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Abstract We study higher-order conservation laws of the nonlinearizable elliptic
Poisson equation as elements of the characteristic cohomology of the associated exte-
rior differential system. The theory of characteristic cohomology determines a normal
form for differentiated conservation laws by realizing them as elements of the kernel
of a linear differential operator. We show that the S

1-symmetry of the PDE leads to
a normal form for the undifferentiated conservation laws. Zhiber and Shabat (in Sov
Phys Dokl Akad 24(8):607–609, 1979) determine which potentials of nonlinearizable
Poisson equations admit nontrivial Lie–Bäcklund transformations. In the case that
such transformations exist, they introduce a pseudo-differential operator that can be
used to generate infinitely many such transformations. We obtain similar results using
the theory of characteristic cohomology: we show that for higher-order conservation
laws to exist, it is necessary that the potential satisfies a linear second-order ODE.
In this case, at most two new conservation laws in normal form appear at each even
prolongation. By using a recursion motivated by Killing fields, we show that, for
the simplest class of potentials, this upper bound is attained. The recursion circum-
vents the use of pseudo-differential operators. We relate higher-order conservation
laws to generalized symmetries of the exterior differential system by identifying their
generating functions. This Noether correspondence provides the connection between
conservation laws and the canonical Jacobi fields of Pinkall and Sterling.
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1 Introduction

A select set of elliptic Poisson equations

∂2u

∂z∂ z̄
= − f (u), (1)

where u : C→ R, is central in the study of submanifold geometries: When

f (u) =

⎧
⎪⎨

⎪⎩

− (ε+δ2)
4 sinh(2u) if ε + δ2 > 0

− (ε+δ2)
4 cosh(2u) if ε + δ2 < 0

e−2u if ε + δ2 = 0

(2)

then Eq. (1) arises as the Gauss equation for a surface of constant mean curvature−2δ
in a three-dimensional space form of constant sectional curvature ε. When

f (u) = e−2u − eu,

Eq. (1) is the Gauss equation for a special Legendrian surface in S
5. In all of these

cases, the metric on the surface is locally given by e2udz ◦dz̄. Once one has a solution
u(z, z̄) of Eq. (1), the map of the surface into the space form can be recovered by solv-
ing a system of ODE. It is also well known that the hyperbolic equation uxt = sin(u),
where x, t are coordinates on R

2, is the Gauss equation for surfaces in R
3 with Gauss

curvature equal to −1.
For all of the potentials f (u) listed above, Eq. (1) is often referred to as a soliton

equation or integrable system and is known to have many special properties, includ-
ing a loop-group formulation, infinitely many conserved quantities, and a description
of solutions using algebraic geometry (the spectral curve). The literature on soliton
equations is fascinating but also sprawling and tangled.

Integrable systems of the form in Eq. (1) underlie the simplest cases of primitive
maps from Riemann surfaces into k-symmetric spaces [10]. For this perspective, the
reader might consult the articles by Uhlenbeck [39], Pinkall and Sterling [33], Hitchin
[25], Bobenko [1], Burstall [11], Bolton et al. [2], Dai and Terng [15], McIntosh [29],
and the references within. Hyperbolic equations of the form utx = f (u) fit into the
hierarchies developed by Terng and Uhlenbeck [37,38]. All of these references use the
fact that soliton equations can be phrased in terms of flat connections on a Riemann
surface.

A markedly different approach using recursion operators was initiated by Lenard
(a private communication cited in [20]) and Olver [31,32] and later developed and
formalized by, for example, Guthrie [23], Dorfman [17], and Sanders and Wang [34].

Yet another approach to investigating integrable systems is through the theory of
characteristic cohomology developed by Bryant and Griffiths [4]. They cite Vinogra-
dov (see the references in [4]) as their main influence, but the theory of characteristic
cohomology, and in particular its formulation in the special case of Euler–Lagrange
systems, is also closely related to the work of Shadwick using the Hamilton–Cartan
formalism ([35] and the references within) and the work of Olver [32].



Higher-order conservation laws 797

Thus far, the theory of characteristic cohomology has mostly been used as a method
for classifying partial differential equations, or more generally, exterior differential
systems (EDS). In [4,5,7,8,13,14,40], scalar parabolic and hyperbolic PDE for 2 and
3 independent variables are studied (using the method of equivalence and the char-
acteristic cohomology) in terms of the dimension of the space of conservation laws.
Bryant, Griffiths, and Hsu [4,7–9] make many interesting suggestions for other ways
in which it might be used, including, for example, to study boundaries of integral
manifolds and to study singularities. Motivated by this, the first author introduced an
elementary approach to studying boundaries of integral manifolds using conservation
laws in [19].

The references to the literature given above are by no means exhaustive or even
representative. They were highlighted to give examples of other approaches that turn
out to have close links to the theory of characteristic cohomology. It is not clear, for
example, how the existence of hydrodynamic reductions (see [18] and the references
within) relate to the existence of conservation laws. No doubt there are many more
approaches and many more connections to be made between the various techniques
in the literature.

In [6] (Proposition 4.6), it is shown that the nonlinear Poisson equation�u = f (u),
where u : Rn → R and � is the Laplacian, admits no nonclassical conservation laws
if n ≥ 3 and fuu �= 0. On the other hand, the class of equations �u = f (u) with
n = 2 and u and f (u) vector valued encompass the Toda equations, which are known
to be integrable [2]. It does not appear to be known whether higher-order conservation
laws exist for the nonlinear Poisson equation when n ≥ 3 and u and f (u) are vector
valued.

In this article, we study the (possibly infinite-dimensional) space of conservation
laws of Eq. (1) using the characteristic cohomology. We show that for there to exist
higher-order conservation laws, it is necessary that f satisfies a linear second-order
ODE. In [42], Zhiber and Shabat reach the same classification by looking for Lie–
Bäcklund transformations. We give a complete and explicit description of the conser-
vation laws in terms of the characteristic cohomology in the case that fuu = β f and f
does not satisfy a linear ODE. A forthcoming article by the first author completes the
description for the case that fuu = α fu + 2α2 f , which corresponds to the Tzitzeica
equation. We find that in this case the conservation laws for Eq. (1) are equivalent to
those studied by Olver in the hyperbolic case [31], though his characterization is not
complete because he does not prove that the necessary recursion operator is always
well defined, nor does he prove that the method would produce the complete set of
conservation laws. The generating functions for the conservation laws are equivalent
to the integrals in [42]. There is also some overlap with the work of Dodd and Bullough
[16], though they also do not address the issue of completeness.

The conservation laws turn out to be equivalent to the canonical Jacobi fields of
[33] and thus to the formal Killing fields of [12]. This is not surprising given the
Noether correspondence between generalized symmetries and conservation laws (see
Sect. 10). In a future article, we will describe how the characteristic cohomology can
be used to recapture the notion of finite type solutions [12,33]. We will also elaborate
on the relationship between conservation laws and formal/polynomial Killing fields
for primitive map systems.
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We conclude this section with a sketch of the remainder of the article. In Sect. 2, we
reformulate Eq. (1) as an exterior differential system, Eq. (3), and present the structure
equations for the kth-prolongation (M (k), I(k)), allowing k = ∞. An S

1-symmetry of
the PDE leads to an S

1-symmetry of (M (k), I(k)) and to the notion of weighted degree
for functions and differential forms. We also introduce an almost complex structure J
on a codimension-one subbundle of T ∗M (k) which leads to ∂ and ∂ operators.

In Sect. 3, we present the basic definition of classical and higher-order conservation
laws for an EDS, in both their differentiated and undifferentiated forms. The classical
conservation laws for Eq. (3) are presented in Sect. 4. In Sect. 5, we use the general
theory [4] to obtain the first approximation to the (differentiated) conservation laws. In
Sect. 6, we refine the first approximation, obtaining an exact formula for differentiated
conservation laws in normal form in terms of a generating function, which is a solu-
tion to an (overdetermined) system of linear PDE, Eqs. (13) and (14). Complicated
calculations that would be necessary to directly verify that this formula does in fact
convert solutions of Eqs. (13) and (14) into conservation laws (i.e. to show that the
thus defined differential forms are closed) are circumvented by studying (weighted)
homogeneous conservation laws in Sect. 7. The S

1-symmetry of the EDS allows one to
produce from the differentiated conservation laws a normal form for undifferentiated
conservation laws—something that has not appeared in the general theory but is likely
to be generally applicable to systems that have a gauge symmetry. See Sect. 11.

In Sect. 8, we use the normal form of undifferentiated conservation laws to show
that any solution to Eqs. (13) and (14) defines a nontrivial conservation law. Further-
more, we show that there is an at most one-dimensional complex space of solutions
of Eqs. (13) and (14) for each odd weighted degree, none of nonzero even weighted
degree, and that these solutions are either ‘holomorphic’ or ‘anti-holomorphic’ poly-

nomials in the derivatives ∂ i u
∂zi .

In Sect. 9, we investigate the space of solutions of Eqs. (13) and (14) under certain
assumptions on f . We prove that if f does not satisfy a linear second-order ODE,
no higher-order conservation laws exist. When fuu = β f and f does not satisfy any
first-order ODE, we prove the existence of the maximal possible number of generating
functions and hence determine the complete (infinite-dimensional) space of conser-
vation laws. We also provide examples of higher-order conservation laws for the case
when fuu = α fu + 2α2 f . In this case, a coordinate change of Eq. (1) transforms it to
the Tzitzeica equation uzz̄ = eu − e−2u .

In Sect. 10, we show that generalized symmetries of (M (∞), I(∞)) are determined
by generating functions that are solutions to Eq. (14), though they need not satisfy
Eq. (13). This leads to a limited version of Noether’s theorem that explains the rela-
tionship between conservation laws and the canonical Jacobi fields of Pinkall and
Sterling [33]. Section 11 contains some concluding remarks.

2 The EDS and its prolongations

To begin, we encode the PDE as an exterior differential system (EDS) with inde-
pendence condition. For a basic introduction to EDS, see [3] or [27]. Recall that an
exterior differential system consists of a smooth manifold M and a homogeneous
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differential ideal I ⊂⊕
p �

p(M,C). An integral manifold of (M, I) is an immersed
submanifold ι : N → M such that ι∗(I) = 0. If the ideal is generated by forms αi (and
their exterior derivatives since it is a differential ideal), we will write I = 〈αi 〉. For
any set of 1-forms βi ∈ �1(M,C), we use {βi } ⊂ �1(M,C) to denote the subbundle
they span. If α ∈ I is a complex valued differential form, then by ι∗(α) = 0 we mean
that both the real and imaginary parts pull back to the real manifold N to be zero.

In order to encode Eq. (1) as an EDS, let M = C×R×C have coordinates (z, u, u0)

and define the differential forms

ζ = dz

ω1 = du0 + f ζ̄

η0 = du − u0ζ − ū0ζ̄

ψ = Im(ζ ∧ω1) = −
√−1

2
(ζ ∧ω1 − ζ̄ ∧ ω̄1).

The reader may recognize M as the first jet space of maps u : C → R. The desired
differential ideal is I = 〈η0, ψ〉. We calculate that

dη0 = 2 Re(ζ ∧ω1) = ζ ∧ω1 + ζ̄ ∧ ω̄1

dψ = −√−1 fuη0 ∧ ζ ∧ ζ̄ .

Thus, the differential ideal can be expressed as

I = 〈η0, ζ ∧ω1〉.

One checks that a surface ι : C → M for which ι∗(ζ∧ζ̄ ) �= 0 and ι∗(η0) = 0 is the
1-jet of a function u : C→ R with u0 = ∂u

∂z and ū0 = ∂u
∂ z̄ . If in addition ι∗(ψ) = 0,

then the function u(z, z̄) is a solution to Eq. (1). Thus, solutions to Eq. (1) correspond
to integral surfaces (N , ι) such that ι∗(ζ∧ζ̄ ) �= 0.

The goal of this article is to study the conservation laws of the EDS

(M, I), where M = C
2 × R and I = 〈η0, ψ〉, (3)

and its prolongations. This EDS is involutive with Cartan characters s0 = 1, s1 = 2,
s2 = 0. Again, see [3,27] for the basics of EDS.

We outline the process of the first prolongation. For a general discussion of the
prolongation process, see [3] or [27]. We comment that for the system under study, all
of the integral elements are regular and so the process of prolongation is well defined.
However, we will define all of the higher prolongations explicitly and so the reader
need not be concerned about the general theory. We will restrict our attention to inte-
gral manifolds corresponding to solutions of Eq. (1). If ι : N → M is such an integral
manifold, then its tangent space at ι(n) is a real 2-plane ι∗(Tn N ) ⊂ Tι(n)M on which
the ideal pulls back to be zero and ι∗(ζ∧ζ̄ ) �= 0. Any real 2-plane E ⊂ Tι(n)M on
which ζ∧ζ̄ �= 0 is defined by relations
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η0|E = c1ζ + c1ζ̄

ω1|E = c2ζ + c3ζ̄

for some complex numbers c1, c2, c3. The ideal I = 〈η0, ζ∧ω1〉 vanishes on E if and
only if c1 = c3 = 0. Thus, the space of possible tangent planes to integral manifolds
is parametrized by one complex number, which we will call u1, via the conditions
η0|E = 0 and ω1|E = u1ζ .

Let M (1) = M ×C and let u1 be a holomorphic coordinate on C. Define the com-
plex one-form η1 = ω1 − u1ζ and the subbundle I(1) = {η0, η1, η̄1} ⊂ �1(M (1),C),
which generates a differential ideal I(1). The new system (M (1), I(1)) is the first pro-
longation of (M, I) with respect to the independence condition ζ∧ζ̄ �= 0. Thus, we
construct the prolongation by adjoining a new coordinate parametrizing the possible
tangent spaces to integral manifolds and introducing tautological 1-forms that vanish
on potential tangent planes to integral manifolds.

So what is the meaning of u1? It contains the new second-order information of
u(z, z̄): The vanishing of η0 = du − u0ζ − ū0ζ̄ implies that u0 = ∂u

∂z . The vanishing

of η1 = du0 − u1ζ + f ζ̄ implies that u1 = ∂u0
∂z and − f = ∂u0

∂ z̄ . The first tells us

that u1 = ∂2u
∂z2 , the new second derivative information on u, and the second of these

recaptures the PDE condition that was encoded in the vanishing of ψ .
Now using the fact that dη1 must vanish on solutions of (M (1), I(1)), one can find

the possible tangent planes of solutions of (M (1), I(1)) and in the same way as before
construct the second prolongation. Let M (k) denote the kth-prolongation. It is not hard
to see that M (k+1) = M (k)×C and we will always use uk+1 for the new holomorphic
coordinate on M (k+1). Furthermore, on a (real) two-dimensional integral manifold
ι : N → M for which ι∗(ζ∧ζ̄ ) �= 0,

ι∗(ui ) = ∂ i+1u

∂zi+1 .

By calculating the first few prolongations, one is motivated to define complex func-
tions and forms

ωi+1 = dui + T i ζ̄

T 0 = f η0 = du − u0ζ − ū0ζ̄

T i+1 =∑i
j=0

(i
j

)
ui− j T

j
u ηi+1 = ωi+1 − ui+1ζ

τ i =∑i
j=0

(i
j

)
T j

u ηi− j .

The real and imaginary parts of ζ, η0, . . . , ηk, ωk+1 form a coframe of M (k) and

I(k) = {η0, η1, η̄1, . . . , ηk, η̄k} ⊂ �1(M (k),C)

generates the ideal I(k). The vector fields on M (k) dual to this coframe are
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ek−1 = ∂
∂z + u0

∂
∂u +

∑k−1
i=0 ui+1

∂
∂ui
−∑k

i=0 T
i ∂
∂ ūi

ζ

e0 = ∂
∂u ←→ η0

ei = ∂
∂ui−1

i = 1 . . . k + 1 ηi (i = 1 . . . k), ωk+1

and their complex conjugates.1

To compute the structure equations, we will need

Lemma 2.1 For i, j ≥ 0, we have

1. T i = (ek−1)
i f for k ≥ i

2. T i+ j+1
u j = (i+ j+1

i

)
T i

u .

Proof We use induction and the binomial identity
(i−1

j

)+(i−1
j−1

) = (i
j

)
for both formu-

las. We illustrate the calculation for the second formula only, making use of the first
identity in the calculation. Suppose that the second formula holds for all n < i + 1
and all j . Then,

T i+ j+1
u j = e j+1ek−1T i+ j = (ek−1e j+1 + e j )T

i+ j

=
(

i + j

i − 1

)

ek−1T i−1
u +

(
i + j

i

)

T i
u =

(
i + j + 1

i

)

T i
u .

In the last equality, we used the fact that [ek−1, e0]T i−1 = 0 because [ek−1, e0] is in the
span of the ei , which annihilate T r for all r . ��

Thus, on an integral manifold T i = ∂ i f
∂zi . Using Lemma 2.1, it is not hard to compute

that

[ek−1, ek
−1
] = T

k+1
ek+1 − T k+1ek+1, (4)

which will be needed later.

Proposition 2.2 For 1 ≤ i ≤ k the following structure equations are satisfied on
M (k):

dT i ≡ T i+1ζ + τ i mod ζ̄

dζ = 0

dη0 = ζ ∧ η1 + ζ̄ ∧ η̄1

dωk+1 = τ k ∧ ζ̄ + T k+1ζ ∧ ζ̄
dηi = −ηi+1 ∧ ζ + τ i−1 ∧ ζ̄

1 Although the notation ek
0 and ek

i would be more correct because, for example, ek
0 and ek′

0 are vector
fields on different manifolds, we drop the indexing of the prolongation because the same formula holds

and there are natural inclusions and surjections between M(k) and M(k′) which identify the corresponding
vector fields. We leave the superscript on ek−1 because this vector field does change from prolongation to
prolongation.
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Proof The second and the third equation follows directly from the definitions and the
last two equations follow easily from the first. To prove the first equation, we calculate,
using Lemma 2.1 to differentiate T i :

dT i ≡ T i+1ζ +
i∑

j=0

T i
u j−1

η j ≡ T i+1ζ +
i∑

j=0

(
i

j

)

T i− j
u η j ≡ T i+1ζ + τ i ,

where all equivalences are modulo ζ̄ . ��
It will also be convenient to work on the infinite prolongation M (∞) (see Section

4.3.1 of [6]). The infinite-dimensional space M (∞) is the inverse limit of the sequence

{
· · · → M (k) πk→ M (k−1) πk−1→ · · · → M (1) π1→ M (0)

}
;

that is,

M (∞) =
{
(p0, p1, . . .) ∈ M (0) × M (1) × · · · : πk(pk) = pk−1 for each k ≥ 1

}
.

Let π(k) : M (∞)→ M (k) be the natural surjections

π(k)(p0, p1, . . .) = (p0, p1, . . . , pk).

A smooth function or differential form on M (∞) is given by the pullback via π(k) of a
corresponding object on some finite prolongation. On M (∞), the real and imaginary
parts of ζ, η0, η1, . . . form a coframe and the dual vector fields on M (∞) are the real
and imaginary parts of

e−1 = ∂
∂z + u0

∂
∂u +

∑∞
i=0 ui+1

∂
∂ui
−∑∞

i=0 T
i ∂
∂ ūi

ζ

e0 = ∂
∂u ↔ η0

ei = ∂
∂ui−1

i = 1 . . . k + 1 ηi (i = 1, 2, . . .)

The ideal is generated by the (formally Frobenius) subbundle

I(∞) = {η0, η1, η̄1, η2, η̄2, . . .}.

Note that if F ∈ �0(M (k),C), then π∗(k)(e
k−1 F) = e−1(π

∗
(k)(F)).

Thus far, we have calculated a coframe, its dual frame, and the structure equations
of an arbitrary prolongation of (M, I). We now turn to some of the special structures
on (M (k), I(k)) that arise due to the ellipticity and the S

1-symmetry.
The PDE Eq. (1) is invariant under the S

1-action (u, z, z̄)→ (u, λz, λz̄) (withλ ∈ C

and |λ| = 1). This leads to a symmetry of (M (k), I(k)), which yields a decomposition
of differential forms and thus conservation laws. To see this, let F : S1×M (k)→ M (k)

be defined as

F(λ, u, z, u j ) = (u, λ−1z, λ j+1u j ). (5)
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For p ≥ 0 and j ∈ Z, we define the spaces of differential forms of homogeneous
weighted degree j to be

�
p
j (M

(k)) =
{
ϕ ∈ �p(M (k),C) | F∗ϕ = λ jϕ

}
. (6)

For an element ϕ ∈ �p
j (M

(k),C), we write wd(ϕ) = j . Note that wd(ϕ) = −wd(ϕ).
This grading is preserved by exterior differentiation:

d : �p
j (M

(k))→ �
p+1
j (M (k)).

We will use the S
1-symmetry and grading in Sections 7 and 8. For later reference, we

note that

wd(z) = −1 wd(z̄) = 1
wd(u j ) = +( j + 1) wd(ū j ) = −( j + 1)
wd(u) = 0 wd(η0) = 0
wd(ζ ) = −1 wd(ζ̄ ) = 1
wd(ω j ) = + j wd(ω̄ j ) = − j
wd(η j ) = + j wd(η̄ j ) = − j.

The ellipticity of Eq. (1) leads us to the following

Definition 2.3 Define the subspaces �(1,0)(M (k)) = C · {ζ, η1, . . . , ηk, ωk+1} and
�(0,1)(M (k)) = C · {ζ̄ , η̄1, . . . , η̄k, ω̄k+1}, and in the standard way also�(p,q)(M (k)).
We define the operators ∂ : C∞(M (k),C)→ �(1,0)(M (k)) and ∂ : C∞(M (k),C)→
�(0,1)(M (k)) as

∂A = ek−1(A)ζ +
k∑

i=1

Aui−1ηi + Aukωk+1

∂A = ek
−1
(A)ζ̄ +

k∑

i=1

Aui−1 η̄i + Auk ω̄k+1,

allowing for k = ∞.

It will be convenient to use the following linear operator

J : �1(M (k))→ �1(M (k)),

which acts by
√−1 on �(1,0)(M (k)), by −√−1 on �(0,1)(M (k)), and as the identity

on R · η0. This is an almost complex structure on the annihilator of e0.

3 Conservation laws as elements of the characteristic cohomology

Let (M, I) be an involutive exterior differential system with maximal integral sub-
manifolds of dimension n and characteristic number l. The characteristic number is
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computed from I using linear algebra. See Section 4.2 of [4] for the definition. It is
1 for Eq. (3). Its characteristic cohomology is defined to be

H p
0 (M,�/I),

that is, the cohomology for the complex �/I with differential d : �p/(I ∩�p) →
�p+1/(I ∩�p+1) induced by the standard exterior derivative. The subscript 0 indi-
cates that we are working on the zeroth prolongation. We say that we are in the local
case if H p

d R(M,R) = 0 for p > 0. In [4], it is shown that in the local involutive case
H p

0 (M,�/I) = 0 for p < n − l. The first nontrivial group is of special interest.

Definition 3.1 The space of classical undifferentiated conservation laws for (M, I)
is Hn−l

0 (M,�/I).

Remark For the system Eq. (3), we have n = 2 and l = 1 so that the space of classical
undifferentiated conservation laws is H1

0 (M,�/I).

In addition to the quotient complex (�/I, d), we also have the subcomplex (I ∩
�p(M,R), d) and its cohomology H p

0 (M, I). To calculate the conservation laws in
the local case, one uses the isomorphism

Hn−l
0 (M,�/I) ∼= Hn−l+1

0 (M, I)

which follows from the long exact sequence in cohomology, which is induced by the
short exact sequence

0→ I → �→ �/I → 0

and the fact that H p(M,R) = 0 for p > 0.

Definition 3.2 The space of classical differentiated conservation laws for (M, I)
is Hn−l+1

0 (M, I).
As stated above, for the case at hand, l = 1. An element of Hn−l+1

0 (M, I) is a closed
(n − l + 1)-form in the ideal and we only care about it modulo d of (n − l)-forms
in the ideal. The characteristic cohomology machinery developed in [4] identifies the
space of conservation laws as the kernel of a linear differential operator (as opposed
to elements of a quotient space), much as one finds harmonic representatives of de
Rham classes in Hodge theory.

On (M (∞), I(∞)), one has the associated characteristic cohomology, which we
abbreviate as H̄ p := H p(M (∞), �/I). We continue to restrict to the local case,
H p(M (k),R) = 0 for k ≥ 0 and p > 0.

Definition 3.3 The space of higher-order undifferentiated conservation laws for
(M, I) is

H̄n−l := Hn−l(M (∞), �/I).
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The space of higher-order undifferentiated complex conservation laws for (M, I)
is

H̄n−l
C
:= Hn−l(M (∞), �C/IC),

where the subscript C denotes complexification.

Any element of H̄n−l is represented by an element of �n−l(M (∞),R) which, by
definition, is the pullback of an element in �n−l(M (k),R) under π(k) : M (∞) →
M (k) for some k. Again, we can study the conservation laws via the isomorphism
Hn−l(M (k), �/I) ∼= Hn−l+1(M (k), I(k)) because H p(M (k),R) = 0 for p > 0.

Definition 3.4 The space of higher-order differentiated conservation laws for
(M, I) is Hn−l+1(M (∞), I). The space of higher-order differentiated complex con-
servation laws for (M, I) is Hn−l+1(M (∞), IC).

Exterior differentiation provides isomorphisms

d : H̄n−l ∼=→ Hn−l+1(M (∞), I)
d : H̄n−l

C

∼=→ Hn−l+1(M (∞), IC)

in the local involutive case. We recall again that for the case at hand, l = 1.

4 Classical conservation laws

For the system in Eq. (3), the maximum integral manifolds are of dimension 2 and
the characteristic number is 1. In the notation of the last section, n = 2 and l = 1.
Thus, a classical differentiated conservation law is represented by a closed form in
I ∩�2(M,R). Any 2-form in I can be written as

�′ = ρ ∧ η0 + Aψ + Bdη0

for some 1-form ρ and functions A and B. This can be rewritten as

�′ = (ρ − dB) ∧ η0 + Aψ + d(Bη0).

As we are only interested in the class [�′] ∈ H2(M, I), we need only concern our-
selves with finding a 1-form ρ and a function A such that

� = ρ ∧ η0 + Aψ

is closed and � �= dα for α ∈ I. It is easy to check that for any � of the form given,
� �= d(gη0) for any function g. Examining η0∧d� = 0 uncovers that ρ ≡ − 1

2 JdA
mod η0. Then, considering the terms in d� = 0 that involve η0 uncovers the condition

1

2
dJdA −√−1 fu Aζ ∧ ζ̄ + Auψ ≡ 0 mod η0.
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By studying the coefficients of this vanishing 2-form, one can check that if one has
log( f )uu �= 0 and fuu �= 0, then the only conservation laws are given by setting

A = P + P

P = au0 +
√−1bzu0

where a ∈ C and b ∈ R are arbitrary constants.
In Sect. 7, we will introduce a systematic way of finding undifferentiated conserva-

tion laws from differentiated ones. It will fail only for the classical conservation laws
with a = 0 and b �= 0. For that reason, we present here the 1-form

ϕ0 = Gη0 + Eζ + E ζ̄ (7)

with G = −(zu0+ z̄ū0) and E = − 1
2 zu2

0+ z̄
∫

f . It satisfies dϕ0 = � when we take
P = √−1zu0 in the definition of �. Notice that ϕ0 is also an element of �1

0(M,R),
a fact used in Sect. 8.

In order to look for higher-order conservation laws—that is, conservation laws of
the prolonged system—we will make use of some spectral sequence machinery which
we now describe.

5 The first approximation of the characteristic cohomology

The material in this section is based on Sections 1.3, 2.1–2.4, and 5.1 of [4]. Let
(M (∞), I(∞)) be the infinite prolongation of an involutive EDS (M, I). Assume that
H p

d R(M
(k),R) = 0 for all p > 0 and for all k ≥ 0 so that we are in the local involutive

case. The system in Eq. (3) is in the local involutive case. Let �p = �p(M (∞),C)
and let I(∞) = I(∞)

C
∩�1(M (∞),C). Then, define

F p�q = Im{I(∞) ∧ . . . ∧ I(∞) ∧�q−p → �q}
�

p,q = F p�q/F p+1�q .

Let (E p,q
r , dr ) denote the spectral sequence associated with this filtration [22] whose

first two terms are

E p,q
0 = �p,q

E p,q
1 = H(E p,q

0 , d0) = {φ ∈ F p�q : dφ ∈ F p+1�q+1}
dF p�q−1 ⊕ F p+1�q

.

Notice that

Hq(�/I(∞), d) = E0,q
1 .
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We study this space indirectly using the spectral sequence (E p,q
r , dr ), which includes

the complex

0 �� E0,q
1

d1 �� E1,q+1
1

d1 �� E2,q+2
1 · · ·

From Equation (4) of Section 4.2 in [4], we know that this sequence is exact at E0,q
1

and E1,q+1
1 so that the characteristic cohomology Hq(�/I(∞), d) is isomorphic to

ker{d1 : E1,q+1
1 → E2,q+2

1 }.

A second spectral sequence allows one to obtain a first approximation to the kernel
of d1. For this, a weight filtration wt is introduced. This weighting system will not be
used after this section and is distinct from the notion of weighted degree (wd) defined
in Sect. 2 and used throughout the paper. While we refer the reader to Section 2.4 of
[4] for the definition of wt , we record here the properties needed to make the neces-
sary computations for Eq. (3). Let f �= 0 be a smooth function and ϕ and ψ smooth
differential forms. Then,

wt ( f ϕ) = wt (ϕ)

wt (ϕ ∧ψ) ≤ wt (ϕ)+ wt (ψ)

wt (ϕ + ψ) ≤ max(wt (ϕ),wt (ψ)).

The second spectral sequence is obtained from the following filtration:

Fk�
p,q = {φ ∈ �p,q : wt (φ) ≤ k} ⊂ �p,q

,

We denote the associated graded spaces as�
p,q
k := Fk�

p,q
/Fk−1�

p,q
. This quotient

complex has the associated cohomology groups

Hp,q
k = Hq(�

p,∗
k , δ),

where δ is the differential induced by exterior differentiation. For each fixed p > 0,
there is a spectral sequence {Ēk,q

r } associated with the weight filtration that converges
to E p,q

1 and which satisfies

Ēk,q
1 = Hp,q

k .

Thus computing Hp,q
k gives us a first approximation of the form of a conservation law.

The importance of this step is that δ is linear over functions and computing Hp,q
k is a

purely algebraic process depending only on the principal symbol of the EDS.
Now suppose that (M (∞), I(∞)) is the infinite prolongation of Eq. (3). Then, using

the definition of wt in Section 2.4 of [4], we obtain the following weighting system:

wt (ζ ) = wt (ζ̄ ) = −1 wt (η0) = 1 wt (η j ) = wt (η̄ j ) = j f or j > 0.
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To compute the necessary cohomology groups, we need the spaces

�
1,1
−1 = 0 �

1,2
−2 = 0

�
1,1
0 = 0 �

1,2
−1 = 0

�
1,1
1 = C · {η0, η1, η̄1} �1,2

0 = C · {η0∧ζ, η0∧ζ̄ , η1∧ζ, η1∧ζ̄ , η̄1∧ζ, η̄1∧ζ̄ }
�

1,1
j = C · {η j , η̄ j } �

1,2
j = C · {η j+1∧ζ, η j+1∧ζ̄ , η̄ j+1∧ζ, η̄ j+1∧ζ̄ } for j > 1

Easy calculation uncovers that the only nonzero cohomology group for the com-
plexes (�

p,q
k , δ) is

H1,2
0 = C · {η0 ∧ ζ, η0 ∧ ζ̄ , ζ ∧ η1, ζ̄ ∧ η̄1}.

This implies that a conservation law can be represented by a form

�̃ ≡ Rη0 ∧ ζ + Sη0 ∧ ζ̄ + A′′ Re(ζ ∧ η1)+ B ′′ Im(ζ ∧ η1) mod F2�2

for some functions R, S, A′′, B ′′. This can be rewritten as

�̃ ≡ Rη0 ∧ ζ + Sη0 ∧ ζ̄ + A′dη0 + B ′ψ
≡ Rη0 ∧ ζ + Sη0 ∧ ζ̄ + η0 ∧ dA′ + B ′ψ + d(A′η0) mod F2�2

or, as we will continue with, it can be written as

� ≡ η0 ∧ ρ + Aψ mod F2�2 + d(F1�1)

for some 1-form ρ and function A, where we have left off the exact piece because
that does not alter its class in H2(M (∞), I(∞)). In the next section, we remove the
congruence, finding how the closure of � determines ρ and the other coefficients in
terms of A, as well as equations that A must satisfy. However, to prove the closure of
� directly requires verifying some elaborate equations. We circumvent this in Sect. 8
by using the normal form for undifferentiated conservation laws found in Sect. 7.

6 The normal form of the differentiated conservation laws

We say that f satisfies an nth-order autonomous linear ODE if it satisfies an equation
of the form

dn f

dun
= Z

(

f,
d f

du
,

d2 f

du2 , . . . ,
dn−1 f

dun−1

)

(8)

where Z is an R-linear function of n variables. From now on assume that f does not
satisfy any first-order linear autonomous ODE. We make the following definition.
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Definition 6.1 A representative � ∈ I(∞) ∩ �2(M (∞),R) of a differentiated
conservation law on M (∞) is in normal form if

� = η0 ∧ ρ + Aψ

+
∑

1≤i< j≤k

(
Bi jηi ∧ η j + B

i j
η̄i ∧ η̄ j

)
+

∑

1≤i≤ j≤k

(
Di jηi ∧ η̄ j + D

i j
η̄i ∧ η j

)
.

for some k and some functions A, Bi j , Di j : M (∞)→ C with A = A.

There is an analogy between the role of conservation laws in normal form and
harmonic representatives of de Rham cohomology classes which we now recall. The
de Rham cohomology of a smooth closed manifold X consists of the quotient groups

H p
d R(X,R) =

ker(d : �p(X,R)→ �p+1(X,R))

Im(d : �p−1(X,R)→ �p(X,R))
. (9)

Hodge theory shows that if one has a Riemannian metric, then one can represent
these quotient spaces as subspaces of �p(X,R) in a natural way—each class in the
quotient space has a unique harmonic representative. Analogously, elements of the
characteristic cohomology have unique representatives in normal form [4].

Definition 6.2 Let C ⊂ �2(M (∞),R) ∩ I(∞) denote the space of representatives of
differentiated conservation laws in normal form. A conservation law on M (∞) in nor-
mal form is said to have level k if it is defined on M (k). Let C(k) denote the space of
representatives of conservation laws of level k in normal form.

Pulling back with π : M (k+1) → M (k) induces the inclusion π∗C(k) ⊂ C(k+1),
allowing us to identify C(k) as a subspace of C(k+1). Using this identification, we have
C =⋃

k C(k). In a series of lemmas, we will prove the following proposition, in which
the normal form is further refined. In this section, we will not prove the existence of
elements of C(k); the proposition only tells us what the elements of C(k) must look like
if they do exist.

Proposition 6.3 Any element of C(k) is of the form

� = η0 ∧ ρ + Aψ +
∑

1≤i< j≤k

(
Bi jηi ∧ η j + B

i j
η̄i ∧ η̄ j

)
. (10)

The one-form ρ and the function B are determined by A via the formulas

ρ = −1

2
JdA (11)

Bi j = √−1
k− j−i+1∑

m=0

(−1)m−i+1
(

m + i − 1

i − 1

)

(e−1)
m Aum+ j+i−1 (12)
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if we normalize ρ so that e0 ρ = 0. The function A on M (k)—which we henceforth
refer to as the generating function of �—satisfies

Aui ,u j = Au = 0 (13)

and

E(A) := e−1e−1 A + fu A = 0. (14)

Remark The normal form of the differentiated conservation laws can be anticipated.
From its definition, ψ ∈ �(2,0)(M (k)) ⊕ �(0,2)(M (k)) so that modulo η0,� ∈
�(2,0)(M (k)) ⊕ �(0,2)(M (k)). When f = 0 Eq. (1) is Laplace’s equation, and then
(3) is an integrable extension of the EDS for holomorphic curves in C

2. Differenti-
ated conservation laws of the EDS for holomorphic curves in C

n are closed forms in
�(2,0)(Cn)⊕�(0,2)(Cn) [4].

For notational simplicity, extend the index set of Bi j to infinity by setting Bi j = 0
unless 1 ≤ i < j ≤ k.

Let � ∈ C(k). To prove the proposition, we unravel the consequences of d� = 0.
First, we examine the weaker condition η0∧d� = 0.

Lemma 6.4 A conservation law� is of type (2, 0)+(0, 2)modulo η0; in other words,
Di j = 0 for all 1 ≤ i, j ≤ k, and thus � is of the form in Eq. (10).

Proof For i = 1 . . . k, the η0∧ζ̄∧ηi∧η̄k+1-coefficient of η0∧d� is Dik , so Dik = 0.
Now assume that Di,k−r = 0 for r = 0 . . . j and i ≤ k−r . We show that Di,k− j−1 for
i ≤ k− j − 1. The coefficient of η0∧ζ̄∧ηi∧η̄k− j when i < k− j − 1 is Di,k− j−1 plus
terms that vanish by the induction hypothesis. When i = k − j − 1, the coefficient is

Dk− j−1,k− j−1 − D
k− j−1,k− j−1

. But Dl,l is imaginary since � is real. ��

Lemma 6.5 The following identities hold:

ρ ≡ −1

2
JdA ≡ −

√−1

2

(
∂A − ∂A

)
mod η0

Au j−1 = −
√−1(e−1 B1 j + B1, j−1) j = 2 . . . k

Auk = −
√−1B1k

Proof We express ρ in the standard coframe as

ρ = ρ0η0 + ρ−1ζ + ρ−1ζ̄ +
k∑

i=1

(ρiηi + ρi η̄i ).

Taking ρ0 = 0, which we are free to do, we calculate
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0 = e1 e−1 d� ≡ ρ − ρ−1ζ − ρ1η1 −
√−1

2
(dA − e−1(A)ζ − Au0η1)

+
k∑

j=2

e−1 B1 jη j +
k∑

j=2

B1 jη j+1 mod η0. (15)

This implies that

ρ(0,1) =
√−1

2
∂A.

The first statement follows from the identitiesρ ≡ ρ(1,0)+ρ(0,1) mod η0 andρ(0,1) =
ρ(1,0). The other two relations follow from the vanishing of the coefficients of ηi , ηk+1
in Eq. (15). ��
Lemma 6.6 Equation (13) is true: we have Au = 0 and Aui ,u j = 0 for all i, j .

Proof The coefficient of η0∧ζ∧η1 in d� is
√−1

2 (−e1e−1 A+e−1e1 A− Au). Together
with the commutator [e−1, e1]A = −Au , this proves Au = 0. The coefficient of

η0∧ηi∧η̄ j is
√−1

2 (−e j ei A − ei e j A). Combined with the commutator [ei , e j ] = 0,
this proves the second claim. ��

The vanishing Au = 0 allows us to express ρ exactly:

Corollary 6.7 Equation (11) is true: we have ρ = − 1
2 JdA.

Lemma 6.8 The Bi j are given by Eq. (12):

Bi j = √−1
k− j−i+1∑

m=0

(−1)m−i+1
(

m + i − 1

i − 1

)

(e−1)
m Aum+ j+i−1 .

Therefore, if A is weighted-homogeneous (cf. Eq. 6), then Bi j is weighted-homoge-
nous and wd(Bi j ) = wd(A)− i − j .

Proof First of all note that for 1 < i ≤ j ≤ k, the η0∧ζ∧ηi∧η j+1-coefficient in
η0∧d� = 0 is

Bi j + Bi−1, j+1 + e−1 Bi, j+1 = 0. (16)

In particular, Bik = 0 for i > 1, which is compatible with the formula to be proven.
We prove the lemma by induction on i . For i = 1, we have to show that for any

j = 2 . . . k

B1 j = √−1
k− j∑

m=0

(−1)m(e−1)
m Aum+ j , (17)
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which we prove by induction on j , going down from k to 2. For j = k, the right-hand
side is

√−1Auk , which equals B1k by the third item of Lemma 6.5. Assume we have
shown Eq. (17) for some j , then by the second item of Lemma 6.5,

B1, j−1 = √−1Au j−1 − e−1 B1 j

= √−1Au j−1 +
√−1

k− j∑

m=0

(−1)m+1(e−1)
m+1 Aum+ j

= √−1
k− j+1∑

m=0

(−1)m(e−1)
m Aum+ j−1 .

Assume now that i > 1 is such that the formula for Bi−1, j is true for all j = 1 . . . k.
We will prove the formula for Bi j by induction on j as in the case i = 1. Above, we
argued that it is correct for j = k, and assuming that j is such that the formula for
Bi, j+1 is correct we use Eq. (16) to prove the formula for Bi j :

√−1Bi j = −√−1Bi−1, j+1 −√−1e−1 Bi, j+1

= (−1)i Au j+i−1

+
k− j−i+1∑

m=1

(−1)m−i
[(

m + i − 2

i − 2

)

+
(

m + i − 2

i − 1

)]

(e−1)
m Aum+ j+i−1

=
k− j−i+1∑

m=0

(−1)m−i
(

m + i − 1

i − 1

)

(e−1)
m Aum+ j+i−1 .

��
The following unassuming corollary has important consequences that will be

unraveled in Sect. 8.

Corollary 6.9 If k is odd, then B1k = Ak+1 = 0.

Proof For i + j = k + 1, Lemma 6.8 gives

Bi j = (−1)i+1
√−1Auk .

Writing k + 1 = 2n and choosing i = j = n, Bn,n = 0 implies that Auk = 0 and
consequently, taking i = 1 and j = k, that B1k = 0. ��

Finally, we deduce Eq. (14). The coefficient of η0∧ζ∧ζ̄ in d� = 0 is

e−1e−1 A + e−1e−1 A + 2 fu A = 0.

Since we are working on M (∞), we have [e−1, e−1]A = 0, which allows us to rewrite
this as
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e−1e−1 A + fu A = 0.

This completes the proof of Proposition 6.3.

7 Homogeneity and a normal form for undifferentiated conservation laws

Exterior differentiation commutes with the decomposition

�p(M (∞),C) =
⊕

d∈Z
�

p
d (M

(∞)),

where the space�p
d (M

(∞)) of differential p-forms of homogeneous weighted degree
d was defined in Eq. (6). Let Cd be the image of the projection πd from C ⊂
�2(M (∞),R) ⊂ �2(M (∞),C) to �2

d(M
(∞)).

Lemma 7.1 The Cd are complex subspaces of �2
d(M

(∞)) and C ⊗ C = ⊕
d Cd .

Furthermore, if �d ∈ Cd , then �d +�d ∈ C.

Proof As mentioned above, any representative of a differentiated conservation law
in normal form can be decomposed into weighted-homogeneous pieces, so we have
C ⊂⊕

d Cd .
Let �d ∈ Cd . By definition, �d = πd(�) for some representative � ∈ C. Since

� is a real-valued form and wd(�) = −wd(�) for all weighted-homogeneous forms
�, we have π−d(�) = �d . Since summands of different weighted degree cannot
cancel, it follows that�d+�d is in normal form and hence an element of C. But then,
for any b ∈ C, it follows that b�d + b�d ∈ C, so b�d ∈ Cd , and Cd is a complex
subspace.

In the last argument, taking b = √−1 implies that
√−1�d −

√−1�d ∈ C, so
that �d −�d ∈ C ⊗ C. Therefore, �d = 1

2 (�d +�d)+ 1
2 (�d −�d) ∈ C ⊗ C and⊕

d Cd ⊂ C ⊗ C. From C ⊂⊕
d Cd , it follows that C ⊗ C ⊂⊕

d Cd and so we can
conclude that C ⊗ C =⊕

d Cd . ��
Given a conservation law � ∈ C in normal form

� = η0 ∧ ρ + Aψ + Bi jηi ∧ η j + B
i j
η̄i ∧ η̄ j

as in Proposition 6.3, and writing A =∑
d≥0(Pd + Pd) with wd(Pd) = d then

�Pd := πd(�) = η0 ∧ ρ + Pdψ + Bi j (Pd)ηi ∧ η j + Bi j (Pd)η̄i ∧ η̄ j ∈ Cd

with ρ = − 1
2 JdPd and Bi j (Pd) and Bi j (Pd) being given by Eq. (12) using Pd ,

resp. Pd , in place of A in the formula. Using the weighted homogeneity of �Pd , we
will produce a canonical representative of a class in H̄1

C
from the normal form of

a class in Cd . To simplify notation, we drop the subscript d on P but continue to
assume that wd(P) = d.
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Let F be the S
1-action defined in Eq. (5) and v = d F

dt

∣
∣
t=0 where λ = eit . One can

calculate directly that

v = i
(

qe0 + z̄e−1 − ze−1 + (e−1)
j (q)e j + (e−1)

j (q)e j

)
,

where q = zu0 − zu0. For wd(P) = d �= 0, define

ϕP = 1

d
(v �P ) . (18)

Lemma 7.2 If wd(P) = d �= 0 and d�P = 0, then �P = dϕP .

Proof Suppose �p is closed and homogeneous. Then,

d ·�P = ∂(F∗�P )

∂t
|t=0 = Lv�P = d(v �P ).

��
The formulas for ϕP and v lead to

ϕP ≡
√−1

2d
J (Pdq − qdP) mod I(∞), (19)

which we use in Lemma 8.15.

Remark It is simple to check that, given any function G on M (∞) satisfying Eq. (14)
(but not necessarily Eq. (13) ), then [J (qdG−Gdq)] ∈ H̄1. It remains to show that it is
a nontrivial element. Furthermore, one still obtains a conservation law if one replaces
q with any solution to Eq. (14). This structure is closely related to the Poisson bracket
defined in Theorem 4 of [35] though we do not pursue this further here.

We can now define canonical representatives for elements of H̄1. For d �= 0, let
H1

d be the image of the linear map

Cd → �1
d(M

(∞),C)
�P �→ ϕP

and let H1
0 = R · ϕ0, where ϕ0 is defined in Eq. (7). Then, let H1

C
= ⊕

d H1
d and

H1 = H1
C
∩�1(M (∞),R).

Definition 7.3 The normal form for an undifferentiated conservation law in H̄1 is
the representative ϕ ∈ �1(M (∞),R) lying in H1.

Remark It would be interesting to find a definition of H1 that is independent of C.
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Remark The elements of H1 are not invariant under translations in a lattice in the
z-plane, even if u(z, z̄) is. One can prove that there are translation invariant repre-
sentatives that therefore induce cohomology classes on the torus domains of doubly
periodic solutions u(z, z̄). We will report on this and its implications in a forthcoming
article.

8 The space of conservation laws

So far we have seen that u0 and q = zu0 − z̄ū0 are solutions to Eqs. (13) and (14).
These equations preserve weighted homogeneity and so to understand their solutions,
it is enough to understand the weighted-homogeneous solutions.

Definition 8.1 Let Vd be the space of solutions to E(P) = 0 (Eq. (14)) of weighted
degree d that also satisfy Pui ,u j = Pu = 0.

Example 8.2 It is easy to check that u0 ∈ V1, ū0 ∈ V−1, and q ∈ V0.

In this section, we prove

Theorem 8.3 Suppose that f does not satisfy a linear first-order ODE. Then,

1. V0 is spanned by q. If d is a nonzero even integer, then Vd = 0. If d is odd, then
dimC Vd ≤ 1.

2. For all d, we have isomorphisms

Vd → H1
d → Cd

P �→ ϕP �→ �P ,

where ϕP is defined as in Sect. 7, and the second map is just the exterior derivative.
3. dimR(C(2n+1)/C(2n)) = 0.
4. dimR(C(2n+2)/C(2n)) ≤ 2 with equality if and only if dimC(V2n+3) = 1.

We prove this theorem via the series of Lemmas 8.4–8.18. Let P ∈ Vd and write
P = U (z, z̄, u j ) + V (z, z̄, ū j ) + R(z, z̄), such that neither U nor V have any terms
that do not involve at least one u j or ū j . We calculate that

E(U ) = fuU +Uzz̄ + u j+1Uu j ,z̄ − T l ∂

∂ul

(
Uz + u j+1Uu j

)
(20)

E(V ) = fu V + Vzz̄ + ū j+1Vū j ,z − T
l ∂

∂ ūl

(
Vz̄ + ū j+1Vū j

)
(21)

Lemma 8.4 Uz̄ = Vz = R = 0.

Proof The terms in E(P) = 0 that do not involve u imply that

Rzz̄ +Uzz̄ + u j+1Uu j ,z̄ + Vzz̄ + ū j+1Vū j ,z = 0.
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Let uk be the variable of highest weighted degree in P that appears multiplied with
a z̄ and ūm , the variable of lowest weighted degree appearing in P with a z. Then,
uk+1Uuk z̄ produces a monomial which, because of the maximality of uk , cannot be
canceled by any of the other terms. Then by induction Uu j z̄ = 0 for all u j . A similar
argument shows that Vū j z = 0 and because U and V do not have any terms without
some u j or ū j , we have that Uz̄ = Vz = 0. This then implies that Rzz̄ = 0.

Thus, the only remaining possibility for R, if it does not vanish, is that is consists
of exactly one monomial of the appropriate degree. In the case d > 0, it follows that
R = cz̄d for some constant c. We have E(R) = c fu z̄d , so the negative of this term has
to appear in E(U + V ). But from Eqs. (20) and (21), we see that the only possibilities
to get a summand in E(U + V ) without any u j are the terms −T 0 ∂

∂u0
Uz = − f Uz,u0

and − f Vz̄,ū0 . Since f and fu are not linearly dependent, it follows R = 0. The same
argument works for d < 0 and d = 0. ��

We have P = U (z, u j )+ V (z̄, ū j ), where U and V , expressed as power series in
z and z̄, can be written as U = ∑

U nzn with wd(U n) = d + n and V = ∑
V nz̄n

with wd(V n) = d − n. Each coefficient U n or V n is a polynomial in the u j or the ū j ,
never constant. Now we can expand E(P) = 0 in terms of z and z̄:

E(U ) = zn
[

fuU n − T l ∂

∂ul

(
(n + 1)U n+1 + u j+1U n

u j

)]

(22)

E(V ) = z̄n
[

fu V n − T
l ∂

∂ ūl

(
(n + 1)V n+1 + ū j+1V n

ū j

)]

(23)

The n = 0 coefficients only sum to be zero, but otherwise the coefficients of zn and z̄n

must vanish separately.

Lemma 8.5 If uk is the variable of highest weighted degree appearing in U, then
Uuk ,u j = 0 for all u j . Similarly, if ūk is the variable of lowest weighted degree
appearing in V , then Vūk ,ū j = 0 for all ū j .

Proof Let uk be the variable of highest weighted degree appearing in U . Suppose that
there is a summand in U n where uk appears to a power higher than 1 or multiplied
by some other u j . Denote the monomial in U n of highest lexicographic ordering with

this property by ui1
j1
· · · · · uir

jr
, with k = j1 > . . . > jr and all exponents ≥ 1. Our

assumption says that either r ≥ 2 or r = 1 and i1 ≥ 2.
Let us look at the case r ≥ 2 first: By finding a nonvanishing summand in Eq. (22),

we will derive a contradiction. Exactly for j = j1(= k), there appear summands
involving uk+1 in Eq. (22): exactly those of the form−T l ∂

∂ul

(
uk+1U n

uk

)
with l �= k+1.

Our monomial above produces

−n1T l ∂

∂ul

[
u j1+1ui1−1

j1
· ui2

j2
· · · · · uir

jr

]
.

For l = jr , we obtain
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−i1ir T jr u j1+1ui1−1
j1
· ui2

j2
· · · · · uir−1

jr

=
⎧
⎨

⎩

−i1ir fu

[
u j1+1ui1−1

j1
· ui2

j2
· · · · · uir−1

jr
u jr−1

]
+ lower lex. ord. jr > 0

−i1ir f
[
u j1+1ui1−1

j1
· ui2

j2
· · · · · uir−1

jr

]
+ lower lex. ord. jr = 0

and because the original monomial was the one of highest lexicographic ordering
among those in U n , this monomial cannot be canceled by any other that is produced
from U n in Eq. (22). But it also cannot cancel with a summand coming from U n+1

since that would contradict our assumption that uk is the variable of highest weighted
degree appearing in all of U . Thus, uk cannot appear in a monomial with any other u j .

Now suppose that r = 1 and m = i1 ≥ 2 so that the highest monomial is um
k .

Taking j = l = k gives a summand of Eq. (22) of the form

−mT k ∂

∂uk

[
uk+1um−1

k

]

= −m(m − 1)T kuk+1um−2
k

=
−m(m − 1) fu

[
uk+1um−2

k uk−1

]
+ lower lex. ord. k > 0

−m(m − 1) f
[
uk+1um−2

k

]
+ lower lex. ord. k = 0

which again is the unique highest one. The same considerations as before lead to a
contradiction. Thus, uk must appear linearly. When it does, the terms only involving
U n allow it to cancel.

An analogous argument gives the corresponding result for V . ��
Corollary 8.6 If uk is the highest variable appearing in U, then it only appears in
U k+1−d , so d ≤ k+1. If ūm is the lowest variable appearing in V , then it only appears
in V m+1+d , so that d ≥ −(m + 1).

Proof This follows by considerations of weighted degree and Lemma 8.5. ��
Corollary 8.7 If uk is the highest variable appearing in U, then U n = 0 for
n > k + 1− d. If ūm is the lowest variable appearing in V , then V n = 0 for
n > m + 1+ d.

Proof Let ul with l < k be the highest variable appearing in those U n with n >

k + 1 − d. If we regard such an n, the same argument as given in the proof of
Lemma 8.5 implies that ul appears linearly and without any other u j . This implies
that wd(U n) = l + 1 < k + 1, but this contradicts wd(U n) = n + d > k + 1.
A similar argument can be made for V . ��
Corollary 8.8 Both U and V are polynomials. In fact,

U =
k+1−d∑

n=0

U nzn with U k+1−d = b(uk + · · · ) for some b ∈ C
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and

V =
m+1+d∑

n=0

V nz̄n with V k+1+d = c(ūm + · · · ) for some c ∈ C.

We will make use of the following lemma repeatedly.

Lemma 8.9 The operator e−1, acting on polynomials in ui , has only the constants as
kernel.

Proof It suffices to prove that for a weighted-homogeneous polynomial h of degree
at least one, e−1h = 0 implies h = 0. Write

h =
∑

|I |=k+1

hI u I ,

where the sum runs over all multi-indices I = (i0, . . . , ik) of weighted degree
∑

j (i j + 1) equal to k + 1, and uI = ui0
0 · · · · · uik

k , and assume

0 = −e−1(h) =
k∑

j=0

∑

|I |=k+1

hI T j ∂

∂u j
u I . (24)

Let I0 = (i0, . . . , ik) �= 0 be the highest index such that hI0 �= 0. Let furthermore l
be the smallest number such that il �= 0 and assume first that l > 0. In other words,
uI = uil

l uil+1
l+1 · · · · · uik

k . In Eq. (24), we find hI0 , for example, in the summand

hI0 T lil · uil−1
l uil+1

l+1 · · · · · uik
k .

(This is the summand for I = I0 and j = l.) Since T l reads T l = ul−1 fu +
terms with lower u’s, we have found a summand

hI0 il fu · ul−1uil−1
l uil+1

l+1 · · · · · uik
k .

Let us try to spot the full coefficient of this monomial ul−1uil−1
l uil+1

l+1 · · · · · uik
k in

Eq. (24). For which I and j can the summand hI T j ∂
∂u j

u I contribute? If j > 0, some

of the u’s in the monomial have to appear in T j . But then, necessarily I ≥ I0, since
uI is differentiated with respect to u j , and u j is higher than all the u’s appearing
in T j . For I = I0, we already have found the one contribution, so since we assumed
that I0 is the highest multi-index such that hI0 �= 0, the only further summands
that can contribute are those with j = 0. Here, we only have a new contribution if
uI = u0ul−1uil−1

l uil+1
l+1 · · · · · uik

k . Denoting the corresponding multi-index by I1, we
have shown

0 = hI0 i j fu + hI1c f,
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where c = 1 or c = 2, depending on whether l > 1 or l = 1. Since f and fu are
linearly independent, hI0 = 0 (and also hI1 = 0), a contradiction.

In the case l = 0, the monomial in question is uil−1
l uil+1

l+1 · · · · · uik
k , and there is only

the summand for j = 0 and I = I0 contributing to this monomial; we also conclude
hI0 = 0. ��
Lemma 8.10 wd(U ) ≥ 0 and wd(V ) ≤ 0.

Proof Suppose that wd(U ) = d < 0. We know that U = ∑k+1−d
n=0 U nzn . Since

wd(U n) ≥ 0, we have U 0 = 0; let m ≥ 0 be such that U 0 = . . . = U m = 0 and
U m+1 �= 0. If m = 0, i.e. U 1 �= 0, it would follow that d = −1 and that U 1 is
constant, which was ruled out in Lemma 8.4.

So we are in the case m > 0. From E(U + V ) = 0 and Eq. (22), we find that

∑

l

−zm T l ∂

∂ul

(
(m + 1)U m+1

)
= 0 (no sum on m)

when m > 0. By Lemma 8.9, this implies that U m+1 = 0 and so by induction U = 0.
A similar argument gives the result for V . ��
Corollary 8.11 If wd(P) > 0, then V = 0. If wd(P) < 0, then U = 0.

Lemma 8.12 If wd(P) = 0, then P = b · (zu0 − z̄ū0) for some constant b ∈ C.

Proof We have

U = bzu0 +
k+1∑

n≥2

U nzn, V = cz̄ū0 +
m+1∑

n≥2

V nz̄n

for some constants b, c. Then, the first terms in Eqs. (22) and (23) lead to

E(U + V ) = z0
(
− f U 1

u0
− f V 1

ū0

)
+ z1

[

fuU 1 − T l ∂

∂ul

(
u j+1U 1

u j
+ 2U 2

)]

+z̄1
[

fu V 1 − T
l ∂

∂ ūl

(
ū j+1V 1

ū j
+ 2V 2

)]

+ · · ·

The z0-term implies that c = −b. The terms from U 1 in the z1-term cancel so that by
Lemma 8.9 we have U 2 = 0. Similarly, the z̄1-term implies that V 2 = 0. Then, using
induction, Eqs. (22) and (23) imply that U n = V n = 0 for n > 1. ��
Lemma 8.13 If wd(P) = d > 0, then Pz = 0, i.e. P is a polynomial in the u j of
the form P = bud−1 + . . . with b �= 0. If wd(P) = d < 0, then Pz̄ = 0, i.e. P is
a polynomial in the ū j of the form P = cū−d−1 + . . . with c �= 0.

Proof Suppose d > 0 so that P =∑k+1−d
n=0 U nzn . Assuming that k + 1− d > 0 will

lead to a contradiction. We have
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U k+1−d = buk + b′uk−1u0 + · · ·

with b �= 0, and

U k−d = b′′uk−1 + · · ·

The zk−d -coefficient in Eq. (22) reads

fuU k−d − T l ∂

∂ul

(
(k − d + 1)U k−d+1 + u j+1U k−d

u j

)
;

neglecting summands without uk−1 and finding that the b′′ terms cancel, we obtain

0 = −(k − d + 1)(T 0b′uk−1 + T kb) = −(k − d + 1)uk−1( f b′ + fub)+ · · ·

Since f and fu are linearly independent, (k − d + 1) > 0 and b �= 0, we have arrived
at a contradiction. A similar argument works for V . ��
Corollary 8.14 For all d, we have dimC(Vd) ≤ 1.

Proof We know that any nonzero element in Vd is of the form bud−1+· · ·with b �= 0
for d > 0, or cūd−1 + · · · with c �= 0 for d < 0 and a · (zu0 − z̄ū0) with a �= 0 for
d = 0. The bound on dimension then follows because E(P) = 0 is a linear equation.

��
Lemma 8.15 For all d the linear map

Vd → H̄1
C

P �→ [ϕP ]

is injective.

Proof Assume that d > 0. The d < 0 case follows by complex conjugation. Let
P ∈ Vd be nonzero and normalized, i.e. P is a polynomial of the form

P = ud−1 + · · · .

The 1-form ϕP was defined in Eq. (18), and a more explicit form was given in Eq. (19).
It will be convenient to modify ϕP by an exact form as follows: If we define Ẽ ′ =
qe−1(P), Ẽ ′′ = e−1(q)P and

ϕ̃P = Ẽ ′ζ + Ẽ ′′ζ̄ ,

then

ϕ̃P ≡ d · ϕP + d(q P) mod I(d).
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First, we have to show that ϕ̃P defines a cohomology class in H̄1
C

. The only obstacle that
could arise is that dϕ̃P could have a ζ∧ζ̄ term. However, the corresponding coefficient
is

−e−1 Ẽ ′ + e−1 Ẽ ′′ = −e−1(q)e−1 P − qe−1e−1 P + e−1e−1(q)P + e−1(q)e−1 P

= q fu P − fuq P = 0

because P ∈ Vd and q ∈ V0.
Thus, it remains to show that [ϕ̃P ] = d · [ϕP ] is a nontrivial class. The one-form

ϕ̃P represents 0 ∈ H̄1
C

if and only if

dϕ̃P = dα (25)

for some α ∈ I(l). Assuming that α = ∑l
j=0(a

jη j + b j η̄ j ) (with b0 = 0) satisfies
Eq. (25) will lead to a contradiction.

For j > 1, the ζ∧η j -coefficient of Eq. (25) implies

−qe j e−1 P = −Ẽ ′u j−1
= e−1a j + a j−1,

from which we can determine the a j recursively: We have e−1 P = ud + · · ·, so a j

vanishes for j > d. The first two nonvanishing coefficients are

ad = −qed+1e−1 P = −q

and

ad−1 = −e−1ad − qede−1 P = e−1q − qede−1 P. (26)

We obtain

a1 =
d+1∑

j=2

(−1) j−1(e−1)
j−2(qe j e−1 P)

= (−1)d
[
(e−1)

d−1(q)− (e−1)
d−2(qede−1 P)± · · · + (−1)d−1qe2e−1 P

]

(27)

The condition on the η1∧ηd−1-coefficients of Eq. (25) is

ad−1
u0
= a1

ud−2
,

which will provide a contradiction. One finds that

(e−1)
j q = ju j−1 + zu j + zT j−1.
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Using Eq. (26), we compute

ad−1
u0
= 1− zede−1 P − qe1ede−1 P,

which has a constant term 1. On the other hand, the only way to obtain a constant
term from differentiating Equation (27) with respect to ud−2 is via the summand
(−1)d(e−1)

d−1(q):

a1
d−1 = (−1)dd + non-constant terms.

But (−1)dd �= 1 for all d > 0. ��

Lemma 8.16 If P ∈ Vd then dϕP = �P .

Proof The d = 0 case was done explicitly in Sect. 4, so assume d �= 0. If P ∈ Vd is
nonzero, then [ϕP ] is a nontrivial class and so [dϕP ] = [�P ′ ] for some other solution
P ′ to Eqs. (13) and (14). Weighted degree is preserved by exterior differentiation,
so wd(P ′) = wd(P) and hence P ′ ∈ Vd , which implies that P ′ = c · P for some
constant c, by Corollary 8.14. Since�P ′ is closed, this implies that�P is closed. Then
by Lemma 7.2, we reach the desired conclusion. ��

Corollary 8.17 If P ∈ Vk+1, then �P is closed and �P + �P is a real element of
C(k).

Lemma 8.18 For even degree d �= 0, Vd = 0.

Proof For d �= 0, complex conjugation gives an isomorphism Vd → V−d . Thus, it
suffices to prove the lemma for positive d.

Suppose that d = 2n > 0 and P = ud−1 + · · · ∈ Vd is a normalized solution.
Then, by Lemmas 8.15 and 8.16, the two-form

�P = η0 ∧ ρP + Pψ +
∑

i, j

Bi j (P)ηi ∧ η j ∈ �2
d(M

(d−1))

defines a weighted-homogeneous differentiated conservation law. By Corollary 6.9,
we can conclude that B1,d−1(P) = 0, which contradicts the third item of Lemma 6.5
due to the fact that, if such a P exists, then P = ud−1 + · · ·. ��

Proof of Thm 8.3 The statements about Vd are exactly Lemma 8.12, Corollary 8.14,
and Lemma 8.18. By Corollary 8.17, the map P → �P is an isomorphism from Vd

to Cd . By definition, the map Cd → H1
d is an isomorphism and Lemma 8.16 implies

that its inverse is given by exterior differentiation. The last two items are immediate
consequences of the second item of the theorem. ��
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9 Potentials satisfying linear second-order ODEs

So far, the only assumption on f was that it does not satisfy a linear first-order ODE,
i.e. that f and fu are linearly independent.2 The following theorem shows that f has
to satisfy a linear second-order ODE for higher-order conservation laws to exist.

Theorem 9.1 Assume that f does not satisfy any linear second-order ODE, i.e. that
f, fu and fuu are linearly independent over R. Then, Vd = 0 for |d| ≥ 2, i.e. no
higher-order conservation laws occur.

Proof It suffices to prove Vd = 0 for d ≥ 2. Assume that Vd �= 0 for some d ≥ 2,
and let P ∈ Vd be a nonzero element. By Lemma 8.13, P is a polynomial in the
variables u j and can be normalized such that

P = ud−1 + cud−2u0 + · · ·

The polynomial P satisfies Eq. (14)

d∑

j=0

d−1∑

i=0

T j ∂

∂u j

(
ui+1 Pui

) = fu P. (28)

Recall from Lemma 2.1 that T j = (e−1)
j f . It follows that T 0 = f, T 1 = u0 fu,

T 2 = u1 fu + u2
0 fuu and for j ≥ 3,

T j = u j−1 fu + ju j−2u0 fuu + terms without u j−1 and u j−2.

Therefore, the summands on the left-hand side of Eq. (28) that involve ud−2 are

j = 0, i = d − 3, if d ≥ 3 f ud−2 Pud−3,u0

j = 1, i = d − 3, if d ≥ 4 fuud−2u0 Pud−3,u1

j = 1, i = 0 fucud−2u0
j = d − 1, i = d − 2, if d ≥ 3 fucud−2u0
j = d, i = d − 1 fuudud−2u0.

It follows that the vanishing of the ud−2u0-coefficient of Eq. (28) contradicts the
assumption that fuu is linearly independent from f and fu . Therefore, Vd = 0. The
statement about conservation laws follows from Proposition 6.3. ��

On the other hand, in certain cases, the upper bound for the dimensions of the spaces
of higher-order conservation laws given in Theorem 8.3 is sharp.

Lemma 9.2 Suppose that fuu = β f with β �= 0 and that f does not satisfy any
first-order ODE. Then, dimC(V2n+1) = 1 for all n ∈ Z.

2 If fu = β f for some constant β, then Eq. (1) is the Liouville equation. It is not hard to check that it
has infinitely many classical conservation laws. It is well known that the Liouville equation is linearizable.
With respect to its role as the Gauss equation for constant mean curvature surfaces with ε + δ2 = 0 (see
Eq. (2)), the linearizability is equivalent to the existence of the Weierstrass representation.
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Proof By the results of Sect. 8, we only need to demonstrate the existence of a non-
zero element in each V2n+1 for n ≥ 0. Let P0 = u0 ∈ V1. We will define the
other solutions recursively. Suppose that for any solution Pn ∈ V2n+1, we can find a
weighted-homogeneous polynomial Qn only involving the u j that satisfies

e−1 Qn = 2u0e−1 Pn

e−1 Qn = −2 f Pn . (29)

Given such a Qn , define

Pn+1 = e−1e−1 Pn − β
2

u0 Qn . (30)

Using Eq. (29) and the fact that Pn ∈ V2n+1, one can check that

e−1e−1 Pn+1 = − fu Pn+1. (31)

Given that Qn is a polynomial only involving the u j , Eqs. (30) and (31) imply
thatPn+1 ∈ V2n+3. We now prove the existence of such a Qn .

For any solution Pn ∈ V2n+1, define αn = 2u0 Pn−1ζ−2 f Pn ζ̄ . It is readily checked
that dαn ≡ 0 mod I(∞). Thus, [αn] ∈ H̄1. However, wd(αn) = 2n + 2 and by the
results of Sect. 8, this implies that [αn] = 0 ∈ H̄1. Thus, there exists a function Qn

on M (2n) and βn ∈ I(2n) such that

dQn = αn + βn . (32)

The ζ and ζ̄ terms of Eq. (32) imply Eq. (29) and the other terms lead to

βn = Qn
uη0 + Qn

u j−1
η j + Qn

ū j−1
η̄ j .

We are finished once we show that Qn is independent of u, z, z̄ and the ū j . First,
we show that Qn

z = Qn
z̄ = 0. Differentiating Eq. (32) with respect to z results in

d

(
∂Qn

∂z

)

∈ I(2n)

∂ηi
∂z = ∂ηi

∂ z̄ = 0. But there are no exact forms in the ideal and so ∂Qn

∂z is constant.
Together with a similar argument involving z̄, this implies that Qn is at most linear
in z or z̄ so we can write Qn = Q̂n + az + bz̄ where Q̂n is independent of z and z̄.
However, because the right-hand side of Eq. (32) does not contain any terms of the
form adz or bdz̄, we must have a = b = 0. Thus, Qn is independent of z and z̄.

Now write Qn =∑∞
a=0 Qn,aūa

2n where Qn,a is independent of ū2n . The second of
the two equations in Eq. (29) can be written as

∞∑

a=0

(
Qn,aaūa−1

2n ū2n+1 + Qn,a
−1

ūa
2n

)
= −2 f Pn .
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The highest variable appearing in Qn is ū2n , and it does not appear in Pn . By induc-
tion, we find that Qn is independent of ū2n . Then using induction again, we find that
Qn is independent of ū j for all j ≥ 0. Once this is done, expanding the same equation
in a power series in u implies that Qn is independent of u. The appearance of f (u)
on the right-hand side does not spoil the argument because it is the image of the ū0

∂
∂u

term in e−1 that leads to the vanishing. Thus, Qn is a function only of the u j . This
completes the proof. ��

The process used to prove Lemma 9.2, and in particular the definition of the one-
formαn , is derived from the recursive equations satisfied by the coefficients of a formal
Killing field associated with the system for harmonic maps into SU(2)/SO(2). A more
complicated recursion involving a formal Killing field for the system of primitive maps
into SU(3)/SO(2) should result in an existence theorem for a basis of V2n+1 for the
Tzitzeica equation.3 In fact, many of the results in this article will hold for any Toda
field equation. We expect such results to be analogous to the approach of Terng and
Uhlenbeck in [38]. We will report on this in a future article.

Proposition 3.1 of [33] provides an independent proof of the existence of the Qn by
writing down a highly nonlinear but explicit recursive formula. It is unknown whether
that amazing formula will generalize to other systems of PDE.

In [42], they determine the equations of the form uxt = f (u) that admit a nontrivial
Lie–Bäcklund transformation group. This is essentially the same classification that we
have found because Noether’s theorem relates conservation laws and symmetries (see
Sect. 10). Our work is much closer to the approach in [16] where they look for the
existence of polynomial conserved quantities, though we do not rely on either [16]
or [42].

The recursion used in the proof of Lemma 9.2 fits into the general theory of recur-
sion operators introduced by Guthrie [23]. However, it appears that Theorem 1 of [23]
does not actually guarantee existence. In the example above, Guthrie’s theorem does
not seem to guarantee the existence of the Qn because his integrability condition is
only that dαn ≡ 0 mod I(∞), not that [αn] = 0 ∈ H̄1. Though it may be that we
do not fully understand his results.

Example 9.3 Suppose that fuu = β f with β �= 0 and that f does not satisfy a first-
order ODE. Then, dim Vd = 1 for all odd integers d. If the generators Pn of V2n+1
are normalized so that Pn = u2n + · · · then the first four of them are

P0 = u0

P1 = u2 − 1

2
βu3

0

P2 = u4 − 5

2
βu2u2

0 −
5

2
βu2

1u0 + 3

8
β2u5

0

3 In [16], Dodd and Bullough claim that there are only finitely many polynomial conserved quantities for
the Tzitzeica equation. This would be strange since both families of potentials discussed in this section are
obtained from primitive maps into k-symmetric spaces and thus should have similar theories.
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P3 = u6 − 7

2
βu4u2

0 − 14βu3u1u0 − 21

2
βu2

2u0 − 35

2
βu2

2u2
1 +

35

8
β2u2u4

0

+35

4
β2u2

1u3
0 −

5

16
β3u7

0.

Example 9.4 In the case that fuu = α fu + 2α2 f with α �= 0, a coordinate change
transforms Eq. (1) into the Tzitzeica equation uzz̄ = eu−e−2u . For f (u) = eu−e−2u ,
the first four spaces V2i+1 are as follows:

dim V1 = 1, u0 ∈ V1

dim V3 = 0

dim V5 = 1, u4 + 5u2u1 − 5u2u2
0 − 5u2

1u0 + u5
0 ∈ V5

dim V7 = 1, u6 + 7u4u1 − 7u4u2
0 + 14u3u2 − 28u3u1u0 − 21u2

2u0 − 28u2u2
1

−14u2u1u2
0 + 14u2u4

0 −
28

3
u3

1u0 + 28u2
1u3

0 −
4

3
u7

0 ∈ V7.

Remark We believe that f must satisfy either fuu = β f or fuu = α fu + 2α2 f if
higher-order conservation laws exist at any level, but we do not have a proof of this.
It is not hard to show that for there to exist new conservation laws in normal form at
the second prolongation, then f must satisfy fuu = β f , and for there to exist new
conservation laws in normal form at the fourth prolongation, then f must satisfy either
fuu = β f or fuu = α fu + 2α2 f .

10 Generalized symmetries

Noether’s theorem can be formulated as an isomorphism between the space of proper
conservation laws (viewed as elements of the characteristic cohomology) and the space
of proper generalized symmetries [6]. See, for example, [32,35] for related formula-
tions of Noether’s theorem. In order to discuss this for the system at hand, we begin
by introducing the appropriate class of generalized symmetries. In Lemma 10.3, we
prove a weaker version of Noether’s theorem that has appeared previously using other
machinery—for example, see [36]. We end by discussing how generalized symmetries
relate to the Jacobi fields of Pinkall and Sterling [33].

It is most convenient to study symmetries on M (∞). There we have the following

Definition 10.1 A real vector field v on M (∞) is a generalized symmetry of order r
for (M (∞), I(∞)) if Lv(I(l)) ⊂ I(l+r) for all l ≥ 0. A trivial generalized symmetry
for (M (∞), I(∞)) is a generalized symmetry v that satisfies v I(∞) = 0.

A natural candidate for a trivial generalized symmetry is Re(e−1) or Im(e−1) since
e−1 I(∞) = 0. We calculate that

Le−1ηl = ηl+1

Le−1ηl = −τ l−1,
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showing that e−1 is an order 1 generalized symmetry of (M (∞), I(∞)). By the obser-
vation above it is trivial. In fact, the same is true for Re(Qe−1) for any complex valued
function Q on M (∞).

Definition 10.2 A proper generalized symmetry is a generalized symmetry v also
satisfying v ζ = 0.

In [6] the proper generalized symmetries are realized as a quotient of the space of
all generalized symmetries. Using our specified coframe allows us to recognize them
as a subspace rather than a quotient. The following lemma has been proven previously
in many other contexts.

Lemma 10.3 Let v be a (real) vector field on M (∞) such that ζ(v) = 0 and let
g = η0(v). Then, v is a generalized symmetry of order one of (M (∞), I(∞)) if and
only if ηi (v) = (e−1)

i (g) and g is a solution to Eq. (14).

Proof The ζ -coefficient of Lv(η0) is v1 − e−1(g). Thus, the condition that Lv(η0) ∈
I(2) implies that v1 = e−1(g). In general, we find that the ζ -coefficient of Lv(ηl) is
vl+1 − el+1

−1 (g). This implies that ηi (v) = (e−1)
i (g) for all i ≥ 0.

Using this, the ζ̄ -coefficient of Lv(η0) is e−1e−1g + fu g. In general, the ζ̄ -coeffi-
cient of Lv(ηi ) is

e−1v
i +

i−1∑

j=0

(
i − 1

j

)

T i−1− j
u v j .

Using v j = e j
−1(g) and T i = (e−1)

i ( f ), this becomes (e−1)
i−1(e−1e−1g + fu g). ��

To state Noether’s theorem in this context, we need to recall a standard definition
and introduce a refinement of the space of generalized symmetries.

Definition 10.4 If v is a generalized symmetry, then η0(v) is its generating function.

Definition 10.5 Let Ŝ ⊂ S be the subspace of proper generalized symmetries vwhose
generating functions satisfy Eq. (13).

Proposition 10.6 (Noether’s Theorem) There is an isomorphism between Ŝ and C
given by sending the generating function of a generalized symmetry to the generating
function of a conservation law.

Proof This follows immediately from the definitions, Lemma 10.3, and Theorem 8.3.
��

The central equation to solve in order to produce either generalized symmetries
or conservation laws is Eq. (14). This equation restricts to any integral manifold of
(M, I) defined by a solution u(z, z̄) of Eq. (1) to be the linearization of Eq. (1):

Azz̄ = − fu A. (33)
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The Jacobi fields studied in [33] are defined to be solutions to Eq. (33) and thus are
generating functions for both proper generalized symmetries of (M (∞), I(∞)) and
conservation laws. This explains the appearance of the canonical Jacobi fields of [33]
as generating functions for conservation laws in Lemma 9.2. The generating func-
tions for conservation laws/generalized symmetries are produced by Olver [31] using
recursion operators. However, his treatment is not complete because, in the case of
the sin-Gordon equation, he does not prove that the recursion operator can be applied
indefinitely to generate the full infinite sequence. More rigorous treatments have since
been given by Guthrie [23], Dorfman [17], and Sanders and Wang [34]. The methods
in [17] and [34] are specifically for evolution equations of the form ut = K (u), where
K depends on u and its derivatives with respect to the other independent variables.
The treatment in [23] is more general. One can also obtain the conservation laws for
the hyperbolic case with f (u) = − 1

4 sin(u) using the minus one flow in the work of
Terng and Uhlenbeck [38]. Presumably, the conservation laws studied in the present
article are equivalent to those derived by Ward [26], but this is not clear to us.

11 Concluding remarks

We end this article with a number of observations. We begin with some issues internal
to the theory of characteristic cohomology.

The spectral sequence machinery used in Sect. 5 to get a first approximation to
the space of conservation laws is extremely useful. Without it, one has a bewilder-
ing freedom in the choice of a representative, which will not be easy to deal with.
However, as we found in what is probably the simplest nontrivial class of elliptic
equations, the machinery of Sect. 5 and the calculations of Sect. 6 still leave one with
some very difficult equations to verify, even once the generating functions are found.
This suggests that the use of the gauge symmetry (Sect. 7 and in particular Eq. (19))
in order to produce a direct relationship between solutions to the linearized equation
and undifferentiated conservation laws may prove extremely useful, if not essential,
in proving the existence of conservation laws for more complicated EDS.

We have begun exploring this for more complicated systems such as special
Lagrangian 3-folds in C

3, special Legendrian 3-folds in S
7, and the EDS for con-

stant mean curvature surfaces in three-dimensional space forms. In each of these
cases, a gauge symmetry allows one to find a direct relationship between solutions
of the linearized system and undifferentiated conservation laws. However, one is still
left with the formidable challenge of finding solutions to the linearized equation. For
surface geometries, recursion relations for Killing fields prove useful, but for higher-
dimensional submanifold geometries, there is no theory of formal/polynomial Killing
fields. It is unclear how to produce canonical solutions to the linearized equation for
these higher dimensional systems. Adapting the theory of recursion operators [17,23]
or Killing fields [12] to this context seems essential to developing a complete theory
of exterior differential systems with infinitely many higher-order conservation laws.

A characteristic property of integrable equations is that they belong to a hierarchy
of higher commuting flows [38,41]. These higher commuting flows can be understood
as a canonical sequence of solutions to the linearization of the original equation. As
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described by Mukai-Hidano and Ohnita [30], the Killing fields of harmonic (or prim-
itive) map systems are solutions to the linearization of the harmonic map equation.
The framework of characteristic cohomology and the work in [33] suggest that these
Killing fields are canonically defined objects on an appropriate jet space that one may
restrict to any solution. It would be particularly interesting to develop an approach that
could work for integral manifolds with any topology. Integrable system approaches
to harmonic maps with higher genus domains have begun to appear [21,30]. Though
at present the only approach to higher genus surface geometries (that do not have a
Weierstrass representation) that has beared fruit has been through gluing constructions
using geometric analysis [24,28].

Pinkall and Sterling [33] use the canonical Jacobi fields to define a notion of finite
type solution. In the context of harmonic or primitive maps into homogeneous spaces,
this has been generalized using the notion of formal and polynomial Killing fields [12].
One can use conservation laws to define a notion of finite type solutions which, in the
case at hand, recovers the notion defined by Pinkall and Sterling. We will expand upon
this and the relationship between formal/polynomial Killing fields and conservation
laws in a forthcoming article.
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