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1 Introduction

Beilinson and Drinfeld developed the theory of chiral and factorization (co)algebras
on curves in their seminal work [1], as a geometric counterpart of the algebraic theory
of vertex algebras. Their theory translated the formulae of operator product expan-
sions in conformal field theory into beautiful algebraic geometry. These two algebraic
avatars of conformal field theory at first blush appear quite dissimilar: A chiral Lie
algebra is a D-module on a curve with a type of Lie algebra structure in which one has
the extra ability to take the Lie bracket of certain divergent sections; a factorization
coalgebra consists of a quasi-coherent sheaf on each configuration space of a curve,
with certain compatibilities. One of the conceptually central results of [1] (Theorem
3.4.9) establishes the equivalence of these two theories of chiral Lie algebras and of
factorization coalgebras on algebraic curves.

Beilinson and Drinfeld posed several challenges left open by their work: first, to
extend their theory above complex dimension 1. Second, in order to sensibly extend the
theory to varieties, they observed the necessity of developing the homotopy theory of
chiral Lie algebras (in a sense analogous to Quillen’s homotopy theory of differential
graded algebras), a problem of independent interest.1

In this work, we develop just such a homotopy theory of chiral and factorization
structures and apply it to prove a generalization of the above theorem of [1], to establish
an equivalence between chiral Lie algebras and factorization coalgebras on higher-
dimensional varieties. The most appealing aspect of this proof is a reconceptualization
of the relation between the two: The equivalence between chiral Lie algebras and fac-
torization coalgebras is a form of Koszul duality, in which factorization coalgebras
are realized as a full subcategory of a larger category of chiral commutative coalge-
bras.2 This is a chiral analog of the duality between Lie algebras and commutative
coalgebras that Quillen first developed in his work on rational homotopy theory [21],
in which the category of chain complexes, with tensor product, is replaced by that of
D-modules on the Ran space, equipped with the chiral tensor product of D-modules.
We shall see that despite this apparent increased complexity, chiral Koszul duality is
more of a duality than usual Koszul duality, in the sense that the double dual is always
a homotopy equivalence, without preconditions.

Beilinson and Drinfeld’s perspective on chiral versus factorization gave rise to an
important new construction, the chiral homology of chiral Lie algebras, a homotopy-
theoretic generalization of the space of conformal blocks in conformal field theory.
The other primary focus of [1] was the calculation of chiral homology in several
salient examples, including lattice chiral Lie algebras and chiral enveloping algebras
of �-Lie algebras. Chiral enveloping algebras are chiral analogs of the usual enveloping
algebra of a Lie algebra; they appear in conformal field theory in the construction of
affine Kac-Moody chiral Lie algebras, and as such serve as chiral versions of the Lie

1 For instance, the category of chiral Lie algebras on a curve X lacks coproducts, hence it cannot admit a
model category structure.
2 It is for this reason that we take the liberty of adjusting the terminology “factorization algebra” of [1] to
“factorization coalgebra,” since they are, literally, coalgebras rather than algebras with respect to the chiral
tensor structure. See Remark 2.4.8.
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algebras of loop groups. To illustrate the efficacy of the Koszul duality viewpoint, as
an application we give a conceptual proof of Theorem 4.8.1.1 of [1], which expresses
the chiral homology of the chiral envelope of a �-Lie algebra L in terms of de Rham
cohomology of L itself.

1.1 Why study chiral algebras?

Before giving an overview of the contents of this paper, let us offer some general
motivation for the study of chiral Lie algebras and factorization coalgebras. Broadly
speaking, one can divide the reasons to study them into two classes: local and global.

1.1.1

Locally, chiral Lie algebras and their representations on curves appear as a general
formalism to study the representation theory of Lie algebras that have a loop com-
ponent, as well as categories obtained from the category of Lie algebra modules by
various functorial procedures.

For example, consider the Lie algebra of formal Laurent series g((t)), where g is a
finite-dimensional Lie algebra. There is a direct route to studying representations of
g((t)), but in which one is required to take into account the topology on g((t)): This is
certainly doable, though it makes homological algebra more cumbersome. However,
to then further study those representations that are integrable (i.e., those that arise
from differentiating positive energy representation of the loop group G((t))) becomes
impracticable from the vantage of topological associative algebras.

Another local aspect of the story is the connection between chiral Lie algebras and
E2-algebras. Via the Riemann-Hilbert correspondence, E2-algebras form a full sub-
category of chiral Lie algebras on the affine line, consisting of those chiral algebras
whose underlying D-module is holonomic with regular singularities.

This perspective allowed one to rediscover chiral Lie algebras in their factorization
incarnation in the work of Schechtman-Varchenko and its elaboration by Bezrukavni-
kov-Finkelberg-Schechtman (see [4] and references therein) on the construction of
quantum groups via configuration spaces, and its relation to the Kazhdan-Lusztig
equivalence between quantum groups and Kac-Moody representations.

Further, the discovery of factorization coalgebras led to the notion of a factoriza-
tion category, which appears as a very potent tool for many problems of geometric
representation theory (see [11] for a brief review).

1.1.2

Let us now turn to the global aspects of the theory. For this discussion, we assume
that X is complete. The overarching reason for the usefulness of chiral Lie algebras
is that the procedure of taking chiral homology of chiral Lie algebras/factorization
coalgebras is a powerful local-to-global principle.
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For example, let Y be a scheme affine over X , and suppose one is interested to
study the scheme of its global sections X → Y . According to [1], Theorem 4.6.1, this
scheme can be described as Spec of the chiral homology of a certain chiral algebra.

The above example is “commutative” in the sense of [1], Sect. 4.6. A non-commu-
tative, but relatively elementary, example of an application of the above local-to-global
principle is the construction of Hecke eigensheaves in the geometric Langlands pro-
gram carried out in [2].

However, this local-to-global principle can be applied in significantly more sophis-
ticated situations. In particular, it plays a prominent role in the recent advances in the
geometric Langlands program, where one applies it in the case of chiral Lie algebra
that controls twisted Whittaker sheaves.

We should also remark that the functor of chiral homology on the category of chiral
Lie algebras bears a strong similarity with the assignment in quantum field theory to a
collection of local observables of the value of the corresponding correlation function
at a particular configuration of points on a compact space-time.

1.2 Contents

We now review the contents of the paper and state our main results:
Throughout the paper, we will be working over a ground field k of characteristic

0. We will be working with the category Sch of schemes of finite type over k, and
for any Y ∈ Sch, we denote by D(Y ) the stable∞-category of D-modules on Y (see
Sect. 1.4.1 where our conventions regarding D(Y ) are explained).

For the duration of the paper, we fix X to be a separated scheme of finite type over
k.

1.2.1 The Ran space

Our main geometric object of the study is the Ran space of X , which should be
thought of as the “space of all finite configurations of points of X ,” and the category of
D-modules on it. In other words, Ran X is intuitively given by the union

⋃

j
Conf j X of

the configuration spaces of unordered points in X , topologized so that that two points
may collide and pass to a different stratum, i.e., so that the map X I →⋃

j
Conf j X is

continuous for each n. However, this intuition does not immediately translate into a
genuine definition: Ran X does not exist as a scheme or even an ind-scheme, and so
the category of D-modules on it is not a priori defined.

To remedy this, we can consider the structure that we would see if Ran X did exist
as described. For a D-module M on Ran X , we could pull it back to X I to obtain a
new D-module, M I , for each finite set I ; these D-modules would be subject to cer-
tain compatibilities under pullbacks, given a factorization X J → X I → Ran X . One
should imagine that you can completely recover the D-module M from this compatible
family of M I .

This intuition gives rise to a formal definition. We define Ran X as a functor from the
category opposite that of finite sets to Sch, namely I � X I , and define the∞-category
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D(Ran X) as the limit of D(X I ) over finite maps. That is, an object M ∈ D(Ran X) is
by definition a collection of objects M I ∈ D(X I ) for each finite set I and a homotopy
equivalence

�(π)!(M I ) � M J ,

for every surjection π : I � J , where �(π) : X J → X I denotes the corresponding
map.

Now, following [1], we introduce two symmetric monoidal structures on D(Ran X).
The first one, the �-tensor product, should be thought of as the direct image with respect
to the map

union : Ran X × Ran X −→ Ran X

given by the operation of union of finite sets. That is, it is convolution with respect to
the abelian semi-group structure on Ran X .

The other symmetric monoidal structure, the chiral tensor product, is the composi-
tion

union∗ ◦j∗ ◦ j∗,

where j is the open embedding of the locus

(Ran X × Ran X)disj ⊂ Ran X × Ran X,

corresponding to pairs of finite subsets of X that are disjoint.
In other words, one should think about these two tensor products as follows. For

M1,M2 ∈ D(Ran X), the fiber of M1⊗�M2 (resp., M1⊗ch M2) at a point {S} ∈ Ran X ,
where S ⊂ X is a finite non-empty subset, is

⊕
S=S1∪S2

(M1)S1 ⊗ (M2)S2 ,

where for the �-tensor product, the direct sum is taken over all decompositions as
a union of non-empty subsets, and for the chiral tensor product, we only take those
summands for which S1 ∩ S2 = Ø.

1.2.2 Chiral algebras and factorization coalgebras

Consider the∞-category D(Ran X) endowed with the chiral tensor structure. We can
consider the categories of Lie algebras and commutative coalgebras in it, denoted
Lie-algch(Ran X) and Com-coalgch(Ran X), respectively.

Inside Lie-algch(Ran X), we single out the full subcategory spanned by objects
that, as D-modules on Ran X , are supported on the main diagonal X ⊂ Ran X . We
denote this∞-category by Lie-algch(X). This is the∞-category of chiral Lie algebras
introduced by [1].
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Inside Com-coalgch(Ran X), we single out a full subcategory of factorization coal-
gebras that we denote by Com-coalgch

Fact(Ran X). We shall also use the notation
Fact(X) and refer to the objects of this ∞-category as factorization D-modules on
Ran X . We shall now indicate its definition:

Let B be a coalgebra in D(Ran X). Let S ⊂ X be a finite subset, and S = S1  S2
be its decomposition as a disjoint union. Then, the coalgebra structure on B defines a
map at the level of fibers

BS −→ BS1 ⊗ BS2 . (1.1)

The factorizability condition is that the above map should be a homotopy equivalence.
Note that the notion of factorization coalgebra can be encoded as an assignment

(S ⊂ X)� (BS ∈ Vectk),

(and such that this system forms a D-module as S ranges over Ran X ), and a system
of homotopy equivalences (1.1) that satisfy the natural compatibility conditions under
further partitions of finite sets into disjoint unions. When written in this form, the notion
of factorization D-module looks symmetric from the algebra/coalgebra perspective.

1.2.3 Koszul duality

Let us now recall the following general construction. Let C be a (not necessarily un-
ital) stable symmetric monoidal∞-category over k. We can consider the∞-category
Lie-alg(C) of Lie algebras in C and the ∞-category Com-coalg(C) of commutative
coalgebras in C. These two ∞-categories are related by a pair of mutually adjoint
functors

Lie-alg(C) C �� Com-coalg(C),
Prim[−1]

�� (1.2)

where the functor C is the functor computing Lie algebra homology, and the functor
Prim is the derived functor of taking primitive elements.

The above functors are not in general equivalences of∞-categories. However, they
are for a particular class of tensor∞-categories C that we call pro-nilpotent, and the
∞-category D(Ran X) is such. This will imply our main result:

Theorem 1.2.4 The functors Cch and Primch[−1] in D(Ran X) define an equivalence

Lie-algch(Ran X) � Com-coalgch(Ran X)

of ∞-categories. Moreover, this equivalence induces an equivalence between the
∞-subcategories of chiral Lie algebras and factorization coalgebras on X:



Chiral Koszul duality 33

Lie-algch(Ran X)
Cch

�� Com-coalgch(Ran X)
Primch[−1]

��

Lie-algch(X)
� �

��

�� Fact(X)
� �

��

��

In Sect. 6, we will apply Theorem 1.2.4 to study chiral Lie algebras obtained by
the taking the chiral envelope of a �-Lie algebra. In particular, we will rederive the [1]
computation of chiral homology of such chiral Lie algebras.

In Sect. 7, we will extend this theorem to include a statement about chiral modules
for chiral Lie algebras.

1.2.5 Nilpotence

Let us comment on the pro-nilpotence condition for a tensor∞-category C, and why
it implies that the functors (1.2) equivalences in this case.

At least conjecturally, one can modify both sides in (1.2) to turn it into an equiva-
lence. Namely, one has to replace the∞-category Lie-alg(C) by its full subcategory
Lie-algnil(C) consisting of pro-nilpotent Lie algebras. And one has to replace the
∞-category Com-coalg(C) by its full subcategory Com-coalgnil(C) consisting of ind-
nilpotent commutative coalgebras. We refer the reader to Sect. 3.4 for the precise
formulation of this conjecture.

The main feature of the pro-nilpotence condition on C is that in this case, the
inclusions

Lie-algnil(C) ↪→ Lie-alg(C) and Com-coalgnil(C) ↪→ Com-coalg(C) (1.3)

are equivalences.
However, unfortunately, in order to actually prove that (1.2) is an equivalence for

C = D(Ran X), we use more than just the above-mentioned fact about the inclusions
(1.3): Our definition of pro-nilpotence is quite stringent and explicitly specifies C as
an inverse limit of∞-categories with vanishing n-fold tensor products.

1.3 ∞-categories

1.3.1

In this work, we study the aspects of the homotopy theory of certain algebro-geometric
structures. Classically, such as in the study of chain complexes, a notion of a homotopy
theory is provided by the homotopy category, a category modulo some equivalence
relation. This notion is very useful for a number of purposes, but it is insufficient
for many others—for instance, differential graded algebras should have a homotopy
theory, but it cannot be extracted with any facility from the homotopy category of com-
plexes. Another, richer, notion of a homotopy theory is provided by Quillen’s theory
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model categories, a category equipped with specified types of morphisms: cofibra-
tions, fibrations, and weak equivalences. Quillen’s notion is powerful and sufficient
for many purposes, but it, in some sense, has more structure than just the homotopy
theory. If we were to allow an analogy with linear algebra, the homotopy/triangulated
category is like the rank of a module, and a model category is like a module together
with a choice of basis: The homotopy theory itself, like the module, is something in
between. Further, working with bases can be very useful in algebra, but they only exist
if the module is free, and some constructions are easier coordinate-free; similar is true
in homotopy theory.

In the present work, this intermediate notion of homotopy theory will be that of
an∞-category. Intuitively, an∞-category consists of the structure of objects, maps,
homotopies between maps, homotopies between homotopies, and so forth. Such a
structure is provided, for instance, by a category enriched in chain complexes or topo-
logical spaces. Topological and DG categories are simple to define, but suffer from
technical drawbacks, and we instead use Joyal’s quasi-category model for ∞-cate-
gory theory, where these data are just a particular type of simplicial set, satisfying
the weak Kan condition of Boardman-Vogt, [5]. This theory has been developed in
great detail by Joyal in [15] and Lurie in [16] and [17], which will be our primary
references. The key feature to make note of is that limits, colimits, and functors in the
∞-category setting correspond to homotopy limits, homotopy colimits, and derived
functors in the setting of DG or model categories. It will be safe to replace the words
“∞-category” by “topological category” to obtain the intuitive sense of the results in
this work, keeping this one proviso in mind.

For further motivation for∞-category theory, we refer to Section 2.1 of [3] and,
more fundamentally, to the first chapter of [16].

1.3.2 Conventions regarding∞-categories

We shall use the following notation:
By ∞-Cat, we shall denote the (∞, 1)-category of ∞-categories. By ∞-Catst, we
shall denote the non-full subcategory of ∞-Cat consisting of stable categories and
exact functors.
By∞-Catpres ⊂ ∞-Cat, we shall denote the full subcategory consisting of presentable
∞-categories. By

∞-Catpres,L ⊂ ∞-Catpres,

we shall denote the non-full subcategory where we restrict functors to those commut-
ing with colimits. The adjoint functor theorem (Corollary 5.5.2.9 of [16]) says that a
functor between two objects of∞-Catpres preserves colimits, i.e., is a 1-morphism in
∞-Catpres,L , if and only if it admits a right adjoint.

We let ∞-Catst
pres be the full subcategory of ∞-Catst equal to the preimage of

∞-Catpres ⊂ ∞-Cat under the forgetful functor ∞-Catst → ∞-Cat. We let
∞-Catst

pres,L be the non-full subcategory of ∞-Catst
pres equal to the preimage

of∞-Catpres,L ⊂ ∞-Catpres under the above forgetful functor.
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We will also use the notation

∞-Catst
pres,cont := ∞-Catst

pres,L ,

and call its 1-morphisms continuous functors. An exact functor between two stable
presentable categories is continuous if and only if it commutes with filtered colimits,
or, equivalently, with arbitrary direct sums.

Using [17], Sect. 6.3.1 (and, specifically, Example 6.3.1.22), the category
∞-Catst

pres,cont is endowed with a symmetric monoidal structure under tensor prod-
uct.

When discussing a monoidal/symmetric monoidal structure on a stable presentable
symmetric monoidal category, unless specified otherwise, we shall mean a structure
of associative/commutative algebra object in∞-Catst

pres,cont with respect to the above
symmetric monoidal structure on it.

For a ground field k, we shall denote by Vectk the commutative algebra object of
∞-Catst

pres,cont given by the ∞-category associated with the simplicial category of
chain complexes of k-vector spaces.
Terminology: We use the word “equivalence” in reference to a functor between∞-cat-
egories. We will use the term “homotopy equivalence” in reference to a 1-morphism
inside a given∞-category (the notion that for an ordinary category would be translated
as “isomorphism”).

1.4 D-modules

1.4.1 The naive approach

Let Y be a scheme of finite type. Assume for simplicity that Y is separated. We can
attach to it a stable ∞-category D(Y ). Namely, we start with the abelian category
D(Y )♥. When Y is smooth, this is the abelian category of right D-modules over the
ring of differential operators on Y ; for Y singular one defines this category by locally
embedding Y into a smooth scheme and using Kasiwara’s theorem (see also [1], Sect.
2.1.3).

To construct D(Y ), we consider the DG category of complexes over D(Y )♥, and
following [7], form the DG quotient by the subcategory of acyclic complexes. It is
well-known that to any DG category one can canonically attach a simplicial category,
and D(Y ) is the∞-category associated to this simplicial category. By construction, the
category D(Y ) is cocomplete and compactly generated; in particular, it is presentable.

The question of functoriality Y �→ D(Y ) is less well understood. With some work,
we can extend the above assignment to a functor

Sch −→∞-Catst
pres,cont, (1.4)

such that for a map f : Y1 → Y2, the resulting functor D(Y1)→ D(Y2) at the level
of homotopy categories is given by the D-module push-forward, denoted f∗. We will
denote the functor of (1.4) by D∗.
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One can also extend the assignment Y � D(Y ) differently. Namely, one can con-
struct a functor

Schop −→∞-Catst
pres,cont, (1.5)

such that for a map f : Y1 → Y2, the resulting functor D(Y2)→ D(Y1) at the level of
homotopy categories is given by the D-module pullback, denoted f !. We will denote
the functor of (1.5) by D!.

However, for most applications that involve∞-categories, considering the above
two functors D∗ and D! separately is not sufficient. Below we formulate a version of
the formalism of a “theory of D-modules” which is sufficient for the applications that
the authors are aware of.

Remark 1.4.2 To the best of our knowledge, the construction of the theory of D-mod-
ules as formulated below does not have a reference in the literature, although many
papers on the subject implicitly assume its existence. We hope, however, that this
theory will be documented soon.3

1.4.3 The theory of D-modules

Let Schcorr denote the (1, 1)-category whose objects are schemes of finite type, and
morphisms are correspondences, i.e., for Y1,Y2 ∈ Schcorr, then HomSchcorr (Y1,Y2) is
the groupoid of diagrams, an element f in which is of the form

Y1
f l

←− Z
f r

−→ Y2, (1.6)

where maps in this groupoid are defined naturally. For a correspondence as in (1.6),
we shall symbolically denote by ( f l , Z , f r ) the corresponding morphism in Schcorr.

The composition of morphisms in Schcorr is defined naturally by forming Cartesian
products. The unit morphism Y → Y is one where the maps f l and f r are both
isomorphisms. The category Schcorr has a natural symmetric monoidal structure given
by products.

The category Schcorr contains a non-full subcategory denoted Sch∗, equivalent to the
usual category Sch, which has the same objects, but where the morphisms are restricted
to have f l an isomorphism. We have another non-full subcategory Sch! ⊂ Schcorr,
equivalent to Schop, which also has the same objects, but where the morphisms are
restricted to have f r an isomorphism.

We assume “the theory of D-modules” in the following format: We assume having
a symmetric monoidal functor

D� : Schcorr →∞-Catst
pres,cont, (1.7)

3 The corresponding theory in a related context of ind-coherent sheaves has been developed in [12].
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whose value on a scheme Y is the∞-category D(Y ), and for a morphism as in (1.6),
the functor D(Y1)→ D(Y2) is given by

f � := ( f r )∗ ◦ ( f l)!.

Remark 1.4.4 Modulo homotopy theory, the content of the functor (1.7) is the base
change theorem: For a Cartesian square in Sch

Y ′ gY−−−−→ Y

π ′
⏐
⏐
�

⏐
⏐
�π

X ′ gX−−−−→ X

we have a canonical homotopy equivalence g!X ◦ π∗ � π ′∗ ◦ g!Y .

Restricting the functor D� to the subcategories Sch∗ and Sch!, we obtain symmetric
monoidal functors D∗ and D! of (1.4) and (1.5), respectively.

1.4.5

Let us observe that the theory of D-modules given by (1.7) encodes also the standard
adjunctions:

It follows from the definitions that if g : Y → X is a locally closed embedding, we
have a natural homotopy equivalence in HomSchcorr (Y,Y )

(id,Y, g) ◦ (g,Y, id) � idY,

inducing the homotopy equivalence of functors

g! ◦ g∗ � IdD(Y ) .

If g is a closed embedding g = ı , then the resulting map IdD(Y ) → ı ! ◦ ı∗ is the
unit of the (ı∗, ı !) adjunction.

If g is an open embedding g = j , then the resulting map j ! ◦ j∗ → IdD(Y ) is the
counit of the (j !, j∗) adjunction.

Note on notation To be consistent with the notation from [1], for an open embedding
j , we will often write j∗ instead of j !.

Thus, the restriction of D∗ to the non-full subcategory of Schopen ⊂ Sch with the
same objects but open embeddings as morphisms is a functor

Schopen →∞-Catst
pres,cont,

obtained from D!|(Schopen)op by taking right adjoints.
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1.4.6

Let now g : Y → X be an arbitrary separated map, and let �(Y/X) be the diagonal

Y → Y ×
X

Y.

From the (�(Y/X)∗,�(Y/X)!) adjunction above, we obtain a canonical map

IdD(Y )→ g! ◦ g∗.

When g is proper this map is a unit for the (g∗, g!) adjunction.
Thus, the restriction of D∗ to the non-full subcategory of Schproper ⊂ Sch with the

same objects but proper maps as morphisms is a functor

Schproper →∞-Catst
pres,cont,

obtained from D!|(Schproper)op by taking left adjoints.

1.4.7

For future use, let us note that the functor

D! : Schop →∞-Catst
pres,cont

naturally factors through the (∞, 1)-category of commutative algebras in
∞-Catst

pres,cont. Indeed, this structure is induced by the canonical coalgebra structure
on every Y ∈ Sch given by the diagonal map.

2 Chiral algebras and factorization coalgebras

2.1 D-modules on the Ran space

2.1.1

Let fSetsurj denote the category of non-empty finite sets and surjective morphisms. Let
X fSetsurj

denote the functor (fSetsurj)op → Sch given by I � X I . By composing with
the functor

D! : (Sch)op −→∞-Catst
pres,cont,

we obtain a functor

D!(X fSetsurj
) : fSetsurj −→∞-Catst

pres,cont . (2.1)
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Definition 2.1.2 The ∞-category D(Ran X) is the limit of the functor in (2.1) in
∞-Catst

pres,cont.

For a finite set I , we will denote by (�I )! the tautological functor D(Ran X) →
D(X I ) corresponding to evaluation on I . For I = pt, we shall denote (�I )! also by
(�main)!.

2.1.3

Let us recall the following general paradigm. Let K be a small category, and let

� : K →∞-Catst
pres

be a functor. Assume that for every arrow α : k1 → k2 in K , the corresponding functor

�α : �k1 → �k2

admits a left adjoint (which is automatically a 1-morphism in∞-Catst
pres,cont).

Then, we can extend the assignment

i � �i , (α : k1 → k2)� (�α)
L

to a functor �L : K op →∞-Catst
pres,cont. Moreover, we have a canonical equivalence

(see e.g., [19], Lemma 1.3.3):

lim
K
� � colim

K op
�L, (2.2)

where the colimit is taken in the (∞, 1)-category∞-Catst
pres,cont.

Remark 2.1.4 Note that the forgetful functor

∞-Catst
pres,cont →∞-Catst

commutes with limits, but not with colimits. So, whereas the∞-category in the left-
hand side in (2.2) can be calculated in either∞-Catst

pres,cont or∞-Catst, it is crucial
that the right-hand side is calculated in∞-Catst

pres,cont.

2.1.5

Applying (2.2) to K = fSetsurj and � = D!(X fSetsurj
), we obtain that D(Ran X) can

be written as a colimit as follows:

colim
(fSetsurj)op

D∗(X fSetsurj
). (2.3)
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Here, D∗(X fSetsurj
) is the functor (fSetsurj)op → ∞-Catst

pres,cont equal to the com-
position

(fSetsurj)op X fSetsurj

−→ Sch
D∗−→ ∞-Catst

pres,cont .

For a finite set I , we will denote by (�I )∗ the tautological functor D(X I ) →
D(Ran X). By construction, this functor is the left adjoint of (�I )!.

For I = pt, we will denote (�I )∗ also by (�main)∗. The following is straightfor-
ward:

Lemma 2.1.6 The adjunction Id→ (�main)! ◦ (�main)∗ is a homotopy equivalence.

Corollary 2.1.7 The functor (�main)∗ : D(X)→ D(Ran X) is fully faithful.

2.2 Symmetric monoidal structures on D(Ran X)

We shall now recall the definition of the � and chiral symmetric monoidal structures
on D(Ran X), borrowed from [1], Sect. 3.4.10.

We shall first give a definition based on the formalism of the theory of D-modules
formulated in Sect. 1.4.1. We shall subsequently write it down more concretely as
functors

D(Ran X)⊗J → D(Ran X) (2.4)

for every finite set J .
Both versions of the definition may be difficult to parse. We refer the reader to

Sect. 2.5.4 where this definition is reinterpreted in the context of sheaves on a topo-
logical space, which makes it more transparent.

2.2.1

Let us recall the following general paradigm. Let K be a small symmetric monoidal
category, and let 	 : K → A be a right lax symmetric monoidal functor, where A is
another symmetric monoidal category closed under colimits. Then,

colim
K

	 ∈ A

is a commutative algebra object in A.

2.2.2

We shall apply this to K := (fSetsurj)op and A := ∞-Catst
pres,cont, where (fSetsurj)op

is viewed as a symmetric monoidal category via the operation of disjoint union.



Chiral Koszul duality 41

The functor	 will be the composition of D� : Schcorr →∞-Catst
pres,cont, preceded

by either of two right lax symmetric monoidal functors:

(X fSetsurj
)� and (X fSetsurj

)ch : (fSetsurj)op → Schcorr .

We let the functor (X fSetsurj
)� be the functor

X fSetsurj : (fSetsurj)op → Sch � Sch∗ ↪→ Schcorr,

equipped with a natural symmetric monoidal structure. Note that this functor is not
only right lax monoidal, but actually monoidal.

2.2.3

The functor (X fSetsurj
)ch is defined as follows. As a functor (fSetsurj)op → Schcorr, it

equals X fSetsurj
. However, the lax symmetric monoidal structure is different:

Let IJ be a collection of finite sets, parameterized by another finite set J : j � I j ,
which we can also think of as a surjection


j∈J

I j =: I
π
� J.

Let U (π) be the open subset of X I equal to the locus

{i � xi ∈ X, i ∈ I | xi1 �= xi2 if π(i1) �= π(i2)},

and let

j (π) : U (π) ↪→ X I

denote the corresponding open embedding.
We define the right lax symmetric monoidal structure on (X fSetsurj

)ch by letting the
arrow



j∈J

X I j → X I ∈ Schcorr

be given by the correspondence



j∈J

X I j
j (π)←− U (π)

j (π)−→ X I .
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2.3 Explicit description of tensor product functors

2.3.1

Using the presentation of D(Ran X) as a colimit given by (2.3), in order to define a
functor as in (2.4), it suffices to define a functor

m J : (fSetsurj)op × · · · × (fSetsurj)op
︸ ︷︷ ︸

J

−→ (fSetsurj)op

and a natural transformation between the resulting two functors

(fSetsurj)op × · · · × (fSetsurj)op
︸ ︷︷ ︸

J

⇒∞-Catst
pres,cont :

(

IJ � ⊗
j∈J

D(X I j )

)

⇒
(

IJ � D(Xm J (IJ ))
)
, (2.5)

where we denote by IJ an object of (fSetsurj)op × · · · × (fSetsurj)op
︸ ︷︷ ︸

J

as in Sect. 2.2.3.

For both monoidal structures, we let m J to be the functor of disjoint union:

IJ �→ I := 
j∈J

I j .

2.3.2

For the � symmetric monoidal structure, denoted symbolically ⊗�, we let the natural
transformation of (2.5) to be the external tensor product:

(
M I j ∈ D(X I j )

)
�

(

�
j

M I j ∈ D(X I )

)

.

Note that for objects M j ∈ D(Ran X), j ∈ J , and a finite set I equipped with a
surjection π : I � J , there exists a canonical map

�
j∈J

(
(�I j )!(M j )

)
−→ (�I )!

(

⊗�
j∈J

M j

)

. (2.6)

2.3.3

For the chiral symmetric monoidal structure, denoted symboliccally ⊗ch, we define
the natural transformation (2.5) as

(
M I j ∈ D(X I j )

)
�

(

j (π)∗ ◦ j (π)∗
(
�
j

M I j
) ∈ D(X I )

)

.
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Note that for objects M j ∈ D(Ran X), j ∈ J , and a finite set I equipped with a
surjection π : I � J , there exists a canonical map

j (π)∗ ◦ j (π)∗
(

�
j∈J

(�I j )!(M j )

)

−→ (�I )!
(

⊗ch

j∈J
M j

)

. (2.7)

The following assertion results from the definitions:

Lemma 2.3.4 For M j ∈ D(Ran X), j ∈ J and I as above, the resulting map

⊕
π
j (π)∗ ◦ j (π)∗

(

�
j∈J

(�I j )!(M j )

)

−→ (�I )!
(

⊗ch

j∈J
M j

)

.

is a homotopy equivalence, where the direct sum is taken over all surjections
π : I � J .

2.4 Chiral Lie algebras and factorization coalgebras

We now define the∞-categories which will be our primary objects of study.

Definition 2.4.1 We let Lie-algch(Ran X) and Lie-alg�(Ran X) be the∞-categories
of Lie algebras in the∞-category D(Ran X) equipped with the chiral and � symmetric
monoidal structure, respectively.

Definition 2.4.2 The∞-category of chiral Lie and �-Lie algebras on X are the full
∞-subcategories

Lie-algch(X) ⊂ Lie-algch(Ran X) and Lie-alg�(X) ⊂ Lie-alg�(Ran X),

respectively, spanned by objects for which the underlying D-module is supported on
X , i.e., it lies in the essential image of the functor (�main)∗ : D(X)→ D(Ran X).

Remark 2.4.3 Our names for the above objects are slightly different from those in [1]:
What they call a “chiral algebra” we call a “chiral Lie algebra on X”; what they call
a “Lie�-algebra” we call a “�-Lie algebra on X .”

Remark 2.4.4 Throughout this text we will be working with non-unital chiral Lie
algebras. The precise relation between non-unital chiral Lie algebras and unital ones
will be discussed in another publication. See also Remark 6.4.6.

On the coalgebraic side, we have:

Definition 2.4.5 Com-coalgch(Ran X) is the∞-category of (nonunital) chiral com-
mutative coalgebras for the chiral monoidal structure on D(Ran X).
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2.4.6 Factorization

Let π : I � J be a surjection of finite sets. If B ∈ Com-coalgch(Ran X), from
Lemma 2.3.4, we obtain a map

(�J )!(B) −→ j (π)∗ ◦ j (π)∗
(

�
j∈J

(�I j )!(B)
)

and by adjunction a map

j (π)∗
(
(�J )!(B)

)
−→ j (π)∗

(

�
j∈J

(�I j )!(B)
)

. (2.8)

Definition 2.4.7 We say that B ∈ Com-coalgch(Ran X) is a factorization coalgebra
if the maps (2.8) are homotopy equivalences for all I and π .

We define Com-coalgch
Fact(Ran X) to be the full subcategory of Com-coalgch

(Ran X) spanned by factorization coalgebras. We shall also use the notation

Fact(X) := Com-coalgch
Fact(Ran X).

We conclude this subsection with several remarks.

Remark 2.4.8 In [1], Sect. 3.4.4, the above category Fact(X) is denoted FA(X), and
its objects are referred to as factorization algebras. Our realization of this category as
the full subcategory of a certain category of coalgebras rather than algebras is Ver-
dier-biased: The latter would have also been possible if the functors j (π)! had been
defined on all of D(U (π)), and not only on the holonomic subcategory. However,
putting the definition of [1] in the∞-categorical framework, one can give a Verdier
self-dual definition of Fact(X) by requiring a homotopy-coherent system of homot-
opy equivalences (2.8). For that reason, it seems most preferable to term objects of
Fact(X) as “factorization D-modules.”

Remark 2.4.9 The ∞-categories Lie-algch(Ran X) and D(X) are both presentable
∞-categories, and they both can be made equivalent to the simplicial nerve of model
categories. Their intersection, the∞-category of chiral algebras Lie-algch(X), is how-
ever not presentable: It fails, for instance, to have coproducts. As a consequence, the
∞-category of chiral Lie algebras does not arise as the simplicial nerve of a model
category. The same holds true on the coalgebra side and for Fact(X).

Remark 2.4.10 A chiral commutative coalgebra may be thought of as a lax factoriza-
tion D-module, i.e., a D-module for which there are given the factorizing structure
maps (as in (2.8)), but which are no longer necessarily homotopy equivalences. The
factorization property is closely related to locality in quantum field theory, so one
might think of general chiral commutative coalgebras as related to field theories in
which the condition of locality is weakened. General chiral commutative coalgebras
are thus unlikely to be especially physically compelling, but it is still convenient to
allow for this mathematical generalization.
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2.5 Variant: the topological context

2.5.1

In this subsection, we let X be a Hausdorff locally compact topological space. We
consider the functor

I � X I

from (fSetsurj)op to the category Topl.c.
cl of Hausdorff locally compact topological

spaces and maps that are closed embeddings.
Consider the functor

Shv! : (Topl.c.
cl )

op −→∞-Catst
pres

that assigns to Y ∈ Topl.c.
cl the ∞-category Shv(Y), and for a closed embedding

f : Y1 → Y2 the corresponding functor f !. (Here Shv(−) stands for∞-category of
sheaves of k-vector spaces, where k is a field of characteristic 0.)

Composing, we obtain the functor

Shv!(X fSetsurj
) : fSetsurj −→∞-Catst

pres,

and we set

Shv(Ran X) := lim
fSetsurj

Shv!(X fSetsurj
).

The constructions of Sects. 2.2 and 2.4 go through in the present context. In partic-
ular, we obtain two symmetric monoidal structures on Shv(Ran X), and the notions
of chiral Lie algebra, �-Lie algebra and factorization coalgebra.

The analog of Theorem 1.2.4 goes through for Shv(Ran X) with no modification.

2.5.2

Let R(X) be the topological space defined as in [1], Sect. 3.4.1. We have pair of adjoint
functors

Shv(Ran X)� Shv(R(X)). (2.9)

According to loc.cit., Sect. 4.2.4 we have:

Lemma 2.5.3 The functor Shv(Ran X)→ Shv(R(X)) is fully faithful.

2.5.4

Let us interpret the � and chiral symmetric monoidal structures on Shv(Ran X) in
terms of Lemma 2.5.3:
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Following [1], Sect. 3.4.1(iii), the topological space R(X) is a commutative semi-
group with respect to the operation denoted “union” (which corresponds to the oper-
ation of taking the union of finite subsets of X ).

The �-monoidal structure is induced by the above semigroup structure on R(X) by
means of the functor of direct image:

union∗ : Shv(R(X))⊗I −→ Shv(R(X)).

To describe the chiral symmetric monoidal structure, we note that for a finite set I ,
the product R(X)I contains an open subset

(R(X)I )disj
j I

↪→ R(X)I ,

corresponding to I -tuples of finite subsets of X are pairwise disjoint.
The chiral symmetric monoidal structures are given by the functor

(i � Fi ∈ Shv(R(X)), i ∈ I )� union∗
(

(j I )∗ ◦ (j I )∗(�
i

Fi )

)

∈ Shv(R(X)).

It follows easily from the definitions that the adjoint functors in Lemma 2.5.3
intertwine the corresponding symmetric monoidal structures on Shv(Ran X) and Shv
(R(X)).

2.5.5

Finally, let us remark how the notion of factorization coalgebra in Shv(Ran X) relates
to that of En-algebra:

Let us take X = R
n . As was communicated to us by Lurie, one has the following

assertion:

Theorem 2.5.6 The∞-category of translation-equivariant factorization coalgebras
in Shv(Ran R

n) is equivalent to that of En-coalgebras over k.

Remark 2.5.7 This theorem does not formally follow from Theorem 5.3.4.10 of [17]:
One can show that for X being a manifold, the category Shv!(Ran X) is equivalent to
the category of cosheaves on R(X) in the colimit topology rather than the topology
in which the theorem in [17] is proved. However, according to Lurie, the above result
holds for the colimit topology as well.

Remark 2.5.8 Based on the previous remark, we can view the theory of chiral Lie
algebras studied in this paper as an algebro-geometric analog of the theory of En-alge-
bras. Recall now that on the category of En-algebras, there is a contravariant En-Koszul
duality functor, introduced in [13].

We should emphasize that chiral Koszul duality studied in this paper is totally
unrelated to the En-Koszul duality, either technically or conceptually.

However, we should add that the En-Koszul duality does have an interpretation in
the factorization setting as a form of Verdier duality of (co)sheaves on the Ran space,
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as is discussed in [9]. In the latter incarnation, En-Koszul duality has an analog in the
algebro-geometric context of chiral Lie algebras/factorization D-modules, which we
hope to discuss in another publication.

3 Algebras and coalgebras over (co)operads: recollections

This section is included for the reader’s convenience. None of the results stated here are
original. The general reference for operads and algebras over them in the∞-category
framework is [17], Chaps. 2 and 3.

3.1 Operads

3.1.1

Let X be a stable presentable symmetric monoidal∞-category. Let X� denote the
∞-category of symmetric sequences in X . That is, objects of X� are collections
O = {O(n), n ≥ 1}, where each O(n) is an object of X acted on by the symmetric
group �n .

The∞-category X� has a natural monoidal structure. A convenient way to think
about this monoidal structure is the following:

We have a natural functor X� → Funct(X ,X ):

(O = {O(n)})�
(

x � 
n≥1

(O(n)⊗ x⊗n)�n

)

. (3.1)

The monoidal structure on X� is designed so that the functor in (3.1) is monoidal.

Definition 3.1.2 The ∞-category Op(X ) (resp., coOp(X )) of augmented operads
(resp., cooperads) in X is that of augmented associative algebras (resp., coalgebras)
in X� with respect to the above monoidal structure.

3.1.3

We have a pair of adjoint functors

Bar : Op(X )� coOp(X ) : Cobar (3.2)

see [6,13,14].
In fact, the above pair of adjoint functors is a particular case of the adjunction

between augmented associative algebras and augmented associative coalgebras, i.e.,
of one reviewed in Sect. 3.3 for O being the associative operad, when we take our
ambient monoidal category to be X� :
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In the case of the associative operad, the ambient category needs to be just monoi-
dal, not symmetric monoidal, and neither does it need to be stable. We only need the
monoidal operation to distribute over sifted colimits in each variable.4

Definition 3.1.4 An operad O ∈ Op(X ) is derived Koszul if the adjunction map

O −→ Cobar ◦Bar(O)

is a homotopy equivalence.

Remark 3.1.5 Any Koszul operad in chain complexes in X = Vectk , in the original
sense of Ginzburg-Kapranov [14], is derived Koszul in the above sense.

In fact, any augmented operad for which 1X → O(1) is a homotopy equivalence
is derived Koszul. In particular, the Lie operad is derived Koszul (and this is true even
for the Lie operad in spectra, see, e.g., [6]).

3.2 Algebras over an operad

3.2.1

Let X be as above. Let C be a (not necessarily unital) stable presentable symmetric
monoidal∞-category compatibly tensored over X , i.e., C is a commutative algebra
object in the (∞, 1)-category of X -modules in∞-Catst

pres,cont.
Formula (3.1) (applied now to x being an object of C rather than X ) defines an

action of the monoidal category X� acts on C. Hence, an operad O (resp., cooperad
P) in X defines a monad TO : C → C (resp., a comonad SP : C → C).

Definition 3.2.2 For an operad O ∈ Op(X ), the∞-category O-alg(C) of (non-unital)
O-algebras in C is the∞-category of TO-modules in C.

Remark 3.2.3 The preceding definition of O-alg(C) is equivalent to that given by Lu-
rie in the case where X is the∞-category of topological spaces. We adopt the above
definition in order to accommodate the definition of Lie algebras in a symmetric
monoidal∞-category, since Lie is an operad in k-modules, but not in spaces.

Definition 3.2.4 For a cooperad P ∈ coOp(X ), the ∞-category P-coalgnil
d.p.(C) of

ind-nilpotent P-coalgebras in C is the∞-category of SP -comodules in C.

Remark 3.2.5 We shall introduce the category of “all” (i.e., not necessarily ind-nilpo-
tent) P-coalgebras in Sect. 3.5. In loc. cit. it will also become clear why we use the
terminology “ind-nilpotent” for P-coalgebras in C.

The subscript “d.p.” in P-coalgnil
d.p.(C) stands for “divided powers.” Again, we refer

the reader to Sect. 3.5 where the reason for this notation will become clear.

4 We recall that an index category I is called sifted if the diagonal functor I → I × I is homotopy cofinal,
see [16], Definition 5.5.8.1. Filtered categories and �op, the opposite of the simplicial indexing category,
are the essential examples.
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3.2.6

Let O be an object of Op(X ). Let oblvO denote the tautological forgetful functor

O-alg(C)→ C.

The functor oblvO commutes with limits and with sifted colimits.5 Let

FreeO : C → O-alg(C)

denote its left adjoint.
In addition, the augmentation on O defines the functor

trivO : C → O-alg(C).

The functor trivO commutes with both limits and colimits.

3.2.7

Let P be an object of coOp(X ). Let oblvP denote the forgetful functor

P-coalgnil
d.p.(C)→ C.

The functor oblvP commutes with colimits. We let

coFreeP : C → P-coalgnil
d.p.(C)

denote its right adjoint.
In addition, the augmentation on P defines the functor

trivP : C → P-coalgnil
d.p.(C).

The functor trivP commutes colimits.
If the cooperad P has the property that for every n, the functor c � P(n) ⊗ c

distributes over limits, then the functor trivP commutes with sifted limits.
The above condition on P is satisfied in many cases of interest: e.g., if X = Vectk

and all P(n) are (bounded complexes of) finite-dimensional vector spaces.

5 The siftedness condition is used as follows: For a monoidal category C in which tensor products distribute
over colimits, the functor of n-th tensor power c � c⊗n distributes over sifted colimits.
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3.3 Koszul duality functors

3.3.1

For O ∈ Op(X ), we now consider the left adjoint of the functor trivO, which we
denote

BarO : O-alg(C)→ C.

Remark 3.3.2 At the classical level, since the multiplication on trivO(M) is trivial,
any map A → trivO(M) must send to zero any element a ∈ A, which is decompos-
able, i.e., a multiple of two or more elements (e.g., a = f · a′ · a′′, for a′, a′′ in A
and f in O(2)). Consequently, the left adjoint assigns to an O-algebra A the inde-
composables of A, the quotient of A by the decomposable elements. In the instance
of classical commutative algebra, this quotient is isomorphic to the cotangent space
of the associated pointed affine scheme, so one can geometrically imagine the inde-
composables as forming an operadic version of the cotangent space. Returning to the
homotopy theory, the left adjoint of trivO can be formed in the model category setting
as a derived functor of indecomposables, where one resolves an O-algebra and takes
indecomposables in the resolution.

Remark 3.3.3 The reason for notation BarO is the following. Let A be a monoidal
∞-category and M a module category. Then, under some mild hypothesis on A and
M, for associative algebras R, R′ ∈ A and a homomorphism R → R′, the functor
left adjoint to the forgetful functor ModR′(M) → ModR(M) exists and is com-
puted as the geometric realization of simplicial object Bar(R′, R,−)•, called the bar-
construction, i.e.,

Bar(R′, R,−) := |Bar(R′, R,−)•|

(see [17] or [8] for a more extended explanation in the context of∞-categories). Here,
we take A = X�,M = C, R = O and R′ = 1.

The definition of the Koszul dual cooperad as the associative coalgebra in X�

Koszul dual to O yields:

Lemma 3.3.4 There is a natural homotopy equivalence of comonads acting on C:

BarO ◦ trivO � SO∨ ,

where O∨ := Bar(O).
The general theory of monads6 implies:

6 Some of this theory is summarized in Sect. 6.2 and the relevant fact for the next corollary specifically in
Sect. 6.2.2.
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Corollary 3.3.5 The functor BarO : O-alg(C)→ C factors as

O-alg(C) Barenh
O−→ O∨-coalgnil

d.p.(C)
oblvO∨−→ C

for a canonically defined functor Barenh
O : O-alg(C)→ O∨-coalgnil

d.p.(C).
Since the functor BarO, being a left adjoint, commutes with colimits, and since

oblvO∨ commutes with colimits and is conservative, we obtain that the functor Barenh
O

also commutes with colimits.

3.3.6

We can depict the resulting commutative diagrams of functors as follows:

O-alg(C) O∨-coalgnil
d.p.(C)

C

Barenh
O ��

BarO

�������������������

oblvO∨

������������������

(3.3)

and

O-alg(C) O∨-coalgnil
d.p.(C)

C.

Barenh
O ��

��

trivO
���������������� ��

coFreeO∨

����������������

(3.4)

Remark 3.3.7 The relative ease of construction for the above diagram is one the great
virtues of∞-category theory. In the setting of model categories, one in general loses
the strict monad structure on an adjunction when one passes to derived functors: For
example, there is a coherence problem to solve in constructing a coalgebra structure
on, say, the bar construction k⊗A k of an augmented algebra at the chain level [18].

We have also another commutative diagram, namely:

O-alg(C) O∨-coalgnil
d.p.(C)

C.

Barenh
O ��

FreeO

������������������
trivO∨

������������������
(3.5)
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3.3.8

Let P be an object of coOp(X ), and consider the right adjoint of the functor trivP :

CobarP : P-coalgnil
d.p.(C)→ C.

As in Lemma 3.3.4 we have:

Lemma 3.3.9 There is a canonical homomorphism of monads

TP∨ → CobarP ◦ trivP ,

where P∨ := Cobar(P).

Remark 3.3.10 Unlike Lemma 3.3.4, the map in the above lemma is no longer a ho-
motopy equivalence, since the action of X� on C does not commute with totalizations.

Corollary 3.3.11 The functor CobarP : P-coalgnil
d.p.(C)→ C factors as

P-coalgnil
d.p.(C)

Cobarenh
P−→ P∨-alg(C) oblvP−→ C

for a canonically defined functor Cobarenh
P : P-coalgnil

d.p.(C)→ P∨-alg(C).

We can depict the resulting commutative diagram of functors as follows:

P∨-alg(C) P-coalgnil
d.p.(C)

C.

��
Cobarenh

P

oblvO

������������������

CobarP

������������������

(3.6)

We have also another commutative diagram, namely:

P∨-alg(C) P-coalgnil
d.p.(C)

C.

��
Cobarenh

P
��

trivO
���������������� ��

coFreeO∨

����������������

(3.7)
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3.3.12

Combining Lemmas 3.3.4 and 3.3.9, we obtain:
For O and P as above, let us be given a map O∨ → P or, equivalently, a map

O→ P∨. These maps define functors

P∨-alg(C)→ O-alg(C) and O∨ -coalgnil
d.p.(C)→ P-coalgnil

d.p.(C).

Corollary 3.3.13 The composed functors

O-alg(C) Barenh
O−→ O∨ -coalgnil

d.p.(C)→ P-coalgnil
d.p.(C)

and

O-alg(C)← Cobar(P) -alg(C) Cobarenh
P←− P-coalgnil

d.p.(C)

are naturally mutually adjoint.

3.4 Turning Koszul duality into an equivalence

3.4.1

Suppose that the operad O is derived Koszul. From the above discussion obtain a pair
of adjoint functors:

Barenh
O : O-alg(C)� O∨ -coalgnil

d.p.(C) : Cobarenh
O∨ . (3.8)

The above adjunction is in general not an equivalence. We shall now describe a
procedure how to modify the left-hand side to (conjecturally) turn it into an equiva-
lence.

3.4.2

Let us call an O-algebra A nilpotent, if there exists an integer n, such that the maps

O(n′)⊗ A⊗n′ → A

are null-homotopic for n′ ≥ n.

Definition 3.4.3 An O-algebra A is pro-nilpotent if it is equivalent to a limit of nil-
potent A-algebras.

Let O-algnil(C) ⊂ O-alg(C) denote the full subcategory spanned by pro-nilpotent
algebras.

It is easy to see that the above embedding admits a left adjoint, which we denote
Compl, making O-algnil(C) a localization of O-alg(C).
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3.4.4

It follows from the construction that the essential image of the functor

O-alg(C)← O∨ -coalgnil
d.p.(C) : Cobarenh

O∨

belongs to O-algnil. Let us denote the resulting functor

O-algnil(C)← O∨ -coalgnil
d.p.(C)

by KDO←O∨ .
By adjunction, we obtain that the functor Barenh

O factors as

O-alg(C) Compl−→ O-algnil(C) −→ O∨ -coalgnil
d.p.(C),

for a canonically defined functor

KDO→O∨ : O-algnil(C) −→ O∨ -coalgnil
d.p.(C),

which is left adjoint to KDO←O∨ .

Conjecture 3.4.5 The adjoint functors

KDO→O∨ : O-algnil(C)� O∨ -coalgnil
d.p.(C) : KDO←O∨

are equivalences of∞-categories.

In the next section, we will give a proof of this conjecture in a particular case.

Remark 3.4.6 The derived notion of Koszul duality discussed here is broadly con-
strued; there is no use made of Koszul resolutions in the sense of [20]. It would be
equally accurate to call this bar-cobar duality.

3.5 Coalgebras over an operad

3.5.1

Note that the monoidal∞-category X� of symmetric sequences is endowed with a
different right lax action on C, i.e., a lax monoidal functor X� → Funct(C, C):

(O = {O(n)})�
(

c� 

n≥1

(O(n)⊗ c⊗n)�n

)

. (3.9)

Hence, for a cooperad P ∈ coOp(X ), it makes sense to talk about P-comodules in
C with respect to this new action. We denote the resulting∞-category of comodules
by P-coalgd.p.(C) and call them P-coalgebras (with divided powers). See [10] for a
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treatment of simplicial O-algebras with divided powers, where it shown, for instance,
that a simplicial Lie algebra with divided powers is a simplicial restricted Lie algebra.

Remark 3.5.2 Since the above is only a right lax action, a cooperad P does not define
a comonad in C. In particular, the forgetful functor P-coalgd.p.(C) → C does not in
general admit a right adjoint.

We have an evident forgetful functor

P-coalgnil
d.p.(C) −→ P-coalgd.p.(C). (3.10)

Remark 3.5.3 One can show that the above functor P-coalgnil
d.p.(C)→ P-coalgd.p.(C)

is fully faithful and that it admits right adjoint, making the∞-category P-coalgnil
d.p.(C)

into a colocalization of P-coalgd.p.(C).

3.5.4

Note now that we have yet another action (resp., right lax action) of X� on C:

(O = {O(n)})�
(

c� 
n≥1

(O(n)⊗ c⊗n)�n

)

, (3.11)

and

(O = {O(n)})�
(

c� 

n≥1

(O(n)⊗ c⊗n)�n

)

, (3.12)

respectively.
Thus, for a cooperad P ∈ coOp(X ), we have two more notions of P-coalgebras in

C. We denote the corresponding∞-categories by

P-coalgnil(C) and P-coalg(C),

respectively. As in the case of divided powers, we have natural forgetful functor

P-coalgnil(C) −→ P-coalg(C). (3.13)

3.5.5

We also have natural homomorphisms of right lax actions

original action → (3.11) and (3.9) → (3.12) ,
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given by the trace map

(−)�n → (−)�n ,

(i.e., averaging over the group �n), and the corresponding functors between the
∞-categories of comodules:

P-coalgnil
d.p.(C)→ P-coalgnil(C) and P-coalgd.p.(C)→ P-coalg(C). (3.14)

Let us note that when X is compatibly tensored over Vectk , where k has charac-
teristic zero, the above homomorphisms of actions are homotopy equivalences, and
hence, the functors in (3.14) are equivalences.

4 Koszul duality in nilpotent tensor ∞-categories

4.1 Nilpotent and pro-nilpotent tensor∞-categories

We retain the setting of Sect. 3.2.

Definition 4.1.1 We shall say that C is pro-nilpotent if it can be exhibited as a limit

C � lim
Nop

Ci

(where the limit is taken in the (∞, 1)-category of stable symmetric monoidal∞-cat-
egories compatibly tensored over X ), such that

• C0 = 0;
• For every i ≥ j , the transition functor fi, j : Ci → C j commutes with limits;7

• For every i , the restriction of the tensor product functor Ci⊗Ci → Ci to ker( fi,i−1)⊗
Ci is null-homotopic.

We shall say that C is nilpotent of order n, if the functors fi, j are equivalences for
i, j ≥ n.

We are going to show:

Proposition 4.1.2 Assume that the operad O is such that augmentation map O(1)→
1X is a homotopy equivalence. Assume also that C is pro-nilpotent. Then the mutually
adjoint functors of (3.8) are homotopy equivalences of∞-categories.

Remark 4.1.3 The assumption that the map O(1)→ 1X is a homotopy equivalence
can be weakened. All we actually need is that O be derived Koszul and that the kernel
of O(1)→ 1X act nilpotently on C.

The rest of this subsection is devoted to the proof of the above proposition.

7 It is are also required to commute with colimits, according to our conventions, see Sect. 1.3.1.
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4.1.4 Reduction to the nilpotent case

Let C be written as lim
α

Cα , where the transition functors commute with limits and

colimits. For each index α, let fα denote the evaluation functor C → Cα .
The fact that the functors fα,β : Cβ → Cα commute with limits (resp., colimits)

implies that for every α, the functor fα commutes with limits (resp., colimits). That
is, limits (resp., colimits) in C can be computed “component-wise.”

We have

O-alg(C) � lim
α

O-alg(Cα),

and this equivalence commutes with the corresponding functors oblvO (this requires
no assumption on the transition functors). We also have

O∨ -coalgnil
d.p.(C) � lim

α
O∨ -coalgnil

d.p.(Cα),

and this equivalence commutes with the corresponding functors oblvO∨ (this follows
from the above mentioned fact that the functors fα commute with colimits).

Moreover, we claim that for each α, the diagram

O-alg(C) Barenh
O−−−−→ O∨ -coalgnil

d.p.(C)
eα

⏐
⏐
�

⏐
⏐
�eα

O-alg(Cα)
Barenh

O−−−−→ O∨ -coalgnil
d.p.(Cα)

commutes. This again follows from the fact that the functors fα commute with co-
limits.

The diagram

O-alg(C)
Cobarenh

O∨←−−−−− O∨ -coalgnil
d.p.(C)

eα

⏐
⏐
�

⏐
⏐
�eα

O-alg(Cα)
Cobarenh

O∨←−−−−− O∨ -coalgnil
d.p.(Cα)

commutes as well, and this follows from the fact that the functors fα commute with
limits.

The commutativity of the above two diagrams shows that it if the adjoint functors
of (3.8) are equivalences for each Cα , then they are also equivalences for C.

4.1.5 The nilpotence condition

Thus, from now on we shall assume that C is nilpotent. We will use it in the following
form:
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Lemma 4.1.6 Assume that C is nilpotent. For any cooperad P we have:

(a) The functor CobarP : P-coalgnil
d.p.(C)→ C commutes with sifted colimits.

(b) The map of monads of Lemma 3.3.9 is a homotopy equivalence.

Proof We prove point (a):
By construction, the functor CobarP is the composition of a functor

Cobar•P : P-coalgnil
d.p.(C)→ C�,

which commutes with sifted colimits (because the n-fold tensor power functor com-
mutes with sifted colimits), followed by the functor

Tot : C�→ C.

Here, we denote by C� = Funct(�, C) the∞-category of cosimplicial objects in C,
and Tot is the functor of taking the limit over �.

Let C be such that all n-fold tensor products are equivalent to zero. This implies
that for A ∈ P-coalgnil

d.p.(C), the natural map

Cobar•P (A)→ cosk≤n(Cobar•P (A)|�≤n )

is a homotopy equivalence, where�≤n ⊂ � is the subcategory spanned by objects of
cardinality ≤ n. Hence,

CobarP (A) � lim
�≤n

Cobar•P (A)|�≤n .

As was mentioned above, the functor

A� Cobar•P (A)|�≤n : P-coalgnil
d.p.(C) −→ C�≤n

commutes with sifted colimits. Hence, the assertion follows from the fact that the
functor of limit over �≤n

C�≤n → C

commutes with colimits (since C is stable and �≤n is finite, the limit diagram is
equivalent to a colimit one).

To prove point (b), let Cobar•(P) be the canonical cosimplicial object of X� , such
that

Tot(Cobar•(P)) � Cobar(P) =: P∨.

Then, TP∨ is given by

c� Tot(Cobar•(P)) · (c),
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and CobarP ◦ trivP is given by

c� Tot(Cobar•(P) · (c)),

where - · - denotes the action of X� on C.
However, as above, the maps

Tot(Cobar•(P)) · (c)→
(

lim
�≤n

Cobar•(P)|�≤n

)

· c

and

Tot(Cobar•(P) · (c))→ lim
�≤n

(
Cobar•(P) · (c)|�≤n

)

are homotopy equivalences. Thus, the above totalizations are isomorphic to finite lim-
its, and since C is stable, also to colimits. Therefore, the assertion follows from the
fact that the action of X on C and the monoidal operation on C commute with colimits.

�
Since the functor oblvP∨ is conservative and commutes with colimits, from point

(a) of Lemma 4.1.6 we obtain:

Corollary 4.1.7 The functor Cobarenh
P : P-coalgnil

d.p.(C)→ P∨-alg(C) commutes with
geometric realizations.

4.1.8 The functor Barenh
O is fully faithful

To prove that Barenh
O is fully faithful, we need to show that the unit of the adjunction

Id −→ Cobarenh
O∨ ◦Barenh

O (4.1)

is a homotopy equivalence.
Since every object of O-alg(C) can be obtained as a geometric realization of a

simplicial object whose terms lie in the essential image of the functor

FreeO : C −→ O-alg(C),

from Corollary 4.1.7, we obtain that it is enough to show that the map

FreeO −→ Cobarenh
O∨ ◦Barenh

O ◦FreeO (4.2)

is a homotopy equivalence. Again, since the forgetful functor oblvO : O-alg(C)→ C
is conservative, it is enough to show that the induced map

oblvO ◦FreeO −→ oblvO ◦Cobarenh
O∨ ◦Barenh

O ◦FreeO (4.3)

is a homotopy equivalence.
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By definition, the functor in the left-hand side of (4.3) identifies with TO. We can
rewrite the right-hand side of (4.3) as

CobarO∨ ◦Barenh
O ◦FreeO.

From Diagram (3.5), we obtain a canonical homotopy equivalence of functors

Barenh
O ◦FreeO � trivO∨ .

Hence, the map in (4.3) can be thought of as a map

TO −→ CobarO∨ ◦ trivO∨ . (4.4)

However, it is easy to see from the construction that the map in (4.4) equals the
composition

TO −→ T(O∨)∨ −→ CobarO∨ ◦ trivO∨ ,

where the first arrow is given by (4.3), and the second arrow is given by Lemma 3.3.9.
Hence, the fact that O is derived Koszul (see Remark 3.1.5), and Lemma 4.1.6(b)
imply that the map in (4.4) is a homotopy equivalence. �

4.1.9 Proof of the equivalence

To prove that the functor Barenh
O is an equivalence, it remains to show that its right

adjoint, namely Cobarenh
O∨ , is conservative. For that it is sufficient to show that the

functor

CobarP : P-coalgnil
d.p.(C) −→ C

is conservative for a cooperad P , provided that C is nilpotent.

Remark 4.1.10 Note that Conjecture 3.4.5 would imply that the functor Cobarenh
P is

conservative for any C, without the nilpotence (or pro-nilpotence) assumption.

Let Ci be as in Definition 4.1.1. Let fi : C → Ci denote the corresponding evalua-
tion functors.

Let α : B1 → B2 be a map in P-coalgnil
d.p.(C) that is not a homotopy equivalence.

Let i be the minimal integer such that the map

fi (α) : fi (B1)→ fi (B2)

is not a homotopy equivalence.
For any B ∈ P-coalgnil

d.p.(C), we have a canonical map

CobarP (B) = lim
�

Cobar•P (B) −→ oblvP (B). (4.5)
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By the choice of the index i , the map

fi ◦ CobarP (α) : fi ◦ CobarP (B1) −→ fi ◦ CobarP (B2), (4.6)

induces a homotopy equivalence

coker (CobarP (B1) −→ B1) −→ coker (CobarP (B2) −→ B2).

Hence, the map (4.6) is not a homotopy equivalence. Hence, CobarP (α) is not a
homotopy equivalence, as required. �

4.2 Coalgebras versus ind-nilpotent coalgebras in the pro-nilpotent case

In the following, we retain the assumption that C is pro-nilpotent:

Proposition 4.2.1 The functors (3.10) and (3.13) are equivalences.

Proof As in the proof of Proposition 4.1.2, we immediately reduce to the case when C
is nilpotent. In the latter case, in both cases (with or without divided powers), the two
right lax actions of X� on C are tautologically equivalent by the nilpotence condition.

�

4.3 The case of Lie algebras

4.3.1

Let X be the category Vectk , where k has characteristic zero. We shall consider the
augmented operad Lie, obtained from the usual (non-unital) Lie operad by formally
adjoining the unit. As was mentioned in Remark 3.1.5, the operad Lie is derived
Koszul.

4.3.2

Let C be a (not necessarily unital) stable symmetric monoidal∞-category, compatibly
tensored over Vectk .

Let Lie-alg(C) denote the∞-category of Lie algebras in C, and let Com-coalg(C)
denote the category of non-unital commutative coalgebras on C. Recall that we have
a pair of adjoint functors:

C : Lie-alg(C)� Com-coalg(C) : Prim[−1], (4.7)

where C is the functor of the homological Chevalley complex, and Prim is the (derived)
functor of primitive elements (here [−1] stands for the cohomological shift by 1 to
the right, i.e., the loop functor).

We claim that we have proved the following:
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Proposition 4.3.3 Assume that C is pro-nilpotent. Then the functors in (4.7) are equi-
valences of∞-categories.

Proof It is known (see [6,14]) that the cooperad Lie∨ identifies with Com[1], i.e.,
Com[1](n) = k[n − 1] with the sign action of �n for every n. Moreover, the functor

Barenh
Lie : Lie-alg(C) −→ Com[1] -coalgnil

d.p.(C) −→ Com[1] -coalgd.p.(C)
−→ Com[1] -coalg(C)

is the functor C[−1].
From Proposition 4.1.2, we obtain an equivalence of∞-categories

Barenh
Lie : Lie-alg(C) −→ Com[1] -coalgnil

d.p.(C).

By Proposition 4.2.1, the pro-nilpotence assumption on C implies that the functor

Com[1] -coalgnil(C) −→ Com[1] -coalg(C)

is an equivalence.
Due to the characteristic zero assumption, the functor

Com[1] -coalgnil
d.p.(C) −→ Com[1] -coalgnil(C)

is an equivalence as well.
Thus, we obtain that C � Barenh

Lie [−1] defines an equivalence

Lie-alg(C) −→ Com-coalg(C).

�

5 Proof of the main theorem

5.1 Koszul duality in the chiral setting

Our current goal is to prove the first part of Theorem 1.2.4:

Theorem 5.1.1 The above functors

Cch : Lie-algch(Ran X)� Com-coalgch(Ran X) : Primch[−1]

are mutually inverse equivalences of∞-categories.

In view of Proposition 4.3.3, it suffices to show that the ∞-category D(Ran X),
equipped with the chiral symmetric monoidal structure, is pro-nilpotent.
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5.1.2

Let n be a positive integer. For a finite set I , let X I,≤n be the closed subscheme of
X I equal to the union of the images of the diagonal maps �(π) : X J → X I for all
surjections π : I � J with |J | ≤ n. Let X I,>n ⊂ X I be the complementary open
subset. Let

ı I,n : X I,≤n ↪→ X I ←↩ X I,>n : j I,n

denote the corresponding maps.
We obtain the functors

X�,≤n, X�,>n : (fSetsurj)op −→ Sch

and the corresponding functors

D!(X�,≤n),D!(X�,>n) : fSetsurj −→∞-Catst.

Let D(Ran≤n X) and D(Ran>n X) denote the corresponding∞-categories

lim
fSetsurj

D!(X�,≤n) and lim
fSetsurj

D!(X�,>n),

respectively.

5.1.3

For a surjection π : I1 � I2, the map �(π) : X I1 → X I2 sends

X I1,≤n −→ X I2,≤n and X I1,>n −→ X I2,>n .

Hence, we obtain commutative diagrams of functors

D(X I1,≤n)
(ı I1,n)!←−−−− D(X I1,n)

(j I1,n)∗−−−−→ D(X I1,>n)

�(π)!
⏐
⏐
� �(π)!

⏐
⏐
�

⏐
⏐
��(π)!

D(X I2,≤n)
(ı I2,n)!←−−−− D(X I2,n)

(j I2,n)∗−−−−→ D(X I2,>n)

and their adjoints:

D(X I1,≤n)
(ı I1,n)∗−−−−→ D(X I1,n)

(j I1,n)∗←−−−− D(X I1,>n)

�(π)!
⏐
⏐
� �(π)!

⏐
⏐
�

⏐
⏐
��(π)!

D(X I2,≤n)
(ı I2,n)∗−−−−→ D(X I2,n)

(j I2,n)∗←−−−− D(X I2,>n)
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So, we obtain adjoint pairs of functors

(ın)∗ : D(Ran≤n X)� D(Ran X) : (ın)! and

(jn)∗ : D(Ran X)� D(Ran>n X) : (jn)∗

that commute with the evaluation maps (�I )!. Moreover, the functors (ın)∗ and (jn)∗
are fully faithful, and

D(Ran≤n X)� D(Ran X)� D(Ran>n X)

is a short exact sequence of stable∞-categories: That is, the category on the right is
the localization of the category in the middle with respect to the category on the left.

Similarly, we have the corresponding maps and functors for any pair n1 ≤ n2.

Lemma 5.1.4 The functor

{(ın)!} : D(Ran X) −→ lim
n

D(Ran≤n X)

is an equivalence.

Proof This follows from the fact that each (ı I,n)! is an equivalence as soon as n ≥ |I |.
�

5.1.5

From Lemma 2.3.4, we obtain that for any n, the essential image of D(Ran>n X) under
(jn)∗ is a monoidal ideal with respect to the chiral symmetric monoidal structure on
D(Ran X), i.e., the product of any object with an object in the essential image of
D(Ran>n X) remains in the essential image of D(Ran>n X).8 As a consequence, the
localization of D(Ran X) with respect to D(Ran>n X) obtains a monoidal structure,
such that the localization functor is a homomorphism of monoidal categories.

The localization of D(Ran X) with respect D(Ran>n X) is equivalent to
D(Ran≤n X); hence, we obtain that D(Ran≤n X) acquires a canonical symmetric
monoidal structure, for which the functors

D(Ran≤n1 X) −→ D(Ran≤n2 X)

for n1 ≥ n2 are symmetric monoidal for the chiral symmetric monoidal structure on
D(Ran X).

8 This is a special case of a general notion of ideals of algebras in a pointed monoidal∞-category, where
a map I → A of nonunital algebras is said to be an ideal if the quotient is equivalent to the quotient as
objects, without algebraic structure. For a map I → A, which is a monomorphism (see [16], Sect. 5.5.6),
this is equivalent to requiring that the resulting maps I ⊗ A → A and A ⊗ I → A factor through I . We
are applying this to the monoidal category∞-Catst

pres and a functor C′ → C which is fully faithful, which
is equivalent to being a monomorphism.
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To establish the pro-nilpotence property of the chiral symmetric monoidal structure
on D(Ran X), it suffices to show that the resulting monoidal structure on D(Ran≤n X)
vanishes on

ker
(
D(Ran≤n X) −→ D(Ran≤n−1 X)

)
⊗D(Ran≤n X) −→ D(Ran≤n X).

However, the latter is manifest from Lemma 2.3.4.

5.2 Factorization

We shall now prove the second part of the main theorem that the equivalence between
chiral Lie algebras and chiral commutative coalgebras on Ran X interchanges the
∞-subcategories of chiral Lie algebras on X and factorization coalgebras.

Theorem 5.2.1 For A ∈ Lie-algch(Ran X), the corresponding coalgebra Cch(A) fac-
torizes if and only if A is supported on X, i.e., is an object of Lie-algch(X).

We shall precede the proof of Theorem 5.2.1 by the following two observations
made in Sects. 5.2.2 and 5.2.3, respectively.

5.2.2

Recall that the factorization condition for B ∈ Com-coalgch(Ran X) says that for each
surjection π : I � J , the associated map

j (π)∗
(
(�I )!(B)

)
−→ j (π)∗

(

�
j∈J
(�I j )!(B)

)

(5.1)

is a homotopy equivalence in D(U (π)).
However, we claim that it is enough to check (5.1) for every I and π = idI . Indeed,

let us assume by induction that the homotopy equivalences (5.1) have been established
for finite sets of cardinality < k, and let I be with |I | = k.

First, we claim that the induction hypothesis implies that (5.1) becomes an isomor-
phism after applying (�φ)! ◦ j (π)∗ for any φ : I � I ′ with |I ′| < |I |. Indeed, set
J ′ := J 

I
I ′, and let

ψ : J � J ′ and φ′ : I ′ � J ′

denote the corresponding maps. We have:

(�φ)! ◦ j (π)∗ � j (π ′)∗ ◦ (�ψ)!,

and thus, the situation reduces to that on X I ′.
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Thus, it is sufficient to show that (5.1) becomes a homotopy equivalence after
applying the functor j (idI )

∗◦j (π)∗. However, in this case, the left-hand side becomes
j (idI )

∗ ((�I )!(B)
)
, while the right-hand side becomes

j (idI )
∗
(

�
j∈J
j (idI j )∗ ◦ j (idI j )

∗(�I j )!(B)
)

,

which by the assumption maps isomorphically to

j (idI )
∗
(

�
j∈J
j (idI j )∗ ◦ j (idI j )

∗
((
(�main)!(B)

)�I j ))

� j (idI )
∗
((
(�main)!(B)

)�I
)

.

Hence, the map in question becomes the map

j (idI )
∗ ((�I )!(B)

)
−→ j (idI )

∗
((
(�main)!(B)

)�I
)

,

i.e., the map (5.1) for π = idI .

5.2.3

The second observation needed for the proof of Theorem 5.2.1 is the canonical filtra-
tion on Cch(A) as an object of D(Ran X).

Let C be a stable symmetric monoidal category as in Sect. 3.2, and let L be
an object of Lie-alg(C). By the construction of the Chevalley complex, the object
oblvCom(C(L)) ∈ C carries a canonical filtration indexed by positive integers with
subquotients described as follows:

grk (C(L)) � Symk
C(oblvLie(L)[k]).

We will apply it to C = D(Ran X) equipped with the chiral symmetric monoidal
structure.

5.2.4

For future use, let us describe explicitly the object Symk,ch(M) ∈ D(Ran X) for
M ∈ D(Ran X):

For a finite set I , we have

(�I )!(Symk,ch(M)) �
(

⊕
π :I�{1,...,k}

j (π)∗ ◦ j (π)∗
(

�
j∈{1,...,k} (�

I j )!(M)
))

�k

.
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Let us consider two particular cases: For k = 1, we have

(�I )!(Sym1,ch(M)) � (�I )!(M).

Suppose now that M is supported on X ⊂ Ran X , i.e., if it is of the form M �
(�main)∗(MX ) for some MX ∈ D(X). We have that (�I )!(Symk,ch(M)) is zero unless
|I | = k, and for I with |I | = k

(�I )!(Symk,ch(M)) � j (idI )∗ ◦ j (idI )
∗(M�I

X ).

5.2.5 Proof of Theorem 5.2.1, the “if” direction

Let us first show that if A is supported on X , then Cch(A) factorizes. By Sect. 5.2.2,
we need to show that the map

j (idI )
∗ ((�I )!(Cch(A))

)
−→ j (idI )

∗
((
(�main)!(Cch(A))

)�I
)

(5.2)

is a homotopy equivalence.
Let us denote by AX the D-module on X such that A = (�main)∗(AX ). Consider

the canonical filtration on oblvch
Com(C

ch(A)) of Sect. 5.2.3.
We obtain that the functor j (idI )

∗ annihilates all grk
(
(�I )!(Cch(A))

)
except for

one with k = |I |, and in the latter case, we have

j (idI )
∗ (grk

(
(�I )!(Cch(A))

))
� j (idI )

∗(A�I
X [|I |]).

(In particular, for k = 1, the map AX [1] −→ (�main)!(Cch(A)) is a homotopy equiv-
alence.)

Under these identifications, the map of (5.2) becomes the map

j (idI )
∗ ((�I )!(Cch(A))

)
� j (idI )

∗ (grk
(
(�I )!(Cch(A))

))
� j (idI )

∗ (A�I
X [|I |]

)
.

�

5.2.6 Proof of Theorem 5.2.1, the “only if” direction

Let us now prove the implication in the opposite direction. Assume that A ∈ Lie-algch

(Ran X) is such that the underlying D-module is not supported on X . Let us show that
Cch(A) does not factorize.

By assumption, there exists a finite set I with |I | ≥ 2, such that j (idI )
∗ ((�I )!(A)

)

�= 0. Let us take I to be of minimal cardinality among such.
Consider the canonical filtration on (�I )!(Cch(A)) and the induced filtration on

j (idI )
∗ ((�I )!(Cch(A))

)
.
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By assumption, the only non-vanishing terms of j (idI )
∗ (grk

(
(�I )!(Cch(A))

))
occur

for k = 1 and k = |I | with the former being canonically isomorphic to j (idI )
∗((�I )!

(A)) and the latter to

j (idI )
∗
((
(�main)!(Cch(A))

)�I
)

.

The map (5.2) identifies with the map

j (idI )
∗ ((�I )!(Cch(A))

)
→ j (idI )

∗ (grk
(
(�I )!(Cch(A))

))
,

which is not a homotopy equivalence, since it annihilates the first term of the filtration.
�

6 Chiral envelopes of �-Lie algebras

6.1 The basic commutative diagram

6.1.1

By construction, we have a natural map ⊗� → ⊗ch between the two symmetric mo-
noidal structures on D(Ran X). More precisely, the identity functor on D(Ran X) is
a left lax symmetric monoidal structure, when viewed as a functor from D(Ran X)
equipped with the � symmetric monoidal structure to D(Ran X) equipped with the
chiral monoidal structure.

For an operad O (resp., cooperad P), we let oblvch→�
O (resp., oblv�→ch

P ) denote the
corresponding forgetful functors

O-algch(Ran X)→ O-alg�(Ran X) and P-coalg�(Ran X)→ P-coalgch(Ran X).

Both of these functors commute with the forgetful functors to D(Ran X).
In particular, we obtain a natural forgetful functor

oblvch→�
Lie : Lie-algch(Ran X)→ Lie-alg�(Ran X). (6.1)

The above functor is easily seen to commute with limits (since on both sides the
forgetful functor to D(Ran X) is conservative and commutes with limits). Since the
categories involved are presentable, we obtain that the functor in (6.1) admits a left
adjoint. We denote the resulting left adjoint functor

Lie-alg�(Ran X) −→ Lie -algch(Ran X),

by Ind�→ch
Lie .
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Our basic observation is the following:

Proposition 6.1.2 We have a commutative diagram of functors

Lie-algch(Ran X)
Cch−−−−→ Com-coalgch(Ran X)

Ind�→ch
Lie

�
⏐
⏐

�
⏐
⏐oblv�→ch

Com

Lie-alg�(Ran X)
C�−−−−→ Com-coalg�(Ran X)

(6.2)

6.2 Recollections on monads

For the proof of Proposition 6.1.2, we need to recall several facts about calculus of
monads. The general reference for this material is [17], Sect. 6.2.

6.2.1

Recall that for a category C, a monad M acting on C is, by definition, a unital associative
algebra in the monoidal category Funct(C, C) of endo-functors on C.

The monoidal category Funct(C, C) acts on C, so it makes sense to talk about
M-modules in C; we denote this category by ModM . We shall denote by oblvM the
forgetful functor ModM → C, and by IndM its left adjoint.

Let F : C → D (resp., G : D → C) be a functor. There is a natural notion of
right (resp., left) action of a monad M on F (resp., G): We view Funct(C,D) (resp.,
Funct(D, C)) as a right (resp., left) module over Funct(C, C).

If G is the right adjoint of F , then the data of action of M on F is equivalent to that
of action of M on G.

Moreover, a datum of action of M on G is equivalent to factoring G as a composition

D G ′→ ModM
oblvM−→ C.

Similarly, a datum of action of M on F is equivalent to factoring F as a composition

C IndM−→ ModM
F ′→ D.

6.2.2

For an adjoint pair

F : C � D : G

as above, there exists a universal monad on C that acts on F (or, equivalently, on G).
As a plain endo-functor on C, this monad is isomorphic to G ◦ F . Thus, we can view
this construction as endowing G ◦ F with a structure of monad.
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By the universal property, a datum of action of a monad M on F (resp., G) is
equivalent to that of homomorphism of monads M → G ◦ F .

By Sect. 6.2.1, the identity map on the monad G ◦F yields a canonical factorization
of the functor G as

D Genh−→ ModG◦F
oblvG◦F−→ C.

Thus, we can view the category ModG◦F as “the best approximation” to D from
the point of view of C.

For the sake of completeness, let us also mention that the Barr-Beck-Lurie theorem
gives a necessary and sufficient condition on the functor G, for the resulting functor
Genh to be an equivalence.

6.2.3

Let

F : C � D : G

be as above, and let MD be a monad on D. We can view the functor G ◦MD ◦ F as the
composition of IndMD ◦F with its right adjoint. Hence, the above procedure endows
G ◦ MD ◦ F with a structure of monad.

If MC is a monad on C, a datum of homomorphism MC → G◦MD ◦F is equivalent
to a datum of action of MC on the composition G ◦ oblvMD and hence to that of a
commutative diagram

ModMC
G M←−−−− ModMD

oblvMC

⏐
⏐
�

⏐
⏐
�oblvMD

C G←−−−− D.

(6.3)

Under such circumstances, we shall denote by IndF
M the left adjoint of G M , which

makes the following diagram commutative:

ModMC
IndF

M−−−−→ ModMD

IndMC

�
⏐
⏐

�
⏐
⏐IndMD

C F−−−−→ D.

6.2.4

The above facts render to the world of comonads by reversing the arrows.
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6.2.5

Let F : C � D : G,MC and MD be as above. Assume now that both MC and MD
are augmented, and assume that the datum of homomorphism MC → G ◦ MD ◦ F is
compatible with the augmentations. This equivalent to extending the diagram (6.3) to
a commutative diagram

C G←−−−− D
trivMC

⏐
⏐
�

⏐
⏐
�trivMD

ModMC
G M←−−−− ModMD

oblvMC

⏐
⏐
�

⏐
⏐
�oblvMD

C G←−−−− D,

(6.4)

where trivMC (resp., trivMD ) is the functor corresponding to the augmentation on MC
(resp., MD).

Let NC be the Koszul dual comonad, i.e., the one corresponding to the adjoint pair
of functors

BarMC : ModMC � C : trivMC .

By Sect. 6.2.2, the functor BarMC canonically factors as

ModMC
Barenh

MC−→ ComodNC
oblvNC−→ C,

and similarly for the monad MD acting on D.
We claim that we have a natural homomorphism of comonads F ◦ NC ◦G → ND.

Indeed, defining such homomorphism is equivalent to making the comonad ND coact
on the functor trivMC ◦G. However, the latter functor is isomorphic to G M ◦ trivMD ,
and trivMD is canonically coacted on by ND.

Thus, we obtain a commutative diagram of functors

ComodNC
FN−−−−→ ComodND

oblvNC

⏐
⏐
�

⏐
⏐
�oblvND

C F−−−−→ D.

In the above circumstances, we claim:



72 J. Francis, D. Gaitsgory

Lemma 6.2.6 The following diagram of functors canonically commutes:

ModMC
IndF

M−−−−→ ModMD

Barenh
MC

⏐
⏐
�

⏐
⏐
�Barenh

MD

ComodNC
FN−−−−→ ComodND .

Proof The diagram

ModMC
IndF

M−−−−→ ModMD

BarMC

⏐
⏐
�

⏐
⏐
�BarMD

C F−−−−→ D

(6.5)

naturally commutes, being obtained from the top square in (6.4), i.e.,

ModMC
G M←−−−− ModMD

trivMC

�
⏐
⏐

�
⏐
⏐trivMD

C ←−−−−
G

D.
(6.6)

by taking the left adjoints.
Thus, we need to show that the two coactions of ND on the resulting functor

ModMC → D

corresponding to the two circuits in the diagram (6.5) are homotopy equivalent. This
is, in turn, equivalent to showing that the the two coactions on the composed functor
D→ ModMC in (6.6) are homotopy equivalent. However, the latter follows from the
construction of the homomorphism of comonads F ◦ NC ◦ G → ND. �

6.2.7 Proof of Proposition 6.1.2

To prove Proposition 6.1.2, we apply Lemma 6.2.6 to C = D = D(Ran X) with MC
being the monad T�Lie and MD being the monad Tch

Lie, and F being the identity functor.
�
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6.3 Chiral homology of chiral envelopes

6.3.1

Let f : X → Y be a map of schemes. The presentation of D(Ran X) as in (2.3)
defines a functor

( f Ran)∗ : D(Ran X) −→ D(Ran Y ),

via ( f I )∗ : D(X I ) → D(Y I ) for I ∈ fSetsurj. The next lemma results from the
definitions:

Lemma 6.3.2 The functor ( f Ran)∗ has a natural symmetric monoidal functor with
respect to the � symmetric monoidal structure on D(Ran X) and D(Ran Y ).

6.3.3

Let us take in the previous setup Y = pt. We shall denote the resulting symmetric
monoidal functor D(Ran X)→ Vectk by

�DR (Ran X,−) .

Being symmetric monoidal, this functor gives rise to a functor

�DR (Ran X,−)O : O-alg(D(Ran X))→ O-alg(Vectk)

for any operad O and

�DR (Ran X,−)P : P-coalg(D(Ran X))→ P-coalg(Vectk)

for any cooperad P .

6.3.4

Let us recall from [1], Sect. 4.2, that the functor of chiral homology

∫

X

: Lie-algch(Ran X)→ Vectk

is by definition the composition

Lie-algch(Ran X)
Cch−→ Com-coalgch(Ran X)

oblvch
Com−→ D(Ran X)

�DR(Ran X,−)−→ Vectk .
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6.3.5

We shall now prove the following:

Proposition 6.3.6 The following diagram of functors

Lie-alg�(Ran X)
Ind�→ch

Lie−−−−→ Lie-algch(Ran X)

�DR(Ran X,)Lie

⏐
⏐
�

⏐
⏐
�

∫

X

Lie-alg(Vectk)
oblvCom ◦C−−−−−−→ Vectk

is canonically commutative.

Proof First, applying Proposition 6.1.2, we rewrite the composition

Lie-alg�(Ran X)
Ind�→ch

Lie−→ Lie-algch(Ran X)

∫

X−→ Vectk

as

Lie-alg�(Ran X)
C�−→ Com-coalg�(D(Ran X))

oblv�Com−→ D(Ran X)
�DR(Ran X,−)→ Vectk,

and further as

Lie-alg�(Ran X)
C�−→ Com-coalg�(D(Ran X))

�DR(Ran X,−)Com−→ Com-coalg(Vectk)oblvCom −→ Vectk .

Hence, to prove the proposition, it suffices to show that the following diagram of
functors is commutative:

Lie-alg�(Ran X)
C�−−−−→ Com-coalg�(D(Ran X))

�DR(Ran X,−)Lie

⏐
⏐
�

⏐
⏐
��DR(Ran X,−)Com

Lie-alg(Vectk)
C−−−−→ Com-coalg(Vectk).

However, this follows from Lemma 6.2.6:
We apply this lemma to C = D(Ran X),D = Vectk,MC = T�Lie,MD = TLie, and

F = �DR (Ran X,−). Note that the functor IndF
M of Lemma 6.2.6 is isomorphic in

our case to just �DR(Ran X,−)Lie, since �DR(Ran X,−) is monoidal and not just left
lax monoidal. �
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6.4 Chiral envelopes and factorization

6.4.1

Our current goal is to prove the following:

Theorem 6.4.2 The functor Ind�→ch
Lie sends the subcategory

Lie-alg�(X) ⊂ Lie-alg�(Ran X)

to the subcategory

Lie-algch(X) ⊂ Lie-algch(Ran X).

Before we prove Theorem 6.4.2, let us derive some corollaries:

Corollary 6.4.3 The resulting functor

Ind�→ch
Lie : Lie-alg�(X)→ Lie-algch(X) (6.7)

is the left adjoint of the forgetful functor

Lie-alg�(X)← Lie-algch(X) : oblvch→�
Lie .

We shall sometimes use the notation U ch for the functor in (6.7). This is the higher-
dimensional and derived version of the chiral enveloping functor of [1], Sect. 3.7.

From Proposition 6.3.6 we obtain:

Corollary 6.4.4 For L ∈ Lie-alg�(X) there exists a canonical homotopy equivalence

∫

X

U ch(L) � oblvCom ◦C (�DR(Ran X, L)Lie) .

Remark 6.4.5 In the situation of the above corollary, let L X be the D-module on X ,
such that

(�main)∗(L X ) � oblv�Lie(L).

Note that

oblvLie (�DR(Ran X, L)Lie) � �DR(X, L X ),

which gives the object �DR(X, L X ) ∈ Vectk a canonical Lie algebra structure. Thus,
Corollary 6.4.4 gives a conceptual proof of (a generalization of) a theorem from [1],
Sect. 4.8.1 that computes the chiral homology of chiral envelopes of �-Lie algebras.
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Remark 6.4.6 The actual theorem of [1] is slightly different from ours. Namely, in
loc.cit., one considers the unital version of U ch(L) and proves the result about its
chiral homology. Thus, in order to obtain their formulation, one needs to complement
Corollary 6.4.4 by one more theorem that shows that chiral homology of a non-unital
chiral Lie algebra A differs from the chiral homology of the corresponding unital
chiral Lie algebra by a copy of the ground field k, provided that X is connected; see
loc.cit., Proposition 4.4.8.

Remark 6.4.7 Note that Theorem 6.4.2 allows to construct non-commutative chiral
Lie algebras on X , for X of any dimension: start with a �-Lie algebra L and take
U ch(L).

For example, let L ′ be a Lie algebra in Vectk . Then, the D-module L := L ′ on X ,
corresponding to the “constant sheaf” with fiber L ′, is naturally a �-Lie algebra on X .
Thus, for any L ′ as above, we can produce the chiral Lie algebra U ch(L ′).

As another example, we can take L = L ′ ⊗ DX , where DX ∈ D(X) is the ring of
differential operators. The structure of �-Lie algebra on L ′ ⊗ DX is defined as in [1],
Example 2.5.6(b)(ii). Or we can consider L = �X ⊗OX

DX , where�X is the algebroid

of vector fields on X , see [1], Example 2.5.6(b)(i).9

Note, however, that by Remark 6.5.4, unless dim(X) = 1, if we start with L which
lies in the heart of the natural t-structure on X and is flat as a quasi-coherent sheaf,
the chiral Lie algebra U ch(L) considered as a D-module on X , will not lie in the heart
of the t-structure. This is closely analogous to the topological setting: For n ≥ 2, any
En-algebra over a field of characteristic zero that lies in the heart of the t-structure on
chain complexes (i.e., is discrete) has a commutative algebra structure.

By the same remark, if we want to obtain U ch(L), which up to a cohomological
shift lies in the heart of the t-structure, we typically need to start with L , such that
L[1−dim(X)] lies in the heart of the t-structure. However, the �-Lie algebra structure
on such L is automatically trivial, unless dim(X) = 1. Likewise, in the topologi-
cal setting, the En-enveloping algebra of a Lie algebra never lies in the heart of the
t-structure, for n ≥ 2.

To summarize: In higher dimensions, it is difficult to produce non-commutative
chiral Lie algebras that lie in the heart of the t-structure on D(X).

6.4.8

For the proof of Theorem 6.4.2, let us recall the setting of Sect. 5.2.3. We shall need one
more property of this construction, which we shall state in a form which is somewhat
crude, but will suffice for our purposes.

Let C and L be as in Sect. 5.2.3. For a positive integer k, let C(L)≤k denote the
corresponding term of the filtration on oblvCom(C(L)). We claim that the coalgebra
structure on C(L) is compatible with the filtration in the following weak sense:

9 The question of constructing central extensions of these examples à la Kac-Moody or Virasoro is much
more subtle.
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For positive integers k and n and a partition k = k1 + · · · + kn , we have a map

C(L)≤k → C(L)≤k1 ⊗ · · · ⊗ C(L)≤kn ,

satisfying the natural associativity property. For k′ ≥ k and k′i ≥ ki , i = 1, . . . , n, the
diagram

C(L)≤k −−−−→ C(L)≤k1 ⊗ · · · ⊗ C(L)≤kn
⏐
⏐
�

⏐
⏐
�

C(L)≤k′ −−−−→ C(L)≤k′1 ⊗ · · · ⊗ C(L)≤k′n

is commutative, and the diagram

C(L)≤k −−−−→ C(L)≤k1 ⊗ · · · ⊗ C(L)≤kn
⏐
⏐
�

⏐
⏐
�

oblvCom(C(L)) −−−−→ oblvCom(C(L))⊗ · · · ⊗ oblvCom(C(L))

is commutative as well. In particular, for k and n as above, we obtain the maps

grk(C(L))→ grk1(C(L))⊗ · · · ⊗ grkn (C(L)), (6.8)

that also have the natural associativity property.
The final property that we need is the following:
Recall the identification

grk(C(L)) � Symk
C(L) � grk(C(L triv)),

where L triv := trivLie ◦ oblvLie(L). We obtain that the diagrams

grk(C(L)) −−−−→ grk1(C(L))⊗ . . .⊗ grkn (C(L))
�
⏐
⏐

�
⏐
⏐

grk(C(L triv)) −−−−→ grk1(C(L triv))⊗ . . .⊗ grkn (C(L triv))

(6.9)

commute, where in the upper horizontal row, we use the map (6.8), and in the lower
horizontal row, the map is (6.8) for L triv.

6.4.9 Proof of Theoem 6.4.2

By Theorem 5.2.1, it suffices to show that for L ∈ Lie-alg�(Ran X)

B := Cch(Ind�→ch
Lie (L)) ∈ Com-coalgch(Ran X)
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factorizes. We will use the discussion in Sect. 5.2.2 and show that for every finite set
I the corresponding map

j (idI )
∗ ((�I )!(B)

)
→ j (idI )

∗
((
(�main)!(B)

)�I
)

(6.10)

is a homotopy equivalence in D(U (idI )).
By Proposition 6.1.2, we have:

B � oblv�→ch
Com (C�(L)).

Consider now the filtration on both sides of (6.10) given by the filtration on

oblv�Com(C
�(L))

as in Sect. 6.4.8.
We obtain that it is sufficient to show that the maps

gr•(B)→⊗
I

� gr•(B)

of (6.8) become homotopy equivalences after applying j (idI )
∗ ◦ (�I )!. However,

(6.9) allows to reduce the latter assertion to the case when L has the trivial Lie algebra
structure.

Thus, we have to show that for M ∈ D(Ran X) of the form (�main)∗(MX ), and the
coalgebra

B := Sym•,�(M),

the maps (6.10) are homotopy equivalences.
However, it is easy to see that

j (idI )
∗ ◦ (�I )!

(
Symn,�(M)

) � ⊕
n=�

i∈I
ni

j (idI )
∗
(

�
i

Symni ,!(MX )

)

,

where Symni ,!(MX ) denotes the corresponding symmetric power taken in category
D(X), with respect to the symmetric monoidal structure given by tensor product (see
Sect. 1.4.7). This makes the homotopy equivalence (6.10) for Sym•,�(M)manifest. �

6.5 The Poincaré-Birkhoff-Witt theorem

6.5.1

We shall now use Theorem 6.4.2 and Proposition 6.1.2 to prove a generalized version
of the PBW theorem of chiral universal enveloping algebras, stated in the original
form as Theorem 3.7.14 of [1].
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Thus, let L be a �-Lie algebra on X , and let U ch(L) ∈ Lie-algch(X) be its chiral
universal enveloping algebra. Let U ch(L)X denote the corresponding object of D(X).

By Theorem 6.4.2 and Proposition 6.1.2, we have a homotopy equivalence of
D-modules on X :

U ch(L)X � (�main)!
(
oblv�Com(C

�(L))
) [−1].

The filtration of Sect. 5.2.3 on oblv�Com(C
�(L)) defines a filtration on U ch(L)X .

Corollary 6.5.2 The associated graded gr•(U ch(L)X ) is canonically isomorphic to

Sym•,!(L X [1])[−1],

where (�main)∗(L X ) � L.

6.5.3 Proof of Corollary 6.5.2

The proof follows immediately from the homotopy equivalences

gr•
(
oblv�Com(C

�(L))
) � Sym•,�(L[1]),

and for M = (�main)∗(MX ),

(�main)!
(
Sym•,�(M)

) � Sym•,!(MX ).

�

Remark 6.5.4 Assume that X is smooth of dimension d, and L is such that L[1−d] lies
in the heart of the natural t-structure on X , and is flat as a quasi-coherent sheaf. Then,
Corollary 6.5.2 implies that U ch(L)X [1− d] also lies in the heart of the t-structure.

6.6 �-Factorization coalgebras

6.6.1

Let us denote by Fact�(X) the full subcategory of Com-coalg�(Ran X) equal to the
preimage under

oblv�→ch
Com : Com-coalg�(Ran X)→ Com-coalgch(Ran X)

of the full subcategory Fact(X) ⊂ Com-coalgch(Ran X).
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We can encode Theorems 1.2.4 and 6.4.2 and Proposition 6.1.2 as the following
commutative diagram:

Lie-algch(X)

∼

		
�� �� Lie-algch(Ran X)

∼
Cch

�� Com-coalgch(Ran X) Fact(X)��
��

Lie-alg�(X)
		

U ch

��

�� �� Lie-alg�(Ran X)

Ind�→ch
Lie

��

C�
�� Com-coalg�(Ran X)

oblv�→ch
Com

��

Fact�(X)

oblv�→ch
Com

��

��
��

6.6.2

Note that, unlike Cch, the functor

C� : Lie-alg�(Ran X)→ Com-coalg�(Ran X)

is not an equivalence, since the category D(Ran X) equipped with the � symmetric
monoidal functor is not pro-nilpotent. For instance, for X = (pt) := Spec k, the above
functor is the usual functor

C : Lie-alg(Vectk)→ Com-coalg(Vectk),

which is not an equivalence (since we include no nilpotence hypotheses on the alge-
bras).

This example embeds into the case of any X by choosing a k-point x ∈ X and thus
realizing Vectk � D(Ran(pt)) as a full subcategory of D(Ran X).

7 Chiral and factorization modules

7.1 Modules for algebras over an operad

7.1.1

We return to the setting of Sect. 3.2. Let M be a module ∞-category for C. That
is, M is a C-module in the symmetric monoidal (∞, 1)-category of X -modules in
∞-Catst

pres,cont.
We can consider M × C as another symmetric monoidal ∞-category, where the

monoidal operation on M× 0C is zero. Let

p :M× C −→ C, (m × c)� c

denote the tautological homomorphism.
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Definition 7.1.2 The∞-category ModA(M) is the fiber of the functor

p : O-alg(M× C) −→ O-alg(C)

over A.

The natural forgetful functor

oblvA : ModA(M) −→M× C −→M

admits a left adjoint, denoted FreeA. The composition

TA := FreeA ◦ oblvA :M −→M

is naturally a monad on M, and by the Barr-Beck-Lurie theorem ModA(M) �
ModTA (M).

Similarly, for a cooperad P and B ∈ P-coalgnil
d.p.(C), we introduce an∞-category

Comodnil
B (M),

endowed with a forgetful functor oblvB : Comodnil
B (M)→M, which admits a right

adjoint

coFreeB :M→ Comodnil
B (M),

so that

Comodnil
B (M) � ComodSB (M),

where SB := oblvB ◦ coFreeB .
It is easy to see from the construction that the ∞-categories ModA(M) and

Comodnil
B (M) are stable.

7.1.3

Let O and A be as above. Set O∨ := Bar(O) and A∨ := Barenh
O (A). We have a

tautological functor

trivA :M −→ ModA(M),

which commutes with limits and colimits. We denote by

BarA : ModA(M) −→M

the left adjoint of trivA.
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Lemma 7.1.4 The comonad BarA ◦ trivA : M → M is canonically equivalent to
SA∨ .

Hence, the functor BarA canonically upgrades to a functor

Barenh
A : ModA(M) −→ Comodnil

A∨(M), (7.1)

such that

BarA � oblvA∨ ◦Barenh
A ,

where oblvA∨ : Comodnil
A∨(M)→M is the forgetful functor.

Definition 7.1.5 We shall say that a C-module M is pro-nilpotent if M can be exhib-
ited as

M � lim
Nop

Mi

(where the limit is taken in the (∞, 1)-category of C-modules), such that

• M0 = 0;
• For every i ≥ j , the transition functor fi, j :Mi →M j commutes with limits;
• For every i , the restriction of the action functor C⊗Mi →Mi to C⊗ ker( fi,i−1)

is null-homotopic.

As in Proposition 4.1.2 one proves:

Proposition 7.1.6 Let O ∈ Op(X ) be an operad, and A ∈ O-alg(C) an O-algebra
in C, such that the adjunction A → CobarO∨(A∨) is a homotopy equivalence. Then
for a pro-nilpotent C-module M, the functor (7.1)

Barenh
A : ModA(M) −→ Comodnil

A∨(M)

is an equivalence.

7.1.7

Let us take X = Vectk , where char(k) = 0, and O = Lie. From Proposition 7.1.6 and
considerations analogous to those in Sect. 4.2, we obtain:

Corollary 7.1.8 Let C be pro-nilpotent, and let M be a pro-nilpotent C-module. Then
for L ∈ Lie -alg(C) and B := L∨ ∈ Com-coalg(C), the homological Chevalley
complex functor

CL : ModL(M) −→ ComodB(M)

is an equivalence of∞-categories.
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7.2 Chiral and � actions

Let us take C to be D(Ran X) with either the � or the chiral symmetric monoidal
structures. We shall now recall a class of D(Ran X)-module ∞-categories for both
structures. These categories we first introduced in [22].

7.2.1

Let I0 be a fixed finite set. Let fSetsurj
I0

be the category of finite sets I equipped with
an arbitrary map π0 : I0 → I , where the morphisms are maps under I0 that are
surjective.

As in Sect. 2.1, for a separated scheme X , we consider the functor

X
(fSetsurj

I0
)op −→ Sch : (I, π0 : I0 → I )� X I

and the corresponding functor

D!(X (fSetsurj
I0
)op
) : fSetsurj

I0
−→∞-Catst

pres,cont . (7.2)

Definition 7.2.2 The ∞-category D(RanI0 X) is the limit of the functor in (7.2) in
∞-Catst

pres,cont.

For (I, π0 : I0 → I ) we let (�I
I0
)! denote the tautological evaluation functor

D(RanI0 X) −→ D(X I ).

For I = I0 and π0 = id, we will shall also use the notation (�main
I0

)!.
As in Sect. 2.1, we have a canonical equivalence

D(RanI0 X) � colim
(fSetsurj

I0
)op

D∗(X fSetsurj
I0 ). (7.3)

For (I, π0 : I0 → I ), we let (�I
I0
)∗ denote the resulting functor D(RanI0 X) →

D(X I ), which is easily seen to be the left adjoint of (�I
I0
)!.

For I = I0 and π0 = id, we will shall also use the notation (�main
I0

)∗. It is easy to
see that the adjunction map

Id −→ (�main
I0

)! ◦ (�main
I0

)∗

is a homotopy equivalence, i.e., the functor (�main
I0

)∗ is fully faithful.

Definition 7.2.3 We shall say that an object of D(RanI0 X) is supported on X I0 if it
lies in the essential image of (�main

I0
)∗.
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7.2.4

We shall now introduce the actions of D(Ran X) on D(RanI0 X) in the � and chiral
contexts. We shall define the corresponding functors

D(Ran X)⊗J ⊗D(RanI0 X) −→ D(RanI0 X) (7.4)

in both contexts, in the style of Sect. 2.3. Upgrading them to the actual datum of action
is done as in Sect. 2.2.

Using (2.3) and (7.3), to define a functor as in (7.4), it suffices to define a functor

m J,I0 : (fSetsurj)op × · · · × (fSetsurj)op
︸ ︷︷ ︸

J

× (fSetsurj
I0
)op −→ (fSetsurj

I0
)op

and a natural transformation between the resulting two functors

(fSetsurj)op × · · · × (fSetsurj)op
︸ ︷︷ ︸

J

× (fSetsurj
I0
)op ⇒∞-Catst

pres :
(

(IJ , I0→ I ′)� (
j∈J
⊗D(X I j ))⊗D(X I ′)

)

⇒
(
(IJ , I0→ I ′)�D(Xm J,I0 (IJ ,I0→I ′))

)
.

(7.5)

Here, IJ has the same meaning as in Sect. 2.2.3, and I0 → I ′ is an object of fSet I0 .

7.2.5

In both cases, we set

m J,I0(IJ , I0 → I ′) := I  I ′,

where I := 
j∈J

I j , with the map

I0 → I ′ ↪→ I  I ′.

We let π denote the map I � J as in Sect. 2.2. Let πI0 denote the map I  I ′ → J pt
that sends I ′ to pt.

For the � action, we define the functor of (7.5) to be the external tensor product

(
M I j ∈ D(X I j ), M I ′ ∈ D(X I ′)

)

�
(

(�
j

M I j )� M I ′ ∈ D(X II ′)

)

.
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For the chiral action, we let the natural transformation (7.5) to be

(
M I j ∈D(X I j ), M I ′ ∈D(X I ′)

)
�

(

j (πI0)∗ ◦ j (πI0)
∗((�

j
M I j )� M I ′)∈D(X II ′)

)

.

7.2.6

As in Lemma 2.3.4, for M j ∈ D(Ran X), j ∈ J and M ′ ∈ D(RanI0 X), we have an
explicit description of the object

(⊗ch

j∈J
M j )⊗ch M ′ ∈ D(RanI0 X).

Namely, for (I, π0 : I0 → I ) ∈ fSet I0 , we have a canonical homotopy equivalence

(�I
I0
)!

(

(⊗ch

j∈J
M j )⊗ch M ′

)

� ⊕
πpt
j (πpt)∗ ◦ j (πpt)

∗

(

( �
j∈J

(�I j )!(M j ))� (�I ′
I0
)!(M ′)

)

, (7.6)

where the direct sum is taken over the set of all surjections πpt : I → J  pt, such
that πpt ◦ π0 sends I0 → pt ∈ J  pt, and where I ′ ⊂ I equals (πpt)

−1(pt).
As in Sect. 5.1, the homotopy equivalence (7.6) implies that the chiral action of

D(Ran X) on the module category D(RanI0 X) is nilpotent.

7.3 Chiral and factorization modules

7.3.1

For A ∈ Lie-algch(Ran X), we let Modch
A (RanI0 X) denote the resulting∞-category

of modules in D(RanI0 X). We call its objects chiral A-modules on RanI0 X .
We shall denote by Modch

A (X
I0) ⊂ Modch

A (RanI0 X) the full subcategory spanned
by objects supported on X I0 . We shall call its objects chiral A-modules on X I0 .

Similarly, given B ∈ Com-coalg(RanX ), let Comodch
B (RanI0 X) denote the∞-cat-

egory of B-comodules in D(RanI0 X). We shall call its objects chiral B-comodules
on RanI0 X .

From Theorem 5.1.1 and Corollary 7.1.8, we obtain:

Corollary 7.3.2 For any A ∈ Lie-algch(Ran X), the functor

Cch
A : Modch

A (RanI0 X) −→ Comodch
Cch(A)

(RanI0 X)

is an equivalence.
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7.3.3

Let B be an object of Com-coalgch(Ran X), and let N be an object of Comodch
B (RanI0

X).
For an object (I, π0 : I0 → I ) ∈ fSet I0 and a map πpt : I → J  pt, from (7.6),

we obtain a map

(�I
I0
)!(N ) −→ j (πpt)∗ ◦ j (πpt)

∗
(

( �
j∈J

(�I j )!(B))� (�I ′
I0
)!(N )

)

,

and by adjunction a map

j (πpt)
∗ ((�I

I0
)!(N )

)
−→ j (πpt)

∗
(

( �
j∈J

(�I j )!(B))� (�I ′
I0
)!(N )

)

. (7.7)

Assume now that B is a factorization coalgebra.

Definition 7.3.4 N is a factorization B-comodule if, for every (I, π0 : I0 → I ) and
a map πpt : I → J  pt as above, the map in (7.7) is a homotopy equivalence.

We let ComodFact
B (RanI0 X) denote the full subcategory of ComodB(RanI0 X)

spanned by factorization modules.
As in Sect. 5.2, one shows:

Corollary 7.3.5 Let A be a chiral Lie algebra on X. The equivalence of Corollary
7.3.2 induces an equivalence between the subcategory ModA(X I0) of ModA(RanI0 X)
spanned by modules supported on X I0 , and the subcategory of factorization Cch(A)-
comodules:

ModA(X
I0) � ComodFact

Cch(A)
(RanI0 X).
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