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Abstract. We consider the heat equation ut = Lu where L is a second-order
difference operator in a discrete variable n. The fundamental solution has
an expansion in terms of the Bessel functions of imaginary argument. The
coefficients αk(n, m) in this expansion are analogs of Hadamard’s coefficients
for the (continuous) Schrödinger operator.

We derive an explicit formula for αk in terms of the wave and the ad-
joint wave functions of the Toda lattice hierarchy. As a first application of
this result, we prove that the values of these coefficients on the diagonals
n = m and n = m + 1 define a hierarchy of differential-difference equations
which is equivalent to the Toda lattice hierarchy. Using this fact and the cor-
respondence between commutative rings of difference operators and algebraic
curves we show that the fundamental solution can be summed up, giving a
finite formula involving only two Bessel functions with polynomial coefficients
in the time variable t, if and only if the operator L belongs to the family of
bispectral operators constructed in [18].
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1. Introduction

The fundamental solution of the heat equation

ut = uxx + V (x)u, u(x, 0) = δy(x),

has an asymptotic expansion of the form

u(x, y, t) ∼ e−(x−y)2/4t

√
4πt

(
1 +

∞∑
k=1

Hk(x, y)tn
)

as t → 0+,

where Hadamard’s coefficients Hn(x, y) are defined in a neighborhood of the diag-
onal x = y. Restricted to the diagonal, the coefficients Hn(x, x) become differential
polynomials of the potential V (x) and can be used to define the Korteweg–de Vries
(for short KdV) hierarchy. There are several proofs and applications of this fact; see
for instance [4, 25, 29, 31] and the references therein. One of the important steps in
these papers is to use the connection between the heat kernel and the resolvent of
the corresponding Schrödinger operator and the work of Gelfand and Dickey [12].
In particular, this construction was used to obtain explicit formulas for the higher
KdV equations exploring different properties of Hadamard’s coefficients.

On the other hand, after the works [9, 30, 32], we have a much better under-
standing of the KdV hierarchy and the parametrization of its solutions. Therefore
it seems natural to reexamine the connection between the heat kernel and the KdV
hierarchy within the framework of Sato’s theory and to use the soliton technol-
ogy as a tool to investigate the heat expansions. This idea was developed in [21]
and it led to a new formula for Hadamard’s coefficients in terms of the τ -function
(or equivalently the wave and adjoint wave functions) of the KdV hierarchy. This
formula made transparent some of the basic properties of Hadamard’s coefficients
such as the symmetry about the diagonal, or the connection between Hn(x, x) and
the KdV flows. We also used this formula in [22] to prove that heat kernel is finite
(i.e. Hn(x, y) = 0 for n large enough) if and only if the potential V (x) is among the
rational solutions of the KdV hierarchy (for specific values of the time variables)
studied in [2, 3]. These operators also appear as solutions of the bispectral problem
[11, 13]. For multivariable versions of the heat kernel and interesting connections
with the bispectral problem and Huygens’ principle see [5–8].

It is natural then to ask if one can use the soliton technology to study heat
kernel expansions where very little or even nothing is known. The aim of the present
paper is to show that there is a very close connection between the heat kernel
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expansion on the integers and the Toda lattice hierarchy. Some partial results in
this direction were already established in [14–16], mainly in connection with the
bispectral problem. Jointly with F. A. Grünbaum [15] we studied the heat kernel for
specific second-order difference operators which were introduced in [18] as solutions
of a difference-differential version of the bispectral problem. These second-order
difference operators depend on free parameters and, appropriately normalized,
they provide rational solutions of the Toda lattice hierarchy. The main result in [15]
is that the fundamental solution corresponding to these operators can be written
as a finite sum of Bessel functions of imaginary argument, which is a discrete
analog of the finiteness property mentioned above for the continuous Schrödinger
operator. The case when the operator L corresponds to a soliton solution of the
Toda lattice was considered in [16]. Both papers rely on the fact that the second-
order operators belong to rank one commutative rings with spectral curves having
specific singularities, which prevents their use for arbitrary L. The goal of this work
is to derive a general formula for the analogs of Hadamard’s coefficients in terms of
the wave and adjoint wave functions for the Toda lattice hierarchy and to present
a few applications. In order to state the main results, let me first introduce some
basic notations and define the analogs of Hadamard’s coefficients in the discrete
case.

We denote by E the customary shift operator acting on functions f(n) = fn

of a discrete variable n ∈ Z by

Ef(n) = f(n + 1).

For a second-order difference operator L of the form

L = E + bnId + anE−1, (1.1)

the fundamental solution (or the discrete heat kernel) is the solution u(n,m; t) of
the heat equation

∂u

∂t
= Lu (1.2)

with initial condition

u(n,m; 0) = δn,m. (1.3)

The papers [14–16] suggest looking for a solution of (1.2)–(1.3) of the form

u(n,m; t) =
∞∑

k=0

αk(n,m)In−m−k(2t), (1.4)

where Ij(2t) is the Bessel function of imaginary argument. The coefficients
αk(n,m) are the analogs of Hadamard’s coefficients Hk(x, y). Plugging (1.4) in
(1.2), using the identity

∂tIk(2t) = Ik+1(2t) + Ik−1(2t)
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and comparing the coefficients of In−m−k+1(2t) we get

αk(n,m) + αk−2(n,m)

= αk(n + 1,m) + bnαk−1(n,m) + anαk−2(n − 1,m), (1.5)

with the convention that αi(n,m) = 0 if i < 0. From (1.4) and using the fact that
Ij(0) = δj,0 we obtain

u(n,m; 0) =

{
0 if n < m,

αn−m(n,m) if n ≥ m,

which combined with (1.3) leads to

αn−m(n,m) = δn,m for every n ≥ m. (1.6)

It is clear that the system of equations (1.5)–(1.6) has a unique solution. Indeed,
for k = 0 equation (1.5) gives α0(n,m) = α0(n + 1,m), which essentially means
that α0(n,m) = βm is independent of n. On the other hand, from equation (1.6)
we see that α0(m,m) = 1, which shows that α0(n,m) = 1. Similarly, for k = 1 we
obtain the system

α1(n,m) = α1(n + 1,m) + bn,

α1(m + 1,m) = 0,

which uniquely determines α1(n,m). Next we can compute α2(n,m), α3(n,m),
etc. We want to stress at this point that although the system (1.5)–(1.6) has a
unique solution, the coefficients in the expansion (1.4) are uniquely determined
from u(n,m; t) only if n ≤ m. Indeed, for r ∈ N0 we have

Ir(2t) = I−r(2t) =
∞∑

j=0

tr+2j

j!(r + j)!
. (1.7)

If n ≤ m then the αk(n,m) are uniquely determined by comparing the coefficients
of the different powers of t in (1.4). However, for n > m the expansion will contain
both Ir(2t) and I−r(2t) for r = 1, . . . , n−m and therefore only the sum of these two
coefficients is uniquely determined by u(n,m; t). If we want to make the expansion
unique, we can rearrange it so that the sum (1.4) contains only terms Ij with
j ≤ 0. However, this would complicate the recurrence relation (1.5) significantly
by introducing different cases when n > m and n ≤ m. Therefore we will keep the
form (1.4) with αk(n,m) uniquely determined by (1.5)–(1.6).

Let me now briefly describe the main results of the paper. In the next section
we collect some basic facts about the Toda lattice hierarchy. In Section 3 we derive
simple formulas for the coefficients αk(n,m) in terms of the wave and adjoint
wave functions for the Toda lattice hierarchy (or equivalently the τ -function). In
other words, the soliton technology allows us to integrate equations (1.5)–(1.6)
explicitly and write αk(n,m) in closed form. As a first application of this formula,
we show in Section 4 that αk(n, n) and αk+1(n, n− 1) generate a hierarchy which
is equivalent to the Toda lattice hierarchy (notice that we need two coefficients in
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order to generate two equations for an and bn). This provides a discrete analog of
the connection between Hadamard’s coefficients Hn(x, x) and the KdV hierarchy.
It would be interesting to see if some of the proofs in the continuous case can
be adapted to this situation. We note, however, that the situation in the discrete
case is a little more complicated because the k-th vector field of the Toda lattice
Xk is not equal to the vector field X

′
k generated by αk(n, n) and αk+1(n, n − 1),

but we have X
′
k = Xk + a linear combination of Xk−2j with 2j < k (see Theorem

4.4). All this follows easily from the explicit formula for αk(n,m) derived here,
but clearly a direct approach should be carefully constructed in order to capture
the lower-order vector fields that appear.

Next we prove that the heat kernel can be written as

(1 + p1(n,m; t))In−m(2t) + p2(n,m; t)In−m−1(2t), (1.8)

where p1(n,m; t) and p2(n,m; t) are polynomials in t with coefficients depending
on n and m, such that p1(n,m; 0) = p2(n,m; 0) = 0 if and only if the operator L
belongs to the family of bispectral operators constructed in [18]. The “if” part is
essentially the main result in [15] (see Section 6 for more details). In order to prove
the “only if” part, we first discuss in Section 5 the operators constructed in [18]
and we show that they can be characterized by the vanishing of a specific linear
combination of the Toda flows, after a particular point. The heart of the proof is
to show that if this specific linear combination of the Toda flows vanishes after
a particular point, then the operator L belongs to a rank one commutative ring
with spectral curve of the form v2 = (u− 2)2N1+1(u + 2)2N2+1, which leads to the
operators introduced in [18]. Using this result and the connection between the heat
coefficients and the Toda flows, we establish the “only if” part in Subsection 6.2.

The results in the last section deepen the mystery surrounding the bispectral
problem and its connection with the heat equation. The finiteness property of the
heat kernel provides one more reason to believe that the operators constructed in
[18] are the discrete analogs of the Adler–Moser operators [2]. It would be inter-
esting to see if some of the recent developments [19, 20] in the purely continuous
version of the bispectral problem can be extended to the operators in [18], or to
the more general (higher-order) bispectral operators in [17], which we constructed
in collaboration with L. Haine, inspired by Wilson’s work [34, 35].

2. The Toda lattice hierarchy

In this section we briefly recall the construction of the Toda lattice hierarchy, its
wave and adjoint wave functions. For more details we refer the reader to the paper
[33], or to the more recent contributions [1, 26].

Let us first introduce some notations, which will be used throughout the
paper. We denote by Δ and ∇ the customary forward and backward difference
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operators, acting on a function f(n) = fn as follows:

Δf(n) = f(n + 1) − f(n) = (E − Id)f(n),

∇f(n) = f(n) − f(n − 1) = (Id − E−1)f(n).

Sometimes, we will write Δn and ∇n if the operators are applied to functions
depending on several variables to indicate that Δ and ∇ act in the variable n.

When we work with pseudo-difference operators of the form

M =
d∑

k=−∞
ck(n)Ek

we will denote by M+ =
∑d

k=0 ck(n)Ek (resp. M− =
∑−1

k=−∞ ck(n)Ek) the non-
negative (resp. negative) difference part of M .

For a second-order difference operator L = E + bnId + anE−1, the Toda
lattice hierarchy is defined by the Lax equations

∂L

∂sj
= [(Lj)+, L] for j = 1, 2, . . . . (2.1)

It is well-known that the vector fields Xj(L) = [(Lj)+, L] commute with each other,
that is, each of the equations (2.1) defines a symmetry of any other equation. For
this reason, the family of equations (2.1) is called a hierarchy. The first equation,
corresponding to j = 1, is the well-known Toda lattice equation.

We denote by Wn = 1+
∑∞

k=1 ψk(n)E−k the wave operator, i.e. the operator
which conjugates L to E:

L = WnEW−1
n . (2.2)

The flows (2.1) can be extended on Wn by
∂Wn

∂sj
= −(Lj)−Wn. (2.3)

The wave function Ψn(z; s) and the adjoint wave function Ψ∗
n(z; s) are defined

by the formulas

Ψn(z; s) = Wnzn exp
( ∞∑

j=1

sjz
j
)

=
(

1 +
∞∑

k=1

ψk(n; s)
zk

)
zn exp

( ∞∑
j=1

sjz
j
)

(2.4a)

and

Ψ∗
n(z; s) = (W−1

n−1)
∗z−n exp

(
−

∞∑
j=1

tjz
j
)

=
(

1 +
∞∑

k=1

ψ∗
k(n; s)
zk

)
z−n exp

(
−

∞∑
j=1

sjz
j
)
, (2.4b)
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where E∗ = E−1. With these definitions we have

LΨn(z; s) = zΨn(z; s) and
∂Ψn(z; s)

∂sj
= (Lj)+Ψn(z; s). (2.5)

We denote by Ψ̄n(z; s) and Ψ̄∗
n(z; s) the reduced wave function and the reduced ad-

joint wave function obtained from Ψn(z; s) and Ψ∗
n(z; s), respectively, by omitting

the exponential factors, i.e.

Ψ̄n(z; s) = 1 +
∞∑

k=1

ψk(n; s)
zk

and Ψ̄∗
n(z; s) = 1 +

∞∑
k=1

ψ∗
k(n; s)
zk

. (2.6)

In order to simplify the notations, we will often omit the s-dependence, e.g. we
will write simply Ψn(z) instead of Ψn(z; s), etc. Notice that the first equation in
(2.5) is equivalent to the following equation for the reduced wave function:

zΨ̄n+1(z) + bnΨ̄n(z) + an
Ψ̄n−1(z)

z
= zΨ̄n(z). (2.7)

For series
∑

k ckzk and for formal pseudo-difference operators
∑

k dkEk we
define

resz

(∑
k

ckzk
)

= c−1 and resE

(∑
k

dkEk
)

= d−1.

It is easy to see that for pseudo-difference operators Pn =
∑

k dk(n)Ek and Qn =∑
k ck(n)Ek we have

resz((Pnzn)(Q∗
n−1z

−n)) = resE(PnQn). (2.8)

From this equality it follows that Ψn(z; s) and Ψ∗
n(z; s) satisfy the bilinear identi-

ties
resz((∂k1

1 · · · ∂kj

j Ψn+k0(z; s))Ψ∗
n(z; s)) = 0, (2.9)

where k0, k1, . . . , kj ∈ N0 and ∂j = ∂/∂sj . Indeed, from the second equation in
(2.5) we see that it is enough to prove (2.9) for k1 = · · · = kj = 0. Using now (2.8)
we get

resz(Ψn+k0(z; s))Ψ∗
n(z; s)) = resz((Ek0Wnzn)((W−1

n−1)
∗z−n))

= resE(Ek0) = 0,

which establishes (2.9).
For example, for k0 = 0 and k0 = 1 with kj = 0 for j ≥ 1, the identity (2.9)

gives

ψ1(n) + ψ∗
1(n) = 0, (2.10a)

ψ2(n + 1) + ψ1(n + 1)ψ∗
1(n) + ψ∗

2(n) = 0. (2.10b)

From (2.2) and (2.4) we can express bn and an in terms of the coefficients of
Ψn(z; s) and Ψ∗

n(z; s):

bn = ψ1(n) + ψ∗
1(n + 1), (2.11a)

an = ψ2(n) + ψ1(n)ψ∗
1(n) + ψ2(n). (2.11b)
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Remark 2.1. If we fix n and take k0 = 0, then the bilinear identities (2.9) show
that Ψn(z; s)z−n and Ψ∗

n(z; s)zn are the wave and adjoint wave functions of the
Kadomtsev–Petviashvili (KP) hierarchy. Thus, by the classical theory (see [9], [10,
Theorem 6.3.8, p. 97]), there exists a τ -function τn(s) such that

Ψ̄n(z; s) =
τn(s − [z−1])

τn(s)
and Ψ̄∗

n(z; s) =
τn(s + [z−1])

τn(s)
,

where [z] = (z, z2/2, z3/3, . . . ). This function plays a central role in the KP and
the Toda lattice hierarchies. Since we are not going to make an explicit use of it
in the present paper, we stop the discussion here. Notice that the last formulas
allow us to express the coefficients of Ψ̄n(z; s) and Ψ̄∗

n(z; s) in terms of τn(s). In
particular, this means that all formulas involving Ψ̄n(z; s) and Ψ̄∗

n(z; s) that follow
can be rewritten as formulas involving only τn(s).

3. Explicit formulas for the heat coefficients αk(n, m)

In this section we show that, using the notations in the previous section, we can
“integrate” equation (1.5) for all k ∈ N and obtain simple formulas for αk(n,m) in
terms of the wave and adjoint wave functions of the Toda lattice hierarchy. Before
we present and prove the general formula, we illustrate how the method works for
α1(n,m) and α2(n,m). This will help the reader understand the nature of these
formulas and the importance of the bilinear identity (2.9).

Plugging k = 1 in (1.5) and using (2.11) we get

α1(n,m) = α1(n + 1,m) + ψ1(n) + ψ∗
1(n + 1).

Using (2.10a) we can rewrite this as

α1(n,m) − ψ1(n) = α1(n + 1,m) − ψ1(n + 1),

which shows that α1(n,m)−ψ1(n) = β1(m) is a function independent of n. From
(1.6) we see that α1(m+1,m) = 0, which gives β1(m) = −ψ(m+1) = ψ∗

1(m+1).
Thus we have

α1(n,m) = ψ1(n) + ψ∗
1(m + 1) = resz[Ψ̄n(z)Ψ̄∗

m+1(z)]. (3.1)

Similarly, for k = 2 we obtain the following equation for α2(n,m):

α2(n,m) + 1 = α2(n + 1,m) + [ψ1(n) + ψ∗
1(n + 1)][ψ1(n) + ψ∗

1(n + 1)]

+ ψ2(n) + ψ1(n)ψ∗
1(n) + ψ∗

2(n). (3.2)

Using now both equations in (2.10) one can check that (3.2) is equivalent to

Δn(α2(n,m) − ψ2(n) − ψ1(n)ψ∗
1(m + 1) − n) = 0,

which means that α2(n,m) = ψ2(n) + ψ1(n)ψ∗
1(m + 1) + n + β2(m), where β2(m)

depends only on m. From (1.6) we see that α2(m + 2,m) = 0, leading to β2(m) =
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−ψ2(m + 2) − ψ1(m + 2)ψ∗
1(m + 1) − m − 2 = ψ∗

2(m + 1) − m − 2, where in the
last equality we used again (2.10b). Thus we obtain

α2(n,m) = ψ2(n) + ψ1(n)ψ∗
1(m + 1) + ψ∗

2(m + 1) + (n − m − 2)

= resz

[
(z2 + n − m − 2)

Ψ̄n(z)Ψ̄∗
m+1(z)

z

]
. (3.3)

The point is that this process can be successfully iterated, providing simple formu-
las for αk(n,m) for every k ∈ N. Below we introduce the necessary functions which
are needed to state and prove the general formula, extending (3.1) and (3.3).

Let us define monic polynomials Qβ
k(z) by the formula

Qβ
k(z) = zk + (β − 2k)

k−1∑
j=0

(
β − 2j − 1
k − j − 1

)
zj

k − j
. (3.4)

From (3.4) it is easy to see that

Qβ
k(z) − zQβ−2

k−1(z) =
β − 2k

k

(
β − 1
k − 1

)
(3.5)

and

Qβ
k(z) + Qβ

k−1(z) − zQβ−1
k−1(z) =

β − 2k + 1
k

(
β

k − 1

)
. (3.6)

Let us define

gk(n,m; z) =

{
Qn−m

k/2 (z2) if k is even,

zQn−m−1
(k−1)/2(z

2) if k is odd.
(3.7)

It is clear that gk(n,m; z) is a monic polynomial in z of degree k, and it is an
even polynomial when k is even and an odd polynomial when k is odd. From the
defining relation (3.7) and equation (3.5) one sees immediately that

gk(n,m; z) − zgk−1(n − 1,m; z) = 0 if k is odd (3.8a)

and

gk(n,m; z) − zgk−1(n − 1,m; z) = gk(n,m; z) − z2gk−2(n − 2,m; z)

=
2(n − m − k)

k

(
n − m − 1
k/2 − 1

)
if k is even. (3.8b)

Now we are ready to formulate the main result in this section which gives an
explicit formula for αk(n,m) in terms of Ψ̄n(z) and Ψ̄∗

n(z).

Theorem 3.1. The coefficients αk(n,m) in the expansion (1.4) of the fundamental
solution of the discrete heat equation (1.2) can be expressed in terms of the reduced
wave function Ψ̄n(z) and the reduced adjoint wave function Ψ̄∗

n(z) as follows:

αk(n,m) = resz

[
gk(n,m; z)

Ψ̄n(z)Ψ̄∗
m+1(z)

z

]
, (3.9)

where gk(n,m; z) is the polynomial defined by (3.4) and (3.7).
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Proof. We need to check that the functions defined by formula (3.9) satisfy the
difference equation (1.5) and the initial conditions (1.6). Let us first establish that
equation (1.5) holds. We denote by RHS (resp. LHS) the right-hand side (resp.
the left-hand side) of equation (1.5). Plugging (3.9) in (1.5) leads to

RHS = αk(n + 1,m) + bnαk−1(n,m) + anαk−2(n − 1,m)

= resz

[
gk(n + 1,m; z)

Ψ̄n+1(z)Ψ̄∗
m+1(z)

z
+ bngk−1(n,m; z)

Ψ̄n(z)Ψ̄∗
m+1(z)

z

+ angk−2(n − 1,m; z)
Ψ̄n−1(z)Ψ̄∗

m+1(z)
z

]

= resz

[
((z2 − zbn)gk−2(n − 1,m; z) + bngk−1(n,m; z))

Ψ̄n(z)Ψ̄∗
m+1(z)

z

+ (gk(n + 1,m; z) − z2gk−2(n − 1,m; z))
Ψ̄n+1(z)Ψ̄∗

m+1(z)
z

]
,

where in the last equality we eliminated Ψ̄n−1(z) using (2.7).
Now we consider two cases depending on whether k is even or odd.

Case 1. Let k be even (hence k − 1 is odd). Using (3.8) we see that

(z2 − zbn)gk−2(n − 1,m; z) + bngk−1(n,m; z) = z2gk−2(n − 1,m; z)

and

gk(n + 1,m; z) − z2gk−2(n − 1,m; z) =
2(n + 1 − m − k)

k

(
n − m

k/2 − 1

)
,

which leads to the following expressions for RHS and LHS:

RHS = resz

[
z2gk−2(n − 1,m; z)

Ψ̄n(z)Ψ̄∗
m+1(z)

z

]

+
2(n + 1 − m − k)

k

(
n − m

k/2 − 1

)

and

LHS = resz

[
(gk(n,m; z) + gk−2(n,m; z))

Ψ̄n(z)Ψ̄∗
m+1(z)

z

]
.

Using now equation (3.6) we get

gk(n,m; z) + gk−2(n,m; z) − z2gk−2(n − 1,m; z)

= Qn−m
k/2 (z2) + Qn−m

k/2−1(z
2) − z2Qn−m−1

k/2−1 (z2) =
2(n + 1 − m − k)

k

(
n − m

k/2 − 1

)
,

which shows that RHS = LHS and establishes (1.5).
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Case 2. Let k be odd (hence k − 1 is even). Using again (3.8) we obtain

gk(n + 1,m; z) − z2gk−2(n − 1,m; z) = z(gk−1(n,m; z) − z2gk−3(n − 2,m; z))

=
2(n − m − k + 1)

k − 1

(
n − m − 1

(k − 1)/2 − 1

)
z

and

(z2 − zbn)gk−2(n − 1,m; z) + bngk−1(n,m; z)

= (z2 − zbn)zgk−3(n − 2,m; z) + bngk−1(n,m; z)

= bn(gk−1(n,m; z) − z2gk−3(n − 2,m; z)) + z3gk−3(n − 2,m; z)

= bn
2(n − m − k + 1)

k − 1

(
n − m − 1

(k − 1)/2 − 1

)
+ z3gk−3(n − 2,m; z).

Thus

RHS = resz

[
2(n − m − k + 1)

k − 1

(
n − m − 1

(k − 1)/2 − 1

)
(zΨ̄n+1(z) + bnΨ̄n(z))

Ψ̄∗
m+1(z)

z

+ z3gk−3(n − 2,m; z)
Ψ̄n(z)Ψ̄∗

m+1(z)
z

]

= resz

[(
2(n − m − k + 1)

k − 1

(
n − m − 1

(k − 1)/2 − 1

)
+ z2gk−3(n − 2,m; z)

)

× Ψ̄n(z)Ψ̄∗
m+1(z)

]
,

where in the last equality we used (2.7) to eliminate zΨ̄n+1(z) + bnΨ̄n(z). On the
other hand, we have

LHS = resz[(gk−1(n − 1,m; z) + gk−3(n − 1,m; z))Ψ̄n(z)Ψ̄∗
m+1(z)],

and applying the definition (3.7) and equation (3.6) we get

gk−1(n − 1,m; z) + gk−3(n − 1,m; z) − z2gk−3(n − 2,m; z)

= Qn−m−1
(k−1)/2(z

2) + Qn−m−1
(k−1)/2−1(z

2) − z2Qn−m−2
(k−1)/2−1(z

2)

=
2(n − m − k + 1)

k − 1

(
n − m − 1

(k − 1)/2 − 1

)
,

which shows that RHS = LHS and completes the proof of the difference equation
(1.5).

It remains to check that the initial condition (1.6) holds, i.e. we need to show
that for every k ∈ N, αk(m+k, k) = 0. Using the defining relations (3.4) and (3.7)
one can easily see that

gk(m + k,m; z) = zk.
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Thus (3.9) gives

αk(m + k,m) = resz

[
zk Ψ̄m+k(z)Ψ̄∗

m+1(z)
z

]
= resz[Ψm+k(z)Ψ∗

m+1(z)] = 0,

where in the last equality we used the bilinear identity (2.9). �

4. Generating the Toda flows with the heat coefficients

As a first application of formula (3.9) we show in this section that Δnαk+1(n, n−1)
and an∇nαk(n, n) generate the Toda lattice hierarchy. This is a discrete analog
of the remarkable connection between the restriction of Hadamard’s coefficients
on the diagonal and the Korteweg–de Vries hierarchy. Before we prove this, we
establish some auxiliary facts.

Proposition 4.1. Define

rk(n) = resz(zkΨ̄n(z)Ψ̄∗
n(z)), (4.1a)

lk(n) = resz(zk−1Ψ̄n−1(z)Ψ̄∗
n(z)). (4.1b)

Then the Toda lattice hierarchy (2.1) is equivalent to the equations

∂bn

∂sk
= rk(n + 1) − rk(n), (4.2a)

∂an

∂sk
= an(lk(n + 1) − lk(n)). (4.2b)

Proof. Notice that equation (2.4b) implies

W−1
n = 1 +

∞∑
j=1

E−j · ψ∗
j (n + 1),

and therefore, using (2.2) and (2.4a), we get

Lk = WnEkW−1
n =

∞∑
m=0

[ m∑
j=0

ψm−j(n)ψ∗
j (n + 1 + k − m)

]
Ek−m,

where ψ0(n) = ψ∗
0(n) = 1. From the above equation it is clear that the coefficients

of E0 and E−1 in the operator Lk are lk(n+1) and rk(n) respectively. This shows
that

[(Lk)+, L] = [L, (Lk)−] = [E + bnId + anE−1, rk(n)E−1 + O(E−2)]

= (rk(n + 1) − rk(n))Id + O(E−1),

which gives (4.2a). A similar computation shows that the coefficient of E−1 in
[(Lk)+, L] is an(lk(n + 1) − lk(n)), completing the proof. �
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Lemma 4.2. Let k ∈ N0 and j ∈ Z be fixed. Then

αk(n, n + j) ∈ C[an, bn, an±1, bn±1, an±2, bn±2, . . . ],

i.e. αk(n, n + j) is a polynomial of finitely many of {an, bn, an±1, bn±1, . . . }.

Proof. The proof can be easily obtained by induction on k and |k + j|, using
(1.5)–(1.6). �

Example 4.3. We list the values of the first few heat coefficients in a neighborhood
of the diagonal n = m:

α1(n, n) = bn,

α1(n, n − 1) = 0,

α1(n, n + 1) = bn + bn+1

α2(n, n) = an+1 + an + b2
n − 2,

α2(n, n − 1) = an − 1,

α2(n, n + 1) = an + an+1 + an+2 + b2
n + b2

n+1 + bnbn+1 − 3.

The main result in this section is the following theorem.

Theorem 4.4. The system of differential-difference equations

∂bn

∂s′k
= αk+1(n + 1, n) − αk+1(n, n − 1) = Δnαk+1(n, n − 1), (4.3a)

∂an

∂s′k
= an(αk(n, n) − αk(n − 1, n − 1)) = an∇nαk(n, n), (4.3b)

where k ∈ N, forms a hierarchy. Moreover, if denote by Xk and X
′
k the vector fields

corresponding to the flows ∂/∂sk and ∂/∂s′k given by (2.1) and (4.3) respectively,
then

X
′
k = k

�(k−1)/2�∑
i=0

(−1)i

k − 2i

(
k − i − 1

i

)
Xk−2i, (4.4)

where 	x
 denotes the greatest integer less than or equal to x.

Remark 4.5. Notice that according to Lemma 4.2, for every k ∈ N the right-hand
sides of equations (4.3) are polynomials of finitely many of {an+j , bn+j}j∈Z, i.e.
(4.3) is a well-defined system of differential equations for an and bn. The above
theorem essentially says that the hierarchy of equations (4.3) is equivalent to the
Toda lattice hierarchy (2.1) modulo a simple (linear) change of variables given by
(4.4). Below we also write the explicit linear combination that gives Xk in terms of
{X

′
j}, which will be needed later. First we show that for every k ∈ N and m ∈ N0

satisfying m ≤ 	(k − 1)/2
 the identity

k

m∑
i=0

(−1)i

k − 2i

(
k − i − 1

i

)(
k − 2i

m − i

)
= δm,0 (4.5)
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holds. Indeed, if m = 0 then (4.5) is obvious. For m ≥ 1 we can rewrite the
left-hand side of (4.5) as

k

m

m∑
i=0

(−1)i

(
k − 1 − i

m − 1

)(
m

i

)
=

k

m

(
k − 1 − m

k − m

)
= 0.

In the first equality we used the well-known binomial identity
m∑

i=0

(−1)i

(
k − i

r

)(
m

i

)
=

(
k − m

k − r

)
, (4.6)

which can be easily proved by applying the principle of inclusion and exclusion
to the following problem: In how many ways can one select r of given k distinct
objects so that each selection includes some particular m of the k objects?

Combining (4.4) and (4.5) one can deduce that

Xk =
�(k−1)/2�∑

j=0

(
k

j

)
X

′
k−2j . (4.7)

Proof of Theorem 4.4. It is enough to prove (4.4), because this formula and the
fact that {Xk} commute will imply that {X

′
k} commute, i.e. the equations (4.3)

form a hierarchy.
Using (3.4) and (3.7) one can easily check that

gk+1(n, n − 1; z) = zk+1 + k

�(k+1)/2�∑
i=1

(−1)i

i

(
k − i − 1

i − 1

)
zk+1−2i, (4.8)

which combined with (3.9) and (4.1a) gives

αk+1(n, n − 1) = rk(n) + k

�(k+1)/2�∑
i=1

(−1)i

i

(
k − i − 1

i − 1

)
rk−2i(n). (4.9)

On the other hand, from equations (3.8) it follows that

gk+1(n, n − 1; z) = zgk(n − 1, n − 1; z) − δk,1,

which shows that

gk(n − 1, n − 1; z) = zk + k

�(k+1)/2�∑
i=1

(−1)i

i

(
k − i − 1

i − 1

)
zk−2i +

δk,1

z
, (4.10)

and therefore, using (3.9) and (4.1b) we get

αk(n − 1, n − 1) = lk(n) + k

�(k+1)/2�∑
i=1

(−1)i

i

(
k − i − 1

i − 1

)
lk−2i(n). (4.11)

The proof now follows from (4.9), (4.11), Proposition 4.1 and the fact that
r0(n) = 0, r−1(n) = 1, l0(n) = 1, l−1(n) = 0 are independent of n. �
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5. Darboux transformations from L0 = E + E−1 at the end points
of the spectrum

In this section we focus on certain second-order difference operators LN1,N2 , which
were introduced in [18] in connection with a difference-differential version of the
bispectral problem [11]. These operators can be defined by successive Darboux
transformations from the operator L0 = E + E−1 at the end points ±2 of the
spectrum. Recall (see [24]) that the Darboux transformation of a second-order
operator L at a point c0 consists of factorizing L− c0Id as a product of first-order
operators and producing a new operator L̂ by exchanging the factors, i.e. if we
write L − c0Id = PQ, then L̂ is defined by L̂ − c0Id = QP. The main result in
this section is a characterization of these operators in terms of the vector fields of
the Toda lattice hierarchy. This is needed in the next section where we prove that
the heat kernel expansion for these operators can be written as a sum of only two
Bessel functions with polynomial coefficients (in the time variable t), and that this
property completely characterizes the operators LN1,N2 .

5.1. Constructing the operators LN1,N2

The operators LN1,N2 are obtained by the following sequence of Darboux trans-
formations:

L0 − 2 Id = P0Q0 � L1,0 − 2 Id = Q0P0 = P1Q1 � · · ·
� LN1,0 − 2 Id = QN1−1PN1−1,

LN1,0 + 2 Id = PN1QN1 � LN1,1 + 2 Id = QN1PN1 = PN1+1QN1+1 � · · ·
� LN1,N2 + 2 Id = QN1+N2−1PN1+N2−1. (5.1)

At each step, the factorization of the operator Li1,i2 ± 2 Id depends on one free
parameter. Thus, the operator LN1,N2 will depend on N1+N2 free parameters. The
operator LN1,N2 belongs to a rank one commutative ring of difference operators,
i.e. we can apply the correspondence between commutative rings of difference
operators and algebraic curves developed in the papers [23, 27, 28]. We first sketch
the main steps of this construction with an emphasis on the operators obtained
by the Darboux process (5.1) and refer the reader to [17, 18] for more details.

Following [28], we call a difference operator M =
∑K+

k=K−
μk(n)Ek properly

bordered if μK−(n) �= 0 and μK+(n) �= 0 for all n ∈ Z; the interval [K−,K+] is
the support of M . A commutative ring A of difference operators is called rank
one if it contains two properly bordered difference operators M ′ and M ′′ with
supports [K ′

−,K ′
+] and [K ′′

−,K ′′
+] such that gcd(K ′

−,K ′′
−) = 1, gcd(K ′

+,K ′′
+) = 1

and K ′
−K ′′

+ < K ′
+K ′′

−. In that case, Spec(A) is an irreducible complex affine curve
that completes by adding two nonsingular points Q±

∞ at infinity.
Starting with a properly bordered second-order difference operator L =

E + bnId+anE−1 we denote by AL the ring of all difference operators commuting
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with L, i.e.

AL =
{

M =
K+∑

k=K−

μk(n)Ek : [M,L] = 0
}

.

One can show that AL is in fact a commutative ring consisting of properly bordered
difference operators, and it is a rank one ring if and only if AL contains an operator
which is not a polynomial of L. For every M ∈ AL the operators L and M satisfy
an algebraic relation of the form

M2 = MT1(L) + T2(L),

where T1 and T2 are some polynomials. This equation defines an affine curve
fL,M (u, v) = v2−vT1(u)−T2(u) = 0. It is easy to see that for every M ∈ AL there
exists a unique polynomial gM such that gM (0) = 0 and the operator M − gM (L)
contains only nonnegative powers of E, i.e. M = gM (L) +

∑ν(M)
j=0 ck(n)Ek. From

this, it follows that the ring AL is generated by two operators {L,M} where M is
chosen so that ν(M) > 0 is minimal. The spectral curve Spec(AL) is fL,M (u, v) = 0
and the complete curve is XL = Spec(AL) ∪ {Q+

∞, Q−
∞}.

The Baker function Ψn for AL is the unique (up to a factor independent of n)
eigenfunction for the operators from AL. If we denote by AL the ring of functions
meromorphic on X with poles only at Q±

∞, then for every M ∈ AL we have

MΨn(P ) = hM (P )Ψn(P ), where hM (P ) ∈ AL.

Moreover, if the support of M is [K−,K+] then hM (P ) has poles of orders K+

and K− at Q+
∞ and Q−

∞, respectively.
Let us denote by AN1,N2 = ALN1,N2

the ring of all difference operators com-
muting with LN1,N2 . In [18] it was shown that AN1,N2 is a rank one commutative
ring of difference operators, which is isomorphic to the ring

AN1,N2 = ALN1,N2
= C[x + x−1, fN1,N2(x)] ⊂ C[x, x−1],

where

fN1,N2(x) =
(x − 1)2N1+1(x + 1)2N2+1

xN1+N2+1
. (5.2)

In other words, if Ψn is the Baker function for AN1,N2 then

LN1,N2Ψn(x) = (x + x−1)Ψn(x), (5.3a)

MN1,N2Ψn(x) = fN1,N2(x)Ψn(x), (5.3b)

for some MN1,N2 ∈ AN1,N2 , and the ring AN1,N2 is generated by LN1,N2 and
MN1,N2 . The spectral curve is given by the equation

Spec(AN1,N2) : v2 = (u − 2)2N1+1(u + 2)2N2+1. (5.4)

Clearly, Spec(AN1,N2) is rational and has a cusp at u = 2 (resp. u = −2) when
N1 > 0 (resp. N2 > 0). Another property, which we will need later, is that for
every j ∈ Z we have

xjfN1,N2(x) ∈ AN1,N2 (5.5)
(see [18, proof of Theorem 4.2]; note that x here corresponds to z + 1 in [18]).
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Conversely, let L = E + bnId + anE−1 be a properly bordered second-order
difference operator whose spectral curve is given by equation (5.4). From the corre-
spondence in [28] we can conclude that AL is obtained from AN1,N2 for a specific
choice of the free parameters in the Darboux steps, up to a conjugation by a
nonzero function gn, i.e.

AL = {g−1
n Mgn : M ∈ AN1,N2}. (5.6)

If L is nonconstant (i.e. at least one of the functions an and bn is not a constant),
then it is easy to see that all second-order operators operators in AL with support
[−1, 1] must have the form γ1L + γ2Id for some constants γ1, γ2. From this, it
follows that the only possible functions gn in (5.6) are gn = cn, and we must have

L = c−n−1LN1,N2c
n + d Id (5.7)

for some constants c �= 0 and d.
One possible way to eliminate this freedom and characterize precisely the

operators LN1,N2 is to consider properly bordered second-order difference operators
of the form L = E+bnId+anE−1 with spectral curve given in (5.4) and coefficients
satisfying

lim
n→∞

bn = 0, lim
n→∞

an = 1. (5.8)

Indeed, if L = LN1,N2 then the coefficients bn, an can be computed from the
formulas

bn =
∂

∂s1
log

τ̄n+1(s)
τ̄n(s)

, an =
τ̄n+1(s)τ̄n−1(s)

τ̄n(s)2
,

where τ̄n(s) is a polynomial in n, which makes (5.8) obvious. We note, however,
that τ̄n(s) in the last formulas differs from the τ -function introduced in Section 2
(due to the different approach in the papers [17, 18]). Conversely, if L is a non-
constant coefficient operator which belongs to a rank one commutative ring of
difference operators whose spectral curve is given by (5.4), then (5.7) must hold,
which combined with (5.8) shows that c = ±1 and d = 0. Conjugating LN1,N2

by (−1)n essentially exchanges the roles of +2 and −2 in (5.1) (or, equivalently,
the roles of N1 and N2). Thus, we have L = LN1,N2 or L = LN2,N1 , completing
the proof in this case. Finally, if an and bn are constants, then (5.8) implies that
L = L0.

Next, we establish several new facts needed for the characterization of the
operators LN1,N2 in terms of the Toda vector fields, proved at the end of this
section.

Lemma 5.1. Let A be a ring of Laurent polynomials in x such that AN1,N2 ⊂ A
for some N1, N2 ∈ N0. If A contains a polynomial p(x) such that 0 < deg(p(x)) ≤
N1 + N2 then one of the following must hold:

(i) N1 ≥ 1 and fN1−1,N2(x) ∈ A;
(ii) N2 ≥ 1 and fN1,N2−1(x) ∈ A.
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Proof. Assume that p(x) ∈ A ∩ C[x] is such that 0 < deg(p(x)) ≤ N1 + N2. Since
x + x−1 ∈ A, it is clear that p(x) + p(1/x) ∈ A, which combined with p(x) ∈ A
shows that f(x) = p(x) − p(1/x) ∈ A. Notice that f(1/x) = −f(x) and therefore
we can write f(x) in the form

f(x) =
(

x − 1
x

)2l+1

f̃(x), (5.9)

where f̃(x) ∈ C[x, x−1] is not divisible by x − 1/x (i.e. f̃(−1) �= 0 or f̃(1) �= 0)
and 2l + 1 ≤ N1 + N2.

Let us define T = min(N1, N2) and T ′ = max(N1, N2) > 0. Choosing ε = 1
if T ′ = N2 and ε = −1 otherwise we can rewrite fN1,N2(x) as

fN1,N2(x) =
(x + ε)2T ′+1(x − ε)2T+1

xT ′+T+1
=

(
x − 1

x

)2T+1[
x + 2ε +

1
x

]T ′−T

.

Below we consider separately the cases l ≤ T − 1 and l ≥ T .

Case 1: l ≤ T − 1. Let us write f̃(x) in (5.9) as follows:

f̃(x) =
S∑

j=0

fj

(
x + 2ε +

1
x

)j

.

Case 1.a. Assume first that f0 �= 0 and T ′ > T . Then we can multiply f(x) by
(

x − 1
x

)2(T−l)(
x + 2ε +

1
x

)T ′−T−1

∈ A

to get
S∑

j=0

fj

(
x − 1

x

)2T+1(
x + 2ε +

1
x

)j+T ′−T−1

∈ A.

Notice that for j ≥ 1 the terms in the above sum are multiples of fN1,N2 and
therefore belong to A by (5.5). Thus, the term corresponding to j = 0 also belongs
to A and since f0 �= 0 we obtain

(
x − 1

x

)2T+1(
x + 2ε +

1
x

)T ′−T−1

=
(x + ε)2T ′−1(x − ε)2T+1

xT ′+T
∈ A,

which is what we wanted to show.

Case 1.b. Assume now that f0 �= 0 but T ′ = T (hence ε = 1), and let us multiply
f(x) by (

x − 1
x

)2(T−l−1)(
x − 2 +

1
x

)
∈ A.

We have
m∑

j=0

fj

(
x − 1

x

)2T−1(
x + 2 +

1
x

)j(
x − 2 +

1
x

)
∈ A.
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Again all terms for j ≥ 1 in the sum above are in A and therefore, since f0 �= 0,
we get

(
x − 1

x

)2T−1(
x − 2 +

1
x

)
=

(x + 1)2T−1(x − 1)2T+1

x2T
∈ A.

Case 1.c. Let now f0 = 0, i.e. f̃(−ε) = 0. This implies that f̃(ε) �= 0, because
otherwise x − 1/x will divide f̃(x) contrary to our factorization in (5.9). Thus we
can write f̃(x) as

f̃(x) =
m∑

j=0

f̃j

(
x − 2ε +

1
x

)j

, (5.10)

with f̃0 �= 0. Using now (5.10) and multiplying f(x) by
(

x − 2ε +
1
x

)T−l−1(
x + 2ε +

1
x

)T ′−l

∈ A

we get
m∑

j=0

f̃j

(
x − 1

x

)2l+1(
x − 2ε +

1
x

)j+T−l−1(
x + 2ε +

1
x

)T ′−l

∈ A.

For j ≥ 1, the j-th term in the above sum is
(

x − 2ε +
1
x

)j−1 (x − ε)2T+1(x + ε)2T ′+1

xT+T ′+1
∈ A,

and therefore for j = 0 we have

(x − ε)2T−1(x + ε)2T ′+1

xT+T ′ ∈ A.

Case 2. Finally, if l ≥ T we can write f(x) as

f(x) =
(

x − 1
x

)2T+1 S∑
j=j0

hj

(
x + 2ε +

1
x

)j

, (5.11)

with hj0 �= 0 and S ≤ T ′−T−1. Multiplying (5.11) by (x+2ε+1/x)T ′−T−1−j0 ∈ A
we see as before that

(x − ε)2T+1(x + ε)2T ′−1

xT+T ′ ∈ A,

which completes the proof of the lemma. �

Corollary 5.2. If A is a ring of Laurent polynomials in x such that AN,N ⊂ A for
some N ∈ N0, then A = AN1,N2 for some N1, N2 ∈ N0.

Proof. For every f(x) ∈ A there exists a unique polynomial p(x) such that p(0) = 0
and f(x) − p(x) ∈ C[x + x−1]. Since x + x−1 ∈ A we see that A is generated by
x+x−1 and the polynomial of minimal positive degree in A∩C[x]. The proof now
follows immediately from Lemma 5.1. �
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Let us denote by qk(x) the odd polynomial of degree 2k + 1 given by

qk(x) =
k∑

j=0

(
2k + 1

j

)
(−1)jx2k−2j+1. (5.12)

Then

fk,k(x) =
(

x − 1
x

)2k+1

= qk(x) − qk(1/x). (5.13)

If we put u = x + x−1 then from (5.12) and (5.13) it is easy to see that

qk+1(x) = (u2 − 4)qk(x) + (−1)k+1

(
2k + 1

k

)
u. (5.14)

Using the last relation, one can deduce by induction on k that

qk(x) + qk(1/x) = Pk(u), (5.15)

where

Pk(u) =
k∑

j=0

(−2)j

j!
(2k + 1)!!

(2k + 1 − 2j)!!
u2k−2j+1

=
(2k + 1)!

k!

k∑
j=0

(−1)j

j!
(k − j)!

(2k + 1 − 2j)!
u2k−2j+1, (5.16)

and (2j + 1)!! = 1 · 3 · · · (2j + 1).

Proposition 5.3. Let LN1,N2 be the second-order difference operator constructed in
(5.1) and N = max(N1, N2). Then for every k ≥ N we have

Pk(LN1,N2)+ ∈ AN1,N2 and (LN1,N2Pk(LN1,N2))+ ∈ AN1,N2 . (5.17)

Proof. Clearly Pk(LN1,N2) ∈ AN1,N2 . From (5.2), (5.5) and (5.13) it follows that
qk(x) ∈ AN1,N2 for every k ≥ N . This combined with equations (5.15) and (5.3a)
shows that Pk(LN1,N2)+ ∈ AN1,N2 . A similar argument gives the second statement
in (5.17). Indeed, using the fact that

(x + 1/x)fk,k ∈ AN1,N2 for every k ≥ N,

and (5.13) one can deduce that (x + 1/x)qk(x) ∈ AN1,N2 for all k ≥ N , which
combined with uPk(u) = (x + 1/x)qk(x) + (−1)k

(
2k+1

k

)
+ O(1/x) gives the second

part of (5.17). �

5.2. Characterization of LN1,N2 in terms of the Toda flows

In this subsection we prove that the operators LN1,N2 can be characterized by the
property (5.17), or equivalently by the vanishing of an appropriate linear combi-
nation of the Toda flows after a particular point. This is a discrete analog of the
well-known fact that the rational solutions of the Korteweg–de Vries hierarchy are
precisely the second-order differential operators which are stationary under the
KdV flows, after a particular point.
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Theorem 5.4. Let L = E + bnId + anE−1 be a nonconstant properly bordered
second-order difference operator. Then the following conditions are equivalent.

(i) The operator L can be obtained by a sequence of Darboux transformations
from the operator L0 = E + E−1 at the end points ±2 of the spectrum, i.e.
L = LN1,N2 for some N1, N2 ∈ N0 with N1 + N2 > 0 and for specific values
of the free parameters in the Darboux process (5.1).

(ii) There exists N ∈ N such that

[Pk(L)+, L] = [(LPk(L))+, L] = 0 for every k ≥ N, (5.18)

where Pk(u) is the polynomial defined by (5.16).

Proof. The implication (i)⇒(ii) follows immediately from Proposition 5.3. Assume
now that (5.18) holds for every k ≥ N . Then L belongs to a rank-one commutative
ring of difference operators AL and Pk(L)+, (LPk(L))+ ∈ AL for k ≥ N . Let Ψn

be the Baker function and X = Spec(A)∪{Q+
∞, Q−

∞} be the complete curve. Then
there exists a function f(P ) on X with simple poles at Q+

∞ and Q−
∞ such that

LΨn(P ) = f(P )Ψn(P ). (5.19)

Let us pick local parameters x−1 and y−1 near Q+
∞ and Q−

∞, respectively, such
that

f(P ) =
{

x + 1/x when P is in a neighborhood of Q+
∞,

y + 1/y when P is in a neighborhood of Q−
∞. (5.20)

Then for each k ≥ N there exist functions f2k+1(P ) and f2k+2(P ) with poles only
at Q+

∞ such that

Pk(L)+Ψn(P ) = f2k+1(P )Ψn(P ), (5.21a)

(LPk(L))+Ψn(P ) = f2k+2(P )Ψn(P ). (5.21b)

From (5.20) and (5.15) it follows that near Q+
∞ and Q−

∞ these functions have the
following expansions:

f
+
2k+1(x) = qk(x) +

∞∑
j=1

δk
j

xj
, (5.22a)

f
−
2k+1(y) =

∞∑
j=0

δ′kj
yj

, (5.22b)

and

f
+
2k+2(x) =

(
x +

1
x

)
qk(x) + (−1)k

(
2k + 1

k

)
+

∞∑
j=1

γk
j

xj
, (5.23a)

f
−
2k+2(y) =

∞∑
j=0

γ′k
j

yj
. (5.23b)

Let us now consider the function

gk = f2k+1f − f2k+2 ∈ AL.
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A straightforward computation using (5.20), (5.22) and (5.23) shows that near Q+
∞

and Q−
∞ we have

g
+
k (x) = δk

1 + (−1)k

(
2k + 1

k

)
+ O(1/x), (5.24a)

g
−
k (y) = δ′k0 y + (δ′k1 − γ′k

0 ) + O(1/y). (5.24b)

If δ′k0 �= 0, the function gk will correspond to a difference operator from AL with
support [−1, 0], which would imply that L is a constant coefficient operator, con-
trary to our assumption. Thus

δ′k0 = 0 (5.25)
and gk(P ) is a constant (depending on k). Next, we define

hk = f2k+3 − (f2 − 4)f2k+1 + (−1)k

(
2k + 1

k

)
f ∈ AL.

We have

h
+
k (x) = −δk

1x − δk
2 + O(1/x), (5.26a)

h
−
k (y) =

(
−δ′k1 + (−1)k

(
2k + 1

k

))
y − δ′k2 + O(1/y), (5.26b)

and the same argument as above shows that hk + δk
1 f + δk

2 = 0, i.e.

f2k+3 − (f2 − 4)f2k+1 + (−1)k

(
2k + 1

k

)
f + δk

1 f + δk
2 = 0. (5.27)

In particular, this equality implies that

δk
1 = δ′k1 + (−1)k+1

(
2k + 1

k

)
, (5.28)

δk
2 = δ′k2 . (5.29)

We want to show now that for every k ≥ N , around Q−
∞ we have

f
−
2k+1(y) = qk(1/y) +

∞∑
j=1

δk
j

yj
. (5.30)

From equations (5.14), (5.20), (5.22a) and (5.27) we deduce that the coefficients
δk
j in the expansion of the function f

+
2k+1(x) − qk(x) =

∑∞
j=1 δk

j /xj satisfy the
following recurrence relations:

δk
3 = δk+1

1 + 3δk
1 , (5.31a)

δk
j+2 = δk+1

j + 2δk
j − δk

j−2 for j ≥ 2. (5.31b)

The same argument shows that the same relations will be satisfied by the coef-
ficients in the expansion of the function f

−
2k+1(y) − qk(1/y). Thus, to prove that

(5.30) holds, it is enough to show that the coefficient of 1/xj in f
+
2k+1(x) − qk(x)

is equal to the coefficient of 1/yj in f
−
2k+1(y) − qk(1/y) for j = 0, 1, 2 and every
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k ≥ N . It is easy to see that the equality of these three coefficients is equivalent
to equations (5.25), (5.28) and (5.29), completing the proof of (5.30).

Next, we define

pk = 2f2k+1 − Pk(f) ∈ AL.

Using equations (5.13), (5.15), (5.22a) and (5.30) we see that pk(P ) has the fol-
lowing expansions near Q+

∞ and Q−
∞:

p
+
k (x) = qk(x) − qk(1/x) + 2

∞∑
j=1

δk
j

xj
=

(
x − 1

x

)2k+1

+ 2
∞∑

j=1

δk
j

xj
, (5.32a)

p
−
k (y) = −qk(y) + qk(1/y) + 2

∞∑
j=1

δk
j

yj
= −

(
y − 1

y

)2k+1

+ 2
∞∑

j=1

δk
j

yj
. (5.32b)

We now use the fact that pk and f satisfy an algebraic relation of the form

p2
k = pkT1(f) + T2(f) (5.33)

for some polynomials T1 and T2. It is easy to show that T1(f) = 0. Indeed, if
we assume that T1(f) = rfs + · · · for some nonzero constant r, then the function
pkT1(f) has the following expansions near Q+

∞ and Q−
∞:

pkT1(f) =
{

rx2k+1+s + O(x2k+s) in a neighborhood of Q+
∞,

−ry2k+1+s + O(y2k+s) in a neighborhood of Q−
∞.

On the other hand, from equations (5.32) it is clear that if

p2
k − T2(f) =

{
rxl + O(xl−1) in a neighborhood of Q+

∞,
−ryl + O(yl−1) in a neighborhood of Q−

∞,

for some nonzero constant r; then l ≤ 2k, leading to a contradiction. Thus T1(f) = 0
and therefore (5.33) reduces to

p2
k = T2(f). (5.34)

We can now show that δk
j = 0 for all j ∈ N, which implies that T2(f) = (f2−4)2k+1.

Indeed, let δk
j0

�= 0 for some j0 ∈ N and let j0 be the minimal possible. Then we
can rewrite (5.34) as

p2
k − (f2 − 4)2k+1 = T2(f) − (f2 − 4)2k+1. (5.35)

The left-hand side of (5.35) has the following expansions near Q+
∞ and Q−

∞:

p2
k − (f2 − 4)2k+1 =

{
4δk

j0x
2k+1−j0 + O(x2k−j0) in a neighborhood of Q+

∞,
−4δk

j0y
2k+1−j0 + O(y2k−j0) in a neighborhood of Q−

∞.

Again we get a contradiction because clearly the highest coefficients in the ex-
pansions of T2(f) − (f2 − 4)2k+1 near Q+

∞ and Q−
∞ must be equal. Thus (5.34)
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becomes
p2

k = (f2 − 4)2k+1. (5.36)

Notice that the curve given by the last equation is exactly the spectral curve
Spec(Ak,k) in (5.4). Thus, we conclude that the spectral curve X is rational and
choosing an appropriate parametrization we have

AN,N ⊂ AL ⊂ C[x, x−1].

From Corollary 5.2 it follows that A = AN1,N2 for some N1, N2 ∈ N0 with N1 +
N2 > 0 (because L is nonconstant). Moreover, as we saw at the beginning of the
section, equation (5.7) must hold. Let Ψn(x) be the Baker function for AN1,N2 ,
i.e. the function in formulas (5.3a)–(5.3b). Then the Baker function for AL is
Ψ̃n(x) = c−nΨn(x). Thus

LΨ̃n(x) =
(

1
c

(
x +

1
x

)
+ d

)
Ψ̃n(x).

Equation (5.36) shows that for k large enough the function
[(

1
c

(
x +

1
x

)
+ d

)2

− 4
]2k+1

must be the square of a rational function. It is easy to see that this can only
happen when d = 0 and c = ±1, which means that L = LN1,N2 or L = LN2,N1 ,
finishing the proof. �

Remark 5.5. We can easily reformulate Theorem 5.4 in terms of the vector fields
Xk of the Toda lattice hierarchy (2.1). For every k ∈ N let

εk =

{
0 if k is odd,

1 if k is even,
(5.37)

and let us define

Yk(L) =
(k − εk)!

(	(k − 1)/2
)!

�(k−1)/2�∑
j=0

(−1)j

j!
(	(k − 1)/2
 − j)!

(k − εk − 2j)!
Xk−2j(L), (5.38)

where Xj(L) = [(Lj)+, L]. Then the operators LN1,N2 with N1 + N2 > 0 can be
characterized as the only nonconstant properly bordered second-order difference
operators of the form L = E + bnId + anE−1 satisfying the constraints

Yk(L) = 0 for every k large enough. (5.39)

We end this section by giving an explicit formula for Yk in terms of the vector
fields X

′
j defined in Theorem 4.4. The proposition below will be needed in the next

section when we want to characterize the operators having specific heat kernel
expansions.
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Proposition 5.6. The vector fields Yk defined by (5.38) can be rewritten as a linear
combination of the vector fields X

′
k, corresponding to the flows of the system (4.3),

as follows:

Yk =
�(k−1)/2�∑

l=0

(−1)l

(
1 − 2l

k
εk

)(
k

l

)
X

′
k−2l, (5.40)

where εk is defined in (5.37).

Proof. Using (4.7) and (5.38) we get

Yk =
(k − εk)!

(	(k − 1)/2
)!

�(k−1)/2�∑
j=0

(−1)j

j!
(	(k − 1)/2
 − j)!

(k − εk − 2j)!

×
�(k−1)/2�−j∑

i=0

(
k − 2j

i

)
X

′
k−2i−2j

=
�(k−1)/2�∑

l=0

Rk,lX
′
k−2l,

where

Rk,l =
(k − εk)!

(	(k − 1)/2
)!

l∑
j=0

(−1)j

j!
(	(k − 1)/2
 − j)!(k − 2j)!

(k − εk − 2j)!(l − j)!(k − l − j)!
. (5.41)

We now consider separately the cases when k is odd or even.

Case 1. Assume first that k is odd, i.e. k = 2s + 1. Then εk = 0 and equation
(5.41) gives

R2s+1,l =
(2s + 1)!

s!

l∑
j=0

(−1)j

j!
(s − j)!

(l − j)!(2s + 1 − l − j)!

=
(

2s + 1
l

)
2F1

(−l,−2s − 1 + l
−s

; 1
)

=
(

2s + 1
l

)
(s + 1 − l)l

(−s)l
= (−1)l

(
2s + 1

l

)
,

where in the last line we used the Chu–Vandermonde formula to evaluate the 2F1,
and (a)l = a(a + 1) · · · (a + l− 1) denotes the shifted factorial. This completes the
proof in the case when k is odd.

Case 2. Assume now that k is even, i.e. k = 2s+2 and therefore εk = 1. A similar
computation gives
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R2s+2,l = 2
(2s + 1)!

s!

l∑
j=0

(−1)j

j!
(s + 1 − j)!

(l − j)!(2s + 2 − l − j)!

=
(

2s + 2
l

)
2F1

(−l,−2s − 2 + l
−s − 1 ; 1

)

=
(

2s + 2
l

)
(s + 1 − l)l

(−s − 1)l
= (−1)l s − l + 1

s + 1

(
2s + 2

l

)
,

which completes the proof. �

6. Finite heat kernel expansions

In this section we prove that the operators LN1,N2 constructed in the previous
section can be characterized as the only operators for which the heat kernel can be
written as a sum of only two Bessel functions with polynomial (in t) coefficients.

We work below with series of the form∑
r≤k

p(r)Ir(2t), (6.1)

where p(r) is a polynomial in r, and before we state the main result, we establish
several properties of the series (6.1). Using (1.7) we see that for r ≥ 0 we have

|I−r(2t)| ≤ |t|r
r!

∞∑
j=0

|t|2j

j!
≤ |t|r

r!
e|t|

2
.

Thus if |t| ≤ T , then |I−r(2t)| ≤ (|T |r/r!)e|T |2 . Since for every polynomial p(r) and
every positive constant T the series

∑∞
r=0 (|p(−r)|/r!)T r converges we conclude

that (6.1) converges absolutely and uniformly on bounded sets.
The next lemma allows us to identify polynomials p(r) for which the sum of

the series (6.1) can be written in a simple closed form.

Lemma 6.1. For every m ∈ N and k ∈ Z we have

tmIk(2t) = (−1)m
∑
i≤k

i≡k+m (mod 2)

Am,k
i Ii(2t), (6.2)

where

Am,k
i =

i

4m−1(m − 1)!

∏
|j|<m

j≡m (mod 2)

((k + j)2 − i2). (6.3)

Proof. The proof can be obtained by induction on m using the identity

t(Ik−1(2t) − Ik+1(2t)) = kIk(2t). �

Notice that Am,k
i is an odd polynomial in i of degree 2m − 1. Thus, as an

immediate application of the above lemma, we obtain the following corollary.
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Corollary 6.2. Let p(i) be a function which is an odd polynomial in i when i is
even or odd.1 Then∑

i<k

p(i)Ii(2t) = p1(t)Ik(2t) + p2(t)Ik−1(2t),

where p1(t) and p2(t) are polynomials of t such that p1(0) = p2(0) = 0.

We can now formulate and prove the main result in this section.

Theorem 6.3. Let L = E + bnId + anE−1 be a properly bordered second-order
difference operator. Then the following conditions are equivalent.

(i) The operator L can be obtained by a sequence of Darboux transformations
from the operator L0 = E + E−1 at the end points ±2 of the spectrum, i.e.
L = LN1,N2 for some N1, N2 ∈ N0 and for some specific values of the free
parameters in the Darboux process (5.1).

(ii) The fundamental solution of the discrete heat equation (1.2) can be written
as

u(n,m; t) = (1 + p1(n,m; t))In−m(2t) + p2(n,m; t)In−m−1(2t), (6.4)

where p1(n,m; t) and p2(n,m; t) are polynomials in t with coefficients depend-
ing on n and m, such that p1(n,m; 0) = p2(n,m; 0) = 0.

6.1. Finiteness of the heat kernel for the operators LN1,N2

The implication (i)⇒(ii) is essentially proved in [15], except the fact that exactly
two Bessel functions (In−m and In−m−1) are enough. This can be deduced from
the arguments given there combined with Corollary 6.2. We explain below the
main steps of the proof together with the essential ingredients from [15, 18].

We consider the operator LN1,N2 obtained by the sequence of Darboux trans-
formations (5.1) and the corresponding maximal commutative ring AN1,N2 of dif-
ference operators that contains LN1,N2 . From (5.1) one can deduce that LN1,N2

and L0 = E + E−1 are related by the intertwining relation

QL0 = LN1,N2Q, (6.5)

where
Q = QN1+N2−1 · · · Q1Q0.

Equation (6.5) implies that kerQ is preserved by L0, i.e. L0(ker Q) ⊂ ker Q. Con-
versely, one can show by induction on the order of Q that if two operators L0

and L = LN1,N2 are related by (6.5) for some difference operator Q, then L can
be obtained by a sequence of Darboux transformations from L0. The fact that
we iterate the Darboux transformation only at ±2 means that the operator L0

restricted to ker Q has 2 and −2 as eigenvalues with multiplicities N1 and N2,

1Equivalently, we can say that p(i) = p̃(i) + (−1)ip̂(i), where p̃(i) and p̂(i) are odd polynomials
in i.
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respectively. This allows us to reconstruct Q explicitly from its kernel as follows.
We define functions φ+

1 , . . . , φ+
N1

and φ−
1 , . . . , φ−

N2
such that

(L0 − 2 Id)φ+
j = φ+

j−1 for j = 1, . . . , N1,

(L0 + 2 Id)φ−
j = φ−

j−1 for j = 1, . . . , N2,

with the convention that φ+
0 = φ−

0 = 0. Let WrΔ denote the discrete Wronskian
(Casorati determinant) with respect to the variable n,

WrΔ(f1, . . . , fk) = det (Δi−1fj)1≤i,j≤k.

Then the operator Q, normalized to be monic, is defined by,

Q(f) =
WrΔ(φ+

1 , . . . , φ+
N1

, φ−
1 , . . . , φ−

N2
, f)

WrΔ(φ+
1 , . . . , φ+

N1
, φ−

1 , . . . , φ−
N2

)
. (6.6)

The Baker function for the ring AN1,N2 can be written in terms of the operator Q
by

Ψn(x) =
1

(x − 1)N1(x + 1)N2
Q(xn). (6.7)

Using the explicit form of the functions φ±
j and equations (6.6) and (6.7) one

can show that Ψn(1/x) and xΨ∗
n+1(x) are equal up to a multiplicative constant

independent of x, i.e.
Ψn(1/x) = cnxΨ∗

n+1(x). (6.8)

Finally, we can use the above information to prove that Ψn(x) and Ψ∗
n(x) satisfy

the orthogonality relation

1
2πi

∮

C

Ψn(x)Ψ∗
m+1(x) dx = δn,m, (6.9)

where C is a simple closed contour around the origin, avoiding the points x = ±1.
The proof of (6.9) can be obtained as follows. Notice first that Ψn(x) and Ψ∗

m+1(x)
have poles only at ±1. However, the spectral curve has cusps at these points and
since the differential Ψn(x)Ψ∗

m+1(x) dx is regular on the affine curve Spec(AN1,N2)
we deduce that the residues at x = ±1 are equal to zero. Using the explicit formulas
for Ψn(x) and Ψ∗

m+1(x) we see that expanding around x = 0 for m ≤ n we have

Ψn(x)Ψ∗
m+1(x) =

1
x

(δn,m + O(x)),

which establishes (6.9) for m ≤ n. When m > n we replace x by 1/x in (6.9), and
applying (6.8) we obtain zero by the bilinear identity (2.9). We refer the reader to
[18] for detailed proofs of all statements in the above construction.

From (5.3a) and (6.9) it follows that the fundamental solution for LN1,N2 can
be written as

u(n,m; t) =
1

2πi

∮

C

et(x+1/x)Ψn(x)Ψ∗
m+1(x) dx. (6.10)
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Since
et(x+1/x) =

∑
k∈Z

xkIk(2t)

we can deduce from (6.10) that

u(n,m; t) =
∞∑

k=0

αk(n,m)In−m−k(2t),

where
αk(n,m) =

1
2πi

∮

C

xk−n+mΨn(x)Ψ∗
m+1(x) dx. (6.11)

Using the last formula, we prove that for k ≥ 1 running over the even or the odd
integers, αk(n,m) is an odd function of n − m − k with coefficients depending on
n and m. The statement will then follow from Corollary 6.2.

The idea of the proof is to write xk−n+m in (6.11) as [xk−n+m −p(x, n−m−
k)]+p(x, n−m−k) for appropriate p(x, n−m−k) which is a Laurent polynomial
of x, and an odd polynomial of n − m − k. We want to pick p(x, n − m − k) so
that f(x) = xk−n+m − p(x, n − m − k) ∈ AN1,N2 . Then there exists a difference
operator Lf =

∑K+
l=K−

μl(n)El ∈ AN1,N2 and therefore

f(x)Ψn(x) = LfΨn(x) =
K+∑

l=K−

μl(n)Ψn+l(x).

If the interval [n + K−, n + K+] does not contain m we deduce from (6.9) that
1

2πi

∮

C

f(x)Ψn(x)Ψ∗
m+1(x) dx = 0,

and therefore formula (6.11) will give

αk(n,m) =
1

2πi

∮

C

p(x, n − m − k)Ψn(x)Ψ∗
m+1(x) dx,

completing the proof. The main problem now is to construct a class of Laurent
polynomials in AN1,N2 which allows implementing the above idea. The key ingre-
dient is the following proposition established in [15].

Proposition 6.4. Let N ≥ max(N1, N2), and let l0, l1, . . . , lN be distinct nonzero
integers such that lj ≡ lk (mod 2) and lj + lk �= 0 for 0 ≤ j, k ≤ N . Then

N∑
k=0

xlk

lk
∏

j �=k(l2k − l2j )
∈ AN1,N2 . (6.12)

To complete the proof, we fix n and m, and we choose ε = 1 or ε = 2 so that
k ≡ ε (mod 2). Let N = max(N1, N2) and define

hs
J(j) =

j

J + 2s

N−1∏
l=0
l �=s

j2 − (J + 2l)2

(J + 2s)2 − (J + 2l)2
.
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Clearly, hs
J(j) is an odd polynomial of j. Now we can rewrite (6.11) as follows:

αk(n,m) =
1

2πi

∮

C

(
xk−n+m −

N−1∑
s=0

hs
J(k − n + m)xJ+2s

)
Ψn(x)Ψ∗

m+1(x) dx

+
N−1∑
s=0

hs
J(k − n + m)

2πi

∮

C

xJ+2sΨn(x)Ψ∗
m+1(x) dx. (6.13)

We need to define J depending only on n and m so that

1
2πi

∮

C

(
xk−n+m −

N−1∑
s=0

hs
J(k − n + m)xJ+2s

)
Ψn(x)Ψ∗

m+1(x) dx = 0 (6.14)

for every k, because then the right-hand side of equation (6.13) will clearly be an
odd polynomial of n − m − k with coefficients depending on n and m.

Assume first that n ≤ m and take J = m − n + ε. If 1 ≤ k ≤ 2N , then
k − n + m = J + 2s for some s ∈ {0, 1, . . . , N − 1} and (6.14) is obvious because
the polynomial

f(x) = xk−n+m −
N−1∑
s=0

hs
J(k − n + m)xJ+2s

is identically zero. If k > 2N , then f(x) ∈ AN1,N2 by Proposition 6.4 and therefore
f(x)Ψn(x) can be written as a linear combination of

{Ψk+m(x),Ψk+m−1(x), . . . ,Ψm+ε(x)}
and thus (6.14) follows from (6.9).

If n > m we can use a similar argument by taking J = n − m + ε. This
completes the proof of the implication (i)⇒(ii). �

6.2. Characterization of LN1,N2 in terms of the heat kernel

In this subsection we prove that (ii) implies (i) in Theorem 6.3. Assume first that
L is a nonconstant second-order difference operator. The strategy of the proof is to
show that (5.39) holds using (5.40) and then apply Theorem 5.4 and Remark 5.5.

From (6.4) we see that

u(n, n; t) = I0(2t) + p1(n, n; t)I0(2t) + p2(n, n; t)I−1(2t). (6.15)

On the other hand, (1.4) gives

u(n, n; t) = I0(2t) +
∞∑

k=1

αk(n, n)I−k(2t). (6.16)

Using equations (6.15)–(6.16), the fact that the coefficients αk(n, n) in the expan-
sion (6.16) are uniquely determined by u(n, n; t) and Lemma 6.1 we see that for
k ≥ 1 running over the even or the odd integers, αk(n, n) is an odd polynomial
in k with coefficients depending on n. Similarly, using again (6.4) and writing
u(n + 1, n; t) as
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u(n + 1, n; t) = I1(2t) + p2(n + 1, n; t)I0(2t) + p1(n + 1, n; t)I−1(2t),

we conclude that for k ≥ 1 running over the even or the odd integers, αk+1(n+1, n)
is an odd polynomial in k with coefficients depending on n.

Let 2N − 1 be the maximal degree of the four polynomials of k: αk(n, n)
when k is odd/even and αk+1(n + 1, n) when k is odd/even. We show below that
Yk(L) = 0 for all k ≥ 2N + 1. From (5.40) and (4.3) it follows that it suffices to
prove that if f(x) is an odd polynomial of degree at most 2N − 1, then

�(k−1)/2�∑
l=0

(−1)l

(
1 − 2l

k
εk

)(
k

l

)
f(k − 2l) = 0 (6.17)

for every k ≥ 2N + 1, where εk is defined by (5.37).
If k is odd, i.e. k = 2s + 1, equation (6.17) reduces to

s∑
l=0

(−1)l

(
2s + 1

l

)
f(2s + 1 − 2l) = 0. (6.18)

Since f is odd, we see that the left-hand side of (6.18) is equal to

1
2

2s+1∑
l=0

(−1)l

(
2s + 1

l

)
f(2s + 1 − 2l)

and therefore (6.18) is equivalent to
2s+1∑
l=0

(−1)l

(
2s + 1

l

)
f(2s + 1 − 2l) = 0. (6.19)

Equation (6.19) will follow immediately if we can show that for every polynomial
F (x) of degree less than j, we have

j∑
l=0

(−1)l

(
j

l

)
F (l) = 0. (6.20)

The proof of the last identity is straightforward:
j∑

l=0

(−1)l

(
j

l

)
F (l) =

[
F (∂z)

j∑
l=0

(−1)l

(
j

l

)
elz

]∣∣∣∣
z=0

= [F (∂z)(1 − ez)j ]|z=0 = 0.

If k is even, i.e. k = 2s + 2, then (6.17) is equivalent to

s∑
l=0

(−1)l

(
2s + 2

l

)
(2s + 2 − 2l)f(2s + 2 − 2l)

=
1
2

2s+2∑
l=0

(−1)l

(
2s + 2

l

)
(2s + 2 − 2l)f(2s + 2 − 2l) = 0,

which follows again from (6.20).
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It remains to prove the statement when L has constant coefficients, i.e. L =
E + b Id+aE−1, where a and b are constants and a �= 0. In this case, we can write
an explicit formula for u(n,m; t) and calculate αk(n,m). For the fundamental
solution we obtain

u(n,m; t) =
1

2πi

∮

C

e(z+b+a/z)tzn−m−1dz, (6.21)

where C is a simple closed contour around the origin. Let w be such that z + b +
a/z = w +1/w and w → 0 as z → 0. A short computation using (6.21) shows that

αk(0, 0) = resw=0

(
(1 − w2)w−1−k

√
q(w)

)
, (6.22)

where
q(w) = 1 − 2bw + (2 + b2 − 4a)w2 − 2bw3 + w4.

In other words, the αk(0, 0) are the coefficients in the expansion of the function
(1 − w2)/

√
q(w) around w = 0. We know from Lemma 6.1 that if (6.4) holds for

m = n = 0 then αk(0, 0) must be an odd polynomial in k for k odd or even. Let

αk(0, 0) =

{
β1(k) when k is odd,

β2(k) when k is even.

Then
∞∑

k=1

αk(0, 0)wk = β1(w∂w)
∞∑

j=1

w2j−1 + β2(w∂w)
∞∑

j=1

w2j

= β1(w∂w)
w

1 − w2
+ β2(w∂w)

w2

1 − w2
=

polynomial of w

(1 − w2)K
,

showing that
∑∞

k=1 αk(0, 0)wk must be a rational function of w with denominator
having zeros only at w = ±1. This implies that the only possible choices for q(w) in
(6.22) are (1−w)4, (1+w)4 and (1−w2)2. But the first two are clearly impossible
(because αk(0, 0) become nonzero constants when k is even or odd), leading to
q(w) = (1 − w2)2, which is equivalent to b = 0, a = 1. Thus L = L0, completing
the proof. �
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