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Abstract We study derivations and differential forms on the arithmetic jet spaces
of smooth schemes, relative to several primes. As applications, we give a new inter-
pretation of arithmetic Laplacians, and we discuss the de Rham cohomology of some
specific arithmetic jet spaces, especially arithmetic jet spaces of linear tori, elliptic
curves, and Kummer surfaces.
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1 Introduction

Arithmetic jet spaces with respect to a single prime p (also called p-jet spaces) were
introduced in [7] and further studied in a series of papers; see [9] and the bibliog-
raphy therein. A multiple-prime generalization of these spaces was introduced inde-
pendently in [10] and [3,4]. Multiple-prime arithmetic jet spaces are, in some sense,
assembled from single prime arithmetic jet spaces, but the way in which they are
assembled is non-trivial and, in particular, primes interact in a non-trivial manner,
within the multiple-prime spaces. As explained in [9, 10], arithmetic jet spaces can be
viewed as an arithmetic analog of usual jet spaces in differential geometry and classi-
cal mechanics; the role of the derivatives with respect to various directions is played,
in the arithmetic setting, by Fermat quotient operators with respect to various primes.

J. Borger
The Australian National University, Canberra, ACT 0200, Australia
e-mail: james.borger @anu.edu.au

A. Buium (<)
University of New Mexico, Albuquerque, NM 87131, USA
e-mail: buium @math.unm.edu



302 J. Borger, A. Buium

In particular, the functions on arithmetic jet spaces with respect to several primes can
be viewed as arithmetic analogs of classical partial differential equations on manifolds.
See [10], for instance, for an arithmetic analog of Laplacians. Alternatively, arithmetic
jet spaces can be viewed as a realization, within classical algebraic geometry, of what
one might call absolute geometry, or geometry over the field with one element. See
[2—4] or the introduction to [9].

Asexplained in [9], pp. 88—100, in the case of one prime, the tangent (and cotangent)
bundles of arithmetic jet spaces carry some remarkable structures that are analogous
to structures appearing in classical mechanics. In this paper, we extend this to the case
of several primes, and then, as applications, we give a new interpretation of the arith-
metic Laplacians in [10], and we discuss the de Rham cohomology of certain specific
arithmetic jet spaces, especially arithmetic jet spaces of linear tori, elliptic curves, and
Kummer surfaces. Although we will not make conjectures about general varieties, our
results in the above-mentioned special cases suggest that the de Rham cohomology of
Jjet spaces of varieties should encode subtle arithmetic information about the varieties
in question. The latter “conjectural principle” is one of the main motivations behind
the de Rham computations in the present paper.

In order to explain our results in some detail recall that in the paper [10], one con-
siders arithmetic jet spaces ¥ = J5(X) of orderr € Z‘io attached to smooth schemes

X over Z, with respect to a finite set of primes P = {p1, ..., ps}, and in case X
is a one dimensional group scheme, one constructs arithmetic analogs of Laplacians.
These arithmetic Laplacians are constructed as families (f1, ..., fz) where each f

is a formal function on the completion of Y along Y, := Y ® (Z/ piZ); these formal
functions are required to be “analytically continued” along the zero section Z of X in
the sense that there exists a formal function fo on the completion of Y along Z such
that fp and fj coincide on the completion of ¥ along Z N Y, for each . In this paper,
we want to revisit the idea of analytic continuation between different primes. Indeed,
we will show that:

Theorem 1.1 The arithmetic Laplacians (f1, ..., fq) have the property that the
1-forms dfi, ..., dfs extend to 1-forms defined on the whole of Y and these extended
1-forms all coincide.

See Theorems 6.3 and 7.2 below, and the discussion preceding them, for the pre-
cise statement of the result and the precise definitions of arithmetic Laplacians. So,
the arithmetic Laplacians appear as primitives, existing only on formal neighborhoods
of certain divisors, of a 1-form that exists on the whole of the arithmetic jet space Y.
This provides an alternative view on analytic continuation between different primes
and has a global flavor, as opposed to the formally local flavor of the one in [10].

As a consequence of the above, we will show that for X a linear torus, an affine
open set of an elliptic curve, or an affine open set of the Kummer surface attached
to the twofold product of an elliptic curve and for r = (1, ..., 1) (in the case of the
linear torus) respectively » = (2, ..., 2) (in the other cases) we have

Theorem 1.2 The canonical volume form on the arithmetic jet space Y = Jp(X) is
not exact on Y, but it is exact on the completion of Y along each Yp,.

See Corollaries 6.4, 7.3, and Theorem 8.1 below, and the discussion preceding
them, for precise statements and for the definition of the canonical volume form.
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Here is the plan of the paper. In section 2, we formulate this concept of analytic
continuation based on globally defined differential forms; this makes sense on any
scheme Y, not necessarily on arithmetic jet spaces. In section 3, we review and com-
plement the main concepts in [3,4,10] related to arithmetic jet spaces. In Sects. 4 and
5, we extend the discussion in [9] on the tangent and cotangent bundles of arithmetic
jet spaces from the case of one prime to the case of several primes. In Sects. 6, 7,
and 8, we apply these concepts to the case when X is, respectively, the multiplicative
group, an affine open set of an elliptic curve, or an affine open set of a K3 surface
attached, via the Kummer construction, to a product of elliptic curves. We will perform
“analytic continuation” on the arithmetic jet spaces of such schemes X, between vari-
ous primes, based on globally defined differential forms, and as a by-product, we will
derive various de Rham-style consequences for the arithmetic jet spaces in question.
In particular, we prove Theorems 1.1 and 1.2. We have chosen to restrict ourselves to
the case when X is affine because this simplifies the exposition and also captures the
essential points of the theory. However, our theory can be extended to the case when
X is not necessarily affine.

Remark 1.3 One should call the attention upon the fact that our arithmetic jet spaces
are objects completely different from Vojta [14]; indeed, Vojta’s jet spaces are con-
structed using Hasse-Schmidt derivations (which are morally “differentiations in the
geometric direction”) while our jet spaces are constructed using Fermat quotients
(which are morally “differentiations in the arithmetic directions”.)

2 Analytic continuation between primes via differential forms

For any ring B (respectively scheme Y), we denote by Q2p (respectively Qy) the
B-module (respectively the sheaf on Y) of Kéhler differentials of B (respectively Y)
over Z. We denote by

Tp = Homp(R2p, B) = Der(B, B)

the dual of Qp; we denote by Ty the dual sheaf of Qy, which we refer to as the
tangent sheaf of Y. Also for i > 0, we let Q = A'Qp, Q) = A'Qy denote the
exterior powers of Qp, Qy, respectively. Elements of H O(Y ; Q’;,) are referred to as
i-forms on Y. Also, we have at our disposal de Rham complexes (2%, d) and (23, d),
respectively, and we have the usual notions of closed and exact forms. Recall that if
B, Y are smooth over Z (or more generally over a ring of fractions of Z) of relative

dimension m then 52"3, Q’Y are locally free of rank ’7 ; by a volume formon Y, we

will mean an m-form on Y that is invertible (i.e. is a basis of Q¥). Volume forms are,
of course, closed.
If M is a module over a ring B and if / is an ideal in B, we denote by

M =lim M/1"M
<«
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the 7-adic completion of M. We say that M is I -adically complete if themap M — M T
is an isomorphism. For any Noetherian scheme ¥ and any closed subscheme Z C Y,
we denote by Y# the formal scheme obtained by completing Y along Z. If I is the
ideal sheaf of Z in Y, we also write Y/ in place of YZ.Welet Z, C Y be the closed
subscheme with ideal 7". We let

Q;=limQ} . T,

yi Y,A:hngzn.

Elements of HO(Y IA, Q’Y ;) are referred to as i-forms on Y T. Of course, HO(Y IA, Q(;IA)

is just the space of formal functions O(Y). Again, we have at our disposal an obvious
deRham complex and a notion of closed and exact forms. If Y is smooth over Z (or a
ring of fractions of Z), we have a concept of volume form.

We will use the following basic terminology:

Definition 2.1 An (i — 1)-form n € HO(YIA, Q’;Al) is an [-adic primitive of an
i-form v € HO(Y, Q) if v = dn in HOYT, Qiyf). Ani-form v € HO(Y, Q) is
called I-adically exact if it has a I-adic primitive.

In what follows, throughout the paper, we consider a finite set of primes P =
{(Pls..., pa) C Z and we will denote by Ag = S™'Z a ring of fractions of Z with
respect to a multiplicative system S of integers coprime to the primes in P.

Let Y be a smooth affine scheme of finite type over Ag. We will be interested in
the following examples of subschemes Z C Y. As before we denote by I the ideal
defining Z.

1) Vertical case: Z is defined by the ideal I = (pj ... pg). In this case

- d
yPl-pd — H y Pk
k=1

and hence

Y P1--Pd YPk’*

d
HOwrr o =T 0%, @,
k=1

In this case, we shall use the phrases P-adically exact and P-adic primitive in

place of I-adically exact and 7-adic primitive, respectively. If ¥ is smooth over
Ag, then SZ’Y 7 are locally free.

2) Horizontal case: Z is the image in Y of an Ag-point P € Y (Ap), i.e. of a section

P : SpecAg — Y of Y — Spec Ag. In this case, the ideal / is the kernel of

P* : O(Y) — Ap; by abuse of notation, we denote the ideal 7, again, by P.

If S C Y(Ap) is a set of points, we use the phrase S-addically exact to mean

P-adically exact for all P € S. Let now P € Y (Ap) be a uniform point (in the
sense of [10], Definition 2.25); recall that this means that there exists a Zariski
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open set Y1 C Y containing the image of P and possessing an étale morphism
Y1 — AV to an affine space AY = Spec Ao[T], where T = {T;} is a tuple of
variables. If this is the case, then one can choose Y| and T such that the ideal in
O(Y)) of the image of P : Spec Ag — Y1, i.e. the kernel of P* : O(Y) — Ao, is
generated by T'; we then say that T are uniform coordinates on Y. It then follows
that the sheaves Q’Y 5 are free and

HOYP, Qiyﬁ) - @ Aol[T1dTj, A --- AdTj,.

N<e<ji

3) Case Z = Z' N Z" where the ideal of Z’ is generated by py for some k, and
Z" is the image in Y of a point P € Y (Ap); hence, Z is defined by the ideal
I = (pk, P). In this case

0y PP i _ . :
HO (v Px Q) = | @ | Zp [[TNATj, A ... AdT;,.
J1<<Ji

Corresponding to examples 1) and 2) above, one can introduce more terminol-
ogy as follows. Assume Y is a smooth affine scheme over Ag with irreducible
geometric fibers, let P € Y (Aq) be a point, and let w be a 1-formon Y.

1) If w is P-adically exact, then there is a unique P-adic primitive
f= k= (fis.o fa) € QPP = O ... x O(YPh) - (2.1)

of w with fi(P) =0forallk =1,...,d. (Here, fi(P) is the image of f; via the
map (’)(YI’Ak) — Zp, defined by P.) We shall refer to f = (fi)« as the P-adic
primitive of w normalized along P. ~

2) Ifwis P-adically exact, then there is a unique P-adic primitive fj € (’)(X Py of w
such that fo(P) = 0. (Here, fo(P) is the image of f; via the map O(Y?) — Ay
defined by P.) We shall refer to fo as the P-adic primitive of @ normalized
along P.

Remark 2.2 The concepts above are directly related to the concept of analytic contin-
uation between primes considered in [10]. Indeed, assume Y is a smooth affine scheme
over A with irreducible geometric fibers, let P € Y (Ag) be a uniform point, and let
o be a 1-form on Y. Assume that w is both P-adically exact and P-adically exact.
(This will be often the case in the main examples to be encountered later in the paper.)
Let f = (fx) and fo be the P-adic and the P-adic primitives of w normalized along
P, respectively. Since d fy = dfp in @/ Zip \IT11dT; and fi(P) = fo(P)in Zp,, it
follows that fy = fo in Z, [[T]] which shows that f is analytically continued along
P and is represented by fy in the sense of [10], Definition 2.23.

Remark 2.3 The above concepts can be used to define a certain type of integration (and
periods) of 1-forms in the arithmetic setting as follows. Indeed, assume again that Y is
a smooth affine scheme over Ay with irreducible geometric fibers and let S C Y (Ag)
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be a non-empty set of points. (In our applications, S will be the whole of Y (Ap).)
By an elementary chain, we will understand a pair (P, P») of points P; € Y (Z Piy ),
P, e Y(Zpkz) such that either 1) k; = ko =: k or 2) k; # k; and there exists Pj € S
inducing both Pj and P». Incase 1), we say (P1, P») is vertical and we let P| P, denote
the ideal (py) in O(Y). In case 2), we say (Py, P») is horizontal and denote by P P>
the ideal Pjo C O(Y). By a chain, we understand a tuple I := (P, ..., Py) where

(P1, P2), ..., (Pn—1, Pn) are elementary chains. A chain as above is called a cycle
if P| = Py. We define the group of abstract periods
d
.= @k:l Zpk

d
{(ar,...,aq) € AS; > ax = 0}
k=1

For each k, the natural morphism Z,, — I is injective, and we shall view it as an
inclusion. Now let w be a 1-form on Y which is both P-adically exact and S-adically

exact. Then, one can define the integral of w along a chain " = (Py, ..., Py) by the
formula
N-1
/ w:= D (fi(Piy1) — fj(P) € TL, 22)
T j=1

where f; is any P; P;1-adic primitive of w. (Here, if (P;, P;1) is horizontal, then
fi(Pj)and f fj(Pj11) are defined as the cogesponding images of f; via the homomor-
phisms O(Y12) — Ay C Z,,kj and O(YP12) > Ag C Z,,ij defined by Pj; so they
are equal; hence, in the sum (2.2), the terms corresponding to horizontal elementary
chains are equal to 0. Also, note that summation above gives a well-defined element of
@D Z,,, not only of I1.) If I is a cycle, we may refer to fr w as a period. Note that if
wis exact on Y, then its periods vanish. (Indeed, for w exact on Y, the summation (2.2)
viewed as an element of D, Z, , although generally not zero, becomes zero in I1.)

In the main examples to be later encountered in the paper, the periods will be typ-
ically non-zero. In contrast with this phenomenon, in the projective (as opposed to
the affine) case, and under certain Arakelov-style conditions at infinity, forms that are
P-adically and S-adically exact should be expected to be exact; cf. [6], where arith-
metic analogs of the Hironaka—Matsumura theorems [12] from formal geometry are
proved.

3 Arithmetic jet spaces: review and complements

In this section, we review some of the concepts introduced in [3,4,7,9,10] and provide
some complements to that theory.
Let C, (X, Y) € Z[X, Y] be the polynomial with integer coefficients

XP +YP — (X +Y)P

C,(X,Y):=
’ p
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A p-derivation from a ring A into an A-algebragp : A — Bisasetmapd: A — B
such that

s(1) =0, (3.1)
S(x +y) = 8x + 8y + Cp(x, ), (3.2)
8(xy) = @(xP) -8y + (") - 8x + p - x - 8y, (3.3)

for all x, y € A. Clearly, the conditions above are equivalent to saying that the map
from A to B x B givenby a — (¢(a), §a) is a ring homomorphism if we view B x B
equipped with the Witt addition and multiplication. Given a p-derivation we always
denote by ¢ : A — B the map

¢ (x) = p(x)? + pdx; (3.4)

then ¢ is a ring homomorphism. Conversely, if p is not a zero divisor in B and if
¢ : A — B is aring homomorphism satisfying the Frobenius lift property ¢ (x) =
¢(x)? mod pB forall x € A, then thereisaunique p-derivation$ : A — B satisfying
(3.4). In particular, Z has a unique p-derivation é,, given by 6,n = nonl

For any two distinct rational primes pp, p2, consider the polynomial C,, ,, in the
ring Z[Xo, X1, X3] defined by

Cpy (XL, p1X1) B Cp (X{?, p2X2) _Spp

Cpr.pm (X0, X1, X2) = X7
pep pi P2 p 2
3p, D1
+- 2 x P2 (3.5)
P1
Let P = {p1, ..., pa} be a finite set of primes in Z. A §p-ring is aring A equipped
with py-derivations 6,, : A — A,k =1, ...,d, such that

Spidpa —8pdpa=Cp pla,épa,dpa) (3.6)

foralla € A, k,l = 1,...,d. A homomorphism of ép-rings A and B is a homo-
morphism of rings ¢ : A — B that commutes with the pi-derivations in A and
B, respectively. If ¢, (x) = xP* + pidp,x is the homomorphism associated to 8, ,
condition (3.6) implies that

PpPpi (@) = Gpbp, (@) (3.7)

for all @ € A. Conversely, if the commutation relations (3.7) hold, and the numbers
Pk are not zero divisors in A, then conditions (3.6) hold, and we have that ¢, 8 ,,a =
Sp®pea foralla € A.If A is a §p-ring then for all k, the pi-adic completions APk
are ép-rings in a natural way.

For a relation between these concepts and the theory of A-rings, we refer to [3] and
the references therein.
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WeletZ>o = {0, 1,2,3, ...}, and let Z‘éo be given the product order. We let ¢; be
the element of Zio all of whose components are zero except the k-th, which is 1. We
sete=> e =(,...,1).Fori = (i1,...,iq) € Z‘éo, we set PI = p'i‘ ...pé‘l and
8;'3 = 821 0---0 Sf;id and ¢;’, = ¢pi = ;,‘1 0---0 q)f,‘id. A §p-prolongation system
A* = (A”) is an inductive system of rings A" indexed by r € Z‘éo, provided with

transition maps ¢,,» : A" — A" for any pair of indices r, ¢ such that r < r/, and
equipped with pg-derivations

Sp 1 AT — AlTer
k = L..., d3 such that (36) holds for all k, l, and such that
Oriep,r'+ep ©Op = 8pp © Pppr AT — AT e

for all » < r’ and all k. A morphism of prolongation systems A* — B* is a system of
ring homomorphisms u” : A" — B’ that commute with all the maps ¢, and the §,,
of A* and B*.

Any §p-ring A induces a §p-prolongation system A* where A” = A for all r and
@ is the identity map. Conversely, if (A”) is a §p-prolongation system, then the ring

A% :=1lim A"

has a natural structure of §p-ring.

Let us say that a ép-prolongation system (A”) is faithful if the primes in P are
non-zero divisors in all the rings A" and if all the homomorphisms ¢, : A" — A" /
are injective. When this is the case, we will usually view ¢,, as inclusions A" C A"
and the primes in P are non-zero divisors in A%,

If A* = (A") is a dp-prolongation system, then for each p; € P, the sys-
tem of pg-adic completions ((A” )7’;), is easily seen to have a unique structure of
dp-prolongation system with the property that the natural maps A" — (A" )Pk define
a morphism of prolongation systems. Further, the operators §,, are continuous.

Let us say that a §p-ring A is 8p-generated by a subring A” C A if A is generated
as an A%-algebra by the set {6pa; a € A% s >0).

For any affine scheme of finite type X over Ag = S™'Z, one can define a system
of schemes of finite type, J, (X) over Ay, called the §p-jet spaces of X (or P-typical
jet spaces in the language of [4]); if X = Spec A?, with A? = Ao[T1/(f), T a tuple
of variables, and f a tuple of polynomials, then J(X) = Spec A", where

A" = Ag[8LT;i < rl/(hfii < 7). (3.8)

Here, each S%T is to be interpreted as a tuple of free variables, and each relation 853 f
is interpreted as a polynomial expression in the variables S%T by expanding it using
the rules (3.1)—(3.3) and (3.6). These same rules define a structure of §p-prolongation
system on the family (A”),. In the case where P consists of a single prime p, formal
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p-adic versions of these spaces were introduced in [7]. In the multiple-prime case
considered here, they were introduced (independently) in [10] and [3,4]. In [4], the
spaces j{) (X) were denoted by W,..(X); the notation here follows [10].

The prolongation system (A”), where A” is still O (._772.()( )), has the following
universal property: for any 8p-prolongation system (B”), each ring map A — B
extends uniquely to a map (A”) — (B") of §p-prolongation systems. Let us now
apply this in the case where B’ is the constant inductive system Ao, where each B”
is Ap and each ¢, the identity map. Since Ag has a unique ép-ring structure, this
system has a unique §p-prolongation structure. By the universal property, any ring
map A% — Aq extends to a unique map A” — B” = Ag of §p-prolongation systems
and hence defines a map X (Ag) — j{D(X )(Ap) for each r. We call the image of a
point P € X (Aop) under this map its canonical lift (to J{;(X )). We will often denote
it by P" (because of its relation with the map (3.10) below).

For Ap-algebras C, there is a functorial isomorphism

Hom 4, (Spec C, J5 (X)) = Homy, (Spec W, (C), X) (3.9)

Here, W,.(C) denotes the Ag-algebra of P-typical Witt vectors of length r with entries
in C. If P consists of a single prime p, then W, (C) is the usual ring of p-typical
Witt vectors of length r (Iength r 4 1 in the traditionally more common numbering)
with entries in C. In [4], the equation (3.9) is taken to be the definition of J(X), or
rather of its functor of points. This lets us define ._77’3(X ) for rather general X, such as
algebraic spaces. We will not need this generality here, but we will make use of (3.9),
as well as some results in [4] proved using this functorial point of view, such as the
following:

Proposition 3.1 Let f : X' — X be a smooth (respectively étale) morphism. Then,
the induced morphism g : Jp(X N — Jp(X) is smooth (respectively étale). If f is
also surjective, then so is g.
The rings A" = O(Jp(X)) form a §p-prolongation system with A being
8p-generated by A®. If Y C X is a principal open set of X, O(Y) = O(X) s, then
O(Ip(Y)) = O(Tp(X)) s, where f, =[];-, ¢§> (f)- In particular, the induced mor-
phism J5(Y) — Jp(X) is an open immersion.

In corollary 3.6, we will show that if X/Ay smooth and ._77’3()() = Spec A", then
the prolongation system (A”") is faithful.

Let us note that the homomorphisms

gpsrod)ﬁ;;:Ao—) A"

for s < r induce morphisms j{)(X ) — X, and hence a natural morphism

Tpx) 5 I x. (3.10)

S<r

This map becomes an isomorphism after tensoring with Z[1/py, ..., 1/pk].
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Proposition 3.2 If X is a group scheme, then the maps Jp(X) — Jp(X) and
\77‘5 (X) — X induced by ¢y, and d);) are group homomorphisms.

Proof 1t is enough to show that each map induces a group homomorphism on B-val-
ued points for each Ap-algebra B. We can describe these maps simply using (3.9). For
@sr, it can be identified with the map

X (Ws(B)) — X (W,(B))

induced by a map Wy (B) — W, (B) (namely, the natural projection map). For ¢§>, it
can be identified with the map

X (Ws(B)) — X(B)

induced by amap W(B) — B (namely, the s-th ghost component map). In particular,
each map is a group homomorphism. O

Remark 3.3 Let X be a smooth scheme over A and consider an affine open cover
X = JX;. Let p be a prime and let r > 0 be an integer. Then, one can glue the
formal schemes J{rp}(X ,-)ﬁ along the formal schemes j{’ }(X iNX j)ﬁ to construct a
formal scheme that we denote by J;,(X). This latter formal scheme does not depend
on the covering we chose for X and will be referred to as the p-jet space of X of order
r. After base change to ZZ’ (the completion of the maximum unramified extension
of Zp), JI’, (X) becomes equal to the p-jet space of X considered in [7,9]. Note that
taking formal completions here is needed for this approach to work. Otherwise, one
would use the method of [4].

Proposition 3.4 Let X be a smooth affine scheme over Ao, and let r,s € Z‘éo be
elements with r < s. Then, the map jfj(X ) — j{;(X ) induced by @y, is smooth and
surjective.

Proof First, let us reduce to the case where the number d of primes in P is 1. The
case d = 0 is trivial. Now assume the theorem when d = 1, and suppose d > 2.

Let P’ denote the set {py, ..., pa_1}, let s’ denote (sq, ..., s4_1), and let " denote
(r1,...,r4—1). Then, we have the following factorization of the map in question:
Ip(X) JIp(X)

Sd ! a Sd ! b ra ’
P X) ——= Ty I (X) —— Ty Ipr (XD

By Proposition 3.1, the space \77’)/, (X) is smooth over j{;, (Spec Ap) = Spec Ayp.
Therefore by the case d = 1, the map b is smooth and surjective. And by induction,
the map jf)/, (X) —> j{;,(X) is smooth and surjective. By [4] (11.1(c)), the map a is
then smooth and surjective, and therefore b o a is.
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Thus, it suffices to assume d = 1. Let us write p = p1, J = J{p}, and so on. We
can further assume s = r + 1 with » > 0, again by induction. Let ¢ denote the map
T X)) = J(X).

To show ¢ is smooth, we need to show it is formally smooth and locally of finite
presentation. Finite presentation is clear: by (3.8), both 7 r+1(X) and J" (X) are of
finite type over A, which is Noetherian.

Let us now show that ¢ is formally smooth. Let g : B — A be a surjection of rings
with square-zero kernel. By definition, we need to show that the evident map

T X (B) — T (X)(A) x g7 (x)a) T (X)(B)
is a surjection. By (3.9), we can identify this map with the evident map
X(Wr1(B)) — X(W,11(A)) Xxw,(a) X(W,(B)).
Since X is affine, this map can be identified with the evident map
X(Wri1(B)) —> X (W 11(A) Xw,(a) Wr(B)).

Thus, since X is formally smooth over Z, we only need to show that the evident ring
map

Wi1(B) —> W1 (A) xw,a) Wi (B) (3.11)

is surjective with nilpotent kernel. Using the usual Witt components, we can identify
this with the map

Br+2 SN Ar+2 XAV+1 Br+1
defined by
B0+ - br1) > (((b0), - -, §(br41)) s (bo, - -, b)) -

This map can further be identified with the map

Bt — Bl x A (3.12)
defined by (bo, ..., by41) — (bo, ..., b, g(bs41)). Since g is surjective, sois (3.12),
and hence so is (3.11). On the other hand, the kernel of (3.12) is the set of elements
O, ...,0,b), where b € ker(g). This kernel then has square zero, since we have

©,...,0,b)0,....b)=(0,...,0, p"'bb')y = 0 (3.13)

and ker (g)2 = 0. Therefore, (3.11) has square-zero kernel. It follows that ¢ is formally
smooth.



312 J. Borger, A. Buium

Let us finally show that JHTHX) > J"(X) is surjective. It suffices to show this
after base change to Z[1/p] x F,. Over Z[1/p], the map can be identified with the
projection X"*2 — X’"*! which is surjective.

For the base change to F,, we will show the stronger property that for any F ,-alge-
bra A, the map

T HEO@A) — T X0
is surjective. By (3.9), this can be identified with the map
X(Wr1(A)) — X (Wr(A)).

But this map is surjective because X is formally smooth and because the map
W,4+1(A) — W, (A) is a surjection with nilpotent kernel, again by (3.13). O

Remark 3.5 Proposition 3.4 holds, more generally, for X an arbitrary smooth alge-
braic space over Ao (See [4] for the definition of arithmetic jet spaces of algebraic
spaces.) The proof is as follows: by general étale localization properties of Jp, it is
enough to replace X with an affine étale cover, and in this case, the result was shown
above. We will not need the non-affine version in this paper.

Corollary 3.6 If J,(X) = Spec A" then the ép-prolongation systems (A") and
((A")Pr) are faithful.

Proof By Proposition 3.4, the transition maps A* — A" are faithfully flat and hence
injective. Also, since A” is flat over Z the primes in P are not zero divisors in any
of the rings A”. Hence (A”) is faithful. Now the primes in P continue to be non-
zero divisors in (A”)P. Moreover, the maps A*/prA* — A" /pr A" are faithfully flat
hence injective. It follows that the maps (As)ﬁ — (A’)ﬁ; are injective. So ((A’)ﬁ)
is faithful. O

We also have the following useful result:

Proposition 3.7 Let X be a smooth affine scheme over Ay and let X = Ul- X; be a
covering with principal affine open sets. Then, for each r, the closed set

Tp O\ Tp(x) (3.14)

has codimension > 2 in j{)(X).

Proof LetU = |J; J{;(X,-) andY = j{;(X). It is enough to show that for any prime
p, the complement (Y ® F,)\(U ® F) has codimension > 2 in ¥ ® F, and that
(Y ® Q)\ (U ® Q) has codimension > 2 in ¥ ® Q. This follows exactly as in the proof
of Proposition 2.22 in [10]. O

Remark 3.8 We will later need the following consequence of [3] (3.4.2) and [4], Prop-
osition 11.1 (cf. [10], Remark 2.27). Let X be a smooth affine scheme over Ay with
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connected geometric fibers and let P € X (Ap) be a uniform point with uniform coor-
dinates T in X. Let Y = j{;(X) and let P” € Y(Ag) be the canonical lift of P, as
defined above. Then, P is a uniform point of ¥ with uniform coordinates (S%T; i<r)
inY.

4 The tangent bundle of arithmetic jet spaces

In this section, we extend the theory in [9], pp. 88—100, from the case where P consists
of one prime to the case where it consists of several primes.

Let A be a §p-ring in which the primes in 7 are non-zero divisors and let A C A be
asubring. Let d : A — A® be a derivation and let € Z‘io. A derivationd, : A — A

will be called an r-conjugate of d on A if for any s € Zio we have
hoph =25 P -¢hod: A — A, 4.1

where &, is the Kronecker symbol.

In other words, let X = Spec A9 letk : Ip(X) — Hr X denote the limit of the
maps k<, of (3.10), let 8’ denote the vector field (..., P"d,...), on [], X, and let 3"
denote the vector field on [ [, X with values in A induced by 9. Then, an r-conjugate
of 9 is an extension of 3" to a vector field 3, on X = Spec A.

A system of derivations (d,),, d» : A — A, indexed by multi-indices r € Z‘io, will
be called a complete system of conjugates of 3 on A if for any r the derivation 3, is
an r-conjugate of d on A.

Clearly, we have the following uniqueness result:

Proposition 4.1 Assume A is a §p-ring in which the primes in P are non-zero divi-
sors and assume A is 8p-generated by a subring A C A. Let 3 : A — A be a
derivation. Then, for each r, there is at most one r-conjugate 9, of d in A. In addition,
we have 0, A" = 0 forr £ n.
On the other hand, we have the following existence result.

Proposition 4.2 Let X = Spec AY be an affine smooth scheme over Ay and let
Jp(X) = Spec A" be its 5p-jet spaces. Let 9 : A% — A% be a derivation. Then,
there exists a complete system of conjugates (9,), of 9 in A% (which is unique by

Proposition 4.1). Moreover, if, by Corollary 3.6, we view each A" as a subset of A,
then we have 9, A" C A" forallr, n.

We denote by 0, : A" — A" the restriction of 9, to A".

Proof Let A° = Ag[T1/(f) where T is a tuple of indeterminates T, and f is a tuple
of polynomials f. Lift d to aderivation d : Ag[T] — Ao[T] and, for any n define the
derivation 9, on Q[S;)T; s >0]= Q[(ﬁ‘;)T; s > 0] as the unique derivation satisfying

0y (¢';>Tu) = Srs -P- (b;D(aTa) (42)

Clearly, (4.1) holds and 9, sends each @[S%T; s < n] into itself. Set 9, = O for
re ZNZL,.
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Claim 1 9, o ¢p, = pk - $p, © Oy, ON Q[S%T; s <nl.
Indeed, the difference between the left-hand side and the right-hand side of the

above equality is a derivation that vanishes on the set of generators {¢,T; s < n} of
Q[S%T; s < n]; for, using (4.2), we have

@rpp) (DpTa) = iy T,
= 8rs4er P b FOT,
= 8r—eps - P b (D5 (ITL))
= Pk Gp (P ™% 8r e s $p(IT2))

= (px - ¢pk o ar—ek)(¢5/>Ta)~
Claim 2 9, maps AO[S;)T; s < n] into itself.

Indeed, it is enough to show that 9, (853 T, € AO[S%T; s < n]foralls < n and all
a. We proceed by induction on the sum of the components of  + s. The statement is
clearly true for s = 0 so for r + s = 0. Now assume r + s arbitrary. We may assume
s # 0, so we may assume there exists k such that s; > 1. Then

0 (8pTa) = 0, (8,87 “Ty)

— 8r ¢pk (S;D_ek Ta) - (6:;)_ek Ta)pk
Pk

= GpOr— (O “Ta) — (5 T )10, (85 1),
by Claim 1. The latter belongs to Ao[67,7; s < n] by the induction hypothesis.
Claim 3 9, maps the ideal ((ng; s <n)of Ao[(S;,T; s < n] into itself.

Indeed, one can repeat the argument in the proof of Claim 2 with 7, replaced by

Ib-
Now Claims 2 and 3 imply that 9, induce derivations A®® — A satisfying (4.1)
which ends our proof. O

Remark 4.3 The proof above shows that we have the commutation relations:
Oy o qbf;) =P - ppody: A® — A™® 4.3)

for all r, s. (Here, as usual, 9,y = 0ifs £ r.)
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Remark 4.4 Under the assurr/lption of Proposition 4.1, fix k and consider the derivation
(still denoted by ) d on (A% Pk induced by 9. Then, the system of coriugates (0,), on
A% induces a complete system of conjugates of 3 : (A%)P¢ — (A®)P% on

A = lim(A")PF

which we continue to denote by (9, ),. Recall from Corollary 3.6 that (A")ﬁ C Ay
for all n. Note that we have

B ((A")PF) C (AMPX.
Remark 4.5 Under the assumptions of Proposition 4.2, we have the following formula:
(a-3); = ¢pla)- o,

for any a € A. This follows from the uniqueness in Proposition 4.1.

Proposition 4.6 Let X = Spec A be smooth over Ay and assume () 1<a<m Is
a basis for the tangent sheaf Tx of X over Aqg. Then, the family of conjugates
(araln)lfafm, 0<r<n IS a basis for the tangent sheaf TJ%(X).

Proof Assume first X has étale coordinates, i.e. there is an étale map X — A™ =
Spec Ap[T], where T is a family of indeterminates 7}. Note that, by (4.1),

P op(39Th) = 0/ (¢pTh)
= 8, (P" - 8pT) + (polynomial in 857 with s < r,s #r))
=0/ (P" - 8pTp)
=P -9/ (85Tp)
Hence
o (8pTy) = pp(3°Ty). 4.4)
Similarly, we get
3 (8pTp) =0 4.5)

fors <r,s # r.Since Jp(X) — Jp(A™) is étale we know that

(7)
B(S%Tb) 1<b<m, s<n
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is a basis of Ti7n (x). So we may write

m
0
99 = asb . ,
r Z Z ra 3(5;)]’17)

0<s<n b=1

with aﬁg € A" = O(Jp(X)). Now order the multiindices (r, a) by the lexicographic
order. Then, by (4.4) and (4.5), the matrix « := (aﬁg) consists of m x m blocks such
that all blocks under the diagonal are 0 and the diagonal blocks are of the form ¢, 8,
where B = (0°T)). Therefore, the matrix « is invertible which ends our proof in case
X has étale coordinates.

Assume now X does not necessarily have étale coordinates. Take a finite affine open
cover X = UX; such that each X; has étale coordinates and let X’ := [] X; be the
disjoint union. Then, X’ has étale coordinates and is an étale cover of X. By [4], Prop-
ositions 11.1 and 11.4, the map " : J{,(X N — J{D (X) is an étale cover, in particular
itis faithfully flat. Consider the homomorphism u : Of%,-) x — T defined by the
collection of sections 9" of T 7z (x) (Where N is the cardinality of this collection). The
pull-back of u to J1,(X") coincides with the homomorphism u” : Ok%) oy = T
defined by the collection of corresponding sections (still denoted by) 9 of Tz, x:s
this follows from the uniqueness in Proposition 4.1 plus the fact that 7" is étale. By
the first part of the proof, u’ is an isomorphism. Since 7" is faithfully flat, it follows
that u itself is an isomorphism. This ends the proof. O

5 The cotangent bundle of arithmetic jet spaces

Lemma 5.1 Let X = Spec A be smooth over Ay and let w € Q‘AO be ai-formon X.
Then ¢pw € pir. qu,..

Proof 1t is enough to show that ¢;§k17 € pr - Qyr+e forany n € Qur. Butif n = fdg
with f, g € A" then

¢ = (fP* + pdp, )d (g™ + prdp.g)
= (P + pidp, ) (g™ 'dg + prd (8, 8)),

and we are done. O

Since, for X /Ao smooth, the primes in P are non-zero divisors in all the rings A"

(and hence in €2 47), we may define, for any i-form w € 91;40’ the i-forms

oy = L— € QL. (5.1)
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Furthermore, for n > r, we consider the forms ¢}, @, € Q’An; when 7 is clear from
the context, we simply denote these forms, again, by w,. Also, for m := P" we write

W] = . 5.2)

Note that if & € 2, and 5 € QQO then
(0 ANy =wr A1y (5.3)
for all r. Since the exterior derivative d : SZ’A, — Qi\‘tl commutes with ¢;)* , we have
(dw), = Pld(wy) (5.4)

In particular, € Q’AO is closed then the forms w, € Q’A, are also closed for all r.
Finally, let us record the formula

¢*
() = ¢p(0) (7 'dy +d6pm) 5.5)

for p € P.

Remark 5.2 Of course, it is possible to take (5.5) as the definition of qb;’; /p. We
could then define ¢’ /P" as compositions of the single prime operators q&;’;k / pk- This
approach has the benefit that it works in general, without any smoothness assumptions
on X. (See [5], 12.5 and 12.8, where ¢*/p is denoted 6.)

Remark 5.3 Also, these operators can be viewed as “universal lifts” of the inverse
Cartier operator on the corresponding forms. To explain this, assume for simplicity
that P = {p} and consider the case of 1-forms. We recall the definition of the inverse
Cartier operator [11]. Assume B is a smooth F,-algebra. For any B-module M defined
by B x M — M, (b, m) — bm we denote by F, M the additive group M viewed as
a B-module under B x F,M — F,M, (b,m) — b -m := bPm. Then, the deRham
complex

F.Q = (F,.BS F.Qp 5 F.Q3 — )

is a complex of B-modules, in particular H 1(F*SZ’E) is a B-module. The map B —
H! (F*Q’g), b+ [bP~1db] (where [ ] means class in Hl) is a derivation, so it induces
a B-module homomorphism C 1. Qp > H 1(F>,<§2]‘_,}), called the inverse Cartier
operator; it satisfies

CYadb) =a - C'(db) = [a’b?~'db].
Now if X = Spec A? and A” are as in the discussion before this remark and

® € Qo then wy € Q41. Let ¢y : (AD? — (A%P be any lift of Frobenius. There
is an induced section s : X? — J; (X) of the projection J; (X) — X?, so we may



318 J. Borger, A. Buium

consider the pull-back s*w; € Qy7 which is of course nothing but s*w; = ¢3
Denotlng by upper bars reduction mod p, a trivial computation shows that the class
[s*w1] of s*w; € Qyogr, in HY(F. A0®F ) equals C~!(@), image of @ € Q0gF,
under the inverse Cartier operator. (See also [11] for the relation between the Cartier

operator and lifts of Frobenius.)

Proposition 5.4 Let X = Spec A be smooth over Ag of relative dimension m and
assume (0%)1<qa<m is a basis for the tangent sheaf Tx of X over Ag. Let (0")1<a<m
be the dual basis for Qx (i.e. (®*, a%y = 8,p). Then, (@) 1<a<m, 0<r<n IS a basis for
Qan, dual to the basis (3r|n)1<a<rn»0<r<n~

Proof As in the proof of Proposition 4.6, we may assume there is an étale map X —
A™ = Spec Ag[T]. So we may write 3" = Y O‘bb/aaTb,’ with ap,r € A. Hence

@ =73 BaadTy with (Bap) the transposed of the inverse of (aqp). We get, using
Remark 4.5, that

(wr’aﬂ <z¢73(,3aa )P_rib (dT 1), Z(]S,P(ahb/ (%) >

= 33 ¢ Bua)$p @) (P A@RTa). P 555

a b

= dys Z Z ¢';D (,Bau’)(t’:;) (Olbb’)(sa’b’

a b
= Srs Sab s

which ends the proof. O

Corollary 5.5 Assume X is a smooth affine scheme over Ag possessing a volume form
w. Then, the form /\rsn wy is a volume form on Jp(X).

Remark 5.6 The form A, _, w, is clearly well defined up to a sign. In fact, if we
interpret it in the following way, it is completely well defined. Let A,_, Qx denote
the module determined by the property that a linear map A, _, Qx — M is the same
as an alternating linear map [],_, @x — M, where [],_, Qx denotes the set of
functions {r; r < n} — Qx. Observe that we do not need to choose an ordering on
{r;r < n}. Then define A ,<n @r to be the image of the function r — w, under the

universal alternating map [], ., @x — A, -, Qx.

Proof of Corollary 5.5 By Corollary 3.6, J5(X) is smooth over Ag. Let N be its
relative dimension over Ag. Then

N
/\ Qgm %)

is a locally free sheaf of rank one and the form A\, _, , is a section of this sheaf.
Let X = |J; X; be a covering with principal affine open sets such that Qy, is free
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for each i. Then, by Proposition 5.4, /\rsn w, 18 a volume form on each j;;(X ;) and
hence on the union | J; j7’§ (X;). But by Proposition 3.7, the complement of this union
in j7’; (X) has codimension > 2. This implies that A, <n Or is a volume form on the
whole of J5(X). O

Remark 5.7 Let S be an abelian scheme or a K3 surface over Ay (i.e. a smooth projec-
tive scheme of relative dimension 2 with H'(S, ©) = 0 and trivial canonical bundle
Q%) and fix a volume form @ on S. (So w is well defined up to multiplication by
a an element of Ag . Let X C S be an affine open set. Then, one can consider on
each j{;(X ) the volume form /\rSn wy. The latter will be referred to as the canonical
volume form on J{;(X ) and (once w has been fixed) is well defined up to sign.

Corollary 5.8 Assume the hypotheses of Proposition 5.4. For any f € A" =
O(IJp (X)), we have the following formula in Qan:

df = > D @ et (5.6)

1<a<m 0<r=<n

Remark 5.9 By continuity, the formula (5.6) continues to hold in 4.z, for any
f e (A")Pk,

Finally, we will need the following:

Proposition 5.10 Let Y — X be an étale finite Galois cover of affine smooth schemes
over Ay with Galois group T, let p be a prime, and let n, i > 0 be integers. Let w be
an i-form on the p-jet space J ;(Y) which is T -invariant. Then, w is the pull-back of
a unique i-form on the p-jet space J; (X).

Remark 5.11 Proposition 5.10 fails to be true if the p-jet spaces Jg (X) = ‘7{’}7}(X)I7
and J;(Y) = \7{’;}(Y)P are replaced by the arithmetic jet spaces J{';}(X ) and J{’;}(Y),
respectively. An example is given by Ag = Z, p # 2, Y = SpecZ[y, y~ '], X =
Spec Z[x, x '], x > y? and the O-form w := yy’, where y’ = §,y. Indeed, yy' is
invariant under y — —y, but yy’ does not belong to the image of

O(T (X)) = 0T, (V).

as one can easily see by tensoring with Q. On the other hand, yy’ belongs to the image
of

O (X)) = O, (Y)),

as one can see directly from the formula

' =2y ( lr/lz) p! (x—) € Zplx, x',x711P = O(J ) (X)).

xP
n>2
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Also, Proposition 5.10 fails to be true if the p-jet spaces J,(X) = \7{;}(X)ﬁ and
J¥) = \7{’;}(Y)1? are replaced by the spaces j{;’(X)ﬁ and J;;(Y)ﬁ , respectively,
where P consists of at least 2 primes one of which is p.

Finally, note that Proposition 5.10 obviously fails “over Q” since over Q the jet
spaces of order n become n + 1-fold products, and hence the projection between the
jet spaces of ¥ and X becomes a Galois cover with group I'**! (rather than I").

Proof of Proposition 5.10 For i = 0, this was proved in [9], Proposition 3.27. So we
may assume i > 1. LetY = |J ;j Yj be an affine open cover such that Qy; is free
for each j, and let X ; be the preimage of ¥; in X. Since JI',' (X) = Uj J[’j(Xj) it is
sufficient to prove the Proposition for X ; — Y foreach j. Replacing Y be Y; we may
assume Qy is free. Let nl, ..., ™ be abasis of Qy and ', ..., " be the pull-back
of this basis on X which is a basis of Qx. By Proposition 5.4, we may write

w = E Aoy, O %

o ..

for unique aq,..o; € O(J;’(Y)). Since w and w!, ..., @™ are T-invariant, it follows
that ag,. ., are I'-invariant hence (by the i = 0 case of the Proposition) they are
pull-backs of unique functions in O(J I’} (X)), which ends our proof. O

6 The multiplicative group

In this section, we let Ag = S~!Z where S is the multiplicative system of all inte-
gers coprime to py, ..., pg. Assume X = G,, = Spec A9 A0 = Aplx, x_l], is the
multiplicative group scheme over Ag. Then, the origin is a uniform point of X with
uniform coordinate 7 = x — 1in X. Let w = dTX € QgG,,/Ay- Clearly, w is closed but

not exact on G;,. Recall that we sete = (1,...,1) € Zio and define the 1-form
0 == > (=)o, € HATHGn), Q5 G,)- (6.1)
0<r<e

where |r| is, as usual, the sum of the components of r and w, are defined as in (5.1).
Note that

d *
) ¢
0= (11 (1 _ ﬂ) == 3 pumop,
k=1 Pk m|
Ple-pd

where 1 is the Moebius function and wy,, are as in (5.2).
Consider now the elements

Yl o€ (AP =7, [x, x5, 217,

1 8, X Spx  pr {(Smx\°
1. X\ _ O X
wpk T Dk lOg (1+pxpk ) - x Pk 2 (xpk) ’
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Symbolically, one might write v 117k = p,jl log ¢, (x) —log x. We pass to the multiple-

prime case by defining the elements

d
fo=111 (1 — ‘i—”l’) V) € (A)PE, (6.2)
12k
Note that the vector
Yo = (f1, ..., fa) (6.3)

is the arithmetic Laplacian of G,, introduced in [10]. Also consider the logarithm of
the formal multiplicative group

') Tn
_ _1\n—1
lg,, (T) = E (=D - € QITI]

n=1

and the series

d
Yo o= — (H (1 - ‘i—”l’))zgm(n € QI[8%T;i <e]l. (6.4)

=1

(In fact, we have 1//51’0 € Ao[[(S;‘;T; i < e]]. See the proof of Theorem 3.3 in [10].)
As discussed in the introduction, we can think of the f; and 1//";1’0 as being series

expansions of the formal expression — Hle a1- d;il’) -log(x) in different regions of

the Ag-scheme G,,. In [10], it was shown that the expansions agree on what could be
interpreted as the intersection these regions. In Theorem 6.3 below, we show that they
are solutions to a common differential equation.

Lemma 6.1 dlﬁll,k =— (1 — d;"kk) w.

Essentially, this was given in [9], Proposition 7.26, but for the convenience of the
reader, we will include a simple proof here.
Proof Let us abbreviate p = pi. Then we have
pdlﬁ}, =dlog(l + px~P5,x)
_d(1+ px~P8,x)

I+ px=Pdpx
_d(l+ px7Pspx) +d(x1’) dx
1+ pPXPépx xP b X

_d(xP + pépx) dx

xP + pépx P X
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_dgpx)  dx

e,

= (¢, — )d—x
= p p . .
Dividing by p then completes the proof. O

Let us say that a 1-form @ on some space Jp(Gn) is invariant if
w e = pri® + prio,
where

K, pri, pra: j;;(Gm) X jg(Gm) - j;;(Gm)

are the multiplication and the 2 projections, respectively. (This agrees with the stan-
dard definition of invariance of 1-forms because we are in a situation when our group
scheme is commutative.)

Lemma 6.2 The Ao-module consisting of the invariant 1-forms on Jp(Gn) is free
with basis {w, | r < n}. Furthermore, any invariant 1-form on \77'5 (Gyy) is closed.

Proof Let us first show each w, is invariant. By definition, we have w, = ¢}, % (w).
And by Proposition 3.2, both ¢, and ¢"* are group homomorphisms. Since w is an
invariant differential on G,,, we have that w, is an invariant differential on \77’5 (Gp).

By Proposition 5.4, the set {w, | r < n} is a basis of the O(J5(Gy))-module of
global 1-forms on j{;(Gm). In particular, it is Ag-linearly independent. It remains to
show every invariant differential is in its Ag-linear span. Let @ be an invariant dif-
ferential, and write @ = >, <n Aror with a, € O(J,,’; (G,)). Since @ and the w, are
invariant, each function a, is invariant. Therefore a, € Ay.

Finally, since w is closed, so is each w;, by (5.4). It then follows from the above
that every invariant 1-form is closed. O

Let P € G, (Ap) be the origin and let S := jﬁ.(Gm)(Ao). The canonical lift
P¢ € S is the origin of .77‘;((},,,). Since P is uniform, P¢ is also uniform. Since
Jp5(Gm) is a group all points in S are uniform. Here is our main result on Gy, :

Theorem 6.3

1) @9 is invariant and hence closed;

2) w9 is not exact;

3) The arithmetic Laplacian \rt, (of (6.3)) is the P-adic primitive ofa)(e) normalized
along P¢, and Iﬂ:;l,o (of (6.4)) is the P°-adic primitive of '©) normalized along
P¢. In particular, ©'© is P-adically exact and S-adically exact.

4) If wis a 1-form on J5(Gn) that is invariant and P-adically exact, then @ is an
Ao-multiple of 0.
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Proof Assertion 1) follows from Lemma 6.2 and the Definition (6.1) of »'®). To prove
assertion 2) consider the isomorphism

T5(Gm) ® Q—> [ Gujo- (6.5)

s<e

induced by « <, of (3.10). Under this map, w; corresponds to the differential P~*pr} (w)
on the right-hand side. In particular, if i denotes the inclusion of G, into the factor
s = 0 (and 1 on all other factors), then i * applied to the differential corresponding to
'@ is @, which is not exact. And so ® cannot be exact.

To prove the first assertion in 3), we must prove, first, that if fi is asin (6.2), then we
have df = @@ forallk =1, ...,d and, second, that dxpjl’o = 0®, By Lemma 6.1,
we have

d ¢*
dfy = d H(l—i) v
12k

||
/_\
‘H\T
W
—
|
SN
N
e

||
':l&

*
l=1 )

The statement about /7, , follows in the same way. To prove the second assertion
in 3), we use the translation by points in S to reduce to the case of the origin.
To prove assertion 4) embed

Ap 1= O(T5 (G
into
By :=Zp [6pT;r < el]
for each k. By hypothesis @ = dgi, with g € Ay for all k. We may assume that the

gk, viewed as elements of By, have no constant term. Since @ is defined over Ay it
follows that each g; belongs to By := Q[[B%T; r < e]] and that the g; are equal to
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some go € Bo. So go € Aol[6%pT;r < ell. Since u*® = pri@ + pr3@ and go has
no constant term, it follows that

g0 = pri go + pr3 8o, (6.6)
where
W, pri, pry  AollspT;r < ell — Aoll8pTh, 8pTa; r < el]

in (6.6) are induced by the formal group law and the 2 projections respectively. We
conclude that the tuple (g¢) is a §p-character on Gy, in the sense of Definition 2.33
in [10]. Since the order of (gi) is e, which is also the order of (f), Theorem 3.4 in
[10] implies there exists p € Ag such that gz = p - fx. Hence w = p - ' and we are
done. O

Consider next, for any multi-index n, the volume form /\rSn w; on j{; (Gy). (See
Corollary 5.5.) It will be referred to as the canonical volume form on j{;’ (Gn).

Corollary 6.4 Ifn > e, the canonical volume form on Jp(Gnm) is P-adically exact
and S-adically exact but not exact.

Proof Indeed, we have A, Oy = @@ A ( /\0# <n a)r), which is P-adically exact

and S-adically exact because »'® is P-adically exact and S-adically exact, by Theo-
rem 6.3. Assume now that the canonical volume form on J{; (Gy,) is exact and let us
derive a contradiction. Using the isomorphism (6.5), we deduce that the form

dx dxy
V:_/\"'/\—
X1 XN

on GZ Q= Spec Q[xft, o, xf\;] (where N is the number of elements r that are < n)
is exact. Sov = dn,

N —_—
dx) dx; dxy
n:Efi_/\.../\_/\.../\_’
A X1 Xi AN
i—

fi € Qlxi, ..., xi1. Hence

N

Z(—l)ix,'a—ﬁ =1.

0x
i=1 !

But this is impossible because none of the Laurent polynomials x; % has a constant
term. O

Remark 6.5 We expect that if n # e then the canonical volume form on J{; (Gn)
is not P-adically exact. In any case, this form is not exact (cf. the proof above that
applies to any N).
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Corollary 6.6 Consider the derivation 9 = x% : OGy) — O(Gy,) and let 9, be
the r-conjugates of 0. Then

o fie = (=)

forallk =1,...,dandr < e.
Proof By assertion 3) in Theorem 6.3 and Remark 5.9, we have

D (Do =@ =dfi =D @0 fwr.

r<n r<nmn
By Proposition 5.4, the w, form a basis. Thus 3, fy = (—1)I". O
Remark 6.7 Using arguments from [10], it is easy to show that the 1-form (® on
Jf, (Gn) typically has non-zero periods. Indeed, consider the cycle

I'= (P, Py, Py, Py, P))

on J5(Gnm), where Pje € Jp(Gm)(Ag) C Tp(Gu)(Z I’kj) are the canonical lifts of
Pj € G (Ag), ki = ko # k3 = k4, P, and P; are induced by the identity section
Py =1 € Gu(Ag) = A, and P and P4 are induced by a section Py € Aj. If

P14 = %1, then
/a)(e) =0.

r

Indeed, each of the py;-adic primitives fj; for '®) gives a group homomorphism
Jf; (G)(Z P ) — G.(Z P ). But the target is torsion free, and Py, is a torsion point.
So we have fi; (Pfy) =0.

However, if P14 # %1, we have that

/ @ = fi, (P{y) — fis(P{y) # 0.
r

This follows from [10], proof of Theorem 3.4. (The argument is that fi, (Pyf,) is anon-
zero rational number times the py,-adic logarithm of an element in 1 + py, Z iy \{1};
but the latter logarithm is not in Q by Mahler’s p-adic analog [1,13] of the Hermite—
Lindeman theorem.)

7 Elliptic curves

Again, we let Ay = S™!Z where S is the multiplicative system of all integers coprime
to pi, ..., pqg. Assume all primes in P are > 5. Consider an elliptic curve over Ay,

E := E,; := Proj Ao[xo, x1, xz]/(xox% — x13 — axlxg — be),
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with a,b € Ag and —4a® —27b* € Af. Letw = & € HUE,Qp), x = 3

x0°
y = f{—g, T = 2’6—‘ Let X C E be the affine open set where x» is invertible. The origin
P =10, 0, 1] is uniform with uniform coordinate 7. We continue to denote by w the
image of w in H 0 (X, Qx). Clearly, w is closed but not exact on X. Let a, be the trace
of Frobenius on E ® F),. (So E has 1 — ap, + py points with coordinates in T, .)
Also, we extend this definition by setting

i1 id
ap i=a, ...d,

form = p’i‘ ...p;"|p1 ... Pd, ij €10, 1}. Consider the form
2¢) : Pp ¢;zz 0( 72
o =T 1 ap =2 + =% ) o e B (TE 0. Q1)) -
=1 pi Pi P
One can write
w(Ze) — Z ,U«(m/)m//am/a)[m],
mlplz‘..ptzl

where m = m'(m")* withm’, m” square free and coprime; w is the Moebius function;
and ] is as in (5.2). It follows from [9], Theorem 7.22 and Corollary 7.28, plus [8]

Theorem 1.10, that there exist elements
vy, € O, (E))

(where J ,%k (E) denotes the formal scheme defined in Remark 3.3) such that w%k vanish

at 0 and
¢* ¢>k 2
ay? =(1-a, 2 + k(ﬂ) . (7.1)
P ( PR

Clearly, wf,k are unique with the above properties. We continue to denote by wlz,k the

image of this element in O(J[%k (X)) = O(j%ek (X )ﬁ). (N.B. The superscript 2 in wgk
is not an exponent; it merely indicates that the order of that element is 2.) Following
[10] consider the elements

d
® b,z _
fo= T = an =2 + p—2 ) | w2, € 0TF ).
=1 Pl P
I#k
The vector

YE = (fi, s fa) (7.2)
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is the (restriction to X of the) arithmetic Laplacian of E introduced in [10]. Moreover,
we may consider

d 2
Vi = [H(l — ami—”l’ + pi (%) )} 15(T) € Q8RT: i <2e]l, (7.3)

=1

where [g(T) € Q[[T]] is the logarithm of the formal group of E. By [10], proof of
Theorem 3.7, we have

Vi € Aoll85T; i < 2el].
Let u : E x E — E be the multiplication map and let
X? . =xxX)Nnu '(X)CE xE.
Let us say that a 1-form @ on some space Jp (X) is invariant if
wWo=nfo+ i,

where w, wy, T j{;(X @y - j7’;(X) come from the multiplication and the 2
projections. (Again, this agrees with the standard definition of invariance of 1-forms
because we are in a commutative situation.)

Lemma 7.1 The Ag-module consisting of the invariant 1-forms on \77’§(X ) is free with
basis {w, | r < n}. Furthermore, any invariant 1-form on J{;‘.(X) is closed.

Proof Exactly as in the case of G,,. O

Since the origin P = [0, 0, 1] € X (Ap) is uniform so is its canonical lift P2 ¢
T5 (X)(Ao); of. Sect. 3. Let S = T2 (X)(Ao). Since J5 (X) is a group all points in
S are uniform.

Theorem 7.2

1) @@ js invariant and hence closed;

2) @@ is not exact;

3) The arithmetic Laplacian w%“’ (of (1.2)) is the P-adic primitive of ©*¢ normal-
ized along P*¢ and w%‘fo (of (1.3)) is the P?*-adic primitive of ®'*®) normalized
along P?¢. In particular, 0*® is P-adically exact and S-adically exact.

4) Assume E has ordinary reduction at all the primes in P and & is a 1-form on
j,f;(X ) that is invariant and P-adically exact. Then, & is an Ag-multiple of 0.

Proof Assertions 1) and 2) follow exactly as in Theorem 6.3. To prove assertion 3)
we must prove, as in the case of Gy, that dfy = ®?® forallk = 1,...,d and
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dl/f;ge,o = w9, By (7.1) we have

d ¢ b\
dfx =d H(l—ap,ﬁ+m(ﬂ)) v

e pi
1k
d * ¢* 2
)4 P 1
= H(l _am_l + pi (7{1) ) v,
I=1
Ik
d * * 0\ 2 * * 0\ 2
¢ é ®
111 1_aplﬂ+pl(ﬂ) (1=a, 2 (ﬂ) w
il )i p
Ik
d

Il
N
r=
N

I

EQ
=

+

=
~—
3 S
\/N
~~—"

S

A similar computation proves the statement about w%fo. To prove assertion 4), we
proceed exactly as in the proof of assertion 4) in Theorem 6.3; instead of Theorem 3.4
in [10], we need to use Theorem 3.8 in [10] in conjunction with Lemma 7.33 in [9].

O

Consider next, for any multi-index n, the volume form A r<n @r ON 7’;(X ). (See
Corollary 5.5.) It will be referred to as the canonical volume form on j7’§ (X). Also let
§ = Tp(X)(Ao).

Corollary 7.3 If n > 2e the canonical volume form on Jp(X) is P-adically exact
and S-adically exact but not exact.

Proof The same argument as for G,,,. To prove non-exactness it is enough to prove, as
in the case of G,,, thatif we view E and X as schemes over Qandv € HO(EV, QgN) C
H g r(E N is a volume form (where N > 1 is an integer) then the image of v via the
restriction map

HY(EN) — HY L (XV)

isnon-zero. But v lies in the H})R (E)®- - -®H$R (E) Kiinneth summand of HgR (EM)
so the image of v in HgR(XN) lies in the HLI)R(X)®~ . ~®H11)R(X) Kiinneth summand
of HgR (X™). So we are reduced to show that the restriction map HLI)R (E) —> H})R (X)
is injective, which is true. O

Remark 7.4 We expect that if n # 2e then no invariant volume form on J5(X) is
‘P-adically exact. In any case, no such form is exact (cf. the proof above that applies
to any N).
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Remark 7.5 Let S be an abelian scheme or a K3 surface over Ag and let X C S be
an affine open set. It is natural to ask if the canonical volume forms (cf. Remark 5.7)
on the various jet spaces Jp(X) are P-adically exact. We are not able to treat this
question in general. Note however that by Theorem 7.2 the answer to this question is
positive for abelian schemes of the form § = Ey x --- x E,, with E; elliptic curves
as in this section and X = X x --- x X,;, with X; C E; affine open sets. A special
case of K3 surfaces will be treated in the next section.

Corollary 7.6 Consider the derivation 0 = y% : O(X) - O(X) and let 0, be the
r-conjugates of 9. Then

o fr = M(m/)m//am’
forallk =1,...,dandr <2e,m =P".

Proof As in the Corollary 6.6, this follows from assertion 3) in Theorem 7.2 and
Remark 5.9. O

Remark 7.7 As in the case of G, using arguments from [10], it is easy to show that
the 1-form ®*) on 72 (X) typically has non-zero periods. Indeed, consider the cycle

I = (P{, P, P, P{*, P})

on Jff(X), where sze IS J%E(X)(Ao) - J%e(X)(Zpki) are the canonical lifts of
Pj € X(Ao), ki1 = ko # k3 = k4, P> and P3 are induced by the identity section of
E(Ap) and P; and Py are induced by a section Pjq4 € X(Ag). As with Gy, if P4 is

torsion then
/ 0?9 = 0.

r
However, if Pj4 is non-torsion, we have that

/ 02 = fi (PX) — fii(P2) £0.

r

This follows from the proof of Theorem 3.8 in [10]. (The argument is that f, (Pﬁf )
is a non-zero rational number times the py,-adic elliptic logarithm of an element in
pklZpkl \{0}, but the latter logarithm is not in Q by Bertrand’s p-adic analog [1] of
the Hermite—Lindeman theorem.)

8 K3 surfaces

In this section, we consider our theory for a special class of K3 surfaces, namely for
Kummer surfaces attached to products of two elliptic curves over Q. For simplicity,



330 J. Borger, A. Buium

we will only discuss P-adic exactness; an analysis of S-adic exactness can be done
but requires a slight generalization of the discussion in the previous section (in which
sections are replaced by multisections), so it will be omitted here.

Again, we let Ag = S™'Z where S is the multiplicative system of all integers
coprime to pi, ..., pg and assume that all primes in P are > 5. Consider two ellip-
tic curves E = E, ; and E = Ea,é over Ag, as in the previous section, defined by

cubics with coefficients a, b € Ag and @, b € Ao, respectively. Denote by @ and @
the corresponding 1-forms on E and E and denote by a e and ap, the corresponding
traces of Frobenius. For each k = 1, ..., d, we have at our disposal the functions
w;k € O(Jgk(E )) and &gk € (’)(Jgk(ﬁ)), respectively. Consider the abelian scheme
A = E x E. We view w and & as 1-forms on A via pull-back. Then « := w A @ is a
volume form on A. We also view wlz,k and @gk as elements of O(J g(A)) via pull-back.

Let T C E and T C E be the kernels of [2] (the multiplication by 2) on E and
E respectively and assume that 7 and T are unions of sections of our elliptic curves
over Ag (in other words, we assume that the cubics X3 4+ax+band B3 +ai +b
have all their roots in Ag). Let S = Km(A) be the Kummer surface attached to A,
i.e., S = B/i where B is the blow up of A at T x T andi: B — B is the involution
lifting of the multiplication by —1, [—1] : A — A. We have a diagram

A< B s,
Recall that

16
e (T xT)) = U L;

j=1

where L; are P's on S with self-intersection —2. Let o be the volume form on §
normalized such that 7*0 = €*« on B.

Let U C A be an affine open set that is symmetric (i.e. [-1]U = U) and disjoint
from T x T. Moreover, let Y = ¢ ! (U) and X = Y/i. So we have a diagram

U<v5Lx

where the first map is an isomorphism and the second is a finite étale Galois cover
with group (i).

For any multi-index n € Z‘éo, consider the canonical volume form J\
TpX).
Theorem 8.1 Let n > 2e. Then, the canonical volume form on j{; (X) is P-adically

exact. Moreover, if U = (E\T) X (E\f), then the canonical volume form on j{;(X)
is not exact.

r<n Or ON

In order to prove our Theorem, we need to introduce certain 1-forms. Indeed, for
eachk =1, ..., d consider the 1-form

= Y p,@0 = Yp & 3.1)
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onJ 5k (A) and hence on J l%k (U). Note that
dny = dlﬁlz)k AWy = wy A @y — Ap Wy N wo + Pk@2e;, N\ @0. (8.2)

Clearly [—1]*¢[%k = —‘/fﬁk and [—1]*@& = —&g on Jgk (A) so [—11*nx = nx and
hence i *(€*n;) = €*ny on Jgk(Y). By Proposition 5.10

€*ne = 0 (8.3)

on Jgk(Y) for some 1-form 6; on Jﬁk(X).
Proof of Theorem 8.1 Let us still denote by 6y the induced 1-form on Jp (X )Pk, We
claim that

/\Grdek/\ /\ or=d |6 A /\ oy (8.4)

r<n 0#r<n 0#r=<n
on jﬁ(X )7’;. This will prove that A, <n OF is P-adically exact on j{; (X). The second
equality in (8.4) is clear because o is closed and hence each o, is closed. To check the
first equality in (8.4), it is enough to prove that the left-hand side and the right-hand

side become equal when pulled back by 7, since 7 is étale. Now on the one hand, we
have

n*( /\o,): Ao = Na'or, = Ay :e*( /\a,).

r<n r<n r<n r<n r<n

Similarly

ot (/\0#5” a,) e (/\0#5,1 ar) . (8.5)

On the other hand, we have

* (d@k A (/\0#5,1 a,)) =d(@*O) Am* (/\O#EH U,)
— d(¢*np) A € (/\0#5,, a,) by (8.5)

= ¢* (dnk A (/\O;ﬁrﬁn (@r A d)’)))

e* (a)o Ao A (/\o;érgn(wr A 5),))) by (8.2)

€ (/\rin oz,) ’
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which ends the proof of the P-adic exactness assertion in the Theorem. To prove the
second assertion of the Theorem, let us assume for a contradiction that A ,<p Or 1s €xact
on j;; (X). Pulling back by r, we get that /\rSn o, is exacton jf;(U). Tensoring with
Q, we get that the volume form on EN x EN over Q restricted to (E\T)N X (I::\f‘)N
is exact for some N. But this cannot be the case, by the same argument as in the proof
of Theorem 7.2. O

Of course the affine scheme X C S we have been considering is disjoint from the
union U}ﬁzl L; of the 16 lines on S. On the other hand, we expect that if X" C S

is an affine open set which intersects | J }6:1 L, then the volume form A oy On

r<2e
,’772; (X’) is not P-adically exact. We can only prove a partial result in this direction;
see Theorem 8.2 below.

By the way each 1-form 6; extends to a 1-form on
16
2
T | S\ U Lj
Jj=1

simply because S\ |J }6=1 L can be covered by open subsets X of the type we have
been considering. Now if the 1-forms 6; could be extended to 1-forms on the whole
of J I%k(S), then it would follow (as in the proof of Theorem 8.1) that the canonical

volume form on j%e(X ") is P-adically closed for any affine open set X’ C S. As
mentioned above, we do not expect this to be true. And indeed, the extension property
for 6 does not hold, as shown by the following Theorem. Let us fix k in {1, ..., d}.

Theorem 8.2 The 1-form 6y on J Sk (S\ U}»ﬁzl L j) cannot be extended to a 1-form
on the whole of JI%k ().

Proof Let us write write p = py, 1/;12, = w;k, n = ng, 0 = O (cf. (8.3)), etc. Assume

6 can be extended to a 1-form on J[%(S). Let z = x/y z = X/y. Then, the completion
of A along the origin has ring (of global sections) Ag[[z, z]]. There is a point P on B,
lying above the origin of A such that the completion of B along P has ring Ag[[z, v]]
where 7 = zv. Then, the completion of S along the image of P has ring Ag[[u, v]],
with u = z2. Note that there is a natural identification

~ ~ ~ ~ - 2 42
Qpllz. 2, 2.7, 2" 11 = Qpllz, 2, 22,2, 227, 22711,

2
where 2 = §,z,2" = 83z, etc., and 2% = ¢ (2) = 2P + pz’, 2% = $7(2), etc. So we
have natural inclusions

~ ~ 2 2 2 2
Qpllz, 7,272,722, 277,211 = Qpllz, v, 2%, 0%, 2%, v
— Qullu, v u®, v? u? 0?7,
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Let an 1 cnZ" be the logarithm of the formal group of E with respect to z and let
2 n>1CnZ" be defined similarly. (So ¢; = ¢; = 1.) Then

1
vy = ;(dﬂ —app + p)O_ a2

inQpllz, 2%, 2%°1] and similarly for &12, So we have

n = (Z " — %” > @y + % > e (z‘f’z)") x (3 nazaz). s6)

Since we assumed that 6 extends to J g(S), it follows that there exist series

2 2
fos 1, f2, 80, 81, 82 € Qpllu, v, u?, v, u®  v?7]]
such that
n = fodu+ fidu® + Hdu® + godv + g1dv® + gadv®’. (8.7)

Replacing Z by zv in (8.6) and u by z? in (8.7), expressing 7 as a linear combination
of

dz,dz?,dz?", dv, dv®, dv?’

and picking out the coefficient of dz we get

(Z ann - agp ch(zqﬁ)n + % 2611(Z¢2)n) X (Z nEnZnilvn) = fox2z

of series in Q,[[z, v, 2%, v?, z¢2, v"’z]]. Picking out the coefficient of z"’zv, we get

% = 0, a contradiction. O

Remark 8.3 Note that the form 6 is just one of six 1-forms
6k, 0,0, , O, 6,6 (8.8)

on J I%k (X) that one could consider and that could be used in the proof of Theorem 8.1
in the same way in which 6; was used. These six 1-forms are the unique 1-forms on

2
ka (X) such that

T = €*(Yp @), THO, = €* (Y5 Do), THO) = €* (Y7 @20y),
(8.9)
T = €*(Yp,w0), T = €*(Yp @), WO = €* (Y}, w2e,).
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They can all be extended to J 5,( (S\ U}i] L ). On the other hand, as before, none of

them can be extended to J l%k S).

It would be interesting to know if the spaces J(X) (where X is as above) possess
non-zero 2-forms that are P-adically exact. For instance, one can ask the following
question: is there a non-trivial Ag-linear combination of the o,s (with r < 2e) on
j%e (X) which is ‘P-adically exact? The answer to the latter question is yes in case E
and E have supersingular reduction at all the primes in P; see Theorem 8.4 below.
But we expect that the answer to this question is 70 in case E and E have ordinary
reduction at the primes in P. Again, see the comments below.

Indeed, it is a trivial exercise in linear algebra to show that if £ and E have ordinary
reduction at py (hence a,, # 0, a,, # 0), then no non-zero 2-form on J72;k (X) thatis
a Ao-linear combination of 09, ¢, 0., can be a Zj, -linear combination of the forms

dby, do;, do}, dby, db;, o}

onJ I%k (X).
On the other hand, if E and E have supersingular reduction at p; (hence a =
ap, = 0), then

1 ~ ~
00 — Pro2e, = E(dek — prd8] — dby + pdf)). (8.10)
This can be checked by a straight-forward computation using (7.1) and the defining
formulas (8.9).

In the next Theorem, we consider the 2-form

d ¢*2
o) = (H (1 - ﬂ))(f = Z p(mym*opm)

2
k=1 Pi mlp1.-pa

on Jf; (X), where u is the Moebius function and o,,) are defined as in (5.2).

Theorem 8.4 Assume E and E have supersingular reduction at all primes in'P. Then,
the 2-form o©) on j%e(X) is P-adically exact. Moreover, if U = (E\T) x (E\T)
this 2-form is not exact.

Proof Exactly as in the proof of Theorems 6.3 and 7.2, using (8.10), one shows that
oo = dB; foreachl =1, ..., d, where ; are the 1-forms

1 d ¢*2
R Pk 4 ) Al
Bri=5 H( - 7) Ok — piby — O+ pib})

k=1 k
k£l

on jf;’ (X )’?’ and P-adic exactness follows. Non-exactness follows as in Theorem 8.1.
O
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