof, H. Furusho, R. Hain, and L. Schneps
for useful discussions related to this work, to the referee for useful comments, as well
as to D. Calaque and P. Etingof for collaboration in Calaque et al. [7].

2 Elliptic structures over braided monoidal categories

In Calaque et al. [7], we introduced a notion of elliptic structure over a braided monoidal
category (BMC) C. It consists in a category E , a functor E → C, and additional data.
In this section, we introduce a variant of this notion, which consists in a category C̃, a
functor C → C̃, and additional data. The two definitions can be related by adjunction,
as will be explained in forthcoming joint work with P. Etingof. As is the notion from [7],
the variant presented here is related with elliptic braid groups in the same way as BMCs
are related to usual braid groups.

2.1 Definition

Let (C,⊗, β..., a..., 1) be a braided monoidal category (see e.g. [17]). Here⊗ : C×C is
the tensor product, βX,Y : X ⊗Y → Y ⊗X and aX,Y,Z : (X ⊗Y )⊗ Z → X ⊗(Y ⊗ Z)
are the braiding and associativity isomorphisms and 1 is the unit object. They satisfy
in particular the pentagon and hexagon identities

aX,Y,Z⊗T aX⊗Y,Z ,T = (idX ⊗aY,Z ,T )aX,Y⊗Z ,T (aX,Y,Z ⊗ idT ),

(idY ⊗β±X,Z )aY,X,Z (β
±
X,Y ⊗ idZ ) = aY,Z ,Xβ

±
X,Y⊗Z aX,Y,Z ,

where β+X,Y = βX,Y , β
−
X,Y = β−1

Y,X .

Definition 2.1 An elliptic structure over the braided monoidal category C is a set
(C̃, F, A+

..., A−
...), where C is a category, F : C → C̃ is a functor,1 and A±

... are natural2

assignments (Ob C)2 	 (X,Y ) �→ A±
X,Y ∈ AutC̃(F(X ⊗ Y )), such that:

α±Z ,X,Yα
±
Y,Z ,Xα

±
X,Y,Z = id(X⊗Y )⊗Z , (1)

1 For C a category, Ob C is its class of objects; for X, Y ∈ Ob C, IsoC(X, Y ) ⊂ C(X, Y ) are the sets of
isomorphisms and morphisms X → Y ; AutC(X) = IsoC(X, X).
2 Natural means that if ϕ ∈ C0(X, X ′), ψ ∈ C0(Y, Y ′), then A±

X ′,Y ′ F(ϕ ⊗ ψ) = F(ϕ ⊗ ψ)A±
X,Y .
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where α±X,Y,Z = F(β±X,Y⊗Z )A
±
X,Y⊗Z F(aX,Y,Z ),

F(βY,XβX,Y ⊗ idZ ) =
(

F(a−1
X,Y,Z )A

−
X,Y⊗Z F(aX,Y,Z ),

F
(

(β−1
X,Y ⊗ idZ )a

−1
Y,X,Z

)

(A+
Y,X⊗Z )

−1 F
(

aY,X,Z (β
−1
Y,X ⊗ idZ )

)

)

, (2)

(identities3 in AutC̃(F((X ⊗ Y )⊗ Z))), for any X,Y, Z ∈ Ob C, and

A±
1,X = idF(1⊗X) for any X ∈ Ob C. (3)

Dropping associativity constraints and the functor F (which can be put in automat-
ically), the two first conditions mean that the cycles

X⊗Y⊗Z
A±

X,Y⊗Z �� X⊗Y⊗Z
β±X,Y⊗Z �� Y⊗Z⊗X

A±
Y,Z⊗X

��
Z⊗X⊗Y

β±Z ,X⊗Y

��

Z⊗X⊗Y
A±

Z ,X⊗Y

�� Y⊗Z⊗X
β±Y,Z⊗X

��

and

Y⊗X⊗Z
AY,X⊗Z �� Y⊗X⊗Z

βY X⊗idZ�� X⊗Y⊗Z

B−1
X,Y⊗Z

��
X⊗Y⊗Z

β−1
Y X⊗idZ

��

X⊗Y⊗Z

β−1
Y X⊗idZ

��
X⊗Y⊗Z

BX,Y⊗Z

��

Y⊗X⊗Z
β−1

XY ⊗idZ

�� Y⊗X⊗Z
A−1

Y,X⊗Z

��

are identity morphisms, where A··· = A+···, B··· = A−···.
A morphism (C, C̃, F, A±

...) → (C′, C̃′, F ′, A′±
... ) is then the data of a tensor func-

tor C ϕ→ C′ and a functor C̃ ϕ̃→ C̃′, such that
C → C′
↓ ↓
C̃ → C̃′

commutes, and ϕ̃(A±
X,Y ) =

A′±
ϕ(X),ϕ(Y ).

Remark 2.2 By setting Z = 1, the axioms (1)–(3) imply

F(β±Y,X )A
±
Y,X F(β±X,Y )A

±
X,Y = idF(X⊗Y ), F(βY,XβX,Y ) = (A−

X,Y , A+
X,Y ), (4)

which in their turn imply

A±
X,1 = idF(X⊗1) . (5)

3 In (2) and later, we set (g, h) := ghg−1h−1.
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Fig. 1 Generators of the elliptic braid group B1,n

Taking these identities, (3) and the hexagon identities into account, axiom (1) can be
replaced by

A±
X⊗Y,Z = F((β±Y,X ⊗ idZ )a

−1
Y,X,Z )A

±
Y,X⊗Z

F(aY,X,Z (β
±
X,Y ⊗ idZ )a

−1
X,Y,Z )A

±
X,Y⊗Z F(aX,Y,Z ). (6)

2.2 Relation with elliptic braid groups

For n ≥ 1, the reduced pure elliptic braid group on n strands P1,n is the fundamental
group of the reduced configuration space Cfn(T ) := Cfn(T )/T , where Cfn(T ) =
T n − (diagonals) is the configuration space of n points on the topological torus T :=
R2/Z2, on which T acts diagonally. The reduced elliptic braid group B1,n is the
fundamental group of the quotient Cf [n](T ) := Cfn(T )/Sn . We then have an exact
sequence

1 → P1,n → B1,n → Sn → 1.

These definitions are extended by P1,0 = B1,0 = {1}.
The group B1,n(n ≥ 1) can be presented by generators σi (i = 1, . . . , n − 1), X±

1 ,
and relations

(σ±1
1 X±

1 )
2 = (X±

1 σ
±1
1 )2, (X±

1 , σi ) = 1 for i = 2, . . . , n − 1,

(X−
1 , (X

+
2 )

−1) = σ 2
1 , X±

1 · · · X±
n = 1, (σi , σ j ) = 1 for |i − j | > 1,

σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , n − 2,

(7)

where X±
i+1 = σ±1

i X±
i σ

±1
i for i = 1, . . . , n − 1 (see [4] and Fig. 1). In particular,

P1,1 = B1,1 = {1}, and P1,2 is the free group with two generators X±
1 .

The braid group Bn on n strands (n ≥ 1) is presented by generators σi , i =
1, . . . , n−1 and the Artin relations (7). Its definition is extended to n = 0 by B0 = {1}.
There is a unique morphism Bn → B1,n such that σi �→ σi . If C is a braided monoidal
category and X ∈ Ob C, then there is a unique group morphism ϕ : Bn → AutC(X⊗n)

(X⊗n is defined by right parenthesization, so X⊗n = X ⊗ X⊗n−1), such that
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σi �→ ai ((idX⊗i−1 ⊗βX,X )⊗ idX⊗n−i−1)a−1
i ,

where ai : (X⊗i−1 ⊗ X⊗2)⊗ X⊗n−i−1 → X⊗n is the associativity constraint.

Proposition 2.3 If (C̃, F, A±
...) is an elliptic structure over C and X ∈ Ob C, then there

is a unique group morphism B1,n → AutC̃(F(X
⊗n)), such that

X±
1 �→ A±

X,X⊗n−1 , σi �→ F(ϕ(σi )).

Proof Let us check that (σ1 X+
1 )

2 = (X+
1 σ1)

2, i.e., (X+
1 , X+

2 ) = 1 is preserved (for
simplicity, we omit the associativity constraints). By naturality, (βX,Y⊗idZ )A

+
X⊗Y,Z =

A+
Y⊗X,Z (βX,Y ⊗ idZ ). Plugging in this equality the relation (6) and its analogue with

X,Y exchanged, we obtain

(A+
X,Y⊗Z , F(βY,X ⊗ idZ )A

+
Y,X⊗Z F(βX,Y ⊗ idZ )) = 1;

if we set Y := X, Z := X⊗n−2, this says that (X+
1 , X+

2 ) = 1 is preserved. Similarly,
one proves that (1) with sign implies that (σ−1

1 X−
1 )

2 = (X−
1 σ

−1
1 )2 is preserved. (2)

immediately implies that (X−
1 , (X

+
2 )

−1) = σ 2
1 is preserved. The naturality assumption

implies that (X±
1 , σi ) = 1 (i > 1) is preserved. One shows by induction that the image

of X±
k is F(β±

X⊗k−1,X
⊗idX⊗n−k )A±

X,X⊗n−1 F(β±
X,X⊗k−1⊗idX⊗n−k ); therefore, the image

of X±
1 · · · X±

k is A±
X⊗k ,X⊗n−k . It follows that the image of X±

1 · · · X±
n is A±

X⊗n ,1, which

is idF(X⊗n) by (5). Finally, as Bn → AutC(F(X⊗n)) is a group morphism, the Artin
relations are preserved. ��

2.3 Universal elliptic structures

Let PaB be the braided monoidal category of parenthesized braids (see [3,16]).
Its set of objects is Par := �n≥0Parn , where Parn = {parenthesizations of the
word • . . . • of length n}, so Par0 = {1}, Par1 = {•}, Par2 = {••}, Par3 =
{(••)•, •(••)}, Par4 = {((••)•)•, (•(••))•, (••)(••), •((••)•), •(•(••))}, etc. For
O, O ′ ∈ Par, we set |O| := the integer such that O ∈ Par|O|, and C0(O, O ′) :=
{

B|O| if |O| = |O ′|
∅ otherwise

. The composition is the product in B|O|. The tensor product

is defined at the level of objects, as the juxtaposition, and at the level of morphisms,
by the group morphism Bn × Bn′ → Bn+n′, (σi , 1) �→ σi , (1, σ j ) �→ σn+ j . We
set aO,O ′,O ′′ := 1 ∈ B|O|+|O ′|+|O ′′| = PaB((O ⊗ O ′) ⊗ O ′′, O ⊗ (O ′ ⊗ O ′′))
and βO,O ′ := σ|O|,|O ′| ∈ B|O|+|O ′| = PaB(O ⊗ O ′, O ′ ⊗ O), where σn,n′ :=
(σn · · · σ1)(σn+1 · · · σ2) · · · (σn+n′−1 · · · σn′) ∈ Bn+n′ .

Let now PaBell be the category with the same objects, PaBell(O, O ′) :=
{

B1,|O| if |O| = |O ′|
∅ otherwise

and whose product is the composition in B1,|O|. Let F :
PaB → PaBell be the functor induced by the identity at the level of objects,
and by Bn → B1,n, σi �→ σi at the level of morphisms. For O, O ′ ∈ Par, set
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A±
O,O ′ := X±

1 · · · X±
|O| ∈ B1,|O|+|O ′|. Then (PaBell , F, A±

...) is an elliptic structure
over PaB. Indeed, relations (1) and (2) for objects O, O ′, O ′′ are consequences of the
identities (σ±1

2 σ±1
1 X±

1 )
3 = 1 and (X−

1 , (σ1 X+
1 σ1)

−1) = σ 2
1 in P1,3 under the mor-

phism P1,3 → P1,|O|+|O ′|+|O ′′| induced by the replacement of the first (respectively,
second, third) strand by |O| (respectively, |O ′|, |O ′′|) consecutive strands.

The pair (PaB, •) has the following universal property: for any pair (C,M), where
C is a braided monoidal category and M ∈ Ob C, there exists a unique tensor functor
ϕ0 : PaB → C, such that F(•) = M . Proposition 2.3 immediately implies that this
property extends as follows.

Proposition 2.4 If C̃ is an elliptic structure over C, then there exists a unique morphism
(PaB,PaBell)→ (C, C̃), extending ϕ.

3 The elliptic Grothendieck–Teichmüller group

In this section, we introduce the group GTell of universal automorphisms of elliptic
structures over BMCs, which we call the elliptic Grothendieck-Teichmüller group. We
compute the “naive” version of this group and then introduce its variants (profinite,
pro-l, proalgebraic) by playing on the classes of considered BMCs. We study the
relations between these groups and the corresponding variants of GT; we construct in
particular, in the various frameworks, a section of the natural morphism GTell → GT.
This shows that GTell and its variants have semidirect product structures.

3.1 Reminders about GT and its variants

According to [9], GT is the set of pairs (λ, f ) ∈ (1 + 2Z) × F2, F2 being the free
group with generators X and Y , such that

f (X3, X1)X
m
3 f (X2, X3)X

m
2 f (X1, X2)X

m
1 = 1, m = λ− 1

2
, X1 X2 X3 = 1,

f (Y, X) = f (X,Y )−1, ∂3( f )∂1( f ) = ∂0( f )∂2( f )∂4( f ), (8)

where4 ∂i : F2 ⊂ P3 → P4 are simplicial morphisms. It is equipped with a semigroup
structure with (λ, f )(λ′, f ′) = (λ′′, f ′′), with

λ′′ := λλ′, f ′′(X,Y ) := f ( f ′(X,Y )Xλ
′
f ′(X,Y )−1,Y λ

′
) f ′(X,Y ).

One defines similarly semigroups ̂GT, GTl , GT(k) by replacing in the above defi-
nition (Z, F2) by their profinite, pro-l, k-prounipotent versions (where k is a Q-ring).
We then have morphisms GT ↪→ ̂GT → GTl ↪→ GT(Ql) and GT → GT(k) for
any k.

4 Pn = Ker(Bn → Sn , σi �→ (i, i + 1)) is the pure braid group on n strands.
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GT acts on {braided monoidal categories (BMCs)} by (λ, f )(C0, β..., a...) :=
(C0, β

′
..., a′

...), where

β ′X,Y := βX,Y (βY,XβX,Y )
m,

a′
X,Y,Z := aX,Y,Z f (βY XβXY ⊗ idZ , a−1

X,Y,Z (idX ⊗βZYβY Z )aX,Y,Z ).

Similarly, ̂GT (respectively, GTl , GT(k)) act on {BMCs C0 such that AutC0(X) is finite
for any X ∈ Ob C0} (respectively, such that the image of Pn → AutC0(X1 ⊗· · ·⊗ Xn)

is an l-group and is contained in a unipotent group).

3.2 The semigroup GTell and its variants

Let us define GTell as the set of all (λ, f, g±), where (λ, f ) ∈ GT, g± ∈ F2 are such
that

(σ±1
2 σ±1

1 (σ1σ
2
2 σ1)

±m g±(X+
1 , X−

1 ) f (σ 2
1 , σ

2
2 ))

3 = 1, (9)

u2 = (g−, u−1g−1+ u−1) (10)

(identities in B1,3) where u = f (σ 2
1 , σ

2
2 )σ

λ
1 f (σ 2

1 , σ
2
2 )

−1, g± = g±(X+
1 , X−

1 ).
If C is a BMC and (C̃, F, A±···) is an elliptic structure over C, then (C̃, F, A′±··· ) is an

elliptic structure over C′, where

C′ := (λ, f ) ∗ C, A′±
X,Y = g±(A+

X,Y , A−
X,Y )(∈ AutC(X ⊗ Y )). (11)

The following statement is then the analogue of Eqs. (4).

Lemma 3.1 The conditions (9), (10) imply the identities

(σ±λ
1 g±(X+

1 , X−
1 ))

2 = 1, σ 2λ
1 = (g−(X+

1 , X−
1 ), g+(X+

1 , X−
1 )) (12)

in B1,2.

Proof Let σ± := σ±1
2 σ±1

1 (σ1σ
2
2 σ1)

±m, g± := g±(X+
1 , X−

1 ), f := f (σ 2
1 , σ

2
2 ), then

the first equation of (9) is rewritten as Ad(σ±)−1(g± f ) · g± f · Ad(σ±)(g± f ) =
σ−3± , an identity in P1,3. There is a unique morphism P1,3 → P1,2, corresponding
to the erasing of the third point, i.e. to the map Cf3(T ) → Cf2(T ), (x1, x2, x3) �→
(x1, x2). It is given by X±

1 �→ X±
1 , X±

2 �→ 1, X±
3 �→ (X±

1 )
−1, σ 2

1 �→ σ 2
1 , σ

2
2 �→

1, (σ1σ2)
3 �→ σ 2

1 . The image of the above identity in P1,3 by this morphism is the
identity g±(X+

1 , X−
1 )·Ad(σ±λ

1 )(g+(X+
1 , X−

1 )) = σ∓2λ
1 in P1,2, which is equivalent to

the first equations of (12). The same morphism similarly takes (10) to the last equation
of (12). ��

For (λ, f, g±), (λ′, f ′, g′±) ∈ GTell , we set

(λ, f, g±)(λ′, f ′, g′±) :=(λ′′, f ′′, g′′±), where g′′±(X,Y )=g±(g′+(X,Y ), g′−(X,Y )).
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Proposition 3.2 This defines a semigroup structure on GTell . We have a semigroup
inclusion GTell ⊂ GT×End(F2)

op, (λ, f, g±) �→ ((λ, f ), θg±), where θg± = (X �→
g+(X,Y ), Y �→ g−(X,Y )).

Proof We first prove: ��

Lemma 3.3 If (λ, f, g±) ∈ GTell , then there is a unique endomorphism of B1,3, such
that

σ1 �→ σ̃1 := f (σ 2
1 , σ

2
2 )σ

λ
1 f (σ 2

1 , σ
2
2 )

−1, σ2 �→ σ̃2 := σλ2 , X±
1 �→ g±(X+

1 , X−
1 ).

For any λ′ ∈ 2Z + 1, we then have

f (σ 2
1 , σ

2
2 )σ

±1
2 σ±1

1 (σ1σ
2
2 σ1)

± λλ′−1
2 = σ̃±1

2 σ̃±1
1 (σ̃1σ̃

2
2 σ̃1)

± λ′−1
2 . (13)

Proof Recall that we have an elliptic structure (PaB,PaBell , F, A±
...). Applying

(λ, f, g±) to it, we get an elliptic structure (PaB,PaBell , F, A±
...). An endomorphism

of B1,3 is given by the composition

B1,3 → AutPaBell (•(••)) � B1,3,

where the first morphism arises from the elliptic structure of PaBell , and the second
morphism arises from the isofunctor PaBell � PaBell . One checks that this endomor-
phism of B1,3 is given by the above formulas.

We now prove (13). The hexagon identity implies

(σ 2
2 )

m f (σ 2
1 , σ

2
2 )(σ

2
1 )

m f ((σ 2
1 σ

2
2 )

−1, σ 2
1 )(σ

2
1 σ

2
2 )

−m f (σ 2
2 , (σ

2
1 σ

2
2 )

−1) = 1.

Now, since (σ 2
1 σ

2
2 )

−1 ≡ σ1σ
2
2 σ

−1
1 ≡ σ−1

2 σ 2
1 σ2 mod Z(B3), since f (a, b) = f (a′, b′)

for any group G and any a, a′, b, b′ ∈ G with a ≡ a′, b ≡ b′ mod Z(G) (as
f ∈ F ′

2 = (F2, F2)), and by the duality identity, this is rewritten

(σ 2
2 )

m f (σ 2
1 , σ

2
2 )σ

2m+1
1 f (σ 2

1 , σ
2
2 )

−1σ−1
1 (σ 2

1 σ
2
2 )

−mσ−1
2 f (σ 2

1 , σ
2
2 )

−1σ2 = 1,

which yields (13) with (±, λ′) = (+, 1).
(13) with ± = + then follows from

σ̃1σ̃
2
2 σ̃1 = (σ1σ

2
2 σ1)

λ, (14)

which is proved as follows. The hexagon identity (8) implies that if X1 X2 X3 commutes
with all the Xi , then

f (X3, X1)X
m
3 f (X2, X3)X

m
2 f (X1, X2) = (X2 X3)

m .
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Applying this to X1 = σ 2
2 , X2 = σ1σ

2
2 σ

−1
1 , X3 = σ 2

1 , and using σ 2
1 =

Ad(σ−1
2 σ−1

1 )(σ 2
2 ), this implies

σ̃1σ̃2 f (σ 2
1 , σ

2
2 )= f (σ 2

1 , σ
2
2 )(σ

2
1 )

m f (σ1σ
2
2 σ

−1
1 , σ 2

2 )(σ1σ
2
2 σ

−1
1 )m f (σ 2

2 , σ1σ
2
2 σ

−1
1 )σ1σ2

= (σ1σ
2
2 σ1)

mσ1σ2.

Using the same identity with X1 = σ 2
2 , X2 = σ 2

1 , X3 = σ−1
1 σ 2

2 σ1, one proves
similarly that

f (σ 2
2 , σ

2
1 )σ̃2σ̃1 = σ2σ1(σ1σ

2
2 σ1)

m .

The product of these identities yields (14).
Each side of (13) with ± = − identifies with the same side of (13) with ± = +

and λ′ replaced by −λ′. This implies (13) with ± = −. ��
End of proof of Proposition 3.3 It suffices to prove that (λ′′, f ′′, g′′±) ∈ GTell , i.e. that
it satisfies conditions (9) and (10). ��

Condition (9) is expressed as follows

(

σ±1
2 σ±1

1 (σ1σ
2
2 σ1)

± λλ′−1
2 g±(g′+(X+

1 , X−
1 ), g′−(X+

1 , X−
1 )) f (Ad( f ′(σ 2

1 , σ
2
2 ))(σ

2λ′
1 ),

σ 2λ′
2 ) f ′(σ 2

1 , σ
2
2 )
)3 = 1,

i.e. according to (13), as follows

(

g±(g′+(X+
1 , X−

1 ), g′−(X+
1 , X−

1 )) f (σ̃ ′2
1 , σ̃

′2
1 )σ̃

′±1
2 σ̃ ′±1

1 (σ̃ ′
1σ̃

′2
2 σ̃

′
1)

±m)3 = 1,

where σ̃ ′
1, σ̃

′
2 are the analogues of σ̃1, σ̃2 from Lemma 3.3 with (λ′, f ′) instead of

(λ, f ). The latter identity is the image of identity (9) satisfied by (λ, f, g±) by the
endomorphism of B1,3 attached to (λ′, f ′, g′±) by Lemma 3.3.

Condition (10) is the image of identity (10) satisfied by (λ, f, g±) under the endo-
morphism of B1,3 attached to (λ′, f ′, g′±) by Lemma 3.3. ��

The operation (λ, f, g±)(C, C̃, F, A±
...) := (C′, C̃, F, A′±

... ), where C′, A′±
... are as in

(11) defines an action of GTell on {(C, C̃, F, A±
...)|C is a BMC, (C̃, F, A±

...) is an elliptic
structure over it}.

As before, we define semigroups ̂GTell , GTell
l , GT(k) by replacing in the def-

inition of GTell , (GT, F2) by5 (̂GT, ̂F2), (GTl , (F2)l), (GT(k), F2(k)). They act
on the sets of pairs (C, C̃), such that C satisfies the same conditions as above,
together with: AutC̃(F(X)) is finite for any X ∈ Ob C (respectively, the image of

5 For G a group (other than GT, GTell or Rell ), ̂G is its profinite completion. If G is a free or pure (elliptic)
braid group, Gl , G(k) are its pro-l, k-prounipotent completions. Here G(−) is the prounipotent Q-group
scheme associated to G; it is characterized by Homgroups (G,U (Q)) � Homgp schemes (G(−),U ) for
any unipotent group scheme U . If G = Bn or B1,n , then Gl := Pl ∗P G, G(k) := P(k) ∗P G, where
P = Ker(G → Sn) and ∗P denotes the amalgamated product over the group P .
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P1,n → AutC̃(F(X1⊗· · ·⊗ Xn)) is an l-group and is contained in a unipotent group).
We have morphisms GTell ↪→ ̂GTell → GTell

l ↪→ GTell(Ql) and GTell → GTell(k)
compatible with the similar ‘non-elliptic’ morphisms.

Remark 3.4 Specializing the morphism in Proposition 5.22, 2) to the object•(. . . (••)),
one shows that the formulas from Lemma 2.3 generalize to an action of GTell on the
tower of elliptic braid groups B1,n , given by

(λ, f, g±) · X±
1 := g±(X+

1 , X−
1 ),

(λ, f, g±) · σi := f (σ 2
i , σi+1σi+2 · · · σ 2

n · · · σi+2σi+1) · σλi
· f (σ 2

i , σiσi+1 · · · σ 2
n · · · σi+1σi )

−1.

Composing this action with the morphism GT → GTell (Proposition 2.20), one obtains
an action of GT on the tower of elliptic braid groups, given by

(λ, f ) · X+
1 := f (X+

1 , (X
−
1 , X+

1 )) · (X+
1 )
λ · f (X+

1 , (X
−
1 , X+

1 ))
−1,

(λ, f ) · X−
1 := (X−

1 , X+
1 )

λ−1
2

· f (X−
1 (X

+
1 )

−1(X−
1 )

−1, (X−
1 , X+

1 )) · X−
1 · f (X+

1 , (X
−
1 , X+

1 ))
−1,

(λ, f ) · σi := f (σ 2
i , σi+1σi+2 · · · σ 2

n · · · σi+2σi+1) · σλi
· f (σ 2

i , σi+1σi+2 · · · σ 2
n · · · σi+2σi+1)

−1.

The profinite, pro-l, and prounipotent versions of GTell and GT acts on the profinite,
pro-l, and prounipotent versions of the tower of elliptic braid groups by the same
formulas.

3.3 Computation of GTell

Recall that the braid group B3 is presented by generators�± and relations�+�−�+ =
�−�+�− (�± are the σ1, σ2 of the standard presentation and are used in order to
avoid confusion with previous notation). Its centre Z(B3) is isomorphic to Z and
generated by (�+�−)3. There is a central exact sequence

1 → 2Z(B3)→ B3 → SL2(Z)→ 1,

given by �+ �→
(

1 1
0 1

)

, �− �→
(

1 0
−1 1

)

.

Proposition 3.5 Let B̃3 be the group generated by �±, ε and relations

�+�−�+ = �−�+�−, ε�+ε�− = 1, ε2 = 1.

There is an exact sequence 1 → B3 → B̃3 → Z/2 → 1, where B̃3 → Z/2 is given
by �± �→ 1, ε → −1. There is also a (noncentral) exact sequence 1 → 2Z(B3)→
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B̃3 → GL2(Z)→ 1, where B̃3 → GL2(Z) extends B3 → SL2(Z) by ε �→�→
(

0 1
1 0

)

.

All these morphisms fit in the diagram

1

��

1

��
1 �� 2Z(B3) �� B3 ��

��

SL2(Z) ��

��

1

1 �� 2Z(B3) �� B̃3
��

��

GL2(Z) ��

��

1

Z/2

��

Z/2

��
1 1

The proof is straightforward.

Proposition 3.6 1) There is a unique semigroup morphism B̃3 → GTell ,
such that:

�+ �→ (λ, f, g+, g−) = (1, 1, g+(X,Y ) = X, g−(X,Y ) = Y X),

�− �→ (λ, f, g+, g−) = (1, 1, g+(X,Y ) = XY−1, g−(X,Y ) = Y ),

ε �→ (λ, f, g+, g−) = (−1, 1, g+(X,Y ) = Y, g−(X,Y ) = X),

It fits in a commutative diagram

B̃3 → GTell
↓ ↓

Z/2 → GT

2) The horizontal maps in this diagram are isomorphisms.

Proof Set Xi := X+
i , Yi := X−

i . Using the commutation of σ2 with X1 and the braid
relation between σ1 and σ2, one obtains (σ2σ1 X1)

3 = X3 X2 X1 = 1 (relation in B1,3).
In the same way, (σ−1

2 σ−1
1 Y1 X1)

3 expresses as an element of P1,3 as

Y3 X3σ
−1
2 σ−2

1 σ−1
2 Y2 X2σ

−2
1 Y1 X1.

Since (Y1, X−1
2 ) = σ 2

1 , X2σ
−2
1 Y1 can be replaced by Y1 X2; in the resulting expression,

Y2Y1 X2 X1 can then be replaced by Y−1
3 X−1

3 . The above expression is therefore equal
to

Y3 X3σ
−1
2 σ−2

1 σ−1
2 Y−1

3 X−1
3 .
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One has (Y−1
3 , X−1

3 ) = (Y2Y1, X−1
3 ) = Y1(Y2, X−1

3 )Y−1
1 (Y1, X−1

3 ); one computes
(Y2, X−1

3 ) = σ 2
2 , (Y1, X−1

3 ) = σ−1
2 σ 2

1 σ2, which implies that (Y−1
3 , X−1

3 ) = σ2σ
2
1 σ2

and therefore that

(σ−1
2 σ−1

1 Y1 X1)
3 = 1 (equality in B1,3).

Finally, (Y1 X1, σ
−1
1 X−1

1 σ−1
1 ) = (Y1 X1, X−1

2 ) = (Y1, X−1
2 ) = σ 2

1 (equality in B1,3),
where the second equality uses the commutation of X1 and X2. All this implies that
(1, 1, X,Y X) ∈ GTell . ��

If (λ, f, g+, g−) = (−1, 1,Y, X), then m = −1, therefore

(σ±1
2 σ±1

1 (σ1σ
2
2 σ1)

±m g±(X+
1 , X−

1 ) f (σ 2
1 , σ

2
2 ))

3

= (σ∓1
2 σ∓1

1 X∓
1 )

3 = 1 (relation in B1,3).

The relation u2 = (g−, u−1g−1+ u−1) follows from σ−2
1 = (X1,Y−1

2 ) (relation in
B1,3). All this implies that (−1, 1,Y, X) ∈ GTell .

One checks that (1, 1, XY−1,Y ) = (−1, 1,Y, X)(1, 1, X,Y X)−1(−1, 1,Y, X),
therefore

(1, 1, XY−1,Y ) ∈ GTell .

Finally, one checks that the relations between�+, �− and ε are also satisfied by their
images in GTell . All this proves 1).

Let us prove 2). The bijectivity of Z/2 → GT is proved in Drinfeld [9], Proposition
4.1. Set Rell := Ker(GTell → GT), then the commutativity of the above diagram
implies that its upper map restricts to a morphism B3 → Rell , and we need to prove
that it is bijective. According to the second identity in (12), Rell ⊂ {(g+, g−) ∈
(F2)

2|(g−(X,Y ), g+(X,Y )) = (Y, X)}. We now recall some results due to Nielsen.

Theorem 3.7 ([25])

1) The morphism Out(F2)→ GL2(Z) induced by abelianization is an isomorphism.
2) Im(Aut(F2) → (F2)

2) = {(g+, g−) ∈ (F2)
2|∃k ∈ F2, ∃ε ∈ {±1}, (g−(X,Y ),

g+(X,Y )) = k(Y, X)εk−1}, where the map Aut(F2) → (F2)
2 is θ �→

(θ(X), θ(Y )).

The bijectivity of B3 → Rell , together with the equality Rell = {(g+, g−) ∈
(F2)

2|(g−(X,Y ), g+(X,Y )) = (Y, X)} are then proven in the following corollary to
Theorem 3.7:

Corollary 3.8 We have bijections

B3 → Aut(X,Y )(F2)→ {(g+, g−) ∈ (F2)
2|(g−(X,Y ), g+(X,Y )) = (Y, X)},

where Aut(X,Y )(F2) = {θ ∈ Aut(F2)|θ((X,Y )) = (X,Y )}, the first map is as in
Proposition 3.6 and the second map is θ �→ (θ(X), θ(Y )).
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Proof of Corollary 3.8 The bijectivity of the second map follows from the injectivity
of Aut(F2)→ (F2)

2, θ �→ (θ(X), θ(Y )) and from Theorem 3.7, 2). Let us now prove
the bijectivity of the map B3 → Aut(X,Y )(F2). The kernel of B3 → Aut(X,Y )(F2) is
contained in Ker(B3 → Aut(X,Y )(F2) → Out(F2) → GL2(Z)) = 〈(�+�−)6〉.
On the other hand, B3 → Aut(X,Y )(F2) takes (�+�−)6 to6 Ad((X,Y )−1), so the
restriction of B3 → Aut(X,Y )(F2) to 〈(�+�−)6〉 is injective. It follows that B3 →
Aut(X,Y )(F2) is injective.

Let us now show that B3 → Aut(X,Y )(F2) is surjective. We have a commutative
diagram

Aut(F2) �� Out(F2)
∼ �� GL2(Z)

Aut(X,Y )(F2) ����

��

SL2(Z)
��

��

where the isomorphism follows from Theorem 3.7, 1), and the bottom map is given by
abelianization. It follows that Ker(Aut(X,Y )(F2)→ SL2(Z)) = Ker(Aut(X,Y )(F2)→
Out(F2)) = Aut(X,Y )(F2) ∩ Inn(F2) = {θ ∈ Aut(F2)|∃k ∈ F2, θ = Ad(k)
and k commutes with (X,Y )}. The subgroup of F2 generated by k and (X,Y ) is
abelian and, according to [26], free, and therefore isomorphic to Z. If (X,Y ) is
a power of an element h of F2, then the sum of the degrees of h in X and in
Y is zero, and comparing coefficients in [log X, log Y ] in log(X,Y ) and log h in
the Lie algebra of the prounipotent completion of F2, one sees that h is (X,Y )
or its inverse; therefore, (X,Y ) is not the power of an element of F2 other that
itself or its inverse. All this implies that k should be a power of (X,Y ); therefore,
Ker(Aut(X,Y )(F2) → SL2(Z)) = 〈Ad(X,Y )〉 = 〈(�+�−)6〉. On the other hand, as
the composition B3 → Aut(X,Y )(F2) → SL2(Z) is surjective, so is the morphism
Aut(X,Y )(F2)→ SL2(Z). All this implies that there is an exact sequence

1 → 〈(�+�−)6〉 → Aut(X,Y )(F2)→ SL2(Z)→ 1.

Let us denote this exact sequence as 1 → K → G → H → 1, and let G ′ :=
Im(B3 → G) ⊂ G. To prove that G ′ = G, it suffices to prove that Im(G ′ ⊂ G →
H) = H and that G ′ ⊃ K . The first statement follows from the surjectivity to
B3 → Aut(X,Y )(F2) → SL2(Z), while the second statement follows from the fact
that (�+�−)6 ∈ Im(B3 → Aut(X,Y )(F2)). ��
Remark 3.9 As GL2(Z) is the nonoriented mapping class group of the topological
torus, we have a morphism GL2(Z)→ Out(B1,n), obtained by applying mapping class
group elements to elliptic braids; its target is an outer automorphism group because
the mapping class group does not preserve a base point of the elliptic configuration
space. This morphism lifts to a morphism

B̃3 → Aut(B1,n), (15)

6 Here and later, Ad(g) is the inner automorphism x �→ gxg−1.
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given by �+ �→ (X1 �→ X1,Y1 �→ Y1 X1, σi �→ σi ), �− �→ (X1 �→ X1Y−1
1 , σi �→

σi ), ε �→ (X1 ↔ Y1, σi �→ σ−1
i ). It is such that (�+�−)6 �→ (conjugation by the

image of z ∈ Pn → B1,n), where z is a generator of Z(Pn) � Z. The assignment
{elliptic structures over BMCs} → {representations of B1,n} is then B̃3-equivariant.

Remark 3.10 The morphisms B̃3 → Aut(B1,n) and GTell → End(B1,3) from Lemma
3.3 admit a common generalization to a morphism GTell → End(B1,n), taking
(λ, f, g+, g−) to the endomorphism X1 �→ g+(X1,Y1), Y1 �→ g−(X1,Y1), σi �→
Ad( f (σ 2

i , σi+1 . . . σ
2
n−1 . . . σi+1))(σ

λ
i ); this corresponds to the identification of B1,n

with AutPaBell (•(• · · · (••))). This morphism extends to the various setups (profinite,
etc.).

3.4 The semigroup scheme GTell(−)

For k a Q-ring, we set7 Rell(k) := Ker(GTell(k)→ GT(k)). The assignments k �→
GT(ell)(k), Rell(k) are functors {Q-rings} → {semigroups}, i.e. semigroup schemes
over Q.

Proposition 3.11 We have a commutative diagram of morphisms of semigroup
schemes

Rell(−) → GTell(−)→ GT(−)
↓ ↓ ↓

SL2(−)→ M2(−) det→ A1(−)

where GT(k)→ k is (λ, f ) �→ λ and GTell(k)→ M2(k) is (λ, f, g±) �→
(

α+ β+
α− β−

)

,

where log g±(X,Y ) = α± log X + β± log Y mod8 [f̂k
2 , f̂

k
2 ].

Proof It suffices to show that the right square is commutative, which follows by
abelianization from the second part of (12). ��

Recall that9 GT(k) = GT(k)×. We set

Definition 3.12 GTell(k) := GTell(k)
×.

Proposition 3.13 1) GTell(k) = GTell(k)×M2(k) GL2(k) (Cartesian product in the
category of proalgebraic varieties).

2) Rell(k) is a group.

Proof Let (λ, f, g±) ∈ GTell(k)be invertible as an element of GT(k)×End(F2(k))op,
with inverse (λ′, f ′, g′±). Then, the endomorphism of Lemma 3.3 attached to

7 The kernel of a morphism of semigroups with unit is the preimage of the unit of the target semigroup; it
is again a semigroup with unit.
8 Recall that F2(k) = exp(f̂k2 ), where f̂k2 is the topologically free k-Lie algebra in two generators log X
and log Y .
9 If S is a semigroup with unit, S× is the group of its invertible elements.
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(λ, f, g±) is an automorphism of B1,3(k). The identities (σ±1
2 σ±1

1 X±
1 )

3 = 1, σ 2
1 =

(X−
1 , (X

+
2 )

−1) in B1,3(k) are the images by this automorphism of the identities
expressing that (λ′, f ′, g′±) belongs to GTell(k). It follows that (λ′, f ′, g′±) ∈
GTell(k). The element (λ, f, g±) is invertible iff the image of (λ, f, g±) ∈
GTell(k)→ M2(k) lies in GL2(k). All this proves 1). 2) is then immediate. ��

Recall that for any Q-ring k, GT1(k) = Ker(GT(k)→ k). We also set

GTell
I2
(k) := Ker(GTell(k)→ M2(k)), Rell

I2
(k) := Ker(Rell(k)→ SL2(k)).

Then, k �→ GT(ell)
I2

(k), Rell
I2
(k) are Q-group schemes. It is known that GT1(−) is

prounipotent.

Proposition 3.14 The group schemes GTell
I2
(−) and Rell

I2
(−) are prounipotent.

Proof GTell
I2
(k) ⊂ GT1(k)×Aut I2(F2(k))op, where Aut I2(F2(k)) = Ker(Aut(F2(k))

→ GL2(k)); k �→ Aut I2(F2(k)) is prounipotent, so k �→ GTell
I2
(k) is prounipotent

as the subgroup of a prounipotent group scheme. The same argument implies that
Rell

I2
(−) is prounipotent. ��

Proposition 3.15 We have exact sequences 1 → Rell
I2
(k)→ Rell(k)→ SL2(k)→ 1

and 1 → GTell
I2
(k)→ GTell(k)→ GL2(k)→ 1.

Proof We need to prove that Rell(k) → SL2(k) is surjective. Set G(k) :=
Im(Rell(k) → SL2(k)), then k �→ G(k) is a group subscheme of SL2. We have
two morphisms Ga → Rell(−), extending Z → B3, 1 �→ �±

in the sense that

B3 → Rell(k)
↑ ↑
Z → Ga(k)

commutes; then, Ga → Rell → SL2 are the morphisms t �→
(

1 t
0 1

)

,
(

1 0
−t 1

)

. So

the Lie algebra of G(−) contains both
(

0 1
0 0

)

and
(

0 0
1 0

)

and hence is equal to sl2,

so G = SL2.
Let us now prove that GTell(k) → GL2(k) is surjective. Set G̃(k) :=

Im(GTell(k) → GL2(k)), then SL2 ⊂ G̃(−) ⊂ GL2. We will construct in Sect.
3.6 a semigroup scheme morphism GT(−) σ→ GTell(−), such that

GT(−) → A1(−)
σ↓ ↓

GTell(−)→ M2(−)

commutes, where A1 → M2 is t �→
(

t 0
0 1

)

. Then G̃(−) contains the image of Gm →
GT(−) σ→ GTell(−) → GL2, where Gm → GT(−) is a section of GT(−) → Gm
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(see [9]), which is the image of Gm → GL2, t �→
(

t 0
0 1

)

. Then Lie(G̃) = gl2, so

G̃ = GL2, as wanted. ��

3.5 The Zariski closure 〈B3〉 ⊂ Rell(−)

Recall that we have a group morphism B3 = Rell → Rell(Q). The Zariski closure
〈B3〉 ⊂ Rell(−) is then the subgroup scheme10 defined as

〈B3〉 :=
⋂

G⊂Rell (−) subgroup scheme |
G(Q)⊃Im(B3→Rell (Q))

G

Let us compute the Lie algebra11 inclusion Lie〈B3〉 ⊂ Lie Rell(−). First, Lie Rell(−)
is a Lie subalgebra of

Lie Aut(F2(−))op � Lie Aut(f̂2)
op � (Der f̂2)

op � f̂2
2,

where:

• f̂2 := f̂
Q
2 is the Lie algebra freely generated by ξ := log X and η := log Y ;

• the first map is based on the isomorphism F2(k) � exp(f̂k
2);

• the Lie algebra structure on f̂2
2 is given by

[(α, β), (α′, β ′)] := (Dα′,β ′(α), Dα′,β ′(β))− (Dα,β(α′), Dα,β(β
′)),

where Dα,β ∈ Der(f̂2) is given by ξ �→ α, η �→ β;
• the last isomorphism (Der f̂2)

op � f̂2
2 has inverse (α, β) �→ Dα,β .

Lemma 3.16 Lie Rell(−) ⊂ Lie Aut(F2(−))op identifies with the set of (α, β) ∈ f̂2
2

such that

α̃(X1,Y1)+ α̃(X2σ
−2
1 ,Y2)+ α̃(X3σ

−1
1 σ−2

2 σ−1
1 ,Y3) = 0,

β̃(X1,Y1)+ β̃(X2,Y2σ
2
1 )+ β̃(X3,Y3σ1σ

2
2 σ1) = 0,

(Ad X−1
2 − 1)β̃(X1,Y1)+ (1 − Ad Y−1

1 )α̃(X2σ
−2
1 , σ 2

1 Y2) = 0

(relations in Lie P1,3(−)). Here α̃(X1,Y1), . . . are the images of the elements

α̃(eξ , eη) := 1 − e− ad ξ

ad ξ
(α(ξ, η)), β̃(eξ , eη) := 1 − e− ad η

ad η
(β(ξ, η))

10 According to Conjecture 10.1, the inclusion 〈B3〉 ⊂ Rell (−) is an equality (see Proposition 10.2).
11 Recall that the Lie algebra of a Q-group scheme G is Ker(G(Q[ε]/(ε2))→ G(Q)).
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of f̂2 by the morphism f̂2 → Lie P1,3(−), ξ �→ log X1, η �→ log Y1, etc., and Xi :=
X+

i , Yi := X−
i (elements of P1,).

The above relations imply the relations

α̃(X1,Y1)+ α̃(X−1
1 σ−2

1 ,Y−1
1 ) = 0, β̃(X1,Y1)+ β̃(X−1

1 ,Y−1
1 σ 2

1 ) = 0,

(Ad X1 − 1)β̃(X1,Y1)+ (1 − Ad Y−1
1 )α̃(X−1

1 σ−2
1 , σ 2

1 Y−1
1 ) = 0

in Lie P1,2(−).

Proof (α, β) ∈ f̂2
2 � (Der f̂2)

op induces the infinitesimal automorphism of F2(Q)

given by X �→ g+(X,Y ) = X (1 + εα̃(X,Y )), Y �→ g−(X,Y ) = Y (1 + εβ̃(X,Y )),
where ε2 = 0. The condition that (1, 1, g+, g−) belongs to Rell(Q[ε]/(ε2)) linearizes
as follows

(

id+Ad(σ2σ1 X1)+ Ad(σ2σ1 X1)
2)(α̃(X1,Y1)) = 0,

(

id+Ad(σ−1
2 σ−1

1 Y1)+ Ad(σ−1
2 σ−1

1 Y1)
2)(β̃(X1,Y1)) = 0,

(

Y1(1 + εβ̃(X1,Y1)), (1 − εα̃(σ−2
1 X2,Y2σ

2
1 ))X

−1
2

) = (Y1, X−1
2 ),

which are equivalent to the announced identities using the relations in P1,3 : (Xi , X j ) =
(Yi ,Y j ) = 1,

(Y1, X1) = σ1σ
2
2 σ1, (Y1, X−1

2 ) = σ 2
1 = (Y−1

2 , X1), (Y1, X−1
3 ) = σ−1

2 σ 2
1 σ2,

(X1,Y−1
3 )=σ2σ

−2
1 σ−1

2 , (Y2, X−1
3 )=σ 2

2 = (Y−1
3 , X2), (Y−1

3 , X−1
3 )=σ2σ

2
1 σ2.

��
We now compute Lie〈B3〉 ⊂ Lie Rell(−).

Lemma 3.17 Let u :=
(

0, ad η
1−e− ad η (ξ)

)

, v :=
(

ad ξ
1−e− ad ξ (η), 0

)

in Lie Aut(F2(−))op

� f̂2
2, then u, v ∈ Lie〈B3〉.

Proof We have morphisms Ga → 〈B3〉 ⊂ Aut(F2(−))op, extending Z → B3, 1 �→
�±1± . The corresponding morphisms (k,+) → Aut(F2(k))op are t �→ (X �→
X,Y �→ Y Xt ) and t �→ (X �→ XY t ,Y �→ Y ). The equality XY t = eξ etη =
exp

(

ξ + t ad ξ
1−e− ad ξ (η)

)

, valid for t2 = 0, and the similar equality for Y Xt , imply that

the associated Lie algebra morphisms are Q → Lie Aut(F2(−))op, 1 �→ u, v, which
proves that u, v ∈ Lie〈B3〉. ��
Proposition 3.18 Lie〈B3〉 ⊂ Lie Aut(F2(−))op � f̂2

2 is the smallest closed Lie sub-
algebra containing u and v. In particular, the image of Lie〈B3〉 by the morphism
Der(f̂2)

op → gl2 induced by the abelianization map f2 → Q2 is sl2.

We first prove:
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Lemma 3.19 Let G be a proalgebraic group over Q fitting in 1 → U → G → G0 →
1, where G0 is semisimple and U is prounipotent. Let 0 → u → g → g0 → 0 be the
corresponding exact sequence of Lie algebras. Then H �→ Lie H sets up a bijection
{proalgebraic subgroups H ⊂ G, such that Im(H ⊂ G → G0) = G0} ∼→ {closed
Lie subalgebras h ⊂ g, such that Im(h ⊂ g → g0) = g0}.
Proof If H is in the first set, then we have an exact sequence 1 → H ∩ U → H →
G0 → 1, where H ∩ U is necessarily prounipotent, hence connected, which implies
that H is connected. According to [31], Prop. 24.3.5, ii), if G̃ is an algebraic group,
then the map {connected algebraic subgroups of G̃} → {Lie subalgebras of Lie G̃}
defined by taking Lie algebras is injective. Applying this to the algebraic quotients of
G, one derives the injectivity of the map H �→ Lie H . ��

Let us prove its surjectivity. Let h belong to the second set.
Firstly, note that according to the Levi–Mostow decomposition ([5,23] prop. 5.1),

there exists a section σ̃ : G0 → G of G → G0. We denote by σ : g0 → g its
infinitesimal. Any section of g → g0 is then conjugate to σ by an element of U (Q).

Then, we have an exact sequence 0 → h ∩ u → h → g0 → 0; applying the
Levi decomposition theorem for Lie algebras, and we obtain a section τ : g0 → h of
h → g0. Now the composite map g0

τ→ h ↪→ g is a section of g → g0, hence of the
form Ad(x)◦σ , where x ∈ U (Q). If v := h∩u, we then have [Ad(x)(σ (g0)), v] ⊂ v.

Let then V ⊂ U be the subgroup with Lie algebra v; if we set H := V ·
Ad(x)(σ̃ (G0)) = Ad(x)(σ̃ (G0)) · V , then H is in the first set, and has Lie alge-
bra h.

Proof of Proposition 3.18 Let Lie(u, v) be the smallest closed Lie subalgebra of

Lie Aut(F2(−))op

containing u and v. Then Lie〈B3〉 ⊃ Lie(u, v). Apply now Lemma 3.19 with G =
Rell(−), G0 = SL2. The map g → g0 = sl2 is such that u �→

(

0 0
1 0

)

and v �→
(

0 1
0 0

)

, so if h := Lie(u, v), then Im(h ⊂ g → g0) = g0. Let then H ⊂ Rell(−) be

the proalgebraic subgroup corresponding to h by Lemma 3.19; then 〈B3〉 ⊃ H . On the
other hand, we have group morphisms Ga → H corresponding to Q → h, 1 �→ u, v,
whose versions over Q are (Q,+)→ H(Q) ⊂ Aut(F2(Q))

op, t �→ � t±. Setting t =
1, we obtain H(Q) 	 �±, and as �+, �− generate B3, H(Q) ⊃ B3. So 〈B3〉 = H .
Taking Lie algebras, we obtain Proposition 3.18. ��
Remark 3.20 Let d := [[u, v], u]+2u, e := [[u, v], v]−2v. Then for any (α, β, γ ) ∈
N3,

xα,β,γ := ad(u)α ad(v)β ad([u, v])γ (d),
yα,β,γ := ad(u)α ad(v)β ad([u, v])γ (e) ∈ Ker(Lie〈B3〉 → sl2).

Then, Ker(Lie〈B3〉 → sl2) is topologically generated by these elements, and more
precisely, it is equal to

{∑

n≥1 Pn((xα,β,γ )α,β,γ , (yα,β,γ )α,β,γ )|(Pn)n ∈ ∏

n≥1 fn
}

,
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where fn is the part of degree n of the free Lie algebra with generators indexed
by N3 � N3 (each generator having degree 1). Then, Lie〈B3〉 = Ker(Lie〈B3〉 →
sl2)⊕ SpanQ(u, v, [u, v]).

3.6 A morphism GT → GTell and its variants

We now construct a section of the semigroup morphism GTell → GT and of its
variants.

Proposition 3.21 There exists a unique semigroup morphism GT → GTell , defined
by (λ, f ) �→ (λ, f, g±), where

g+(X,Y ) = f (X, (Y, X))Xλ f (X, (Y, X))−1,

g−(X,Y ) = (Y, X)
λ−1

2 f (Y X−1Y−1, (Y, X))Y f (X, (Y, X))−1.

The same formulas define semigroup morphisms ̂GT → ̂GTell , GTl → GTell
l , and a

semigroup scheme morphism GT(−)→ GTell(−), compatible with the natural maps
between the various versions of GT(ell).

There are commutative diagrams

GT ��

∼
��

GTell

∼
��

Z/2 �� B̃3

and GT(−) ��

��

GTell(−)

��
A1 �� M2

where the bottom morphisms are 1̄ �→ ε�+�−�+ and λ �→
(

λ 0
0 1

)

.

Proof 1) As the centre Z(Bn+1) of Bn+1 is contained in the pure braid group
Pn+1 := Ker(Bn+1 → Sn+1), the morphism Bn+1 → Sn+1 descends to a
morphism Bn+1/Z(Bn+1) → Sn+1. Identify Sn+1 � Perm({0, . . . , n}) and let
Sn ⊂ Sn+1 be {σ |σ(0) = 0}. The Cartesian product

(Bn+1/Z(Bn+1))×Sn+1 Sn

then identifies with the quotient (Bn+1×Sn+1 Sn)/Z(Bn+1) relative to the sequence
of inclusions Z(Bn+1) ⊂ Bn+1 ×Sn+1 Sn ⊂ Bn+1. The middle subgroup identifies
with a type B braid group and is generated by σ 2

0 , σ1, . . . , σn−1, where the gen-
erators of Bn+1 are labelled σ0, . . . , σn−1. Using the presentation of the type B
group, one proves that there is a unique morphism Bn+1 ×Sn+1 Sn → Bn+1, such
that σ 2

0 �→ X+
1 , σi �→ σi (i > 1). Moreover, this morphism takes a generator

of Z(Bn+1) � Z to X+
1 · · · X+

n = 1 ∈ B1,n . It follows that it factors though a
morphism (Bn+1 ×Sn+1 Sn)/Z(Bn+1)→ B1,n , i.e.

(Bn+1/Z(Bn+1))×Sn+1 Sn → B1,n . (16)
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This morphism admits the following interpretation. If X is a topological additive
group, let C[n](X) := Inj([n], X)/Sn , where Inj means the space of injections,
[n] := {1, . . . , n}, and C [n](X) := C[n](X)/X , where X acts by addition of a
constant function. We then have the identifications

π1(C[n](C×)) � Bn+1 ×Sn+1 Sn, π1(Cn(C
×)) � (Bn+1 ×Sn+1 Sn)/Z(Bn+1),

π1(Cn(C
×/qZ)) � B1,n,

where q is a real number with 0 < q < 1. The canonical projection C× → C×/qZ

and then induces a group morphismπ1(Cn(C
×))→ π1(Cn(C

×/qZ)), which turns
out to coincide with (16).
Any (λ, f ) ∈ GT induces an endomorphism Fλ, f of PaB, such that for any object
O and z ∈ PaB(O),

Fλ, f (z) = zλ

if z corresponds to an element of Z(B|O|).
The element σ2σ1σ

2
0 ∈ B4 corresponds to

(id• ⊗β•,••)a•,•,••(β2•,• ⊗ id••)a−1•,•,••(id• ⊗a•,•,•) ∈ PaB(•((••)•)). (17)

The image of (17) by this endomorphism is the product of the images of its factors,
namely

Fλ, f (id• ⊗β•,••) = id• ⊗β•,••(β••,•β•,••)m ∈ PaB(•(•(••)), •((••)•))
↔ σ2σ1(σ1σ

2
2 σ1)

m ∈ B4,

Fλ, f (a•,•,••) = a•,•,•• f (β2•,• ⊗ id••, a−1(id• ⊗β••,•β•,••)a)
∈ PaB((••)(••), •(•(••)))

↔ f (σ 2
0 , σ1σ

2
2 σ1) ∈ B4,

Fλ, f (β
2•,• ⊗ id••) = β2λ•,• ⊗ id•• ∈ PaB((••)(••))↔ σ 2λ

0 ∈ B4,

Fλ, f (id• ⊗a•,•,•) = id• ⊗a•,•,• f (β2•• ⊗ id•, a−1(id• ⊗β2••)a)
∈ PaB(•((••)•), •(•(••)))

↔ f (σ 2
1 , σ

2
2 ) ∈ B4.

Therefore,

Fλ, f ((17)) ∈ PaB(•((••)•))
↔ σ2σ1(σ1σ

2
2 σ1)

m f (σ 2
0 , σ1σ

2
2 σ1)σ

2λ
0 f −1(σ 2

0 , σ1σ
2
2 σ1) f (σ 2

1 , σ
2
2 ) ∈ B4.

Now, (σ2σ1σ
2
0 )

3 generates Z(B4), therefore

(17)3 ∈ PaB(•((••)•))↔ (σ2σ1σ
2
0 )

3 ∈ Z(B4).
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It follows that Fλ, f ((17)3) = (17)3λ. The image of this equality in B4 is

(

σ2σ1(σ1σ
2
2 σ1)

m f (σ 2
0 , σ1σ

2
2 σ1)σ

2λ
0 f −1(σ 2

0 , σ1σ
2
2 σ1) f (σ 2

1 , σ
2
2 )
)3=(σ2σ1σ

2
0 )

3λ.

As Z(B4) is in the kernel of B4 ×S4 S4 → B1,3, the image of the left-hand side of
this equality under this morphism is 1 ∈ B1,3. It follows that

(

σ2σ1(σ1σ
2
2 σ1)

m f (X+
1 , (X

−
1 , X+

1 ))(X
+
1 )
λ f −1(X+

1 , (X
−
1 , X+

1 )) f (σ 2
1 , σ

2
2 )
)3

= 1 (18)

in B1,3. This means that identity (9) is satisfied with ± = +.
2) We show that g− satisfies (9) with ± = −, i.e.

(

σ−1
2 σ−1

1 (σ1σ
2
2 σ1)

−m g−(X1,Y1) f (σ 2
1 , σ

2
2 )
)3 = 1

in B1,3 (we set Xi := X+
i , Yi := X−

i ). Substituting the given expression for
g−(X1,Y1), using (Y1, X1) = σ1σ

2
2 σ1, the identities (σ−1

2 σ−1
1 )Y1 X−1

1 Y−1
1 =

X−1
3 (σ−1

2 σ−1
1 ), (σ−1

2 σ−1
1 )σ1σ

2
2 σ1 = σ2σ

2
1 σ2(σ

−1
2 σ−1

1 ), and after a suitable con-
jugation, this equality is equivalent to

(

Y1 f −1(X1, σ1σ
2
2 σ1) f (σ 2

1 , σ
2
2 ) f (X−1

3 , σ2σ
2
1 σ2)σ

−1
2 σ−1

1

)3 = 1. (19)

As f ∈ F ′
2, f (aα, b) = f (a, b) if α commutes with both a and b. In par-

ticular, σ 2
1 commutes (in B4) with both σ0σ

2
1 σ0 and σ2σ

2
1 σ2. It follows that

f (σ0σ
2
1 σ0, σ2σ

2
1 σ2)= f ((σ 2

1 σ0)
2, σ2σ

2
1 σ2). Since (σ 2

1 σ0)
2=(σ1σ

2
0 )

2, f (σ0σ
2
1 σ0,

σ2σ
2
1 σ2) = f ((σ1σ

2
0 )

2, σ2σ
2
1 σ2). Substituting this identity in the pentagon identity

f (σ 2
1 , σ

2
2 ) f (σ0σ

2
1 σ0, σ2σ

2
1 σ2) f (σ 2

0 , σ
2
1 ) = f (σ 2

0 , σ1σ
2
2 σ1) f (σ1σ

2
0 σ1, σ

2
2 )

in P4 := Ker(B4 → S4), taking the image of the resulting identity by the morphism
P4 ⊂ B4 ×S4 S3 → B1,3, and using the identity X2 X1 = X−1

3 in B1,3, one obtains

f (σ 2
1 , σ

2
2 ) f (X−1

3 , σ2σ
2
1 σ2) f (X1, σ

2
1 ) = f (X1, σ1σ

2
2 σ1) f (X2, σ

2
2 )

(identity in B1,3). Using this identity, (19) is equivalent to

(Y1 Aσ−1
2 σ−1

1 )3 = 1,

where A := f (X2, σ
2
2 ) f −1(X1, σ

2
1 ). Using Y3 = σ−1

2 σ−1
1 Y1σ

−1
1 σ−1

2 , Y2 =
σ2σ1σ

−1
2 σ−1

1 Y1σ
−1
2 σ−1

1 , the latter identity is equivalent to

Y1 AY3(σ2σ1 Aσ−1
1 σ−1

2 )Y2(σ1σ2 Aσ−1
2 σ−1

1 ) = 1. (20)
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As Y1 X2 = (X2σ
−2
1 )Y1, Y1σ

2
2 = σ 2

2 Y1, X1Y3 = Y3(σ2σ
2
1 σ

−1
2 X1), σ

2
1 Y3 =

Y3σ
2
1 , and Y1Y3 = Y−1

2 ,

Y1 AY3 = f (X2σ
−2
1 , σ 2

2 )Y
−1
2 f −1(σ2σ

2
1 σ

−1
2 X1, σ

2
1 ).

As Ad(σ2σ1)(X2) = σ2σ
2
1 σ

−1
2 X1, Ad(σ2σ1)(σ

2
2 ) = σ 2

1 , Ad(σ2σ1)(X1) =
X3σ

−1
2 σ−2

1 σ−1
2 , Ad(σ2σ1)(σ

2
1 ) = σ2σ

2
1 σ

−1
2 ,

σ2σ1 Aσ−1
1 σ−1

2 = f (σ2σ
2
1 σ

−1
2 X1, σ

2
1 ) f −1(X3σ

−1
2 σ−2

1 σ−1
2 , σ2σ

2
1 σ

−1
2 ).

As Ad(σ1σ2)(X2) = X3σ
−1
2 σ−2

1 σ2, Ad(σ1σ2)(σ
2
2 ) = σ2σ

2
1 σ

−1
2 , Ad(σ1σ2)(X1)

= X2σ
−2
1 , Ad(σ1σ2)(σ

2
1 ) = σ 2

2 ,

σ1σ2 Aσ−1
2 σ−1

1 = f (X3σ
−1
2 σ−2

1 σ2, σ2σ
2
1 σ

−1
2 ) f −1(X2σ

−2
1 , σ 2

2 ).

Taking these equalities into account and after simplification and conjugation, (20)
is equivalent to

Y−1
2 f −1(X3σ

−1
2 σ−2

1 σ−1
2 , σ2σ

2
1 σ

−1
2 )Y2 f (X3σ

−1
2 σ−2

1 σ2, σ2σ
2
1 σ

−1
2 ) = 1,

which follows from Y−1
2 · X3σ

−1
2 σ−2

1 σ−1
2 · Y2 = X3σ

−1
2 σ−2

1 σ2 and from the fact
that Y2 commutes with σ2σ

2
1 σ

−1
2 .

3) Since σ 2
1 commutes with both σ2σ

2
1 σ2 and σ0σ

2
1 σ0 and since f ∈ F ′

2, one has

f (σ2σ
2
1 σ2, σ0σ

2
1 σ0) = f (σ2σ

2
1 σ2, (σ0σ

2
1 )

2)

(equality in B4). Since (σ0σ
2
1 )

2 ≡ (σ2σ1σ
2
0 σ1σ2)

−1 mod Z(P4) and f ∈ F ′
2, one

has

f (σ2σ
2
1 σ2, (σ0σ

2
1 )

2) = f (σ2σ
2
1 σ2, (σ2σ1σ

2
0 σ1σ2)

−1)

(equality in B4). Plugging these equalities in the pentagon equation

f (σ1σ
2
0 σ1, σ

2
2 ) f −1(σ 2

0 , σ
2
1 ) f (σ2σ

2
1 σ2, σ0σ

2
1 σ0) f −1(σ 2

1 , σ
2
2 ) f (σ 2

0 , σ1σ
2
2 σ1) = 1

(in B4) and multiplying by f −1(σ 2
0 , σ1σ

2
2 σ1) from the right, one obtains

f (σ1σ
2
0 σ1, σ

2
2 ) f −1(σ 2

0 , σ
2
1 ) f (σ2σ

2
1 σ2, (σ2σ1σ

2
0 σ1σ2)

−1) f −1(σ 2
1 , σ

2
2 )

= f −1(σ 2
0 , σ1σ

2
2 σ1)

(in B4). As σ2 commutes with both σ 2
0 and σ1σ

2
2 σ1, the right side of this equality,

and therefore also its left side, commutes with σλ2 . It follows that the equality also
holds with the left side replaced by its conjugation of σλ2 ; multiplying the resulting
equality by f (σ 2

0 , σ1σ
2
2 σ1) from the right, and using the identities σ2σ

2
1 σ2 =
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σ−1
2 σ−1

1 (σ1σ
2
2 σ1)σ1σ2, (σ2σ1σ

2
0 σ1σ2)

−1 = σ−1
2 σ−1

1 (σ1σ
2
2 σ1σ

2
0 )

−1σ1σ2, one
obtains

σλ2 f (σ1σ
2
0 σ1, σ

2
2 ) f −1(σ 2

0 , σ
2
1 )σ

−1
2 σ−1

1 f (σ1σ
2
2 σ1,

(σ1σ
2
2 σ1σ

2
0 )

−1)σ1σ2 f −1(σ 2
1 , σ

2
2 )σ

−λ
2 f (σ 2

0 , σ1σ
2
2 σ1) = 1. (21)

On the other hand, σ−1
1 σ 2

2 σ1 = σ2σ
2
1 σ

−1
2 ≡ (σ 2

2 σ
2
1 )

−1 mod Z(P3) (equalities in
P3); together with f ∈ F ′

2, this implies f ((σ 2
2 σ

2
1 )

−1, σ 2
2 ) = f (σ2σ

2
1 σ

−1
2 , σ 2

2 ) and
f (σ 2

1 , (σ
2
2 σ

2
1 )

−1) = f (σ 2
1 , σ

−1
1 σ 2

2 σ1) (equalities in P3). Plugging these equalities
in the hexagon equation

1 = (σ 2
2 )

m f ((σ 2
2 σ

2
1 )

−1, σ 2
2 )(σ

2
2 σ

2
1 )

−m f (σ 2
1 , (σ

2
2 σ

2
1 )

−1)(σ 2
1 )

m f (σ 2
2 , σ

2
1 )

(in P3), using the equalities f (σ2σ
2
1σ

−1
2 , σ 2

2 )=σ2 f (σ 2
1 , σ

2
2 )σ

−1
2 , f (σ 2

1 , σ
−1
1 σ 2

2 σ1)

= σ−1
1 f (σ 2

1 , σ
2
2 )σ1, (σ

2
2 )σ2 = σλ2 , σ1(σ

2
1 )

m = σλ1 , multiplying by σ1σ2 f −1(σ 2
1 ,

σ 2
2 )σ

−λ
2 from the left and using σ1(σ

2
2 σ

2
1 )

−mσ−1
1 = (σ1σ

2
2 σ1)

1−λ
2 , one obtains

σ1σ2 f −1(σ 2
1 , σ

2
2 )σ

−λ
2 = (σ1σ

2
2 σ1)

1−λ
2 f (σ 2

1 , σ
2
2 )σ

λ
1 f −1(σ 2

1 , σ
2
2 ).

Plugging this equality in (21), one obtains

σλ2 f (σ1σ
2
0 σ1, σ

2
2 ) f −1(σ 2

0 , σ
2
1 )σ

−1
2 σ−1

1 f (σ1σ
2
2 σ1, σ

−2
0 σ−1

1 σ−2
2 σ−1

1 )

(σ1σ
2
2 σ1)

1−λ
2 f (σ 2

1 , σ
2
2 )σ

λ
1 f −1(σ 2

1 , σ
2
2 ) f (σ 2

0 , σ1σ
2
2 σ1) = 1

(in B4 ×S4 S3). Taking the image of this equality under B4 ×S4 S3 → B1,3 and
multiplying the resulting equality by σ2 f −1(X2, σ

2
2 )σ

−λ
2 from the left, one obtains

σ2 f −1(X2, σ
2
2 )σ

−λ
2 = σ−1

1 f −1(X2σ
−2
1 , σ 2

2 ) f ((Y1, X1), X−1
1

(Y1, X1)
−1)(Y1, X1)

1−λ
2 f (σ 2

1 , σ
2
2 )σ

λ
1 f −1(σ 2

1 , σ
2
2 ) f (X1, (Y1, X1))

(in B1,3). As both σ2 and X2 commute with X1, the left side of this equality
commutes with Xλ1 , and therefore so does its right side. Expressing the equality
of Xλ1 with its conjugate by the right side, and conjugating the resulting equality,
one obtains

Ad
(

f ((Y1, X1), X−1
1 (Y1, X1)

−1)(Y1, X1)
1−λ

2 f (σ 2
1 , σ

2
2 )σ

λ
1 f −1(σ 2

1 , σ
2
2 )

f (X1, (Y1, X1))
)

((X1)
λ) = Ad

(

f (X2σ
−2
1 , σ 2

2 )σ1

)

((X1)
λ) (22)

(in B1,3).
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The equality

a••,•,•(β•,••β••,• ⊗ id•)a−1••,•,•
= a−1•,•,••(id• ⊗a•,•,•)(id• ⊗(β•,• ⊗ id•))(id• ⊗a−1•,•,•)a•,•,•• · (β2•,• ⊗ id••)
·a−1•,•,••(id• ⊗a•,•,•)(id• ⊗(β•,• ⊗ id•))(id• ⊗a−1•,•,•)a•,•,••

in PaB((••)(••)) follows from the fact that both sides correspond to the element
σ1σ

2
0 σ1 ∈ B4. Applying the automorphism Fλ, f to this equality, one obtains an

equality in PaB((••)(••)), which translates into the equality

f (σ1σ
2
0 σ1, σ

2
2 )(σ1σ

2
0 σ1)

λ f (σ1σ
2
0 σ1, σ

2
2 )

= f (σ 2
0 , σ1σ

2
2 σ1)

−1 f (σ 2
1 , σ

2
2 )σ

λ
1 f (σ 2

1 , σ
2
2 )

−1 f (σ 2
0 , σ1σ

2
2 σ1) · σ 2λ

0 ·
· f (σ 2

0 , σ1σ
2
2 σ1)

−1 f (σ 2
1 , σ

2
2 )σ

λ
1 f (σ 2

1 , σ
2
2 )

−1 f (σ 2
0 , σ1σ

2
2 σ1)

in B4 ×S4 S3 ⊂ B4.
As (Y1, X1) = σ1σ

2
2 σ1 (relation in B1,3), the image of this equality in B1,3 is

f (X2, σ
2
2 )X

λ
2 f (X2, σ

2
2 )

−1 = f (X1, (Y1, X1))
−1ug+u f (X1, (Y1, X1)),

where

u := f (σ 2
1 , σ

2
2 )σ

λ
1 f (σ 2

1 , σ
2
2 )

−1, g+ := f (X1, (Y1, X1))X
2λ
1 f (X1, (Y1, X1))

−1

(elements of B1,3). Conjugating by Y1 and using Y1 X2Y−1
1 = X2σ

−2
1 , Y1σ

2
1 Y−1

1 =
σ 2

1 , one obtains

f (X2σ
−2
1 , σ 2

2 )(X2σ
−2
1 )λ f (X2σ

−2
1 , σ 2

2 )
−1

= Y1 f (X1, (Y1, X1))
−1ug+u f (X1, (Y1, X1))Y

−1
1 .

As X2σ
−2
1 = σ1 X1σ

−1
1 , the left side of this identity identifies with the right side

of (22). Combining these identities, one gets

Ad
(

f ((Y1, X1), Y1 X−1
1 Y−1

1 )(Y1, X1)
1−λ

2

)

(ug+u−1)

= Ad
(

Y1 f (X1, (Y1, X1))
−1
)

(ug+u),

which gives after conjugation

ug+u−1 = g−ug+ug−1− ,

where g− := g−(X1,Y1), which is equivalent to u2 = (ug−1+ u−1, g−1− ), so the
pair (g+, g−) defined in the statement of the Proposition satisfies (10).
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4) The fact that GT → GTell , (λ, f ) �→ (λ, f, g±) is a morphism of semigroups
follows from the identity (g−(X,Y ), g+(X,Y )) = (Y, X)λ. It is straightforward
to check the commutativity of the first diagram; the second diagram follows from
((λ, f ) ∈ GT(k))⇒ (log f ∈ [f̂k

2 , f̂
k
2 ]).

5) The arguments used in the case of GT(ell) extend mutatis to their profinite, pro-l,
and prounipotent versions. ��

Remark 3.22 There are compatible group morphisms GT → Aut(Rell), GTl →
Aut(Rell

l ), GT(k) → Aut(Rell(k)) (where Rell
l = Ker(GTell

l → GTl)), defined
by (λ, f ) �→ θλ, f := conjugation by the image of (λ, f ) �→ (λ, f, g±)
from Proposition 3.21. One computes θλ, f (�+) = �

1/λ
+ and θλ, f ((�+�−)3) =

((�+�−)3/λ, where (�+�−)3 is a generator of Z(B3) = Z and (�+�−)3(1+2m) =
(�+�−)3(�+�−)6m = (�+�−)3 Ad(Y, X)m .

The semigroup scheme morphism from Proposition 3.21 restricts to a group scheme
morphism, which yields an action of GT(−) on Rell(−). The group scheme GTell(−)
has then a semidirect product structure, fitting in the diagram

GTell(−) � Rell(−)� GT(−)
↓ ↓

GL2 � SL2 �Gm

where the bottom map is induced by Gm → GL2, λ �→
(

λ 0
0 1

)

.

4 Elliptic associators

In this section, we introduce the notion of elliptic associator. This notion yields par-
ticular elliptic structures over BMCs. It gives rise to a scheme of elliptic associators,
which appears to be a torsor under the action of the group scheme GTell(−). We con-
struct a morphism of torsors from the scheme of associators to its elliptic analogue,
which enables us to establish the existence of rational elliptic associators.

4.1 Lie algebras tn and t1,n

Let k be a Q-ring. If S is a finite set, we define tk
S as the k-Lie algebra with generators

ti j , i  = j ∈ S and relations t j i = ti j , [ti j , tik + t jk] = 0 for i, j, k distinct, [ti j , tkl ] =
0 for i, j, k, l distinct. We define t̂k

S as its degree completion, where deg(ti j ) = 1.

For S′ ⊃ Dφ
φ→ S a partially defined map, there is a unique Lie algebra morphism

tk
S → tk

S′ , x �→ xφ , defined by (ti j )
φ := ∑

i ′∈φ−1(i), j ′∈φ−1( j) ti ′ j ′ . Then, S �→ tk
S is a

contravariant functor (finite sets, partially defined maps)→ {Lie algebras}.
We also define tk

1,S as the k-Lie algebra with generators x±i , i ∈ S and rela-

tions
∑

i∈S x±i = 0, [x±i , x±j ] = 0 for i  = j, [x+i , x−j ] = [x+j , x−i ] for i  =
j, [x±k , [x+i , x−j ]] = 0 for i, j, k distinct. We then have a Lie algebra morphism
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tk
S → tk

1,S, ti j �→ [x+i , x−j ], which we denote by x �→ {x}. We will also write

ti j = [x+i , x−j ]. We define t̂k
1,S as the degree completion of tk

1,S , where deg(x±i ) = 1.

For S′ φ→ S a map, there is a unique Lie algebra morphism tk
1,S → tk

1,S′ , x �→ xφ ,

such that (x±i )φ := ∑

i ′∈φ−1(i) x±i ′ . Then, S �→ tk
1,S is a contravariant functor (finite

sets, maps)→ {Lie algebras}. By restriction, S �→ tk
S may be viewed as a contravariant

functor of the same type, and the morphism tk
S → tk

1,S is then functorial; that is, we

have {x}φ = {xφ} for x ∈ tS and any map S′ φ→ S.
We set tk

n := tk[n], t1,n := tk
1,[n], where [n] = {1, . . . , n}, and we write xφ as

x I1,...,In , where Ii = φ−1(i) for x ∈ tk
n or x ∈ tk

1,n .

4.2 Elliptic associators

Recall that the set M(k) of associators defined over k is the set of (μ,�) ∈ k×exp(f̂k
2),

such that �3,2,1 = �−1,

eμt23/2�1,2,3eμt12/2�3,1,2eμt31/2�2,3,1 = eμ(t12+t13+t23)/2, (23)

�2,3,4�1,23,4�1,2,3 = �1,2,34�12,3,4, (24)

where� is viewed as an element of exp(t̂k
3) via the inclusion f̂k

2 ⊂ t̂k
3 , A, B �→ t12, t23.

Definition 4.1 The set Ell(k) of elliptic associators defined over k is the set of quadru-
ples (μ,�, A+, A−), where (μ,�) ∈ M(k) and A± ∈ exp(t̂k

1,2), such that:

α
3,1,2
± α

2,3,1
± α

1,2,3
± = 1, where α± = {e±μ(t12+t13)/2}A1,23

± {�1,2,3}, (25)

{eμt12} = ({�}−1 A1,23
− {�}, {e−μt12/2(�2,1,3)−1}(A2,13

+ )−1

{�2,1,3e−μt12/2}). (26)

Remark 4.2 We then have {e±μt12/2}A2,1
± {e±μt12/2}A1,2

± = 1 and {eμt12} = (A−, A+);
here as in (26), the notation (g, h) stands for the group commutator ghg−1h−1.

Then k �→ M(k), Ell(k) are functors {Q-rings} → {sets}, i.e. Q-schemes. We
have an obvious scheme morphism Ell → M, (μ,�, A+, A−) �→ (μ,�).

Define also a scheme morphism Ell → M2 by (μ,�, A+, A−) �→
(

u+ v+
u− v−

)

,

where u±, v± are the coefficients arising from log A± ≡ u±x+1 + v±x−1 mod
[t̂1,2, t̂1,2]. Then, relation (26) implies that the diagram

Ell → M
↓ ↓

M2
det→ A

commutes.
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4.3 Categorical interpretations

Definition 4.3 (see [9]) An infinitesimally braided monoidal category (IBMC) over
k is a set (C,⊗, c..., a...,U..., t...), such that:

1) (C,⊗, c..., a...) is a symmetric monoidal category (i.e., cY,X cX,Y = idX⊗Y );
2) Ob C 	 X �→ UX � AutC(X) is such that UX is a k-prounipotent group, and

iUX i−1 = UY for any i ∈ IsoC(X,Y );
3) (Ob C)2 	 (X,Y ) �→ tX,Y ∈ Lie UX⊗Y is a natural assignment;
4) tY,X = cX,Y tX,Y c−1

X,Y and

tX⊗Y,Z = aX,Y,Z (idX ⊗tY,Z )a
−1
X,Y,Z

+ (cY,X ⊗ idZ )aY,X,Z (idY ⊗tX,Z )((cY,X ⊗ idZ )aY,X,Z )
−1.

A functor f : C → C′ between IBMCs is then a tensor functor, such that
f (UX ) ⊂ U ′

f (X) and f (tX,Y ) = t ′f (X), f (Y ). An example of IMBC is constructed as
follows: C = PaCD is the category with the same objects as PaB, PaCD(O, O ′) :=
{

exp(t̂|O|)� S|O| if |O| = |O ′|
∅ otherwise

, cO,O ′ = s|O|,|O ′| ∈ S|O|+|O ′| ⊂ AutPaCD(O ⊗
O ′) is the permutation i �→ i+|O ′| for i ∈ [1, |O|], i �→ i−|O| for i ∈ [|O|+1, |O|+
|O ′|], aO,O ′,O ′′ := 1, UO = exp(t̂k|O|) � AutC(O), tO,O ′ := ∑|O|

i=1

∑|O|+|O ′|
i ′=|O|+1 tii ′ .

The pair (PaCD, •) is initial among pairs (an IBMC, a distinguished object).
We then set:

Definition 4.4 An elliptic structure over the IBMC C is a set (C̃, F, Ũ..., x±...), where
C̃ is a category, F : C → C̃ is a functor, Ob C̃ 	 X̃ �→ ŨX̃ � AutC̃(X̃) is the

assignment of a k-prounipotent group, where ĩ ŨX̃ ĩ−1 = ŨỸ for ĩ ∈ IsoC̃(X̃ , Ỹ )

and F(UX ) ⊂ ŨF(X), and (Ob C)2 	 (X,Y ) �→ x±X,Y ∈ Lie ŨF(X⊗Y ) is a natural
assignment, such that

x±Y,X = F(cX,Y )x
±
X,Y F(c−1

X,Y ), x±X,1 = 0,

x±X⊗Y,Z + F(cX,Y⊗Z aX,Y,Z )
−1x±Y⊗Z ,X F(cX,Y⊗Z aX,Y,Z )

+F(a−1
Z ,X,Y cX⊗Y,Z )

−1x±Z⊗X,Y F(a−1
Z ,X,Y cX⊗Y,Z ) = 0,

F(tX,Y ⊗ idZ ) = [F(aX,Y,Z )
−1x+X,Y⊗Z F(aX,Y,Z ),

F((cX,Y ⊗ idZ )
−1aY,X,Z )x

−
Y,X⊗Z F(a−1

Y,X,Z (cX,Y ⊗ idZ ))].

Functors between pairs (an IBMC, an elliptic structure over it) are defined in
an obvious way. An elliptic structure over PaCD is defined as follows: C̃ :=
PaCDell is the category with the same objects as PaB, PaCDell(O, O ′) :=
{

exp(t̂k
1,|O|)� S|O| if |O| = |O ′|

∅ otherwise,
ŨO = exp(t̂1,|O|)�AutPaCDell (O), F is induced

by the morphism tn → t1,n, x �→ {x} and the identity between symmetric groups,
x±O,O ′ = ∑|O|

i=1 x±i ∈ Lie ŨO⊗O ′ . The triple (PaCD,PaCDell , •) is universal for
triples (an IBMC, an elliptic structure over it, a distinguished object).
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Let us say that a k-BMC is a braided monoidal category (BMC) C, such
that the image of each morphism Pn → AutC(X1 ⊗ · · · ⊗ Xn) is contained
in a k-prounipotent group. Then, each (μ,�) ∈ M(k) gives rise to a map
{IBMCs} → {k-BMCs}, C �→ (μ,�) ∗ C, where (μ,�) ∗ C := (C,⊗, βX,Y :=
cX,Y eμtX,Y /2, ãX,Y,Z := �(aX,Y,Z (tX,Y ⊗ idZ )a

−1
X,Y,Z , idX ⊗tY,Z )aX,Y,Z ).

In the same say, a k-elliptic structure over a k-BMC is an elliptic structure, such
that the image of each morphism P1,n → AutC̃(F(X1 ⊗ · · · ⊗ Xn)) is contained in
a k-prounipotent group. Then, each (μ,�, A+, A−) ∈ Ell(k) gives rise to a map
{(an IBMC, an elliptic structure over it)} → {(a k-BMC, an elliptic structure over
it)}, (C, C̃) �→ (μ,�, A+, A−) ∗ (C, C̃) = (C′, C̃′), where C′ = (μ,�) ∗ C and
C̃′ = (C̃, F, Ã+

X,Y , Ã−
X,Y ), where Ã±

X,Y := A±(x+X,Y , x−X,Y ).

4.4 Action of GTell(−) on Ell

Recall first that there is an action of GT(k) on M(k), defined by

(λ, f ) ∗ (μ,�) := (λμ,�(A, B) f (eμA,�(A, B)−1eμB�(A, B))) = (μ′,�′).

For (λ, f, g+, g−) ∈ GTell(k) and (μ,�, A+, A−) ∈ Ell(k), we set

(λ, f, g+, g−) ∗ (μ,�, A+, A−) := (μ′,�′, A′+, A′−)

where A′± := g±(A+, A−).

Proposition 4.5 This defines an action of GTell(k) on Ell(k).

Proof For gell ∈ GTell(k), and (C, C̃) ∈ {(a k-BMC, an elliptic structure over it)}, we
have gell ∗ ((μ,�, A+, A−) ∗ (C, C̃)) = (gell ∗ (μ,�, A±)) ∗ (C, C̃). When (C, C̃) =
(PaCD,PaCDell), (μ,�, A+, A−) can be recovered uniquely from (μ,�, A+, A−)∗
(C, C̃), as eμt12 = β2•,•, � = ã•,•,•, and A± = A±•,•, which implies that the above
formula defines an action. ��
Remark 4.6 The actions of GT(k) on {k-BMCs} and on M(k) are compatible, in the
sense that for g ∈ GT(k), g ∗ ((μ,�) ∗ C) = (g ∗ (μ,�)) ∗ C. In the same way, the
actions of GTell(k) on {(a k-BMC, an elliptic structure over it)} and on Ell(k) are
compatible.

Remark 4.7 The morphism Ell → M2 from Sect. 4.2 is compatible with the semi-
group scheme morphism GTell(−) → M2 from Proposition 3.11, with the action of
GTell on Ell, and with the left multiplication action of M2 on itself.

4.5 A morphism M → Ell

The scheme morphism Ell → M, (μ,�, A+, A−) → (μ,�) is clearly compatible
with the semigroup scheme morphism GTell(−) → GT(−). We now construct a
section of this morphism.
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Proposition 4.8 There is a unique scheme morphism σ : M → Ell, (μ,�) →
(μ,�, A+, A−), where

A+ := �

(

ad x1

ead x1 − 1
(y2), t12

)

· e
μ

ad x1
ead x1−1

(y2) ·�
(

ad x1

ead x1 − 1
(y2), t12

)−1

,

A− := eμt12/2�

(

ad x2

ead x2 − 1
(y1), t21

)

ex1�

(

ad x1

ead x1 − 1
(y2), t12

)−1

(we set xi := x+i , yi := x−i ). It is compatible with the semigroup scheme morphism
GT(−)→ GTell(−) from Proposition 3.21.

One checks that σ fits in a diagram

M
σ→ Ell

↓ ↓
A → M2

where the bottom map is μ �→
(

0 −μ
1 0

)

. This diagram is compatible with the last

diagram of Proposition 3.21.

Proof By Calaque et al. [7], Prop. 5.3, (μ,�, A+, A−) satisfies

A12,3
± = {e±μt12/2(�−1)2,1,3}A2,13

± {�2,1,3e±μt12/2�−1}A1,23
± {�},

and therefore (25).
The last identity of loc. cit. can be rewritten as follows (using the commutation of

{t12} with A12,3
+ )

A2,13
− {�2,1,3}A12,3

+ {(�2,1,3)−1}(A2,13
− )−1

= {(�3,1,2)−1eμt12/2�3,2,1eμt23�1,2,3e−μt12/2}A12,3
+ {�3,1,2}.

Now, the hexagon and duality identities imply

(�3,2,1)−1eμt12/2�3,2,1eμt23�1,2,3e−μt12/2 = e−μt13/2�2,3,1eμt23/2(�3,2,1)−1

eμt3,12/2,�3,1,2 = eμt3,21/2�3,2,1e−μt23/2(�2,3,1)−1e−μt13/2, (27)

and

�2,1,3 = e∓μt13/2�2,3,1e∓μt23/2(�3,2,1)−1e±μt3,12/2,
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so (27) is rewritten (using the commutation of {t13} with A2,13
− )

{e−μt13/2}A2,13
− {�2,3,1e−μt23/2(�3,2,1)−1eμt3,12/2}A12,3

+
{eμt3,12/2�3,2,1e−μt23/2(�2,3,1)−1}(A2,13

− )−1{e−μt13/2}
= {e−μt13/2�2,3,1eμt23/2(�3,2,1)−1eμt3,21/2}A12,3

+
{eμt3,21/2�3,2,1e−μt23/2(�2,3,1)−1e−μt13/2}. (28)

As A2,1
+ eμt12/2 A+eμt12/2 = 1, we have eμt3,12/2 A12,3

+ eμt3,12/2 = (A3,12
+ )−1; using this

identity and performing the transformation of indices (1, 2, 3)→ (3, 1, 2), (28) yields
(26). So (μ,�, A+, A−) ∈ Ell(k). The compatibility of σ : M(k) → Ell(k) with
the semigroup morphism GT(k)→ GTell(k) follows from (A−, A+) = eμt12 . ��

4.6 A subscheme Ell ⊂ Ell and its torsor structure under GTell(−)

Set M(k) := {(μ,�)|μ ∈ k×} ⊂ M(k) and Ell(k) := {(μ,�, A±)|μ ∈ k×} ⊂
Ell(k). The actions of GT(ell) restrict to actions of GT(k) on M(k) and GTell(k) on
Ell(k). Recall that M(Q)  = ∅ and that M(k) is a principal homogeneous space under
the action of GT(k) ([9]). Similarly:

Proposition 4.9 1) The map Ell(k)→ M(k) is surjective ;
2) Ell(k)  = ∅ (in particular, Ell(Q)  = ∅) ;
3) Ell(k) is a principal homogeneous space under the action of GTell(k).

Proof The scheme morphism σ : M → Ell restricts to a morphism M → Ell, which
yields a map M(k) → Ell(k), which is a section of the map Ell(k) → M(k). It
follows that the latter map is surjective, which proves 1). The nonemptiness of Ell(Q)
then follows from that of M(Q) and from the surjectivity of Ell(Q) → M(Q). It
follows that Ell(k) is also nonempty. This proves 2). ��

Let us show that the action of GTell(k) on Ell(k) is free. If (λ, f, g+, g−) ∈
Stab(μ,�, A+, A−), then by the freeness of the action of GT(k) on M(k), (λ, f ) =
1. Then, A± = g±(A+, A−). Relation (26) implies that if a±, b± ∈ k are such
that log A± ≡ a±x+1 + b±x−1 mod degree ≥ 2 (where x±1 have degree 1), then
a+b− − a−b+ = μ, which implies that (log A+, log A−) generate t̂k

1,2, and therefore
that g± = 1.

We now prove that the action is transitive. As the action of GT(k) on M(k) is tran-
sitive, and as GTell(k)→ GT(k) is surjective (as the morphism defined in Proposition
3.21 restricts to a section of it), it suffices to prove that for any (μ,�) ∈ Ell(k), the
action of Rell(k) on {(A+, A−)|(μ,�, A+, A−) ∈ Ell(k)} is transitive. If (A+, A−)
and (A′+, A′−) belong to this set, then there is a unique (g+, g−) ∈ F2(k)2 � P1,2(k)2

such that A′± = g±(A+, A−). Then,

α
1,2,3
± α

3,1,2
± α

2,3,1
± = 1, where α± = g±(A1,23

+ , A1,23
− ){�1,2,3e±μt12,3/2}.
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The canonical morphism B1,3 → Aut(μ,�,A+,A−)∗PaCD(•(••)) = exp(t̂k
1,3) �

S3 extends to an isomorphism B1,3(k) � exp(t̂k
1,3) � S3, given by X±

1 �→
A1,23
± , σ1 �→ {�eμt12/2}(12){�}−1, σ2 �→ {eμt23/2}(23). It is such that σ±1

2 σ±1
1 �→

{�e±(μ/2)t3,12}(23)(12). The preimage of the above identity by this isomorphism then
yields (g±(X+

1 , X−
1 )σ

±1
2 σ±1

1 )3 = 1. Similarly, the preimage of the identity

{eμt12} =
(

{�−1}g−(A1,23
+ , A1,23

− ){�}, {e−(μ/2)t12

(�2,1,3)−1}g−1+ (A2,13
+ , A2,13

− ){�2,1,3e−(μ/2)t12}
)

yields σ 2
1 = (σ1g−1+ (X+

1 , X−
1 )σ1, g−(X+

1 , X−
1 )).

Recall the following definition:

Definition 4.10 A Q-torsor is the data of: Q-group schemes G, H , a Q-scheme X ,
commuting left and right actions of G, H on X , such that: for any k with X (k)  = ∅,
the action of G(k) and H(k) on X (k) is free and transitive.

Morphisms of torsors are then defined in the obvious way.
The above Q-scheme morphisms between Ell and M restrict to a torsor morphism

Ell → M and a section of it M
σ→ Ell, fitting in commutative diagrams

Ell → M
↓ ↓

GL2
det→ Gm

and

M → Ell
↓ ↓

Gm

μ�→
(

0 −1
μ 0

)

→ GL2

5 The group GRTel l(k) and isomorphisms of Lie algebras

In this section, we study the group scheme GRTell(−) of GTell(−)-automorphisms
of the scheme of elliptic associators. We show that its Lie algebra grtell is graded
and equipped with a graded morphism grtell → grt. We construct a section of this
morphism, which brings to light the semidirect product structure of grtell . We show
that the Lie subalgebra sl2 ⊂ Der(t1,2) and the derivations δ2k, k ≥ 0 of t1,2 from
[7] give rise to a family of elements of the kernel rell := Ker(grtell → grt) (which
according to Conjecture 10.1, should generate it as a Lie algebra). The existence of
rational elliptic associators enables us to construct an isomorphism between the group
schemes GTell(−) and GRTell(−), compatible with their semidirect product structures
and with their actions on the elliptic braid groups and their graded versions.

5.1 Reminders about GRT(k)

Let k be a Q-ring. Recall [9] that GRT1(k) is defined as the set of all g ∈ exp(f̂k
2) ⊂

exp(t̂k
3), such that:
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g3,2,1 = g−1, g3,1,2g2,3,1g1,2,3 = 1(relations in exp(t̂k
3)),

t12 + Ad(g1,2,3)−1(t23)+ Ad(g2,1,3)−1(t13) = t12 + t13 + t23 (relation in t̂k
3),

g2,3,4g1,23,4g1,2,3 = g1,2,34g12,3,4 (relation in exp(t̂k
4)).

This is a group with law (g1 ∗ g2)(A, B) := g1(Ad(g2(A, B))(A), B)g2(A, B). Note
that g ∈ GRT1(k) gives rise to θg ∈ Aut(t̂k

3), defined by

θg : t12 �→ t12, t23 �→ Ad(g1,2,3)−1(t23), t13 �→ Ad(g2,1,3)−1(t13).

Then g1 ∗ g2 = g1θg2(g1), and θg1∗g2 = θg2θg1 , so g �→ θg is a group antimorphism.
The group k× acts on GRT1(k) by (c · g)(A, B) := g(c−1 A, c−1 B), and one sets

GRT(k) := GRT1(k)� k×. GRT1(−) is a prounipotent group scheme.

5.2 The group GRTell(k)

Define GRTell
1 (k) as the set of all (g, u+, u−), such that g ∈ GRT1(k), u± ∈ t̂k

1,2,
and

Ad(g1,2,3)−1(u1,23
± )+ Ad(g2,1,3)−1(u2,13

± )+ u3,12
± = 0, (29)

[Ad(g1,2,3)−1(u1,23
± ), u3,12

± ] = 0, (30)

[Ad(g1,2,3)−1(u1,23
+ ),Ad(g2,1,3)−1(u2,13

− )] = t12 (31)

(relations in t̂k
1,3). Set (g1, u1+, u1−) ∗ (g2, u2+, u2−) := (g, u+, u−), where

u±(x1, y1) := u1±(u2+(x1, y1), u2−(x1, y1)) (32)

(where tk
1,2 is viewed as the free Lie algebra generated by x1, y1).

We first prove:

Lemma 5.1 (g, u+, u−) ∈ GRTell
1 (k) iff there exists an automorphism of t̂k

1,3 (hence-
forth denoted θg,u± ), such that

x±1 �→ Ad(g1,2,3)−1(u1,23
± ), x±2 �→ Ad(g2,1,3)−1(u2,13

± ), x±3 �→ u3,12
± ,

t12 �→ t12, t23 �→ Ad(g1,2,3)−1(t23), t13 �→ Ad(g2,1,3)−1(t13).

Proof The condition that the relations x±1 + x±2 + x±3 = 0 (resp., [x±1 , x±3 ] =
0, [x+1 , x−2 ] = t12) are preserved is equivalent to condition (29) (resp., (30),
(31)), and the relation [t12, x±3 ] = 0 is automatically preserved. Then, the relation
g3,1,2g2,3,1g1,2,3 = 1 implies that θg,u±(x

2,3,1) = Ad(g1,2,3)−1(θg,u±(x)
2,3,1) for

x ∈ {x±i , ti j }. So the other relations [ti j , x±k ] = 0 are also preserved. ��

Proposition 5.2 GRTell
1 (k), equipped with the above product, is a group.
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Proof The product is that of the group GRT1(k)×Aut(t̂k
1,2)

op, so it remains to prove

that GRTell
1 (k) is stable under the operations of product and inverse. If (gi , ui±) ∈

GRTell
1 (k) (i = 1, 2), then the action of θg2,u

±
2
θg1,u

±
1

on the generators of t̂k
1,3 is given

by the formulas of Lemma 5.1, with g = g1 ∗ g2 and u± as in (32). So (g, u±) ∈
GRTell

1 (k), as claimed. Similarly, if (g, u±) ∈ GRTell
1 (k), then the action of θ−1

g,u± on

the generators of t̂k
1,3 is as in Lemma 5.1, with (g, u±) replaced by (inverse of g in

GRT1(k), inverse of (u+, u−) in Aut(t̂k
1,2)), so (g, u±) is invertible. ��

In particular, we have

θ(g2,u
±
2 )
θ(g1,u

±
1 )

= θ(g1,u
±
1 )∗(g2,u

±
2 )
. (33)

The assignments k �→ GRT1(k),GRTell
1 (k) are then Q-group schemes.

For (g, u±) ∈ GRTell
1 (k), define a±, b± ∈ k by u±(x1, y1) = a±x1 + b±y1 mod

[t̂k
1,2, t̂

k
1,2].

Lemma 5.3 1) There is a unique group scheme morphism GRTell
1 (−) → SL2,

(g, u±) �→
(

a+ b+
a− b−

)

.

2) This morphism has a section SL2 → GRTell
1 (−), given by

(

a+ b+
a− b−

)

�→
(1, u±(x1, y1) = a±x1 + b±y1).

Proof 1) a+b− − a−b+ = 1 follows from (31); the morphism property is clear. 2) is
straightforward. ��

We now set GRTell
I2
(k) := Ker

(

GRTell
1 (k) → SL2(k)

)

. This defines a group

scheme GRTell
I2
(−).

Lemma 5.4 GRTell
I2
(−) is a prounipotent group scheme; we have GRTell

1 (−) =
GRTell

I2
(−)� SL2.

Proof GRTell
I2
(k) is a subgroup of GRT1(k)×Ker

(

Aut(t̂k
1,2)→ GL2(k)

)

; the assign-

ment k �→ (the latter group) is a prounipotent group scheme, hence so is GRTell
I2
(−).

The second statement follows from Lemma 5.3. ��
The group k× acts on GRTell

1 (k) by c · (g, u±) := (c · g, c · u±), where c · g is as
above, (c · u+)(x+1 , x−1 ) := u+(x+1 , c−1x−1 ), (c · u−)(x+1 , x−1 ) := cu−(x+1 , c−1x−1 ).
We then set GRTell(k) := GRTell

1 (k) � k×. Then, k �→ GRTell(k) is a Q-group
scheme, and GRTell(−) = GRTell

1 (−)� Gm .
There is a unique group scheme morphism GRTell

1 (−) → GRT1(−), given by
(g, u±) �→ g; it extends to a group scheme morphism

GRTell(−)→ GRT(−), (34)

whose restriction to Gm is the identity.
To elucidate the structure of GRTell(−), we use the following statement on iterated

semidirect products:
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Lemma 5.5 Let Gi be groups (i = 1, 2, 3). The following data are equivalent:

(a) actions12 G j → Aut(Gi ) for i < j , such that g3∗(g2∗g1) = (g3∗g2)∗(g3∗g1);
(b) actions G j → Aut(Gi ) for (i, j) = (1, 2) and (2, 3), and an action G23 →

Aut(G12) (where Gi j := Gi � G j ), compatible with the actions of G j on Gi for
(i, j) = (1, 2) or (2, 3), and with the adjoint action of G2 on itself.
These equivalent data yield actions G3 → Aut(G12) and G23 → Aut(G1), and
we then have a canonical isomorphism (G1 � G2)� G3 � G1 � (G2 � G3).

Proof Straightforward. ��
We then have an action of GL2 on GRTell

1 (−), given by γ · (g, u+, u−) := (det γ ·
g, ũ+, ũ−), where

(

ũ+(x1, y1)

ũ−(x1, y1)

)

:= γ−1
(

u+(x̃1, ỹ1)

u−(x̃1, ỹ1)

)

and
(

x̃1
ỹ1

)

:= γ
(

x1
y1

)

. It satisfies

the conditions of Lemma 5.5, (b), where: G1 = GRTell
I2
(−), G2 = SL2, G3 = Gm ,

the isomorphism G2 � G3 � GL2 being given by Gm → GL2, c �→
(

1 0
0 c

)

. We

have therefore an isomorphism

GRTell(−) � GRTell
I2
(−)� GL2,

where we recall that GRTell
I2
(−) is prounipotent.

The morphism (34) then fits in a commutative diagram

GRTell(−)→ GRT(−)
↓ ↓

GL2
det→ Gm

as the morphism G2 � G3 → G3 coincides with det.

5.3 A morphism GRT(k)→ GRTell(k)

We now construct a section of the morphism (34). We first set

t0i := − ad xi

ead xi − 1
(yi ) ∈ t̂k

1,n for i ∈ {1, ..., n}. (35)

For g = g(A, B) ∈ exp(f̂k
2),

we set g0,1,2 := g(t01, t12) ∈ exp(t̂k
1,2)g

0,2,1 := g(t02, t21) ∈ exp(t̂k
1,2).

Lemma-Definition 5.6 For g ∈ exp(f̂k
2), there existsαg ∈ Aut(t̂k

1,2), uniquely defined

by αg(x1) = log(g0,2,1ex1(g0,1,2)−1), αg(t01) = g0,1,2t01(g0,1,2)−1. We set

(ug
+, ug

−) := (αg(x1), αg(y1)) ∈ (t̂k
1,2)

2.

12 The action of g j ∈ G j on gi ∈ Gi is denoted g j ∗ gi ∈ Gi .
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Proof This follows from the fact that tk
1,2 is freely generated by x1 and t01. ��

Proposition 5.7 There exists a unique group morphism GRT1(k) → GRTell
1 (k),

given by g �→ (g, ug
+, ug

−). It is compatible with the action of k×, hence extends
to a group morphism GRT(k) → GRTell(k), which is a section of (34) and fits in a
commutative diagram

GRT(−)→ GRTell(−)
↓ ↓

Gm → GL2,

where the bottom morphism is c �→
(

1 0
0 c

)

.

Proof We first prove: ��
Lemma 5.8 t̂k

1,n admits the following presentation: generators xi , tαβ (i ∈ {1, ..., n},
α  = β ∈ {0, ..., n}); one sets Xi := exi ; relations (i, j, ... run over {1, ..., n} while
α, β, ... run over {0, . . . , n}):

tβα = tαβ for α  = β, [tαβ, tγ δ] = [tαβ, tαγ + tβγ ] = 0 for α, ..., δ all different,

(36)

log
(

Xi , X j
) = log

(

∏

i

Xi

)

= 0, (37)

Xi (t0 j + ti j )X
−1
i = t0 j if i  = j, Xi t0i X−1

i =
∑

α  =i

tαi , (38)

Xi t jk X−1
i = t jk for i, j, k distinct, (X j Xk)t jk(X j Xk)

−1 = t jk for i  = j, (39)
∑

0≤α<β≤n

tαβ = 0. (40)

Proof One first checks that if one defines t0i as in (35), then the above relations are
satisfied; conversely, if one sets yi := − ead xi −1

ad xi
(t0i ), then the above relations lead to

the defining relations of t̂k
1,n . ��

Lemma 5.9 Let (g, u±) ∈ GRTell
1 (k) and α ∈ Aut(t̂k

1,2) be defined by α(x±1 ) = u±.

Then θg,u± ∈ Aut(t̂k
1,3) (see Lemma 5.1) may be defined by

θg,u± : X1 �→ Ad(g1,2,3)−1(α(X1)
1,23), X2 �→ Ad(g2,1,3)−1(α(X1)

2,13), X3 �→
α(X1)

3,12, t01 �→ Ad(g1,2,3)−1(α(t01)
1,23), t02 �→ Ad(g2,1,3)−1(α(t01)

2,13),

t03 �→ α(t01)
3,12, t12 �→ t12, t23 �→ Ad(g1,2,3)−1(t23), t13 �→Ad(g2,1,3)−1(t13).

Proof Immediate. ��
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Lemma 5.10 Let g ∈ GRT1(k). There is a unique θ̃g ∈ Aut(t̂k
1,3), such that

θ̃g : X1 �→ (g1,2,3)−1g0,23,1 X1(g
0,1,23)−1g1,2,3,

X2 �→ (g2,1,3)−1g0,13,2 X2(g
0,2,13)−1g2,1,3,

X3 �→ g0,12,3 X3(g
0,3,12)−1,

t01 �→ Ad((g1,2,3)−1g0,1,23)(t01), t02 �→ Ad((g2,1,3)−1g0,2,13)(t02),

t03 �→ Ad(g0,3,12)(t03), (41)

t12 �→ t12, t23 �→ Ad(g1,2,3)−1(t23), t13 �→ Ad(g2,1,3)−1(t13). (42)

Proof Let us first prove that relations (36) and (40) (for n = 3) are preserved. In
Sect. 5.4, we will construct an elliptic IBMC g ∗ PaCD with distinguished object •,
which gives rise to a functor PaCD → g ∗ PaCD. One derives from there an auto-
morphism exp(t̂k

n) � Sn = AutPaCD(O) → Autg∗PaCD(O) = exp(t̂k
n) � Sn for any

O ∈ PaCD(O), |O| = n. When O = •((••)•), the resulting automorphism of t̂k
4

is given by (41), (42). So relations (36) are preserved. The automorphism necessarily
preserves Z(t̂k

4) = k ·∑α<β tαβ , so relation (40) is also preserved.
Note for later use that

θ̃g(x
2,3,1) = Ad(g1,2,3)−1(θ̃g(x)

2,3,1) for x ∈ {xi , tαβ}. (43)

We have

θ̃g(X2)θ̃g(X3) = (g2,1,3)−1g0,13,2 X2(g
0,2,13)−1g2,1,3g0,21,3 X3(g

0,3,12)−1

= (g2,1,3)−1g0,13,2 X2g02,1,3(g0,2,1)−1 X3(g
0,3,12)−1

= (g2,1,3)−1g0,13,2g0,1,3 X2 X3(g
03,2,1)−1(g0,3,12)−1

= (g2,1,3)−1(g1,3,2)−1g0,1,32g01,3,2 X2 X3(g
0,3,2)−1(g0,32,1)−1(g3,2,1)−1

= (g2,1,3)−1(g1,3,2)−1g0,1,32 X2 X3(g
0,32,1)−1(g3,2,1)−1,

while

θ̃g(X3)θ̃g(X2) = g0,21,3 X3(g
0,3,12)−1(g2,1,3)−1g0,13,2 X2(g

0,2,13)−1g2,1,3

= g0,21,3 X3g03,1,2(g0,3,1)−1 X2(g
0,2,13)−1g2,1,3

= g0,12,3g0,1,2 X3 X2(g
02,3,1)−1(g0,2,13)−1g2,1,3

= (g1,2,3)−1g0,1,23g01,2,3 X3 X2(g
0,2,3)−1(g0,23,1)−1(g2,3,1)−1g2,1,3

= (g1,2,3)−1g0,1,23 X3 X2(g
0,23,1)−1(g2,3,1)−1g2,1,3,

which implies (θ̃g(X2), θ̃g(X3)) = 1. Then, (43) implies that (θ̃g(Xi ), θ̃g(X j )) = 1
for any i, j .
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The above computation of θ̃g(X2)θ̃g(X3) implies that

θ̃g(X1)θ̃g(X2)θ̃g(X3)

= (g1,2,3)−1g0,23,1 X1(g
0,1,23)−1g1,2,3(g2,1,3)−1(g1,3,2)−1

X2 X3(g
0,32,1)−1(g3,2,1)−1 = 1

as X1 X2 X3 = 1. So X1 X2 X3 = 1 is preserved.
θ̃g(X3) clearly commutes with θ̃g(t12), which implies that X j t jk X−1

i = t jk is
preserved in view of (43), as well as X j Xkt jk(X j Xk)

−1 = t jk (as the Xi commute
and X1 X2 X3 = 1).

Now,

θ̃g(t02 + t12)=Ad((g2,1,3)−1g0,2,31)(t02)+ t12=Ad(g0,21,3)(Ad(g0,2,1)(t02)+ t12)

= Ad(g0,21,3)(t01 + t02 + t12 − Ad(g0,1,2)(t01))

= t12 + Ad(g0,21,3)(t01 + t02)− Ad(g0,12,3g0,1,2)(t01).

Then,

θ̃g(X1)θ̃g(t02 + t12)

= (g1,2,3)−1g0,23,1 X1

(

(g0,1,23)−1g1,2,3t12 + (g0,1,23)−1g1,2,3g0,12,3

(t01 + t02)(g
0,12,3)−1 − (g0,1,23)−1g1,2,3g0,12,3g0,1,2t01(g

0,1,2)−1(g0,12,3)−1
)

= (g1,2,3)−1g0,23,1 X1

(

g01,2,3(g0,1,2)−1t12(g
0,12,3)−1 + g01,2,3

(g0,1,2)−1(t01 + t02)(g
0,12,3)−1 − g01,2,3t01(g

0,1,2)−1(g0,12,3)−1
)

= (g1,2,3)−1g0,23,1 X1g01,2,3(t02 + t12)(g
0,1,2)−1(g0,12,3)−1

= (g1,2,3)−1g0,23,1g0,2,3t02 X1(g
0,1,2)−1(g0,12,3)−1,

while

θ̃g(t02)θ̃g(X1)= (g2,1,3)−1g0,2,31t02(g
0,2,31)−1g2,1,3(g1,2,3)−1g0,23,1 X1(g

0,1,23)−1

g1,2,3 = (g2,1,3)−1g0,2,31t02g02,3,1(g0,2,3)−1 X1(g
0,1,23)−1g1,2,3

= (g2,1,3)−1g0,2,31g02,3,1t02 X1(g
01,2,3)−1(g0,1,23)−1g1,2,3

= g3,1,2g2,3,1g0,23,1g0,2,3t02 X1(g
0,1,2)−1(g0,12,3)−1,

so the relation X1(t02+ t12)X
−1
1 = t02 is preserved. (43) then implies that the relations

Xi (t0 j +ti j )X
−1
i = t0 j are preserved. Together with the other relations, these relations

imply the relations Xi t0i X−1
i = ∑

α  =i tαi , which are therefore also preserved. ��
End of proof of Proposition 5.7 If g ∈ GRT1(k), then one checks that the automor-
phisms θ̃g from Lemma 5.10 and αg ∈ Aut(t̂k

1,2) from Lemma-Definition 5.6 are
related in the same way as θg,u± and α are in Lemma 5.9. It follows that if ug

±
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are as in Lemma-Definition 5.6, then (g, ug
+, ug

−) ∈ GRTell
1 (k). This defines a map

GRT1(k)→ GRTell
1 (k). ��

Let us show that GRT1(k) → GRTell
1 (k) is a group morphism. In view of (33), it

suffices to prove that θ̃g2 θ̃g1 = θ̃g1∗g2 , which can be checked directly, e.g.,

θ̃g2(θ̃g1(X1)) = θ̃g2(g
0,2,1
1 X1(g

0,1,2)−1) = θ̃g2(g1(t02, t21)X1g−1
1 (t01, t12))

= g1(Ad(g0,2,1
2 )(t02), t21)g

0,2,1
2 X1(g

0,2,1
2 )−1g−1

1 (Ad(g0,2,1
2 )(t01), t12)

= (g1 ∗ g2)
0,2,1 X1((g1 ∗ g2)

0,1,2)−1 = θ̃g1∗g2(X1),

etc.
Let us prove that GRT1(k) → GRTell

1 (k) is compatible with the actions of k×. If
c · (g, u±) = (g̃, ũ±), then θg̃,ũ± and θg,u± are related by θg̃,ũ± = γcθg,u±γ

−1
c , where

γc ∈ Aut(t̂k
1,3) is given by γc(x

+
i ) = x+i , γc(x

−
i ) = c−1x−i . It then suffices to prove

that θ̃g̃ = γcθ̃gγ
−1
c , where we recall that g̃(A, B) = g(c−1 A, c−1 B), which follows

from γc(xi ) = xi , γc(tαβ) = c−1tαβ for 0 ≤ α  = β ≤ 3.
The final commutative diagram follows from

GRTell
1 (k)� k×

�� �������������

SL2(k)� k× ∼ �� GL2(k)

We set

Rgr
ell(k) := Ker

(

GRTell(k)→ GRT(k)
)

. (44)

Explicitly,

Rgr
ell(k) = {(u+, u−) ∈ (t̂k

1,2)
2|u1,23

± + u2,31
± + u3,12

± = 0, [u1,23
± , u2,13

± ] = 0,

[u1,23
+ , u2,13

− ] = t12} ⊂ Aut(t̂k
1,2)

op. (45)

Then, k �→ Rgr
ell(k) is Q-group scheme, and we have a commutative diagram

1 → Rgr
ell(−)→ GRTell(−)→ GRT(−)→ 1
↓ ↓ ↓

1 → SL2 → GL2
det→ Gm → 1

The lift of GRTell(−) → GL2 restricts to a morphism SL2 → Rgr
ell(−), and the

structure of Rgr
ell(−) is therefore

Rgr
ell(−) = Ker

(

Rgr
ell(−)→ SL2

)

� SL2,

in which the kernel is prounipotent.
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The morphism from Proposition 5.7 enables us to define an action of GRT(−) on
Rgr

ell(−). GRTell(−) has then the structure of a semidirect product, fitting in

GRTell(−) � Rgr
ell(−)� GRT(−)

↓ ↓
GL2 � SL2 �Gm

where the bottom morphism is induced by Gm → GL2, c �→
(

1 0
0 c

)

.

Remark 5.11 For any n ≥ 1, the algebra U (t̂k
1,n)�Sn is generated by x±1 , s1, . . . , sn−1,

where si is the transposition (i, i + 1) of Sn (a presentation is s2
i = 1 for any i,

(si si+1)
3 = 1 for i < n − 1, si s j = s j si for |i − j | ≥ 2, x±1 si = si x±1 for i > 1,

[x±1 , s1x±1 s1] = 0, [x+1 , s1x−1 s1] = [s1x+1 s1, x−1 ], [s2s1x±1 s1s2, [x+1 , s1x−1 s1]] = 0,
x±1 + s1x±1 s1 + · · · + sn−1 · · · s1x±1 s1 · · · sn−1 = 0). Specializing the morphism from
Proposition 5.23, 2) to the object •(. . . (••)), one shows that the formulas from Lemma
5.10 generalize to an action to GRTell(k) on the tower of algebras U (t̂k

1,n)� Sn , given
by

(g, u+, u−) · x±1 := u1,2...n
± , (g, u+, u−) · si := gi,i+1,i+2...n · si · (gi,i+1,i+2...n)−1,

for i = 1, . . . , n − 1. These actions preserve the group exp(t̂k
1,n) � Sn and the Lie

algebra t̂k
1,n . Composing this action with the morphism GRT(k) → GRTell(k), one

obtains an action of GRT(k) on the same objects given by

g · x±1 := αg(x
±
1 )

1,2...n, g · si := gi,i+1,i+2...n · si · (gi,i+1,i+2...n)−1,

where αg(x
±
1 ) are defined in Lemma-Definition 5.6.

5.4 Categorical interpretations

A left action of GRT(k) on {IMBCs} is defined as follows: g ∈ GRT1(k)
acts on (C, c..., a..., t...) by only modifying aXY Z into a′

X,Y,Z := aXY Z g(tXY ⊗
idZ , a−1

XY Z (idX ⊗tY Z )aXY Z ) and c ∈ k× acts by only modifying tXY into ctXY .
Similarly, one can show that a left action of GRTell(k) on {(an IBMC, an elliptic

structure over it)} is defined as follows: (g, u+, u−) ∈ GRTell
1 (k) acts on (C, C̃) as

(g, u+, u−)∗(C, C̃) := (g∗C, C̃′), where for C̃ = (C̃, F, x±...), we set C̃′ = (C̃, F, x±...),
where x±X,Y = u±(x+X,Y , x−X,Y ), and c ∈ k× acts on (C, C̃) as c ∗ (C, C̃) := (c ∗ C, C̃′),
where C̃′ = (C̃, F, x+X,Y , cx−X,Y ).

5.5 Action of GRTell(k) on Ell(k)

Recall that GRT(k) acts on M(k) from the right as follows: for g ∈ GRT1(k) and
(μ,�) ∈ M(k), (μ,�) ∗ g := (μ, �̃), where
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�̃(t12, t23) = �(Ad(g1,2,3)(t12), t23)g
1,2,3,

and for c ∈ k×, (μ,�) ∗ c := (cμ, c ∗ �), where (c ∗ �)(A, B) = �(cA, cB).
This action is compatible with the maps {IBMCs} → {BMCs} induced by elements
of M(k):� ∗ (g ∗ C0) = (� ∗ g) ∗ C0 for any� ∈ M(k), g ∈ GRT(k) and IBMC C0.

For (g, u±) ∈ GRTell
1 (k) and (μ,�, A±) ∈ Ell(k), we set (μ,�, A±)∗(g, u±) :=

(μ, �̃, Ã±), where

Ã±(x1, y1) := A±(u+(x1, y1), u−(x1, y1))

(in other terms, Ã± = θ(A±), where θ ∈ Aut(t̂k
1,2) is x±1 �→ u±(x+1 , x−1 )) and for

c ∈ k×, we set (μ,�, A±) ∗ c := (μ, c ∗ �, c�A±), where (c�A±)(x+1 , x−1 ) :=
A±(x+1 , cx−1 ).

Proposition 5.12 This defines a right action of GRTell(k) on Ell(k), commuting with
the left action of GTell(k) and compatible with the right action of GL2(k) on M2(k).

Proof Let us show that (μ, �̃, Ã±) ∈ Ell(k). If θ ∈ Aut(t̂k
1,2) is defined by θ(x±1 ) =

u±, and θ̃ := θg,u± , then one checks that

θ̃ (x1,23) = Ad(g1,2,3)−1(θ(x)1,23),

θ̃ (x2,31) = Ad(g2,1,3)−1(θ(x)2,31),

θ̃ (x3,12) = θ(x)3,12

for any x ∈ t̂k
1,2. Applying θ̃ to (25), one gets

θ({e±μt12/2}A±)3,12θ̃ (�3,1,2)(g2,1,3)−1θ({e±μt12/2}A±)2,31

g2,1,3θ̃ (�2,3,1)(g1,2,3)−1θ({e±μt12/2}A±)1,23

g1,2,3θ̃ (�1,2,3) = 1.

Using the identities θ̃ (�3,1,2)(g2,1,3)−1 = �̃3,1,2, g2,1,3θ̃ (�2,3,1)(g1,2,3)−1 =
�̃2,3,1, g1,2,3θ̃ (�1,2,3) = �̃1,2,3, and θ({e±μt12/2}A±) = {e±μt12/2} Ã±, one obtains
that (μ, �̃, Ã±) satisfies (25).

Applying now θ̃ to (26), one gets

eμt12 = (

θ̃ (�)−1g−1θ(A−)1,23gθ̃ (�), e−μt12/2θ̃ (�2,1,3)−1

(g2,1,3)−1(θ(A)2,13)−1g2,1,3θ̃ (�2,1,3)e−μt12/2
)

.

Using again gθ̃ (�) = �̃ and g2,1,3θ̃ (�2,1,3) = �̃2,1,3, together with θ(A±) = Ã±,
one obtains that (μ, �̃, Ã±) satisfies (26).

Similarly, applying the automorphism x+i �→ x+i , x−i �→ cx−i to identities (25),
(26), one obtains that (μ,�, A±) ∗ c satisfies the same identities, hence belongs to
Ell(k). It is then immediate to check that this defines a right action of GRTell(k),
commuting with the left action of GTell(k). ��
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Proposition 5.13 The action of GRTell(k) on Ell(k) restricts to an action on
Ell(k) ⊂ Ell(k), which is free and transitive.

Proof Given that the action of GRT(k) on M(k) is free and transitive, it suffices to
prove that the action of Rgr

ell(k) on Ell(μ,�)(k) := Ell(k)×M(k) {(μ,�)} is free and
transitive for any (μ,�) ∈ Ell(k).

Recall that Rgr
ell(k) is explicitly described by (45); its inclusion into Aut(t̂k

1,2) is given

by (u+, u−) �→ θu+,u− = (x±1 �→ u±). On the other hand, Ell(μ,�)(k) = {(A+, A−)
satisfying (25), (26)}. Then,

(A+, A−) ∗ (u+, u−) = (θu±(A+), θu±(A−)). (46)

Relation (26) implies that (A−, A+) = eμt12 , which together withμ ∈ k× implies that
t̂k
1,2 is generated by log A+, log A−. Together with (46), this implies that the action of

Rgr
ell(k) on Ell(μ,�)(k) is free.
Let us now show that this action is transitive. We first observe that Rgr

ell(k) can
be described as {θ ∈ Aut(t̂k

1,2)|∃θ̃ ∈ Aut(t̂k
1,3) with θ̃ (ti j ) = ti j for 1 ≤ i  = j ≤

3 and θ̃ (xi, jk) = θ(x)i, jk for {i, j, k} = {1, 2, 3} and x ∈ t̂k
1,2}. Let (A+, A−)

and ( Ã+, Ã−) ∈ Ell(μ,�)(k) and let θ ∈ Aut(t̂k
1,2) be the automorphism such that

θ(A±) = Ã±. Let us show that there exists θ̃ ∈ Aut(t̂k
1,3), such that

θ̃ (ti j ) = ti j for 1 ≤ i  = j ≤ 3 and θ̃ (xi, jk) = θ(x)i, jk for

{i, j, k} = {1, 2, 3} and x ∈ t̂k
1,2. (47)

Let i(μ,�) : B3(k) → exp(t̂3) � S3, i(μ,�,A±) : B1,3(k) → exp(t̂1,3) � S3 be the
isomorphisms induced by (μ,�), (μ,�, A±) and the object •(••). We have a com-
mutative diagram

P3(k)
ĩ(μ,�)

��

��

��
exp(t̂k

3)

��

��
B3(k) i(μ,�)

��

��

exp(t̂k
3)� S3

��
P1,3(k)

ĩ(μ,�,A±)��
		exp(t̂k

1,3) 


B1,3(k)

i(μ,�,A±)�� exp(t̂k
1,3)� S3

where the maps ‘i’ are isomorphisms. Note that for σ ∈ B3, i(μ,�)(σ )[σ ]−1 ∈ exp(t̂k
3)

(where σ �→ [σ ] is the canonical morphism B3 → S3).
Then,

ĩ(μ,�,A±)(X
±
1 ) = A1,23

± , ĩ(μ,�,A±)(X
±
2 ) = {i�(σ±1

1 )s1}A2,13
± {s1i�(σ

±1
1 )},

ĩ(μ,�,A±)(X
±
3 ) = {i�(σ±1

2 σ±1
1 )s1s2}A3,12

± {s2s1i�(σ
±1
1 σ±1

2 )},

where we recall that x �→ {x} is induced by the canonical morphism t3 →
t1,3. Also, ĩ(μ,�,A±)(σ

2
i ) = {ĩ(μ,�)(σ 2

i )}, for i = 1, 2 and ĩ(μ,�,A±)(σ1σ
2
2 σ1) =

{ĩ(μ,�)(σ1σ
2
2 σ1)}.
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Let θ̃ := ĩ
(μ,�, Ã±) ◦ ĩ−1

(μ,�,A±). Then, θ̃ ∈ Aut(t̂k
1,3), and

(a) θ̃ leaves {ĩ(μ,�)(σ 2
i )} (i = 1, 2) and {ĩ(μ,�)(σ1σ

2
2 σ1)} fixed, so it leaves the image

of t̂3 → t̂1,3 pointwise fixed;
(b) θ̃ (A1,23

± ) = Ã1,23
± ,

θ̃
({

i(μ,�)(σ
±1
1 )s1

}

A2,13
±

{

s1i(μ,�)(σ
±1
1 )

})

=
{

i(μ,�)(σ
±1
1 )s1

}

Ã2,13
±

{

s1i(μ,�)(σ
±1
1 )

}

,

which implies, as {i(μ,�)(σ±1
1 )s1} and {s1i(μ,�)(σ

±1
1 )} ∈ im(exp(t̂k

3) →
exp(t̂k

1,3)), that θ̃ (A2,13
± ) = Ã2,13

± ; one proves similarly that θ̃ (A3,12
± ) = Ã3,12

± .

(b) implies that θ̃ (xi, jk) = θ(x)i, jk holds for x = A±, therefore also for x in the
topological group generated by A±. As μ ∈ k×, this group is equal to exp(t̂k

1,2),

so θ̃ satisfies (47). So θ ∈ Rgr
ell(k). ��

Proposition 5.14 The scheme morphisms Ell → M and M
σ→ Ell (see Proposition

4.8) are compatible with the morphisms GRTell(−) → GRT(−) and GRT(−) →
GRTell(−) (see Proposition 5.7).

Proof We need to prove the second statement only. Let M(k)
σ→ Ell(k) be given by

(μ,�) �→ (μ,�, A±(μ,�)), then we must show that for g ∈ GRT1(k) and (μ, �̃) =
(μ,�) ∗ g, we have A±(μ, �̃) = αg(A(μ,�)), where αg is as in Lemma-Definition
5.6. This follows from the fact that αg satisfies αg(t02) = Ad(g0,2,1)(t02), αg(t12) =
t12. It is also clear that M(k)

σ→ Ell(k) is compatible with the action of k×. ��

Remark 5.15 In fact, the commutative diagrams

Ell → M
↓ ↓

M2
det→ A

and

M
σ→ Ell

↓ ↓

A

c �→
(

0 −c
1 0

)

→ M2
are compatible with the right actions of the diagrams

GRTell(−)→ GRT(−)
↓ ↓

GL2
det→ Gm

and

GRT(−) → GRTell(−)
↓ ↓

Gm

c �→
(

1 0
0 c

)

→ GL2

5.6 Lie algebras

The graded Grothendieck-Teichmüller Lie algebra is13

grt1 = {ψ ∈ f2|ψ + ψ3,2,1 = 0, ψ+ψ2,3,1 + ψ3,1,2 = 0, [t23, ψ
1,2,3]+[t13, ψ

2,1,3]
= 0, ψ2,3,4 − ψ12,3,4 + ψ1,23,4 − ψ1,2,34 + ψ1,2,3 = 0},

13 As before, f2 = f
Q
2 , etc.
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where we use the inclusion f2 ⊂ t3, A �→ t12, B �→ t23; it is equipped with the
Lie bracket 〈ψ1, ψ2〉 = [ψ1, ψ2] + Dψ2(ψ1)− Dψ1(ψ2), where Dψ : A �→ [ψ, A],
B �→ 0.

The Lie algebra Q acts on grt1 by [1, ψ]=−(degψ)ψ (where deg A=deg B=1),
and we set grt := grt1 � Q.

The Lie algebras grt, grt1 are N-graded (where deg is extended to be 0 on Q), we
then have Lie GRT(1)(−) = ̂grt(1) (the degree completions).

Let

grtell
1 := {

(ψ, α±) ∈ f2 × (t1,2)
2|ψ ∈ grt1,

α
1,23
± + α2,31

± + α3,12
± + [x1±, ψ1,2,3] + [x2±, ψ2,1,3] = 0,

[x1±, α
3,12
± ] + [α1,23

± , x3±] − [x1±, [x3±, ψ1,2,3]] = 0,

[x1+, α
2,13
− ] − [x2−, α

1,23
+ ] = [x2−, [x1+, ψ1,2,3]] − [x1+, [x2−, ψ2,1,3]]}.

For α± ∈ t1,2, define Dα± ∈ Der(t1,2) by x±1 �→ α±. Then,

[(ψ1, α
±
1 ), (ψ2, α

±
2 )] = (〈ψ1, ψ2〉, Dα±2

(α±1 )− Dα±1
(α±2 ))

defines a Lie bracket on grtell
1 , and

grtell
1 ⊂ grt1 × Der(t1,2)

op.

The Lie algebra Qe22 acts on grtell
1 by

[e22, (ψ, α+, α−)] = (−(degψ)ψ,−(deg− α+)α+, (1 − deg− α−)α−),

where degψ is as above, and deg− α± is defined by deg− x+1 = 0, deg− x−1 = 1. We
then set grtell := grtell

1 � Qe22.
The Lie algebras grtell

(1) are N-graded, where (ψ, α±) has degree n if 2 degψ =
degα± − 1 = n (degα± being defined by deg x±1 = 1 and degψ by deg t12 =
deg t23 = 1) and e22 has degree 0. Then Lie GRTell

(1)(−) = ̂grt
ell
(1).

We have a morphism grtell
1 → sl2, (ψ, α+, α−) �→

(

a+ b+
a− b−

)

, where α+ ≡
a±x1 + b±y1 modulo degree ≥2. It extends to a morphism grtell → gl2 via

e22 �→
(

0 0
0 1

)

. We denote by grtell
I2

the common kernel of these morphisms; it coin-

cides with the part of grtell (or grtell
1 ) of positive degree.

These morphisms admit sections sl2 → grtell
1 given by

(

a+ b+
a− b−

)

�→ (0, a±x1 +
b±y1) and gl2 → grtell given by its extension by

(

0 0
0 1

)

�→ e22. We then have

grtell
1 � grtell

I2
� sl2, grtell � grtell

I2
� gl2.

Z2-gradings may be defined on grtell
(1) as follows. We have a Lie algebra

inclusion grtell
1 ⊂ grt1 ⊕ Der(t1,2) =: G. Recall that grt1 is N-graded while
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Der(t1,2) is Z2-graded by the Z2-grading of t1,2 given by (deg+, deg−)(x+1 ) =
(1, 0), (deg+, deg−)(x−1 ) = (0, 1). We then define a Z2-grading on G by G[p, q] :=
{

Der(t1,2)[p, q] if q  = p
grt1[p] ⊕ Der(t1,2)[p, p] if q = p

. This restricts to a Z2-grading (deg+, deg−)

of grtell
1 , which extends to grtell by (deg+, deg−)(e22) = (0, 0).

The Z2-grading of grtell is compatible with the action of the Cartan subalgebra of

gl2: we have [e11, x] = −(deg+ x)x, [e22, x] = −(deg− x)x for e11 =
(

1 0
0 0

)

∈ gl2

and x ∈ grtell homogeneous.
We have a morphism grtell

1 → grt1, (ψ, u±) �→ ψ . It extends to a morphism
grtell → grt by e22 �→ 1. Using Proposition 5.7, sections of these morphisms are
constructed as follows:

Proposition 5.16 There is a unique Lie algebra morphism grt1 → ̂grt
ell
1 , ψ �→

(ψ, uψ+, uψ−), where uψ± := Dψ(x
±
1 ) and Dψ ∈ Der(t̂1,2) is defined by

Dψ(e
x1) = ψ0,2,1ex1 − ex1ψ0,1,2, Dψ(t01) = [ψ0,1,2, t01];

recall that

ψ0,1,2 = ψ(t01, t12), ψ0,2,1 = ψ(t02, t21), t0i = − ad xi

ead xi − 1
(yi ), i = 1, 2.

It extends to a Lie algebra morphism grt → ̂grtell by 1 �→ e22. It is homogeneous,
grt being equipped with its degree and ̂grtell with degree deg−.

Set now r
gr
ell := Ker(grtell → grt). We have

r
gr
ell =

{

(α+, α−) ∈ (t1,2)
2| α1,23

± + α2,31
± + α3,12

± = 0,

[x1±, α
2,13
± ] + [α1,23

± , x2±] = 0,

[x1+, α
2,13
− ] + [α1,23

+ , x2−] = 0
} ⊂ Der(t1,2)

op.

This is a Z2-graded Lie subalgebra of grtell ; it is also N-graded by deg+ + deg−. We
have r

gr
ell [0] � sl2 and r

gr
ell � (⊕d>0r

gr
ell [d]) � sl2. Its completion for the N-degree is

isomorphic to Lie Rgr
ell(−).

Define a partial completion r̂
gr
ell := ⊕q(

∏

p r
gr
ell [p, q]). Proposition 5.16 gives rise

to a Lie algebra morphism grt → Der(r̂gr
ell). We then have ˆgrtell � r̂

gr
ell � grt, where

ˆgrtell := ⊕q
∏

p grtell [p, q] is a partial completion.

Set gtell := Lie GTell(−), gtell
1 := Lie GTell

1 (−), then gtell = gtell
1 � Q. The

Lie algebra gtell
1 admits a description as a subspace of f̂2 × (t̂1,2)

2 similar to that of
Lemma 3.16 and is filtered as follows:gtell = gtell

1 �Q, wheregtell
1 := Lie GTell

1 (−) ⊂
f̂2×(t̂1,2)

2. We then set (gtell
1 )

≥n := gtell
1 ∩(f̂≥n/2

2 ×((t̂1,2)
2)≥n+1

)

for n ≥ 0, where the

degree in f̂2 is induced by deg(t12) = deg(t23) = 1 and the degree in t̂1,2 by deg(x±1 ) =
1. The Lie algebra gtell is similarly filtered by (gtell)

≥0 = gtell , (gtell)
≥n = (gtell

1 )
≥n

if n > 0. It follows from the form of the conditions under which (ψ, α+, α−) ∈
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f̂2 × (t1,2)
2 belong to gtell

1 that there is a canonical morphism gr(gtell) → grtell ,
restricting to gr(rell) → r

gr
ell and Wednesday, August 7, 2013 at 8:09 pmcompatible

with gr(gt)→ grt. In Sect. 5.8, we will see that all these morphisms are isomorphisms.

Remark 5.17 The relations between Lie groups and algebras are summarized as fol-
lows:

GRT1(k) = exp(̂grt
k
1), GRT(k) = exp(̂grt

k
1)� k×,

GRTell
1 (k) = exp(̂grt

ell,k
I2

)� SL2(k), GRTell(k) = exp(̂grt
ell,k
I2

)� GL2(k),

Rgr
ell(k) = exp

(

∏

d>0

r
gr
ell [d] ⊗ k

)

� SL2(k).

Remark 5.18 Any (α+, α−) ∈ r
gr
ell satisfies α± + α

2,1
± = 0, which implies that the

total degree (in which x±1 have degree 1) of α± is odd. So r
gr
ell [d] = 0 unless d is even.

Remark 5.19 (Relation with the work of H. Tsunogai.) In Tsunogai [32], a “stable
derivation algebra” in genus one is described. This is a graded Lie algebra version of
the intersection over n ≥ 1 of the images of the morphisms Out∗(P1,n)→ Out∗(P1,1),
where Out∗ ⊂ Out are certain subgroups. This is a Lie subalgebra GTs ⊂ Der(t1,2),
which may be defined as the set of all (α+, α−) ∈ (t1,2)

2, such that there existsψ ∈ t3,
such that

ψ1,2,3 + ψ3,2,1 = [t12, ψ
1,2,3] + [t13, ψ

2,1,3] = 0,

[x1+, α
1,2
− ] + [α1,2

+ , x1−] = 0,

[x1±, α
3,12
± ] + [α1,23

± , x3±] = [x±3 , [x±1 , ψ1,2,3]],
[x1+, α

3,12
− ] + [α1,23

+ , x2−] = [t13, ψ
1,3,2] + [x1+, [x2−, ψ1,3,2]]

(the relation between the present formalism and that of [32] is as follows: t3 ↔
L(2)◦1 , t1,2 ↔ L(2)1 , α+, α− ↔ S, T, U 1,2,3 ↔ ψ2,1,3; the present relations are
obtained from those of [32] by some changes of indices). This system of conditions
is a consequence of the system expressing that (ψ, α+, α−) ∈ grtell

1 ; the latter is
more restrictive as it contains additional conditions, namely the pentagon and hexagon
conditions on ψ , as well as the conditions α1,23

± + α
2,31
± + α

3,12
± + [x1±, ψ1,2,3] +

[x2±, ψ2,1,3] = 0. It follows that there is a double inclusion

im(grtell
1 → Der(t1,2)) ⊂ GTs ⊂ Der(t1,2).

5.7 A Lie subalgebra b3 ⊂ r
gr
ell

Proposition 5.20 For n ≥ 0, set

δ2n := (α+ = ad(x1)
2n+2(y1), α−

= 1

2

∑

0≤p≤2n+1,
p+q=2n+1

(−1)p[(ad x1)
p(y1), (ad x1)

q(y1)]). (48)
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Then δ2n ∈ r
gr
ell [2n+1, 1]. The element δ0 is central in grtell

1 , such that [e11+e22, δ0] =
−2δ0, and it coincides with ad t12 as an element of Der(t1,2)

op.

Proof In Calaque et al. [7], Proposition 3.1, we constructed derivations δ̇(m)2n ∈
Der(t1,m), such that

δ̇
(m)
2n : xi �→ 0, ti j �→ [ti j , (ad xi )

2n(ti j )], yi

�→
∑

j : j  =i

1

2

∑

p+q=2n−1

[(ad xi )
p(ti j ), (− ad xi )

q(ti j )].

Let then δ(m)2n := δ̇
(m)
2n +

[

∑

i< j (ad xi )
2n(ti j ),−

]

. Then

δ
(m)
2n (xi ) =

⎡

⎣

∑

j  =i

(ad xi )
2n(ti j ), xi

⎤

⎦ = (ad xi )
2n+2(yi ) = α

i,1...ǐ ...n
− , δ

(m)
2n (ti j ) = 0,

δ
(m)
2n (yi ) = δ̇

(m)
2n (yi )+

⎡

⎣

∑

j<k

(ad x j )
2n(t jk), yi

⎤

⎦

= δ̇
(m)
2n (yi )+

∑

j  =i

[(ad xi )
2n(ti j ), yi ] +

∑

j<k; j,k  =i

[(ad x j )
2n(t jk), yi ]

= δ̇
(m)
2n (yi )+

∑

j  =i

[(ad xi )
2n(ti j ), yi ]

+
∑

j<k; j,k  =i

∑

p+q=2n−1

(ad x j )
p[ti j , (ad x j )

q(t jk)]

= δ̇
(m)
2n (yi )+

∑

j  =i

[(ad xi )
2n(ti j ), yi ]

−
∑

j<k; j,k  =i

∑

p+q=2n−1

[(− ad xi )
p(ti j ), (ad xi )

q(tik)]

= δ̇
(m)
2n (yi )+

∑

j  =i

[(ad xi )
2n(ti j ), yi ]

− 1

2

∑

p+q=2n−1

⎡

⎣

∑

j  =i

(− ad xi )
p(ti j ),

∑

k  =i

(ad xi )
q(tik)

⎤

⎦

+ 1

2

∑

j  =i

∑

p+q=2n−1

[(− ad xi )
p(ti j ), (ad xi )

q(ti j )]

= −[(ad xi )
2n+1(yi ), yi ] + 1

2

∑

p+q=2n−1

[(− ad xi )
p+1(yi ), (ad xi )

q+1(yi )]

= 1

2

∑

p+q=2n+1

[(− ad xi )
p(yi ), (ad xi )

q(yi )] = α
i,1...ǐ ...n
− .
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Then 0 = δ
(3)
2n ([x±1 , x±2 ]) = [x±1 , α2,13

± ] + [α1,23
± , x±2 ] and 0 = δ

(3)
2n (t12) =

[x+1 , α2,13
− ] + [α1,23

+ , x−2 ], which implies that δ2n ∈ r
gr
ell .

If (ψ, α±) ∈ grtell
1 , then applying the morphism t1,2 → t1,3 corresponding to the

map {1, 2} → {1, 2, 3}, 1 �→ 1, 2 �→ 2 to the first defining condition ofgrtell , one gets
α

1,2
± + α2,1

± = 0. Applying the same morphism to the last defining condition of grtell ,

one gets [x1+, α
2,1
− ]−[x2−, α

1,2
+ ] = 0, so [x1+, α

1,2
− ]+[α1,2

+ , x1−] = 0. It follows that the
derivation Dα± of t1,2 such that x±1 �→ α± is such that Dα±(t12) = 0, so there is a Lie
algebra inclusion grtell

1 ⊂ grt1×Dert (t1,2)
op (where the index t means the derivations

taking t12 to zero). Since δ0 = (0, ad t12) ∈ grt1 × Dert (t1,2)
op, δ0 is central in

grt1 × Dert (t1,2)
op, therefore also in grtell

1 . Finally, [e11 + e22, D] = − deg(D) · D
for any D ∈ Dert (t1,2), where the degree is D corresponds to the degree on t1,2 for
which x1 and y1 have degree 1. Therefore [e11 + e22, δ0] = −2 · δ0. ��

We define b3 := 〈sl2, δ2n; n ≥ 0〉 ⊂ r
gr
ell as the Lie subalgebra14 generated by sl2

and the δ2n . A basis of sl2 ⊂ b3 is

e+ := (α+ = 0, α− = x1), e− := (α+ = y1, α− = 0),

h := (α+ = x1, α− = −y−). (49)

The Lie algebra b3 is N-graded and corresponds to the subgroup exp(b̂+,k3 )�SL2(k) ⊂
Rgr

ell(k) (where the hat denotes the degree completion and + means the positive degree
part).

5.8 Isomorphisms of Lie algebras

Let k be a Q-ring. As Ell(k) is a torsor, each e ∈ Ell(k) gives rise to an isomorphism
ie : GTell(k) → GRTell(k), defined by g ∗ e = e ∗ ie(g) for any g ∈ GTell(k).
Similarly, any �̃ ∈ M(k) gives rise to an isomorphism i�̃ : GT(k) → GRT(k)
defined by the same conditions. We then have a commutative diagram

GTell(k)
ie→ GRTell(k)

↓ ↓
GT(k)

i
�̃→ GRT(k)

(50)

where �̃ = im(e ∈ Ell(k) → M(k)). In particular, ie restricts to an isomorphism

ie : Rell(k)→ Rgr
ell(k). When e ∈ im(M(k)

σ→ Ell(k)), the isomorphism Rell(k)
ie→

Rgr
ell(k) is compatible with i�̃ and the actions of GT(k), GRT(k) on both sides via the

lifts GT(k)
σ→ GTell(k), GRT(k)

σ→ GRTell(k).
The isomorphisms ie induce Lie algebra isomorphisms gtk

ell → ̂grt
k
ell , restricting

to rk
ell → r̂

gr,k
ell , compatible with the filtrations and whose associated graded isomor-

14 Conjecture 10.1 is the statement that this inclusion is an equality, and Proposition 9.2 shows that this
statement is equivalent to the conjectural equality 〈B3〉 = Rell (−) discussed in Sect. 3.5.
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phisms are the canonical morphisms from the end of Sect. 5.6. Since Ell(Q)  = ∅ (e.g.
because it contains σ(M(Q))), we obtain:

Proposition 5.21 There are isomorphisms gtell � ĝr(gtell) = ̂grtell and rell �
ĝr(rell) = r̂

gr
ell .

5.9 Actions on prounipotent completions of elliptic braid groups

Let k be a Q-ring. We recall that Pn(k) (respectively, P1,n(k)) is the prounipotent
completion of the pure (respectively, elliptic) braid group Pn (respectively, P1,n),
where n ≥ 1 and that Bn(k) (respectively, B1,n(k)) to be the relative completion of
the full (respectively, elliptic) braid group with n strands with respect to the canonical
morphism to Sn ; it identifes with the pushout Bn ∗Pn Pn(k) (respectively, B1,n ∗P1,n

P1,n(k)).

Proposition 5.22 1) The action of GT = Z/2Z on Bn via (−1) · σi = σ−1
i extends

to the following objects:

• a morphism μO : GT(k)→ Aut(Bn(k)) for each O ∈ Pan;
• a map

GT(k)× Pan × Pan → Pn(k), (g, O, O ′) �→ bO O ′(g),

related by the identities

μO ′(g) = Inn(bO O ′(g)) ◦ μO(g), (51)

bO O ′(gh) = bO O ′(g) · μO(g)(bO O ′(h)), bO O ′′(g) = bO ′O ′′(g)bO O ′(g).

(52)

2) The action of GTell = B̃3 on B1,n given by (15) extends to a collection of mor-
phisms

μell
O : GTell(k)→ Aut(B1,n(k))

indexed by O ∈ Pan, related to the morphisms μO by the identity

μell
O (gell)(bell) = μO(g)(b)ell , (53)

and satisfying

μell
O ′(gell) = Inn(bO O ′(g)ell) ◦ μell

O (g), (54)

for any gell ∈ GTell(k) and b ∈ Bn(k), where g := im(gell ∈ GTell(k) →
GT(k)) and bell := im(b ∈ Bn(k)→ B1,n(k)).

3) The restriction μell
O|Rell (k)

is independent of O ∈ Pan and will be denoted

μell : Rell(k)→ Aut(B1,n(k)).
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If gell = (1, 1, g+, g−) ∈ Rell(k), where g± = g±(X1,Y1) ∈ P1,2(k), then the
action of gell on B1,n(k) induced by μell is such that

gell · X±
1 = g±(X+

1 , X−
1 ), gell · σi = σi for i = 1, . . . , n − 1.

Proof 1) Let C := PaBk be the k-prounipotent version of the BMC PaB, G :=
GT(k). For g ∈ G, g ∗ C is a BMC with distinguished object •. By the universal
property of C, one derives from there a functor αg : C → g ∗ C, uniquely defined
by the condition that it is tensor and that it induces the identity on objects. As a
category, g∗C canonically identifies with C; let ig : g∗C → C be this isomorphism.
One then defines βg := ig ◦ αg : C → C. The identity βgβg′ = βg′g follows from
the commutativity of

C

������������
βg′

��

g ∗ C

∼
����������

����
��

��
��

� g′ ∗ C
∼

����
��

��
��

C ��

����������

βg

��

βgg′

		gg′ ∗ C ∼ ��

∼
���������

C

in which the commutativity of the central square follows from that of

g ∗ C g∗ϕ→ g ∗ D
∼↓ ↓∼
C ϕ→ D

for any braided monoidal categories C,D and any tensor functor ϕ : C → D.
It follows that g �→ βg−1 defines a morphism from G to the group of autofunctors
of C, i.e. an action of G on C.
Let O, O ′ ∈ Pan . There is a canonical isomorphism iO : AutC(O)→ Bn(k) and
a canonical element iO O ′ ∈ IsoC(O, O ′) (corresponding to the unit in Bn(k)).
Then, for f ∈ AutC(O), iO( f ) = iO ′(iO O ′ f i−1

O O ′).
Define the action μO of G on B1,n(k) as the transport via iO of its action on
AutC(O), namely μO(g)(b) := iO(g ∗ i−1

O (b)). The claimed identities then hold
with bO O ′(g) := iO(i

−1
O O ′ ◦ (g ∗ iO O ′)).

2) The collection of morphisms μell
O is then defined in the same way: G is replaced

by Gell := GTell(k), C by Cell := PaBell
k , the isomorphisms iO by i ell

O and iO O ′
by F(iO O ′), where F : C → Cell is the canonical functor. The claimed identity
follows from i ell

O (F(x)) = iO(F(x))ell , for x ∈ AutC(O).
3) follows from identity (54), from the fact that g = 1GT(k) if gell ∈ Rell(k), and

from bO O ′(1GT(k)) = 1Pn(k), which follows from the first part of (52). ��
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Proposition 5.23 1) There are morphisms

μ
gr
O : GRT(k)→ Aut(exp(t̂k

n)� Sn) for each O ∈ Pan

and a map

GRT(k)× Pan × Pan → exp(t̂k
n), (g, O, O ′) �→ bgr

O O ′(g),

satisfying the analogues of the identities of Proposition 5.22, 1).
2) There are morphisms

μ
ell,gr
O : GRTell(k)→ Aut(exp(t̂k

1,n)� Sn)

for each O ∈ Pan, satisfying the analogues of the identities of Proposition 5.22,
2).

3) The restriction μell,gr
O|Rgr

ell (k)
is independent of O and will be denoted

μ
gr
ell : Rgr

ell(k)→ Aut(exp(t̂k
1,n)� Sn).

This morphism factors as Rgr
ell(k)→ Aut(t̂k

1,n)
Sn → Aut(exp(t̂k

1,n)� Sn). The Lie
algebra morphism associated to the first factor is

r
gr
ell → Der(t1,n)

Sn , (α+, α−) �→ (x±i �→ α
i,1···ǐ ···n
± ).

Proof Similar to that of Proposition 5.22. ��
Remark 5.24 In Calaque et al. [7], we introduced the Lie algebra d := d+ � sl2,
where d+ is the sl2-Lie algebra freely generated by a family (δ̃2m)m≥0, subject to the
only constraint that for any m ≥ 0, δ̃2m generates a simple (2m + 1)-dimensional
sl2-module, for which it is a highest weight vector. There is a surjective morphism
d → b3, which is the identity on sl2 and given by δ̃2m �→ δ2m . In Calaque et al. [7],
we also constructed a morphism

d → Der(t1,n)
Sn .

According to Proposition 5.23, 3), this morphism factors as d → r
gr
ell → Der(t1,n)

Sn .
As im(d → r

gr
ell) = b3, the morphism from [7] factors through b3.

Let us set Bgr
n (k) := exp(t̂k

n) � Sn, Bgr
1,n(k) := exp(t̂k

1,n) � Sn . We define
Pgr

n (k), Pgr
1,n(k) as the “pure” versions of these groups (i.e. the kernels of their maps

to Sn).

Proposition 5.25 1) There is a family of isomorphisms i �̃O : Bn(k) → Bgr
n (k) for

each �̃ := (μ,�) ∈ M(k), and a family of maps

M(k)× Pan × Pan → Pgr
n (k), (�̃, O, O ′) �→ bgr

O O ′(�̃),
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such that

i �̃O ′ = Inn(bgr
O O ′(�̃)) ◦ i �̃O , bgr

O O ′′(�̃) = bgr
O ′O ′′(�̃)b

gr
O O ′(�̃),

i �̃O ◦ μO(g) = i g−1∗�̃
O , μ

gr
O (ggr ) ◦ i �̃O = i

�̃∗g−1
gr

O ,

where g ∈ GT(k), ggr ∈ GRT(k).
2) Each e ∈ Ell(k) gives rise to a family of isomorphisms iell,e

O : B1,n(k)→ Bgr
1,n(k),

indexed by O ∈ Pan. They satisfy

i �̃O (b)ell = i ell,e
O (bell), i ell,e

O ′ = Inn(bO,O ′(�̃)ell) ◦ i ell,e
O

for b ∈ Bn(k), if �̃ := im(e ∈ Ell(k)→ M(k)), and

iell,e
O ◦ μell

O (g) = i ell,g−1∗e
O , μ

ell,gr
O (ggr ) ◦ i ell,e

O = i
ell,e∗g−1

gr
O ,

for g ∈ GTell(k), ggr ∈ GRTell(k).
There is a commutative diagram

Rell(k)
μ

gr
ell ��

ie

��

Aut(B1,n(k))

(ie,O )
∗

��
Rgr

ell(k)
μell

�� Aut(Bgr
1,n(k))

Proof Let Cgr := PaCDk, Cgr
ell := PaCDell,k, then there are compatible functors

C → �̃∗Cgr � Cgr , Cell → e∗Cgr
ell � Cgr

ell , where in each case, the first functor arises
from universal properties and the second tensor forgets about the IBMC (or elliptic
IBMC) structures. The statements follow from the compatibility of these functors with
the actions of GTell(k), GRTell(k). ��

6 A family of elliptic associators, τ �→ e(τ)

In this section, we construct an analytic family of elliptic associators τ �→ e(τ ),
indexed by the Poincaré half-plane. This family arises from the KZB connection [7]
and may therefore be viewed as an analogue of the KZ associator. We study various
functional properties of this family: modular properties, behaviour at infinity, and
differential system.

6.1 The KZ associator

Let G0(z), G1(z) be the analytic solutions of

G ′(z) =
(

A

z
+ B

z − 1

)

G(z)
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in ]0, 1[, valued in exp(f̂C2 ), with asymptotic behaviour G0(z) ∼ z A as z → 0 and
G1(z) ∼ (1 − z)B as z → 1. The KZ associator is defined by

�K Z := G1(z)
−1G0(z) ∈ exp(f̂2).

Then15 (2π i,�K Z ) ∈ M(C) [9].

6.2 Definition of e(τ ) = (A(τ ), B(τ ))

Let H := {τ ∈ C|$(τ ) > 0} be the Poincaré half-plane. Let (z, τ ) �→ θ(z|τ) be the
holomorphic function on C × H, such that θ(z + 1|τ) = −θ(z|τ) = θ(−z|τ), θ(z +
τ |τ) = −e2π i zτ+iπτ θ(z|τ), {z|θ(z|τ) = 0} = Z + τZ, ∂zθ(0|τ) = 1.

For τ ∈ H, let F(z|τ) be the holomorphic function on {z = a + bτ |a, b ∈ R, a or
b ∈]0, 1[}, valued in exp(t̂C1,2) � exp(f̂C2 ), such that

∂z F(z|τ) = −θ(z + ad x |τ) ad x

θ(z|τ)θ(ad x |τ) (y) · F(z|τ) and F(z|τ) ∼ (−2π i z)t as z → 0;

here x := x+2 , y := x−2 , t := t12. We then set

A(τ ) := F(z|τ)−1 F(z + 1|τ), B(τ ) := F(z|τ)−1e2π i x F(z + τ |τ).

6.3 Algebraic properties of e(τ )

We set EllK Z := Ell(C)×M(C) {(2π i,�K Z )}.
Proposition 6.1 τ �→ e(τ ) := (A(τ ), B(τ )) is an analytic map H → EllK Z .

Proof In Calaque et al. [7], Sect. 4.3, we introduced Ã, B̃ ∈ exp(t̂C1,2). We set Ã+ :=
Ã, Ã− := B̃, A+(τ ) := A(τ ), A−(τ ) := B(τ ), then

A±(τ ) = Ad((−2π i)−t )( Ã±),

So (A+(τ ), A−(τ )) satisfies (22), (23), (26) in Calaque et al. [7]. (22), (23) imply
that (A+(τ ), A−(τ )) satisfies (25). (26) implies that

(A−(τ )12,3{�−1}(A−(τ )1,23)−1{�}, A+(τ )12,3) = {�−1e2π i t23�}

and using (23) in Calaque et al. [7], we rewrite this as

({e− iπ t12�3,2,1}A−(τ )2,13{�2,1,3e− iπ t12}, A+(τ )12,3) = {�−1e2π i t23�},

which as in the proof of Proposition 4.8 implies that (A+(τ ), A−(τ )) satisfies (26).
��

15 We set i := √−1.
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6.4 Analytic properties of e(τ )

Proposition 6.2 One has

2π i
∂

∂τ
e(τ ) = e(τ ) ∗ (−e− −

∑

k≥0

(2k + 1)G2k+2(τ )δ2k),

where Gk(τ ) are the Eisenstein series defined by

Gk(τ ) =
∑

a∈(Z+τZ)−{0}
a−k for k even ≥ 4, G2(τ ) =

∑

m∈Z

( ′
∑

n

(n + mτ)−2

)

,

where
∑′ means

∑

n∈Z if m ≥ 0 and
∑

n∈Z−{0} if m = 0 (notation as in (48), (49)).

Proof Rell(C) ⊂ Aut(f̂C2 )
op acts from the right on EllK Z by (A+, A−)∗ (u+, u−) :=

(A+(u+, u−), A−(u+, u−)). The same formula defines a left action of Rell(C)
op ⊂

Aut(f̂C2 ) on EllK Z . To prove that

2π i ∂τ e(τ ) = e(τ ) ∗ x(τ )

for x(τ ) ∈ r̂C
ell ⊂ Der(f̂C2 )

op, it therefore suffices to prove that

2π i ∂τ A(τ ) = x(τ )(A(τ )), 2π i ∂τ B(τ ) = x(τ )(B(τ )),

where x(τ ) is now viewed as an element of Der(f̂C2 ).
In Calaque et al. [7], Lemma 23, we constructed a function F (2)(z|τ), defined on

{(z, τ ) ∈ C × H|z = a + bτ, (a, b) ∈]0, 1[×R ∪ R×]0, 1[} and valued in exp(f̂C2 )�

Aut(f̂C2 ), such that

∂z F (2)(z|τ) = −θ(z + ad x |τ) ad x

θ(z|τ)θ(ad x |τ) (y) · F (2)(z|τ),

2π i
∂

∂τ
F (2)(z|τ)= −

(

e−+
∑

k≥0

(2k+1)G2k+2(τ )δ̇
(2)
2k − g(z, ad x |τ)(t)

)

· F (2)(z|τ)

= −
(

e− +
∑

k≥0

(2k + 1)G2k+2(τ )δ
(2)
2k − g(z|τ)(t)

)

· F (2)(z|τ),

and F (2)(z|τ) ∼ zt exp( −τ2π i (e− + ∑

k≥0 2(2k + 1)ζ(2k + 2)δ(2)2k )) as z → 0 and

τ → i∞. Here g(z, x |τ) = θ(z+x |τ)
θ(z|τ)θ(x |τ) (

θ ′
θ
(z + x |τ) − θ ′

θ
(z|τ)) + 1

x2 , and g(z|τ) :=
g(z, ad x |τ)(t)− g(0, ad x |τ)(t); in the notation of loc. cit., e− = �0.

These conditions imply that the image of F (2)(z|τ) in Aut(f̂C2 ) is independent of z.
Then

Az1
z0
(τ ) := F (2)(z1|τ)F (2)(z0|τ)−1 ∈ exp(f̂C2 )
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and satisfies

2π i ∂τ Az1
z0
(τ ) = −

⎛

⎝e− +
∑

k≥0

(2k + 1)G2k+2(τ )δ2k

⎞

⎠ (Az1
z0
(τ ))

+g(z1|τ) · Az1
z0
(τ )− Az1

z0
(τ ) · g(z0|τ).

The function F(z|τ), basic to the definition of (A(τ ), B(τ )), is related to the function
F (2)(z|τ) by F (2)(z|τ) = F(z|τ)ϕ(τ), where ϕ(τ) takes values in exp(f̂C2 )�Aut(f̂C2 ),
as both satisfy the same differential equation in z. It follows that

Az1
z0
(τ ) = F(z1|τ)F(z0|τ)−1.

Therefore, A(τ ) = F(z|τ)−1 Az+1
z (τ )F(z|τ). In the limit z → 0, this gives

A(τ ) = limε→0(−2π i ε)− ad t(A1+ε
ε (τ )

)

.

ε being fixed, (−2π i ε)− ad t
(

A1+ε
ε (τ )

)

satisfies the same differential equation in τ
as Az1

z0(τ ), with g(z0|τ) replaced by (−2π i ε)− ad(t)(g(ε|τ)) and g(z1|τ) replaced by
(−2π i ε)− ad(t)(g(1+ε|τ)), which both tend to 0 as ε → 0. It follows that these terms
disappear from the differential equation satisfied by A(τ ), so

2π i ∂τ A(τ ) = −
⎛

⎝e− +
∑

k≥0

(2k + 1)G2k+2(τ )δ2k

⎞

⎠ (A(τ )).

Similarly, B(τ ) = F(z|τ)−1e2π i x Az+τ
z (τ )F(z|τ), hence

B(τ ) = limε→0(−2π i ε)−t e2π i x Aτ+εε (τ )(−2π i ε)t .

One computes

∂τ
(

Aτ+εε (τ )
) = −1

2π i
(e− +

∑

k≥0

(2k + 1)G2k+2(τ )δ2k)(A
τ+ε
ε (τ ))

+
(

1

2π i
g(τ + ε|τ)− θ(τ + ε + ad x |τ) ad x

θ(τ + ε|τ)θ(ad x |τ) (y)
)

Aτ+εε (τ )

− Aτ+εε (τ )
1

2π i
g(ε|τ).

So Xε(τ ) := (−2π i ε)−t e2π i x Aτ+εε (τ )(−2π i ε)t satisfies (ε being fixed)

2π i ∂τ (Xε(τ )) = −(e− +
∑

k≥0

(2k + 1)G2k+2(τ )δ2k)(Xε(τ ))− Xε(τ ) ·
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(

(−2π i ε)−t g(ε|τ)(−2π i ε)t
)

+
(

Ad((−2π i ε)−t e2π i x )
(

g(τ + ε|τ)− 2π i
θ(τ + ε + ad x |τ) ad x

θ(τ + ε|τ)θ(ad x |τ) (y)
)

− (−2π i ε)−t e2π i x

⎛

⎝e−+
∑

k≥0

(2k+1)G2k+2(τ )δ2k

⎞

⎠ (e−2π i x )(−2π i ε)t
)

· (Xε(τ )).

Identity (7) in Calaque et al. [7] implies that the parenthesis in the two last lines equals
Ad((−2π i ε)−t )(g(ε|τ)). As before, we get in the limit ε → 0

2π i ∂τ B(τ ) = −
⎛

⎝e− +
∑

k≥0

(2k + 1)G2k+2(τ )δ2k)(B(τ )

⎞

⎠ .

��

Proposition 6.3

σ(�K Z )|x �→2π i x,
y �→(2π i)−1 y

= lim
τ→i∞ e(τ ) ∗ exp

⎛

⎝

τ

2π i
(e− +

∑

k≥0

(2k + 1)ζ(2k + 2)δ2k)

⎞

⎠ .

Proof In Calaque et al. [7] (proof of Prop. 24 and Lemma 29), is it proved that

A(τ ) = �K Z (ỹ, t)e2π i ỹ�K Z (ỹ, t)−1 + O(e2π i τ ),

B(τ ) = eiπ t�K Z (−ỹ − t, t)e2π i x e2π i ỹτ�K Z (ỹ, t)−1 + O(e2π i τ(1−ε)),

for any ε > 0, where

ỹ := − ad x

e2π i ad x − 1
(y).

Let (Apol(τ ), Bpol(τ )) be the principal parts of the right sides of these equalities;
Apol(τ ) is constant in τ , while each coordinate of Bpol(τ ) in a basis of U (f2) is a
polynomial in τ .

It is proved in Calaque et al. [7] that ỹ, t are in the kernel of e− +∑

k≥0(2k + 1)
ζ(2k + 2)δ2k , while

exp

⎛

⎝

τ

2π i
(e− +

∑

k≥0

(2k + 1)ζ(2k + 2)δ2k

⎞

⎠ (e2π i x e2π i τ ỹ) = e2π i x .



548 B. Enriquez

It follows that

exp

⎛

⎝

τ

2π i
(e− +

∑

k≥0

(2k + 1)ζ(2k + 2)δ2k

⎞

⎠ (Apol(τ ), Bpol(τ ))

= σ(�K Z )σ (�K Z )|x �→2π i x,
y �→(2π i)−1 y

,

which implies that statement. ��
Note that the operation e �→ e|x �→2π i x,

y �→(2π i)−1 y

amounts the action of diag(2π i, (2π i)−1) ⊂
SL2(C) ⊂ Rell(C) on EllK Z .

6.5 Modularity properties of e(τ )

We now describe the behaviour of the map τ �→ e(τ ) under the action of SL2(Z)

on H.
Define log : C× → C by the condition that its image is contained in R+ i[−π, π [.

We define group morphisms t : C× → SL2(C) and n± : C → SL2(C) by t (λ) :=
(

λ−1 0
0 λ

)

, n+(a) :=
(

1 0
a 1

)

, n−(a) :=
(

1 a
0 1

)

.

Proposition 6.4 1) There is a unique map

f : B3 × H → C,

such that

f (σ1, τ ) = 0, f (σ2, τ ) = − log
( −1

τ − 1

)

and with the cocycle property f (gg′, τ ) = f (g, g′ ·τ)+ f (g′, τ ), where g �→ g is

the morphism B3 → SL2(Z) and the action on SL2(Z) on H is
(

α β

γ δ

)

·τ = ατ+β
γ τ+δ .

2) For any g ∈ B3 and τ ∈ H, one has

e(g · τ) = Ad(e f (g,τ )t )
(

g ∗ (a(g, τ ) • e(τ )
)

)

, (55)

where:
• for α ∈ C, Ad(eαt ) is the self-map of EllK Z given by Ad(eαt )(e) :=
(eαt Ae−αt , eαt Be−αt ) for e = (A, B);

• a : SL2(Z) × H → SL2(C) is given by a(g, τ ) =
(

γ τ + δ 0
2π i γ (γ τ + δ)−1

)

=
n+( 2π i γ

γ τ+δ )t ((γ τ + δ)−1) if g =
(

α β

γ δ

)

;

• ∗ and • are the commuting left actions of B3 = Rell ⊂ Rell(C) and SL2(C) ⊂
Rgr

ell(C)
op on EllK Z , given as follows:
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• for e = (A, B) ∈ EllK Z and g ∈ B3, g ∗ e := (θg(a)|(a,b) �→(A,B), θg

(b)|(a,b) �→(A,B)), where θ : B3 → Aut(F2) is the action of B3 on the free group

F2 generated by a, b, and x �→ x|(a,b) �→(A,B) is the morphism F2 → exp(f̂C2 ),
given by a, b �→ A, B;

• for e = (A, B) ∈ EllK Z and a ∈ SL2(C), a • e := (αa(A), αa(B)), where

α : SL2(C) → Aut(exp(f̂C2 ))
op is induced by αa

(

x
y

)

=
(

p q
r s

)(

x
y

)

if

a =
(

p q
r s

)

.

Remark 6.5 Let g ∈ B3 and g =
(

α β

γ δ

)

is its image in SL2(Z), then exp f (g, τ ) =
γ τ + δ for any τ ∈ H.

Remark 6.6 For g = (σ1σ2)
6 (a generator of the kernel of B3 → SL2(Z)),

g ∗ e = (Ad(B, A)(A),Ad(B, A)(B)) = (Ad(e2π i t )(A),Ad(e2π i t )(B)),

while f (g, τ ) = −2π i. One checks this way that the r.h.s. of (55) does not depend of
the choice of a lift g of g to B3.

Proof Statement 1) can be checked using the presentation of B3. It follows from the
cocycle identity for f (g, τ ) and from the cocycle identity

a(hh′, τ ) = a(h′, τ )a(h, h′ · τ), h, h′ ∈ SL2(Z), τ ∈ H

that� := {g ∈ B3| identity (55) holds for any τ ∈ H} is a subgroup of B3. So statement
2) follows from its particular cases g = σ1, g = σ1σ2σ1. ��

Recall that

A(τ ) = lim
ε→0+

(−2π i ε)−t A1+ε
ε (τ )(−2π i ε)t ,

B(τ ) = lim
ε→0+

(−2π i ε)−t e2π i x Aτ+εε (τ )(−2π i ε)t ,

where Az1
z0(τ ) be the solution of ∂z1 Az1

z0(τ ) = K (z1|τ)Az1
z0(τ ) such that Az

z(τ ) = 1,

where K (z|τ) = − θ(z+ad x |τ) ad x
θ(z|τ)θ(ad x |τ) (y) and where the chosen branches of Az1

z0(τ ) are as
in Fig. 2.

The identity K (z|τ) = K (z|τ + 1) implies A1+ε
ε (τ + 1) = A1+ε

ε (τ ), and using
the decomposition of Fig. 3, it also implies Aτ+1+ε

ε (τ + 1) = Aτ+1+ε
1+ε (τ )A1+ε

ε (τ ) =
Aτ+εε (τ )A1+ε

ε (τ ). So A(τ+1) = A(τ ), B(τ+1) = B(τ )A(τ ), so e(τ+1) = σ1∗e(τ ),
which shows (55) in the case g = σ1.

Let w := −z/τ , then

∂

∂w
− K (w|−1

τ
) = −τe−2π i zx

( ∂

∂z
−
(

−τ 0
−2π i −1

τ

)

• K (z|τ)
)

e2π i zx .
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Fig. 2 Analytic continuation of z �→ Az
ε(τ )

Fig. 3 Proof of
B(τ + 1) = B(τ )A(τ )

So

Aw1
w0

(−1

τ

)

= e−2π i xz1 ·
(

−τ 0
−2π i −1

τ

)

• (Az1
z0
(τ )) · e2π i xz0 .

Then

A

(−1

τ

)

= lim
ε→0+

(−2π i ε)−t A1+ε
ε (

−1

τ
)(−2π i ε)t

= lim
ε→0+

(−2π i ε)−t ·
(

−τ 0
−2π i −1

τ

)

•
(

e−2π i(1+ε)x A−τ−ετ−ετ (τ )e2π i εx
)

· (−2π i ε)t

= exp(− log

(−1

τ

)

t) ·
(

−τ 0
−2π i −1

τ

)

• B(τ )−1 · exp

(

log(
−1

τ
)t

)

,

see Fig. 4; and

B

(−1

τ

)

= lim
ε→0+

(−2π i ε)−t e2π i x A
−1
τ
+ε

ε

(−1

τ

)

(−2π i ε)t

= lim
ε→0+

(−2π i ε)−t e2π i xτε ·
(

−τ 0
−2π i −1

τ

)

• A1−τε−τε (τ ) · e−2π i xτε(−2π i ε)−t

= exp(− log

(−1

τ

)

t) ·
(

−τ 0
−2π i −1

τ

)

•
(

lim
ε→0+

(2π i τε)−t A1−τε−τε (τ )(2π i τε)t
)

· exp

(

log

(−1

τ

)

t

)



Elliptic associators 551

Fig. 4 Relation between A(−1
τ )

and (A(τ ), B(τ ))

Fig. 5 Relation between B(−1
τ )

and (A(τ ), B(τ ))

= exp

(

− log

(−1

τ

)

t

)

·
(

−τ 0
−2π i −1

τ

)

• (B(τ )A(τ )B(τ )−1) · exp

(

log

(−1

τ

)

t

)

,

see Fig. 5. It follows that

e

(−1

τ

)

= Ad
(

exp(− log

(−1

τ

)

t)
)(

σ1σ2σ1 ∗
(

(

−τ 0
−2π i −1

τ

)

• e(τ )
))

The result for g = σ1σ2σ1 then follows.

7 Computations of Zariski closures

The action of the mapping class group B3 in genus one on the braid groups in genus
one [see (15)] restricts to an action on the pure braid subgroups. In this section, we
compute the Zariski closure of the image of B3 in the automorphism groups of their
prounipotent completions. This computation relies on the relation between the action
of GTell(−) on these prounipotent completions and its the graded counterpart (Sect. 5),
and on the properties of the elliptic analogues of the KZ associator (Sect. 6). There
properties enable us to establish the key result that the lift eK Z of �K Z is compatible
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with the inclusion of certain subgroups in Rell(−) and Rgr
ell(−) (see Proposition 6.3);

under Conjecture 10.1, any element of Ell(C) has the same property.

7.1 Automorphisms of group schemes

We will view a Q-group scheme as a functor {Q-algebras} → {groups}. The Lie alge-
bra of a Q-group scheme G(−) is then Lie G(−) := Ker(G(Q[ε]/(ε2))→ G(Q)).

If� is a finitely generated group, let �(−) be its Q-prounipotent completion and let
Lie� be its Lie algebra (a pronilpotent Q-Lie algebra). Let Aut �(−) be the Q-group
scheme defined by Aut �(k) := Aut(Lie�⊗̂k) for k a Q-ring, where Lie�⊗̂k :=
lim←(Lie�/(Lie�)≥n)⊗ k, and Lie� = (Lie�)≥0 ⊃ (Lie�)≥1 ⊃ · · · is the lower
central series filtration of Lie�.

Any automorphism of� gives rise to an automorphism of Lie�, so there are natural
morphisms

Aut � → Aut �(Q)→ Aut(�(k))

for any Q-ring k. One checks that there is a morphism of Q-group schemes

μO : GT(−)→ Aut Pn(−)

such that the resulting morphism GT(k)→ Aut(Pn(k)) is compatible with GT(k)→
Aut(Bn(k)), and morphisms

μ
gr
O : GRT(−)→ Aut Pgr

n (−), μell
O : GTell(−)→ Aut P1,n(−),

μ
ell,gr
O : GRTell(−)→ Aut Pgr

1,n(−),
μell : Rell(−)→ Aut P1,n(−), Rgr

ell(−)→ Aut Pgr
1,n(−)

with similar properties.

7.2 Results on Zariski closures

Define the Q-group scheme 〈B3〉 to be the Zariski closure of the composite group
morphism B3 → Aut F2 → Aut F2(Q); this is a group subscheme of Aut F2(−).
Theorem 7.1 Any elliptic associator of the form e(τ ), τ ∈ H, or eK Z , gives rise to
an isomorphism of C-group schemes 〈B3〉 ⊗ C � (

exp(b̂+3 ) � SL2
) ⊗ C. Any two

isomorphisms arising in this way are related by an inner automorphism. There exists
an analogous isomorphism for Q-group schemes.

For n ≥ 1, define 〈B3〉n to be the Zariski closure of the composite group morphism
B3 → Aut P1,n → Aut P1,n(Q); this is a group subscheme of Aut P1,n(−).
Theorem 7.2 For any n ≥ 1, there is an isomorphism 〈B3〉 � 〈B3〉n of Q-group
schemes, which is compatible with the maps from B3 to both sides.
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7.3 Proof of Theorem 7.1

Composing (50) with the morphism B̃3→GTell(k), we obtain a commutative diagram
B̃3 → GTell(k)→ GRTell(k)
↓ ↓ ↓
{±1} → GT(k) → GRT(k)

inducing morphisms B3→ Rell(k)→ Rgr
ell(k).

Set

eK Z := σ(�K Z )|x �→2π i x,
y �→(2π i)−1 y

.

When k = C and e = e(τ ), eK Z , the morphism B3 → Rgr
ell(C) is computed as follows.

Define F(τ ) as the map H → exp(b̂+,C3 )� SL2(C) such that

2π i ∂τ F(τ ) =
⎛

⎝e− +
∑

k≥0

(2k + 1)G2k+2(τ )δ2k

⎞

⎠ F(τ ) (56)

and F(τ ) ∼ exp( τ
2π i (e−+∑

k≥0(2k +1)2ζ(2k +2)δ2k)) as τ → i∞. Then the map
τ �→ e(τ ) ∗ F(τ ) is a constant, and

eK Z = e(τ ) ∗ F(τ ) for any τ ∈ H. (57)

Moreover, for any g̃ ∈ B3 with image g =
(

α β

γ δ

)

∈ SL2(Z), one has

e(τ ) ∗ ie(τ )(g̃) = g̃ ∗ e(τ ) = Ad(e− f (g̃,τ )t )(
(

γ τ + δ 0
2π i γ (γ τ + δ)−1

)−1
• e(gτ))

= e(τ ) ∗ F(τ )F(gτ)−1
(

γ τ + δ 0
2π i γ (γ τ + δ)−1

)−1
e− f (g̃,τ )δ0 , (58)

where the third equality follows from (57) for τ and gτ . It follows that

ie(τ )(g̃) = F(τ )F(gτ)−1
(

γ τ + δ 0
2π i γ (γ τ + δ)−1

)−1
e− f (g̃,τ )δ0 . (59)

Acting from the right by F(τ ) in the equality between the second and the fourth terms

of (58), one gets g̃ ∗ eK Z = eK Z ∗ F(gτ)−1
(

γ τ + δ 0
2π i γ (γ τ + δ)−1

)−1
F(τ )e− f (g̃,τ )δ0 , so

ieK Z (g̃) = F(gτ)−1
(

γ τ + δ 0
2π i γ (γ τ + δ)−1

)−1
F(τ )e− f (g̃,τ )δ0 (60)

for any τ ∈ H. It follows that the images of ie(τ ), ieK Z are contained in exp(b̂+,C3 ) �

SL2(C) ⊂ Rgr
ell(C). The composite morphism B3 → exp(b̂+,C3 )�SL2(C)→ SL2(C)

is g̃ �→
(

α −β/(2π i)
−2π i γ δ

)

.
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Recall that B3 ⊂ Aut(F2) is generated by �+, �− given by �+ : X,Y �→ X,Y X
and �− : X,Y �→ XY−1,Y . Let � := (�+�−�+)−1, then �− = ��+�−1 and
� : X,Y �→ XY X−1, X−1.

Then

ieK Z (�+) = F(τ + 1)−1 F(τ )

= exp(−(2π i)−1(e− +
∑

k>0

2(2k + 1)ζ(2k + 2)δ2k))e
2π i
12 δ0

=: ψ+,

and since ieK Z (�) ∈
(

0 −(2π i)−1

2π i 0

)

exp(b̂+,C3 ),

ieK Z (�−) = ψ−, where logψ− = 2π i(e+ + element of b̂C,+
3 ).

We then prove:

Proposition 7.3 For e = eK Z , the isomorphism ie : Rell(C) → Rgr
ell(C) restricts to

an isomorphism 〈B3〉(C)→ exp(b̂+,C3 )� SL2(C).

Proof ie(〈B3〉(C)) is the Zariski closure of the subgroup of Rgr
ell(C) generated by ψ±.

These are elements of the subgroup exp(b̂+,C3 ) � SL2(C), which is Zariski closed,
so ie(〈B3〉(C)) is contained in this group. On the other hand, the Lie algebra of this
Zariski closure is the topological Lie algebra generated by logψ±. It then suffices to
prove that this Lie algebra coincides with b̂C

3 .
Equip Aut(F2(C)) with the topology for which a system of neighbourhoods of 1

is Autn(F2(C)) = {θ |∀g ∈ F2(C), θ(g) ≡ g mod F (n)2 (C)} ⊂ Aut(F2(C)), where

F (1)2 (C) = F2(C) and F (n)2 (C) = (F (n−1)
2 (C), F2(C)). This induces a topology on

Rell(C), which we call the prounipotent topology. ��
Lemma 7.4 〈B3〉(C) ⊂ Rell(C) is closed for this topology.

Proof We have 〈B3〉(C) = ∩G∈GG, where G = {G(C)|G ⊂ Rell(−) is a subgroup
scheme such that G(Q) ⊃ B3}. It then suffices to show that each G(C) is closed in
the prounipotent topology. Define coordinates on Rell(C) as follows: Rell(C) 	 θ ↔
(cb, db)b, where b runs over a homogeneous basis of f2 (generated by ξ = log X, η =
log Y ), e.g., {b} = {ξ, η, [ξ, η], . . .}, and log θ(eξ ) = ∑

b cbb, log θ(eη) = ∑

b dbb.
Then G(C) is a finite intersection of sets of the form {θ |P(cξ , cη, . . . , dξ , dη, . . .) =
0}, where P is a polynomial in (cb, db)b, vanishing at the origin. Such a G(C) neces-
sarily contains Rell(C) ∩ Autn(F2(C)) for a large enough n. ��
Sequel of proof of Proposition 7.3 It follows that ie(〈B3〉(C)) ⊂ exp(b̂+,C3 )�SL2(C)

is closed in the prounipotent topology of Rgr
ell(C) (as in the case of Rell(C), and it is

defined by the inclusion in Aut(f̂C2 )), so Lie ie(〈B3〉(C)) ⊂ b̂C
3 is closed.

Recall that logψ+ = −(2π i)−1 · (e− +∑

k≥1 a2kδ2k)+ 2π i
12 δ0 ∈ Lie ie(〈B3〉(C)),

where a2k := 2(2k + 1)ζ(2k + 2)  = 0, while logψ− ∈ 2π i ·(e+ + b̂+,C3 ). ��
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Lemma 7.5 Let g ⊂ b̂C
3 be a closed (for the total degree topology) Lie subalgebra,

such that g 	 ẽ±, where: ẽ+ = e++ terms of degree> 0, ẽ− = e− +∑

k>0 a2kδ2k −
1

12δ0 +∑

p≥1,q>1 degree (p, q), where a2k  = 0. Then g = b̂C
3 .

Proof Set G = ⊕k≥0G2k := bC
3 (decomposition w.r.t. the total degree), Ĝ := b̂C

3 .
Set Ĝ≥2k := ∏

k′≥k G2k′ , then Ĝ = Ĝ≥0 ⊃ Ĝ≥2 ⊃ . . . is a complete descending Lie

algebra filtration of Ĝ, with associated graded Lie algebra G. Set g≥2k := g∩G2k , then
g = g≥0 ⊃ g≥2 ⊃ . . . is a complete descending filtration of g. Let gr(g) := ⊕k≥0g≥2k ,
where gr(g) := g≥2k/g≥2(k+2). We then have an inclusion gr(g) ⊂ G of graded Lie
algebras. We now prove that gr(g) = G.

As ẽ± ∈ g = g0, gr(g0) contains e±. Set h := [e+, e−]. Then [ẽ+, ẽ−] = h +
∑

p,q≥1 terms of degree (p, q), and [h, e−] = −2e−, [h, δ2n] = 2nδ2n . Then g 	
P(ad[ẽ+, ẽ−])(ẽ−) = P(−2)�0 +∑

n≥0 a2n P(2n)δ2n +∑

p≥1,q>1 terms of degree

(p, q) (with a0 = − 1
12 ). Taking P such that P(−2) = P(0) = . . . = P(2k − 2) = 0

and a2k P(2k) = 1, we see that g contains an element of the form δ2k + ∑

p≥1,q>1

terms of degree (p, q). Applying (ad ẽ−)2k to this element, and using the fact that
(ad ẽ−)2k(x) = 0 for x ∈ G of total degree≤ 2(k−1), we see thatg contains an element
of the form (ad e−)2k(δ2k)+∑

(terms of total degree ≥ 2(k + 2)). As the latter sum
belongs to g≥2(k+1), we obtain that (ad e−)2k(δ2k) ∈ gr(g)2(k+1). The Lie subalgebra
gr(g) ⊂ G then contains e± and (ad e−)2k(δ2k), k ≥ 0. As (ad e−)2k+1(δ2k) =
0, (ad e+)2k(ad e−)2k(δ2k) is a nonzero multiple of δ2k . So gr(g) = G. It follows that
g = G. ��
End of proof of Proposition 7.3 Applying Lemma 7.5 with ẽ+ = 2π i logψ−, ẽ− =
−(2π i)−1 logψ , we get ie(Lie〈B3〉(C)) = b̂C

3 , as wanted. ��
The last part of Theorem 7.1 is a consequence of the following statement, applied

to a torsor of isimorphisms of Lie algebras. It was communicated to the author by P.
Etingof; it is inspired by the results of [9].

Proposition 7.6 Let U = lim← Ui be a prounipotent Q-group scheme (where
U0 = 1) and let T := lim← Ti , where Ti are a compatible system of torsors under Ui ,
defined over Q. If T (C)  = ∅, then T (Q)  = ∅.

Proof Let Ũi := im(U → Ui ), then U = lim← Ũi , where · · · → Ũ2 → Ũ1 → Ũ0 =
1 is a sequence of epimorphisms of unipotent groups. We set Ki := Ker(U → Ũi );
then Ki * U . If we set T̃i := im(T → Ti ), then T̃i � T/Ki is a torsor over Ũi ; T is
the inverse limit of · · · → T̃2 → T̃1, where the morphisms are onto. ��

We may therefore assume w.l.o.g. that the morphisms Ui+1 → Ui , Ti+1 → Ti are
onto; if Ki := Ker(U → Ui ), then Ti = T/Ki .

We now show that the projective systems · · · → T2 → T1, · · · → U2 → U1 may
be completed so that for any i, Ker(Ui+1 → Ui ) � Ga . Indeed, for Ui+1 → U ′ → Ui

a sequence of epimorphisms, we set K ′ := Ker(U → U ′) and T ′ := T/K ′. Then
Ti+1 → T ′ → Ti is a sequence of epimorphisms, compatible with Ui+1 → U ′ → Ui .

Let t ∈ T (C). We construct a sequence (ki )i≥0, where ki ∈ Ki (C), such that
im(ki · · · k0t ∈ T (C) → Ti (C)) ∈ Ti (Q). Then k := limi (ki · · · k0) ∈ U (C) is such
that kt ∈ T (Q).
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We first construct k0. T1(C) is nonempty as it contains t1 := im(t ∈
T (C) → T1(C)), hence by Hilbert’s Nullstellensatz T1(Q̄) is nonempty. Using then
H1(GQ, Q̄) = 0 ([30]), we obtain that T1(Q) is nonempty; let t ′1 ∈ T1(Q). Let
u1 ∈ U1(C) be such that t ′1 = u1t1. Let k0 ∈ U (C) = K0(C) be a preimage of u1,
then im(k0t ∈ T (C)→ T1(C)) ∈ T1(Q).

Assume that k0, . . . , ki−1 have been constructed and let us construct ki . Let t̃ :=
ki−1 · · · k0t , then ti−1 := im(t̃ ∈ T (C)→ Ti−1(C)) ∈ Ti−1(Q). Then, Ti (C)×Ti−1(C){ti−1} is nonempty as it contains τ := im(t̃ ∈ T (C) → Ti (C)). As ti−1 ∈ Ti−1(Q),
we define a functor {Q-rings} → {sets}, k �→ X (k) := Ti (k) ×Ti−1(k) {ti−1}; it is a
Q-scheme and a torsor under Ki/Ki+1 = Ga . We have seen that X (C)  = ∅, from
which we derive as above that X (Q)  = ∅. Let τ ′ ∈ X (Q) and let ki ∈ Ki (C) be such
that k̄iτ = τ ′, where k̄i := im(ki ∈ Ki (C) → Ki/Ki−1(C)); then im(ki · · · k0t ∈
T (C)→ Ti (C)) = im(ki t̃ ∈ T (C)→ Ti (C)) = k̄iτ = τ ′ ∈ Ti (Q).

7.4 Proof of Theorem 7.2

The morphism B3 → Aut P1,n(Q) factors as B3 → Rell(Q)
μell→ Aut P1,n(Q).

The elliptic associator eK Z transports the morphism Rell(−) → Aut P1,n(−) to

the morphism Rgr
ell(−)→ Aut Pgr

1,n(−), whose Lie algebra morphism is

r
gr
ell → Der(t1,n), (α+, α−) �→ (x±i �→ α

i,1...ǐ ...n
± ).

The morphism t1,n → t1,2, x±i �→ x±i if i = 1, 2, x±i �→ 0 if i ∈ {3, . . . , n} can then
be used to prove that this Lie algebra morphism is injective. It follows that that the
group morphism Rell(−)→ Aut P1,n(−) is injective.

One has 〈B3〉n = ∩H |H⊂Aut P1,n(−),H(Q)⊃im(B3)H , therefore

〈B3〉n ∩ Rell(−) = ∩H |H⊂Aut P1,n(−),H(Q)⊃im(B3)(H ∩ Rell(−)).

The map

{H |H algebraic subgroup of Aut P1,n(−), s.t. H(Q) ⊃ im(B3)}
→ {G|G algebraic subgroup of Rell(−), s.t. G(Q) ⊃ im(B3)},

given by H �→ G := H∩Rell(−), is surjective (a preimage of G is G itself). Therefore

〈B3〉n ∩ Rell(−) = ∩G|G⊂Rell (−),G(Q)⊃im(B3)G = 〈B3〉.

The Zariski closure of im(B3 → Aut P1,n(Q)) is contained in the Zariski closure
of im(Rell(Q) → Aut P1,n(Q)), which is Rell(−) as the morphism Rell(−) →
Aut P1,n(−) is injective. So

〈B3〉n ⊂ Rell(−) ⊂ Aut P1,n(−).

All this implies that 〈B3〉 → 〈B3〉n is an isomorphism.



Elliptic associators 557

8 Iterated integrals of Eisenstein series and MZVs

In this section, we define regularized iterated integrals of modular forms. This construc-
tion generalizes both that of iterated integrals of cusp forms ([Ma]) and the definition
of the Mellin transform of Eisenstein series ([Za]): it is based on a truncation procedure
and the use of modular properties. We study the relations between these numbers aris-
ing from modular invariance. We show that the relations (26)-(27) from [7], obtained
by the study of a monodromy morphism, can be recovered from formula (60) for the
isomorphism ieK Z . The study of these relations leads to a family of algebraic relations
between the iterated integrals of Eisenstein series and the MZVs.

8.1 Iterated Mellin transforms of modular forms

Iterated Mellin transforms of cusp modular forms were studied in [20]. On the other
hand, Mellin transforms of noncusp (e.g. Eisenstein) modular forms were studied
in [33]. In this section, we study iterated Mellin transforms of general (i.e. nonneces-
sarily cusp) modular forms.

Proposition 8.1 Let E := { f : i R×+ → C| f is smooth and f (i t) = a + O(e−2π t )

as t → ∞ for some a ∈ C}. Set

F f1,..., fn
t0 (s1, . . . , sn) :=

∫

t0≤t1≤...≤tn≤∞
f1(i t1)t

s1−1
1 dt1 · · · fn(i tn)t

sn−1
n dtn, 0

where f1, . . . , fn ∈ E and t0 ∈ R×+. This function is analytic for ,(si ) - 0 and
admits a meromorphic prolongation to Cn, where the only singularities are simple
poles at the hyperplanes si + · · · + s j = 0 (1 ≤ i ≤ j ≤ n).

Proof Set E0 := { f ∈ E |a = 0}. Then E = E0⊕C1. When f1, . . . , fn ∈ E0, F f1,..., fn
t0

is analytic on Cn . Let now f1, . . . , fn ∈ E , and set fi = f̄i + ai , with f̄i ∈ E0. Using

∫

t≤t1≤...≤tn≤t ′
t s1−1
1 dt1 · · · t sn−1

n dtn

=
n
∑

k=0

(−1)k
(t ′)sk+1+···+sn

sk+1(sk+1+sk+2) · · · (sk+1+· · ·+sn)

t s1+···+sk

sk(sk+sk−1) · · · (sk+· · · + s1)
,

we get

F f1,..., fn
t0 (s1, . . . , sn) =

n
∑

k=1

∑

1≤i1<...<ik≤n

⎛

⎝

∏

j∈{1,...,n}−{i1,...,ik }
a j

⎞

⎠

∑

j1∈{1,..., j1−1},
...,

jk∈{ik−1,...,ik−1}

(−1)|A1|+|A2|+...+|Ak+1|
∏k+1

i=1 s̃Ai

∏k
i=1

˜̃sBi

t
sA1
0 F

f̄i1 ,..., f̄ik
t0 (si1+sB1+sA1 , ...,sik +sBk +sAk ),
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where Al := {il−1 + 1, ..., jl}, Bl := { jl + 1, ..., il − 1} for l = 1, ..., k, and Ak+1 :=
{ik + 1, ..., n}, sA := ∑

α∈A sα, s̃A := sb(sb + sb−1)...(sa + ...+ sb), ˜̃sA := sa(sa +
sa+1)...(sa + ...+ sb), for A = {a, a + 1, ..., b}. This implies the result in general. ��

Note that F f1,..., fn
t0 = (−1)na1...an

(s1+···+sn)...sn
t s1+···+sn
0 + O(tσ0 e−2π t0) as t0 → ∞, where σ

depends on the ,(si ).
Let now Ẽ := { f ∈ E |∃N ≥ 0, f (i t) = O(t−N ) as t → 0+}. Set

G f1,..., fn
t0 (s1, ..., sn) :=

∫

0≤t1≤···≤tn≤t0

f1(i t1)t
s1−1
1 dt1... fn(i tn)t

sn−1
n dtn

for f1, ..., fn ∈ Ẽ . This function is analytic for ,(si ). 0.

Proposition 8.2 For f1, ..., fn ∈ Ẽ , the function

(s1, ..., sn) �→
n
∑

k=0

G f1,..., fk
t0 (s1, ..., sk)F

fk+1,..., fn
t0 (sk+1, ..., sn)

is analytic for ,(si ). 0 and independent of t0. We denote it L∗
f1,..., fn

(s1, ..., sn).

Proof The analyticity follows from the fact that F fk+1,..., fn
t0 (sk+1, ..., sn) may be

viewed as an analytic function for ,(si ). 0. The independence of t0 follows from

∂t0 G f1,..., fk
t0 (s1, ..., sk) = fk(i t0)t

sk−1
0 G f1,..., fk−1

t0 (s1, ..., sk−1),

∂t0 F fk ,..., fn
t0 (sk, ..., sn) = − fk(i t0)t

sk−1
0 F fk+1,..., fn

t0 (sk+1, ..., sn),

where the former identity in valid in the domain,(si ). 0, and the latter is analytically
extended from the domain ,(si )- 0 to ,(si ). 0. ��

Recall that if f (τ ) is a modular form of weight k, then (t �→ f (i t)) ∈ Ẽ, f (τ+1) =
f (τ ) and f (−1

τ
) = τ k f (τ ).

Proposition-Definition 8.3 Let fi be modular forms of weight ki (i = 1, ..., n), then
the function L∗

f1,..., fn
(s1, ..., sn) extends to a meromorphic function on Cn , whose

only possible singularities are simple poles at the hyperplanes si + ... + s j = 0 and
si + ... + s j = ki + · · · + k j (where 1 ≤ i ≤ j ≤ n). We call it the iterated Mellin
transform of f1, . . . , fn . ��
Proof By modularity,

G f1,..., fl
t0 (s1, ..., sl) = (−1)(k1+···+kl )/2 F fl ,..., f1

1/t0
(kl − sl , ..., k1 − s1).

Plugging this equality in the definition of L∗
f1,..., fn

(s1, ..., sn) and using the poles

structures of the functions F fl ,..., f1
1/t0

, F fl+1,..., fn
t0 , we obtain the result. ��
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When n = 1, we now relate L∗
f (s) with the Mellin transform L∗( f, s) defined

in [33]. Let f be a modular form with f (τ ) → a as τ → i∞. Then L∗( f, s) is
defined for ,(s). 0 by L∗( f, s) = ∫∞

0 ( f (i t)− a)t s−1dt . Then:

Proposition 8.4 L∗( f, s) = L∗
f (s).

Proof L∗( f, s) = ∫ t0
0 f (i t)t s−1dt − a

ts
0
s + ∫∞

t0
( f (i t)− a)t s−1dt for ,(s). 0.

On the other hand, G f
t0(s) = ∫ t0

0 f (i t)t s−1dt for ,(s) . 0, while F f
t0 (s) =

∫∞
t0

f (i t)t s−1dt = ∫∞
t0
( f (i t)−a)t s−1dt−a

ts
0
s for,(s)- 0. The second expression

of F f
t0 (s) is meromorphic on C with as its only possible singularity, a simple pole at

s = 0; in particular, this expression coincides with F f
t0 (s) for ,(s) . 0. Then for

,(s). 0, L∗
f (s) = G f

t0(s)+ F f
t0 (s) = L∗( f, s). ��

For s1, . . . , sn ∈ Z, one sets

L�f1,..., fn
(s1, . . . , sn) := is1+···+sn L∗

f1,..., fn
(s1, . . . , sn).

According to Proposition-Definition 8.3, the numbers

L�k1,...,kn
(l1, . . . , ln) := L�Gk1 ,...,Gkn

(l1, . . . , ln), (61)

for k1, . . . , kn even integers ≥ 4, li ∈ {1, . . . , ki −1}, are well-defined. One can prove
that L�k1,...,kn

(b1, . . . , bn) ∈ il1+···+ln R.

8.2 Monodromy relations and the isomorphism ieK Z

(60) defines a morphism

ieK Z : B3 → exp(b̂+3 )� SL2(C)(⊂ Aut(f̂C2 )
op),

such that

∀g̃3 ∈ B3, g̃ ∗ eK Z = eK Z ∗ ieK Z (g̃) = (ieK Z (g̃)(AK Z ), ieK Z (g̃)(BK Z )), (62)

where eK Z = (AK Z , BK Z ).
Specializing to g̃ = �+, this gives

ieK Z (�+) : AK Z �→ AK Z , BK Z �→ BK Z AK Z ,

and for g̃ = �, this gives

ieK Z (�) : AK Z �→ B−1
K Z , BK Z �→ BK Z AK Z B−1

K Z .
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In Calaque et al. [7], we introduced Ã, B̃ ∈ exp(t̂1,2) related to AK Z , BK Z by

Ã = (2π/ i)t AK Z (2π/ i)−t , B̃ = (2π/ i)t BK Z (2π/ i)−t ,

and elements [�], [�] ∈ exp(b̂+3 )� SL2(C), and studying a monodromy morphism,
showed relations (numbered (26), (27) in Calaque et al. [7])

[�]ei π6 ad t : AK Z �→ AK Z , BK Z �→ BK Z AK Z ,

[�]ei π2 ad t : AK Z �→ B−1
K Z , BK Z �→ BK Z AK Z B−1

K Z .

One checks that [�]ei π6 Ad t = ieK Z (�), [�]ei π2 ad t = ieK Z (�). So (60) allows to
recover relations (26), (27) from [7].

8.3 Relations between iterated Mellin transforms and MZVs

Another consequence of (62) is the behaviour of the automorphism ieK Z (�−), namely

ieK Z (�−) : AK Z �→ AK Z B−1
K Z , BK Z �→ BK Z . (63)

Notice that�− = ��+�−1 and that log ieK Z (�+) is a well-defined derivation of f̂C2 .
Set

xK Z := logAK Z |x �→(2π i)−1x,y �→2π i y ∈ f̂C2 , yK Z := log BK Z |x �→(2π i)−1x,y �→2π i y ∈ f̂C2 ,

soσ(�K Z ) = (exK Z , eyK Z ). Then, (63) is equivalent to the statement that the derivation

D := Ad(diag((2π i)−1, 2π i) ◦ ieK Z (�))(log ieK Z (�+)) ∈ Der(f̂C2 )

acts as follows

D : xK Z �→ − ad xK Z

1 − e− ad xK Z
(yK Z ), yK Z �→ 0,

where t (2π i) = diag((2π i)−1, 2π i) ∈ SL2(C) is viewed as an automorphism of f̂C2
(see Proposition 6.4).

There is a decomposition Der(f̂C2 ) =
∏

k,l∈Z Der(fC2 )[k, l], where the bracket indi-
cates the bidegree in x, y. Let D = ∑

k,l D[k, l] be the corresponding decomposition

of D. One has Der(fC2 )[k, l] = Der(fQ2 )[k, l] ⊗ C.
Set Z0 := Q and for l ≥ 1, set

Zl :=SpanQ{ζ(l1, . . . , ls)|s ≥ 1, l1 ≥ 1, . . . , ls−1 ≥ 1, ls ≥ 2, l1+· · ·+ls = l} ⊂ C,

where

ζ(l1, . . . , ls) =
∑

1≤k1≤...≤ks

k−l1
1 · · · k−ls

s .
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For V ⊂ C a Q-vector subspace and k ∈ Z, set V (k) := (2π i)k V .

Proposition 8.5 D[k, l] has the following properties:

• it lies in b
Q
3 [k, l] ⊗ Q(l) if k = 1, l ≥ −1;

• it lies in b
Q
3 [k, l] ⊗ (Zl(0)+ Zl+1(−1)) if k ≥ 2, l ≥ 1;

• it is equal to zero in all the other cases.

Proof log ieK Z (�+) ∈ ∑

k≥−1 Q(k)⊗b
Q
3 [k, 1], and diag((2π i)−1, 2π i)◦ieK Z (�) =

(element of exp(b̂+3 )) × (x �→ y, y �→ x), and the support of b̂+3 is contained in
{1, 2, . . .}2. All this implies that

D ∈
∏

l≥−1

Q(l)⊗ b
Q
3 [1, l] ⊕

∏

k≥2,l≥0

bC
3 [k, l].

Since D lies in b̂C
3 , whose support is contained in {(1,−1), (0, 0), (−1, 1)} ∪

{1, 2, . . .}2, this statement can be improved by changing the second product into
∏

k≥2,l≥1 bC
3 [k, l]. This implies the first and the last statement of the proposition.

Recall that

xK Z = Ad
(

�K Z (− ad x

ead x − 1
(y), t)

)(

2π i
− ad x

ead x − 1
(y)

)

,

yK Z = iπ t ∗ log�K Z (− ad x

ead x − 1
(y), t) ∗ x ∗ log�K Z (

ad x

ead x − 1
(y)+ t, t),

where ∗ is the CBH product a ∗ b := log eaeb.
There exists a unique derivation D̃ of f̂C2 , such that

D̃ : x �→ 0, y �→ − 1

2π i

ead x − 1

ad x
ϕ
(

ad
(

− 2π i
ad x

ead x − 1
(y)

))

(x),

where ϕ(t) = (−t)/(1− e−t ), and a unique automorphism θ of the same Lie algebra,
such that

θ : x �→ yK Z , y �→ − 1

2π i

ead yK Z − 1

ad yK Z
(xK Z );

then D = θ D̃θ−1. One has

D̃ ∈ Q(−1)⊗ Der(f2)[1,−1] +
∏

k≥1,l≥0

Q(l)⊗ Der(f2)[k, l]. (64)

One computes

log�K Z (− ad x

ead x − 1
(y), t), log�K Z (

ad x

ead x − 1
(y)+ t, t) ∈

∏

k≥1,l≥2

Zl ⊗ f
Q
2 [k, l],

iπ t ∈ Q(1)⊗ f2[1, 1],
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which implies

yK Z ∈ x +
∏

k≥1,l≥1

(Zl + Zl−1(1))⊗ f
Q
2 [k, l]. (65)

It also implies

− 1

2π i
xK Z = y +

∏

k,l≥1

Zl−1 ⊗ Der f
Q
2 [k, l],

which then implies

− 1

2π i

ead yK Z − 1

ad yK Z
(xK Z ) ∈ y +

∏

k,l≥1

(Zl + Zl−1(1))⊗ f
Q
2 [k, l]. (66)

(65) and (66) imply that θ − id ∈ ∏

k≥0,l≥1(Zl + Zl−1(1)) ⊗ End(fQ2 )[k, l], so that

log θ belongs to the same space. Together with the estimate on D̃, this implies that for
any k ≥ 1,

ad(log θ)k(D̃) ∈
∏

k≥1,l≥0

Der(fQ2 )[k, l] ⊗
(Zl + Zl+1(−1)

)

.

Combining this with the estimate on D̃, one obtains that D = θ D̃θ−1 belongs to the
direct sum of Der(fQ2 )[1,−1] ⊗ Q(−1) with this space, which together with the first

and third statements of the proposition, and the fact that D ∈ b̂C
3 implies the second

statement of the proposition. ��

For λ ∈ C×, set w(λ) :=
(

0 −λ−1

λ 0

)

∈ SL2(C).

Lemma 8.6

ieK Z (�) ≡ w(2π i) ·
∑

n≥0

∑

k1,...,kn≥1
li∈{0,...,2ki }

( −1

2π i

)l1+1

· · ·
( −1

2π i

)ln+1

L�2k1+2,...,2kn+2 (l1 + 1, . . . , ln + 1)

2k1 + 1

l1! ad(e−)l1(δ2k1) · · ·
2kn + 1

ln ! ad(e−)ln (δ2kn )

in exp(b̂+,C3 )� SL2(C), up to multiplication by an element of exp(Cδ0).

Proof ieK Z (�) = F̃(−1
τ
)−1w(2π i)F̃(τ )elog(−1

τ
)δ0 , wherew =

(

0 −1
1 0

)

and F̃(τ ) :=
n−( τ

2π i )
−1 F(τ ). As F̃(τ ) satisfies
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∂τ F̃(τ ) = −
(
∑

k≥0

2k
∑

l=0

τ l G2k+2(τ )(
−1

2π i
)l+1 2k + 1

l! ad(e−)l(δ2k)
)

F̃(τ ),

and taking into account the behaviour of F̃(τ ) at τ → i∞, one obtains

F̃(τ ) ≡
∑

n≥0

∑

k1,...,kn≥1

∑

li∈{0,...,2ki }
φ

G2k1+2,...,G2kn+2
τ (l1 + 1, . . . , ln + 1)

( −1

2π i

)l1+1

· · ·
( −1

2π i

)ln+1 2k1 + 1

l1! ad(e−)l1(δ2k1) · · ·
2kn + 1

ln ! ad(e−)ln (δ2kn ),

where φ f1,..., fn
i t0

(s1, . . . , sn) := is1+···+sn F f1,..., fn
t0 (s1, . . . , sn). Combining this with

the similar formula for F̃(−1
τ
)−1, one obtains the result. ��

Set w := w(1) ∈ SL2(C).

Lemma 8.7

Ad(w−1) ◦ D = − 1

2π i
e− + 2π i

12
δ0 +

∑

n>0
k1,...,kn≥1

li∈{0,...,2ki }

( −1

2π i

)l1+1

. . .

( −1

2π i

)ln+1

×
{ −L�2k1+2,...,2kn+2(l1 + 1, . . . , ln + 1) · ln if ln  = 0

L�2k1+2,...,2kn−1+2(l1 + 1, . . . , ln−1 + 1) · 2ζ(2kn + 2) if ln = 0

}

×
[

2k1 + 1

l1! (ad e−)l1(δ2k1), . . . ,
2kn + 1

ln ! (ad e−)ln (δ2kn )

]

,

where L�∅(∅) = 1 by convention, and [a1, . . . , an] := ad a1 ◦ · · · ◦ ad an−1(an).

Proof One has t (2π i) ◦ w(2π i) = w(1) = w in Aut(f̂2). One also has

log ieK Z (�+) = 2π i

12
δ0 − 1

2π i
(e− +

∑

k>0

2(2k + 1)ζ(2k + 2)δ2k).

The result then follows from the expansion of ieK Z (�) and from the identity
Ad(g)(y) = ∑

n≥0 ai1,...,in [xi1 , . . . , xin , y] for g = ∑

n≥0
∑

i1,...,in∈I ai1,...,in xi1 · · · xin

a group-like element of Ug and y ∈ g, whereg is a topological Lie algebra and xi , i ∈ I
are positive degree elements of g. ��

Combining Proposition 8.5 and Lemma 8.7, one obtains the following family of
relations between iterated integrals of Eisenstein series and MZVs:

Proposition 8.8 Let I := {(a, b)|a, b ≥ 1, a + b is even}. For (a, b) ∈ I , let

ea,b := a + b − 1

(b − 1)! (ad e−)b−1(δa+b−2) ∈ b
Q
3 [a, b].
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Let A ≥ 2, B ≥ 1. Any ξ ∈ b
Q
3 [A, B]∗ gives rise to a relation

∑

n>0

∑

(a1,b1),...,(an ,bn)|
(a1,b1)+···+(an ,bn)=(A,B)

〈ξ, [ea1,b1, . . . , ean ,bn ]〉 ×

×
{ −L�a1+b1,...,an+bn

(b1, . . . , bn) · (bn − 1) if bn  = 1

L�a1+b1,...,an−1+bn−1
(b1, . . . , bn−1) · 2ζ(an + bn) if bn = 1

}

∈ ZA(B)+ ZA+1(B − 1).

8.4 Modular and shuffle relations

The numbers L�k1,...,kn
(b1, . . . , bn) are subject to other relations:

(a) the shuffle relations

L�k1,...,kn
(b1, . . . , bn)L

�
kn+1,...,kn+m

(bn+1, . . . , bn+m)

=
∑

σ∈Sn,m

L�kσ(1),...,kσ(n+m)
(bσ(1), . . . , bσ(n+m)), (67)

where Sn,m = {σ ∈ Sn+m |σ(i) < σ( j) if i < j ≤ n or n + 1 ≤ i < j}, which
can be reexpressed as the following statement: let M := ⊕k≥4CGk ⊗ C[t]≤k−2,
then the linear map I : T (M) → C such that I (Gk1(t)t

b1, . . . ,Gkn (t)t
bn ) :=

L�k1,...,kn
(b1 + 1, . . . , bn + 1) is an algebra morphism, T (M) being equipped with

the shuffle algebra product ;
(b) the modular relations

I⊗2 ◦ (id ⊗S) ◦� = J⊗3 ◦ (id⊗U ⊗ U 2) ◦�(2) = ε (68)

(equalities in Homalg(T (M),C), T (M) being equipped with the shuffle product),
where:

• J : T (M)→ C is defined by J := (I ⊗ ψ) ◦�, ψ : T (M)→ C being defined
by

ψ(Gk1 tb1−1 ⊗ · · · ⊗ Gkn tbn−1) := 2ζ(k1) · · · 2ζ(kn)

b1(b1 + b2) · · · (b1 + · · · + bn)
;

• S =
(

0 −1
1 0

)

, U =
(

1 −1
1 0

)

∈ PSL2(Z) act on M by S · tb−1Gk :=
tk−2(−1

t )
b−1Gk, U · tb−1Gk := tk−2(1 − 1

t )
b−1Gk ;

• ε : T (M) → C is the augmentation morphism, � : T (M) → T (M)⊗2 is the
shuffle coproduct morphism x1 ⊗ · · · ⊗ xn �→ ∑n

k=0(x1 ⊗ · · · ⊗ xk) ⊗ (xk+1 ⊗
· · · ⊗ xn), �

(2) := (�⊗ id) ◦�.
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The relations (68) are proved as follows. Let b̃3 := Lie(⊕a,b≥1,a+b evenCẽa,b) �

sl2, where Lie(−) means the free Lie algebra generated by a vector space, and
⊕a,b≥1,a+b evenCẽa,b = ⊕k even(⊕a,b≥1,a+b=kCẽa,b) is the direct sum of all the odd-
dimensional simple sl2-modules, the action being normalized by e−·ẽa,b = bẽa−1,b+1.
There is a unique morphism b̃3 → b3, such that it induces the identity on sl2 and such
that ẽa,b �→ ea,b. The SL2(Z)-equivariant connection on H with values in the trivial
principal bundle with group exp(b̂+,C3 ) � SL2(C) defined by (56) admits a lift to a
similar connection, where this group is replaced by its analogue with b̃3 replacing b3.

This connection therefore gives rise to a morphism SL2(Z)→ exp( ˆ̃b+,C3 )� SL2(C)

to this group. The relations (68) express the fact that the relations between the usual
generators of SL2(Z) are satisfied by their images.

Remark 8.9 Relations (68) are generalizations of the modular relations satisfied by the
period polynomials of Eisenstein series ([33], Proposition p. 453). The contribution
of ψ to J is the analogue of the contributions of the values at cusps to the period
polynomials of Eisenstein series as defined in [33], (9).

Remark 8.10 Let Z = ⊕k≥0Zk be the Q-algebra of formal MZVs, i.e., the Q-algebra
generated by formal versions of 2π i and of the ζ(k1, . . . , ks), subject to the asso-
ciator relations. Define Z∗ as the Z-algebra generated by formal analogues of the
L�k1,...,kn

(b1, . . . , bn), k1, . . . , kn even ≥ 4, bi ∈ {1, . . . , ki − 1}, modulo the shuffle
relations (67), the modular relations (68), and the relations from Proposition 8.8, in
which the right-hand side is replaced by any lift in ZA(B) + ZA+1(B − 1). Then Z∗
is N-graded, with the degree of L�k1,...,kn

(b1, . . . , bn) being equal to k1 + · · · + kn .

8.5 Computation of some regularized iterated integrals

Denote by Sh(M) the vector space T (M), equipped with its (commutative) shuffle
algebra structure. Let Lie(M) ⊂ T (M) be the (free) Lie subalgebra of T (M) gen-
erated by M, T (M) being equipped with its tensor algebra structure. This inclusion
gives rise to a commutative algebra morphism S(Lie(M)) → Sh(M), which can be
shown to be an isomorphism. As I : Sh(M) → C is an algebra morphism, it is
uniquely determined by its restriction

I : Lie(M)→ C.

Lie(M) decomposes as M ⊕ Lie2(M) ⊕ · · · . The restriction of I to M has been
determined in [33]: for k even ≥ 4,

I (tk−2Gk) = −I (Gk) = 2π i

k − 1
ζ(k − 1),

I (taGk) = (−1)a+1

(k − 1)!
Ba+1

a + 1

Bk−a−1

k − a − 1
(2π i)k for a = 1, . . . , k − 3.

(69)
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The grading M = ⊕k≥4Mk , where Mk = CGk ⊗ SpanC(1, t, . . . , tk−2), induces a
grading Lie(M) = ⊕k≥4,k even Lie(M)k . The restriction of I to Lie(M)k for the first
values of k can be carried out as follows.

• k = 4, 6. In these cases, Lie(M)k = Mk , so (69) determines the restriction of I
to Lie(M)k .

• k = 8. Lie(M)8 = M8⊕Lie2(M4). (69) determines the restriction of I to M8, so it
remains to compute its restriction to Lie2(M4) = SpanC([G4, tG4], [G4, t2G4],
[tG4, t2G4]). The modular relations imply that

I ([G4, t2G4]) = −
(

2π i

3
ζ(3)

)2

− 418

45
ζ(4)2,

and that I ([G4, tG4])+ I ([tG4, t2G4]) = 0. Proposition 8.8 for (A, B) = (4, 4),
together with the fact that the restriction of the morphism b̃3 → b3 to degree
8 is an isomorphism, then implies that I ([G4, tG4]) ∈ Z5(3) + Z4(4) =
SpanQ((2π i)3ζ(5), (2π i)5ζ(3), (2π i)8). As I ([G4, tG4]) is pure imaginary, one
even has

I ([G4, tG4]) = −I ([tG4, t2G4]) ∈ Q(2π i)3ζ(5)+ Q(2π i)5ζ(3)

(the rational coefficients can be determined from the expression of the components
of the derivation D in a generating family of MZVs).

• k = 10. Lie(M)10 = M10 ⊕ M4 ⊗ M6, and as a SL2(C)-module, M4 ⊗ M6
decomposes as a direct sum V7 ⊕ V5 ⊕ V3 of irreducible modules of the indicated
dimensions, generated by the highest weight vectors

[G4,G6], [tG4,G6] − [G4, tG6], [t2G4,G6] − 2[tG4, tG6] + [G4, t2G6].
(70)

The modular relations determine the restriction of I to 1-codimensional subspaces
of Vi (i = 3, 5, 7), for which the highest weight vectors (70) span supplementary
subspaces.
On the other hand, the expansion of log(w(2π i)−1ieK Z (�)) up to degree 10 yields
the identity

Ad(w−1)(D)

= Ad exp
(
∑

a,b

( −1

2π i

)b

I (tb−1Ga+b)ea,b

+1

4

∑

a,b,a′,b′

( −1

2π i

)b+b′

I ([tb−1Ga+b, tb′−1Ga′+b′ ])[ea,b, ea′,b′ ]
)

·

·
( −1

2π i
(e− +

∑

k≥1

2ζ(2k + 2)δ2k)
)
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modulo degree ≥ 12, from where one derives the expression in terms of MZVs of

⎡

⎣e−,
∑

a,b,a′,b′|a+b+a′+b′=10

( −1

2π i

)b+b′

I ([tb−1Ga+b, tb′−1Ga′+b′ ])[ea,b, ea′,b′ ]
⎤

⎦ .

(71)

On the other hand, let Ṽk := SpanC(ẽ2k,1, . . . , ẽ1,2k) ⊂ b̃3; the degree 10 part
of b̃3 decomposes as (b̃3)10 = Ṽ10 ⊕ Ṽ4 ⊗ Ṽ6. This SL2(C)-module is dual to
Lie(M)10, in particular

∑

a,b,a′,b′|a+b+a′+b′=10

( −1

2π i

)b+b′

[tb−1Ga+b, tb′−1Ga′+b′ ] ⊗ [ẽab, ẽa′b′ ] (72)

is the canonical element of (M4 ⊗ M6) ⊗ (Ṽ4 ⊗ Ṽ6). Decompose Ṽ4 ⊗ Ṽ6 as
a direct sum W̃7 ⊕ W̃5 ⊕ W̃3 of irreducible SL2(C)-modules of the indicated
dimensions, then (72) is the sum of the canonical elements in each summand of
(V7 ⊗ W̃7)⊕ (V5 ⊗ W̃5)⊕ (V3 ⊗ W̃3); these canonical elements have the form

[G4,G6] ⊗ (lowest weight vector of W̃7)

+ a sum of tensors of different weights,

([tG4,G6] − [G4, tG6])⊗ (lowest weight vector of W̃5)

+ a sum of tensors of different weights,

([t2G4,G6] − 2[tG4, tG6] + [G4, t2G6])⊗ (l.w.v. of W̃3)

+tensors of different weights.

Lemma 8.11 The composite maps W̃7 ⊂ (b̃3)10 → (b3)10, W̃5 ⊂ (b̃3)10 → (b3)10
and W̃3 → (b̃3)10 → (b3)10 are injective.

Proof The images of the highest weight vectors of W̃7, W̃5 in b3 ⊂ Dert (f2)

can be partially computed (here t = −[x, y] and Dert means the derivations
taking t to zero) as follows. The commutator of derivations induces a map
Dert (f2, f

′
2)

⊗2 → Dert (f2, f
′′
2) (where f′2 = [f2, f2], f′′2 = [f′2, f′2]), which in its

turn induces a map D⊗2
1 → D2, where D1 := Dert (f2, f

′
2)/Dert (f2, f

′′
2), D2 :=

Dert (f2, f
′′
2)/Dert (f2, f

′′′
2 ) (where f′′′2 := [f′2, f′′2]). There is a natural map D1 → f′2/f′′2

induced by Dert (f2, f
′
2)→ f′2/f′′2, D �→ (the class of an element a ∈ f′2 such that D−

ad a ∈ Der(f2, f
′′
2)) and D2 → f′′2/f′′′2 defined similarly. There are isomorphisms

C[u, v] � f′2/f′′2, defined by unvm �→ (the class of (ad x)n(ad y)m[x, y]), and
∧2

C[u, v] � f′′2/f′′′2 , induced by the Lie bracket
∧2 f′2 → f′′2. The map D⊗2

1 → D2

is then compatible with an explicit map C[u, v]⊗2 → ∧2
C[u, v]. The images in b3

of the highest weight vectors of W̃7, W̃5 in fact lie in Dert (f2, f
′′
2), and their images

in
∧2

C[u, v] can be computed using the above map C[u, v]⊗2 → ∧2
C[u, v] and

shown to be nonzero. On the other hand, the image in
∧2

C[u, v] of the highest
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weight vector of W̃3 is zero, so the image of this highest weight vector in b3 lies in
Dert (f2, f

′′′
2 ). This derivation can be computed explicitly (by computer) and shown to

be nonzero (this can also be derived from [28], Thm. 3, where Ker(D⊗2
1 → D2) is

computed). Note that [Dert (f2, f
′′
2)10 : 3] = 1, where 3 is the irreducible 3-dimension

representation of SL2(C), so this multiplicity space is spanned by the image of the
highest weight vector of W̃3.

The expression of (71) in terms of MZVs therefore allows one to express
I ([G4,G6]), I ([tG4,G6]−[G4, tG6]) and I ([t2G4,G6]−2[tG4, tG6]+[G4, t2G6])
in terms of MZVs, thereby completing the computation of the restriction of I to V7, V5
and V3. To summarize, the results of Sects. 8.3, 8.4 allow one to determine the restric-
tion of I to Lie(M)10 in terms of MZVs of weight 10. ��

• k = 14. It has been shown in [28] that [δ2, δ8] = 3[δ4, δ6]. Using the same
techniques as for k = 10, one can prove that 81 · I ([G4,G10])+ 35 · I ([G6,G8])
is a MZV of weight 14. These techniques do not give any information on the
individual values of I ([G4,G10]) and I ([G6,G8]).

9 Galois aspects

In this section, we recall the links between GQ, ̂GT and the Teichmüller groupoids
in genus zero. We then establish the analogous results in genus one: they relate the
arithmetic fundamental group π1(M

Q
1,1),

̂GTell and the Teichmüller groupoid in genus
one.

9.1 Galois groups and Teichmüller groupoids in genus zero

9.1.1 Profinite Galois representations

Let n ≥ 3 and MQ
0,n be the moduli stack over Q of genus zero smooth projective

curves with n marked points and M
Q
0,n its Deligne-Mumford compactification. Maxi-

mally degenerate curves are rational points of this stack and correspond bijectively to
planar unrooted trivalent trees with leaves indexed bijectively by {1, . . . , n}, modulo
‘mirror’ symmetry. For T such a tree, let X0

T the corresponding curve. The formal
neighbourhood of X0

T is a fibration XT → Spec Q[[qe, e inner edge of T ]]. Then the
pull-back XT ⊗Q[[{qe}e]] Q[[q]] corresponding to the morphism given by qe �→ q is a

rational tangential base point of MQ
0,n (recall that a rational tangential base point of a

scheme X is a morphism X → Spec Q((q))); see [15,22].
Let S be this set of rational tangential base points. The fundamental groupoid

̂T0,n := π
geom
1 (MQ

0,n, S) relative to this base set is the profinite completion of the
groupoid T0,n described in [29]. There is a split exact sequence

1 → ̂T0,n → π1(M
Q
0,n, S)

�→ GQ → 1
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with section induced by S. It results in a group morphism GQ = Gal(Q̄/Q) →
Aut(̂T0,n) (see [9,10]).

Theorem 9.1 ([9,29]) This morphism factors as GQ → ̂GT → Aut(̂T0,n).

9.1.2 Pro-l and prounipotent completions

Let π be a finitely generated group, and let πQ(−) denote its Q-prounipotent com-
pletion. It has the following properties: πQ(−) is a prounipotent Q-group scheme;
there is a group morphism π → πQ(Q); any morphism π → U (Q), where U (−) is a
unipotent Q-group scheme, induces a Q-group scheme morphism πQ(−) → U (−),
such that (π → U (Q)) = (π → πQ(Q)→ U (Q)).

If k is a Q-ring, then πk(−) := πQ(−) ⊗ k is a prounipotent k-group scheme (it
is the functor {k-rings} → {groups}, K �→ πQ(K )). There is a morphism (π →
πk(k)) := (π → πQ(Q) → πQ(k) = πk(k)). Any morphism π → U (k), where
U (−) is a prounipotent k-group scheme, gives rise to a morphism πk(−) → U (−),
such that (π → U (k)) = (π → πk(k)→ U (k)) ([12], Sect. 4).

Let l be a prime number, and let πl be the pro-l completion of π . According to
[13], Lemma A.7, there exists a morphism πl → πQ(Ql), compatible with the maps
from π .

If π, π ′ are finitely generated groups, then a continuous morphism πl → π ′
l gives

rise to the morphism π → πl → π ′
l → π ′

Q
(Ql), and hence to a Ql -group scheme

morphism πQl (−) → π ′
Ql
(−), such that (π → π ′

Q
(Ql)) = (π → πQl (Ql) →

π ′
Ql
(Ql)). The resulting map Hom(πl , π

′
l ) → HomQl -group

schemes

(πQl , π
′
Ql
) is compatible

with compositions and hence gives rise to a group morphism

Aut(πl)→ AutQl -group
schemes

(πQl ). (73)

Let U (−) be a prounipotent Q-group scheme. Let Aut U be the Q-group scheme
defined as the functor {Q-rings} → {groups}, k �→ Aut U (k) := Autk-group

schemes

(U ⊗
k) = Aut k-Lie

algebras
(u ⊗ k), where u = Lie U . Then, Aut U is an extension of a group

Q-subscheme G ⊂ GL(uab) by a prounipotent Q-group scheme, explicitly

1 → Aut+ U → Aut U → G → 1.

Namely, G is the intersection of the decreasing sequence of group schemes
Im(Aut U/U (n) → GL(uab)), which is stationary.

The morphism (73) may therefore be interpreted as a morphism

Aut(πl)→ Aut π(Ql).

Let G ⇒ B be a groupoid where for any b ∈ B, Gb := Gbb is finitely generated.
We denote by Gl ⇒ B, GQ(−) ⇒ B its pro-l and Q-prounipotent completions, given
by (Gl)bc := (Gb)l ×Gb Gbc and GQ(k)bc := Gb(k)×Gb Gbc.
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Assume that G is connected (i.e. for any b, c ∈ B, Gbc  = ∅). Define the group
scheme AutG by AutG(k) := Aut(G(k)). If Gab × Gbc → Gac, (gab, gbc) �→ gbcgab

is the composition of G, then Aut(G(k)) = {θab : Gab → Gab(k)|∀a, b, c,∀gab, gbc,

θac(gbcgab) = θbc(gbc)θab(gab)}. The choice of b ∈ B and of particular elements
g0

ab ∈ Gab for any a ∈ B−{b}gives rise to an isomorphism Aut(G(k)) � Gb(k)B−{b}�
AutGb(k), the inverse isomorphism taking ((Xa)a, θ) to the automorphism such that
Gb(k) 	 gb �→ θ(gb) ∈ Gb(k), and Gab 	 g0

ab �→ Xag0
ab ∈ Gab(k). The morphisms

πl → πQ(Ql) and Aut(πl)→ Aut π(Ql), where π = Gb, give rise to a morphism

Aut(Gl)→ Aut G(Ql).

9.1.3 Pro-l Galois representations

The following statement can be derived from [9,29].

Proposition 9.2 There exist morphisms GTl → Aut(T l
0,n), GT(−) → Aut T0,n(−),

such that the squares in the following diagram commute

̂GT ��

��

GTl ��

��

GT(Ql)

��
Aut(̂T0,n)

�� Aut(T l
0,n)

�� Aut T0,n(Ql)

9.2 Arithmetic fundamental groups and Teichmüller groupoids in genus one

The Galois theoretic counterpart of the theory of elliptic associators is the action of the
arithmetic fundamental group π1(M

Q

1,�1) on the completions of elliptic braid groups,

based on the fibration MQ
1,n → MQ

1,1, as studied in [11,27]. We first recall the main
points of this study.

9.2.1 Arithmetic fundamental groups of moduli spaces

Let MQ
1,1 (resp., MQ

1,�1, M̃Q
1,1) be the moduli space of elliptic curves with one puncture

(respectively, with one puncture and a nonzero tangent vector at the puncture, with
one puncture and a formal coordinate at the puncture).

A rational tangential base point ξ of MQ
1,1 is defined as follows. The Deligne-

Mumford compactification M
Q
1,1 of MQ

1,1 contains a unique curve X0, which cor-

responds to the tadpole graph. A formal neighbourhood of X0 in M
Q
1,1 is a curve

X → Spec Q[[q]], whose generic fibre is the Tate elliptic curve Gm/qZ with marked

point [1] = qZ. This may be viewed as a morphism Spec Q[[q]] → M
Q
1,1, which

restricts to ξ : Spec Q((q))→ MQ
1,1.
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A lift ξ̃ of ξ to M̃Q
1,1 is defined by choosing the local coordinate log z at [1] = qZ, z

being the canonical coordinate on Gm (such that the function ring is Q[z, z−1]). Let
�ξ be the lift of ξ to M1,�1 given by the expansion of the local coordinate of ξ̃ at order
one.

The isomorphism π
geom
1 (MQ

1,�1,
�ξ) � ̂B3 gives rise to a split exact sequence

1 → ̂B3 → π1(M
Q

1,�1,
�ξ) �→ GQ → 1, (74)

where the section is provided by the base point �ξ ; the induced morphism GQ →
Aut(̂B3) has been computed explicitly in [24], Cor. 4.15 (it is recalled in Sect. 9.3).

The result of [24] can be complemented as follows.

Proposition 9.3 There is a morphism from (74) to the split exact sequence

1 → SL2(̂Z)→ GL2(̂Z)
�→ Z× → 1, (75)

where the second morphism is the determinant det and the section is the morphism

λ �→
(

λ 0
0 1

)

. The rightmost morphism in (74)→ (75) is the cyclotomic character

GQ → ̂Z×.

The proof will be carried out in Sect. 9.3.

9.2.2 Profinite representations

Let M̃Q
1,n be the moduli space of elliptic curves with n punctures. There is a fibration

MQ
1,n → MQ

1,1 defined by forgetting all the punctures except the first one. One sets

M̃Q
1,n := M̃Q

1,1 ×MQ
1,1

MQ
1,n .

A tangential section of a morphism X → Y of Q-schemes is defined to be a
morphism Y × Spec Q((t)) → X , such that its composition with X → Y is the
canonical projection.

An n-tree T is defined to be a rooted trivalent planar tree, equipped with a bijection
iT : {leaves} → {1, . . . , n} (the root is not a leaf), such that the leftmost leaf is labelled
1. Such a tree gives rise to the assignment, to each i ∈ {1, . . . , n}, of a pair (di , si ),
where di is an integer ≥ 1 (the distance between the leaf labelled i and the root), and
of a map si ∈ {l, r}di describing the path from the root to the leaf labelled i (si (k) = l
or r according to whether the kth interval of the path is a left or right descendant).
It also gives rise to a permutation sT ∈ Sn such that sT (1) = 1: sT is the composite

map {1, . . . , n} → {leaves} iT→ {1, . . . , n}, where the first map is the inverse of the
lexicographic (according to the order left < right) indexation of the leaves.

A tangential section σT of the morphism M̃Q
1,n → M̃Q

1,1 may be associated with

each n-tree T as follows: σT is the morphism M̃Q
1,1 × Spec Q((t))→ M̃1,n , taking a

pair ((E, p, z), t) to (E, p1, . . . , pn, z), where pi := z−1(
∑

k∈s−1
i (r) tk).
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Let Fξ be the fibre over ξ of MQ
1,n → MQ

1,1. There is a split exact sequence of
groupoids

1 → π
geom
1 (Fξ , {σT (ξ)})→ π1(M̃

Q
1,n, {σT (ξ̃ )}) �→ π1(M̃

Q
1,1, ξ̃ )→ 1.

(see [11,27] and also [24], Sect. 5.1), which gives rise to a morphism

π1(M̃
Q
1,1, ξ̃ )→ Aut(π geom

1 (Fξ , {σT (ξ)})). (76)

The fibre at (E, p) of MQ
1,n → MQ

1,1 is (E −{p})n−1 − (diagonals), whose geometric

fundamental group is the profinite completion of P1,n (the quotient of the elliptic braid
group with n strands P1,n by the central Z2). The geometric fundamental groupoid
π

geom
1 (Fξ , {σT (ξ)}) is the profinite completion of the groupoid Tell,n where objects

are n-trees and the set of morphisms from T to T ′ is P1,n ×Sn {sT ′s−1
T }, equipped

with the composition of morphisms induced from the product in P1,n . On the other

hand, there is an isomorphism π1(M̃
Q
1,1, ξ̃ ) � π1(M

Q

1,�1,
�ξ). (76) therefore gives rise

to a morphism

π1(M
Q

1,�1,
�ξ)→ Aut(̂Tell,n). (77)

Theorem 9.4 There exists a morphism π1(M
Q

1,�1,
�ξ)→ ̂GTell and an action of ̂GTell

on ̂Tell,n, such that:

(a) the morphism (77) factors as π1(M
Q

1,�1,
�ξ)→ ̂GTell → Aut(̂Tell,n);

(b) the morphism of split morphisms induced by (74)→ (75) factors as (π1(M
Q

1,�1,
�ξ) �→

GQ)→ (̂GTell
�→ ̂GT)→ (GL2(̂Z)

�→ ̂Z×).

The proof will be carried out in Sect. 9.4.

9.2.3 Pro-l representations

Proposition 9.5 There exist morphisms GTl
ell → Aut T l

ell,n, GTell(−) →
Aut Tell,n(−), such that the squares in the following diagram commute

̂GTell
��

��

GTl
ell

��

��

GTell(Ql)

��
Aut(̂Tell,n)

�� Aut(T l
ell,n)

�� Aut Tell,n(Ql)
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9.3 Proof of Proposition 9.3

As in [24], let s0 : GQ → π1(M
Q

1,�1,
�ξ) be the section induced by �ξ . The diagram

π1(M
Q

1,�1,
�ξ) �→ GQ gives rise to the semidirect product decomposition π1(M

Q

1,�1,
�ξ) �

̂B3 � GQ, where the action GQ → Aut(̂B3) is g ∗ x := s0(g)xs0(g)−1. On

the other hand, the diagram GL2(Z)
�→ ̂Z× gives rise to the semidirect product

decomposition GL2(̂Z) � SL2(Z) � ̂Z×, where the action ̂Z× → Aut(SL2(̂Z)) is

λ • m :=
(

λ 0
0 1

)

m
(

λ 0
0 1

)−1
.

Let σ1, σ2 be the Artin generators of B3 (denoted ā1, ā2 in [24]). As SL2(̂Z) is
profinite, there is a unique morphism

̂B3 → SL2(̂Z), x �→ x (78)

extending the quotient morphism B3 → B3/Z(B3) � SL2(Z), σ1 �→
(

1 1
0 1

)

, σ2 �→
(

1 0
−1 1

)

.

The action of GQ on ̂B3 can be made explicit as follows. Denote the map GQ →
̂GT ⊂ ̂Z× × ̂F2 by g �→ (χ(g), fg). Using the formula β0(g) = σ

8ρ2(g)
1 s0(g) in [24]

before Proposition 4.12, and Corollary 4.15 in the same paper, one obtains

g ∗ σ1 = σ
χ(g)
1 , g ∗ σ2 = Ad

σ
−8ρ2(g)
1 fg(σ

2
1 ,σ

2
2 )

−1(σ
χ(g)
2 )

(here ρ2 : GQ → ̂Z is the Kummer cocycle related to the roots of 2).
Then

g ∗ σ1=σχ(g)1 =
(

1 χ(g)
0 1

)

=
(

χ(g) 0
0 1

)(

1 1
0 1

)(

χ(g) 0
0 1

)−1

=χ(g) •
(

1 1
0 1

)

=χ(g) • σ 1;

on the other hand, Corollary 4.15 in [24] says that

fg

((

1 2
0 1

)

,
(

1 0
−2 1

))

= ±
(

1 0
−8ρ2(g) 1

)(

χ(g)−1 0
0 χ(g)

)(

1 −8ρ2(g)
0 1

)

(identity in SL2(̂Z)), therefore

g ∗ σ2 = Ad
σ
−8ρ2(g)
1 fg(σ

2
1 ,σ

2
2 )

−1 σ
χ(g)
2 = Ad

±
(

χ(g) 0
0 χ(g)−1

)(

1 0
8ρ2(g) 1

)

(

1 0
−χ(g) 1

)

=
(

1 0
−χ(g)−1 1

)

=
(

χ(g) 0
0 1

)(

1 0
−1 1

)(

χ(g) 0
0 1

)−1 = χ(g) • σ 2.

It follows that (78) intertwines the actions of GQ and ̂Z×, which proves Proposition
9.3.
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9.4 Proof of Theorem 9.4

Theorem 9.4 states the existence of a morphism π1(M
Q

1,�1,
�ξ) → ̂GTell , which will

now be constructed.

Proposition 9.6 Set ̂Rell := Ker(̂GTell → ̂GT).

(a) There is a unique morphism ̂B3 → ̂Rell , extending the canonical morphism B3 �
Rell → ̂Rell(⊂ Aut(̂F2)).

(b) There is a unique morphism π1(M
Q

1,�1,
�ξ)→ ̂GTell , such that the diagram

1 → ̂B3 → π1(M
Q

1,�1,
�ξ)

s0
�→ GQ → 1

↓ ↓ ↓
1 → ̂Rell → ̂GTell

σ
�→ ̂GT → 1

commutes.

Proof (a) Recall that ̂Rell is a subgroup of Aut(̂F2). Aut(̂F2) is profinite ([8], Thm. 5.3),
and the map Aut(̂F2)→ ̂F2

2 , θ �→ (θ(X), θ(Y )) is continuous (loc. cit., Ex. 2, p. 96).
As ̂Rell is the preimage of 1 by a continuous map (̂F2)

2 → (̂B1,3)
2 × ̂F2, it is closed,

so ̂Rell is a closed subgroup of Aut(̂F2), hence is profinite. The morphism B3 → ̂Rell

therefore extends to a morphism ̂B3 → ̂Rell .
Statement (b) is equivalent of the compatibility of the morphism ̂B3 → ̂Rell with

the actions of GQ and ̂GT on both sides via s0 and σ and the morphism GQ → ̂GT,
i.e. to the commutativity of

GQ × ̂B3 → ̂B3
↓ ↓

̂GT × ̂Rell → ̂Rell

(79)

Consider the following cubic diagram

GQ × π
geom
1 (M1,�1, �ξ) ��

��

��														
π

geom
1 (M1,�1, �ξ)

��

��












GQ × Aut π geom
1 (Cξ , ξC ) ��

��

Aut π geom
1 (Cξ , ξC )

��

̂GT × ̂Rell
��

��														
̂Rell

��















̂GT × Aut ̂F2
�� Aut ̂F2
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where Cξ is the fibre of MQ
1,2 → MQ

1,1 at ξ (which identifies with the fibre of MQ

1,�2 →
MQ

1,�1, where MQ

1,�2 = MQ

1,�1 ×MQ
1,1

MQ
1,2), ξC is a tangential base point of Cξ supported

at the marked point, and the maps are defined as follows :
• the upper horizontal maps are the Galois actions; the map ̂GT × ̂Rell → ̂Rell

is the action induced by the section of ̂GTell → ̂GT defined in Proposition 3.21; the
map ̂GT × Aut ̂F2 → Aut ̂F2 is induced by the composite map ̂GT → Aut ̂F2 →
Aut(Aut ̂F2), where the second map is the inner action of Aut ̂F2 on itself, and the
first map is the composite morphism ̂GT → ̂GTell ⊂ ̂GT ×Aut ̂F2 → Aut ̂F2, where
̂GTell → ̂GT is the same morphism as above and ̂GT × Aut ̂F2 → Aut ̂F2 is the
second projection;

• the vertical maps are induced by the morphisms GQ → ̂GT, π geom
1 (MQ

1,�1,
�ξ) �

̂B3 → ̂Rell , π
geom
1 (Cξ , ξC )

∼→ ̂F2;
• the diagonal maps are induced by the canonical inclusion ̂Rell → Aut ̂F2, and by

the action of π geom
1 (M1,�1, �ξ) on π geom

1 (Cξ , ξC ) induced by the fibration MQ

1,�2 →
MQ

1,�1.

The square corresponding to the upper face of the cube commutes because the
action of π geom

1 (M1,�1, �ξ) on π geom
1 (Cξ , ξC ) is compatible with the Galois action.

The square corresponding to the sides of the cube commute because this action
identifies with the profinite completion of the action of B3 on F2.

The square corresponding to the lower face of the cube commutes by construction
of the map ̂GT × Aut ̂F2 → Aut ̂F2.

The square corresponding to the lower front face commutes for the following reason.
According to [24], Corollary 4.5, the action of GQ onπ geom

1 (Cξ , ξC )may be described
as follows. π geom

1 (Cξ , ξC ) is topologically free, generated by x1, x2. The action of
γ ∈ GQ on this group is

γ ∗(x1) = fγ (x1, z1)x
χ(γ )
1 fγ (x1, z1)

−1, (80)

γ ∗(x2) = fγ (x1, z1)x
1−χ(γ )
1 f

→∞1
γ (x1, x−1

1 z1x1)
−1x2xχ(γ )−1

1 fγ (x1, z1)
−1, (81)

where z1 = (x2, x1) = x2x1x−1
2 x−1

1 , γ �→ (χ(γ ), fγ ) is the map GQ → ̂GT, and

f
→∞1
γ (a, b) = fγ (b, c)b(χ(γ )−1)/2 fγ (a, b) for abc = 1.

Under the identification x1 �→ X, x2 �→ Y , formula (80) corresponds to the expres-
sion of g+ in Proposition 3.21. It follows from the hexagon and duality identities that
any (λ, f ) ∈ ̂GT satisfies the octagon identity

f (X−1 Z−1, Z)(Z X)−λ f (Z , X−1 Z−1)Z (λ+1)/2 f (X, Z)Xλ f (Z , X)Z (λ−1)/2 = 1,

where Z := (Y, X). This identity implies

f (X, (Y, X))X1−λ f
→∞1(X, (X−1,Y ))−1Y Xλ−1 f (X, (Y, X))−1

= Z (λ−1)/2 f (X−1 Z−1, Z)Y f (X, (Y, X))−1
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so that (81) corresponds to g− in Proposition 3.21. All this implies the commutativity
of

GQ → Aut π geom
1 (Cξ , ξC )

↓ ↓
̂GTell → Aut ̂F2

Composing this square with the commutative square

Aut π geom
1 (Cξ , ξC )→ Aut(Aut π geom

1 (Cξ , ξC ))

↓ ↓
Aut ̂F2 → Aut(Aut ̂F2)

where the horizontal maps are inner action morphisms, one obtains the commutativity
of the square corresponding to the lower front face.

The commutativity of all these squares implies that the two composite maps

GQ × π
geom
1 (M1,�1, �ξ)→ ̂Rell → Aut ̂F2

coincide, where the maps GQ × π geom
1 (M1,�1, �ξ)→ ̂Rell are the two composite maps

which can be obtained from the upper front face. As ̂Rell → Aut ̂F2 is injective, this
implies the commutativity of the square corresponding to the upper front face, and
therefore of (79). ��

The next statement of Theorem 9.4 is the existence of an action of ̂GTell on ̂Tell,n ,
which will now be constructed (Definition 9.8).

If C is a category, let Aut(C) be its group of automorphisms (as a category, even if
C has a braided monoidal structure).

For (λ, f ) ∈ ̂GT, let iλ, f be the composite functor P̂aB
α(λ, f )→ (λ, f )∗P̂aB

∼→ P̂aB,
where the first functor is the unique tensor functor which induces the identity on
objects, and the second functor is the identity functor (which is not tensor). iλ, f is

then an endofunctor of P̂aB.

Lemma 9.7 (λ, f ) �→ i−1
λ, f is a morphism ̂GT → Aut(̂PaB).

Proof The identity i(λ′, f ′)i(λ, f ) = i(λ, f )(λ′, f ′) follows from the commutativity of the
diagram

C

�����������������
i(λ′, f ′)

��

(λ, f ) ∗ C

∼
����������������

��











 (λ′, f ′) ∗ C
∼

������������

C ��

��

i(λ, f )

��

i(λ, f )(λ′, f ′)



(λ, f )(λ′, f ′) ∗ C ∼ ��

∼
��������������

C
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in which the commutativity of the central square follows from that of

(λ, f ) ∗ C (λ, f )∗ϕ→ (λ, f ) ∗ D
∼↓ ↓∼
C ϕ→ D

for any braided monoidal categories C,D and any tensor functor ϕ : C → D. ��
One constructs in the same way a morphism

̂GTell → Aut(̂PaBell). (82)

If C0 is a braided monoidal category, then Ob C0 is a magma (i.e. a set equipped
with a composition map and a unit). Let φ : M → Ob C0 be a magma mor-
phism, then a braided monoidal category φ ∗ C0 can be constructed by Obφ∗C0 =
M, φ∗C0(m,m′) := C0(φ(m), φ(m′)) and by the condition that the obvious functor
φ∗C0 → C0 is tensor. If C0 → C is an elliptic structure over C0, then one defines an
elliptic structure φ∗C0 → φ∗C over φ∗C0 in the same way. Then, there are natural
group morphisms

Aut C0 → Aut φ∗C0, Aut C → Aut φ∗C. (83)

Letμ(S) be the free magma generated by a set S. The unique map S → {•} induces a
magma morphism φ : μ(S)→ μ({•}) � Ob P̂aB. Set P̂aBS := φ∗P̂aB, P̂aBell,S :=
φ∗P̂aBell . The morphisms (84) then specialize to morphisms

Aut(̂PaB)→ Aut(̂PaBS), Aut(̂PaBell)→ Aut(̂PaBell,S). (84)

̂Tell,n may be viewed as the full subcategory of P̂aBell,[n], where the objects are the

preimages of 1+̇ · · · +̇n under the map μ([n]) ψ→ N[n], extending the identity on [n],
where N[n] is the free abelian semigroup generated by [n] = {1, . . . , n} (in which the
addition is denoted +̇). If C is any category and C′ is any full subcategory, then there
is a natural morphism Aut(C)→ Aut(C′). It specializes to a group morphism

Aut(̂PaBell,[n])→ Aut(̂Tell,n). (85)

Definition 9.8 The action of ̂GTell on ̂Tell,n is given by the composite morphism

̂GTell → Aut P̂aBell → Aut P̂aBell,[n] → Aut(̂Tell,n).

obtained from (82), (84) and (85).

Theorem 9.4 next states the compatibility of the ‘arithmetic’ action

π1(M̃
Q
1,1, ξ̃ )→ Aut(π geom

1 (Fξ , {σT (ξ)}))
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(see (76)) with its ‘algebraic model’ ̂GTell → Aut(̂Tell,n) (see Definition 9.8), namely
the commutativity of

π1(M̃
Q
1,1, ξ̃ )

��

�� Aut(π geom
1 (Fξ , {σT (ξ)}))

��
̂GTell

�� Aut(̂Tell,n)

(86)

The commutativity of the restriction of (86) to ̂B3 ⊂ π1(M̃
Q
1,1, ξ̃ ) can be proved

as follows. Let ̂Bell be the category with Ob̂Bell = N, ̂Bell(n,m) = ∅ if m  = n,
and ̂Bell(n, n) = ̂B1,n . There is a natural functor P̂aBell → ̂Bell , defined as the
length map l : μ({•}) → N at the level of objects and as the identity at the level of
morphisms; actually P̂aBell � l∗̂Bell . As ̂Rell ⊂ ̂GTell acts trivially on the images of
the associativity constraints under P̂aB → P̂aBell , its action on P̂aBell is the lift of an
action of ̂Rell on ̂Bell . One checks explicitly that the composition of this action with
the morphism ̂B3 → ̂Rell coincides with the action of ̂B3̂Bell , which arises from its
geometric action on the various groups ̂B1,n .

The commutativity of the composition of (86) with GQ
σ→ π1(M1,�1, �ξ) can be

shown as follows. As the diagram

GQ
��

��

π1(M
Q

1,�1,
�ξ)

��
̂GT ��

̂GTell

commutes, it suffices to proves that its composition with (86) commutes, i.e. that

GQ
��

��

Aut(Fξ , {σT (ξ)})

��
̂GT �� Aut(̂Tell,n)

commutes. According to [21], the morphism GQ → Aut(Fξ , {σT (ξ)}) can be derived
explicitly from the actions of GQ on π1(Cξ , ξC ) and on the profinite braid groups
in genus zero. The former action has been computed in [24], Cor. 4.5. The resulting
formulas for the action of GQ can be shown to match those for the action of ̂GT on
̂Tell,n .

The last statement of Theorem 9.4 says that the morphism (π1(M
Q

1,�1,
�ξ) �→ GQ)→

(GQ
�→ ̂Z×) factors through (̂GTell

�→ ̂GT). This can be proved as follows. Firstly,
one checks that the morphism ̂B3 → SL2(̂Z) factors through ̂Rell . The three mor-
phisms between ̂B3, ̂Rell , and SL2(̂Z) are compatible with the actions of GQ, ̂GT,
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and ̂Z×; and the morphism GQ → ̂Z× factors through ̂GT. This ends the proof of
Theorem 9.4.

9.5 Proof of Proposition 9.5

This statement follows from the form taken by the action of ̂GTell on ̂Tell,n .

10 A question

In this section, we ask whether rell is generated by the elements δ2n arising from [7].
This question is analogous to the problem of whether grt1 is generated by its Drinfeld
generators, which is also open. We give an indication in favour of a positive answer:
such an answer would imply a statement which is also implied by a transcendence
conjecture about MZVs; this last conjecture would follow from Grothendieck’s tran-
scendence conjecture for the category of mixed Tate motives and the equality of the
motivic Galois group G MT M (−) with GT(−) (see [2]). We record that in contrast
with the fact that the Drinfeld generators of grt1 generate a free Lie algebra (Brown),
and several families of relations between the δ2n have been found (see [28]).

10.1 A generation conjecture (GC)

The Drinfeld generators of grt1 are obtained from the homogeneous decomposition of

the logarithm of im(−1 ∈ GT
j�K Z→ GRT(C)) · can(−1), where can : C× → GRT(C)

is the canonical morphism. The analogue of the conjecture that these elements generate
grt1 is then:

Conjecture 10.1 (Generation Conjecture) b3 ⊂ r
gr
ell is an equality, i.e., r

gr
ell is gener-

ated by sl2 and the δ2n, n ≥ 0.

This conjecture is equivalent to the inclusion exp(b̂+,k3 )� SL2(k) ⊂ Rgr
ell(k) being

an equality.

Proposition 10.2 GC is equivalent to the Zariski density of B3 ⊂ Rell(−), i.e., 〈B3〉 =
Rell(−).

Proof According to Lemma 3.19, 〈B3〉 is uniquely determined by its Lie algebra. This
fact and Proposition 3.18 immediately imply that 〈B3〉 = Rell(−) iff the inclusion
Lie(u+, u−) = 〈logψ+, logψ−〉 ⊂ Lie Rell(−) is actually an equality. Tensoring
with C, this holds iff

〈logψ+, logψ−〉C ⊂ r̂C
ell
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is an equality. On the other hand, GC holds iff b̂+,C3 ⊂ r̂
gr,C
ell is an equality. Now ieK Z

sets up a diagram

〈logψ+, logψ−〉C ↪→ rC
ell

�↓ ↓�
b̂+,C3 ↪→ r̂

gr,C
ell

It follows that the upper inclusion is an equality iff the lower is. ��

10.2 Relation with a transcendence conjecture

We first present the transcendence conjecture.

10.2.1 The coordinate ring of associators

The functors {Q-rings} → {sets}, k �→ M(k),M(k) may be represented as fol-
lows. Let pentk : exp(f̂k

2) → exp(t̂k
3), hex : k × exp(f̂k

2) → exp(t̂k
3), dual :

exp(f̂k
2) → exp(t̂k

3) be the maps pent(�) := lhs((24))−1 rhs((24)), hex(μ,�) :=
lhs((23)) rhs((23))−1, dual(�) := ��3,2,1.

Let B, B ′,C be homogeneous bases of f2, t3, t4. Let μ, φb (b ∈ B) be free com-
mutative variables and set k0 := Q[ϕb, b ∈ B], k1 := Q[μ, ϕb, b ∈ B]. Then
k0 ⊂ k1. Let � := exp(

∑

b∈B ϕbb) ∈ exp(f̂k0
2 ) ⊂ exp(f̂k1

2 ). For b′ ∈ B ′, c ∈ C ,
define pentc, dualb′ ∈ k0 ⊂ k1 by

∑

c∈C pentc c = log(pent(�)),
∑

b′∈B′ dualb′ b′ =
log(dual(�)),

∑

b′∈B′ hexb′ b′ = log(hex(μ,�)).
We then set Q[M] := k1/(pentc, dualb′, hexb′, b′ ∈ B ′, c ∈ C) and Q[M] :=

Q[M][μ−1] = Q[μ±1, ϕb, b ∈ B]/{ideal with the same generators}. Then, for any

Q-ring k, we have (functorial in k) bijections
M(k) � HomQ-rings(Q[M],k)
⊂↓ ↓⊂

M(k) � HomQ-rings(Q[M],k)

10.2.2 The transcendence conjecture

The KZ associator (2π i,�K Z ) ∈ M(C) gives to a morphism ϕK Z : Q[M] → C.

Conjecture 10.3 (Transcendence Conjecture) ϕK Z is injective.

Let kM Z V := im(Q[M] ϕK Z→ C). This is a subring of C (according to [18], this is
the subring generated by (2π i)±1 and the MZVs).

10.3 Consequences of GC

Proposition 10.4 The inclusion

ie(B3) ⊂ exp(b̂+,C3 )� SL2(C) (87)
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holds:

(a) for any e ∈ Ell(C)×M(C) {�K Z } iff b3 * r
gr
ell ;

(b) for any e ∈ σ(M(C)) iff [σ(grt), b3] ⊂ b̂3;
(c) for any e ∈ Ell(C) iff b3 * grtell , i.e., iff the two above-mentioned conditions are

realized.

Moreover, GC implies that (87) holds for any e ∈ Ell(C).

We do not know whether the Lie algebraic statements in (a), (b), (c) hold, so they
may be viewed as conjectures implied by GC.

Proof Note first that for any e ∈ Ell(C), and by Zariski density, (87) ⇔
(ie(〈B3〉(C)) = exp(b̂+,C3 )� SL2(C)).

(a) is proved as follows. e ∈ Ell(C) ×M(C) {�K Z } iff e = σ(�K Z ) ∗ g for some
g ∈ Rgr

ell(C). So

((87) holds for any e ∈ Ell(C)×M(C) {�K Z })
⇔ (g(iσ(�K Z )(〈B3〉(C))) = exp(b̂+,C3 )� SL2(C) for any g ∈ Rgr

ell(C))

⇔ (g(�) = � for any g ∈ Rgr
ell(C), where � = exp(b̂+,C3 )� SL2(C))

⇔ (b3 * r
gr
ell).

Here, the second equivalence follows from Proposition 7.3.
(b), (c) are then proved in the same way, using

(e ∈ σ(M(C)))⇔ (e = σ(�K Z ) ∗ σ(g) for some g ∈ GRT(C)),

(e ∈ Ell(C))⇔ (e = σ(�K Z ) ∗ g for some g ∈ GRTell(C)).

The equivalence (c) ⇔ ((a) and (b)) follows from grtell = σ(grt)⊕ r
gr
ell . Finally, GC

means that 〈sl2, δ2k〉 = r
gr
ell , which immediately implies (a), (b), and (c) as r

gr
ell *grtell .

��

10.4 Consequences of the transcendence conjecture (TC)

Proposition 10.5 If TC holds, then for any Q-ring k and any� ∈ M(k), iσ(�)(B3) ⊂
exp(b̂+,k3 )� SL2(k).

Proof Recall that 〈B3〉(−) ↪→ Rell(−), exp(b̂+3 )�SL2(−) ↪→ Rgr
ell(−) are inclusions

of Q-group schemes, and Ell → M, M
σ→ M are morphisms of Q-group schemes.

In the notation of Definition 4.10, any x ∈ X (k) gives rise to a morphism ix :
G(k) → H(k), defined by g ∗ x = x ∗ ix (g) for any g ∈ G(k). The assignment
x �→ ix is functorial in the following sense: if k → k′ is a morphism of Q-rings and
x ′ := im(x ∈ X (k)→ X (k′)), then
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G(k)
ix→ H(k)

↓ ↓
G(k′)

ix ′→ H(k′)

commutes.
For any Q-scheme X and any Q-ring k, let X ⊗k be the k-scheme (X ⊗k)(k′) :=

X (k′) for any k′ ∈ {k-rings}. Again with the notation of Definition 4.10, a torsor

even gives rise to an assignment X (k) 	 x �→ (G ⊗ k
ik
x→ H ⊗ k), where ik

x is a
morphism of k-group schemes, defined by: ∀k′ ∈ {k-rings}, g ∗ x̄ = x̄ ∗ ik

x (g) for
any g ∈ (G ⊗ k)(k′) = G(k′), where x̄ := im(x ∈ X (k)→ X (k′)).

In particular, �K Z ∈ M(kM Z V ) gives rise to an isomorphism iσ(�K Z ) : Rell(−)⊗
kM Z V

∼→ Rgr
ell(−)⊗ kM Z V , and therefore to a Lie algebra isomorphism Lie iσ(�K Z ) :

rell⊗kM Z V
∼→ (r

gr
ell⊗kM Z V )

∧, whose⊗kM Z V C is the infinitesimal of the isomorphism
of Proposition 7.3.

The group scheme inclusions 〈B3〉(−) ⊂ Rell(−) and exp(b̂+3 ) � SL2 ⊂ Rgr
ell(−)

give rise to Lie algebra inclusions Lie〈B3〉(−) ⊂ rell and b̂+3 ⊂ r̂
gr
ell , and Proposition

7.3 implies that Lie iσ(�K Z )⊗kM Z V C restricts to an isomorphism Lie〈B3〉(−)⊗QC →
(b3 ⊗Q C)∧. This implies that Lie iσ(�K Z ) restricts to a Lie algebra isomorphism

Lie〈B3〉(−)⊗Q kM Z V → (b3 ⊗Q kM Z V )
∧.

There are Lie subalgebras Q logψ±⊗kM Z V in the l.h.s., mapping to (Qe±+ terms
of degree> 0)⊗ kM Z V in the r.h.s. (where e+ = e, e− = f, ψ+ = ψ). This induces
a diagram

〈B3〉(−)⊗ kM Z V
iσ(�K Z )→ (exp(b̂+3 )� SL2)⊗ kM Z V

↪→ ↪→

Ga ⊗ kM Z V = Ga ⊗ kM Z V

If now � ∈ M(k), the transcendence conjecture says that there exists a Q-ring mor-

phism kM Z V
ϕ→ k, such that � = ϕ∗(�K Z ). Applying this morphism to the above

diagram, one gets

〈B3〉(−)⊗ k
iσ(�)→ (exp(b̂+3 )� SL2)⊗ k

↪→ ↪→

Ga ⊗ k = Ga ⊗ k

Taking k-points, one obtains a commutative diagram

〈B3〉(k) iσ(�)→ exp(b̂+,k3 )� SL2(k)

↪→ ↪→

k = k
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The image of 1 ∈ k is �± ⊂ 〈B3〉(k); then iσ(�)(�±) ∈ exp(b̂+,k3 ) � SL2(k) ⊂
exp(b̂+,C3 )� SL2(C). ��
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