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Abstract Let G be a connected unipotent group over a finite field Fq . In this article,
we propose a definition of L-packets of complex irreducible representations of the
finite group G(Fq) and give an explicit description of L-packets in terms of the
so-called admissible pairs for G. We then apply our results to show that if the cen-
tralizer of every geometric point of G is connected, then the dimension of every com-
plex irreducible representation of G(Fq) is a power of q, confirming a conjecture of
Drinfeld. This paper is the first in a series of three papers exploring the relation-
ship between representations of a group of the form G(Fq) (where G is a unipotent
algebraic group over Fq ), the geometry of G, and the theory of character sheaves.
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1 Introduction

In 1960, Higman asked1 [24, p. 29] whether it is true that if q is a prime power and
n ∈ N, then the dimension of every complex irreducible representation of U Ln(Fq)

is a power of q. Here, Fq is a finite field with q elements and U Ln(Fq) denotes the
group of unipotent upper-triangular matrices of size n over Fq . This question was later
advertised and popularized by Thompson and Kirillov, among others. The answer is
affirmative, and a generalization of this fact (to the so-called algebra groups over finite
fields) was proved by Isaacs in [25]. It is natural to ask whether Isaacs’s result can be

1 I am grateful to Jon Alperin for providing this reference.
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further generalized to groups of the form G(Fq), where G is a connected unipotent
group over Fq .

If G is as above, it is not always the case that the dimension of every complex irre-
ducible representation of G(Fq) is a power of q. This interesting phenomenon was first
observed by Lusztig, who showed in [31] that if U is a maximal unipotent subgroup of
the symplectic group Sp4 over a finite field F2r , where r ∈ N, then U (F2r ) always has
irreducible representations of dimension 2r−1. The fake Heisenberg groups introduced
in [10] (see also Sect. 2.10) provide similar counterexamples in every characteristic
p > 2.

In 2005, Drinfeld conjectured that if a unipotent group G has the property that every
geometric point of G is contained in the neutral connected component of its central-
izer, then the dimension of every irreducible representation of G(Fq) is a power of
q. One of the main goals of our paper is to prove this conjecture (see Theorem 2.5).
From the viewpoint of character theory for finite groups, this is the most appealing
result of the paper. However, we must point out that the proof we present (which is the
only one known to us) heavily relies on geometric techniques, and may appear to be
somewhat indirect. In particular, it is based on the notion of an L-packet of irreducible
representations of G(Fq), which we introduce for an arbitrary connected unipotent
group G over Fq , and on our second main result, which provides a description of
L-packets in more concrete terms.

The idea of using geometry to study representations of groups of the form G(Fq),
where G is an algebraic group over Fq , is not new. For reductive G, one has the theory
of Deligne and Lusztig, which constructs many virtual representations of G(Fq) in the
�-adic cohomology of certain varieties X over Fq with a G-action, as well as Lusztig’s
theory of character sheaves, which expresses the irreducible characters of G(Fq) over
Q� as linear combinations of the “trace of Frobenius functions” of certain irreducible
perverse �-adic sheaves on G.

The case of unipotent G was also originally considered by Lusztig. In [31], he pre-
dicted the existence of an interesting theory of character sheaves for unipotent groups
in positive characteristic2 and defined the character sheaves in an ad hoc manner for
the maximal unipotent subgroup3 U of the symplectic group Sp4 over a field of char-
acteristic 2. Lusztig proved, moreover, that if the ground field is a finite field F2r , then
the trace functions associated with the character sheaves on U form a basis of the
space of class functions on U (F2r ), and the relationship between these functions and
the irreducible characters of U (F2r ) is similar to the one that exists in the theory of
character sheaves for reductive groups over finite fields.

Lusztig’s work led Drinfeld to formulate a series of definitions and conjectures that
should form a basis of a general theory of character sheaves for unipotent groups in

2 In characteristic zero, a unipotent group is “the same” as a finite dimensional nilpotent Lie algebra, and
in this case the theory of character sheaves is essentially equivalent to Kirillov’s orbit method [27]. In par-
ticular, character sheaves themselves are simply the Fourier transforms of the constant rank 1 local systems
on the coadjoint orbits for the group.
3 This is the first interesting example where the orbit method does not apply, cf. [10].
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positive characteristic. We refer the reader to [10] for an overview. At present, many
of these conjectures are already known [8,9].

The approach taken in the present article is somewhat different, although the meth-
ods we use are closely related to those proposed by Drinfeld and Lusztig, and they
form a basis for [8,9]. Character sheaves do not appear in this paper, but our goal is still
to study irreducible representations of G(Fq) by relating them to constructible �-adic
complexes on G, or, more precisely, to objects of the equivariant derived category
DG(G).

Our work can be thought of as an attempt to geometrize two classical and well-
known results of character theory for finite groups, which we now state. If � is a finite
group, let Fun(�)� denote the space of conjugation-invariant functions � −→ C. It is
a commutative algebra under convolution of functions. The first result is that there is
a natural bijection between complex irreducible characters of � and the minimal (in
other terminology: “indecomposable” or “primitive”) idempotents in Fun(�)� , given
by χ ←→ |�|−1χ(1) · χ (see e.g., [10]). The second result is that if � is nilpotent,
then every complex irreducible representation of � is induced from a 1-dimensional
representation of a subgroup of �.

In this paper, the word “geometrization” refers to replacing finite groups with alge-
braic groups G over finite fields Fq and studying representations of groups of the form
G(Fq) by relating them to the geometry of G. The ground field for the representations
is taken to be Q� rather than C. Geometrization also involves replacing functions on
finite groups with (complexes of) constructible �-adic sheaves on algebraic groups and
using Grothendieck’s sheaves-to-functions correspondence.

The geometric analogue of the bijection between irreducible characters of a finite
group � and minimal idempotents in Fun(�)� is not a result at all, but rather a def-
inition. More precisely, for a connected unipotent group G over Fq , we propose a
definition of L-packets of irreducible representations of G(Fq) based on the notion of
a “weak idempotent” in the equivariant derived category DG(G) (Definition 2.7). For
groups G of this type, the result on representations of finite nilpotent groups mentioned
above has a geometric analogue, which is more subtle: it becomes an explicit descrip-
tion of L-packets in terms of the so-called admissible pairs for G (Theorem 2.14).
This is the second main result of our work.

We tried to keep the amount of geometry involved in our proofs to a minimum. In
particular, not all the structures present on DG(G) have been explored. Notably, we
avoided using the braided monoidal structure on this category: only the square of the
braiding appears in the proof of Theorem 2.5, and only does so implicitly.

2 Main definitions and results

In this section, we state the two main results of our work (Theorems 2.5 and 2.14),
explaining most of the relevant definitions (although some technical details are post-
poned until later sections) and giving some historical background. In Sect. 2.10, we
illustrate our theory by describing the L-packets of irreducible representations of
G(Fq), where G is a so-called fake Heisenberg group over Fq . The strategy we use to
prove our main results is outlined in Sect. 3.
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2.1 Conventions

If k is any field, an algebraic group over k is defined as a smooth group scheme of finite
type over k. We recall that “smooth” is equivalent to “geometrically reduced” in this
situation, and if k is perfect, the word “geometrically” can be omitted. By a unipotent
group over k, we will mean a unipotent algebraic group (in particular, smooth) over
k. We denote by Q� a fixed algebraic closure of the field Q� of �-adic numbers, and
whenever the notation Q� is used, we invariably assume that � is a prime different
from the characteristic of the base field k.

Our conventions regarding finite fields are as follows. Let p be a prime number,
fixed once and for all, and let F be a fixed algebraic closure of the finite field Fp

with p elements. If q = pr for some r ∈ N, we write Fq for the unique subfield of
F consisting of q elements. All representations of finite groups that we consider are
assumed to be defined over Q�, where � �= p. (This restriction only becomes relevant
when we use geometric methods coming from �-adic cohomology [21]. Much of our
theory can be developed over an arbitrary algebraically closed field of characteristic
0, but for consistency we will work over Q� throughout this article.)

2.2 Easy unipotent groups

Let us recall a definition from [10].

Definition 2.1 Let k be a field and k an algebraic closure of k. An algebraic group
G over k is said to be easy if every g ∈ G(k) is contained in the neutral connected
component, Z(g)◦, of its centralizer, Z(g), in G ⊗k k.

It is clear that an easy algebraic group G over k has to be connected (if not, then
applying the definition to any element g ∈ G(k) that does not belong to the neutral
connected component (G ⊗k k)◦ leads to a contradiction).

The group GLn is easy. A connected reductive group in characteristic 0 is easy if
and only if its derived group is simply connected and its center is connected. From
this point on, all easy groups discussed in this article will be unipotent.

Remark 2.2 We know of no examples of easy unipotent groups G that do not satisfy
the stronger condition that the centralizer of every geometric point of G is connected.
It appears plausible that there are no such examples.

We observe that if k has characteristic zero, then every unipotent group over k is
connected, and since closed subgroups of unipotent groups are unipotent, it follows
that every unipotent group over k is easy. Therefore, from now on we will only be
interested in the case char k > 0.

The first obvious example of an easy unipotent group in positive characteristic is
provided by U Ln , the so-called unipotent linear group, defined as the group of unipo-
tent upper-triangular matrices of size n. More generally, if G is any reductive group
over k and U is a maximal connected unipotent subgroup of G, then U is easy pro-
vided the characteristic of k is large enough (depending on the types of the simple
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constituents of G⊗k k). For instance, if G is the symplectic group Sp2n , where n ≥ 2,
then U is easy if and only if char k > 2.

Another type of generalizations of the group U Ln comes from the so-called algebra
groups. If A is a finite dimensional associative unital k-algebra, let J be the Jacobson
radical4 of A, and let G(A) denote the algebraic group over k defined as follows. For
any commutative k-algebra R, we let G(A)(R) denote the multiplicative group of all
elements of R ⊗k A of the form 1 + x , where x ∈ R ⊗k J . Then, G(A) is an easy
unipotent group over k because the centralizers of geometric points of G(A) can be
identified with linear subspaces of k⊗k J . We call G(A) the unipotent algebra group
associated with A. Observe that if A is the algebra of all upper-triangular matrices of
size n over k, then G(A) ∼= U Ln .

The example of a maximal unipotent subgroup U of Sp4 over the finite field F2r ,
where r ∈ N, was originally considered by Lusztig. This group is not easy. Lusztig
computed the character table of U (F2r ) in Sect. 7 of [31] and found that this group has
irreducible representations of dimension 2r−1. The fake Heisenberg groups defined in
[10] (see also Sect. 2.10) are also not easy (Lemma 2.16).

2.3 Representations of algebra groups over finite fields

It is known that the dimension of every irreducible representation of U Ln(Fq) is
a power of q, which yields an affirmative answer to a question of Higman [24]. A
stronger and more general result is provided by

Theorem 2.3 (Halasi) If A is a finite dimensional algebra over Fq , then every irre-
ducible representation of G(A)(Fq) is induced from a 1-dimensional representation
of a subgroup of the form G(B)(Fq), where B ⊂ A is an Fq -subalgebra.

Corollary 2.4 (Isaacs) In the situation of Theorem 2.3, the dimension of every irre-
ducible representation of G(A)(Fq) is a power of q.

Theorem 2.3 was first stated by Gutkin in [22]; however, Gutkin’s proof of it was
incomplete. Isaacs proved Corollary 2.4 in [25]. Later, Halasi proved Theorem 2.3 in
[23]; it is worth noting that his proof uses Corollary 2.4 in an essential way. A more
direct proof of Theorem 2.3, based on Halasi’s methods, was given in [6], and an
improved version later appeared in [7].

One of the main goals of this article is to extend Corollary 2.4 to all easy unipotent
groups over finite fields. The result (Theorem 2.5) is stated below.

2.4 Character degrees of easy unipotent groups

One of the main results of this paper is the following theorem, proved in Sect. 9.4.

Theorem 2.5 (Main Theorem 1) If G is an easy unipotent group over Fq , the dimen-
sion of every irreducible representation of G(Fq) is a power of q.

4 Since A is clearly Artinian as a ring, J is also the maximal two-sided nilpotent ideal of A.
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This result was conjectured by Drinfeld in 2005. In our opinion, it explains the
“geometry behind [the positive answer to] Higman’s question.”

After the first version of this article was written, Drinfeld informed us that the
following extension of Theorem 2.3 (which gives a weaker result when applied to
unipotent algebra groups) can be proved.

Theorem 2.6 If G is an easy unipotent group over Fq , then every irreducible repre-
sentation of G(Fq) is induced from a 1-dimensional representation of a subgroup of
the form P(Fq), where P ⊂ G is a closed connected subgroup.

We note that this result implies Theorem 2.5, because the index of P(Fq) in G(Fq)

equals qdim G−dim P . However, the proof of Theorem 2.6 relies on many of the key
ingredients needed for our proof of Theorem 2.5. With his kind permission, we repro-
duce Drinfeld’s proof of Theorem 2.6 in Appendix 9.6.

2.5 From easy to arbitrary connected unipotent groups

It turns out that in order to prove Theorem 2.5 one has to formulate and prove a more
general statement about irreducible characters of G(Fq) for an arbitrary connected
unipotent group G over Fq . The reason is that all approaches to representation theory
for unipotent groups known to us are based on induction on dim G in one way or
another, reducing the questions one is interested in to similar questions for subgroups
of G of smaller dimension. For instance, the proof of Theorem 2.3 ultimately relies
on the possibility of constructing many nontrivial multiplicatively closed subspaces
inside the Jacobson radical J (A) of a finite dimensional algebra A. However, if G
is an arbitrary easy unipotent group over Fq , it is not known to us how to construct
sufficiently many easy subgroups of G to make it possible to give an inductive proof
of Theorem 2.5. On the other hand, G has lots of connected closed subgroups, and
most of our paper is devoted to the study of arbitrary connected unipotent groups over
finite fields.

2.6 Definition of L-indistinguishability

In the remainder of this section, we will freely use the language of �-adic cohomology
[1,14,21]. A brief review of the terminology appears in the first half of Sect. 4.

Let G be a connected unipotent group over Fq , and let μ : G × G −→ G be the
multiplication morphism. The definition of the equivariant derived category DG(G),
together with the functor of convolution with compact supports,

DG(G)×DG(G) −→ DG(G), (M, N ) �−→ M ∗ N = Rμ!(M � N ),

is recalled in Sect. 4.5. An object e ∈ DG(G) is said to be a weak idempotent if
e ∗ e ∼= e. If this holds, it is clear that the associated trace function te : G(Fq) −→ Q�

is a central idempotent with respect to the usual convolution on the space of Q�-
valued functions on G(Fq). In particular, te acts either as zero or as the identity in
every irreducible representation of G(Fq).
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Definition 2.7 Two irreducible representations, ρ1 and ρ2, of G(Fq) are said to be
L-indistinguishable if for every weak idempotent e ∈ DG(G), the function te acts in
the same way in ρ1 and in ρ2. The equivalence classes with respect to the relation of
L-indistinguishability are called L-packets of irreducible representations.

Remark 2.8 (Drinfeld) The conjectural notion of an L-packet in representation theory
of reductive groups over local fields was introduced by Langlands in [29]. It is hard to
compare it with the notion introduced above because technically the two definitions
are given in quite different terms. However, the philosophical ideas behind them are
the same.

2.7 Multiplicative local systems

If G is an arbitrary connected unipotent group over Fq , it is not at all clear how to
describe all weak idempotents in the category DG(G). For instance, it is not even
obvious that there are any apart from the zero object and the unit object 1. In Sect. 2.9,
we will state our second main result (Theorem 2.14), which yields a description of
L-packets of irreducible representations of G(Fq) in terms of more concrete objects,
the so-called admissible pairs (Sect. 2.8) for G. This description is one of the key
ingredients in our proof of Theorem 2.5. In Sect. 2.10, we show how it can be used
to describe all L-packets of irreducible representations of G(Fq) when G is a fake
Heisenberg group over Fq . We begin by introducing

Definition 2.9 If k is a field and � is a prime different from char k, a nonzero
Q�-local system L on a connected algebraic group H over k is said to be multi-
plicative if μ∗(L) ∼= L � L, where μ : H ×k H −→ H denotes the multiplication
morphism.

Remark 2.10 If k = Fq and L is a multiplicative Q�-local system on H , it is clear that

the “trace function” (Sect. 4.2) tL defined by L is a homomorphism H(Fq) −→ Q
×
� .

Moreover, L can be recovered from tL up to isomorphism. If H is commutative, every
homomorphism H(Fq) −→ Q

×
� arises in this way (cf. Proposition A.18). For non-

commutative H , this statement fails in general, even if H is unipotent (cf. the example
of the fake Heisenberg groups discussed in [10] and in Sect. 2.10).

2.8 Admissible pairs

Let (H,L) denote a pair consisting of a closed connected subgroup H ⊂ G and a
multiplicative Q�-local system L on H . The notion of what it means for this pair to
be admissible is introduced in Sect. 7.3. The precise definition is somewhat technical,
so here we will only remark that admissibility is a certain geometric non-degeneracy
condition. (In this context, the word “geometric” refers to the fact that this property
depends only on the triple (G ⊗Fq F, H ⊗Fq F,L ⊗Fq F) obtained from (G, H,L)
by base change to F, an algebraic closure of Fq .) It should be thought of as a geome-
trization of the following purely algebraic version.
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Definition 2.11 Let � be a finite group and consider a pair (H, χ) consisting of a
subgroup H ⊂ � and a homomorphism χ : H −→ Q

×
� . Let �′ be the stabilizer of the

pair (H, χ) for the conjugation action of �. We say that the pair (H, χ) is admissible
if the following three conditions are satisfied:

(1) �′/H is commutative;
(2) the bi-additive map Bχ : (�′/H)× (�′/H) −→ Q

×
� induced by

(γ1, γ2) �−→ χ
(
γ1γ2γ

−1
1 γ−1

2

)

(which by (1) is well defined) is a perfect pairing of finite abelian groups, i.e.,

induces an isomorphism �′/H
�−→ Hom(�′/H,Q

×
� ); and

(3) for every g ∈ �, g �∈ �′, we have χ |H∩H g �= χ g |H∩H g , where H g = g−1 Hg

and χ g : H g −→ Q
×
� is obtained from χ by transport of structure.

Remark 2.12 Conditions (1) and (2) in the algebraic definition of admissibility imply
that the group �′ has a unique irreducible representation πχ over Q� which acts on H
by the homomorphism χ . Condition (3) further implies that the induced representation
Ind�

�′ πχ is irreducible (in view of Mackey’s irreducibility criterion). The geometric
notion of admissibility serves a somewhat similar purpose.

2.9 Explicit description of L-packets

We now return to the geometric setting. Let G be a connected unipotent group over Fq ,
and (H1,L1), (H2,L2) two pairs consisting of closed connected subgroups H1, H2 ⊂
G and multiplicative local systems L j on Hj ( j = 1, 2). We say that these pairs are
geometrically conjugate if there exists g ∈ G(F) which conjugates one of them into
the other. Note that, in general, geometric conjugacy is weaker than conjugacy by an
element of G(Fq).

Definition 2.13 Let C be a geometric conjugacy class of admissible pairs (H,L) as
above for G. We define a set L(C ) of (isomorphism classes of) irreducible represen-
tation of G(Fq) over Q� as follows. We say that ρ ∈ L(C ) if there exists (H,L) ∈ C

such that ρ is an irreducible summand of Ind
G(Fq )

H(Fq )
tL.

It is immediate that each of the sets L(C ) is nonempty. The second main result of
our paper claims that the sets L(C ) are precisely the L-packets of irreducible repre-
sentations of G(Fq). We prove it in Sect. 9.2. This result, along with the definition of
admissible pairs, was also formulated by Drinfeld.

Theorem 2.14 (Main Theorem 2) Let G be a connected unipotent group over Fq .
For every geometric conjugacy class C of admissible pairs for G, the set L(C ) is an
L-packet. Conversely, every L-packets of irreducible representations of G(Fq) is of
the form L(C ) for some geometric conjugacy class C of admissible pairs.
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Corollary 2.15 With the notation above,

(a) every irreducible representation of G(Fq) over Q� lies in L(C ) for some geo-
metric conjugacy class C of admissible pairs for G; and

(b) if C1 and C2 are two geometric conjugacy classes of admissible pairs for G, the
sets L(C1) and L(C2) are either equal or disjoint.

Note that, a priori, neither of the statements of this corollary is obvious.

2.10 Example: L-packets for the fake Heisenberg groups

We conclude this overview with an example which to some extent motivated the notion
of an admissible pair. If k is a field of characteristic p > 2, we define a fake Heisenberg
group over k to be a connected noncommutative unipotent algebraic group G over k
of exponent p and dimension 2 (hence the word “fake”). The reason for imposing the
restriction p > 2 is that every 2-dimensional unipotent group in characteristic 0 is
commutative (which follows from the corresponding statement for Lie algebras), and
that every group of exponent 2 is commutative.5

However, if p > 2, there are plenty of examples of fake Heisenberg groups over
Fq : see [10]. Here we will describe the L-packets of irreducible representations for
such groups. We begin with a simple auxiliary result.

Lemma 2.16 If G is a noncommutative connected unipotent group of dimension 2
over a field k, then the only nontrivial proper closed connected subgroup of G is its
commutator, [G,G]. Moreover, such a group G is not easy (Definition 2.1).

Proof The assumptions imply that [G,G] is connected and dim[G,G] = 1, so that
dim Gab = 1 as well, where Gab = G/[G,G] is the abelianization of G. Moreover,
[G,G] is contained in the center of G. Now let H ⊂ G be a proper closed con-
nected subgroup, and suppose H �⊂ [G,G]. Then, H projects epimorphically onto
Gab, which implies that G = H · [G,G]. Hence [G,G] �⊂ H as well. Therefore
[H, H ] ⊂ H ∩ [G,G] is connected and 0-dimensional, whence trivial. Thus, H is
commutative. This implies that G is commutative, which is a contradiction.

For the second claim, note that if g is a geometric point of G which does not lie
in the center of G, then Z(g) �= G ⊗k k, whereas [G,G] ⊗k k ⊂ Z(g), whence
Z(g)◦ = [G,G] ⊗k k, which implies that g �∈ Z(g)◦(k). ��

Let G be a fake Heisenberg group over Fq and consider a pair (H,L) consisting of
a closed connected subgroup H ⊂ G and a multiplicative Q�-local system L on H .
If H = G, this pair is trivially admissible; its geometric conjugacy class C reduces
to the single pair (H,L); and the corresponding L-packet L(C ) consists of the single
1-dimensional representation tL : G(Fq) −→ Q

×
� .

5 In characteristic 2, there also exist connected noncommutative 2-dimensional unipotent groups, but they
all have exponent 4.
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Usually, however, not every L-packet of irreducible representations of G(Fq) is of
this form. For instance, if G(Fq) is noncommutative, it has irreducible representations
of dimension > 1. On the other hand, in many cases where G(Fq) is commutative,
not every 1-dimensional representation of G(Fq) comes from a multiplicative local
system on G.

To find other L-packets of irreducible representations of G(Fq), we must allow
H �= G. It is clear that H cannot be trivial, so by Lemma 2.16, the only remaining
possibility is H = [G,G]. In this case, H is central in G, so every Q�-local system
on H is automatically G-invariant. It is easy to check that if L is a multiplicative Q�-
local system on H , the pair (H,L) is admissible for G if and only if L is nontrivial.
Moreover, in this case, the geometric conjugacy class C of (H,L) also reduces to the
single pair (H,L), and the corresponding L-packet L(C ) consists of all irreducible
representations of G(Fq) that act by the scalar tL on [G,G](Fq).

3 The structure of the proofs

In this section, we describe the methods we used to prove Theorems 2.5 and 2.14,
stating several other results that are interesting in their own right along the way.

The main technical tools used in our proofs are:

• the equivariant derived category DG(G) for a unipotent group G, along with the
bifunctor (M, N ) �−→ M ∗ N of convolution with compact supports and the

collection of “twists” θM : M
�−→ M defined for all M ∈ DG(G);

• the functor of induction with compact supports indG
G ′ : DG ′(G ′) −→ DG(G),

defined for any closed subgroup G ′ ⊂ G; and
• the notion of an admissible pair for G, along with an extension of Serre duality

[34] to noncommutative connected unipotent groups.

The first two of these are introduced in Sects. 4 and 5, respectively, where we also
establish some auxiliary results involving these technical tools. The extension of Serre
duality to the noncommutative setting, along with some new results on the classi-
cal Serre duality and bi-extensions of connected commutative unipotent groups by
Qp/Zp, appears in the (rather extensive) “Appendix”. Admissible pairs are defined in
Sect. 7.3. The proofs of Theorems 2.5 and 2.14 occupy Sects. 7–9; together, they can
be split into the following sequence of steps.

3.1 Step 1

Let G be a connected unipotent group over Fq . We begin by proving the one result
which explicitly relates representations of G(Fq)with the geometry of G: namely, that
for every irreducible representation ρ of G(Fq) over Q�, there exists a geometric con-
jugacy class C of admissible pairs for G such that ρ lies in L(C ) (cf. Definition 2.13).
Theorem 7.1 gives a slightly more precise statement.

One of the ingredients in this step should be useful in other situations. Namely,
in Proposition 7.7 we formulate a condition under which a multiplicative Q�-local
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system on a closed connected subgroup H of a connected unipotent group G can be
extended to a multiplicative Q�-local system on all of G.

3.2 Step 2

Next we relate admissible pairs to L-packets. If (H,L) is an admissible pair for a
unipotent group G over an arbitrary field k, we consider the object eL = KH ⊗ L ∈
DH (H), where KH ∈ DH (H) is the dualizing complex of H . One checks easily
that eL ∗ eL ∼= eL, i.e., eL is a weak idempotent. If G ′ is the stabilizer of (H,L)
for the conjugation action of G, it is easy to see that the extension of eL by zero to
all of G ′ defines an object e′L ∈ DG ′(G ′). Of course, e′L is also a weak idempotent.
Finally, we apply the functor of induction with compact supports, and we show that
eH,L := indG

G ′ e
′
L is a minimal weak idempotent in DG(G), i.e., a nonzero weak idem-

potent such that if e ∈ DG(G) is any weak idempotent, then either eH,L ∗ e = 0, or
eH,L ∗ e ∼= eH,L. All these results are proved in Sects. 8 and 9.

One of the ingredients here is a more general result, proved in Sect. 5.8, which
gives a condition on a given weak idempotent e ∈ DG ′(G ′) under which f = indG

G ′(e)
is a weak idempotent in DG(G) and the functor indG

G ′ restricts to an equivalence of

semigroupal categories e ∗ DG ′(G ′)
∼−→ f ∗ DG(G). The condition is reminiscent

of Mackey’s criterion for the irreducibility of an induced representation.

3.3 Step 3

We explore the relationship between the functor indG
G ′ and the operation of induction

of class functions studied in Sect. 6.7 to prove that in the situation of Step 2, if G is
connected, k = Fq , and C is the geometric conjugacy class of the admissible pair
(H,L), then the set L(C ) of irreducible Q�-representations of G(Fq) introduced in
Definition 2.13 coincides with the set of irreducible Q�-representations of G(Fq) on
which the trace function teH,L : G(Fq) −→ Q� acts as the identity.

Remark 3.1 The functor indG
G ′ is often not compatible with induction of class func-

tions on the nose (unless G ′ is connected), which is why we must work with geometric
conjugacy classes of admissible pairs, rather than G(Fq)-conjugacy classes.

After we put the previous steps together, proving Theorem 2.14 becomes very easy.
Namely, let e ∈ DG(G) be any weak idempotent. If te ≡ 0, then we can discard e while
trying to describe L-packets. Otherwise there exists an irreducible Q�-representation
ρ of G(Fq) on which te acts nontrivially. By Step 1, there exists a geometric conjugacy
class C of admissible pairs for G such that ρ ∈ L(C ). By Step 3, if (H,L) ∈ C , then
teH,L acts nontrivially on ρ. This implies that te ∗ teH,L �≡ 0. A fortiori, e ∗ eH,L �= 0
(as convolution of functions is clearly compatible with the convolution with compact
supports of �-adic complexes). By Step 2, this implies that e ∗ eH,L ∼= eH,L, and
therefore, applying Step 3 again, we see that e acts as the identity on every irreducible
representation of G(Fq) appearing in L(C ). This result, together with the statement
proved in Step 1, implies Theorem 2.14.
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3.4 Step 4

Now let G be an easy unipotent group over Fq . In the proof of Theorem 2.5, we use
the result of Step 1 above (but not the results of Steps 2 and 3). Thus, let ρ be an
irreducible Q�-representation of G(Fq), and choose an admissible pair (H,L) for G

such that ρ is an irreducible summand of Ind
G(Fq )

H(Fq )
tL.

We employ the compatibility of the functor indG
G ′ with twists (Proposition 5.17) and

the triviality of twists in DG(G) (Lemma 4.16) to prove that if G ′ is the stabilizer of
(H,L) for the conjugation action of G, then G ′ is necessarily connected and the homo-
morphism (G ′/H)per f −→ (G ′/H)∗per f appearing in the definition of an admissible
pair (see Sect. 7.3) is an isomorphism (not merely an isogeny). Here, (G ′/H)per f

denotes the perfectization of the group G ′/H (see Sect. 9.6), and (G ′/H)∗per f is its
Serre dual (see Sects. 3.6 and 9.6).

From this, we deduce that G ′(Fq) has a unique irreducible Q�-representation ρ′

which acts by the scalar tL on H(Fq). Mackey’s criterion implies that Ind
G(Fq )

G ′(Fq )
ρ′ is

irreducible, and Frobenius reciprocity forces ρ ∼= Ind
G(Fq )

G ′(Fq )
ρ′. In particular, dim ρ =

qdim G−dim G ′ · dim ρ′ (because G ′ is connected).

3.5 Step 5

To complete the proof of Theorem 2.5, we must demonstrate that, in the situation of the
previous step, the dimension ofρ′ is a power of q. Since dim ρ′ =[G ′(Fq) : H(Fq)]1/2,
this is the same as showing that dim(G ′/H) is even. In view of the fact that the canon-
ical map (G ′/H)per f −→ (G ′/H)∗per f is an isomorphism, this follows from a more
general result, Proposition A.28, proved in Sect. 9.6.

Remark 3.2 As we already mentioned in the Introduction, in this paper we do not
define or use the braided monoidal structure on the category DG(G), without which
the significance of the “twists” in DG(G) cannot be fully appreciated (see [10]). How-
ever, we believe that the full power of the geometric techniques should be reserved for
the theory of character sheaves.

The reader who is only interested in understanding the general ideas behind our
arguments does not have to read any further. The missing details of the proofs sketched
above are filled in the remaining sections, which are more technical.

3.6 On Serre duality

We end with a comment on the notion of a multiplicative Q�-local system used in the
main body of the paper and the Serre duality studied in the “Appendix”. In the proofs
of our main results, Serre duality serves mostly as a tool, and if G is a connected uni-
potent group over a perfect field k of characteristic p > 0, we think of the Serre dual
G∗ of G as the “moduli space of multiplicative Q�-local systems on G”. However, if
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one wishes to prove foundational results about Serre duality, the most natural frame-
work (which, in particular, is independent of �) is that of central extensions by the
discrete group Qp/Zp. It would have been inconvenient for us to choose one of these
viewpoints once and for all, and to completely discard the other one. The relationship
between them is described in Sect. 7.2.

4 The category DG(G) and L-packets

4.1 Derived categories of constructible �-adic complexes

Fix an arbitrary field k and a prime � �= char k (in Sects. 4.2 and 4.8, we take k to be
finite). Throughout this section, we will work with schemes of finite type over k. If X
is such a scheme, one defines the bounded derived category Db

c (X,Q�) of construc-
tible complexes of Q�-sheaves on X . We will denote this category simply by D(X),
with the understanding that � is fixed once and for all. It is a triangulated Q�-linear
category. For perfect k, the definition of D(X) appears in [17], and in general we
define D(X) = D(X ⊗k k per f ), where k per f is the perfect closure of k.

Remark 4.1 For the purposes of this work, it would be enough to consider the case
where k is finite or algebraically closed. Here the definition of D(X) is more classical
[1,13,14]. However, with future applications in mind, we consider the more general
case in this section.

We will often use Grothendieck’s “formalism of the six functors” for the categories
D(X) (as well as their equivariant versions, defined in Sect. 4.3). For a morphism
f : X −→ Y of k-schemes of finite type one has the pullback functor f ∗ : D(Y ) −→
D(X), the pushforward functor f∗ : D(X) −→ D(Y ), the functor f! : D(X) −→
D(Y ) (pushforward with compact supports), and the functor f ! : D(Y ) −→ D(X).
We always omit the letters “L” and “R” from our notation for the six functors; thus,

f! stands for R f! and ⊗ stands for
L⊗

Q�
, etc.

Remark 4.2 In [14], the functor f! is defined for separated morphisms f when k is
finite or algebraically closed. This case would suffice for the purposes of the present
work. However, the formalism we need was extended to arbitrary fields k in [17], and
the assumption that f is separated is unnecessary [30].

The most important result we will need is the proper base change theorem; see Exp.
XII and XVII in [1] and Exp. IV in [14] for the case where k is finite or algebraically
closed; and Theorem 6.3(iii) in [17] for the general case.

Theorem 4.3 (Proper base change) Consider a cartesian square

X ′
g′ ��

f ′
��

X

f

��
Y ′

g �� Y
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of k-schemes of finite type. There is a natural isomorphism of functors

(g∗ ◦ f!) ∼= ( f ′! ◦ g′∗) : D(X) −→ D(Y ′). (4.1)

4.2 Reminder on the sheaves-to-functions correspondence

In this subsection, we assume that the base field is finite: k = Fq . Let X be a scheme
of finite type over Fq . Given an object M ∈ D(X), one can define the corresponding
function tM : X (Fq) −→ Q�. Namely, a point x ∈ X (Fq) can be thought of as an
Fq -morphism x : Spec Fq −→ X . Then, x∗M ∈ D(Spec Fq), and the cohomology
sheaves Hi (x∗M) ∼= x∗Hi (M) are constructible �-adic sheaves on Spec Fq , i.e., con-
tinuous finite dimensional representations of the absolute Galois group Gal(F/Fq)

over Q�. Let Fq ∈ Gal(F/Fq) be the geometric Frobenius, defined as the inverse of
the Frobenius substitution a �−→ aq . Then, one defines

tM (x) =
∑
i∈Z
(−1)i · tr

(
Fq;Hi (x∗M)

)
.

The main properties of the map M �−→ tM are summarized in

Lemma 4.4 Let X and Y be schemes of finite type over Fq , and let f : X −→ Y be
an Fq -morphism.

(1) If N ∈ D(Y ), then t f ∗N = f ∗tN
def:= tN ◦ f .

(2) If M, K ∈ D(X), then tM⊗K = tM · tK (pointwise product).
(3) Assume that f is separated. If M ∈ D(X), then t f!M = f!tM , where, by abuse

of notation, we also write f for the induced map of sets X (Fq) −→ Y (Fq), and
( f!tM )(y) =∑

x∈ f −1(y) tM (x).

Of these, (1) and (2) follow rather easily from the definitions, while (3) is more
subtle. It follows from the proper base change theorem and the special case of (3)
where Y = Spec Fq , which is known as the Lefschetz-Grothendieck trace formula;
see Theorem 3.2 of “Rapport sur la formule des traces” in [14].

4.3 Equivariant derived categories

We return to the situation where the base field k is arbitrary. Let G be an algebraic
group over k, let X be a scheme of finite type over k, and suppose that we are given
a regular left action of G on X . We would like to define the “equivariant derived
category” DG(X).

In general, to get the correct definition one must either adopt the approach of
Bernstein and Lunts [5] (when G is affine), or use the definition of �-adic derived cat-
egories for Artin stacks due to Laszlo and Olsson [30] and define DG(X) = D(G \X ),
where G \X is the quotient stack of X by G.

From now on, we assume that G is unipotent. In this case, one knows that the naive
definition of DG(X) (taken from [10]), given below, already gives the correct answer.
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Roughly speaking, this definition amounts to looking at the “category of G-equivariant
objects in D(X)”.

Let us write α : G× X → X for the action morphism and π : G× X → X for the
projection. Let μ : G×G → G be the product in G. Let π23 : G×G× X → G× X
be the projection along the first factor G. The category DG(X) is defined as follows.

Definition 4.5 An object of the category DG(X) is a pair (M, φ), where M ∈ D(X)

and φ : α∗M �−→ π∗M is an isomorphism in D(G ×k X) such that

π∗23(φ) ◦ (idG ×α)∗(φ) = (μ× idX )
∗(φ), (4.2)

i.e., the composition of the natural isomorphisms

(idG ×α)∗α∗M ∼= (μ× idX )
∗α∗M (μ×idX )

∗(φ)−−−−−−−−→ (μ× idX )
∗π∗M ∼= π∗23π

∗M

equals the composition

(idG ×α)∗α∗M (idG ×α)∗(φ)−−−−−−−−→ (idG ×α)∗π∗M ∼= π∗23α
∗M

π∗23(φ)−−−−→ π∗23π
∗M.

A morphism (M, φ) −→ (N , ψ) in DG(X) is a morphism ν : M −→ N in D(X)
satisfyingψ ◦α∗(ν) = π∗(ν)◦φ. The composition of morphisms in DG(X) is defined
to be equal to their composition in D(X).

Remark 4.6 If G is a connected unipotent group, the forgetful functor DG(X) −→
D(X) is fully faithful.

4.4 Functors between equivariant derived categories

In the situation of Sect. 4.3, let us assume that H is another unipotent group over
k acting on a scheme Y of finite type over k. Suppose we are given a homomor-
phism i : G −→ H of k-groups and a morphism f : X −→ Y of k-schemes which
is G-equivariant with respect to the G-action on Y induced by i . Then, the functor
f ∗ : D(Y ) −→ D(X) naturally lifts to a functor f ∗ : DH (Y ) −→ DG(X).

In the special case where H = G and i is the identity, we can also define a functor
f! : DG(X) −→ DG(Y ). Indeed, we have cartesian diagrams

G × X
idG × f ��

αX

��

G × Y

αY

��
X

f �� Y

and G × X
idG × f ��

πX

��

G × Y

πY

��
X

f �� Y

whereαX ,αY are the action morphisms andπX ,πY are the projections, so Theorem 4.3
implies that f! : D(X) −→ D(Y ) lifts to a functor f! : DG(X) −→ DG(Y ).
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From now on, we assume that if f is an equivariant morphism between k-schemes
of finite type equipped with a G-action, then f ∗ and f! are understood as functors
between the corresponding equivariant derived categories.

4.5 Convolution in D(G) and DG(G)

Let G be an algebraic group over an arbitrary field k, and μ : G ×k G −→ G the
multiplication morphism. The bifunctor

D(G)×D(G) −→ D(G), (M, N ) �−→ M ∗ N = μ!(M � N ), (4.3)

is called the convolution with compact supports. Replacing μ! with μ∗ in the above
definition would yield the “usual” convolution bifunctor; however, convolution with
compact supports is the only one that will be used in this article and will be referred
to simply as “convolution” of constructible �-adic complexes on G.

It is easy to construct an associativity constraint for the bifunctor ∗, and check that
it makes D(G) a monoidal category, where the unit object 1 is the delta-sheaf at the
identity element of G, i.e., 1 = 1∗Q� = 1!Q�.

Lemma 4.4 implies that the bifunctor ∗ is compatible with convolution of func-
tions via the sheaves-to-functions correspondence. Namely, for a finite group �, let
us define the convolution of two functions f1, f2 : � −→ Q� by the formula ( f1 ∗
f2)(g) = ∑

γ∈� f1(γ ) f2(γ
−1g). Then, for any algebraic group G over Fq and any

M, N ∈ D(G), we have tM∗N = tM ∗ tN as functions on G(Fq).
Next, suppose that G is a unipotent algebraic group over k. Unless otherwise explic-

itly stated, whenever we consider a G-action on itself, we will always mean the con-
jugation action. We also have the induced action of G on G ×k G (by simultaneous
conjugation), and the multiplication morphism μ : G ×k G −→ G is G-equivariant.
It follows (see Sect. 4.4) that (4.3) can be upgraded to a bifunctor

DG(G)×DG(G) −→ DG(G), (M, N ) �−→ M ∗ N = μ!(M � N ), (4.4)

which we also call convolution with compact supports.
Just as in the non-equivariant case, (4.4) can be upgraded to a monoidal structure on

the category DG(G). Moreover, this category has a natural braiding, defined explicitly
in [10]. We will only need a weaker assertion:

Lemma 4.7 There exist functorial isomorphisms βM,N : M ∗ N
�−→ N ∗ M for all

M, N ∈ DG(G).

Proof Consider the commutative diagram

G × G

τ

��

ξ �� G × G

μ

��
G × G

μ �� G,
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where τ(g, h) := (h, g) and ξ(g, h) := (g, g−1hg). We have M ∗ N = μ!(M � N ),
and the above diagram shows that N ∗M = (μτ)!(M � N ) = μ!ξ!(M � N ). We define
βM,N : μ!(M � N )

∼−→ μ!ξ!(M � N ) by βM,N := μ!( f ), where f : M � N
∼−→

ξ!(M � N ) comes from the G-equivariant structure on N . ��

4.6 Semigroupal categories

The notion of a semigroupal category is obtained from that of a monoidal category by
discarding all the axioms that involve the unit object. Thus, a semigroupal category is
a triple (M,⊗, α), where M is a category, ⊗ :M×M −→M is a bifunctor, and
α is an associativity constraint for ⊗, i.e., a collection of trifunctorial isomorphisms

αX,Y,Z : (X ⊗ Y ) ⊗ Z
�−→ X ⊗ (Y ⊗ Z) for all triples of objects X,Y, Z ∈ M

satisfying a standard coherence condition.
The reason we need this notion is that even though the categories D(G) and DG(G)

introduced in Sect. 4.5 are monoidal, we will have the occasion to consider certain
semigroupal subcategories of DG(G) that, at least a priori, may not be monoidal
(cf. Remark 4.8).

The notion of a (weak, strong or strict) semigroupal functor between semigrou-
pal categories is also obtained from the notion of a monoidal functor in the obvi-
ous way. Thus, if (M,⊗, α) and (N ,⊗′, α′) are semigroupal categories, a functor
F :M −→ N is said to be strict semigroupal if F commutes with the semigroupal
structures “on the nose,” i.e., F(X ⊗ Y ) = F(X) ⊗′ F(Y ) for every pair of objects
X , Y of M; F( f ⊗ g) = F( f )⊗′ F(g) for every pair of morphisms f , g in M; and
F(αX,Y,Z ) = α′F(X),F(Y ),F(Z) for every triple of objects X,Y, Z of M.

On the other hand, a weak semigroupal structure on a functor � : M −→ N is
a collection of bifunctorial morphisms ϕX,Y : �(X) ⊗′ �(Y ) −→ �(X ⊗ Y ) for
all X,Y ∈M, which are compatible with the associativity constraints in the obvious
sense. The structure is said to be strong if every ϕX,Y is an isomorphism.

An additive semigroupal category is a semigroupal category (M,⊗, α) such that
M is an additive category, and the bifunctor ⊗ is bi-additive.

4.7 Weak idempotents

Let M = (M,⊗, α) be a semigroupal category. An object e ∈ M is said to be a
weak idempotent if e⊗ e ∼= e. Observe that this notion depends only on the bifunctor
⊗ and not on the associativity constraint α.

If e ∈M is a weak idempotent, the corresponding Hecke subcategory is defined
as the full subcategory eMe ⊂M consisting of all objects N ∈M such that N ∼=
e⊗ N ⊗ e. Equivalently, eMe can be described as the essential image of the functor
M −→M given by M �−→ (e ⊗ M)⊗ e, which explains the notation.

The Hecke subcategory eMe ⊂M is stable under⊗, so it becomes a semigroupal
category in its own right. If M is additive, so is eMe.

Remark 4.8 Even if M is a monoidal category, one cannot expect eMe to be a monoi-
dal category in general. Indeed, even though e⊗ N ∼= N ∼= N ⊗ e for all N ∈ eMe,
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there is no guarantee that the functor N �−→ e ⊗ N is an auto-equivalence of eMe;
if it is not, then eMe cannot have a unit object.6

Definition 4.9 A semigroupal category M is weakly symmetric if M ⊗ N ∼= N ⊗M
for all pairs of objects M, N ∈M.

For example, if a semigroupal category admits a braiding, then it is weakly symmetric.
The category (DG(G), ∗) is weakly symmetric by virtue of Lemma 4.7. Observe that
if M is a weakly symmetric semigroupal category, then for any weak idempotent
e ∈M, we have eMe = eM =Me.

Definition 4.10 If M is an additive weakly symmetric semigroupal category, a weak
idempotent e ∈ M is said to be minimal if e �= 0 and, for any weak idempotent
e′ ∈M, we have either e ⊗ e′ = 0, or e ⊗ e′ ∼= e.

Remark 4.11 If M is an additive weakly symmetric semigroupal category, a weak
idempotent e ∈ M is minimal if and only if the Hecke subcategory eM contains
exactly two weak idempotents (up to isomorphism), namely, 0 and e.

4.8 Idempotents and L-packets

In this subsection, we again assume that the base field is finite: k = Fq . Let us fix a
connected unipotent group G over Fq . Recall from Definition 2.7 that two irreducible
representations, ρ1 and ρ2, of G(Fq) over Q�, are said to be L-indistinguishable if for
every weak idempotent e ∈ DG(G), the function te acts in the same way in ρ1 and ρ2.
In this subsection, we will explain that in this definition one can restrict attention to a
special class of weak idempotents.

Definition 4.12 If k is any field and U is a unipotent group over k, a weak idempotent
e ∈ DU (U ) is said to be geometrically minimal if for every algebraic extension k′
of k, the induced weak idempotent e′ = e ⊗k k′ in DU ′(U ′), where U ′ =U ⊗k k′, is
minimal in the sense of Definition 4.10.

Every geometrically minimal weak idempotent in DU (U ) is minimal, but the con-
verse need not be true. The next result is proved in Sect. 9.3.

Proposition 4.13 Let G be a connected unipotent group over Fq , and let ρ1, ρ2 be
two irreducible representations of G(Fq) over Q�. The following are equivalent.

(i) The representations ρ1 and ρ2 are L-indistinguishable.
(ii) For every minimal weak idempotent e ∈ DG(G), the function te acts in the same

way in ρ1 and in ρ2.
(iii) For every geometrically minimal weak idempotent e ∈ DG(G), the function te

acts in the same way in ρ1 and in ρ2.

6 This is one of the reasons why we chose the term “weak idempotent”. The notion of a closed idempotent
in a monoidal category, defined in [10], is much more rigid; in particular, if e is any closed idempotent in a
monoidal category M, then eMe is monoidal as well.
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Remarks 4.14 (1) Note that if e1, e2 ∈ DG(G) are non-isomorphic minimal weak
idempotents, then e1 ∗ e2 = 0, so te1 ∗ te2 = 0. Now if e ∈ DG(G) is a geo-
metrically minimal weak idempotent such that te �≡ 0, we can define L(e) as
the set of irreducible representations of G(Fq) on which te acts as the iden-
tity, and it follows (from Definition 2.7 and the last observation) that L(e) is an
L-packet. Proposition 4.13 implies that, conversely, every L-packet of irreducible
representations of G(Fq) is of this form.

(2) It is shown in [8] that if e ∈ DG(G) is any geometrically minimal weak idem-
potent, then te �≡ 0. In particular, one obtains a bijection between L-packets of
irreducible representations of G(Fq) and isomorphism classes of geometrically
minimal weak idempotents in DG(G). However, the proofs of these facts use
some of the methods developed in [9] (as well as additional techniques) and are
beyond the scope of the present article.

(3) On the other hand, Proposition 4.13 easily implies that if e ∈ DG(G) is a minimal
weak idempotent which is not geometrically minimal, then te ≡ 0.

4.9 Twists in the category DG(G)

A structure on the equivariant derived category DG(G) that plays an important role
in the proof of Theorem 2.5 is a canonical automorphism of the identity functor,
whose construction we now recall. Fix a unipotent group G over k, let c : G × G →
G be the conjugation action morphism c(g, h) = ghg−1, let p2 : G × G → G
denote the second projection, and write � : G → G × G for the diagonal. Then,
c ◦� = idG= p2 ◦�. For each M ∈ DG(G), the G-equivariant structure on M yields

an isomorphism c∗M �−→ p∗2 M . Pulling it back by �, we obtain an isomorphism

θM : M = �∗c∗M �−→ �∗ p∗2 M = M .

Definition 4.15 One calls θM the twist automorphism of M , or the balancing isomor-
phism. The collection

{
θM

∣∣ M ∈ DG(G)
}

defines an automorphism of the identity
functor on DG(G), which we simply denote by θ if no confusion can arise.

The following fact will be used in our proof of Theorem 2.5.

Lemma 4.16 Let G be an easy unipotent group over a field k of characteristic p > 0.
For every object M ∈ DG(G), the twist automorphism θM of M is trivial.

Proof (cf. [10]) We may and do assume that k is algebraically closed. Consider the
usual (non-perverse) t-structure on D(G) whose heart is the category Shc(G,Q�) of
constructible Q�-sheaves on G. If M ∈ D(G), we will write Hi (M) for the cohomol-
ogy sheaves of M with respect to this t-structure (i ∈ Z).

Fix M ∈ DG(G) and i ∈ Z. For every x ∈ G(k), we have the induced action of
the centralizer ZG(x) of x in G on the stalk Hi (M)x , and by continuity, the neutral
component ZG(x)◦ ⊂ ZG(x) acts trivially on Hi (M)x . In particular, since G is easy,
x acts trivially on Hi (M)x , which shows that θHi (M) = idHi (M). This implies that
θM is a unipotent automorphism of M . On the other hand, since G is unipotent, it has
exponent pn for some n ∈ N, and it follows that (θM )

pn = idM . Finally, we conclude
that θM = idM , as desired. ��
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5 Induction with compact supports

5.1 Setup

Throughout this section, G is a unipotent algebraic group over a field k, G ′ ⊂ G is a
closed subgroup, and � is a prime different from char k. Both G and G ′ are allowed
to be disconnected. We will use the notation introduced in Sect. 4 above. Our goal is
to define the functor of “induction with compact supports”

indG
G ′ : DG ′(G

′) −→ DG(G) (5.1)

and establish its basic properties, such as the existence of a weak semigroupal struc-
ture (cf. Sect. 4.6) on this functor and its compatibility with twists (Sect. 5.9). In
Sect. 5.8, we study the restriction of the functor (5.1) to a functor between suitable
Hecke subcategories of DG ′(G ′) and of DG(G).

5.2 Definition of indG
G ′

In this subsection, we will define the functor (5.1).

5.2.1 Motivation

To motivate the definition of (5.1), we first rewrite the formula for the induced char-
acter (in the setting of representations of finite groups) in a suggestive way. Let � be
a finite group, and �′ ⊂ � a subgroup. Consider the (free) right action of �′ on the
product�×�′ given by (g, g′)·γ = (gγ, γ−1g′γ ), and let �̃ = (�×�′)/�′ be the set
of orbits for this action. The left �-action on �×�′ given by γ : (g, g′) �−→ (γ g, g′)
descends to a left�-action on �̃. We have a natural�′-equivariant injection i : �′ ↪→ �̃

induced by g′ �−→ (1, g′), and a natural �-equivariant map π : �̃ −→ � induced by
(g, g′) �−→ gg′g−1 (as always, �′ and � act on themselves by conjugation).

We will use the following notation. If X is any set, Fun(X) denotes the vector
space of all functions X −→ Q�. If H is an (abstract) group acting on X , we write
Fun(X)H ⊂ Fun(X) for the subspace of H -invariant functions. If φ : X −→ Y
is a map of sets, we have the pullback map φ∗ : Fun(Y ) −→ Fun(X) given by
φ∗( f ) = f ◦φ. Finally, if φ has finite fibers (in particular, if X itself is finite), we can
also define a linear map φ! : Fun(X) −→ Fun(Y ) by the formula

(φ! f )(y) =
∑

x∈φ−1(y)

f (x).

With this notation, one can easily verify the following statements.

(a) The map i∗ : Fun(�̃)� −→ Fun(�′)�′ is an isomorphism.
(b) Let ind�

�′ : Fun(�′)�′ −→ Fun(�)� be defined by ind�
�′ = π! ◦ (i∗)−1. If ρ

is any finite dimensional representation of �′ over Q� and χ ∈ Fun(�′)�′ is its
character, then the character of the representation Ind�

�′ ρ of � equals ind�
�′(χ).
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5.2.2 Auxiliary constructions

We will define the functor indG
G ′ by imitating the formula presented in Sect.5.2.1. We

have a free right action of G ′ on G × G ′, given by (g, g′) · γ = (gγ, γ−1g′γ ), so
we can form the quotient G̃ = (G × G ′)/G ′ (it exists as a scheme, for instance,
because G × G ′ is affine), and G acts on G̃ on the left. Similarly, we can consider
the G ′-equivariant injection i : G ′ ↪→ G̃ induced by g′ �−→ (1, g′), and the G-equi-
variant morphism π : G̃ −→ G induced by (g, g′) �−→ gg′g−1, where G and G ′
act on themselves by conjugation. Applying the constructions of Sect. 4.4, we obtain
functors between the equivariant derived categories

DG ′(G
′) i∗←−−− DG(G̃)

π!−−−→ DG(G).

The geometric analogue of statement (a) in Sect. 5.2.1 is the following

Lemma 5.1 The functor i∗ : DG(G̃) −→ DG ′(G ′) is an equivalence of categories.

This result is proved in Sect. 5.2.4.

5.2.3 The main definition

In the situation of Sect. 5.2.2, let us choose a quasi-inverse to the functor i∗, and denote
it by (i∗)−1, by a slight abuse of notation.

Definition 5.2 The functor indG
G ′ : DG ′(G ′) −→ DG(G) of induction with compact

supports is defined as the composition

DG ′(G
′) (i∗)−1

−−−−−→ DG(G̃)
π!−−−→ DG(G).

Remarks 5.3 (1) Strictly speaking, the definition we gave depends on the choice of
(i∗)−1. However, different choices lead to isomorphic functors indG

G ′ , and since
we only use induction as a technical tool, we prefer to ignore this issue.

(2) Along with the functor indG
G ′ , one can introduce an induction functor

IndG
G ′ = π∗ ◦ (i∗)−1 : DG ′(G

′) −→ DG(G).

We will only need this functor in the proof of Proposition 5.17.

5.2.4 Proof of Lemma 5.1

The result would have been more or less obvious, had we used the definition of equi-
variant derived categories in terms of quotient stacks (cf. Sect. 4.3). Indeed, the map

g′ �−→ (1, g′) induces an isomorphism G ′ �−→ G\ (G × G ′), and hence an isomor-

phism G ′/(Ad G ′) �−→ G\ (G×G ′)/G ′ = G\ G̃. However, since we used an ad hoc
definition of the equivariant derived category, we will give a proof of Lemma 5.1 that
only uses that definition. The argument is based on two results:
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Lemma 5.4 Let U be a unipotent group over k, let N ⊂ U be a closed normal sub-
group, let X be a scheme of finite type over k with a left U-action, and let φ : X −→ Y
be a morphism of k-schemes which makes X an N-torsor over Y (a fortiori, the induced
action of N on X is free). The pullback functor φ∗ can be upgraded to an equivalence
of categories

φ∗ : DU/N (Y ) −→ DU (X).

Lemma 5.5 With the notation of Lemma 5.4, assume, in addition, that N admits a
complement in U (i.e., a closed subgroup H ⊂ U which maps isomorphically onto
U/N), and that φ admits an H-equivariant section σ : Y −→ X. Then, the functor

σ ∗ : DU (X) −→ DU/N (Y ) = DH (Y ),

understood as the composition of the forgetful functor DU (X) −→ DH (X) and the
pullback via σ , is a quasi-inverse to the functor φ∗ : DU/N (Y ) −→ DU (X).

Let us now prove Lemma 5.1. Recall that G̃ is defined as the quotient of G × G ′
by the right G ′-action defined by (g, g′) · γ = (gγ, γ−1g′γ ). Since we will also need
to consider left G-actions, we prefer to turn this action into a left G ′-action as well,
given by γ : (g, g′) �−→ (gγ−1, γ g′γ−1) (merely for notational convenience).

Let us write q : G × G ′ −→ G̃ for the quotient morphism. We define a left action
of G×G ′ on G×G ′ by (h, γ ) : (g, g′) �−→ (hgγ−1, γ g′γ−1). Applying Lemma 5.4
to U = G × G ′ and N = {1} × G ′ ⊂ U , we obtain an equivalence

q∗ : DG(G̃)
∼−→ DG×G ′(G × G ′).

On the other hand, let p′ : G × G ′ −→ G ′ denote the second projection. It can be
viewed as a quotient map for the induced action of G on G × G ′, where we embed
G ↪→ G × G ′ via g �−→ (g, 1). Of course, the quotient group (G × G ′)/(G × {1})
is naturally identified with G ′. Let � : G ′ ↪→ G × G ′ denote the diagonal embed-
ding. Then, �(G ′) is a complement to G × {1} in G × G ′. Moreover, the map
j : G ′ −→ G × G ′ defined by g′ �−→ (1, g′) is a �(G ′)-equivariant section of p′.

Applying Lemma 5.5, we see that the functors

p′∗ : DG ′(G
′) −→ DG×G ′(G × G ′) and j∗ : DG×G ′(G × G ′) −→ DG ′(G

′)

are equivalences of categories that are quasi-inverse to each other.
Finally, since the composition of � : G ′ ↪→ G × G ′ and the natural projection

G × G ′ −→ G is equal to the inclusion map G ′ −→ G, and since i = q ◦ j by
definition, we see that the functor i∗ : DG(G̃) −→ DG ′(G ′) is isomorphic to the
composition

DG(G̃)
q∗−−−→ DG×G ′(G × G ′) j∗−−−→ DG ′(G

′).

We just showed that q∗ and j∗ are equivalences, whence so is i∗.
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5.3 An alternative viewpoint on induction functors

Suppose Y is a scheme of finite type over k equipped with a transitive left G-action.
We let G act on itself by conjugation, as usual, and consider the induced diagonal
action of G on G× Y . Write Z = {

(g, y)
∣∣ g · y = y

} ⊂ G× Y and observe that Z is
G-stable. Given y ∈ Y (k), we let G y denote the stabilizer of y in G and consider the
inclusion morphism jy : G y ↪→ Z given by g �→ (g, y).

Proposition 5.6 (a) For every y ∈ Y (k), the pullback j∗y : DG(Z) −→ DG y (G y)

is an equivalence of categories.
(b) If pr1 : Z −→ G is the first projection, the functors

pr1∗ ◦ ( j∗y )−1, pr1! ◦ ( j∗y )−1 : DG y (G y) −→ DG(G)

are isomorphic to the induction functors IndG
G y and indG

G y , respectively.

Proof Fix y ∈ Y (k), write G ′ = G y , and let G̃ = (G × G ′)/G ′ be defined as before.
The morphism G × G ′ −→ G × Y given by (g, g′) �→ (gg′g−1, g · y) has image

in Z and induces a G-equivariant isomorphism G̃
�−→ Z , which identifies jy with

i : G ′ ↪→ G̃ and pr1 with π : G̃ −→ G. The proposition follows. ��

5.4 Useful notation

In this subsection, we collect some of the notation introduced in Sect. 5.2.2 and in the
proof of Lemma 5.1, given in Sect. 5.2.4 above. It is convenient to put all the maps
we defined together into the following diagram:

G × G ′

p′

��

q

��

c

���
��

��
��

��
��

��
�

G ′

j

��

i
�� G̃ π

�� G

Here, q is the quotient map for the G ′-action, p′ is the second projection, j is the
natural inclusion given by j (g′) = (1, g′), and i = q ◦ j . Also, c is the conjugation
map (g, g′) �−→ gg′g−1, and π is the unique morphism satisfying c = π ◦ q. Finally,
let us agree, from now on, to denote the chosen quasi-inverse of the functor i∗ by

DG ′(G
′) � M �−→ M̃ ∈ DG(G̃).
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5.5 Weak semigroupal structure on indG
G ′

In this subsection, we will define functorial morphisms

ϕM,N : indG
G ′(M) ∗ indG

G ′(N ) −→ indG
G ′(M ∗ N ) (5.2)

for all M, N ∈ DG ′(G ′), where the convolution on the left (respectively, on the right)
is computed on G (respectively, on G ′). In Sect. 5.7, we prove that under a suitable
condition on M and N , the arrow ϕM,N is an isomorphism. Of course, there is no
reason for it to be an isomorphism in general (in the setting of finite groups, induction
of class functions usually does not commute with convolution).

5.5.1 Preparations

We keep the notation of Sect. 5.4. We have an obvious morphism G̃ −→ G/G ′
induced by the first projection G × G ′ −→ G. Form the fiber product

Z = G̃ ×
G/G ′

G̃.

Thus, Z is a closed subscheme of G̃×G̃, and the morphism i×i : G ′×G ′ −→ G̃×G̃
factors through Z . Further, let μ : G × G −→ G and μ′ : G ′ × G ′ −→ G ′ denote
the respective multiplication morphisms. The next result is straightforward.

Lemma 5.7 There exists a morphism μ̃ : Z −→ G̃ such that

μ̃(y1, y2) =
[
(g1, h1 · g−1

1 g2 · h2 · g−1
2 g1)

]
∀ (y1, y2) ∈ Z ⊂ G̃ × G̃,

where (g j , h j ) ∈ G ×G ′ are representatives of the G ′-orbits y j ∈ G̃ ( j = 1, 2), and
[(g, h)] denotes the G ′-orbit of a point (g, h) ∈ G × G ′. Furthermore, the square

G ′ × G ′ �
� i×i ��

μ′
��

Z

μ̃

��
G ′ �

� i �� G̃

commutes and is cartesian, and the square

Z
π×π ��

μ̃

��

G × G

μ

��
G̃

π �� G

commutes. Also, Z is stable under the diagonal action of G, and μ̃ is G-equivariant.
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5.5.2 Definition of the weak semigroupal structure

Let us choose M, N ∈ DG ′(G ′). By definition, (i∗ × i∗)(M̃ � Ñ ) ∼= M � N , whence,
by the proper base change theorem, we have functorial isomorphisms

i∗
(
μ̃!(M̃ � Ñ ) |Z

) ∼= μ′!(M � N ) ∼= M ∗ N ,

and thus we have functorial isomorphisms

indG
G ′(M ∗ N ) ∼= π!μ̃!(M̃ � Ñ ) |Z ∼= μ!(π × π)!(M̃ � Ñ ) |Z .

If f : Z ↪→ G̃ × G̃ denotes the inclusion morphism, we see that the adjunction
morphism M̃ � Ñ −→ f! f ∗(M̃ � Ñ ) induces a natural morphism

(indG
G ′ M) ∗ (indG

G ′ N ) ∼= μ!(π × π)!(M � N ) −→ indG
G ′(M ∗ N ).

This is the desired morphism (5.2).

5.6 Some auxiliary results

The following facts will be used several times in the rest of the section.

Lemma 5.8 Let X be a scheme of finite type over k, let U ⊂ X be an open subset, let
Z = X\U be equipped with the reduced induced subscheme structure, and let

U
� � j �� X Z�

�i��

be the natural inclusions. For every F ∈ D(X), there is a distinguished triangle

j! j !F −→ F −→ i∗i∗F −→ j! j !F[1],

functorial in F , where the morphisms j! j !F −→ F and F −→ i∗i∗F are induced
via adjunction by the identity morphisms j !F −→ j !F and i∗F −→ i∗F .

Let us write, as usual, F |U = j∗F and F |Z = i∗F . Since j ! = j∗ and i∗ = i!,
the distinguished triangle of Lemma 5.8 can also be rewritten as

j! (F |U ) −→ F −→ i! (F |Z ) −→ j! (F |U ) [1]. (5.3)

Lemma 5.9 Let H be a possibly disconnected unipotent group over a field k, and let
h : X −→ Y be an H-torsor, where Y is a scheme of finite type over k. For every
M ∈ D(Y ), consider the canonical adjunction morphism εM : h!h!M −→ M.

(a) If H is connected, then εM is an isomorphism for all M ∈ D(Y ).
(b) In general, εM has a natural splitting, i.e., there exist functorial morphisms

sM : M −→ h!h!M for all M ∈ D(Y ), such that εM ◦ sM = idM .
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Proof (a) First, we may clearly assume that k is algebraically closed (using base
change to an algebraic closure of k). Second, using base change by the smooth

surjective morphism X
h−→ Y , we may assume that X is a trivial H -torsor over

Y . Since k is algebraically closed and H is a connected unipotent group over k,
it follows that H has a filtration by normal connected subgroups with successive
subquotients isomorphic to the additive group Ga over k. Thus, we may also
assume that H = Ga . In this case, the result reduces to the standard computation
of the cohomology with compact supports for an affine line over k.

(b) In view of (a), we may assume that the neutral connected component of H is triv-
ial, i.e., that H is a finite étale group scheme over k. In this case h∗ = h!, h! = h∗,
so that h! is also left adjoint to h!, and we obtain a canonical adjunction morphism
ηM : M −→ h!h!M . Let k be an algebraic closure of k, and let n = |H(k)|. We
claim that the composition εM ◦ηM equals the multiplication by n; assuming this
claim, we can define sM = n−1 · ηM , because Q� has characteristic 0, and then
sM is the desired splitting. To prove the last claim, we again extend the base field
to k and thus assume that k = k. Then, H is a discrete group of order n, and the
claim becomes trivial. ��

In practice, we will apply the following corollary of the lemma. Note that h is a
smooth morphism of relative dimension d = dim H , so that there is a natural isomor-
phism of functors h! ∼= h∗[2d](d). Thus, the next result is immediate.

Corollary 5.10 In the situation of Lemma 5.9, let d = dim H. If H is connected
(respectively, in general), every M ∈ D(Y ) is naturally isomorphic to (respectively,
is naturally isomorphic to a direct summand of) h!h∗M[2d](d).

5.7 A case where (5.2) is an isomorphism

In this subsection, we establish a sufficient condition for (5.2) to be an isomorphism.
First we introduce more notation. If M is an object of D(G ′) or DG ′(G ′), we will
denote by M the object of D(G) obtained from M by extension by zero. It is clear
that if M, N ∈ D(G ′), then

M ∗ N ∼= M ∗ N , functorially in M, N . (5.4)

Next, we choose an algebraic closure, k, of k. We can consider the algebraic group
G⊗k k over k. By a slight abuse of notation, given an object of D(G), we will denote
the corresponding object of D(G ⊗k k) by the same letter. If x ∈ G(k), we denote by
δx the corresponding delta-sheaf on G ⊗k k.

Proposition 5.11 If M, N ∈ DG ′(G ′) are such that M ∗ δx ∗ N = 0, as objects of
D(G ⊗k k), for all x ∈ G(k)\G ′(k), then (5.2) is an isomorphism.

Proof Using base change from k to k, we may and do assume that k is algebraically
closed. Let U = (G̃ × G̃)\Z , an open subset of G̃ × G̃. We will use the following
shorthand notation: (M̃� Ñ )U is the extension of (M̃� Ñ ) |U to G̃×G̃ by zero outside
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of U . Applying the distinguished triangle (5.3) to our situation (where X = G̃ × G̃),
we see that it is enough to check that μ!(π × π)!(M̃ � Ñ )U = 0.

We still keep the notation of Sect. 5.4. Consider the morphism

q× q : G × G ′ × G × G ′ −→ G̃ × G̃,

which is a torsor under G ′ × G ′. According to Corollary 5.10, if d ′ = dim G ′, then
(M̃ � Ñ )U is a direct summand of (q×q)!(q×q)∗(M̃ � Ñ )U [4d ′](2d ′), so to complete
the proof of the proposition, it will suffice to show that

μ!(π × π)!(q× q)!(q× q)∗(M̃ � Ñ )U = 0.

We have (q × q)∗(M̃ � Ñ )U = (q∗M̃ � q∗ Ñ )(q×q)−1(U ), where the meaning of the
subscript (q× q)−1(U ) is similar to that of the subscript U . According to the proof of
Lemma 5.1 given in Sect. 5.2.4, we have q∗M̃ ∼= p′∗M , where p′ : G × G ′ −→ G ′ is
the projection onto the second factor. Similarly, q∗ Ñ ∼= p′∗N . Thus, we are reduced
to showing that

[μ ◦ (π × π) ◦ (q× q)]!
(
p′∗M � p′∗N

)
(q×q)−1(U ) = 0. (5.5)

In fact, we will prove a stronger statement. Namely, consider the morphism

� = [μ ◦ (π × π) ◦ (q× q)]× pr1 × ξ : G × G ′ × G × G ′ −→ G × G × G,

where pr1 : G×G ′×G×G ′ −→ G is the first projection and ξ : G×G ′×G×G ′ −→
G is given by (g1, g′1, g2, g′2) �−→ g−1

1 g2. We will prove that

�!
(
p′∗M � p′∗N

)
(q×q)−1(U ) = 0, (5.6)

which will of course imply (5.5).
By definition, it is easy to check that (q × q)−1(U ) = �−1

(
G × G × (G\G ′)).

Hence, it suffices to prove the vanishing of the stalk of�!(p′∗M � p′∗N ) at any given
point (g, g1, x) ∈ G(k)× G(k)× (

G(k)\G ′(k)). As usual, we apply the proper base
change theorem. The fiber�−1(g, g1, x) is naturally identified with the closed subset

{
(h1, h2) ∈ G ′ × G ′

∣∣ h1xh2 = g−1
1 gg1x

}
⊂ G ′ × G ′

via the morphism (h1, h2) �−→ (g1, h1, g1x, h2). (This is simply because the equation
g1h1g−1

1 · (g1x)h2(g1x)−1 = g is equivalent to h1xh2 = g−1
1 gg1x .) Hence, the stalk

of �!(p′∗M � p′∗N ) at (g, g1, x) is quasi-isomorphic to the stalk of the convolution
M∗δx ∗N at g−1

1 gg1x . Since x ∈ G(k)\G ′(k), we have M∗δx ∗N = 0 by assumption,
which implies (5.6) and completes the proof of Proposition 5.11. ��
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5.8 Induction of weak idempotents

In this subsection, we keep all the notation introduced earlier (notably, at the beginning
of Sect. 5.7).

5.8.1 Statement of the main theorem

Let e ∈ DG ′(G ′) be a weak idempotent, and recall that the corresponding Hecke sub-
category of DG ′(G ′) is denoted by eDG ′(G ′), because DG ′(G ′) is weakly symmetric
by Lemma 4.7 (see Sect. 4.7 for the all relevant terminology).

Assume that e ∗ δx ∗ e = 0 for all x ∈ G(k)\G ′(k). It follows from Proposition 5.11
that f := indG

G ′(e) is a weak idempotent in DG(G). Moreover, if M ∈ eDG ′(G ′), then
M ∼= e ∗ M , which implies that e ∗ δx ∗ M = 0 for all x ∈ G(k)\G ′(k) (in view of
(5.4)), and Proposition 5.11 shows that indG

G ′(M) ∈ f DG(G).

Theorem 5.12 (a) In this situation, the functor

indG
G ′

∣∣
eDG′ (G ′) : eDG ′(G

′) −→ f DG(G) (5.7)

is strong semigroupal (with respect to the semigroupal structure introduced in
Sect. 5.5) and induces a bijection on isomorphism classes of objects.

(b) If the functor M �−→ e ∗ M is isomorphic to the identity functor on eDG ′(G ′),
the functor (5.7) is faithful.

(c) If the functors M �−→ e ∗ M and N �−→ f ∗ N are isomorphic to the identity
functors on eDG ′(G ′) and f DG(G), respectively, then (5.7) is an equivalence of
categories, a quasi-inverse to which is provided by the functor

f DG(G) −→ eDG ′(G
′), N �−→ e ∗ (N |G ′ ).

5.8.2 An immediate consequence

Let us note at once the following

Corollary 5.13 If e is a minimal (resp., geometrically minimal) weak idempotent in
DG ′(G ′) and the other assumptions are in force, then f = indG

G ′(e) is a minimal
(resp., geometrically minimal) weak idempotent in DG(G).

It suffices to check that if e is minimal, then so is f , as all the hypotheses of the
corollary are obviously invariant under base change to algebraic extensions of k. To
this end, observe that a weak idempotent f ∈ DG(G) is minimal if and only if the
semigroupal category f DG(G) contains no weak idempotents other than 0 and f . By
Proposition 5.11 and Theorem 5.12, the functor (5.7) induces a bijection between the
set of isomorphism classes of weak idempotents in eDG ′(G ′) and the set of isomor-
phism classes of weak idempotents in f DG(G), whence the claim.
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5.8.3 Reduction of Theorem 5.12 to two auxiliary propositions

From now on, we fix a weak idempotent e ∈ DG ′(G ′) satisfying e ∗ δx ∗ e = 0 for all
x ∈ G(k)\G ′(k). If M, N ∈ eDG ′(G ′), then M ∼= M∗e and N ∼= e∗N , which implies
that M ∗ δx ∗ N for all x ∈ G(k)\G ′(k). Thus, the first assertion of Theorem 5.12(a)
results from Proposition 5.11.

Put f = indG
G ′(e) ∈ DG(G). The following two propositions are proved below.

Proposition 5.14 For each N ∈ DG(G), there is an isomorphism

f ∗ N
�−−−→ indG

G ′ (e ∗ (N |G ′ )) ,

functorial with respect to N.

Proposition 5.15 For each M ∈ eDG ′(G ′), there is an isomorphism

e ∗
(
(indG

G ′ M) |G ′
) �−−−→ e ∗ M,

functorial with respect to M.

These propositions clearly imply part (c) and the second assertion of part (a) of
Theorem 5.12 (by restricting attention to objects N ∈ f DG(G)). To see that they
also imply part (b) of the theorem, observe that by Proposition 5.15, the functor
M �−→ e ∗ M on eDG ′(G ′) is isomorphic to the composition

eDG ′(G
′)

indG
G′−−−−→ DG(G)

restriction−−−−−→ DG ′(G
′) e∗−−−−−→ eDG ′(G

′).

If the composition is isomorphic to the identity functor on eDG ′(G ′), then the first
term in the composition, indG

G ′
∣∣
eDG′ (G ′) , has to be faithful.

5.8.4 Proof of Proposition 5.14

The argument follows a pattern similar to the one used in the proof of Proposition 5.11.
By definition, we have

f ∗ N = (indG
G ′ e) ∗ N = μ!(π × id)!(̃e � N ), (5.8)

where we are using the morphisms

G̃ × G
π×id−−−−→ G × G

μ−−→ G.

Consider the closed subset

Z ′ =
{
([(g, h)], γ ) ∈ G̃ × G

∣∣∣ g−1 γ g ∈ G ′
}
⊂ G̃ × G.
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It is easy to check that Z ′ is well defined and is stable under the diagonal action of G
on G̃ ×G (where, as always, G acts on itself by conjugation). Moreover, let us recall
the closed subset Z ⊂ G̃ × G̃ introduced in Sect. 5.5.1:

Z =
{
([(g1, h1)], [(g2, h2)]) ∈ G̃ × G̃ | g−1

1 g2 ∈ G ′
}
.

It is clear that the morphism id×π : G̃ × G̃ −→ G̃ × G takes Z into Z ′.
Now consider the (clearly G-equivariant) morphism

ν : Z ′ −→ G̃, ([(g, h)], γ ) �−→
[
(g, hg−1γ g)

]
.

It is easy to check that ν is well defined, and we obtain a commutative diagram

G ′ × G ′

μ′
��

� � i×i �� Z

μ̃

��

id×π �� Z ′
ν

���������������

G ′ �
� i �� G̃

Furthermore, it is also easy to check that the following square is cartesian:

G ′ × G ′

μ′
��

� � i×(π◦i) �� Z ′

ν

��
G ′ �

� i �� G̃

Now we use the same argument as before. Put U ′ = (G̃ × G)\Z ′, write (̃e � N )Z ′
for the extension of (̃e � N ) |Z ′ to G̃×G by zero outside of Z ′, and define (̃e � N )U ′
similarly. Applying the proper base change theorem to the cartesian square above, we
obtain functorial isomorphisms

i∗ν! ((̃e � N ) |Z ′ ) ∼= μ′! (e � (N |G ′ )) ∼= e ∗ (N |G ′ ),

whence indG
G ′ (e ∗ (N |G ′ )) ∼= π!ν! ((̃e � N ) |Z ′ ). We also have a commutative dia-

gram

Z ′
π×id ��

ν

��

G × G

μ

��
G̃

π �� G

which implies that

indG
G ′ (e ∗ (N |G ′ )) ∼= μ!(π × id)! ((̃e � N )Z ′).
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In view of (5.8), we see that the adjunction morphism (̃e � N ) −→ (̃e � N )Z ′ yields
a morphism f ∗ N −→ indG

G ′ (e ∗ (N |G ′ )), functorial with respect to N . As before,
to complete the proof of Proposition 5.14, it is enough to show that if e ∗ δx ∗ e = 0
for all x ∈ G(k)\G ′(k), then μ!(π × id)! ((̃e � N )U ′) = 0.

Henceforth, we may and do assume that k is algebraically closed. By Corollary 5.10,
it is enough to prove that μ!(π × id)!(q × id)!

[
(q× id)∗(̃e � N )U ′

] = 0, which is
equivalent to

μ!(π × id)!(q× id)!
[(
(p′∗e)� N

)
(q×id)−1(U ′)

]
= 0. (5.9)

(As in Sect. 5.4, we write q : G×G ′ −→ G̃ for the quotient map and p′ : G×G ′ −→
G ′ for the projection onto the second factor; and we are using the proof of Lemma 5.1
given in Sect. 5.2.4 to conclude that q∗ẽ ∼= p′∗e.)

Note that the morphism

μ ◦ (π × id) ◦ (q× id) : G × G ′ × G −→ G

is given by (g, h, γ ) �−→ ghg−1γ . Let us consider the morphism

�′ : G × G ′ × G −→ G × G, (g, h, γ ) �−→ (ghg−1γ, g).

To establish (5.9), it suffices to prove that

�′!
[(
(p′∗e)� N

)
(q×id)−1(U ′)

]
= 0. (5.10)

We also observe that

(q× id)−1(U ′) =
{
(g, h, γ ) ∈ G × G ′ × G

∣∣ g−1γ g ∈ G\G ′
}
.

We will use the proper base change theorem to compute the stalk of the left hand side
of (5.10) at a point (x, g) ∈ G(k)× G(k). The fiber �′−1(x, g) is identified with the
closed subset

{
(h, γ ) ∈ G ′ × G

∣∣ ghg−1γ = x
} ⊂ G ′×G. The equation ghg−1γ = x

can be rewritten as h ·g−1γ g = g−1xg, so we see that�′−1(x, g)∩(q× id)−1(U ) can
be identified with the closed subset W = {

(h, γ ′) ∈ G ′ × (G\G ′) ∣∣ hγ ′ = g−1xg
}

via
the morphism w : W −→ G × G ′ × G given by (h, γ ′) �−→ (g, h, gγ ′g−1).

Since N is G-equivariant, the pullback λ∗((p′∗e) � N ) is naturally identified
with (e � N ) |W , and thus, by the proper base change theorem, the complex
R�c

(
W, λ∗((p′∗e)� N )

)
is naturally identified with the stalk at g−1xg of the con-

volution e ∗ NG/G ′ , where the meaning of the subscript G\G ′ is as before: NG\G ′ is
the extension of N

∣∣
G\G ′ to G by zero outside of G\G ′. Hence, we are reduced to the

following

Lemma 5.16 Under the assumptions of Proposition 5.14, we have

e ∗ NG\G ′ = 0 for all N ∈ DG(G).
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To prove Lemma 5.16, we use the distinguished triangle (5.3) with M = N , X = G
and Z = G ′. We see that it suffices to show that the natural morphism e ∗ N −→
e ∗ NG ′ is an isomorphism. But e ∼= e ∗ e, and since N ∈ DG(G), we see that
e ∗ N ∼= e ∗ N ∗ e, functorially in N (see Lemma 4.7). On the other hand, it is clear
that e ∗ NG ′ = e ∗ (N |G ′ ), and since e is a weak idempotent in DG ′(G ′), we also
have e ∗M ∼= e ∗M ∗ e functorially with respect to M ∈ D(G ′) (applying Lemma 4.7
to G ′ in place of G). Thus, we are reduced to showing that the morphism

e ∗ N ∗ e −→ e ∗ NG ′ ∗ e,

induced by the adjunction morphism N −→ NG ′ , is an isomorphism. Applying the
distinguished triangle (5.3) once again, we see that it is enough to show that

e ∗ NG\G ′ ∗ e = 0 for all N ∈ DG(G). (5.11)

Finally, to prove (5.11), note that e ∗ NG\G ′ ∗ e = μ′3!(e � N
∣∣
G\G ′ � e), where

μ′3 : G ′ × (G\G ′) × G ′ −→ G is given by (g1, g2, g3) �−→ g1g2g3. Consider the
map

λ : G ′ × (G\G ′)× G ′ −→ G × (G\G ′), (g1, g2, g3) �−→ (g1g2g3, g2).

By the proper base change theorem, the stalk of λ!
(
e � N

∣∣
G\G ′ � e

)
at a point

(g, x) ∈ G(k) × (
G(k)\G ′(k)) is isomorphic to Nx ⊗ (e ∗ δx ∗ e)g , where Nx is

the stalk of N at x . But e ∗ δx ∗ e = 0 by assumption, so λ!(e � N
∣∣
G\G ′ � e) = 0.

This forces (5.11), completing the proof of Lemma 5.16 and of Proposition 5.14.

5.8.5 Proof of Proposition 5.15

Once again, the argument is very similar to the ones used in the proofs of Prop-
ositions 5.11 and 5.14. The morphism i : G ′ −→ G̃ is a closed immersion; let
U ′′ ⊂ G̃ denote the complement of its image. As usual, we have an exact triangle
M̃U ′′ −→ M̃ −→ M̃i(G ′) −→ M̃U ′′ [1], where the meaning of the subscripts U ′′ and
i(G ′) is as before. In addition, we have M̃i(G ′) ∼= i!M by definition, and therefore
π!M̃i(G ′) ∼= M . Thus, we obtain a natural morphism

e ∗ indG
G ′(M) = μ!(e � π!M̃) −→ μ!(e � π!M̃i(G ′)) ∼= e ∗ M ∼= e ∗ M .

Restricting it to G ′ yields a morphism

e ∗
((

indG
G ′ M

)∣∣∣
G ′

)
−→ e ∗ M,

functorial in M ∈ eDG ′(G ′), and we would like to show that it is an isomorphism.
As before, it is enough to prove that

e ∗ (
π!M̃U ′′

) = 0. (5.12)
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In turn, to establish this equality, it is enough (by Corollary 5.10) to check that

e ∗ π!q!
(
q∗(M̃U ′′)

) = 0. (5.13)

where q : G × G ′ −→ G̃ is the quotient map.
As always, we may and do assume that k = k. Now q−1(U ′′) = (G\G ′)×G ′, and

q∗(M̃U ′′) = (p′∗M)((G\G ′)×G ′), where p′ : G × G ′ −→ G ′ is the projection onto the
second factor. Thus, the left hand side of (5.13) can be rewritten as �!(e � Q� � M),
where we define

� : G ′ × (G\G ′)× G ′ −→ G by (h1, g, h2) �−→ h1 · gh2g−1,

and Q� denotes the constant rank 1 local system on G\G ′.
Let us consider instead the morphism

�′′ : G ′ × (G\G ′)× G ′ −→ G × (G\G ′), (h1, g, h2) �−→ (h1gh2g−1, g).

The fiber of �′′ over (x, g) ∈ G(k)× (G(k)\G ′(k)) is naturally identified with

W ′ = {
(h1, h2) ∈ G ′ × G ′

∣∣ h1gh2 = xg
}

via the morphism

w′ : W ′ −→ G ′ × (G\G ′)× G ′, (h1, h2) �−→ (h1, g, h2).

By the proper base change theorem, we have

�′′! (e � Q� � M)(x,g) ∼= R�c

(
W ′, w′∗(e � Q� � M)

) ∼= (e ∗ δg ∗ M)xg.

The latter stalk is zero because g ∈ G(k)\G ′(k) and M ∼= e∗M . Thus, we have proved
that �′′! (e � Q� � M) = 0. A fortiori, �!(e � Q� � M) = 0, which is equivalent to
(5.13), which in turn implies (5.12) and completes the proof of Proposition 5.15.

5.9 Compatibility of induction with twists

Our final goal in this section is the following

Proposition 5.17 For every M ∈ DG ′(G ′), we have indG
G ′(θ

′
M ) = θindG

G′ (M)
as auto-

morphisms of indG
G ′(M), where θ ′ and θ are the twists in the categories DG ′(G ′) and

DG(G), respectively, introduced in Definition 4.15.

Lemma 5.18 Let j : G ′ ↪→ G denote the inclusion map and d = dim(G/G ′). Then,
IndG

G ′ is right adjoint to the restriction functor j∗ : DG(G) −→ DG ′(G ′), and indG
G ′

is left adjoint to the functor j ![2d](d) : DG(G) −→ DG ′(G ′).
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Proof Observe that j = π ◦ i with the notation of Sect. 5.2.2. Next apply the defini-
tions of IndG

G ′ and indG
G ′ (see Definition 5.2 and Remark 5.3(2)) and use the fact that

π∗ and π! are, respectively, right and left adjoint to π∗ and π !. ��
To formulate the next lemma, we let DG : DG(G) −→ DG(G) denote the Verdier

duality functor and write D
−
G = ι∗ ◦DG = DG ◦ ι∗ : DG(G) −→ DG(G) (following

[10]), where ι : G −→ G is given by g �→ g−1.

Lemma 5.19 The functors D
−
G ◦ IndG

G ′ ◦D−G ′ and indG
G ′ [2d](d) are isomorphic.

Proof This follows from Lemma 5.18 using the fact that D
−
G and D

−
G ′ are anti-

auto-equivalences together with the isomorphism D
−
G ′ ◦ ( j ![2d](d)) ◦ D

−
G
∼= j∗. ��

Proof Proof of Proposition 5.17 By definition, θ ′j∗N = j∗(θN ) for all N ∈ DG(G).

Lemma 5.18 formally implies that IndG
G ′(θ

′
M ) = θIndG

G′ (M)
for all M ∈ DG ′(G ′). It

is shown in [15, Prop. 7.2] that D
−
G(θN ) = θD−G N for all N ∈ DG(G) (and a similar

statement holds for D
−
G ′ ). Now Lemma 5.19 finishes the proof. ��

6 Inner forms of algebraic groups and G-schemes

The material of this section will be used to study the relationship between the induction
functor introduced in Sect. 5 above and the operation of induction of class functions
on finite groups (see Sect. 6.7). It is also a necessary ingredient in the formulation of
the relationship between character sheaves on a disconnected unipotent group G over
Fq and irreducible representations of G(Fq); cf. [8].

6.1 Notation

We fix an algebraic closure F of a finite field of characteristic p > 0. If q is a power of
p, we write Fq for the unique subfield of F consisting of q elements. Given a scheme
X over Fq , we write Frq for the Frobenius endomorphism of X ⊗Fq F (it is obtained
by extension of scalars from the absolute Frobenius �q : X −→ X ).

Suppose � is an abstract group and ϕ : � �−→ � is an automorphism. We can use ϕ
to define an action of Z on �, and hence obtain the pointed set H1(Z, �). Concretely,
H1(Z, �) can be identified with the set of ϕ-conjugacy classes in �, the latter being
the orbits of the �-action on itself defined by γ : g �→ ϕ(γ )gγ−1.

6.2 Galois cohomology and torsors

If G is an algebraic group over Fq , the first Galois cohomology H1(Fq ,G) is the
pointed set of isomorphism classes of right G-torsors. We can consider the action of Z

on G(F) such that 1 ∈ Z acts via Frq and form the pointed set H1(Z,G(F)) as above.
The following result is standard (part (b) is due to Serge Lang [28]).
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Lemma 6.1 (a) Let P be a right G-torsor, choose p ∈ P(F), and let g ∈ G(F) be
the unique element such that p = Frq(p) · g. Then, the Frq-conjugacy class of g
in G(F) is independent of p, and the map [P] �−→ [g] gives a bijection

H1(Fq ,G)
�−→ H1(Z,G(F)).

(b) Let G◦ denote the neutral connected component of G, and let � = G/G◦. The
natural map H1(Z,G(F)) −→ H1(Z,�(F)) is a bijection.

(c) Suppose that G is a closed subgroup of an algebraic group U over Fq , form the
quotient Y = U/G, and let π : U −→ Y denote the quotient morphism. The
map y �−→ π−1(y) induces a bijection between the set of U (Fq)-orbits in Y (Fq)

and the kernel of the natural map H1(Fq ,G) −→ H1(Fq ,U ).

Remarks 6.2 (1) We recall that the kernel of a pointed map between pointed sets

(S1, s1)
f−→ (S2, s2) is defined as the subset f −1(s2) ⊂ S1.

(2) The action of U on Y is by left translations.
(3) If y ∈ Y (Fq), then π−1(y) is a closed subvariety of U defined over Fq , and the

action of G on U by right multiplication makes π−1(y) a right G-torsor.

6.3 Inner forms of algebraic groups

We continue working in the setup of Sect. 6.2. Given α ∈ H1(Fq ,G), we would like
to define an inner form Gα of G determined by α. Let P be a right G-torsor whose
isomorphism class equals α. Briefly, Gα is the group of automorphisms of P that
commute with the right G-action. To define Gα more formally, we consider a functor,
which we denote by G P , from the category of Fq -schemes to the category of groups,
constructed as follows.

Let S be any Fq -scheme. We can view P × S as an S-scheme, and we have a right
action of G on P × S by S-scheme automorphisms. Then, G P (S) is defined as the
group of S-scheme automorphisms of P × S that commute with the G-action.

Lemma 6.3 The functor G P is representable by an algebraic group over Fq . More-
over, G P ⊗Fq F ∼= G ⊗Fq F as algebraic groups over F.

Proof In the case where P is a trivial torsor (i.e., P(Fq) �= ∅), one checks that G P is
representable by G itself. In general, we have P(Fqn ) �= ∅ for some n ≥ 1. Thus, G P

is representable by G ⊗Fq Fqn after base change to Fqn , and Galois descent implies
that G P is representable over Fq . ��
Remark 6.4 If P ′ is another right G-torsor that is isomorphic to P , then a choice of

an isomorphism P
�−→ P ′ induces an isomorphism G P �−→ G P ′ . Moreover, by

definition, any two isomorphisms P −→ P ′ differ by an element of G P (Fq). Con-
sequently, we have an isomorphism between G P and G P ′ that is unique up to inner
automorphisms.
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Definition 6.5 Let G be an algebraic group over Fq , and let α ∈ H1(Fq ,G). For a
representative P of the isomorphism class α, we will write, somewhat imprecisely,
Gα = G P . We call Gα the inner form of G defined by α.

Remark 6.6 In view of the previous remark, we see that the set of conjugacy classes
in the group Gα(Fq) is determined canonically by α. Similarly, we can speak of the
set of irreducible characters of the group Gα(Fq).

Remark 6.7 The reader may prefer the following more concrete description of the
inner form G P . Fix p ∈ P(F), and let g ∈ G(F) be the unique element such that
p = Frq(p)·g (so the Frq -conjugacy class of g in G(F) is the element of H1(Z,G(F))
corresponding to the isomorphism class of P). Then, there exists an isomorphism

G P ⊗Fq F
�−→ G ⊗Fq F such that the Frobenius endomorphism for G P becomes

identified with the endomorphism x �→ g−1 Frq(x)g of G.

6.4 Inner forms of G-schemes

We remain in the setup of Sect. 6.2. Given α ∈ H1(Fq ,G) and an Fq -scheme of finite
type X equipped with a left G-action, we would like to define an inner form Xα of
X so that the corresponding inner form Gα of G acts on Xα . Once again, let P be a
representative of α, and define G P as above. Note that by construction, G P acts on P
on the left; in fact, P is a left G P -torsor. We also consider the free left action of G on
the product P × X given by g · (p, x) = (p · g−1, g · x), and we form the quotient
X P := G\(P × X). The actions of G and G P on P × X commute (here, G P acts on
X trivially), so we obtain an induced action of G P on X P.

Definition 6.8 We write Xα = X P (somewhat imprecisely), and we call Xα (together
with the left action of Gα constructed above) the inner form of the G-scheme X defined
by the cohomology class α.

The next fact follows directly from the definitions.

Lemma 6.9 Let G be an algebraic group over Fq , let P be a right G-torsor, and let
X = G equipped with the conjugation action of G. Then, X P is naturally isomorphic
to G P , also equipped with the conjugation action of G P.

6.5 Transport of equivariant complexes

In this section, we assume that G is a unipotent7 algebraic group over Fq . Given
α ∈ H1(Fq ,G) and a scheme X of finite type over Fq equipped with a left G-action,
our goal is to define a canonical “transport functor” (in fact, an equivalence of cate-
gories) DG(X)

∼−→ DGα (Xα).

7 This assumption is imposed only because we decided to work with the “naive” definition of an equivariant
derived category.



Characters of unipotent groups over finite fields 893

As usual, we choose a representative P of X . Let pr2 : P × X −→ X denote the
second projection, and let q : P × X −→ X P denote the quotient morphism for the
free left G-action defined in Sect. 6.4. As we already remarked, the product G × G P

acts on P × X on the left; moreover, pr2 is the quotient map for the action of G P ,
which is also free. Thus, both pullback functors

DG(X)
pr∗2−−→ DG×G P (P × X)

q∗←−− DG P (X P )

are equivalences of categories.

Definition 6.10 The composition q∗ ◦ (pr∗2)−1 : DG(X)
∼−→ DGα (Xα) is called the

functor of transport of equivariant complexes and is denoted by M �−→ Mα .

Remark 6.11 If an object M ∈ DG(X) comes from a G-equivariant local system on
X , then Mα is also a Gα-equivariant local system on Xα .

As a corollary of Lemma 6.9, we now also have the construction of a transport
functor DG(G)

∼−→ DGα (Gα), which is again denoted by M �−→ Mα .

6.6 Alternative descriptions

In this subsection, we present a slightly different viewpoint on the constructions
introduced in Sects. 6.3–6.5. It has the advantage of being somewhat more concrete,
although it is less evident that the constructions appearing in this subsection are inde-
pendent of the choices involved in them.

Proposition 6.12 Let G be a closed subgroup of an algebraic group U over Fq . Define
Y = U/G, equipped with the left U-action by translations, let π : U −→ Y denote
the quotient map, write 1 = π(1), and put Z = {

(u, y)
∣∣ u · y = y

} ⊂ U × Y . We
consider the diagonal action of U on U × Y , where the action on the first factor is by
conjugation, and remark that Z is stable under this action.

Finally, for each y ∈ Y (Fq), let α(y) ∈ H1(Fq ,G) denote the isomorphism class
of the right G-torsor π−1(y) (cf. Lemma 6.1(c)).

(a) For every y ∈ Y (Fq), the stabilizer, U y, of y in U is isomorphic to the inner form
Gα(y) of G defined by the cohomology class α(y).

(b) Let X be a scheme of finite type over Fq equipped with a left G-action, and
let X̃ = (U × X)/G, where the right G-action on U × X is given by (u, x) ·
g = (ug, g−1 · x). Write p : X̃ −→ Y for the induced morphism. For every
y ∈ Y (Fq), the fiber p−1(y) is isomorphic to8 the inner form Xα(y) in a way
compatible with the isomorphism of part (a).

(c) Assume that U is unipotent. For every y ∈ Y (Fq), the inclusion jy : U y ↪→ Z,

given by g �→ (g, y), induces an equivalence j∗y : DU (Z)
∼−→ DU y (U y) (as

8 Observe that p−1(y) is stable under U y ⊂ U ; thus we have a left action of U y on p−1(y).
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usual, U y acts on itself by conjugation). Furthermore, the composition

j∗y ◦ ( j∗
1
)−1 : DG(G)

∼−→ DU y (U y) � DGα(y) (Gα(y))

is isomorphic to the transport functor introduced in Sect. 6.5.
(d) Again, assume that U is unipotent, and let the notation be as in part (b). Given

y ∈ Y (Fq), write X̃ y = p−1(y), and let iy : X̃ y ↪→ X̃ denote the inclusion.
Then, i∗y : DU (X̃) −→ DU y (X̃ y) is an equivalence, and the composition

i∗y ◦ (i∗1 )−1 : DG(X)
∼−→ DU y (X̃ y) � DGα(y) (Xα(y))

is isomorphic to the transport functor of Definition 6.10.

6.7 Relation between indG
G ′ and induction of class functions

Proposition 6.13 Let G be a unipotent group over Fq , let G ′ ⊂ G be a closed sub-
group, and let M ∈ DG ′(G ′). Then

tindG
G′ M =

∑

α∈Ker(H1(Fq ,G ′)−→H1(Fq ,G))

ind
G(Fq )

G ′α(Fq )
tMα . (6.1)

Remarks 6.14 (1) For every α ∈ Ker(H1(Fq ,G ′) −→ H1(Fq ,G)), we realize G ′α
as a subgroup of G using Proposition 6.12(a).

(2) The notation on the right hand side of (6.1) is as follows: if �′ ⊂ � are finite
groups, then ind�

�′ : Fun(�′)�′ −→ Fun(�)� denotes the usual induction map
from class functions on �′ to class functions on � (cf. Sect. 5.2.1).

(3) As a special case of Proposition 6.13, we observe that if G ′ is connected, then

H1(Fq ,G ′) is trivial, so the sum in (6.1) reduces to ind
G(Fq )

G ′(Fq )
tM . Hence for con-

nected G ′, the proposition states that indG
G ′ is compatible with induction of class

functions (via the sheaves-to-functions correspondence) “on the nose.”

Proof of Proposition 6.13 Form the quotient G̃ = (G×G ′)/G ′, where the right action
of G ′ on G×G ′ is given by (g, g′) ·γ = (gγ, γ−1g′γ ), and equip it with the G-action
induced by the left translation action of G on the first factor in G × G ′.

The conjugation map G × G ′ −→ G (given by (g, g′) �→ gg′g−1) induces a
G-equivariant morphism π : G̃ −→ G, and the map i : G ′ ↪→ G × G ′ given by
g′ �→ (1, g′) induces a G ′-equivariant morphism i : G ′ −→ G̃.

Fix M ∈ DG ′(G ′). By Lemma 5.1, there is a (unique up to isomorphism) object
M̃ ∈ DG(G̃) such that i∗M̃ ∼= M . We put N = π!(M̃) ∈ DG(G), so that, by defi-
nition, N ∼= indG

G ′ M . By Lemma 4.4(c), tN = π!(tM̃ ), so to prove (6.1) we need to
calculate the function tM̃ : G̃(Fq) −→ Q�.

To this end, define Y = G/G ′ and equip it with the translation action of G. The
first projection G × G ′ −→ G induces a G-equivariant morphism p : G̃ −→ Y .
Then, G̃(Fq) is the disjoint union of the sets of Fq -points of the fibers p−1(y), where
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y ranges over Y (Fq). For each y ∈ Y (Fq), write G y ⊂ G for the stabilizer of y in G
and observe that the fiber p−1(y) ⊂ G̃ is G y-stable.

The next result is straightforward.

Lemma 6.15 Let y ∈ Y (Fq) and choose g ∈ G(F) that maps onto y. Then

(a) G y = gG ′g−1;
(b) the map G y −→ G × G ′ given by γ �→ (g, g−1γ g) induces a G y-equivariant

inclusion iy : G y ↪→ G̃ (where G y acts on itself by conjugation);

(c) iy induces an isomorphism G y �−→ p−1(y), which is independent of the choice
of g; and

(d) the composition π ◦ iy : G y −→ G is equal to the natural inclusion G y ↪→ G.

We can now complete the proof of (6.1). For each y ∈ Y (Fq), write α(y) ∈
H1(Fq ,G ′) for the isomorphism class of the right G ′-torsor q−1(y) ⊂ G, where
q : G −→ Y is the quotient map. If M y = i∗y M̃ ∈ DG y (G y), then by Lemma

6.15(c) and Proposition 6.12(d), we can identify M y with Mα(y) ∈ D (

G ′α(y)G
′α(y)),

where G ′α(y) is identified with G y using Proposition 6.12(a). Since tN = π!(tM̃ ),
Lemma 6.15(d) shows that

tindG
G′ M = tN =

∑
y∈Y (Fq )

tM y , (6.2)

where tM y denotes the function on G(Fq) obtained from tM y : G y(Fq) −→ G(Fq)

via extension by zero. Now suppose O ⊂ Y (Fq) is a single G(Fq)-orbit and set
α(O) = α(y) for any y ∈ O (note that α(y) does not depend on the choice of y ∈ O).
It is then easy to see that

∑
y∈O

tM y = ind
G(Fq )

G ′α(Fq )
tMα , where α = α(O). (6.3)

As O ranges over all G(Fq)-orbits in Y (Fq), the corresponding cohomology class
α(O) ∈ H1(Fq ,G ′) ranges over Ker(H1(Fq ,G ′) −→ H1(Fq ,G)) by Lemma 6.1(c).
Combining this observation with (6.2)–(6.3) yields (6.1).

7 Geometric reduction process

7.1 Overview

The main goal of this section is to prove the following result:

Theorem 7.1 Let G be a (possibly disconnected) unipotent group over Fq , let ρ be
a nonzero representation of G(Fq) over Q�, and let (A,N ) be a pair consisting of a
normal connected subgroup A ⊂ G and a G-invariant multiplicative Q�-local system
N on A such that the restriction of ρ to A(Fq) is scalar, given by the 1-dimensional
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character tN : A(Fq) −→ Q
×
� . Then, there exists an admissible pair (H,L) for

G such that A ⊂ H, N ∼= L |A , and the restriction of ρ to H(Fq) has as a direct

summand the 1-dimensional representation defined by tL : H(Fq) −→ Q
×
� .

We note that, in particular, we can take G to be connected, ρ to be irreducible, and
the pair (A,N ) to be trivial. In this case, in view of the Frobenius reciprocity, the
proposition implies the existence of an admissible pair (H,L) for G such that ρ is a

direct summand of Ind
G(Fq )

H(Fq )
tL, which proves the claim of Sect. 3.1 above.

The reason for stating Theorem 7.1 the way we did is that this approach makes
it easier to give an inductive proof of the proposition. The title of this section
(“Geometric reduction process”) is motivated by an analogy between (the proof of)
Theorem 7.1 and the (algebraic) reduction process described in one of the appendices
to [10], where it is proved that every irreducible representation of a finite nilpotent
group � can be canonically realized as a representation induced from a “Heisenberg
representation” (op. cit.) of a subgroup of �.

The notion of an admissible pair (for a unipotent group over an arbitrary field of
characteristic p > 0) is defined in Sect. 7.3. However, it is more convenient to for-
mulate this definition in the framework of Serre duality developed in the “Appendix”,
rather than in the language of multiplicative local systems. Therefore we first explain
the relationship between these two approaches to Serre duality in Sect. 7.2. We then
state an auxiliary result in Sect. 7.4 (it is equivalent to one of the results proved in the
“Appendix”) and use it to prove Theorem 7.1 in Sects. 7.5–7.6.

7.2 Two approaches to Serre duality

Let us first fix an arbitrary field k and a connected algebraic group G over k. If A is an
abstract abelian group, we will view A as a discrete group scheme over k. Thus, we
have the notion of a central extension of G by A, as well as the notion of a multiplica-
tive A-torsor on G (defined by an obvious analogy with Definition 2.9). Let us define
a rigidification of an A torsor E on G to be a trivialization of the pullback 1∗E , where
1 : Spec k −→ G is the unit morphism, and let us define a rigidified A-torsor on G to
be an A-torsor on G equipped with a chosen rigidification. Since G is connected and A
is discrete, it is easy to see that rigidified A-torsors on G form a discrete groupoid (i.e.,
a category with no non-identity morphisms). On the other hand, plain A-torsors on G
form a groupoid where the group of automorphisms of every object is isomorphic to
A.

The following result is proved in [26].

Lemma 7.2 (a) Every multiplicative A-torsor on G admits a rigidification, and the
forgetful functor induces a bijection between the set of isomorphism classes of
rigidified multiplicative A-torsors on G and that of plain ones.

(b) The natural forgetful functor from the groupoid of central extensions of G by A
to the groupoid of rigidified multiplicative A-torsors on G is an equivalence.

Now we assume that k has characteristic p > 0 and G is a connected unipotent
group over k. Fix a prime � �= p. Our goal is to relate multiplicative Q�-local systems
on G to central extensions of G by the discrete group Qp/Zp.
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Let us fix a homomorphism ψ : (Qp,+) −→ Q
×
� with kernel equal to Zp. Then,

ψ identifies Qp/Zp with the group μp∞(Q�) of roots of unity in Q
×
� whose order is

a power of p. Given a central extension 1 −→ Qp/Zp −→ G̃ −→ G −→ 1, we can
view G̃ as a multiplicative Qp/Zp-torsor on G, and using the homomorphism ψ , we
obtain the induced multiplicative Q�-local system on G, which we denote G̃ψ .

Lemma 7.3 The map G̃ �→ G̃ψ constructed above is an isomorphism between the
group H2(G,Qp/Zp) of isomorphism classes of central extensions of G by Qp/Zp

and the group of isomorphism classes of multiplicative Q�-local systems on G.

Proof In view of Lemma 7.2, it is enough to show that if L is an arbitrary multiplica-
tive Q�-local system on G, then L is induced from a Qp/Zp-torsor on G viaψ . To this

end, we will show that if f : π1(G) −→ Q
×
� is the homomorphism corresponding

to L, then the image of f is finite and is contained in the subgroup μp∞(Q�), where
π1(G) is the algebraic fundamental group of G, see [20].

Choose an algebraic closure k of k, write G = G⊗k k, let 1 : Spec k −→ G denote
the unit morphism as before, and let 1 denote the corresponding k-point of either G
or G. By [20, Thm. IX.6.1], we have a short exact sequence of groups

1 −→ π1(G, 1) −→ π1(G, 1) −→ Gal(k/k) −→ 1,

which is split by the homomorphism Gal(k/k) −→ π1(G, 1) induced by the mor-
phism 1 : Spec k −→ G. By the definition of multiplicativity, the Q�-local system
1∗L on Spec k satisfies (1∗L)⊗ (1∗L) ∼= 1∗L, whence 1∗L is trivial. In other words,

the composition Gal(k/k)
1∗−→ π1(G, 1)

f−→ Q
×
� is trivial. Thus, f is determined by

its restriction to π1(G, 1), which we will also denote by f .
By definition, f factors through a continuous homomorphism π1(G, 1) → K×,

where K is a finite extension of Q� contained in Q�. Moreover, by compactness, the
image of f must lie in O×K , where OK ⊂ K is the ring of integers of K . The structure
of O×K is known; in particular, if mK denotes the unique maximal ideal of OK , then
(O×K )/(1 + mK ) ∼= (OK /mK )

× is finite, and 1 + mK has a descending filtration by
closed subgroup with successive quotients isomorphic to the additive group of the
residue OK /mK , which is a finite field of characteristic �. It follows that the subgroup
μp∞(K ) = K ∩μp∞(Q�) ⊂ O×K is finite, and the quotient O×K /μp∞(K ) is a profinite
group whose order is relatively prime to p.

On the other hand, since G is connected, G is isomorphic to an affine space over
k, so its algebraic fundamental group has no nontrivial quotients of order prime to p.
Thus, the image of f lies in μp∞(K ), completing the proof. ��

7.3 Definition of an admissible pair

The notion of an admissible pair is a geometric one; thus we will first formulate it for
an algebraically closed base field, and then for an arbitrary one. Moreover, it is more
convenient to begin by working in the framework of Serre duality developed in the
“Appendix”.
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Normalizer of a pair (H, χ)

Let us fix a perfect field k of characteristic p > 0 and a unipotent9 algebraic group
G over k. From now on, by default, all subgroups of group schemes are assumed to
be closed. Consider a pair (H, χ) consisting of a connected subgroup H ⊂ G and a

central extension 1 −→ Qp/Zp −→ H̃
χ−→ H −→ 1. We can view χ as a k-point

of the Serre dual H∗ of H , see Sect. 9.6, which is a perfect (possibly disconnected)
commutative unipotent group over k by Proposition A.30. Let NG(H) denote the nor-
malizer of H in G. Since the Serre dual H∗ is defined by a universal property, we
obtain an induced regular action of the perfectization NG(H)per f on H∗ by k-group
scheme automorphisms. We let G ′per f ⊂ NG(H)per f denote the stabilizer of χ under
this action. The notation is explained by the fact that G ′per f is the perfectization of a
uniquely determined closed subgroup of G, which we denote by G ′ and (unambigu-
ously) call the “normalizer of (H, χ) in G”. We remark that G ′ may be disconnected
even if G is connected.

Definition 7.4 Let k be an algebraically closed field of characteristic p > 0, let G be
a unipotent algebraic group (or perfect unipotent group) over k, and let (H, χ) be a
pair consisting of a connected subgroup H ⊂ G and an element χ ∈ H∗(k). We say
that this pair is admissible for G if the following three conditions are satisfied.

(1) Let G ′ be the normalizer of (H, χ) in G, defined in the previous paragraph. Then,
the quotient group G ′◦/H is commutative, i.e., [G ′◦,G ′◦] ⊂ H .

(2) The homomorphism (G ′◦/H)per f −→ (G ′◦/H)∗per f constructed in Sect. 9.6,
which is well defined in our situation in view of condition (1), is an isogeny.

(3) Given g ∈ G(k), write H g = g−1 Hg, and let χ g ∈ (H g)∗(k) be obtained from

χ by transport of structure via H g �−→ H , h �−→ ghg−1. If g �∈ G ′(k), then

χ
∣∣
(H∩H g)◦ �∼= χ g

∣∣
(H∩H g)◦

Definition 7.5 Let k be an arbitrary field of characteristic p > 0, let G be a unipotent
algebraic group over k, let H ⊂ G be a connected subgroup, and let χ be a central
extension of H by Qp/Zp. The pair (H, χ) is said to be admissible for G if the pair
(H ⊗k k, χ ⊗k k) obtained from (H, χ) by base change to an algebraic closure k of
k is admissible for G ⊗k k.

Admissible pairs in the context of multiplicative local systems

Now let k be a field of characteristic p > 0, let � be a prime different from p, and
choose a homomorphism ψ : (Qp,+) −→ Q

×
� with kernel Zp, as in Sect. 7.2.

Fix a unipotent algebraic group G over k, a connected subgroup H ⊂ G, and a
multiplicative Q�-local system L on H (see Definition 2.9). By Lemma 7.3, L is asso-

9 The definition applies equally well (with obvious simplifications) in the case where G is a perfect uni-
potent group over k (see Sect. 9.6).
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ciated with a unique (up to isomorphism) central extension χ of H by Qp/Zp via the
homomorphism ψ .

Definition 7.6 We say that the pair (H,L) is admissible for G if the pair (H, χ) is
admissible for G in the sense of Definition 7.5. In the case where k is perfect, the
normalizer of the pair (H,L) in G is defined as the normalizer of (H, χ) in G.

It is not hard to see that this definition does not depend on the choice of ψ .

7.4 Extension of multiplicative local systems

The next result is used in the proof of Theorem 7.1. However, we also find it to be
interesting in its own right. It is a natural geometrization of the fact that if � is a group,
H ⊂ � is a subgroup such that [�,�] ⊂ H , and χ : H −→ Q

×
� is a homomorphism,

then χ extends to a homomorphism � −→ Q
×
� if and only if χ

∣∣[�,�] ≡ 1 (a simple
exercise).

Proposition 7.7 Let G be a connected unipotent group over an arbitrary field k of
characteristic p > 0, let � be a prime different from p, let H ⊂ G be a closed con-
nected subgroup such that [G,G] ⊂ H, and let L be a multiplicative Q�-local system
on H. Then, there exists a multiplicative Q�-local system L′ on G with L′ |H ∼= L
if and only if the pullback com∗ L is a trivial Q�-local system on G × G, where
com : G × G −→ H is the commutator morphism, com(g1, g2) = g1g2g−1

1 g−1
2 .

In view of Lemma 7.3, this result is essentially equivalent to Proposition A.35,
proved in Sect. 9.6 of the “Appendix”.

Remark 7.8 Naively, one might have replaced the condition that com∗ L is trivial by
the stronger requirement that L ∣∣[G,G] is a trivial Q�-local system on [G,G]. However,
the latter condition is not necessary. Indeed, as explained in [26], there are examples
of connected unipotent groups G for which there is a multiplicative Q�-local system
L on G with L ∣∣[G,G] being nontrivial. (We leave it to the reader to check that the fake
Heisenberg groups defined in Sect. 2.10 are among such examples.)

7.5 A special case of Theorem 7.1

In this subsection, we prove Theorem 7.1 in the special case where ρ is irreducible and
[G,G◦] ⊂ A. Using the construction explained in Sect. 9.6, we see that N induces a
homomorphism of perfect Fq -groups φN : (G/A)per f −→ (G◦/A)∗per f . Let H be a
maximal (with respect to inclusion) connected subgroup of G with the property that
A ⊂ H and the composition

(H/A)per f ↪→ (G/A)per f
φN−−−→ (G◦/A)∗per f � (H/A)∗per f

is trivial (the subscript “perf” is defined in Sect. 9.6). By the definition of φN , this
implies that the pullback of N by the commutator map H × H −→ A is trivial. By
Proposition 7.7, there is a multiplicative Q�-local system L on H with N ∼= L |A .
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We first claim that L can be chosen so that tL : H(Fq) −→ Q
×
� is a direct summand

of the restriction of ρ to H(Fq). Indeed, since the homomorphism

(H/A)(Fq) = (H/A)per f (Fq) −→ (H/A)∗per f (Fq) = (H/A)∗(Fq)

induced by N is trivial, we see, in particular, that tN : A(Fq) −→ Q
×
� is trivial on

[H(Fq), H(Fq)]. Now let V denote the representation space ofρ, so that A(Fq ) acts on
V through the character tN . Then, we see that ρ(H(Fq)) ⊂ Aut(V ) is a commutative

subgroup; in particular, by Schur’s lemma, there exists a character ν : H(Fq) −→ Q
×
�

which is contained in the restriction of ρ to H(Fq). A fortiori, ν and tL agree on A(Fq),

and hence ν · t−1
L comes from a character (H/A)(Fq) −→ Q

×
� . But H/A is a con-

nected commutative algebraic group over Fq , so, as we mentioned in Remark 2.10,
there exists a multiplicative Q�-local system E on H/A such that ν · t−1

L = tẼ , where
Ẽ is the pullback of E to H . In other words, ν = tL⊗Ẽ . But the restriction of Ẽ to A is
trivial by construction, so we may replace L with L⊗ Ẽ without loss of generality.

It remains to verify that (H,L) is admissible. Since [G, H ] ⊂ [G,G◦] ⊂ A ⊂ H ,
we see that H is normal in G, so condition (3) in the definition of admissibility is
automatic. Condition (1) holds because H ⊃ A and G◦/A is central in G/A. Finally,
condition (2) holds by the maximality requirement in the choice of H .

7.6 Proof of Theorem 7.1

Let us complete the proof of Theorem 7.1 in general. We will use simultaneous induc-
tion on dim G and on the length of the étale group π0(G) = G/G◦ (i.e., the number of
elements of π0(G)(F)). By the result of Sect. 7.5, we may assume that [G,G◦] �⊂ A.
We may also assume that ρ is irreducible.

Let Z ⊂ G◦ denote the preimage in G of the neutral component of the center of
G/A. By assumption, Z �= G◦, so Z is a proper connected subgroup of G◦. As in
Sect. 7.5, N induces a k-group morphism φN : (G/A)per f −→ (Z/A)∗per f . Since
dim Z < dim G, the restriction of this morphism to (Z/A)per f has positive dimen-
sional kernel.10 Hence, there is a connected subgroup B ⊂ Z such that A � B and
the composition

(B/A)per f ↪→ (G/A)per f → (Z/A)∗per f � (B/A)∗per f

is trivial. As in Sect. 7.5, we see that there exists a multiplicative Q�-local system N ′
on B such that N ∼= N ′ |A and tN ′ is a summand of ρ

∣∣∣B(Fq ) .

On the other hand, B is normal in G since A ⊂ B ⊂ Z , and hence N ′ is not G-
invariant by the maximality of (A,N ). Let G1 denote the normalizer of N ′ in G.
Then, G1 is a proper subgroup of G, so either dim G1 < dim G, or |π0(G1)(F)| <

10 If K is the neutral connected component of the kernel of φN , then K is normal in G/A and we obtain
a decreasing sequence K , [G/A, K ], [G/A, [G/A, K ]], . . . , of normal connected subgroups of G/A. The
last nontrivial term of this sequence is contained in Z/A by the definition of Z .
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|π0(G)(F)|. In either case, if we let ρ1 be the restriction of ρ to G1(Fq), we may
assume that Theorem 7.1 holds for ρ1 and the pair (B,N ′).

Let (H,L) denote a pair consisting of a connected subgroup H ⊂ G1 and a mul-
tiplicative Q�-local system L on H , which satisfies the conclusion of Theorem 7.1
for the 4-tuple (G1, ρ1, B,N ′). We assert that it also satisfies the conclusion of this
theorem for (G, ρ, A,N ). To prove this assertion, we only need to check that (H,L)
is admissible with respect to G.

Let G ′ denote the normalizer of the pair (H,L) in G. We have G ′ ⊂ G1. Indeed, if
g ∈ G(F), g �∈ G1(F), then, by construction, g does not fix N ′, and hence, a fortiori,
it cannot fix (H,L) (because B is normal in G and L |B ∼= N ′).

Since G ′ ⊂ G1, conditions (1) and (2) in the definition of admissibility for (H,L)
hold with respect to G because they hold with respect to G1. To verify condition (3),
let g ∈ G(F), g �∈ G ′(F). If g ∈ G1(F), there is nothing to do because (H,L) is
admissible with respect to G1. If g �∈ G1(F), then, since B ⊂ (H ∩ H g)◦ and g
does not fix N ′, it follows that the restrictions of L and Lg to (H ∩ H g)◦ cannot be
isomorphic, completing the induction step in the proof of Theorem 7.1.

8 Analysis of Heisenberg idempotents

In this section, we study a certain special type of geometrically minimal weak idempo-
tents (cf. Definition 4.12) in the equivariant derived categories of unipotent algebraic
groups. The main result of the section is Proposition 8.1.

8.1 Setup

Throughout this section, we fix a field k of characteristic p > 0, let U be a possibly
disconnected unipotent group over k, and let (N ,L) be an admissible pair for U in
the sense of Definition 7.6, such that its normalizer in U is all of U (so that the third
condition in the definition of admissibility is vacuous). In particular, N is a normal
closed connected subgroup of U , and L is a multiplicative Q�-local system on N
which is invariant under the conjugation action of U . In this subsection, we construct
certain objects associated with the data U, N ,L.

8.1.1 Construction of eL and e′L

It follows from our assumptions that L has a natural U -equivariant structure (because
N is connected). Let KN denote the dualizing complex of N ; then KN has a natural
U -equivariant structure as well, since N is normal in U . It follows that we can define
eL = L⊗ KN as an object of DU (N ). Let e′L denote the object of DU (U ) obtained
from eL via extension by zero.

8.1.2 Construction of a morphism 1 −→ e′L

Let 1 : Spec k −→ U be the unit morphism, and let 1 = 1!Q� be the delta-sheaf at
1, equipped with the “trivial” U -equivariant structure. Recall that 1 is a unit object
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in the monoidal category DU (U ) under convolution. Of course, we can equally well
think of 1 as an object of DN (N ). If p : N −→ Spec k is the structure morphism,

then KN = p!Q�, so we get a canonical identification Q�
�−→ 1!KN . By adjunction,

we get a canonical morphism 1 −→ KN . On the other hand, since the stalk L1 of

L at 1 has a natural trivialization, we obtain an isomorphism 1 ⊗ L∨ �−→ 1, where
L∨ = hom(L,Q�) is the dual local system on L. Composing the two morphisms we
just constructed, we obtain a natural morphism 1 ⊗ L∨ −→ KN , which induces a
morphism 1 −→ eL in DU (N ), and hence a morphism 1 −→ e′L in DU (U ).

8.1.3 Construction of a homomorphism ϕL : (U ◦/N )per f −→ (U ◦/N )∗per f

Before stating the main result of the section, we need one last construction. Let us fix
a homomorphism ψ : (Qp,+) −→ Q

×
� with kernel Zp. By Lemma 7.3, the multipli-

cative local system L on N is induced from a central extension Ñ of N by Qp/Zp via
ψ . Let kper f be the perfect closure of k (see [19]); it is the maximal purely inseparable
algebraic extension of k, and hence is determined up to a unique k-isomorphism. As
recalled in Sect. 9.6, for every k-scheme X , we can construct its perfectization, X per f ,
which is a scheme over kper f . In particular, we obtain the induced central extension
Ñper f of Nper f by Qp/Zp, which is Uper f -invariant. Using the construction explained
in Sect. 9.6 with Z = U ◦per f , the neutral connected component of U (recall that U ◦/N
is commutative, so this choice of Z is allowed), we obtain a homomorphism of perfect

unipotent groups U ◦per f /Nper f −→
(

U ◦per f /Nper f

)∗
over kper f , i.e., a homomor-

phism

ϕL : (U ◦/N )per f −→ (U ◦/N )∗per f .

By the definition of admissibility, ϕL is an isogeny.

8.2 Statement of the main result

Proposition 8.1 Let U, N, L, eL, e′L and ϕL be as above.

(a) The morphism 1 −→ e′L constructed in Sect. 8.1.2 becomes an isomorphism
after convolving with e′L. A fortiori, e′L is a weak idempotent in DU (U ).

(b) In fact, e′L is a geometrically minimal weak idempotent in DU (U ) (see Defini-
tion 4.12).

(c) Let θ denote the canonical automorphism of the identity functor on DU⊗k k(U⊗k

k), introduced in Sect. 4.9. If the restriction of θ to the Hecke subcategory

e′LDU⊗k k(U ⊗k k) ⊂ DU⊗k k(U ⊗k k)

is trivial, then U is connected and ϕL is an isomorphism.

This proposition is the last ingredient in the proofs of the main results of our work,
stated in Sect. 2. The rest of the section is devoted to its proof. If U is as above, a weak
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idempotent in DU (U ) isomorphic to one of the form e′L will be called a Heisenberg
idempotent,11 which explains the title of the section.

Remark 8.2 One can show that the converse of Proposition 8.1(c) holds as well (see
[15]), but we do not need this fact.

8.3 Proof of Proposition 8.1(a)

It is enough to show that the morphism 1 −→ eL in DN (N ) becomes an isomorphism
after convolving with eL. Without loss of generality, we may and do assume that k is
algebraically closed. Then, eL ∼= L[2 dim N ], so it suffices to prove that 1 −→ eL
becomes an isomorphism after convolving with L.

Fix g ∈ N (k), and let ρg : N −→ N be defined by n �−→ n−1g. By the proper
base change theorem, the induced morphism on the stalks, (1∗L)g −→ (eL ∗L)g , is
the same as the morphism obtained by applying the functor R�c(N ,−) to the induced
morphism 1⊗ (ρ∗gL) −→ eL⊗ (ρ∗gL). However, ρ∗gL is naturally isomorphic to L∨,
because L is multiplicative, and the morphism 1⊗ (ρ∗gL) −→ eL ⊗ (ρ∗gL) becomes
the canonical morphism 1 −→ KN . Applying the functor R�c(N ,−), we recover
the adjunction morphism Q� −→ p! p!Q� (where p : N −→ Spec k is the structure
morphism), which is an isomorphism because N is a connected unipotent group over
k, and hence is isomorphic to an affine space over k.

8.4 Proof of Proposition 8.1(b)

Without loss of generality, we may and do assume that k is algebraically closed. Then,
we must prove that e′L is a minimal weak idempotent in DU (U ), which is equivalent
to showing that the Hecke subcategory e′LDU (U ) contains no weak idempotents apart
from 0 and e′L.

The category e′LDU (U ) is studied in12 [15]. Let us recall the results of op. cit. that
will be used in the current proof.

Theorem 8.3 [15, Theorem 1.5]
Let M ⊂ e′LDU (U ) be the full subcategory consisting of objects M for which

M[− dim N ] is a perverse13 sheaf on U.

(a) The natural functor Db(M) −→ e′LDU (U ) is an equivalence of categories.
(b) The subcategory M is closed under convolution and is a (semisimple) fusion

category with unit object e′L.
(c) There exists a ribbon structure on the fusion category M, which makes M a

modular category and is such that the corresponding twist (in other terminology,

11 The notion of a Heisenberg idempotent is the geometric analogue of the notion of a Heisenberg repre-
sentation of a finite group, introduced in [10].
12 The results of [15] use the construction of the arrow1 −→ e′L presented in Sect. 8.1.2, but are otherwise
independent of the current section.
13 See [4]; we only consider the middle perversity in this article.
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“balancing”) is equal to the canonical automorphism θ of the identity functor
introduced in Sect. 4.9.

Remarks 8.4 (1) The word “semisimple” in the formulation of part (b) is only added
for emphasis. Our use of the term “fusion category” agrees with that of [18]. Thus,
part (b) means that M is a semisimple Q�-linear monoidal category over Q�,
which is rigid, has finitely many simple objects and finite dimensional Hom-
spaces and is such that the unit object is simple.

(2) We do not require the precise definitions of the terms “ribbon structure” or “mod-
ular category”; see e.g., [2]. All we need is the fact that a modular fusion category
where the twist is trivial has only one simple object (which is necessarily the unit
object).

We see that Proposition 8.1(b) follows from the more general

Lemma 8.5 Let M be a weakly symmetric fusion category. The bounded derived cat-
egory Db(M) (equipped with the induced tensor product) has no weak idempotents
other than 0 and the unit object.

Proof Let⊗ and 1 denote the monoidal functor and the unit object of M. In the proof,
we will repeatedly use the observation that if X,Y ∈M are nonzero, then X ⊗ Y is
also nonzero. The reason is that if X∗ is a right dual14 of X , then X∗ ⊗ X contains 1
as a direct summand, and hence X∗ ⊗ X ⊗ Y contains Y as a direct summand.

First let us check that every weak idempotent in Db(M) comes from a simple object
of M. Write Mgr for the category of bounded graded objects of M; in other words,
Mgr is the category of bounded complexes over M in which all the differentials are
equal to 0. The cohomology functor H• : Db(M) −→ Mgr is an equivalence of
categories because M is semisimple, and it is moreover a monoidal equivalence by
the Künneth formula. The comment in the previous paragraph implies that the length
function � :Mgr −→ Z≥0, which assigns to an object X ∈Mgr the sum of lengths
of all the components of X , satisfies �(X⊗Y ) ≥ �(X)·�(Y ). It follows that every weak
idempotent in Mgr has length 1, and hence it must be a simple object concentrated in
a single degree k. Now we are forced to have k + k = k, and hence k = 0, as desired.

Now let X ∈M be a nonzero weak idempotent. Then, the right dual X∗ is also a
weak idempotent, and hence so is X∗⊗X (since M is weakly symmetric). We already
saw that X∗ ⊗ X must be simple, and thus X∗ ⊗ X ∼= 1. So X is invertible, and since
X ⊗ X ∼= X , we see that X ∼= 1, proving the lemma. ��

8.5 Proof of Proposition 8.1(c)

By Remark 8.4(2), the hypothesis of Proposition 8.1(c) implies that the category
M ⊂ e′LDU (U ) defined in Theorem 8.3 has only one simple object, namely, e′L
itself. Write � = U/U ◦, where U ◦ ⊂ U is the neutral connected component, and
let M0 ⊂ e′LDU◦(U ) be the full subcategory consisting of objects M for which
M[− dim N ] is a perverse sheaf on U . The natural action of � on DU◦(U ) induces an

14 We are using the terminology of [2,18].
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action of � on M0, and by [15, Lemma 1.4], the �-equivariantization M�
0 is equiva-

lent to M. By [15, Theorem 1.3], M0 is also a fusion category, so we see that e′L is
the only simple object of M0 (indeed, every simple object of M0 can be realized as
a direct summand of a simple object of M�

0 ). On the other hand, all simple objects of
M0 are described in [15, §4.1], and that description implies that U is connected and
that ϕL is an isomorphism.

9 The proofs of the main results

In this section, we put together all the preliminary results obtained in Sects. 4–8 to
prove Theorem 2.5, Theorem 2.14 and Proposition 4.13.

9.1 The key result

Throughout this section, we work with a fixed connected unipotent group G over a
field k of characteristic p > 0. For the most part, we will take k = Fq , but it is
convenient to formulate one of the results in the more general setting. Below we will
state a result (Proposition 9.1) to which all the other results to be proved in this section
are easily reduced.

It is convenient to introduce the following notation. If k = Fq and e ∈ DG(G) is
any weak idempotent, let us write L(e) for the set of isomorphism classes of irreduc-
ible representations ρ of G(Fq) over Q� in which te acts by the identity operator. If e
is minimal (Definition 4.10), it follows from Definition 2.7 and Remark 4.14(1) that
L(e) is either empty (when te ≡ 0) or an L-packet (when te �≡ 0).

Let (H,L) be an admissible pair for G, and let G ′ be its normalizer in G (see Def-
inition 7.6). Let e′L ∈ DG ′(G ′) be the object obtained by applying the construction of
Sect. 8.1.1 with G ′ and H in place of U and N , and let eH,L = indG

G ′ e
′
L.

Proposition 9.1 With this notation,

(a) eH,L is a geometrically minimal weak idempotent in DG(G); and
(b) if C denotes the geometric conjugacy class of (H,L) (see Sect. 2.9) and k = Fq ,

then

L(C ) = L(eH,L),

where L(C ) is introduced in Definition 2.13.

This proposition is proved in Sects. 9.5 and 9.6. First we explain how it implies all the
other results to be proved in this section. In Sects. 9.2 and 9.4, we assume that k = Fq .

9.2 Proof of Theorem 2.14

Proposition 9.1 implies that if C is a geometric conjugacy class of admissible pairs
for G, then L(C ) is an L-packet of irreducible representations of G(Fq).
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Conversely, consider an L-packet P of irreducible representations of G(Fq) over
Q�, and choose ρ ∈ P . By Theorem 7.1 (and Frobenius reciprocity), there exists a
geometric conjugacy class C of admissible pairs for G such that ρ ∈ L(C ). Then,
L(C ) ∩P �= ∅, and since L(C ) is also an L-packet by the previous paragraph, we
see that L(C ) =P , proving Theorem 2.14. ��

9.3 Proof of Proposition 4.13

Let us fix two irreducible representations, ρ1 and ρ2, of G(Fq) over Q�. We tautolog-
ically have (i) �⇒ (i i) �⇒ (i i i) in the statement of Proposition 4.13, so we only
need to show that (i i i) �⇒ (i). Assume that (i i i) holds. By the arguments above,
there exists an admissible pair (H,L) for G such that ρ1 ∈ L(eH,L). By Proposi-
tion 9.1, eH,L is a geometrically minimal weak idempotent in DG(G). Now teH,L acts
as the identity in ρ1, and hence, by assumption, it also acts as the identity in ρ2. This
means that ρ1 and ρ2 both lie in L(eH,L), which is a single L-packet, and the proof is
complete. ��

9.4 Proof of Theorem 2.5

In this subsection, we assume that G is an easy unipotent group over Fq . Let ρ be an
irreducible representation of G(Fq) over Q�. We must prove that the dimension of ρ
is a power of q.

9.4.1 Step 1

By the arguments above, there exists an admissible pair (H,L) for G such that ρ is

a direct summand of Ind
G(Fq )

H(Fq )
tL. Let G ′ be the normalizer of (H,L) in G (Defini-

tion 7.6). We first show, using Proposition 8.1, that G ′ is connected and the dimension
of G ′/H is even.

Let e′L ∈ DG ′(G ′) be the extension of L ⊗ KH by zero to G ′, as before. From
Proposition 8.1(a) and Lemma 9.2, it follows that the functor M �−→ e′L ∗ M is iso-
morphic to the identity functor on the Hecke subcategory e′LDG ′(G ′) ⊂ DG ′(G ′).
Now Theorem 5.12(b) implies that the restriction

indG
G ′

∣∣∣e′LDG′ (G ′) : e′LDG ′(G
′) −→ DG(G)

is a faithful functor. By Lemma 4.16, the twist automorphism of the identity functor
on DG(G) is trivial, because G is easy. As indG

G ′ is compatible with twists (Proposi-
tion 5.17), the restriction of the twist on DG ′(G ′) to the Hecke subcategory e′LDG ′(G ′)
is trivial as well. These statements continue to hold after base change from Fq to F. By
Proposition 8.1(c), G ′ is connected, and the homomorphism ϕL : (G ′/H)per f −→
(G ′/H)∗per f induced by L is an isomorphism. Since ϕL obviously arises from a skew-
symmetric bi-extension of G ′/H by Qp/Zp (cf. Remark A.34; see also Sect. 9.6 for
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the construction of ϕL, and Sect. 9.6 for the terminology), it follows from Proposi-
tion A.28(b) that G ′/H is even-dimensional.

We now pause to state and prove the lemma used in the previous paragraph.

Lemma 9.2 Let M be a monoidal category with monoidal bifunctor⊗ and unit object
1 and consider an arrow 1 −→ e in M that becomes an isomorphism after tensoring
with e on the right. Then, the functor X �−→ e⊗X is isomorphic to the identity functor
on the subcategory eM ⊂M.

Remark 9.3 Here, the notation is similar to that used in Sect. 4.7, namely, eM is the
essential image of the functor M −→M given by X �−→ e⊗X . With the assumption
of the lemma, it is obvious that e is a weak idempotent in M in the sense of Sect. 4.7.
However, the existence of an arrow 1 −→ e satisfying the assumption of Lemma 9.2
is a much stronger condition than merely requiring e to be a weak idempotent. (In
[10], arrows 1 −→ e that become isomorphisms after tensoring with e on either
side are called closed idempotents.) In particular, we do not expect the conclusion of
Lemma 9.2 to hold for an arbitrary weak idempotent e ∈M.

Proof of Lemma 9.2 We use the fact that ⊗ is equipped with an associativity con-
straint. If X ∈ eM, then X ∼= e ⊗ X , because e ∼= e ⊗ e. Hence for any X ∈ eM,
the arrow 1 −→ e becomes an isomorphism after we apply the functor Y �−→ Y ⊗ X
to it. This (together with the unit constraint for ⊗) gives us a functorial collection of

isomorphisms X
�−→ e ⊗ X for all X ∈ eM, as desired.

9.4.2 Step 2

Now we complete the proof of Theorem 2.5. Consider the commutator morphism
com : G ′ × G ′ −→ H , (g1, g2) �−→ g1g2g−1

1 g−1
2 , and form the pullback local sys-

tem L′ = com∗ L on G ′ × G ′. Since the map ϕL : (G ′/H)per f −→ (G ′/H)∗per f
induced by L is an isomorphism, it is easy to deduce from Proposition A.18 that the
trace function tL′ : G ′(Fq)× G ′(Fq) −→ Q

×
� descends to a perfect pairing

BL : (G ′/H)(Fq)× (G ′/H)(Fq) −→ Q
×
� ,

i.e., a bimultiplicative map that induces an isomorphism

(G ′/H)(Fq)
�−−→ Hom

(
(G ′/H)(Fq),Q

×
�

)
.

Next, the definition of ϕL implies that BL is equal to the map induced by the commu-
tator pairing defined by the character tL : H(Fq) −→ Q�, namely,

G ′(Fq)× G ′(Fq)
com−−−−→ H(Fq)

tL−−−→ Q
×
� .

It is well known (see e.g., the appendix on Heisenberg representations in [10]) that
the non-degeneracy of BL implies that G ′(Fq) has a unique irreducible representa-
tion, call it ρ′, which acts on H(Fq) by the scalar tL. Moreover, ρ′ has dimension
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[G ′(Fq) : H(Fq)]1/2, which is a power of q by the first step of the proof. Furthermore,
by the Frobenius reciprocity, the irreducible representation of G(Fq) with which we

started, ρ, is a direct summand of Ind
G(Fq )

G ′(Fq )
ρ′. However, the definition of an admis-

sible pair, together with Mackey’s irreducibility criterion, imply that Ind
G(Fq )

G ′(Fq )
ρ′ is

irreducible. Thus, ρ ∼= Ind
G(Fq )

G ′(Fq )
ρ′, whence (as G ′ is connected)

dim ρ = [G(Fq) : G ′(Fq)] · dim ρ = qdim G−dim G ′ · [G ′(Fq) : H(Fq)]1/2,

which is a power of q, completing the proof of Theorem 2.5.

9.5 Proof of Proposition 9.1(a)

In this subsection, k is allowed to be an arbitrary field of characteristic p > 0. We will
use the notation introduced at the beginning of Sect. 5.7. In view of Corollary 5.13, it
suffices to check that for every g ∈ G(k)\G ′(k), we have e′L ∗ δg ∗ e′L = 0. Since the
notion of an admissible pair is stable under base change from k to k, we may as well
assume that k is algebraically closed. Let us fix g ∈ G(k)\G ′(k).

Consider the morphism

mg : H × H −→ G, (h1, h2) �−→ h1gh2.

By definition, e′L ∗ δg ∗ e′L = mg!(eL � eL). To complete the proof, it suffices to show
that for every x ∈ G(k), the stalk mg!(eL � eL)x = 0. Up to cohomological shift,15

this is the same as proving that mg!(L�L)x = 0. By the proper base change theorem,
this is equivalent to R�c(m−1

g (x),L � L) = 0.
Let us fix x ∈ G(k). If m−1

g (x) = ∅, there is nothing to check. Otherwise, fix a
k-point (h1, h2) of m−1

g (x). Then, m−1
g (x) can be identified with H ∩ gHg−1 via the

map w : H ∩ gHg−1 −→ H × H given by w(h) = (h1h, g−1h−1gh2).
The (isomorphism class of the) local system L on H is invariant under left and right

translations (this follows from the multiplicativity of L). Thus

w∗(L � L) ∼= L ∣∣
H∩gHg−1 ⊗g L∨ ∣∣

H∩gHg−1 ,

where gL denotes the multiplicative Q�-local system on gHg−1 obtained from L by
transport of structure via h �−→ ghg−1, and gL∨ is its dual local system.

By the definition of admissibility, we are reduced to the following well known.

Lemma 9.4 Let A be an algebraic group over a field k, and let L be a multiplicative
Q�-local system on A such that L |A◦ is nontrivial. Then, R�c(A,L) = 0.

15 Recall that KH ∼= Q�[2 dim H ](dim H), and Tate twists are trivial since k = k.
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Proof It suffices to show that f!L = 0, where f : A −→ π0(A) is the natural quotient
morphism and π0(A) = A/A◦. Since L is multiplicative, it in turn suffices to show
that R�c(A◦,L |A◦) = 0 . Thus, we may assume, without loss of generality, that A is
connected and L is as before.

The following diagram is clearly cartesian:

A × A
μ ��

pr1

��

A

π

��
A

π �� Spec k

where π : A −→ Spec k is the structure morphism and pr1 : A × A −→ A is the
projection onto the first factor. By the proper base change theorem,

π∗R�c(A,L) ∼= pr1!μ∗L ∼= pr1!(L � L) ∼= R�c(A,L)⊗ L.

Since L is a nontrivial local system on A, this clearly forces R�c(A,L) = 0. ��

9.6 Proof of Proposition 9.1(b)

We now take k = Fq and recall that G ′ ⊂ G denotes the normalizer of the given
admissible pair (H,L) and C denotes the geometric conjugacy class of (H,L). We
can identify C with (G/G ′)(Fq). Note also that H1(Fq ,G) is trivial because G is
connected, so there are representatives {(Hα,Lα)}α∈H1(Fq ,G ′) of the G(Fq)-orbits in
C such that the normalizers of (Hα,Lα) are the inner forms G ′α ⊂ G of G ′ (see
Definition 6.5 and Proposition 6.12).

By Definition 2.13, the set L(C ) consists of all irreducible representations ρ of

G(Fq) such that the function16 tLα acts nontrivially in the representation ρ
∣∣∣G ′α(Fq )

for some α ∈ H1(Fq ,G ′). On the other hand, Proposition 6.13 shows that teH,L =
tindG

G′ e
′
L

is equal to the character of the representation
⊕

α∈H1(Fq ,G ′)
Ind

G(Fq )

G ′α(Fq )
tLα of

G(Fq). In view of Frobenius reciprocity and the definition of L(eH,L), this implies
that L(C ) = L(eH,L) and completes the proof of Proposition 9.1(b).
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Appendix A: Serre duality and bi-extensions

In this appendix, which can (for the most part) be read independently of the rest of the
paper, we recall the classical Serre duality theory [3,34] for connected commutative
unipotent groups, explain how to extend this theory to the case where the commu-
tativity assumption is dropped (following a suggestion of Drinfeld), and establish a
number of technical results on Serre duality and skewsymmetric bi-extensions that
are used in the main body of the text. Our presentation closely follows [16], and we
verify a few of the statements conjectured there.

A.1 Prologue

If G is an algebraic group over a field k and � is a prime different from char k, we
recall that a Q�-local system L on G is said to be multiplicative if μ∗(L) ∼= L � L,
where μ : G ×k G −→ G is the multiplication morphism. This notion is a natural
geometrization of the notion of a homomorphism � −→ Q

×
� , where � is an abstract

group. In the purely algebraic setting, the set of all such homomorphisms is itself an
abelian group, and this observation is useful in the character theory of finite groups.
It is natural to ask whether this statement has a geometric analogue.

In particular, we would like to construct a “moduli space” of multiplicative Q�-local
systems on G. We assume that G is connected: otherwise local systems on G have
nontrivial automorphisms, and there is no convenient way to “rigidify” them. More-
over, if we want this moduli space to be something resembling an algebraic group as
well, it is not hard to see [10] that G must be unipotent. Next, if G is a unipotent group
over a field of characteristic 0, then every local system on G is constant, so we will
assume that char k = p > 0.

In this case, fix an injection of groups ψ : Qp/Zp ↪→ Q
×
� . It identifies Qp/Zp

with the group of roots of unity in Q
×
� whose order is a power of p, and one easily

checks (see Lemma 7.3) that every multiplicative Q�-local system on G comes from a
multiplicative Qp/Zp-torsor on G (defined in an obvious manner). This observation
allows us to have a more natural theory which is independent of �.

Next, even for connected G, multiplicative Qp/Zp-torsors on G are still not rigid,
because being multiplicative is only a property. To rigidify the situation, we must look
at multiplicative Qp/Zp-torsors E on G equipped with a trivialization of the pullback
1∗E , where 1 : Spec k −→ G is the multiplicative identity. Giving such data is equiv-
alent to giving a central extension of G by the discrete group Qp/Zp in the category
of group schemes over k. This is proved in [26]. We find it more natural, and techni-
cally much more convenient, to work with central extensions of group schemes rather
than multiplicative local systems or torsors. Therefore the results of this appendix will
usually be phrased in the language of (bi-)extensions.

Finally, we recall (see Remark A.10) that the “moduli space” of central extensions
of G by Qp/Zp can only be canonically defined as a perfect scheme.
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A.2 Organization

The first half of the appendix is devoted to the Serre duality17 for connected commu-
tative perfect unipotent groups, the idea of which goes back to [34]. In Sect. 9.6, we
provide some background on perfect schemes, perfect group schemes, and the per-
fectization functor, following [16,19]. In Sect. 9.6, we define perfect quasi-algebraic
groups and perfect unipotent groups. In Sect. 9.6, we recall the main statement of the
classical Serre duality theory following [3]. In Sect. 9.6, we recall Mumford’s notion
[33] of a bi-extension, and in Sect. 9.6 we relate it to the notion of a “bimultiplicative
torsor”. In Sect. 9.6, we relate Serre duality for connected commutative unipotent
groups over finite fields to Pontryagin duality for finite p-groups. In Sect. 9.6, we
prove a result on bi-extensions of commutative connected unipotent groups which is
used in the study of admissible pairs. Finally, in Sect. 9.6 we prove the existence of
“almost Lagrangian” subgroups with respect to a skewsymmetric bi-extension (defined
in Sect. 9.6) of a commutative unipotent group by Qp/Zp, under suitable additional
assumptions, cf. [16].

The second half of the appendix discusses Serre duality for noncommutative groups.
In Sect. 9.6, we define the Serre dual of any connected perfect unipotent group, and in
Sects. 9.6–9.6 we establish the geometric analogues of certain standard constructions
and results on 1-dimensional characters of abstract groups.

A.3 Perfect schemes and group schemes

Fix a prime p. Let us recall that a scheme S in characteristic p, i.e., such that p anni-
hilates the structure sheaf OS of S, is said to be perfect if the morphism OS −→ OS ,
given by f �−→ f p on the local sections of OS , is an isomorphism of sheaves. In
particular, a commutative ring A of characteristic p is perfect [19] if and only if Spec A
is a perfect scheme.

Let Schp denote the category of all Fp-schemes, and let Perfp be the full subcat-
egory of Schp formed by perfect schemes. The inclusion functor Perfp ↪→ Schp
has a right adjoint which we will call the perfectization functor and will denote by
X �−→ X per f . We note that this functor was constructed by Greenberg in [19], who
denotes it by X �−→ X1/p∞ , and calls X1/p∞ the perfect closure of X .

Next let k be a perfect field of characteristic p, let Schk be the category of
k-schemes and Perfk the full subcategory consisting of perfect schemes. The nat-
ural morphism (Spec k)per f −→ Spec k is an isomorphism, so for any X ∈ Schk ,
the perfectization X per f is automatically a scheme over k (if k is not perfect, then
X per f is a scheme over the perfect closure of k). Hence, X �−→ X per f can be
upgraded to a functor Schk −→ Perfk , which is also right adjoint to the natural
inclusion.

Remark A.5 If A and B are perfect k-algebras, so is their tensor product A ⊗k B.
Indeed the p-th power homomorphism A⊗k B −→ A⊗k B, x �−→ x p, is the tensor
product of the corresponding homomorphisms A −→ A and B −→ B. It follows

17 Not to be confused with Serre duality in the theory of cohomology of coherent sheaves.
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that the product of two perfect schemes over k is perfect, so the inclusion functor
Perfk ↪→ Schk preserves products. Hence, a group object in the category Perfk is
automatically a group scheme over k in the usual sense, which is perfect as a scheme.
In particular, the term “perfect group scheme over k” is unambiguous.

Remark A.6 On the other hand, the perfectization functor Schk −→ Perfk preserves
limits by abstract nonsense (because it has a left adjoint). In particular, if G is a group
scheme over k, then G per f becomes a perfect group scheme over k.

A.4 Perfect unipotent groups

Let us fix a perfect field k of characteristic p > 0. A perfect scheme Y over k is said
to be of quasi-finite type over k if it is isomorphic to X per f for a scheme X of finite
type over k. We define a quasi-algebraic group over k to be a perfect group scheme
such that the underlying scheme is of quasi-finite type over k.

The next result is not strictly necessary for what follows, but we find it to be at least
psychologically helpful.

Lemma A.7 If G is an affine quasi-algebraic group over k, then G is isomorphic to
the perfectization of an affine algebraic group over k.

Proof In view of Remark A.5, we have G = Spec A, where A is a commutative Hopf
algebra over k which is perfect as a ring. By assumption, there exists a finitely gener-
ated k-subalgebra B ⊂ A such that A is the perfect closure [19] of B. Every coalgebra
over a field is the filtered union of its finite dimensional sub-coalgebras, so there is a
finitely generated Hopf subalgebra B ′ ⊂ A such that B ⊂ B ′. Then, A is the perfect
closure of B ′ as well, and G ′ = Spec B ′ is an affine algebraic group over k (because
A is reduced), and G ∼= G ′per f , as desired. ��
Definition A.8 A perfect unipotent group over k is a perfect group scheme over k
which is isomorphic to the perfectization of a unipotent algebraic group over k.

The two basic examples of perfect unipotent groups over k are the discrete group Z/pZ

and the perfectization Ga, per f of the additive group Ga . If k = k, then every connected
perfect unipotent group over k has a finite filtration by closed normal subgroups with
successive subquotients isomorphic to Ga, per f .

We denote by cpuk the category of all commutative perfect unipotent groups over
k, and by cpu◦k ⊂ cpuk the full subcategory formed by connected group schemes.
It is not hard to see that cpuk is an abelian category; in particular, for a morphism
f : G −→ H in cpuk , we can talk about the kernel, Ker f , of f , and we have the
notion of an exact sequence in cpuk . Moreover, cpu◦k is an exact subcategory of cpuk .

A.5 Classical Serre duality

We continue to work over a fixed perfect field k of characteristic p > 0. If G ∈ cpu◦k ,
we define a contravariant functor

G∗ : Schk −→ {abelian groups} , S �−→ Ext1
S(G ×k S,Qp/Zp), (A.1)
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where Ext1 denotes the first Ext group computed in the category of commutative group
schemes over S, and Qp/Zp is viewed as a discrete group scheme over S. We call this
functor the Serre dual of the group G.

The idea of this construction goes back to Serre’s article [34]. However, in the form
needed for our purposes, the duality theory appears to be due to Begueri:

Theorem A.9 [3] The restriction of the functor G∗ to the subcategory Perfk is rep-
resentable by an object of cpu◦k , which is also denoted by G∗. Moreover, the functor
G �−→ G∗ is an exact anti-auto-equivalence of the category cpu◦k .

Remark A.10 If G is a connected commutative unipotent group over k in the usual
sense, the natural morphism G∗ −→ (G per f )

∗ is an isomorphism of functors on Schk .
On the other hand, as explained, e.g., in [10], the functor G∗ is not representable18

on the whole category Schk already for G = Ga . This is the reason for working with
perfect group schemes in the context of Serre duality.

A.6 Bi-extensions

The notion of a bi-extension of group schemes was discovered by Mumford in [33],
and later generalized by Grothendieck in SGA 7-1. It can be formulated in several
equivalent ways; the following approach will be convenient for us. Let G1, G2 be
group schemes over a field k, and let A be a commutative group scheme over k. A
bi-extension of (G1,G2) by A is a scheme E over k, equipped with an action of A
and a morphism π : E −→ G1 ×k G2 which makes E an A-torsor over G1 ×k G2,
together with the following additional structures.

(a) Choices of sections of π along {1} × G2 and G1 × {1}, by means of which the
“slices” π−1 ({1} × G2) and π−1 (G1 × {1})will be identified with A×k G2 and
G1 ×k A, respectively, where 1 denotes the unit in G1 or G2.

(b) A morphism •1 : E ×G2 E −→ E which makes E a group scheme over G2 and
makes π a central extension of G1×k G2, viewed as a group scheme over G2, by
A×k G2, in a way compatible with the identification A×k G2 ∼= π−1 ({1} × G2).

(c) A morphism •2 : E ×G1 E −→ E which makes E a group scheme over G1 and
makes π a central extension of G1×k G2, viewed as a group scheme over G1, by
G1×k A, in a way compatible with the identification G1×k A ∼= π−1 (G1 × {1}).

These data are required to satisfy the following compatibility condition: if T is any
k-scheme and e11, e12, e21, e22 ∈ E(T ) = Homk−schemes(T, E), then

(e11 •2 e12) •1 (e21 •2 e22) = (e11 •1 e21) •2 (e12 •1 e22)

whenever both sides of this equality are defined, i.e., whenever

π(e11) = (g1, g2), π(e12) = (g1, g′2), π(e21) = (g′1, g2), π(e22) = (g′1, g′2)

for some g1, g′1 ∈ G1(T ) and g2, g′2 ∈ G2(T ).

18 However, it is ind-representable: see the “Appendix” on Serre duality in [10].
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Definition A.11 The notion of an isomorphism of bi-extensions is defined in the
obvious way, and bi-extensions of (G1,G2) by A form a groupoid which we denote
by Bi-ext(G1,G2; A). (It is even a strictly commutative Picard groupoid, see [16],
but we will not use this fact.) A trivial bi-extension is one which is isomorphic to
A ×k G1 ×k G2 equipped with the obvious A-action, the natural projection A ×k

G1×k G2 −→ G1×k G2, and the obvious partial group laws coming from the group
law on A. Equivalently, a bi-extension E as above is trivial if it has a trivialization,
i.e., a bimultiplicative section σ : G1 ×k G2 −→ E of π , which means that for
any k-scheme T and any choice of g1, g′1 ∈ G1(T ) and g2, g′2 ∈ G2(T ), we have
σ(g1g′1, g2) = σ(g1, g2) •1 σ(g′1, g2) and σ(g1, g2g′2) = σ(g1, g2) •2 σ(g1, g′2).

Remark A.12 [16] Bi-extensions are to central extensions as bimultiplicative maps
are to homomorphisms, where, for abstract groups �1, �2, A, we say that a map
β : �1×�2 −→ A is bimultiplicative if β(γ1,−) is a homomorphism for every fixed
γ1 ∈ �1, and β(−, γ2) is a homomorphism for every fixed γ2 ∈ �2. This analogy
manifests itself in many different ways.

For instance, if G is a group scheme over k and A is a commutative group scheme
over k, then the group of automorphisms of any central extension of G by A is naturally
isomorphic to the group Hom(G, A) of morphisms of k-group schemes G −→ A.
Consequently, for any trivial central extension of G by A, its trivializations form a
torsor under Hom(G, A). Similarly, if G1 and G2 are group schemes over k, then the
group of automorphisms of any bi-extension of (G1,G2) by A is naturally isomor-
phic to the group of bi-multiplicative morphisms of k-schemes G1×k G2 −→ A, and
hence trivializations of any trivial bi-extension of (G1,G2) by A form a torsor under
the latter group.

Corollary A.13 If A is a discrete commutative group and G1, G2 are group schemes
over k, at least one of which is a connected algebraic or quasi-algebraic group, then
bi-extensions of (G1,G2) by A have no non-trivial automorphisms. In particular,
every such bi-extension has at most one trivialization.

Definition A.14 A bi-extension E of (G1,G2) by A is said to be commutative if the
two partial group laws on E are commutative. Of course, this can only happen if G1
and G2 are commutative group schemes. In [33], Mumford imposes the commutativity
requirement in the very definition of a bi-extension.

A.7 Bi-extensions and bimultiplicative torsors

Some of the data and the compatibility conditions that appear in the definition of a
bi-extension can often be ignored. To explain this comment, let us introduce the notion
of a bimultiplicative torsor, by analogy with the notion of a multiplicative torsor.

Definition A.15 In the situation above, let

μ1 : G1 ×k G1 −→ G1 and μ2 : G2 ×k G2 −→ G2
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be the multiplication morphisms, and let

pr13, pr23 : G1 ×k G1 ×k G2 −→ G1 ×k G2

and

pr12, pr13 : G1 ×k G2 ×k G2 −→ G1 ×k G2

be the projections. An A-torsor E on G1 ×k G2 is said to be bimultiplicative if

(μ1 × idG2)
∗(E) ∼= pr∗13(E)⊗ pr∗23(E) as A − torsors on G1 ×k G1 ×k G2

and

(idG1 ×μ2)
∗(E) ∼= pr∗12(E)⊗ pr∗13(E) as A − torsors on G1 ×k G2 ×k G2.

It is clear that a bi-extension E of (G1,G2) by A determines a bimultiplicative
A-torsor on G1 ×k G2 by forgetting the partial group laws on E . The proof of the
following analogue of Lemma 7.2 is straightforward and is therefore omitted.

Lemma A.16 Let G1 and G2 be connected algebraic or quasi-algebraic groups over a
field k, and let A be an abstract commutative group, viewed as a discrete group scheme
over k. Consider the groupoid G of bimultiplicative A-torsors E on G1×k G2 equipped
with a trivialization of (1×1)∗E . Then, the forgetful functor Bi-ext(G1,G2; A) −→ G
is an equivalence of categories, and both groupoids are discrete. Furthermore, if G1
and G2 are commutative, then every bi-extension of (G1,G2) by A is automatically
commutative as well.

A.8 Serre duality and Pontryagin duality

In the remainder of the appendix, the only bi-extensions that we consider will be
bi-extensions of connected unipotent groups by Qp/Zp. Let us fix a perfect field k of
characteristic p > 0 and an object G ∈ cpu◦k . If G∗ ∈ cpu◦k is the Serre dual (Sect. 9.6)
of G, then, by definition, we have a central extension U of G ×k G∗ by Qp/Zp in
the category of group schemes over G∗, which is universal in the obvious sense. The
following claim is readily verified:

Lemma A.17 Let A be a perfect group scheme over k, and let f : A −→ G∗ be an
arbitrary morphism of k-schemes. Then, f is a morphism of group schemes if and only
if (idG × f )∗U has a structure of a bi-extension of (G, A) by Qp/Zp, compatible with
its structure of a central extension of G ×k A by Qp/Zp as an A-group scheme.

In particular, we see that U itself comes from a (unique) bi-extension of (G,G∗) by
Qp/Zp, which we will also denote by U . Furthermore, morphisms of k-group schemes
f : A −→ G∗ correspond bijectively with bi-extensions of (G, A) by Qp/Zp.

In this subsection, we assume that k = Fq is finite. Then, G(Fq) is a finite abe-
lian p-group, and we can consider its Pontryagin dual, which can be canonically
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defined as G(Fq)
∗ = Hom(G(Fq),Qp/Zp). It is natural to ask about the relationship

between G∗(Fq) and G(Fq)
∗. As we will see shortly, these two groups are canon-

ically isomorphic. First, note that we have an analogue of the sheaves-to-functions
correspondence (Sect. 4.2) in the context of Qp/Zp-torsors. Namely, isomorphism
classes of Qp/Zp-torsors on Spec Fq are in natural bijection with continuous homo-
morphismsφ : Gal(F/Fq) −→ Qp/Zp. In turn, such homomorphisms are in bijection
with elements of Qp/Zp, via φ �−→ φ(Fq), where Fq ∈ Gal(F/Fq) is the geometric
Frobenius. Now if X is an arbitrary scheme over Fq and E is a Qp/Zp-torsor over X ,
we obtain a functor tE : X (Fq) −→ Qp/Zp, defined by sending x ∈ X (Fq) to the
element of Qp/Zp corresponding to the Qp/Zp-torsor x∗E over Spec Fq .

Proposition A.18 If G is a perfect connected commutative unipotent group over Fq ,
G∗ is its Serre dual, and U is the universal bi-extension of (G,G∗) by Qp/Zp, then
the map

G(Fq)× G∗(Fq) = (G × G∗)(Fq)
tU−−−→ Qp/Zp

is a perfect pairing, i.e., it is bi-additive and identifies G∗(Fq) with G(Fq)
∗.

Proof The only nontrivial part is to show that every χ ∈ G(Fq)
∗ can be represented

as x �−→ tU (x, y) for some y ∈ G∗(Fq). By Lang’s theorem [28], we have an exact
sequence of perfect commutative unipotent groups over Fq ,

0 −→ G(Fq) −→ G
L−→ G −→ 0, (A.2)

where L : G −→ G, g �−→ �(g)g−1 is the Lang isogeny.19 Choose a homomorphism
χ : G(Fq) −→ Qp/Zp. The pushforward of (A.2) by χ is an extension

0 −→ Qp/Zp −→ G̃χ −→ G −→ 0,

which defines an element y ∈ G∗(Fq). One checks easily ([14], Sommes. trig.) that
the function tG̃χ

: G(Fq) −→ Qp/Zp, defined by G̃χ (viewed as a Qp/Zp-torsor
over G), is equal to χ . Hence, χ(x) = tU (x, y) for all x ∈ G(Fq). ��

A.9 Canonical pairing associated with a bi-extension

Let us fix two objects G1,G2 ∈ cpu◦k and a morphism f : G1 −→ G2. Since (G∗2)∗
is canonically identified with G2 by Theorem A.9, we see from Lemma A.17 that f
corresponds to a bi-extension of (G∗2,G1) by Qp/Zp. Consider the dual morphism
f ∗ : G∗2 −→ G∗1. The kernels Ker f and Ker f ∗ are possibly disconnected objects of
cpuk .

Until the end of the subsection we assume that k is an algebraically closed field
of characteristic p > 0. Then, the groups of connected components π0(Ker f ) and

19 Here, � : G −→ G is the absolute Frobenius morphism, defined as the identity map on the underlying
set of G, and the map f �−→ f q on local sections of the structure sheaf OG of G.



Characters of unipotent groups over finite fields 917

π0(Ker f ∗) are finite discrete abelian p-groups. Our goal is to define, following [16],
a canonical nondegenerate pairing of abelian p-groups

B f : π0(Ker f ∗)× π0(Ker f ) −→ Qp/Zp, (A.3)

i.e., a bi-additive map inducing an isomorphism of abelian groups

π0(Ker f ∗) −→ Hom(π0(Ker f ),Qp/Zp). (A.4)

To define (A.3), note that since f
∣∣Ker f = 0, the restriction E

∣∣
G∗2×(Ker f ) is a trivial

bi-extension. Since G∗2 is connected, there is only one trivialization of E
∣∣
G∗2×(Ker f ) by

Corollary A.13. Similarly, the bi-extension E
∣∣
(Ker f ∗)×G1

has a unique trivialization.

Thus, we obtain two trivializations of E
∣∣
(Ker f ∗)×(Ker f ) , which, by Remark A.12, must

“differ” by a bi-additive morphism (Ker f ∗)× (Ker f ) −→ Qp/Zp. Since Qp/Zp is
discrete, the latter factors through a bi-additive map (A.3).

Proposition A.19 The pairing (A.3) we just defined is nondegenerate.

To prove this proposition, it suffices to show the injectivity of the induced homo-
morphism (A.4), for then we can apply the same argument replacing f with f ∗. Thus,
let g ∈ (Ker f ∗)(k) be such that B f (g, x) = 0 for all x ∈ π0(Ker f ), where g denotes
the image of g in π0(Ker f ∗). We must show that g ∈ (Ker f ∗)◦. To this end, we need
to obtain a more concrete description of (Ker f ∗)◦.

Consider an arbitrary extension of commutative group schemes over k,

0 −→ Qp/Zp −→ G̃2
η−→ G2 −→ 0.

Let t ∈ G∗2(k) denote the corresponding element, and assume that t ∈ Ker f ∗, which
means that there exists a morphism f̃ : G1 −→ G̃2 such that η ◦ f̃ = f . Since G1
is connected and Qp/Zp is discrete, f̃ is unique. Moreover, it takes Ker f to Qp/Zp,
so we obtain an induced homomorphism t ′ : π0(Ker f ) −→ Qp/Zp.

The following claim is simply a matter of unwinding the definitions:

Lemma A.20 We have t ′(x) = B f (t, x) for all x ∈ π0(Ker f ).

In view of this result, it is clear that Proposition A.19 follows from

Lemma A.21 In the situation above, the following are equivalent:

(i) t belongs to the neutral connected component (Ker f ∗)◦;
(ii) the restriction of t to the image of f is trivial;

(iii) the homomorphism t ′ is identically zero.

Proof The equivalence between conditions (ii) and (iii) is obvious. Indeed, since we
are already assuming that f ∗(t) = 0, it is clear that the restriction of t to the image
of f is trivial if and only if the homomorphism f̃ defined above vanishes on Ker f ,
which is in turn equivalent to the vanishing of t ′.
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For the equivalence between (i) and (ii), note first that the composition of f with
the quotient map G2 � G2/ f (G1) equals zero, hence the composition

(G2/ f (G1))
∗ ↪→ G∗2

f ∗−→ G∗1

also equals zero. Since (G2/ f (G1))
∗ is connected, we see that (ii) implies (i). The

argument of the previous paragraph shows that we have an exact sequence

0 −→ (G2/ f (G1))
∗(k) −→ (Ker f ∗)(k) −→ Hom(π0(Ker f ),Qp/Zp),

and the last group is finite. Thus, (G2/ f (G1))
∗ maps isomorphically onto (Ker f ∗)◦,

whence (i) also implies (ii) and the proof of the lemma is complete. ��

A.10 Symmetric and skewsymmetric bi-extensions

Let k be a perfect field of characteristic p > 0, let G ∈ cpu◦k , and let E
π−→ G ×k G

be a bi-extension of (G,G) by Qp/Zp. As explained above, E determines (and is
determined by) a homomorphism f : G −→ G∗. We will think of its dual, f ∗, as
a homomorphism G −→ G∗ as well, using the canonical identification (G∗)∗ ∼= G
(see Theorem A.9).

Definition A.22 The bi-extension E is said to be symmetric if τ ∗(E) ∼= E , where
τ : G ×k G −→ G ×k G is the transposition of the two factors. Equivalently, E is
symmetric if f ∗ = f . We say that E is skewsymmetric20 if the restriction of E to the
diagonal in G ×k G is a trivial Qp/Zp-torsor.

Remark A.23 In general, skewsymmetry is not a property of a bi-extension; rather,
one needs to define an extra structure, called a skewsymmetry constraint in [16]. How-
ever, since G is connected and Qp/Zp is discrete, being skewsymmetric becomes a
property in our situation (similarly to Lemma A.16).

Remark A.24 If the bi-extension E considered above is skewsymmetric, it is easy to
check that f = − f ∗. The converse statement holds if (and only if) p > 2.

Lemma A.25 (“Parity change”) In the situation of this subsection, assume that k is
algebraically closed and consider the canonical pairing (A.3) defined in Sect. 9.6. If
E is symmetric (respectively, skewsymmetric), so that, in particular, Ker f = Ker f ∗,
then B f is alternating21 (respectively, symmetric).

This lemma is proved at the end of the subsection. In the skewsymmetric case, we
can in fact prove a more precise result (see Lemma A.26). To state it, we intro-
duce some notation. Because we are working in the commutative situation, we
will denote the partial group laws on E by +1 and +2, as opposed to •1 and •2.

20 The term “alternating” might be more appropriate, but we decided to be consistent with [16].
21 In other words, B f (x, x) = 0 for all x ∈ π0(Ker f ) = π0(Ker f ∗).
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The group laws on G and A will also be written additively. Since E is either symmetric
or skewsymmetric, we have Ker f = Ker f ∗, and thus we have unique trivializations
λ : (Ker f ) ×k G −→ E and ρ : G ×k (Ker f ) −→ E (cf. Definition A.11), as in
Sect. 9.6.

With this notation, the bi-additive map (A.3) is explicitly defined by

λ(x, y) = B f (x, y)+ ρ(x, y) ∀ x, y ∈ Ker f.

If, in addition, E is skewsymmetric, then, by Definition A.22, we have a unique mor-
phism �̃ : G −→ E such that �̃(0) = 0 and π ◦ �̃ is the diagonal morphism
� : G −→ G ×k G. In this case, we define a morphism q : Ker f −→ Qp/Zp by

λ(x, x) = q(x)+ �̃(x) ∀ x ∈ Ker f.

Lemma A.26 Assume that k is algebraically closed, and that E is skewsymmetric.
Then, q descends to a map q : π0(Ker f ) −→ Qp/Zp satisfying the following iden-
tities:

(1) q(nx) = n2 · q(x) for all n ∈ Z and all x ∈ π0(Ker f ); and
(2) B f (x, y) = q(x + y)− q(x)− q(y) for all x, y ∈ π0(Ker f ).

Hence, q is a “nondegenerate Qp/Zp-valued quadratic form” on π0(Ker f ).

Proof (1) Given n ∈ Z, let e �−→ n ∗1 e and e �−→ n ∗2 e denote the “multiplication
by n” action on E obtained from the first and the second partial group laws,
respectively. Consider the identity �̃(n · x) = n ∗1 (n ∗2 �̃(x)) for x ∈ G. It
holds for x = 0 by construction, and becomes true after we apply π to both
sides. Hence, this identity holds for all x , by continuity. On the other hand, since
λ is bi-additive, we have λ(n · x, n · x) = n ∗1 (n ∗2 λ(x, x)) for all x ∈ Ker f ,
proving (1).

(2) We take x, y ∈ (Ker f )(k). By construction, we have

λ(x + y, x + y) = q(x + y)+ �̃(x + y). (A.5)

On the other hand, using the bi-additivity of λ, we find

λ(x + y, x + y) = (λ(x, x)+2 λ(x, y))+1 (λ(y, x)+2 λ(y, y))

= q(x)+ q(y)+ (
�̃(x)+2 λ(x, y)

)+1
(
λ(y, x)+2 �̃(y)

)

(A.6)

Comparing (A.5) and (A.6), we see that (2) reduces to verifying the identity

�̃(x + y) = (
�̃(x)+2 ρ(x, y)

)+1
(
λ(y, x)+2 �̃(y)

)
.

However, the last identity is meaningful for all (x, y) ∈ G(k) × (Ker f )(k).
Moreover, it is satisfied by continuity, because it holds whenever x = 0, because
G is connected, and because it becomes true after we apply π to both sides. ��
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Proof of Lemma A.25 If E is skewsymmetric, the symmetry of B f follows from
Lemma A.26(2). Now assume that E is symmetric and use the notation introduced

above. Let τ̃ : E
�−→ E be the isomorphism of k-schemes which induces an isomor-

phism of bi-extensions between τ ∗(E) and E . In other words, π ◦ τ̃ = τ ◦ π , and τ̃
interchanges the two partial group laws on E . Uniqueness of trivializations implies
that λ(x, y) = τ̃ (ρ(y, x)) for all (x, y) ∈ (Ker f )(k)× G(k). On the other hand, by
continuity, τ̃ is the identity above the diagonal in G ×k G. Thus, λ(x, x) = ρ(x, x)
for all x ∈ (Ker f )(k), which means that B f (x, x) = 0, i.e., B f is alternating.

A.11 Lagrangian subgroups

Every finite dimensional vector space V equipped with an alternating bilinear form
ω admits a Lagrangian subspace, i.e., a subspace L ⊂ V which coincides with its
annihilator with respect to ω. In particular, the rank of ω is even.

Let us study the geometric analogue of this statement. Fix G ∈ cpu◦k and a skew-
symmetric bi-extension E of (G,G) by Qp/Zp. Let f : G −→ G∗ denote the
corresponding morphism. The rank of E is defined to be rk E = dim f (G).

Definition A.27 An almost Lagrangian subgroup of G with respect to E is a closed
connected subgroup L ⊂ G such that L ⊂ f −1(Ann(L)), and L has finite index in
f −1(Ann(L)), where Ann(L) = Ker(G∗ � L∗) ⊂ G∗ is the annihilator of L in G∗.
We say that L is simply Lagrangian if f −1(Ann(L)) = L .

Note that if G has an almost Lagrangian subgroup with respect to E , then rk E must
be even. However, rk E is not always even in the geometric setup: for instance, there
exist nontrivial skewsymmetric bi-extensions of (Ga, per f ,Ga, per f ) by Qp/Zp. This
is the first obstruction to the existence of almost Lagrangian subgroups. If the base
field k is algebraically closed, this is the only obstruction. The non-algebraically closed
case appears to be more intricate. Part (a) of the following result was conjectured in
[16].

Proposition A.28 (a) If k is algebraically closed and rk E is even, G has an almost
Lagrangian subgroup with respect to E.

(b) Allow k to be merely perfect, and suppose that E is nondegenerate in the strong22

sense, i.e., f : G −→ G∗ is an isomorphism. Then, dim G is even and every
almost Lagrangian subgroup of G with respect to E is Lagrangian.

Before proving this proposition we need to understand Serre duality more explicitly
in a special case. It is well known that the objects of cpu◦k that are annihilated by p are
isomorphic to direct sums of copies of Ga, per f . On the other hand, we have

Endcpu◦k (Ga, per f ) ∼= R := k{τ, τ−1}, (A.7)

the ring of twisted Laurent polynomials, determined by τ · c = cp · τ for c ∈ k. The
isomorphism (A.7) is obtained by letting elements of k act on Ga, per f by dilations,
and letting τ act by x �−→ x p.

22 The “weak” non-degeneracy condition is that f is an isogeny.
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To describe the Serre duality functor on the subcategory of p-torsion objects of cpu◦k ,
we only need to explain how it acts on Ga, per f and on endomorphisms of Ga, per f .
This was done in [10]. One can identify G

∗
a, per f with Ga, per f so that the action of

the Serre duality functor on endomorphisms of Ga, per f becomes the anti-involution
f �−→ f ∗ of the ring R determined by c∗ = c for c ∈ k, and τ ∗ = τ−1.

Below we will prove the following purely algebraic result:

Lemma A.29 Let k be algebraically closed, and let f : G2
a, per f −→ (G2

a, per f )
∗ be

a morphism of k-group schemes such that f ∗ = − f . Then, there exists a nonzero
morphism α : Ga, per f −→ G

2
a, per f such that α∗ ◦ f ◦ α = 0.

Let us explain why this lemma implies Proposition A.28.
For part (a) of the proposition, we use induction on dim G. What allows us to

reduce dim G is the construction of subquotients of E . Namely, if H ⊂ G is a closed
connected isotropic subgroup, i.e., such that H ⊂ H⊥ := f −1(Ann(H)), then E
induces a skewsymmetric bi-extension E ′ of G ′ := (H⊥)◦/H by Qp/Zp, and if L ′
is an almost Lagrangian subgroup of G ′ with respect to E ′, then the preimage of L ′
in H⊥ is an almost Lagrangian subgroup of G with respect to E . Furthermore, rk E ′
has the same parity as rk E , and dim G ′ < dim G so long as H is nontrivial.

First we reduce to the case p ·G = 0. If p ·G �= 0, let n ≥ 2 be the smallest integer
for which pn · G = 0 (it exists because G is a commutative perfect unipotent group).
Then, pn−1 · G is a nontrivial connected isotropic subgroup of G with respect to E ,
so we are done by induction on dim G, as explained above.

Now assume that p · G = 0, so that G ∼= G
d
a, per f for some d ∈ N. If d = 1,

then E = 0 because rk E is even by assumption, so G is almost Lagrangian in itself.
Otherwise, let G ′′ ⊂ G be a closed subgroup isomorphic to G

2
a, per f . By Lemma A.29,

G ′′ has a nontrivial connected isotropic subgroup H with respect to E
∣∣
G ′′×k G ′′ . Then,

H is also isotropic in G, and we are again done by induction.
Next we prove part (b) of the proposition. The second statement is obvious: if

L ⊂ G is any connected subgroup, then Ann(L) ⊂ G∗ is also connected, whence
L⊥ = f −1(Ann(L)) is connected because f is an isomorphism. Thus, L is Lagrang-
ian if and only if it is almost Lagrangian. For the first statement, use the base change
from k to an algebraic closure of k (this changes neither the non-degeneracy property
of E nor dim G). Now let us try to repeat the same inductive argument as above to
prove that G has an almost Lagrangian subgroup with respect to E , which will imply
that dim G is even. Note that if H ⊂ G is a closed connected subgroup which is iso-
tropic with respect to E , then the induced skewsymmetric bi-extension E ′ of H⊥/H
by Qp/Zp is also nondegenerate. Thus, the only place where we cannot repeat the
same argument as above is when G = Ga, per f .

However, we claim that Ga, per f cannot have nondegenerate skewsymmetric
bi-extensions by Qp/Zp. Indeed, consider a morphism f : Ga, per f −→ G

∗
a, per f

defining a skewsymmetric bi-extension. We identify G
∗
a, per f with Ga, per f as

explained above, so that f becomes an element of the ring R = k{τ, τ−1}. It is
easy to check that being skewsymmetric becomes the property that f can be written
as a sum of elements of the form τ j · c− c · τ− j , where j ∈ N and c ∈ k. However, no
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such element is invertible in R, since all units of R are of the form c · τ i , for c ∈ k×
and i ∈ Z.

Thus, we have proved both parts of Proposition A.28.

Proof of Lemma A.29 Our argument uses dimension counting, which is why we need
to assume that k is algebraically closed. Using the identification of G

∗
a, per f with

Ga, per f , we can represent the morphism f by a two-by-two matrix

(
a b
−b∗ d

)
, where a, b, d ∈ R and a = −a∗, d = −d∗.

An arbitrary morphism α : Ga, per f −→ G
2
a, per f can be represented by a vector

(x, y) ∈ R2, and then the element α∗ ◦ f ◦ α ∈ Endcpu◦k (Ga, per f ) equals

F(x, y) := x∗ax − y∗b∗x + x∗by + y∗dy. (A.8)

We must show that in this situation there exist x, y ∈ R, not both zero, such that
F(x, y) = 0. Note that we have F(x, y)∗ = −F(x, y) for all x, y ∈ R.

In what follows, we will view R as a vector space over k with respect to the action
of k on R by left multiplication. For each N ∈ N, let RN be the subspace of R spanned
over k by

{
τ−N , τ−N+1, . . . , τ N

}
. It has dimension 2N + 1.

Let Rskew
N denote the subset of RN consisting of the elements z satisfying z∗ = −z.

It is not a k-subspace of RN . However, we can identify it with a suitable k-vector space.
Namely, let R+N be the subspace of R spanned by

{
τ, τ 2, . . . , τ N

}
if p > 2, and by{

1, τ, . . . , τ N
}

if p = 2. There is a unique additive bijection φ : R+N
�−→ Rskew

N
given by cτ j �−→ cτ j − τ− j c for 1 ≤ j ≤ N , c ∈ k, and c �−→ c if p = 2. We have
dim R+N = N if p > 2, and dim R+N = N + 1 if p = 2.

Choose m ∈ N such that a, b, d ∈ Rm . Then, the map F defined by (A.8) takes R2
N

to Rskew
2N+m . Hence, F ′ := φ−1 ◦ (

F
∣∣

RN

)
is a map R2

N −→ R+2N+m . This map is not

quite polynomial with respect to the obvious coordinates on the k-vector spaces R2
N

and R+2N+m , because of the equation τ−1 · c = c1/p · τ−1 for c ∈ k. However, for any

s ∈ N, we have a bijection k4N+2 �−→ R2
N given by

(x−N , . . . , xN , y−N , . . . , yN ) �−→
⎛
⎝∑

i

x ps

i · τ i ,
∑

j

y ps

j · τ j

⎞
⎠ ,

and the resulting composition k4N+2 −→ R+2N+m is given by a polynomial map with
coefficients in k if s is large enough. Since 4N + 2 > dimk R+2N+m whenever N ≥ m,
and since k is assumed to be algebraically closed, the standard theorem of the dimen-
sion of fibers of an algebraic map implies that the equation F(x, y) = 0 has a nonzero
solution (x, y) ∈ R2

N for N ≥ m, which proves the lemma. ��
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A.12 Noncommutative Serre duality

Let us once again fix a perfect field k of characteristic p > 0. Let G be a connected
perfect unipotent group over k. This time we do not assume that G is commutative.
The Serre dual of G can be defined, as a functor, in the same way as in Sect. 9.6, by
formula (A.1), except that the right hand side has to be interpreted as the group of
isomorphism classes of central extensions of G ×k S by the discrete group scheme
Qp/Zp. The following result was conjectured by Drinfeld in [16]; the key idea of the
proof is also due to him.

Proposition A.30 If G is a connected perfect unipotent group over k, the restriction
of the functor G∗ to Perfk is represented by an object of cpuk , which we also denote by
G∗. Moreover, the natural homomorphism (Gab)∗ −→ G∗, induced by the quotient
map G −→ Gab = G/[G,G], identifies (Gab)∗ with (G∗)◦.

Let us first explain why the problem is nontrivial. Naively one might expect that
every central extension of G by Qp/Zp restricts to a trivial extension of [G,G], so that
G∗ = (Gab)∗ as functors. However, this is not so, as was already observed in [16]; see
[26] for more details. Fortunately, as we will see below, this naive expectation only
“fails by a finite amount,” which allows us to get a handle on G∗.

We use the following result of [26] in a crucial way:

Theorem A.31 [26] There exists a (unique) central extension

1 −→ � −→ [G,G]true −→ [G,G] −→ 1, (A.9)

where � is a finite unipotent k-group,23 characterized by the properties that

• [G,G]true is connected,
• every central extension of G by a finite unipotent k-group splits after pullback to
[G,G]true, and

• the commutator morphism G ×k G −→ G lifts to [G,G]true.

Moreover, there exists a central extension G̃
π−→ G of G by a finite unipotent k-group

such that (A.9) is isomorphic to π−1([G,G])◦ −→ [G,G]. Finally, the formation of
(A.9) commutes with base change to algebraic extensions of k.

The group [G,G]true, together with the homomorphism [G,G]true −→ G, is called
the true (étale) commutator [16] of G, for the obvious reason.

To prove Proposition A.30, we use induction of dim G. If dim G = 1, then G is
commutative and we can apply Theorem A.9. Assume that dim G > 1 and the result
holds for all connected perfect unipotent groups H over k such that dim H < dim G.

If S is any perfect scheme over k and A is an abstract (discrete) abelian group, we
will write H2(G ×k S, A) for the abelian group of isomorphism classes of central
extensions of G ×k S by A in the category of group schemes over S.

23 In other words, a finite étale unipotent group scheme over k.
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Lemma A.32 If S is a perfect scheme over k, the natural homomorphism

H2(G ×k S,Qp/Zp) −→ H2([G,G]true ×k S,Qp/Zp)

equals zero.

Proof We may assume that S is affine. There exists n ∈ N such that g pn = 1 for all
g ∈ G or [G,G]true. Hence, for any S as above, the natural homomorphisms

H2(G ×k S,Z/pn
Z) −→ H2(G ×k S,Qp/Zp)

and

H2([G,G]true ×k S,Z/pn
Z) −→ H2([G,G]true ×k S,Qp/Zp)

are isomorphisms. On the other hand, it is easy to see that since S is affine,

lim−→H2(G ×k S′,Z/pn
Z)

�−→ H2(G ×k S,Z/pn
Z),

where the inductive limit is taken over all morphisms S −→ S′, where S′ is a perfect
affine k-scheme of quasi-finite type (Sect. 9.6) over k. Hence, it suffices to prove the
lemma in the case where S is of quasi-finite type over k.

Now, by the induction assumption, the functor [G,G]∗true is representable by an
object of cpuk . Given an element of H2(G×k S,Qp/Zp), its pullback to [G,G]true×k S
defines a morphism of k-schemes S −→ [G,G]∗true. By Theorem A.31, the induced
map S(k) −→ [G,G]∗true(k) is identically 0, where k is an algebraic closure of k.
Since S is of quasi-finite type over k, this implies that S −→ [G,G]∗true is constant.

��

We can now complete the proof of Proposition A.30. Consider the sequence (A.9)
defined in Theorem A.31. In view of Lemma A.32, we obtain an exact sequence of
functors from Perfk to the category of abelian groups,

0 −→ (Gab)∗ −→ G∗ −→ Hom(�,Qp/Zp) −→ 0,

where Hom(�,Qp/Zp) is viewed as a finite unipotent k-group in the natural way.24

Since (Gab)∗ is representable by a connected commutative perfect unipotent group
over k by Theorem A.9, both statements of Proposition A.30 follow.

24 For instance, � is nothing but a finite abelian p-group equipped with a continuous action of Gal(k/k),
where k is an algebraic closure of k. Then, Hom(�,Qp/Zp) can be equipped with the contragredient
action of Gal(k/k).
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A.13 An auxiliary construction

In this subsection, we describe a construction used in the definition of an admissible
pair for a unipotent group in characteristic p > 0 (see Sect. 7.3). The construction
is a geometric counterpart of the following simple observation. If � is a finite group,
N ⊂ � is a normal subgroup, χ : N −→ Qp/Zp is a homomorphism, which is invari-
ant under the conjugation action of �, and Z ⊂ � is a subgroup such that N ⊂ Z and
[�, Z ] ⊂ N , then χ induces a homomorphism �/N −→ Hom(Z/N ,Qp/Zp) given
by γ �−→ (

z �→ χ(γ zγ−1z−1)
)
.

We fix a perfect field k of characteristic p > 0, let U be a (possibly disconnected)
perfect unipotent group over k and let N ⊂ U be a normal connected subgroup. By
Proposition A.30, we can speak about the Serre dual, N∗ ∈ cpuk , of N , and since N∗
is defined by a universal property (in the category of perfect k-schemes), it is clear
that U acts on N∗ regularly by k-group scheme automorphisms.

Let ν ∈ N∗(k) be a U -invariant element, and let Z ⊂ U be a connected subgroup
such that N ⊂ Z and [U, Z ] ⊂ N . (Without loss of generality, one can take Z to be
the preimage in U of the neutral connected component of Z(U/N ).)

We claim that ν defines a k-group morphism ϕν : U/N −→ (Z/N )∗.

In the proof of this claim, we will use the standard correspondence between cen-
tral extensions (or bi-extensions) of connected (quasi-)algebraic groups by Qp/Zp

and (bi)multiplicative Qp/Zp-torsors (see [26] and Lemma A.16). Thus, we will also
denote by ν the multiplicative Qp/Zp-torsor on N defined by ν.

First we will define a morphism of k-schemes U −→ Z∗. By definition, this is
the same as constructing a central extension of U ×k Z , viewed as a group scheme
over U , by Qp/Zp. We define a Qp/Zp-torsor on U ×k Z by E = c∗ν, where
c : U ×k Z −→ N , c(u, z) = [u, z] := uzu−1z−1. Now we apply the following
result.

Lemma A.33 The restrictions of E to N ×k Z and U ×k N are trivial torsors. More-
over, let μU : U ×k U −→ U, μZ : Z ×k Z −→ Z denote the multiplication
morphisms, and let p1, p2 : U ×k U −→ U and q1, q2 : Z ×k Z −→ Z be the
natural projections. Then

(idU ×μZ )
∗E ∼= (idU ×q1)

∗E ⊗ (idU × q2)
∗E (A.10)

as Qp/Zp-torsors on U ×k Z ×k Z, and

(μU × idZ )
∗E ∼= (p1 × idZ )

∗E ⊗ (p2 × idZ )
∗E (A.11)

as Qp/Zp-torsors on U ×k U ×k Z.

The proof of Lemma A.33 is given below. Note that formula (A.10) implies that
E corresponds to a central extension of U ×k Z , viewed as a group scheme over U ,
by Qp/Zp, and hence defines a morphism U −→ Z∗ of k-schemes. Formula (A.11)
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implies that, moreover, this morphism is a group homomorphism. Finally, the first sen-
tence of the lemma means that this homomorphism factors through a homomorphism
ϕν : U/N −→ (Z/N )∗, as claimed.

Remark A.34 Note that Z/N ∈ cpu◦k , because [U, Z ] ⊂ N , and hence, a fortiori,
[Z , Z ] ⊂ N . The restriction of ϕν to Z/N is a bi-extension of (Z/N , Z/N ) by
Qp/Zp. In fact, this extension is skewsymmetric (Definition A.22) by the very con-
struction of ϕν (indeed, observe that the restriction of c to the diagonal in Z ×k Z is
constant).

Proof of Lemma A.33 The following observation will be used several times in the
proof. Let α : U ×k N −→ N denote the conjugation action map: (u, n) �−→ unu−1.
Then, α∗ν is a Qp/Zp-torsor over U ×k N , and it is clear that if we view U ×k N as a
group scheme over U , then α∗ν becomes a multiplicative Qp/Zp-torsor, in the sense
that

(idU ×μN )
∗α∗ν ∼= (idU × r1)

∗α∗ν ⊗ (idU × r2)
∗α∗ν

as Qp/Zp-torsors on U ×k N ×k N , where μN : N ×k N −→ N is the multiplication
morphism and r1, r2 : N ×k N −→ N are the two projections. Hence, α∗ν defines
a morphism of k-schemes U −→ N∗, which is nothing but the orbit map for the
U -action on ν ∈ N∗(k). By assumption, ν is U -invariant, whence

α∗ν ∼= (Qp/Zp)U � ν, (A.12)

where (Qp/Zp)U denotes the trivial Qp/Zp-torsor on U .
Let us prove that, in the notation of Lemma A.33, the torsor E ∣∣N×k Z is trivial. The

following composition clearly equals c
∣∣N×k Z :

N ×k Z
ι−→ N ×k Z ×k N

id×(α∣∣Z×k N )−−−−−−−−−→ N ×k N
μN−−−→ N ,

where ι(n, z) = (n, z, n−1). Therefore

E ∣∣N×k Z ∼=
(
c
∣∣N×k Z

)∗
ν

∼= ι∗ [id×(α ∣∣Z×k N )
]∗
(μ∗Nν)

∼= ι∗ [id×(α ∣∣Z×k N )
]∗
(ν � ν)

∼= ι∗ (ν � (Qp/Zp)U � ν
) ∼= (Qp/Zp)N×k Z ,

as claimed, where the isomorphism before the last one uses (A.12).
The triviality of E ∣∣U×k N is proved by a completely analogous argument.
Let us prove (A.10). It is straightforward to verify the identity

c(u, z1z2) = c(u, z1) · c(u, z2) · α(z1, c(u, z2)) ∀ u ∈ U, z1, z2 ∈ Z .
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It translates into the commutativity of the following diagram:

U ×k Z ×k Z

idU ×μZ

��

β �� N ×k N ×k N

μ3

��
U ×k Z

c �� N

where μ3(n1, n2, n3) = n1n2n3 and

β(u, z1, z2) = (c(u, z1), c(u, z2), α(z1, c(u, z2))) .

Therefore, using (A.12), we find that

(idU ×μZ )
∗E ∼= β∗(ν � ν � ν)

∼= (idU × q1)
∗c∗ν ⊗ (idU × q2)

∗c∗ν ⊗ (Qp/Zp)U×k Z×k Z

∼= (idU × q1)
∗E ⊗ (idU × q2)

∗E,

which proves (A.10).
Finally, the proof of (A.11) is very similar, so we omit the details. The argument

uses the easily verifiable identity

c(u1u2, z) = c(u1, z) · c(u2, z) · c
(

zu1z−1, c(u2, z)−1
)−1

together with the multiplicativity property of ν (i.e., μ∗3ν ∼= ν � ν � ν) and the fact
that E ∣∣U×k N is trivial. This completes the proof of Lemma A.33. ��

A.14 Lifting central extensions

In this subsection, we prove a result on lifting central extensions of connected uni-
potent groups by Qp/Zp that is essentially equivalent to Proposition 7.7 used in the
main body of the text.

Proposition A.35 Let k be (as usual) a perfect field of characteristic p > 0, let G be
a connected unipotent group over k, let H ⊂ G be a connected subgroup such that
[G,G] ⊂ H and consider a central extension

0 −→ Qp/Zp −→ H̃
π−→ H −→ 0. (A.13)

Assume that the commutator morphism com : G × G −→ H lifts to a morphism
G × G −→ H̃ . Then, (A.13) lifts to a central extension of G by Qp/Zp.

Remark A.36 The reader may observe that in this result we departed from our tradition
of working with perfect unipotent groups. However, the difference between algebraic
and quasi-algebraic groups is absolutely irrelevant in Proposition A.35 (which we
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could have equally well stated for perfect unipotent groups). Indeed, if G is any alge-
braic group over k, the natural pullback map H2(G,Qp/Zp) −→ H2(G per f ,Qp/Zp)

is easily seen to be an isomorphism, where, as in the proof of Proposition A.30, we
write H2(G,Qp/Zp) for the abelian group of isomorphism classes of central exten-
sions of G by Qp/Zp in the category of k-group schemes.

Proof of Proposition A.35 It is clear that we can choose a lift c : G × G −→ H̃ of
the commutator morphism which satisfies c(1, 1) = 1. We assert that c makes the
homomorphism δ : H̃ −→ G obtained by composing π with the inclusion H ↪→ G
a strictly stable crossed module in the terminology of [12].

Let us briefly recall what this means. Define a morphism G × H̃ −→ H̃ by
(g, h) �−→ gh := c(g, δ(h)) · h. This morphism is a regular left action of G on H̃ by
algebraic group automorphisms, satisfying

δ(gh) = gδ(h)g−1 and δ(h)h′ = hh′h−1 ∀ g ∈ G, h, h′ ∈ H̃ .

(This is a slight abuse of notation since we should not be using “elements” of G and H̃ ,
but it is easy to rewrite the identities above purely in terms of morphisms of schemes.)
In addition, c satisfies c(g, g) = 1, c(g, h)c(h, g) = 1, and a few other conditions
(coming from the axioms for a braided monoidal category), all of which are carefully
formulated in [12] and in [26].

All the equations for the morphism c mentioned in the previous paragraph are
automatically satisfied in our situation because G is connected (and therefore geomet-
rically integral), Qp/Zp is discrete, and c(1, 1) = 1 by assumption. The full proof is
left as a simple exercise for the reader. The details can also be found in [26].

According to [12], c induces the structure of a strictly commutative Picard stack
on the quotient stack G/H̃ ; see [12] or [1, Exp. XVIII, Sect. 1.4] for the definition
of a strictly commutative Picard stack. According to Proposition 1.4.15 in loc. cit., if
A and B are sheaves of abelian groups on any site, then strictly commutative Picard
stacks P with π0(P) = A and π1(P) = B are classified up to equivalence by the
group Ext2(A,B). In our situation, π0(G/H̃) = G/H and π1(G/H̃) = Qp/Zp.

We claim that Ext2(G/H,Qp/Zp) = 0. Indeed, G/H is a connected commuta-
tive unipotent group over k, so since k is perfect, G/H has a filtration by connected
subgroups with all the successive subquotients isomorphic to Ga . By induction on
dim(G/H), we are reduced to the following lemma, which is proved in Sect. 9.6.

Lemma A.37 If k is any perfect field of characteristic p > 0, then

Extr (Ga,Qp/Zp) = 0 for all r ≥ 2,

where Qp/Zp is viewed as a discrete group scheme over k and the group Ext2 is
computed in the category of sheaves of abelian groups on the fppf site of Spec k.

We see that the Picard stack G/H̃ is equivalent to the “trivial one”, defined as the
product (G/H)×(Qp/Zp− tors), where G/H is the discrete (i.e., having no nontrivial
morphisms) strictly commutative Picard stack defined by the commutative algebraic
group G/H and Qp/Zp− tors is the Picard stack of Qp/Zp-torsors. This implies that
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the 1-morphism H −→ Qp/Zp − tors of gr-stacks (cf. [12] or [26]) obtained from
the central extension (A.13) extends to a 1-morphism G −→ Qp/Zp − tors, which
in turn implies that χ lifts to a central extension of G by Qp/Zp.

A.15 Proof of Lemma A.37

The argument, which we present, is based on an idea borrowed from Sect. III.0 of
[32], and uses a result of Breen [11]. Breen also has independently suggested another
proof of Lemma A.37 (in private communication).

The perfect site, kp f , of Spec k is defined as the category of perfect k-schemes of
quasi-finite type (see Sect. 9.6) over k, with the Grothendieck topology for which the
covering families are the surjective families of étale morphisms.

For brevity, we will introduce the following (non-standard) notation. Let us write
A for the category of sheaves of abelian groups on the fppf site k f pp f of Spec k, and
let us write A (p) for the category of sheaves of Fp-vector spaces on the site kp f . We
claim that there is a natural (quasi-)isomorphism

R HomA (p)(Ga,Z/pZ)
�−→ R HomA (Ga,Qp/Zp). (A.14)

Indeed, following the proof of Lemma III.0.13(a) of [32], let us choose an injective
resolution Qp/Zp −→ I • in the category A . Injective abelian sheaves are divisible,

so if we let I
j

p be the kernel of the multiplication by p map I j −→ I j for every
j ≥ 0, then the complex I •p is a resolution of Z/pZ, which restricts to an injective

resolution of Z/pZ in the category A (p). Moreover, since any morphism Ga −→ I j

automatically factors through I
j

p (because Ga is annihilated by p), we obtain (A.14).
To complete the proof of Lemma A.37, we use the Artin–Schreier sequence

0 −→ Z/pZ −→ Ga
x �−→x p−x−−−−−−−−→ Ga −→ 0 (A.15)

In [11], it is proved that Ext j
A (p)(Ga,Ga) = 0 for all j ≥ 1. Applying the functor

HomA (p)(Ga,−) to (A.15) and using the associated long exact sequence of the Ext
groups, we find that ExtrA (p)(Ga,Z/pZ) = 0 for all r ≥ 2. By (A.14), we are done.

Appendix B: Proof of Theorem 2.6

In this appendix, we present a proof of Theorem 2.6, which is due to Drinfeld.

B.1 Setup

We fix an easy unipotent group G over Fq and an irreducible representation ρ of
G(Fq) over Q�. Let us list a few facts, which were established in the course of proving
Theorem 2.5 in the main body of the text.
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(1) There exists an admissible pair (H,L) for G (where H is a connected subgroup
of G defined over Fq and L is a multiplicative Q�-local system on H ) such that
the restriction of ρ to H(Fq) contains tL as a direct summand (Theorem 7.1).

(2) Let G ′ denote the normalizer of (H,L) in G. Then, G ′ is connected and the
dimension of G ′/H is even (Sect. 9.4.1). Also, G ′/H is commutative, which
results from the connectedness of G ′ and the definition of an admissible pair.

(3) Let ϕL : (G ′/H)per f −→ (G ′/H)∗per f denote the homomorphism induced by
as in Sect. 9.6. Then, ϕL is an isomorphism (see Sect. 9.4.1).

(4) The skewsymmetric bi-additive map BL : (G ′/H)(Fq)× (G ′/H)(Fq) −→ Q
×
�

induced by ϕL is nondegenerate (see Sect. 9.4.2).
(5) Let L ⊂ (G ′/H)(Fq) be any Lagrangian subgroup with respect to BL, and let

L̃ denote the preimage of L in G ′(Fq). Then, tL : H(Fq) −→ Q
×
� can be

extended to a homomorphism χ : L̃ −→ Q
×
� , and for any such extension, we

have ρ ∼= Ind
G(Fq )

L̃
χ (see Sect. 9.4.2).

B.2 Existence of Lagrangian subgroups

Next we will formulate a result that implies Theorem 2.6 in view of the facts we
listed above. Let A be a perfect connected commutative unipotent group over Fq ,
and let ϕ : A −→ A∗ denote an isomorphism that induces a skewsymmetric
bi-extension (Definition A.22) of (A, A) by Qp/Zp (in particular, ϕ∗ = −ϕ). Let

Bϕ : A(Fq)× A(Fq) −→ Q
×
� denote the skewsymmetric bi-additive map induced by

ϕ; it is nondegenerate by Proposition A.18.

Proposition B.1 With the notation above, there is a Lagrangian subgroup L ⊂ A(Fq)

with respect to Bϕ such that L = L(Fq) for some connected subgroup L ⊂ A.

The proof of the proposition is given below. It is clear that Theorem 2.6 follows
from the proposition, because the latter implies that the Lagrangian subgroup L men-
tioned in Sect. 9.6(5) can be chosen to have the form L(Fq) for a connected subgroup
L ⊂ G ′/H . Letting P be the preimage of L in G ′, we have L̃ = P(Fq), and the proof
of the theorem is complete.

B.3 Strategy of the proof

The proof of Proposition B.1 has two steps. First we will reduce it to the case where
A is annihilated by p. In this case, a stronger statement holds:

Lemma B.2 Let A be a connected commutative unipotent group25 over Fq such that
p · A = 0, and let L ⊂ A(Fq) be any subgroup whose order is a power of q. Then,
there exists a connected subgroup L ⊂ A such that L = L(Fq).

25 We can take A to be either an algebraic group in the usual sense, or a perfect algebraic group. The
distinction between the two classes of groups is irrelevant here.
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Note that when p · A = 0, Lemma B.2 implies Proposition B.1, because in the
setting of the proposition, the order of any Lagrangian subgroup L ⊂ A(Fq) with
respect to Bϕ equals A(Fq)

1/2 = q(dim A)/2, which is a power of q because dim A is
even by Proposition A.28(b). The lemma is proved in Sect. 9.6.

B.4 Reduction of Proposition B.1 to the case p · A = 0

Let us suppose that A is not annihilated by p, and let n ≥ 2 be the smallest integer
such that pn · A = 0. Let A0 = pn−1 · A. Then, A0 is a nontrivial connected subgroup
of A and is isotropic with respect to the skewsymmetric bi-extension induced by ϕ,
because pn−1 · pn−1 ≥ pn . Let A⊥0 be the orthogonal complement to A0 in A, i.e.,

A⊥0 = ϕ−1 (
Ker(A∗ −→ A∗0)

) ⊂ A.

Then, A0 ⊂ A⊥0 , and A1 := A⊥0 /A0 is also connected. Moreover, ϕ induces a strongly
nondegenerate skewsymmetric bi-extension of (A1, A1) by Qp/Zp. Since dim A1 <

dim A, we may assume that Proposition B.1 holds for this bi-extension. Since A0 is a
connected algebraic subgroup of A, the reduction to the case p · A = 0 is complete.

B.5 Proof of Lemma B.2

Throughout the proof, q is assumed to be fixed, and Ga denotes the additive group
over the field Fq . Let W = A(Fq); it is canonically an Fp-vector space. Since A is
annihilated by p, it is isomorphic to a direct sum of copies of Ga , whence we may
assume that A = G

n
a . Let L ⊂ W be any subgroup of order qk , where 0 ≤ k ≤ n.

Let A′ ⊂ A be the direct sum of the first k copies of Ga . Then, A′(Fq) and L are
Fp-subspaces of W and have the same dimension over Fp. Hence, there exists an
Fp-linear map f : W −→ W such that L = f (A′(Fq)).

The ring End(Ga) of endomorphisms of Ga as an algebraic group over Fq

contains all the elements of Fq (acting by dilations), as well as the Frobenius
map x �→ x p. It follows from Lemma B.3 that the natural ring homomorphism
End(Ga) −→ EndFp (Fq) is surjective. This easily implies that the natural homo-
morphism End(A) −→ EndFp (W ) is surjective as well. In particular, the linear map
f in the previous paragraph is induced by an endomorphism of A, which, by abuse of
notation, we will also denote by f : A −→ A. Then, f (A′) is a connected subgroup of
A. Moreover, L = f (A′(Fq)) ⊂ f (A′)(Fq), while dim f (A′) ≤ dim A′ = k, which
implies that | f (A′)(Fq)| ≤ qk = |L|. Thus, L = f (A′)(Fq). ��

B.6 An auxiliary result

Let us recall a construction. If R is a ring and � is a group acting on R by ring
automorphisms, the smash product R#� is defined to be the ring whose elements are
formal sums

∑
γ∈� aγ γ , where aγ ∈ R and all but finitely many aγ are 0; the addi-

tion in R#� is defined in the obvious way; and the multiplication is determined by
(a1γ1) · (a2γ2) = (a1 · γ1(a2)) · (γ1γ2).
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Lemma B.3 Let K ⊂ L be a finite Galois extension of fields, and let � = Gal(L/K ).
The natural homomorphism26 L#� −→ EndK (L) is an isomorphism of K -algebras.

Proof One can easily show that L#� is a simple ring.27 Furthermore, L is simple as a
module over itself, and hence, a fortiori, as a module over L#�. Since EndL(L) = L ,
it follows that EndL#�(L) = L� = K . Using Wedderburn theory, we conclude that
L#� −→ EndK (L) is an isomorphism. ��

References

1. Artin, M., Grothendieck, A., Verdier, J.-L.: SGA 4: Théorie des Topos et Cohomologie Étale des
Schémas. In: Lecture Notes in Math. 269, 270 and 305, Springer (1972/1973)

2. Bakalov, B., Kirillov, A. Jr.: Lectures on Tensor Categories and Modular Functors, University Lecture
Series, vol. 21. American Mathematical Society, Providence (2001)

3. Begueri, L.: Dualité sur un corps local à corps résiduel algébriquement clos. Mém. Soc. Math. France
(N.S.) no. 4 (1980/1981)

4. Beilinson, A.A., Bernstein, J., Deligne, P.: Faisceaux pervers. In: Analyse et topologie sur les espaces
singuliers (I), Astérisque, vol. 100 (1982)

5. Bernstein, J., Lunts, V.: Equivariant Sheaves and Functors, Lecture Notes in Mathematics. vol.
1578. Springer, Berlin (1994)

6. Boyarchenko, M.: Base Change Maps for Unipotent Algebra Groups. Preprint, January 2006,
arXiv:math.RT/0601133

7. Boyarchenko, M.: Representations of Unipotent Groups over Local Fields and Gutkin’s Conjecture.
arXiv:1003.2742, submitted for publication

8. Boyarchenko, M.: Character Sheaves and Characters of Unipotent Groups over Finite Fields (2010, in
preparation)

9. Boyarchenko, M., Drinfeld, V.: Character Sheaves on Unipotent Groups in Positive Characteristic:
foundations. Preprint, October 2008, available online: arXiv:0810.0794, version 1 (version 2 is in
preparation)

10. Boyarchenko, M., Drinfeld, V.: A motivated introduction to character sheaves and the orbit method
for unipotent groups in positive characteristic., Preprint, September 2006, arXiv:math.RT/0609769,
version 1

11. Breen, L.: Extensions du groupe additif sur le site parfait. In: Algebraic Surfaces (Orsay, 1976–1978),
pp. 238–262, Lecture Notes in Mathematics, vol. 868. Springer, Berlin (1981)

12. Breen, L.: On the Classification of 2-Gerbes and 2-Stacks. Astérisque, vol. 225 (1994)
13. Deligne, P.: La conjecture de Weil II. Publ. Math. IHES 52, 137–252 (1980)
14. Deligne, P., Boutot, J.-F., Illusie, L., Verdier, J.-L.: SGA 4 1

2 : Cohomologie Étale. In: Lecture Notes in
Mathematics, vol. 569. Springer, Heidelberg (1977)

15. Deshpande, T.: Heisenberg Idempotents on Unipotent Groups. To appear in Math. Res. Lett.
arXiv:0907.3344, version 2

16. Drinfeld, V.: Lectures on the Geometric Aspects of Character Theory for Unipotent Groups (unpub-
lished), University of Chicago (2005, July)

17. Ekedahl, T.: On the adic formalism. In: The Grothendieck Festschrift, vol. II, pp. 197–218, Progr.
Math. 87, Birkhäuser Boston, Boston (1990)

18. Etingof, P., Nikshych, D., Ostrik, V.: On fusion categories. Ann. Math. 162, 581–642 (2005)
19. Greenberg, M.J.: Perfect closures of rings and schemes. Proc. Am. Math. Soc. 16, 313–317 (1965)
20. Grothendieck, A., Raynaud, M.: SGA 1: Revêtements étales et groupe fondamental. Documents

Mathématiques (Paris) 3, Soc. Math. de France, Paris (2003) math.AG/0206203

26 Induced by the action of L on itself by left multiplication, and by the tautological action of � on L; we
denote by EndK (L) the algebra of endomorphisms of L as a vector space over K .
27 Let I ⊂ L#� be a nonzero two-sided ideal, let

∑
γ∈� aγ γ be a nonzero element in I such that the

number of nonzero coefficients aγ is as small as possible, etc.



Characters of unipotent groups over finite fields 933

21. Grothendieck, A., Bucur, I., Houzel, C., Illusie, L., Jouanolou, J.-P., Serre, J.-P.: SGA 5: cohomologie
�-adique et Fonctions L . In: Lecture Notes in Mathematics, vol. 589, Springer (1977)

22. Gutkin, E.A.: Representations of algebraic unipotent groups over a self-dual field. Funkts. Analiz i
Ego Prilozheniya 7, 80 (1973)

23. Halasi, Z.: On the characters and commutators of finite algebra groups. J. Algebra 275, 481–487 (2004)
24. Higman, G.: Enumerating p-groups. I. Inequalities. Proc. Lond. Math. Soc. 10(3), 24–30 (1960)
25. Isaacs, I.M.: Characters of groups associated with finite algebras. J. Algebra 177, 708–730 (1995)
26. Kamgarpour, M.: Stacky abelianization of algebraic groups. Transform. Groups 14(4), 825–846 (2009)
27. Kirillov, A.A.: Unitary representations of nilpotent Lie groups. Uspehi Mat. Nauk 17(4(106)), 57–

110 (1962)
28. Lang, S.: Algebraic groups over finite fields. Am. J. Math. 78, 555–563 (1956)
29. Langlands, R.P.: Les débuts d’une formule des traces stable, Publ. Math. Univ. Paris VII 13, Paris

(1983)
30. Laszlo, Y., Olsson, M.: The six operations for sheaves on Artin stacks II: Adic coefficients. Publ. Math.

IHES 107, 169–210 (2008)
31. Lusztig, G.: Character sheaves and generalizations. In: Etingof, P., Retakh, V., Singer, I.M. (eds.) The

Unity of Mathematics, Progress in Mathematics, vol. 244, pp. 443–455. Birkhäuser Boston, Boston
(2006)

32. Milne, J.S.: Arithmetic Duality Theorems, 2nd edn. BookSurge, LLC, Charleston (2006), available at
http://www.jmilne.org/math/

33. Mumford, D.: Bi-extensions of formal groups. In: Algebraic Geometry (Proceedings of Internat. Coll.
Bombay, 1968), pp. 307–322. Oxford University Press (1969)

34. Serre, J.-P.: Groupes proalgébriques. Publ. Math. IHES 7 (1960)

http://www.jmilne.org/math/

	Characters of unipotent groups over finite fields
	Abstract
	1 Introduction
	2 Main definitions and results
	2.1 Conventions
	2.2 Easy unipotent groups
	2.3 Representations of algebra groups over finite fields
	2.4 Character degrees of easy unipotent groups
	2.5 From easy to arbitrary connected unipotent groups
	2.6 Definition of L-indistinguishability
	2.7 Multiplicative local systems
	2.8 Admissible pairs
	2.9 Explicit description of L-packets
	2.10 Example: L-packets for the fake Heisenberg groups

	3 The structure of the proofs
	3.1 Step 1
	3.2 Step 2
	3.3 Step 3
	3.4 Step 4
	3.5 Step 5
	3.6 On Serre duality

	4 The category DG(G) and L-packets
	4.1 Derived categories of constructible -adic complexes
	4.2 Reminder on the sheaves-to-functions correspondence
	4.3 Equivariant derived categories
	4.4 Functors between equivariant derived categories
	4.5 Convolution in D(G) and DG(G)
	4.6 Semigroupal categories
	4.7 Weak idempotents
	4.8 Idempotents and L-packets
	4.9 Twists in the category DG(G)

	5 Induction with compact supports
	5.1 Setup
	5.2 Definition of indGprimeG
	5.2.1 Motivation
	5.2.2 Auxiliary constructions
	5.2.3 The main definition
	5.2.4 Proof of Lemma 5.1

	5.3 An alternative viewpoint on induction functors
	5.4 Useful notation
	5.5 Weak semigroupal structure on indGG
	5.5.1 Preparations
	5.5.2 Definition of the weak semigroupal structure

	5.6 Some auxiliary results
	5.7 A case where (5.2) is an isomorphism
	5.8 Induction of weak idempotents
	5.8.1 Statement of the main theorem
	5.8.2 An immediate consequence
	5.8.3 Reduction of Theorem 5.12 to two auxiliary propositions
	5.8.4 Proof of Proposition 5.14
	5.8.5 Proof of Proposition 5.15

	5.9 Compatibility of induction with twists

	6 Inner forms of algebraic groups and G-schemes
	6.1 Notation
	6.2 Galois cohomology and torsors
	6.3 Inner forms of algebraic groups
	6.4 Inner forms of G-schemes
	6.5 Transport of equivariant complexes
	6.6 Alternative descriptions
	6.7 Relation between indGprimeG and induction of class functions

	7 Geometric reduction process
	7.1 Overview
	7.2 Two approaches to Serre duality
	7.3 Definition of an admissible pair
	7.4 Extension of multiplicative local systems
	7.5 A special case of Theorem 7.1
	7.6 Proof of Theorem 7.1

	8 Analysis of Heisenberg idempotents
	8.1 Setup
	8.1.1 Construction of emathcal L and emathcal L
	8.1.2 Construction of a morphism mathds1 longrightarrow emathcal L
	8.1.3 Construction of a homomorphism varphimathcal L:(U°/N)perf longrightarrow (U°/N)perf*

	8.2 Statement of the main result
	8.3 Proof of Proposition 8.1(a)
	8.4 Proof of Proposition 8.1(b)
	8.5 Proof of Proposition 8.1(c)

	9 The proofs of the main results
	9.1 The key result
	9.2 Proof of Theorem 2.14
	9.3 Proof of Proposition 4.13
	9.4 Proof of Theorem 2.5
	9.4.1 Step 1
	9.4.2 Step 2

	9.5 Proof of Proposition 9.1(a)
	9.6 Proof of Proposition 9.1(b)

	Acknowledgments
	Appendix A: Serre duality and bi-extensions
	A.1 Prologue
	A.2 Organization
	A.3 Perfect schemes and group schemes
	A.4 Perfect unipotent groups
	A.5 Classical Serre duality
	A.6 Bi-extensions
	A.7 Bi-extensions and bimultiplicative torsors
	A.8 Serre duality and Pontryagin duality
	A.9 Canonical pairing associated with a bi-extension
	A.10 Symmetric and skewsymmetric bi-extensions
	A.11 Lagrangian subgroups
	A.12 Noncommutative Serre duality
	A.13 An auxiliary construction
	A.14 Lifting central extensions
	A.15 Proof of Lemma A.37

	Appendix B: Proof of Theorem 2.6
	B.1 Setup
	B.2 Existence of Lagrangian subgroups
	B.3 Strategy of the proof
	B.4 Reduction of Proposition B.1 to the case pA=0
	B.5 Proof of Lemma B.2
	B.6 An auxiliary result

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>
    /HEB <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


