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1. Introduction

The goal of this work is to present a unified account of some integrability properties
of three important shallow water models, the Korteweg–de Vries (KdV), Camassa–
Holm (CH) and Hunter–Saxton (HS) equations. The main motivation behind this
research comes from the papers [4, 5, 30]: in [4, 5] R. Beals, D. Sattinger and
J. Szmigielski considered the scattering/inverse scattering analysis of these three
equations from a unified perspective, and in [30] B. Khesin and G. Misio lek gave
an integrated account of their bi-hamiltonian formulations and showed that these
three dynamical systems can be understood as geodesic equations associated to
different right-invariant metrics on (appropriate homogeneous spaces of) the Vi-
rasoro group. In this article it is pointed out that the existence of zero curvature
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formulations, quadratic pseudo-potentials, modified versions, Miura transforma-
tions, conservation laws and nonlocal symmetries for them follows from some de-
velopments linking differential geometry of surfaces and integrability of nonlinear
partial differential equations [13, 44, 45, 48, 52].

Two reasons why these observations may be of importance—besides the fact
that they show the usefulness of the geometric approach to integrability advocated
in the works just mentioned above—are that the construction of nonlocal symme-
tries carried out in this paper can be considered as a geometric implementation of
the “algebraic method” used by M. Leo, R. A. Leo, G. Soliani, and P. Tempesta
[35, 36] to find nonlocal symmetries of nonlinear equations, and also as a nontrivial
instance of the geometric approach to nonlocalities developed by I. Krasil’shchik,
A. Vinogradov and their coworkers (the theory of coverings and more generally
differential varieties or “diffieties”; see [33, 34, 54] and references therein). On the
other hand, this geometric approach is silent on analytic properties such as well-
posedness of the Cauchy problems for the KdV, CH and HS equations, although
it is relevant for analysis since it provides one with zero curvature representations
and conservation laws. For analytic studies of the equations considered here the
reader is referred to [4, 5, 10, 14, 15, 16, 37].

Recall that if ut = F is a scalar partial differential evolution equation in two
independent variables x and t, a (generalized) symmetry of ut = F is a smooth
function G depending on x, t, u, and a finite number of derivatives of u such that
for any solution u(x, t) of ut = F , the deformed function u(x, t)+τG(x, t) is also a
solution to first order in τ . At least at a formal level [39, Chapter 5] a generalized
symmetry G allows one to generate new solutions from old ones and, if G depends
at most on x, t, u, ux, one can indeed show the existence of a (local) one-parameter
group of transformations on the space of first order jets of the trivial bundle
(x, t, u) 7→ (x, t) which “sends solutions to solutions” (see [34, 38, 39]).

It appears that A. Vinogradov and I. Krasil’shchik [55] were the first re-
searchers who studied nonlocal symmetries of partial differential equations rigor-
ously and also the first who pointed out some of their applications. By a nonlocal
symmetry of ut = F one means (see Section 3 for a rigorous definition) a func-
tion G which depends on x, t, u, a finite number of x-derivatives of u and for

example integrals of u, such that for any solution u(x, t) of ut = F , the function
u(x, t) + τG(u(x, t)) is also a solution to first order in τ . That these symme-
tries are both important and natural to consider has been increasingly acknowl-
edged since Vinogradov and Krasil’shchik’s paper [55]. A few highlights are the
following:

In 1982, Kaptsov [29] considered an evolution equation ut = F and solved
the “recursion operator equation” Rt = [F∗, R], in which F∗ is the formal lin-
earization of F (see [38, 39] and Section 3 below) finding that his solution R
induced sequences of nonlocal symmetries of ut = F . In the late 1980’s, Bluman,
Kumei and Reid [7] and Bluman and Kumei [6] used nonlocal symmetries to find
linearizing transformations for nonlinear equations. In 1991 V. E. Adler [2] in-
troduced Lie algebras of nonlocal symmetries associated to equations integrable
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by the scattering/inverse scattering method, generalizing the classical construc-
tion of integrable hierarchies due to M. Adler [1], Reiman and Semenov-Tyan-
Shanski [42], and others (see Faddeev and Takhtajan [18] for details and histor-
ical notes). Lastly, Galas [25], Leo et al. [35, 36], and Schiff [49] have recently
obtained nonlocal symmetries of some well-known integrable equations, found
their flows, and used them to construct special solutions for the equations at
hand.

An interesting characteristic of the papers by Galas, Leo et al., and Schiff
[25, 35, 36, 49] is that the nonlocalities appearing in their symmetries are more
involved than simply integrals of smooth functions of x, t, u and a finite number
of derivatives of u. In their examples, the nonlocal symmetries depend on pseudo-

potentials of the equations they consider. These symmetries were anticipated and
studied by Krasil’shchik and Vinogradov in the 1980’s using their theory of cov-
erings of differential equations (see [33, 34] and references therein) and several
examples were given by Kiso [31] about that time. However, it appears that it is
only in [25, 35, 36, 49] that they have been used to find explicit solutions. It is
then of interest to further the work carried out in these papers, and to show novel
applications of the theory. This is what the geometric constructs of this article
allow one to do:

The notion of a scalar equation describing pseudo-spherical surfaces (or “of
pseudo-spherical type”) is introduced in Section 2. Equations in this class are
of interest because they share with the classical sine-Gordon equation the prop-
erty that their (suitably generic) solutions determine two-dimensional surfaces
equipped with Riemannian metrics of constant Gaussian curvature −1, and also
because equations possessing this structure are naturally the integrability condi-
tion of sl(2,R)-valued linear problems. Section 3 is on (local/nonlocal) symmetries
and pseudo-potentials for equations describing pseudo-spherical surfaces. A short
introduction to the theory of coverings is also included there. From the point of
view of this paper, the pseudo-potentials of the scalar equations considered in
[25, 36, 49] determine geodesics of the pseudo-spherical structures described by
the relevant equations, and the nonlocal symmetries G for them are obtained by
studying infinitesimal deformations u 7→ u+ τu of the dependent variable u which
preserve geodesics to first order in the deformation parameter τ .

Section 4 contains the application of the work carried out in Sections 2 and
3 to the Korteweg–de Vries [32], Camassa–Holm [11] and Hunter–Saxton [26,
27] equations. Their zero curvature representations, quadratic pseudo-potentials,
“Miura transformations” and modified versions are introduced (and consequently,
a method for finding sequences of conservation laws is pointed out), and then nonlo-
cal symmetries of “pseudo-potential type” are constructed for them. Furthermore,
it is shown that these symmetries can be integrated, and that consideration of their
flows yields smooth local existence theorems for solutions. Examples of solutions
are also included here.

Special cases of some of the results appearing in this paper have been an-
nounced in [46, 47].
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2. Equations of pseudo-spherical type

Equations of pseudo-spherical type were introduced by S. S. Chern and K. Tenen-
blat in 1986 [13], motivated by the fact that generic solutions of equations in-
tegrable by the Ablowitz, Kaup, Newell and Segur (AKNS) inverse scattering
scheme determine—whenever their associated linear problems are real—pseudo-
spherical surfaces, that is, Riemannian surfaces of constant Gaussian curvature
equal to −1 [48].

Henceforth, partial derivatives ∂p+qu/∂xp∂tq are denoted by uxptq .

Definition 2.1. A scalar differential equation Ξ(x, t, u, ux, . . . , uxntm) = 0 in two
independent variables x, t is of pseudo-spherical type (or, describes pseudo-spherical

surfaces) if there exist one-forms ωi 6= 0, i = 1, 2, 3,

ωi = fi1(x, t, u, . . . , uxrtp)dx+ fi2(x, t, u, . . . , uxstq )dt, (2.1)

whose coefficients fij are differential functions, such that the one-forms ωi =
ωi(u(x, t)) satisfy the structure equations

dω1 = ω3 ∧ ω2, dω2 = ω1 ∧ ω3, dω3 = ω1 ∧ ω2, (2.2)

whenever u = u(x, t) is a solution to Ξ = 0.

Recall that a differential function is a smooth function depending on the inde-
pendent variables x, t, the dependent variable u, and a finite number of derivatives
of u (see [39]), that is, a smooth function on some finite order jet bundle of the
(trivial) fiber bundle (x, t, u) 7→ (x, t). The case when all the functions fij depend
only on x and t appears to be irrelevant for differential equations and therefore it
is excluded from the considerations below.

Example. The equation

−ft +
∂

∂x
[gx + fg] = 0, (2.3)

in which f and g are arbitrary differential functions, is of pseudo-spherical type
with associated one-forms

ω1 = fdx+ (gx + fg)dt, ω2 = λdx+ λgdt, ω3 = −λdx− λgdt.

The well-known Burgers equation ut = uxx + uux is a special case of (2.3) with
f = g = (1/2)u.

The expression “PSS equation” is sometimes used in this paper instead of
“equation of pseudo-spherical type”. The geometric interpretation of Definition
2.1 is based on the following genericity notions ([45] and references therein):

Definition 2.2. Let Ξ = 0 be a PSS equation with associated one-forms ωi, i =
1, 2, 3. A solution u(x, t) of Ξ = 0 is I-generic if (ω3 ∧ ω2)(u(x, t)) 6= 0, II-generic

if (ω1 ∧ ω3)(u(x, t)) 6= 0, and III-generic if (ω1 ∧ ω2)(u(x, t)) 6= 0.

Proposition 2.3. Let Ξ = 0 be a PSS equation with associated one-forms ωi, let

u(x, t) be a local solution to Ξ = 0 and set ωi = ωi(u(x, t)).
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(a) If u(x, t) is a I-generic solution, ω2 and ω3 determine a Lorentzian metric of

Gaussian curvature K = −1 on the domain of u(x, t), with metric connection

one-form ω1.

(b) If u(x, t) is a II-generic solution, ω1 and −ω3 determine a Lorentzian met-

ric of Gaussian curvature K = −1 on the domain of u(x, t), with metric

connection one-form ω2.

(c) If u(x, t) is a III-generic solution, ω1 and ω2 determine a Riemannian met-

ric of Gaussian curvature K = −1 on the domain of u(x, t), with metric

connection one-form ω3.

Proposition 2.3 follows from the structure equations of a (pseudo) Riemann-
ian manifold, which appear, for example, in [52]. The notion of integrability intro-
duced below is implicit in [13].

Definition 2.4. An equation is geometrically integrable if it describes a nontrivial
one-parameter family of pseudo-spherical surfaces.

Proposition 2.5. A geometrically integrable equation Ξ = 0 with associated one-

forms ωi, i = 1, 2, 3, is the integrability condition of a one-parameter family of

sl(2,R)-valued linear problems.

Proof. The linear problem dψ = Ωψ, in which

Ω = Xdx+ Tdt =
1

2

(

ω2 ω1 − ω3

ω1 + ω3 −ω2

)

, (2.4)

is integrable whenever u(x, t) is a solution of Ξ = 0. �

An important idea in integrable systems [18] is that an equation Ξ = 0
which is integrable via scattering/inverse scattering is not just the integrability
condition of a linear problem ψx = Xψ, ψt = Tψ, but it is in fact equivalent to
the zero curvature equation Xt −Tx + [X,T ] = 0. For evolutionary PSS equations
ut = F (x, t, u, . . . , uxn) one formalizes this remark thus [28, 45]:

Consider the differential ideal IF generated by the two-forms

du ∧ dx+ F (x, t, u, . . . , uxn)dx ∧ dt, duxl ∧ dt− uxl+1dx ∧ dt, 1 ≤ l ≤ n− 1,

on a manifold J with coordinates x, t, u, ux, . . . , uxn .

Definition 2.6. An evolution equation ut = F (x, t, u, . . . , uxn) is strictly pseudo-

spherical if there exist one-forms ωi = fi1dx+ fi2dt, i = 1, 2, 3, whose coefficients
fij are smooth functions on J , such that the two-forms

Ω1 = dω1 − ω3 ∧ ω2, Ω2 = dω2 − ω1 ∧ ω3, Ω3 = dω3 − ω1 ∧ ω2 (2.5)

generate IF .

Local solutions of ut = F correspond to integral submanifolds of the exterior
differential system {IF , dx ∧ dt}. Thus, if ut = F is strictly pseudo-spherical, it is
necessary and sufficient for the structure equations Ωα = 0 to hold. The following
lemma [44, 45] is used in Section 3 below.
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Lemma 2.7. Necessary and sufficient conditions for an nth order equation ut = F
to be strictly pseudo-spherical are the conjunction of:

(a) The functions fij satisfy fi1,uxa = 0, a ≥ 1; fi2,uxn = 0, i = 1, 2, 3; and

f2
11,u + f2

21,u + f2
31,u 6= 0. (2.6)

(b) F and fij satisfy the identities

−fi1,uF +
n−1
∑

p=0

uxp+1fi2,uxp + fj1fk2 − fk1fj2 + fi2,x − fi1,t = 0 (2.7)

in which (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 2, 1)}.

Remark 2.8. In the interesting papers [21, 22], A. Fokas, I. Gelfand and their
coworkers consider an extrinsic approach in which (systems of) nonlinear par-
tial differential equations admitting zero curvature representations determine im-
mersed surfaces in Lie groups and Lie algebras. This is different from the point of
view taken here, in which the pseudo-spherical surfaces determined by (generic)
solutions to equations of pseudo-spherical type are defined intrinsically by the
one-forms ωi, i = 1, 2, 3.

3. Symmetries and pseudo-potentials for PSS equations

3.1. Pseudo-potentials

The following geometrical result appears in [13, 52]:

Proposition 3.1. Given an orthogonal coframe {ω1, ω2} and corresponding metric

connection one-form ω3 on a Riemannian surface M with metric ω1⊗ω1+ω2⊗ω2,

there exists a new orthogonal coframe {θ1, θ2} and new metric connection one-form

θ3 on M satisfying

dθ1 = 0, dθ2 = θ2 ∧ θ1, θ3 + θ2 = 0, (3.1)

if and only if the surface M is pseudo-spherical.

Proof. Assume that the local orthonormal frames dual to the coframes {ω1, ω2}
and {θ1, θ2} have the same orientation. The one-forms ωα and θα are then con-
nected by means of

θ1 = ω1 cos ρ+ ω2 sin ρ, θ2 = −ω1 sin ρ+ ω2 cos ρ, θ3 = ω3 + dρ. (3.2)

It follows that one-forms θ1, θ2, θ3 satisfying (3.1) exist if and only if the Pfaffian
system

ω3 + dρ− ω1 sin ρ+ ω2 cos ρ = 0 (3.3)

on the space of coordinates (x, t, ρ) is completely integrable for ρ(x, t), and it is
easy to see that this happens if and only if M is pseudo-spherical. �
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Equations (3.1) and (3.3) determine geodesic coordinates on M [13, 52]. If
an equation Ξ = 0 describes pseudo-spherical surfaces with associated one-forms
ωi = fi1dx+ fi2dt, equations (3.1) and (3.3) imply that the Pfaffian system

ω3(u(x, t)) + dρ− ω1(u(x, t)) sinρ+ ω2(u(x, t)) cosρ = 0 (3.4)

is completely integrable for ρ(x, t) whenever u(x, t) is a local solution of Ξ = 0.
Moreover, equations (3.1) and (3.2) imply that for each solution u(x, t) and cor-
responding solution ρ(x, t) of (3.4), the one-form

θ1(u(x, t)) = ω1(u(x, t)) cosρ+ ω2(u(x, t)) sinρ (3.5)

is closed. Since one-forms which are closed on solutions of Ξ = 0 determine conser-
vation laws [33, 34, 39] it follows that if the functions fij (and therefore ρ and θ1)
can be expanded as power series in a parameter λ, the PSS equation Ξ = 0 will
possess, in principle, an infinite number of conservation laws, which may well be
nonlocal. The reader is referred to [13, 43, 44, 46, 47, 52] for further discussions.

Lemma 3.2. Let Ξ = 0 be a PSS equation with associated one-forms ωi. Under the

changes of variables Γ = tan(ρ/2) and Γ̂ = cot(ρ/2), the Pfaffian system (3.4) and

the one-form (3.5) become, respectively,

−2dΓ = (ω3 + ω2) − 2Γω1 + Γ2(ω3 − ω2), (3.6)

Θ = ω1 − Γ(ω3 − ω2) (up to an exact differential form), (3.7)

and

2dΓ̂ = (ω3 − ω2) − 2Γ̂ω1 + Γ̂2(ω3 + ω2), (3.8)

Θ̂ = −ω1 + Γ̂(ω3 + ω2) (up to an exact differential form), (3.9)

where ωi = ωi(u(x, t)), i = 1, 2, 3.

Pseudo-potentials are a generalization of conservation laws:

Definition 3.3. A real-valued function Γ is a pseudo-potential of a differential equa-
tion Ξ(x, t, u, . . . , uxmtn) = 0 if there exist smooth functions f, g depending on Γ,
x, t, u, and a finite number of derivatives of u, such that the one-form

ΩΓ = dΓ − (fdx+ gdt)

satisfies
dΩΓ = 0 mod ΩΓ

whenever u(x, t) is a solution to Ξ = 0.

One says that the one-form ΩΓ is associated to the pseudo-potential Γ. Note
that if the functions f and g appearing in the definition do not depend on Γ, this
function is a potential for the bona fide conservation law fdx+gdt of the equation
Ξ = 0.

Pseudo-potentials were introduced by Wahlquist and Eastbrook [56]. They
can be understood geometrically in the framework of covering theory (see [33, 34]
and references therein). Quadratic pseudo-potentials, that is, pseudo-potentials
Γ such that the functions f and g appearing in the associated one-form ΩΓ are
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quadratic polynomials in Γ, possess a very appealing geometrical interpretation
within the framework of PSS equations.

Proposition 3.4. A differential equation Ξ = 0 is of pseudo-spherical type if and

only if it admits a quadratic pseudo-potential.

Proof. Equations (3.6) and (3.8) say that Γ and Γ̂ are quadratic pseudo-potentials
for the PSS equation Ξ = 0. On the other hand, if Ξ = 0 admits a pseudo-potential
Γ with associated one-form ΩΓ = dΓ− (fdx+ gdt), in which f = a+ bΓ + cΓ2 and
g = a′ + b′Γ + c′Γ2, then the system

Γx = a+ bΓ + cΓ2, Γt = a′ + b′Γ + c′Γ2 (3.10)

is completely integrable on solutions of Ξ = 0, and therefore the equations

at + ba′ = a′x + b′a, bt + 2ca′ = b′x + 2c′a, ct + cb′ = c′x + c′b

are satisfied on solutions of Ξ = 0. It follows that Ξ = 0 is a PSS equation with
associated one-forms ωi, i = 1, 2, 3, given by

ω1 = bdx+b′dt, ω2 = (−a+c)dx+(−a′ +c′)dt, ω3 = −(a+c)dx−(a′ +c′)dt.
(3.11)

�

The quadratic pseudo-potential (3.6) induced by the one-forms (3.11) is, of
course, (3.10), and therefore if a differential equation Ξ = 0 admits a quadratic
pseudo-potential Γ, the function Γ determines the geodesics of the pseudo-spherical
structures described by Ξ = 0.

3.2. Symmetries

As stated in Section 1, a differential function G is a generalized symmetry of
ut = F if and only if u(x, t) + τG(u(x, t)) is—to first order in τ—a solution of
ut = F whenever u(x, t) is a solution of ut = F . In other words, G is a generalized
symmetry of ut = F if and only if the equation DtG = F∗G, in which F∗ denotes
the formal linearization of F ,

F∗ =

k
∑

i=0

∂F

∂uxi

Di
x, (3.12)

and Dx, Dt are the total derivative operators with respect to x and t respectively
[38, 39], holds identically once all the derivatives with respect to t appearing in it
have been replaced by means of ut = F . This definition extends straightforwardly
to (systems of) equations not necessarily of evolutionary type (see [39, 34, 54]).

Now let ut = F be an nth order strictly pseudo-spherical evolution equation
with associated one-forms ωi. Let u(x, t) be a local solution of ut = F , and set G =
G(u(x, t)), where G is an arbitrary differential function. Expand ωi(u(x, t) + τG)
about τ = 0, thereby obtaining an infinitesimal deformation ωi+τΛi, Λi = gi1dx+
gi2dt, of the one-forms ωi = ωi(u(x, t)). Lemma 1 implies that gi1 = fi1,u(u(x, t))G

and gi2 =
∑n−1

p=0 fi2,uxp (u(x, t))(∂pG/∂xp), i = 1, 2, 3. One then has [44]:
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Theorem 3.5. Suppose that ut = F (x, t, u, . . . , uxn) is strictly pseudo-spherical

with associated one-forms ωi = fi1dx+fi2dt, i = 1, 2, 3, and let G be a differential

function. The deformed one-forms ωi + τΛi satisfy the structure equations of a

pseudo-spherical surface up to terms of order τ2 if and only if G is a generalized

symmetry of ut = F .

Thus, generalized symmetries of strictly pseudo-spherical equations ut = F
are identified with infinitesimal deformations of the pseudo-spherical structures
determined by ut = F which preserve Gaussian curvature to first order in the
deformation parameter. Theorem 3.5 has been used in [44, 45] to show existence
of (generalized, nonlocal) symmetries of strictly PSS equations.

The symmetry concept will now be extended to encompass nonlocal data
following [33, 34, 54]. In order to do this, one needs some notions from the formal
geometry approach to differential equations [33, 34, 39, 54] (a short summary of
this theory also appears in [43]) which are now recalled:

Fix E to be a (trivial) bundle given locally by (x, t, u) 7→ (x, t), and let J∞E
be the corresponding infinite jet bundle of E. Then:

(a) A scalar differential equation Ξ = 0 in two independent variables x, t is
identified with a subbundle S∞ of J∞E called the equation manifold of Ξ = 0.

(b) The fiber bundles S∞ and J∞E come equipped with completely integrable
distributions—the Cartan distributions of S∞ and J∞E—denoted by C(S∞)
and C respectively. They satisfy the condition C(S∞)θ = TθS

∞ ∩ Cθ for all
θ ∈ S∞.

(c) The Cartan distributions C and C(S∞) are (locally) generated by the vector
fields Dx and Dt. It is understood that in the case of S∞ the symbols Dx, Dt

stand for the pullbacks ι∗Dx, ι
∗Dt, in which ι : S∞ → J∞E is the inclusion

map.

Definition 3.6. Let Ξ = 0 be a differential equation with equation manifold S∞,
and let π : S → S∞ be a fiber bundle over S∞. The bundle π determines a covering

structure (or, S is a covering of S∞) if and only if

(a) There exists a completely integrable distribution C on the bundle π∞
M ◦ π :

S →M .
(b) The distribution C agrees with the Cartan distribution C(S∞) on S∞, that

is, for any vector field X on M , π∗(X) = pr∞(X), where the vector field X
on S is the horizontal lift of X induced by C, and pr∞(X) is the horizontal
lift of the vector field X with respect to the Cartan distribution of S∞.

Fiber bundles over equation manifolds S∞ are rigorously defined in [33, 34].
In this paper only the following local description will be needed: Consider local
coordinates (x, t, u, . . . , w1, . . . , wN ), 1 ≤ N ≤ ∞, on a covering π : S → S∞

of S∞ such that (x, t, u, . . . ) are canonical coordinates on S∞ and (w1, . . . , wN )
are fiber coordinates on S, and let Dx and Dt be the total derivative operators
on S∞. Definition 3.6 implies that the covering S is locally determined by the data
(S,Dx, Dt, π), in which Dx, Dt are differential operators on S satisfying:
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(a) Dx, Dt are of the form

Dx = Dx +X1 and Dt = Dt +X2, (3.13)

where Xi, i = 1, 2, are vertical vector fields on S, Xi =
∑N

β=1X
β
i∂/∂w

β .

(b) Dx and Dt satisfy the integrability condition

[Dx, Dt] := Dx(X2) −Dt(X1) + [X1, X2] = 0. (3.14)

The operators Dx and Dt are the total derivative operators on S. As in
the case of total derivatives on equation manifolds, Dx and Dt span the horizontal
distribution of S. The fiber coordinates wi, 1 ≤ i ≤ N , are called nonlocal variables

with respect to S∞, and N is the dimension of the covering π : S → S∞.

Example. Probably the most elementary example of a covering is the following
[34]: Assume that the one-form κ = fdx + gdt, in which f and g are differ-
ential functions, satisfies Dtf = Dxg on solutions of ut = F . Then κ deter-
mines a covering (S,Dx, Dt, π) of the equation ut = F : S is locally defined by
S = {(x, t, u, . . . , uxm , . . . , w)}, where (x, t, u, ux, . . . ) are coordinates on the equa-
tion manifold S∞ of ut = F , and

Dx = Dx + f
∂

∂w
, Dt = Dt + g

∂

∂w
. (3.15)

It is trivial to check that Dtf = Dxg implies that the integrability condition (3.14)
for Dx and Dt holds.

Example. Let S∞ be the equation manifold of a “trivial” scalar equation in two
independent variables, that is, S∞ = J∞E. Set uk1,k2

= Dk1
x Dk2

t u, for k1, k2 ∈ Z,

and u0,0 = u. Introduce the manifold S locally by S = {(x, t, , u, . . . , uk1,k2
, . . . )}

and define the projection map π : S → S∞ in the obvious way. For any pair
(k1, k2) ∈ Z

2, let πk1,k2
be the function

πk1,k2
=







x−k1t−k2

(−k1)!(−k2)!
, k1, k2 ≤ 0,

0, otherwise.

The ghost vector fields γk1,k2
, where (k1, k2) ∈ Z

2, are vector fields on S defined
by the rules

γk1,k2
(um,n) = πk1+m,k2+n, γk1,k2

(xitj) = 0.

Ghost vector fields have been introduced by Olver, Sanders, and Wang [41] and
further considered by Olver [40], as a way to extend the Lie bracket of evolutionary
vector fields to the nonlocal domain. Now set X1 =

∑

γk,0 and X2 =
∑

γ0,k. Then

(S,Dx, Dt, π) with Dx = Dx + X1 and Dt = Dt + X2 is an infinite-dimensional
covering of S∞. That the integrability condition (3.14) holds follows from the fact
that ghost vector fields commute with each other (see [40, 41]).

Nonlocal symmetries are defined thus:
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Definition 3.7. Let (S,Dx, Dt, π) be an N -dimensional covering of the evolution
equation ut = F . Assume that S is equipped with coordinates (x, t, u, ux, . . . , w

β),
1 ≤ β ≤ N , and that Dx and Dt are given by

Dx = Dx +
N

∑

β=1

Xβ
1

∂

∂wβ
and Dt = Dt +

N
∑

β=1

Xβ
2

∂

∂wβ
. (3.16)

A nonlocal symmetry of type π of ut = F is a vector field Dτ of the form

Dτ =
∞
∑

i=0

Di
x(G)

∂

∂uxi

+
∑

β

Iβ
∂

∂wβ
, (3.17)

in which G and Iβ , 1 ≤ β ≤ N , are smooth functions on S such that

DtG =
n

∑

i=0

∂F

∂uxi

Di
x(G), Dx(Iβ) = Dτ (Xβ

1 ), Dt(Iβ) = Dτ (Xβ
2 ). (3.18)

More generally, if Ξ = 0 is a scalar differential equation in two independent
variables x, t, not necessarily of evolutionary type, a nonlocal symmetry of type π
of Ξ = 0 is a vector field

Dτ =
∑

Di
xD

j
t (G)

∂

∂uxitj

+
∑

β

Iβ
∂

∂wβ
, (3.19)

where uxitj denote intrinsic coordinates on the equation manifold of Ξ = 0, such
that

Ξ∗(G) = 0, Dx(Iβ) = Dτ (Xβ
1 ), Dt(Iβ) = Dτ (Xβ

2 ), (3.20)

where Ξ∗ is the lift of the formal linearization of Ξ to the covering π,

Ξ∗ =
∑ ∂Ξ

∂uxitj

Di
xD

j
t . (3.21)

This definition can be adapted straightforwardly to systems of equations
[33, 34], and this extension will be used in what follows without further ado.

Note that the first equations of (3.18) and (3.20) depend only on G and the
equation at hand. The vector field G∂/∂u, or, in the case of an evolution equation,

∞
∑

i=0

Di
x(G)

∂

∂uxi

, (3.22)

can be interpreted as a vector field on S along S∞. This vector field, or simply G, is
called the shadow of the nonlocal symmetry Dτ . In general, vector fields on S along
S∞ which satisfy the first equation of (3.18) are called π-shadows. An important
question is whether one can extend π-shadows to bona fide nonlocal symmetries.
General theorems along these lines have been proven by Nina Khor’kova in 1988
(see [33, 34]) and by Kiso [31]. An explicit example of such an extension appears
in Subsection 4.3 below.

Now one would like to characterize nonlocal symmetries of strictly pseudo-
spherical evolution equations. Let ut = F be an nth order strictly pseudo-spherical
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equation with associated one-forms ωi, i = 1, 2, 3, and equation manifold S∞,
and consider a covering (S,Dx, Dt, π) of S∞. One first extends the “horizontal”
exterior derivative operator from S∞ to S thus [34]:

If ω =
∑

ai1...ik
dxi1 ∧ · · · ∧ dxik

is a horizontal differential form on S, in
which x1 = x, x2 = t, then

dHω =
∑

(Dxai1...ik
dx+Dtai1...ik

dt) ∧ dxi1 ∧ · · · ∧ dxik
.

Next, let G be a function on S. In analogy with the generalized symmetry case,
one studies the one-forms ωi + τΛi on S, in which Λi = gi1dx+ gi2dt and

gi1 = fi1,uG, gi2 =
n−1
∑

k=0

fi2,u
xk
Dk

xG, i = 1, 2, 3. (3.23)

Theorem 3.8. Let ut = F (x, t, u, . . . , uxn) be strictly pseudo-spherical with associ-

ated one-forms ωi = fi1dx + fi2dt, i = 1, 2, 3. Let G be a smooth function on a

covering (S,Dx, Dt, π) of the equation manifold S∞, and consider the deformed

one-forms ωα + τΛα defined above. They satisfy the structure equations

dHσ
1 = σ3 ∧ σ2, dHσ

2 = σ1 ∧ σ3, dHσ
3 = σ1 ∧ σ2, (3.24)

up to terms of order τ2 if and only if G is a π-shadow of the equation ut = F .

Proof. The one-forms ωα + τΛα satisfy (3.24) up to terms of order τ2 if and only
if

−Dtg11 +Dxg12 = f31g22 − f32g21 + f22g31 − f21g32, (3.25)

−Dtg21 +Dxg22 = f11g32 − f12g31 + f32g11 − f31g12, (3.26)

−Dtg31 +Dxg32 = f11g22 − f12g21 + f22g11 − f21g12. (3.27)

Since ut = F is strictly pseudo-spherical, equations (2.7) of Lemma 2.7 are
identities. Take Lie derivatives with respect to the vector field Lτ defined in (3.22),
and substitute into (3.25)–(3.27). One finds that these equations are satisfied if
and only if

−fα1,uDt(G) + fα1,u

n
∑

i=0

∂F

∂uxi

Di
x(G) = 0, i = 1, 2, 3. (3.28)

Since the constraint (2.6) holds, one concludes that equations (3.25)–(3.27) are
satisfied if and only if G is a π-shadow of the equation ut = F . �

Theorem 3.8 appeared for the first time in [45]; it is included here for ease of
reference.
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4. Shallow water equations

In this section the equations due to Korteweg and de Vries [32],

ut = uxxx + 6uux, (4.1)

Camassa and Holm [11],

m = uxx − u, mt = −mxu− 2mux, (4.2)

and Hunter and Saxton [26],

m = uxx, mt = −mxu− 2mux, (4.3)

are studied by taking advantage of the fact that they are members of a two-
parameter family of equations of pseudo-spherical type.

Of course, the KdV equation has been subject of an impressive body of
research since [32], and in fact, Peter Olver has pointed out that (4.1) was derived
already in the 1870’s by J. Boussinesq, who also found its first three conservation
laws, and its one-soliton and periodic traveling wave solutions (see [8, 9]).

Cocerning the integrability properties of the important Camassa–Holm [11]
and Hunter–Saxton equations [26] the following (at least) is known: their anal-
ysis by scattering/inverse scattering has been carried out (Beals, Sattinger and
Szmigielski [4, 5]; Constantin and McKean [16]), their bi-hamiltonian character
has been discussed (in the CH case this was first observed by B. Fuchssteiner and
A. S. Fokas; see [24, 23, 20] and references therein. The bi-hamiltonian formulation
of CH appears also in [11] together with a discussion on its Lax pair formulation;
the bi-hamiltonian structure of the HS equation has been discussed by J. K. Hunter
and Y. X. Zheng [27]), and moreover, it has been proven that the Korteweg–de
Vries, Camassa–Holm and Hunter–Saxton equations exhaust, in a precise sense,
the bi-hamiltonian equations which can be modeled as geodesic flows on (homo-
geneous spaces related to) the Virasoro group (Khesin and Misio lek [30]).

4.1. Pseudo-spherical structures

That the KdV equation describes pseudo-spherical surfaces was observed by Sasaki
[48] and also by Chern and Tenenblat, who obtained this result from some general
classification theorems proven by them in [13].

Example. The KdV equation ut = uxxx +6uux describes pseudo-spherical surfaces
[48, 13] with associated one-forms ωi = fi1dx+ fi2dt, in which

ω1 = (1 − u)dx+ (−uxx + λux − λ2u− 2u2 + λ2 + 2u)dt, (4.4)

ω2 = λdx+ (λ3 + 2λu− 2ux)dt, (4.5)

ω3 = (−1 − u)dx+ (−uxx + λux − λ2u− 2u2 − λ2 − 2u)dt, (4.6)

and λ is an arbitrary parameter.

The analysis carried out in Section 3 allows one to obtain the standard qua-
dratic pseudo-potential for KdV found by Wahlquist and Eastbrook in [56]:
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Example. Consider the KdV equation ut = uxxx + 6uux, and the associated one-
forms ωi given by (4.4)–(4.6). Rotate the coframe {ω1, ω2} determined by (4.4)–
(4.6) through π/2, and change Γ to −Γ. One can then write the Pfaffian system
(3.6) as

(a) Γx = −u− λΓ − Γ2, (b) Γt = (Γxx − 3Γ2λ− 2Γ3)x.

Since the KdV equation is strictly pseudo-spherical, u(x, t) as determined by (a)
solves KdV if Γ(x, t) solves (b). One has thus recovered the Miura transformation
and the modified KdV equation from geometrical considerations.

Henceforth ǫ will denote a real parameter. Theorem 4.1 below first appeared
in [47]. It is reproduced here since its proof will be used momentarily.

Theorem 4.1. The Camassa–Holm and Hunter–Saxton equations, (4.2) and (4.3)
respectively, describe pseudo-spherical surfaces.

Proof. Consider one-forms ωi, i = 1, 2, 3, given by

ω1 = (m− β + ǫα−2(β − 1))dx

+ (−uxβα
−1 − βα−2 − um− 1 + uβ + uxα

−1 + α−2)dt, (4.7)

ω2 = αdx+ (−βα−1 − αu+ α−1 + ux)dt, (4.8)

ω3 = (m+ 1)dx+

(

ǫu
β − 1

α2
− um+

1

α2
+
ux

α
− u− β

α2
− uxβ

α

)

dt, (4.9)

where m = uxx − ǫu and the parameters α and β are constrained by the relation

α2 + β2 − 1 = ǫ

[

β − 1

α

]2

. (4.10)

It is not hard to check that the structure equations (2.2) are satisfied whenever
the equation

−2uxuxx + 3uxǫu− uuxxx + ǫut − uxxt = 0 (4.11)

holds, and equation (4.11) becomes the Camassa–Holm equation (4.2) if ǫ = 1,
and the Hunter–Saxton equation (4.3) if ǫ = 0. �

In order to include the KdV equation into the picture, one applies the Galilei
transformation T : (X,T, U) 7→ (x, t, u) given by

x =
X

ν
+
T

ν3
− T√

ν
, (4.12)

t =
T√
ν
, (4.13)

u =
U√
ν

+
1

3

1

ν5/2
− 1

3
, (4.14)

to equation (4.11) and to the one-forms (4.7)–(4.9):



Vol. 12 (2006) Pseudo-potentials, nonlocal symmetries and integrability 255

Corollary 4.2. The nonlinear equation

−2ν2UXUXX + 3ǫUXU − ν2UXXXU + 2
3 (1 − ν5/2)UXXX + ǫUT − ν2UXXT = 0

(4.15)

describes pseudo-spherical surfaces with associated one-forms T
∗ωi, in which ωi,

i = 1, 2, 3, are given by (4.7)–(4.9).

Equation (4.15) does contain the KdV, CH, and HS equations as special
cases, but the one-forms T

∗ωi are singular in the KdV limit ν → 0. For example,
T

∗ω2 is

T
∗ω2 =

α

ν
dX +

(

− β√
να

− αU

ν
+

2

3

α

ν3
− 2

3

α√
ν

+
1√
να

+ UX

)

dT.

This difficulty is dealt with in the following subsection.

Remark 4.3. Equation (4.15) with ǫ = 1 and 1 − ν5/2 = γ has been derived as
a shallow water equation by Dullin, Gottwald, and Holm [17] via an asymptotic
expansion of the Euler equations. The well-posedness of the Cauchy problem for the
Dullin–Gottwald–Holm equation and its analysis via scattering/inverse scattering
have been discussed by L. Tian, G. Gui and Y. Liu [53].

Remark 4.4. Equation (4.15) can be interpreted as a geodesic equation on the Vi-
rasoro group. In fact, (4.15) is in the class of equations studied by Khesin and Mi-
sio lek in [30]: it is their equation (3.9) with β = ν2, α = ǫ, and b = (2/3)(1 − ν5/2).

Remark 4.5. Equation (4.15) is bi-hamiltonian. Indeed (this fact was pointed out
by a referee) it is equation (4) in A. Fokas’ paper [20] if one eliminates the term ux

in the latter equation via an appropriate translation u 7→ u+k, and then replaces t
by T/ǫ, chooses α = 3ǫ, ν = −N2/ǫ, and β = 2/3− (2/3)N5/2, and finally changes
N to ν.

Now one dispenses with the constraint (4.10) by using a parametrization of
the family of curves α2 + β2 − 1 = ǫ[(β − 1)/α]2. For example one can take

α =
√

ǫ+ 1 − s2, β =
ǫ

s− 1
− s. (4.16)

After rotating by π/2 and using (4.16), the one-forms T∗ωi associated with
equation (4.15) become:

T
∗ω1 =

√
ǫ+ 1 − s2

ν
dX

+

(

√

ǫ+ 1 − s2
(

2

3ν3
− 2s+ 1

3
√
ν(s− 1)

− U

ν

)

+ UX

)

dT, (4.17)
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T
∗ω2 = −1

3

−3ǫUν2 − ǫ+ ǫν5/2 + 3sν5/2 + 3ν4UXX

ν7/2
dX

+
1

9

1

ν11/2

(

6ν4(ν5/2 − 1)UXX − 9ǫν4U2 + 9ν6UXXU

− 9UX

√
ǫ+ 1− s2

1− s
ν11/2 + 3ν2

[

ǫ+ ν5/2

(

3s+ ǫ
s+ 2

1− s

)]

U

− ν5/2

(

6s− ǫ
4s− 1

1− s

)

+ 2ǫ− 1 + 2s

1− s
(3s+ ǫ)ν5

)

dT, (4.18)

T
∗ω3 =

(

UXX

√
ν− ǫU

ν3/2
− ǫ

3ν7/2
+

ǫ

3ν
+

1

ν

)

dX +
1

s− 1

[√
ν(1− s)UXXU

+
1

3

[

(1− s)

(

ǫ

ν7/2
+

3

ν

)

+ (s+ 2)
ǫ

ν

]

U − ǫ

ν3/2
(1− s)U2 −UX

√

ǫ+ 1− s2

+
2

3
(1− s)

(

ǫ

3ν11/2
− 1

ν3

)

+
ǫ

9ν3
(4s− 1)− 1

3
√
ν

(

ǫ

3
+ 1

)

(1 + 2s)

+
2

3

(

ν− 1

ν3/2

)

(1− s)UXX

]

dT. (4.19)

Corollary 4.6. The nonlinear equation (4.15) is geometrically integrable.

4.2. Pseudo-potentials

The one-forms (4.17)–(4.19) can now be used to compute the quadratic pseudo-
potential (3.8) associated with Equation (4.15). The resulting formulae are very
involved, but they can be simplified as follows. After writing down (3.8) with the
help of the one-forms T∗ωi, one applies the transformation

Γ̂ 7→ γ̂
√
ν +

√
ǫ+ 1 − s2

1 − s
,

and changes the parameter s by setting

s− 1 =
√
ν/λ.

Theorem 4.7. Equation (4.15) admits a quadratic pseudo-potential γ̂(X,T ) deter-

mined by the compatible system

∂

∂X
γ̂ = −1

2

γ̂2

λ
− ǫU

ν2
+

1

2

λǫ

ν2
+

1

3

ǫ

ν3/2
+ UXX − 1

3

ǫ

ν4
(4.20)

and

∂

∂T
γ̂ =

(

1

2

U

λ
− 1

3

1

ν2λ
+

1

2
+

1

3

√
ν

λ

)

γ̂2 − UX γ̂ − 2

3
UXX

√
ν

− 2

9

ǫ

ν6
− UXXU +

ǫU2

ν2
− 2

3

λǫ

ν3/2
+

2

3

λǫ

ν4
+

1

2

λǫU

ν2
− 1

2

λ2ǫ

ν2

− 2

9

ǫ

ν
− 1

3

ǫU

ν4
+

4

9

ǫ

ν7/2
+

1

3

ǫU

ν3/2
+

2

3

UXX

ν2
, (4.21)

in which λ 6= 0 is a real parameter.
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Using the pseudo-potential γ̂ one can simplify the linear problem associated
with equation (4.15) which follows from (2.4) and the one-forms T∗ωi. Applying
Propositions 2.5 and 3.4 one finds the following result:

Proposition 4.8. The family of equations (4.15) is the integrability condition of

the one-parameter family of linear problems dψ = (Xdx + Tdt)ψ, in which the

matrices X and T are given by

X =







0 −1

2
λ−1

1

3

ǫ

ν4
− 1

2

λǫ

ν2
− 1

3

ǫ

ν3/2
− UXX +

ǫU

ν2
0






(4.22)

and

T =



























1

2
UX

U

2λ
− 1

3ν2λ
+

1

2
+

√
ν

3λ

2

3
UXX

√
ν − 1

2

λǫU

ν2
− 4

9

ǫ

ν7/2
+

2

9

ǫ

ν
− 1

3

ǫU

ν3/2

+
2

3

λǫ

ν3/2
− 2

3

λǫ

ν4
+

2

9

ǫ

ν6

+
1

2

λ2ǫ

ν2
− 2

3

UXX

ν2
+ UXXU − ǫU2

ν2
+

1

3

ǫU

ν4
−1

2
UX



























.

(4.23)

The linear problem dψ = (Xdx+Tdt)ψ with X,T given by (4.22) and (4.23)
can be used to find a linear problem associated to (4.15) which is not singular at
the KdV limit ν → 0: Applying the gauge transformation

XA = AXA−1 +AxA
−1, TA = ATA−1 +AtA

−1,

in which

A =

[

0 ν

−ν−1 0

]

,

and changing the parameter λ to ζ by means of

λ = 2
3ν

−2 + 2
3ζ, (4.24)

one finds that equation (4.15) is the integrability condition of the linear problem
dψ = (XAdx+ TAdt)ψ with

XA =

[

0 1
3ǫζ + 1

3

√
νǫ+ ν2UXX − ǫU

3
4 (1 + ζν2)−1 0

]

(4.25)
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and

TA =

















−1
2UX −2

3ν
5/2UXX + 1

3ǫUζ − 2
9νǫ

+1
3

√
νǫU − 4

9

√
νǫζ − 2

9ǫζ
2

+2
3UXX − ν2UXXU + ǫU2

−
3
4U + 1

2ζ + 1
2

√
ν

1 + ζν2
1
2UX

















. (4.26)

Example. If ν = 0 and ǫ = 1 the matrices XA and TA read

XA =

[

0 1
3ζ − U

3
4 0

]

, TA =

[

−1
2UX

1
3Uζ − 2

9ζ
2 + 2

3UXX + U2

−3
4U − 1

2ζ
1
2UX

]

,

(4.27)
which is the usual linear problem associated to the KdV equation [48]. On the
other hand, if ν = 1, equation (4.24) implies that the matrices XA and TA become

XA =
1

2

[

0 ǫλ+ 2m
λ−1 0

]

, TA =
1

2

[

−UX −2Um+ ǫλU − ǫλ2

−1 − Uλ−1 UX

]

, (4.28)

where m = UXX − ǫU , and one recovers the associated linear problems for the CH
and HS equations derived in [47].

Corollary 4.9. (a) The nonlinear equation

−2ν2UXUXX + 3ǫUXU − ν2UXXXU + 2
3 (1 − ν5/2)UXXX + ǫUT − ν2UXXT = 0

(4.29)

describes pseudo-spherical surfaces with associated one-forms ωi = fi1dx + fi2dt
in which

f11 = 1
3ǫζ + 1

3

√
νǫ+ ν2UXX − ǫU + 3

4 (1 + ζν2)−1, (4.30)

f12 = 2
3 (1 − ν5/2)UXX + 1

3ǫ(ζ +
√
ν)U + ǫU2 − ν2UUXX

− 2
9ǫ(ζ

2 + 2
√
νζ + ν) − 1

2(1 + ζν2)
( 3
2U + ζ +

√
ν), (4.31)

f21 = 0, (4.32)

f22 = −UX , (4.33)

f31 = −1
3ǫζ − 1

3

√
νǫ− ν2UXX + ǫU + 3

4 (1 + ζν2)−1, (4.34)

f32 = −2
3 (1 − ν5/2)UXX − 1

3ǫ(ζ +
√
ν)U − ǫU2 + ν2UUXX

+ 2
9ǫ(ζ

2 + 2
√
νζ + ν) − 1

2(1 + ζν2)
( 3
2U + ζ +

√
ν), (4.35)

and ζ is an arbitrary parameter.
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(b) Equation (4.29) admits the quadratic pseudo-potential γ(X,T ) determined

by the Pfaffian system

−γX =
3

4(1 + ζν2)
γ2 − (ν2UXX − ǫU + 1

3 ǫ(ζ +
√
ν)), (4.36)

−γT =
1

2(1 + ζν2)
(−3

2U − ζ −
√
ν)γ2 + UXγ

+ (U(ν2UXX − ǫU) + 2
3 (ν5/2 − 1)UXX − 1

3ǫ(ζ +
√
ν)U

+ 2
9ǫ(ζ

2 + 2
√
νζ + ν)). (4.37)

Example. Taking ν = 0 and ǫ = 1 in (4.36) gives

−γX = 3
4γ

2 + U − 1
3ζ,

and one recovers the usual Miura transformation for the KdV equation. On the
other hand, taking ν = 1 and λ = 2

3 (1 + ζ) in (4.36) and (4.37) yields the system

UXX − ǫU = γX + γ2

2λ − ǫ
2λ, (4.38)

−γT = −1
2 (U/λ+ 1)γ2 + UXγ + (U(UXX − ǫU) − 1

2ǫUλ+ 1
2ǫλ

2). (4.39)

Substitution of (4.38) into (4.39) implies that the Camassa–Holm equation (4.2)
and the Hunter–Saxton equation (4.3) possess the parameter-dependent conserva-
tion law

γT = λ

(

UX − γ − 1

λ
Uγ

)

X

. (4.40)

As in the KdV case, one can use (4.38) and (4.40) to construct conservation laws
for the CH and HS equations [11, 19, 27, 46, 47]. Setting γ =

∑∞
n=1 γnλ

n/2 yields
the conserved densities

γ1 =
√

2
√
m,

γ2 = −1
2 ln(m)X ,

γ3 =
1

2
√

2
√
m

[

ǫ− m2
X

4m2
+ ln(m)XX

]

,

γn+1 = − 1

γ1
γn,X − 1

2γ1

n
∑

j=2

γjγn+2−j , n ≥ 3,

in which m = UXX − ǫU , while the expansion γ = ǫλ+
∑∞

n=0 γnλ
−n implies

γ0,X + ǫγ0 = m, γn,X + ǫγn = −1

2

n−1
∑

j=0

γjγn−1−j , n ≥ 1. (4.41)

In the CH case, (4.41) allows one to find the local conserved densities U , U2
X +U2,

and UU2
X + U3 appearing in [11], and a sequence of nonlocal conservation laws.

In view of the foregoing example, it is natural to postulate equation (4.38) as
the analog of the Miura transformation for the CH and HS equations, and (4.40)
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as the corresponding “modified” equation. Note that, in contradistinction to the
KdV case, the modified CH and HS equations are nonlocal equations for γ.

Remark 4.10. The question whether there exists a modified CH equation has been
asked by J. Schiff in [50]. Earlier contributions to this problem have been made
by Fokas [20], Fuchssteiner [23], Schiff [51], and Camassa and Zenchuk [12]. The
reader is referred to [46] for a discussion on the relation between these works and
the modified equation proposed here.

4.3. Nonlocal symmetries

In this subsection it is shown that one can find a nonlocal symmetry of equation
(4.29) starting from the pseudo-potential γ(X,T ) given by (4.36), (4.37). First of
all, note that substitution of (4.36) into (4.37) yields the conservation law

γT = [23 (ζν2 + 1)UX − 2
3 (ζ +

√
ν)γ − γU ]X . (4.42)

Then, in analogy with the Camassa–Holm case [46], one obtains:

Theorem 4.11. Set m = ν2UXX − ǫU , define γ by the equations (4.36) and (4.37),
and let δ be a potential for the conservation law (4.42). Then the nonlocal vector

field

V = γ exp

( 3
2δ

1 + ζν2

)

∂

∂U
(4.43)

determines a shadow of a nonlocal symmetry for the nonlinear equation (4.29).

Proof. Equation (4.42) implies that the potential δ satisfies the equations

δX = γ, δT = 2
3 (ζν2 + 1)UX − 2

3 (ζ +
√
ν)γ − Uγ, (4.44)

which are compatible on solutions of (4.29). One can define a covering S of the
equation manifold of (4.29) as follows. Locally, S is equipped with coordinates
(X,T, U, . . . , UXpT q , . . . , γ, δ) where p = 1, 2, 3, . . . and q = 0, 1, 2, . . . , and the
total derivatives DX and DT are given by

DX = DX +

( −3

4(1 + ζν2)
γ2 +m+ 1

3ǫ(ζ +
√
ν)

)

∂

∂γ
+ γ

∂

∂δ
,

DT = DT +

(

1

2(1 + ζν2)
( 3
2U + ζ +

√
ν)γ2 − UXγ − U(ν2UXX − ǫU)

− 2
3 (ν5/2 − 1)UXX + 1

3ǫ(ζ +
√
ν)U − 2

9ǫ(ζ
2 + 2

√
νζ + ν)

)

∂

∂γ

+ ( 2
3 (ζν2 + 1)UX − 2

3 (ζ +
√
ν)γ − Uγ)

∂

∂δ
.

Now, the vector field V determines the shadow of a nonlocal symmetry if the
function

G = γ exp

( 3
2δ

1 + ζν2

)

(4.45)
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satisfies the equation

DTG =
3

∑

i=0

∂F

∂uXi

Di
X(G) +

∂F

∂uXXT
D2

XDT (G)

identically, in which F is the right hand side of (4.29) when written as UT = F .
Checking that this is so is a long but straightforward computation. It can be done
using the MAPLE package VESSIOT developed by I. Anderson and his coworkers
(see [3]). �

The next problem is to extend the shadow (4.43) to a bona fide nonlocal
symmetry. For this, one needs to study the variations of the functions γ and δ
induced by the infinitesimal deformation U 7→ U + τG, in which G is given by
(4.45).

Note that (4.29) can be written as a system of equations for two variables,
m and U , as follows:

m = ν2UXX − ǫU, mT = −mXU − 2mUX + 2
3 (1 − ν5/2)UXXX . (4.46)

Theorem 4.12. Let γ, δ and β be defined by the equations

γX = − 3

4(1 + ζν2)
γ2 + (m+ 1

3ǫ(ζ +
√
ν)), (4.47)

γT = [23 (ζν2 + 1)UX − 2
3 (ζ +

√
ν)γ − γU ]X , (4.48)

δX = γ, (4.49)

δT = 2
3 (ζν2 + 1)UX − 2

3 (ζ +
√
ν)γ − Uγ, (4.50)

βX = [ν2m+ 1
3ǫ(ν

5/2 − 1)] exp

( 3
2δ

1 + ζν2

)

, (4.51)

βT = [−1
3 (ν5/2 − 1)(2m+ ǫU) − 1

2γ
2 + 2

9ǫ(2ζ + ζ2ν2 − ν3 + 2
√
ν)

− ν2Um] exp

( 3
2δ

1 + ζν2

)

, (4.52)

which are compatible on solutions of (4.46). The system of equations (4.46)–(4.52)
possesses the symmetry

W = γ exp

( 3
2δ

1 + ζν2

)

∂

∂U

+

[

ν2mX +
3ν2γ

1 + ζν2
m+ γǫ

ν5/2 − 1

1 + ζν2

]

exp

( 3
2δ

1 + ζν2

)

∂

∂m

+ [ν2m+ 1
3ǫ(ν

5/2 − 1)] exp

( 3
2δ

1 + ζν2

)

∂

∂γ

+β
∂

∂δ

+

(

ν2[ν2m+ 1
3ǫ(ν

5/2 − 1)] exp

(

3δ

1 + ζν2

)

+
3

4(1 + ζν2)
β2

)

∂

∂β
. (4.53)
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As with Theorem 4.11, Theorem 4.12 can be verified using the MAPLE pack-
age VESSIOT [3]. In terms of the theory of coverings, one has

Corollary 4.13. The vector field (4.53) determines a nonlocal symmetry of the

system of equations (4.46).

Proof. Define a covering S of the equation manifold of (4.46): locally, S is equipped
with coordinates (X,T, U, UX , UT , . . . , UX2p+1T q , . . . ,m, . . . ,mXr , . . . , γ, δ, β), and
the total derivatives DX and DT are given by the formulae

DX = DX +

( −3

4(1 + ζν2)
γ2 +m+ 1

3ǫ(ζ +
√
ν)

)

∂

∂γ

+ γ
∂

∂δ
+ [ν2m+ 1

3ǫ(ν
5/2 − 1)] exp

( 3
2δ

1 + ζν2

)

∂

∂β
,

DT = DT +

(

1

2(1 + ζν2)
( 3
2U + ζ +

√
ν)γ2 − UXγ − U(ν2UXX − ǫU)

− 2
3 (ν5/2 − 1)UXX + 1

3ǫ(ζ +
√
ν)U − 2

9ǫ(ζ
2 + 2

√
νζ + ν)

)

∂

∂γ

+ ( 2
3 (ζν2 + 1)UX − 2

3 (ζ +
√
ν)γ − Uγ)

∂

∂δ

+ [−1
3 (ν5/2 − 1)(2m+ ǫU) − 1

2γ
2 + 2

9 ǫ(2ζ + ζ2ν2 − ν3 + 2
√
ν)

− ν2Um] exp

( 3
2δ

1 + ζν2

)

∂

∂β
.

One now defines the functions

G1 = γ exp

( 3
2δ

1 + ζν2

)

,

G2 =

[

ν2mX +
3ν2γ

1 + ζν2
m+ γǫ

ν5/2 − 1

1 + ζν2

]

exp

( 3
2δ

1 + ζν2

)

Iγ = [ν2m+ 1
3ǫ(ν

5/2 − 1)] exp

( 3
2δ

1 + ζν2

)

,

Iδ = β,

Iβ = ν2[ν2m+ 1
3ǫ(ν

5/2 − 1)] exp

(

3δ

1 + ζν2

)

+
3

4(1 + ζν2)
β2.

Then the vector field

Dτ =
∑

p,q

Dp
XD

q
T (G1)

∂

∂UXpT q

+
∑

i≥0

Di
X(G2)

∂

∂mXi

+ Iγ
∂

∂γ
+ Iδ

∂

∂δ
+ Iβ

∂

∂β

is a nonlocal symmetry of the system of equations (4.46). In fact, the first equation
of (3.20) becomes

(

−ν2D2
X + ǫ 1

2
3 (1 − ν5/2)D3

X + 2mDX +mX DT + UDX + 2UX

) (

G1

G2

)

=

(

0
0

)

,
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and (4.47)–(4.52) imply that this equation is equivalent to the fact that G1 and G2

satisfy the linearization of (4.46). The other equations of (3.20) hold because the
functions Iγ , Iδ and Iβ satisfy the linearizations of equations (4.47)–(4.52). �

It is clear from Theorem 4.12 and Corollary 4.13 that the results of Galas [25]
and Leo et al. [35, 36], mentioned in Section 1, can also be interpreted in terms of
coverings and provide further examples of nonlocal symmetries.

The advantage of the vector fieldW given by (4.53) over the shadow V defined
in (4.43) is that one can find the flow ofW simply by integrating a first order system
of partial differential equations, and therefore one can obtain a (local) existence
theorem for solutions of the nonlinear equation (4.46). Consider the following first
order system in independent variables ξ and η:

∂x

∂ξ
= −ν2eD(ξ,η), (4.54)

∂m

∂ξ
=

1

1 + ζν2
(3ν2m(ξ, η) + ǫ(ν5/2 − 1))γ(ξ, η)eD(ξ,η), (4.55)

∂γ

∂ξ
=

(

3ν2

4(1 + ζν2)
γ(ξ, η)2 − 1

3ǫ(1 + ζν2)

)

eD(ξ,η), (4.56)

∂δ

∂ξ
= β(ξ, η) − ν2γ(ξ, η)eD(ξ,η), (4.57)

∂β

∂ξ
=

3

4(1 + ζν2)
β(ξ, η)2, (4.58)

where

D(ξ, η) =
3δ(ξ, η)

2(1 + ζν2)
. (4.59)

Proposition 4.14. The system of equations (4.54)–(4.58) with initial conditions

β0 = β(0, η), γ0 = γ(0, η), δ0 = δ(0, η), m0 = m(0, η), and X0 = X(0, η) = η, has

the solution

X(ξ, η) = −ν2

∫ ξ

0

eD(z,η)dz + η, (4.60)

ln

∣

∣

∣

∣

3ν2m(ξ, η) + ǫ(ν5/2 − 1)

3ν2m0 + ǫ(ν5/2 − 1)

∣

∣

∣

∣

=
3ν2

(1 + ζν2)

∫ ξ

0

γ(z, η)eD(z,η)dz, (4.61)

γ(ξ, η) =
1

9

( −4(1 + ζν2)

(−3ξβ0 + 4 + 4ζν2)β0
+

1

β0

)

(4ǫ(1 + ζν2)2 − 9ν2γ0
2)eD(0,η)

+ γ0, (4.62)

δ(ξ, η) = 2
3 (1 + ζν2) ln

∣

∣

∣

∣

4(1 + ζν2)∂γ
∂ξ (ξ, η)

3ν2γ(ξ, η)2 − 4
3ǫ(1 + ζν2)2

∣

∣

∣

∣

, (4.63)

β(ξ, η) = 4
(1 + ζν2)β0

−3ξβ0 + 4 + 4ζν2
, (4.64)
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where the functions D(0, η) and D(z, η) are determined by (4.59), the initial con-

dition δ0 = δ(0, η), and equations (4.62) and (4.63).

Now, equation (4.60) determines a transformation (ξ, η) 7→ (X, τ ), in which
τ is a parameter along the flow of W , given by, say,

τ = ξ, X = h(ξ, η). (4.65)

Applying this change of variables to equations (4.55)–(4.58), and using equations
(4.54), (4.47), (4.49), and (4.52), one sees that formulae (4.61)–(4.64) provide
solutions for the flow equations

∂m

∂τ
=

[

ν2mX +
3ν2γ

1 + ζν2
m+ γǫ

ν5/2 − 1

1 + ζν2

]

exp

( 3
2δ

1 + ζν2

)

, (4.66)

∂γ

∂τ
= [ν2m+ 1

3ǫ(ν
5/2 − 1)] exp

( 3
2δ

1 + ζν2

)

, (4.67)

∂δ

∂τ
= β, (4.68)

∂β

∂τ
= ν2[ν2m+ 1

3ǫ(ν
5/2 − 1)] exp

(

3δ

1 + ζν2

)

+
3

4(1 + ζν2)
β2, (4.69)

which one obtains from the formula for W in Theorem 4.12. Thus, finding a two-
parameter (the “flow” parameter τ and the “spectral” parameter ζ) family of
solutions to the nonlinear equation

−2ν2UXUXX + 3ǫUXU − ν2UXXXU + 2
3 (1 − ν5/2)UXXX + ǫUT − ν2UXXT = 0

(4.70)
amounts to solving one simple equation. More exactly, one has

Corollary 4.15. Let U(X,T ) be a solution of equation (4.70). Then the solution

U(X,T, τ ) to the initial value problem

∂U

∂τ
= γ(X,T, τ ) exp

( 3
2δ(X,T, τ )

1 + ζν2

)

, (4.71)

U(X,T, 0) = U(X,T ), (4.72)

in which γ(X,T, τ ) and δ(X,T, τ ) are determined by (4.62), (4.63), and (4.65), is

a two-parameter family of solutions to the family of equations (4.70).

This paper ends with two elementary examples.

Example. In the Camassa–Holm case, ν = 1, ǫ = 1, λ = 2
3 (1 + ζ), the first order

system (4.54)–(4.58) becomes

∂X

∂ξ
= −eδ/λ,

∂m

∂ξ
=

2

λ
γeδ/λm, (4.73)

∂γ

∂ξ
= − 1

2λ
eδ/λ(λ2 − γ2),

∂δ

∂ξ
= β − γeδ/λ,

∂β

∂ξ
=

1

2λ
β2, (4.74)
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and the solutions (4.60)–(4.64) now read

X = η + ln

∣

∣

∣

∣

−ξβ0 + 2λ+ (γ0 − λ)ξeδ0/λ

−ξβ0 + 2λ+ (γ0 + λ)ξeδ0/λ

∣

∣

∣

∣

, (4.75)

m =
m0

(−ξβ0 + 2λ)4

× (−ξβ0 + 2λ+ (γ0 − λ)ξeδ0/λ)2(−ξβ0 + 2λ+ (γ0 + λ)ξeδ0/λ)2, (4.76)

γ = γ0 +
ξ(γ2

0 − λ2)

−ξβ0 + 2λ
eδ0/λ, (4.77)

δ = λ ln

∣

∣

∣

∣

4λ2eδ0/λ

(−ξβ0 + 2λ+ (γ0 + λ)ξeδ0/λ)(−ξβ0 + 2λ+ (γ0 − λ)ξeδ0/λ)

∣

∣

∣

∣

(4.78)

β = 2
λβ0

−ξβ0 + 2λ
. (4.79)

These formulae first appeared in [46]. Now consider the Camassa–Holm equation
in the form

2UηUηη + UUηηη = UT − UηηT + 3UηU, (4.80)

so that the “old” space variable is η, and choose an obvious solution of (4.80), say
U0(η, T ) = eη. The corresponding (pseudo)potentials γ0, δ0 and β0, computed by
means of (4.47)–(4.52), are given by

γ0 = λ, β0 = c, δ0 = λη − λ2T.

Use these values as initial conditions for the system (4.73), (4.74), that is, take

U0(η, T ) = eη, m0 = 0, γ0 = λ, δ0 = λη − λ2T, β0 = c.

The new space variable X is then given by equation (4.75). One finds

X(ξ, η, T ) = η + ln

∣

∣

∣

∣

−ξc+ 2λ

−ξc+ 2λ+ ξeη−λT 2λ

∣

∣

∣

∣

, (4.81)

m(ξ, η, T ) = 0, (4.82)

and the (pseudo)potentials γ, δ and β become

γ(ξ, η, T ) = λ, (4.83)

δ(ξ, η, T ) = λ ln

∣

∣

∣

∣

4λ2eη−λT

(−ξc+ 2λ+ 2λξeη−λT )(−ξc+ 2λ)

∣

∣

∣

∣

, (4.84)

β(ξ, η, T ) =
2λc

−ξc+ 2λ
. (4.85)

Now invert equation (4.81) to find a change of variables η = h(X, τ ), ξ = τ .
Taking β0 = c = 0, one obtains

η = X − ln |1 − τeX−λT |, ξ = τ,

and therefore one can write the (pseudo)potentials γ, δ and β as functions of X,
T , and τ :

γ(X,T, τ ) = λ, δ(X,T, τ ) = λ(X − λT ), β(X,T, τ ) = 0. (4.86)
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Corollary 4.15 then implies that a two-parameter family of solutions of the Camas-
sa–Holm equation

m = UXX − U, mT = −mXU − 2mUX ,

is determined by the initial value problem

∂U

∂τ
= γ(X,T, τ )e(1/λ)δ(X,T,τ), U(X,T, 0) = eX ,

since at τ = 0 the independent variables X and η coincide. One finds

u(X,T, τ ) = λτeX−λT + eX .

Example. Consider the nonlinear equation (4.46),

m = ν2Uηη − ǫU, mT = −mηU − 2mUη + 2
3 (1 − ν5/2)Uηηη, (4.87)

and the trivial solution U(η, T ) = 0. The corresponding (pseudo)potentials γ0, δ0
and β0 which one obtains from (4.47)–(4.52) can be chosen to be

γ0 = 2
3

√

1 + ζν2

√

ǫ(ζ +
√
ν), (4.88)

δ0 = 2
3

√

1 + ζν2
√
ǫ

√

ζ +
√
ν (η − 2

3 (ζ +
√
ν)T ), (4.89)

β0 = 1
3 (ν5/2 − 1)

√
ǫ

√

1 + ζν2

√

ζ +
√
ν

× exp

(

(η − 2
3 (ζ +

√
ν)T )

√
ǫ
√

ζ +
√
ν

√

1 + ζν2

)

. (4.90)

Proposition 4.14 yields expressions for the (pseudo)potentials γ, δ and β as func-
tions of η, ξ and T , and then equation (4.60) and Corollary 4.15 allow one to find
a two-parameter family of solutions to the system (4.87).

Consider, for instance, the ν = 0 case. Equation (4.60) implies that in this
case the “old” and “new” independent variables η and X agree. One then finds
γ(X,T, τ ), δ(X,T, τ ) and β(X,T, τ ) to be

γ = −2

3

√
ζ(ξe−

1
3

√
ζ(−3X+2Tζ) − 4

√
ζ)

ξe−
1
3

√
ζ(−3X+2Tζ) + 4

√
ζ

, (4.91)

δ =
8

3
ln(2) +

2

3
ln

∣

∣

∣

∣

e−
1
3

√
ζ(−3X+2Tζ)ζ

(ξe−
1
3

√
ζ(−3X+2Tζ) + 4

√
ζ)2

∣

∣

∣

∣

, (4.92)

β = −4

3

e−
1
3

√
ζ(−3X+2Tζ)

ξe−
1
3

√
ζ(−3X+2Tζ) + 4

√
ζ
, (4.93)

and it follows from Corollary 4.15 that the function

U(X,T, τ ) =
32

3

ζ3/2e−
1
3

√
ζ(−3X+2Tζ)ξ

(ξe−
1
3

√
ζ(−3X+2Tζ) + 4

√
ζ)2

(4.94)
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solves the KdV equation

3

(

∂

∂X
U(X,T )

)

U(X,T ) +
2

3

∂3

∂X3
U(X,T ) +

∂

∂T
U(X,T ) = 0.

This is a traveling wave solution if ξ > 0, and a singular solution for some negative
values of the parameter ξ.
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