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Abstract. Let W (ψ) denote the set of ψ-well approximable points in R
d and

let K be a compact subset of R
d which supports a measure µ. In this short

article, we show that if µ is an ‘absolutely friendly’ measure and a certain µ-
volume sum converges then µ(W (ψ)∩K) = 0. The result obtained is in some
sense analogous to the convergence part of Khintchine’s classical theorem
in the theory of metric Diophantine approximation. The class of absolutely
friendly measures is a subclass of the friendly measures introduced in [2]
and includes measures supported on self-similar sets satisfying the open set
condition. We also obtain an upper bound result for the Hausdorff dimension
of W (ψ) ∩K.
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1. Introduction

1.1. The problem and results

The classical result of Dirichlet in the theory of Diophantine approximation states
that for any point x = (x1, . . . , xd) ∈ R

d, there exist infinitely many (p, q) ∈ Z
d×N

such that
max
1≤i≤d

|xi − pi/q| ≤ q−(d+1)/d.

Given a real, positive decreasing function ψ : R
+ → R

+, a point x ∈ R
d is said to

be ψ-well approximable if the above inequality remains valid with the right hand
side replaced with ψ(q). We will denote by W (ψ) the set of all such points; that is,

W (ψ) := {x ∈ R
d : max

1≤i≤d
|xi − pi/q| ≤ ψ(q) for infinitely many (p, q) ∈ Z

d × N}.
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A straightforward application of the Borel–Cantelli lemma from probability theory
yields the following statement.

Lemma 1.

|W (ψ)|d = 0 if

∞
∑

r=1

(rψ(r))d <∞.

Thus, if the above sum converges then almost every (with respect to d-
dimensional Lebesgue measure) point x ∈ R

d is not ψ-well approximable. For
τ ≥ 0, consider the function ψτ : r 7→ r−τ and write W (τ ) for W (ψτ ). In view of
Dirichlet’s result, W (τ ) = R

d for τ ≤ (d + 1)/d. However, in view of the above
lemma we have |W (τ )|d = 0 for τ > (d+ 1)/d.

Now, let K be a compact subset of R
d which supports a non-atomic, finite

measure µ and let
WK(ψ) := K ∩W (ψ).

In short, the problem is to determine conditions on µ and ψ under which µ(WK(ψ))
= 0, i.e. µ-almost every point x ∈ R

d is not ψ-well approximable. Note that
µ(WK(ψ)) = µ(W (ψ)) since µ is supported on K. For the motivation behind the
problem we refer the reader to [2, 3, 4].

In [2], Kleinbock, Lindenstrauss and Weiss introduce the notion of a ‘friendly’
measure and show that if µ is friendly then µ(WK(τ )) = 0 for τ > (d+1)/d.1 They
also show that the class of friendly measures includes (i) volume measures on non-
degenerate manifolds and (ii) measures supported on self-similar sets satisfying the
open set condition. In full generality, the definition of friendly is rather technical
and will not be reproduced here—see §2 of [2].

Our aim is to obtain a statement more in line with Lemma 1 which also
implies that µ(WK(τ )) = 0 for τ > (d+1)/d. To achieve this we impose conditions
on µ that are stronger than those of friendly. Nevertheless, measures supported
on self-similar sets satisfying the open set condition are still included—see §1.2.
Unfortunately, volume measures on non-degenerate manifolds and not included.

Let B(x, r) be a ball in R
d with centre x and radius r. The measure µ is said

to be doubling if there exist strictly positive constants D and r0 such that

µ(B(x, 2r)) ≤ Dµ(B(x, r)) ∀x ∈ K ∀r < r0.

The following notion of ‘absolutely decaying’ is essentially taken from [2]. Let
L denote a generic (d − 1)-dimensional hyperplane of R

d and let L(ǫ) denote its
ǫ-neighbourhood. We say that µ is absolutely α-decaying if there exist strictly
positive constants C,α, r0 such that for any hyperplane L and any ǫ > 0,

µ(B(x, r) ∩ L(ǫ)) ≤ C

(

ǫ

r

)α

µ(B(x, r)) ∀x ∈ K ∀r < r0.

In the case d = 1, the hyperplane L is simply a point a ∈ R and L(ǫ) is the ball
B(a, ǫ) centred at a of radius ǫ.

1They actually prove their result in the multiplicative framework.
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Remark. LetB(a, r) be a ball in R
d. A straightforward geometric argument shows

that if µ is absolutely α-decaying, then for any ǫ < 1/4,

µ (B(a, ǫr)) ≤ C 2αǫαµ(B(a, r)) ∀a ∈ R
d ∀r < r0. (1)

This essentially corresponds to the condition on µ imposed in [3, 4]. Note that in
the case d = 1, condition (1) is equivalent to absolute α-decay.

Definition. A measure µ is said to be absolutely α-friendly if it is doubling and
absolutely α-decaying.

We prove the following analogue of Lemma 1.

Theorem 1. Let K be a compact subset of R
d equipped with an absolutely α-friendly

measure µ. Then

µ(WK(ψ)) = 0 if

∞
∑

r=1

rα(d+1)/d−1ψ(r)α <∞.

Remark. In the case when d = 1, it is possible to remove the condition that µ
is doubling from the definition of absolutely α-friendly; i.e. all that is required is
that µ is absolutely α-decaying—see §4.1. With this in mind, the above theorem
restricted to d = 1 is identical to that established in [3]. Thus, Theorem 1 consti-
tutes the natural higher dimensional analogue of [3]. The above theorem should
also be compared with Theorem 9 of [4].

Note that in the case that ψτ : r 7→ r−τ and τ > (d+ 1)/d,

∞
∑

r=1

rα(d+1)/d−1ψτ (r)
α :=

∞
∑

r=1

r−1−α(τ−(d+1)/d) <∞

and so Theorem 1 implies that µ(WK(τ )) = 0 whenever µ is absolutely α-friendly.
More to the point, consider the function ψ : r 7→ r−(d+1)/d(log r)−β where β > 1/α.
Then

∞
∑

r=1

rα(d+1)/d−1ψ(r)α :=
∞
∑

r=1

r−1(log r)−αβ <∞,

and Theorem 1 implies that µ(WK(ψ)) = 0 whenever µ is absolutely α-friendly.
It will be evident from the proof that all that is actually required in estab-

lishing the theorem is that the doubling and absolutely α-decaying inequalities are
satisfied at µ-almost every point in K. Also the relevance of hyperplanes in the
definition of absolutely α-decaying will become crystal clear from our proof of the
theorem. Essentially, on the real line R an interval In of length 1/4n2 can contain
at most one rational p/q with n ≤ q < 2n. This follows from the trivial observation
that if n ≤ q, q′ < 2n then |p/q− p′/q′| ≥ 1/qq′ > 1/4n2; i.e. the distance between
two such rationals is strictly greater than the length of In. The higher dimensional
analogue of this is the following. Let Bn be a ball in R

d of radius c/n(d+1)/d where
c is a sufficiently small constant dependent only on d. Then any rational points
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p/q lying within Bn with n ≤ q < 2n must lie on a single (d− 1)-dimensional hy-
perplane L. This is the key observation on which the proofs of Theorems 1 and 2
hinge.

We now turn our attention to determining an upper bound for dimWK(ψ)—
the Hausdorff dimension of WK(ψ). For s ≥ 0, let Hs denote the s-dimensional
Hausdorff measure—see §2.

Theorem 2. Let K be a compact subset of R
d equipped with an absolutely α-friendly

measure µ. Furthermore, suppose there exist positive constants a, b, δ and r0 such

that

a rδ ≤ µ(B(x, r)) ≤ brδ ∀x ∈ K ∀r < r0. (2)

Then, for s ≤ δ,

Hs(WK(ψ)) = 0 if

∞
∑

r=1

rα(d+1)/d−1ψ(r)α+s−δ <∞.

Remark 1. Note that (2) imposed on µ trivially implies that µ is doubling. Fur-
thermore, if δ > d−1 then (2) together with a straightforward geometric argument
implies that µ is absolutely α-decaying with α := δ−(d−1) > 0. Thus, if δ > d−1
the hypothesis that µ is absolutely α-friendly is in fact redundant from the state-
ment of Theorem 2.

Remark 2. If K supports a measure µ satisfying (2), then dimK = δ and more-
over 0 < Hδ(K) < ∞—see [1] for the details. Now, since WK(ψ) is a subset of
K we have dimWK(ψ) ≤ δ and so Hs(WK(ψ)) = 0 for any s > δ. Thus, the
condition s ≤ δ in the statement of the theorem can be assumed without any loss
of generality.

Given a real, positive decreasing function ψ, the lower order λψ of 1/ψ is
defined by

λψ := lim inf
r→∞

− logψ(r)

log r
,

and indicates the growth of the function 1/ψ ‘near’ infinity. Note that λψ is non-
negative since ψ is a decreasing function. A simple consequence of Theorem 2 is
the following statement.

Corollary 1. Let K be a compact subset of R
d equipped with an absolutely α-

friendly measure µ satisfying (2). Then, for λψ ≥ (d+ 1)/d,

dimWK(ψ) ≤ δ − α

(

1 − d+ 1

λψd

)

.

As a special case we obtain the following statement.

Corollary 2. Let K be a compact subset of R
d equipped with an absolutely α-

friendly measure µ satisfying (2). Then, for τ ≥ (d+ 1)/d,

dimWK(τ ) ≤ δ − α

(

1 − d+ 1

τd

)

.
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Note that for τ > (d+ 1)/d we have dimWK(τ ) < δ. Since µ is comparable
to Hδ restricted to K, it follows that µ(WK(τ )) = 0.

A general remark. For d ≥ 2, it is highly unlikely that either Theorem 1 or
Theorem 2 are ever sharp. For instance, take the case that K := [0, 1]d and µ is
d-dimensional Lebesgue measure. It is easily verified that µ is absolutely α-friendly
with α = 1. Thus, Theorem 1 implies that |WK(ψ)|d = 0 whenever

∞
∑

r=1

r(d+1)/d−1ψ(r) <∞.

So when d = 1 this coincides with Lemma 1. However, for d ≥ 2 the above
statement is weaker than that of the lemma. In view of Khintchine’s theorem one
knows that the lemma is sharp; that is, if the sum in the lemma diverges then not
only |WK(ψ)|d > 0 but Wk(ψ) is of full measure. It is probable that the theorems
of this paper are sharp in the case d = 1.

1.2. The main example

The following statement, which combines Theorems 2.2 and 8.1 of [2], shows that
a large class of fractal measures are absolutely α-friendly and satisfy (2).

Theorem KLW. Let {S1, . . . ,Sk} be an irreducible family of contracting self-sim-

ilarity maps of R
d satisfying the open set condition and let µ be the restriction

of Hδ to its attractor K where δ := dimK. Then µ is absolutely α-friendly and

satisfies (2).

Thus for the natural measures associated with self-similar sets satisfying the
open set condition, Theorems 1 and 2 are applicable. The simplest examples of
such sets include regular Cantor sets, the Sierpiński gasket and the von Koch
curve. All the terminology except for ‘irreducible’ is pretty much standard—see
for example [1, Chp. 9]. The notion of irreducible introduced in [2, §2] avoids the
natural obstruction that there is a finite collection of proper affine subspaces of
R
d which is invariant under {S1, . . . ,Sk}.

2. Hausdorff measure and dimension

In this section we define Hausdorff measure and dimension for completeness and
for establishing some notation. For ρ > 0, a countable collection {Bi} of Euclidean
balls in R

d of radii ri ≤ ρ for each i such that X ⊂ ⋃

iBi is called a ρ-cover for X.
Let s be a non-negative number and define

Hs
ρ(X) = inf

{

∑

i

rsi : {Bi} is a ρ-cover of X
}

,

where the infimum is taken over all possible ρ-covers of X. The s-dimensional

Hausdorff measure Hs(X) of X is defined by

Hs(X) = lim
ρ→0

Hs
ρ(X) = sup

ρ>0
Hs
ρ(X)
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and the Hausdorff dimension dimX of X by

dimX = inf{s : Hs(X) = 0} = sup{s : Hs(X) = ∞}.
Further details and alternative definitions of Hausdorff measure and dimen-

sion can be found in [1].

3. A covering lemma

The following rather simple covering result will be used at various stages during
the proof of our theorems.

Covering Lemma. Let (Ω, d) be a metric space and B be a finite collection of balls

with common radius r > 0. Then there exists a disjoint subcollection {Bi} such

that ⋃

B∈B

B ⊂
⋃

i

3Bi.

Proof. Let S denote the set of centres of the balls in B. Choose c1 ∈ S and for
k ≥ 1,

ck+1 ∈ S \
k

⋃

i=1

B(ci, 2r)

as long as S \ ⋃k
i=1B(ci, 2r) 6= ∅. Since #S is finite, there exists k1 ≤ #S such

that

S ⊂
k1
⋃

i=1

B(ci, 2r).

By construction, any ball B(c, r) in the original collection B is contained in some
ball B(ci, 3r) and since d(ci, cj) > 2r the chosen balls B(ci, r) are clearly disjoint.

�

4. Proof of Theorem 1

Step 1: Preliminaries. We are assuming that
∑

rα(d+1)/d−1ψ(r)α converges and
since ψ is monotonic, it follows that

∞
∑

n=1

(2n(d+1)/dψ(2n))α <∞. (3)

Next note that without loss of generality we can assume that

ψ(2n) < c 2−n(d+1)/d (4)

for any c > 0 and n sufficiently large. This is easy to see. Suppose on the contrary
that there exists a sequence {ni} such that ψ(2ni) ≥ c 2−ni(d+1)/d. Then

∞
∑

n=1

(2n(d+1)/dψ(2n))α ≥
∞
∑

i=1

(2ni(d+1)/dψ(2ni))α ≥ cα
∞
∑

n=1

1 = ∞,

and this contradicts (3).
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Step 2: The balls Dn. For n ∈ N, let Dn denote a generic ball with centre in K
and of radius

rn := 16

(

1

κd!

)1/d

2−(d+1)(n+1)/d.

Here κ := κ(d) is the volume (d-dimensional Lebesgue measure) of a ball of radius
one in R

d. In view of the covering lemma and the fact that K is compact, there
exists a finite, disjoint collection Dn of balls Dn with centres in K such that

⋃

Dn

3Dn ⊃ K.

Note that since µ is doubling, we have
∑

Dn

µ(3Dn) ≤
∑

Dn

µ(4Dn) ≤ D2
∑

Dn

µ(Dn) = D2µ
( ◦⋃

Dn

Dn

)

≤ D2 µ(K). (5)

Next, consider a ball 3Dn where Dn ∈ Dn. Suppose there is a rational point
p/q := (p(1)/q, . . . , p(d)/q) such that

B(p/q,
√
dψ(q)) ∩ 3Dn 6= ∅ and 2n ≤ q < 2n+1. (6)

By (4) and using the fact that ψ is decreasing, it follows that for n sufficiently
large p/q ∈ 6Dn. Now assume that there are d + 1 or more such rational points
satisfying (6). Take any d + 1 such rationals p0/q

0
,p0/q1, . . . ,pd/qd. In view of

the denominator constraint, the rational points are necessarily distinct. Suppose
for the moment that they do not lie on a (d−1)-dimensional hyperplane and form
the d-dimensional simplex ∆ subtended by them; i.e. an interval when d = 1, a
triangle when d = 2 and a tetrahedron when d = 3. The volume (d-dimensional
Lebesgue measure) of the simplex ∆ times d factorial is equal to the absolute value
of the determinant

det :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 p1
0/q0 . . . p

(d)
0 /q0

1 p
(1)
1 /q1 . . . p

(d)
1 /q1

...

1 p
(1)
d /qd . . . p

(d)
d /qd

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Then, by (6),

d! · |∆|d ≥
1

q0q1 · · · qd
> 2−(d+1)(n+1).

Trivially,

|6Dn|d = κ(6rn)
d =

1

d!
2−(d+1)(n+1).

Thus |∆|d > |6Dn|d and this is impossible since ∆ ⊂ 6Dn. The upshot of this
is that the d-dimensional simplex ∆ cannot exist and so if there are d + 1 or
more rational points satisfying (6) then they must lie on a (d − 1)-dimensional
hyperplane L := L(Dn) passing through the ball 3Dn. In the event that there are
no more than d rational points satisfying (6), the existence of such a hyperplane is
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obvious—of course it is not unique if the number of rational points is less than d.
Thus, associated with each ball Dn ∈ Dn there is a (d−1)-dimensional hyperplane
L := L(Dn) containing all rational points satisfying (6). Note that in the case
d = 1, any hyperplane L is simply a point.

Step 3: The finale. For n ∈ N, let

An :=
⋃

2n≤q<2n+1

⋃

p∈Zd

B(p/q,
√
dψ(q)).

By definition, WK(ψ) ⊂ lim supn→∞An ∩ K. It follows via Step 2 and the fact
that ψ is decreasing that for n sufficiently large,

µ(An) := µ(An ∩K) = µB
(

An ∩
⋃

Dn

3DnB
)

≤
∑

Dn

µ(3Dn ∩ L(ǫ)) (ǫ :=
√
dψ(2n), L := L(Dn))

≪ (2n(d+1)/dψ(2n))α
∑

Dn

µ(3Dn) (µ is absolutely α-decaying)

≪ (2n(d+1)/dψ(2n))αµ(K) (by (5)).

Hence, by (3),
∑

µ(An ∩K) =
∑

µ(An) ≪
∑

(2n(d+1)/dψ(2n))α <∞

and the Borel–Cantelli lemma implies µ(lim supn→∞An) = 0. Thus, µ(WK(ψ)) is
zero as required. �

4.1. The case when d = 1 revisited

Clearly the above proof contains the case when d = 1. However, it is possible to
give a more direct proof of a stronger statement that does not assume that µ is
doubling—see the remark straight after the statement of Theorem 1. Although the
proof below is basically the same as that in [3], we have decided to include a sketch
in order to bring out the true nature of the ‘simplex/determinant’ argument and
the role of hyperplanes when d ≥ 2 in the proof above. In the d = 1 case, the
‘simplex/determinant’ argument reduces to the following. Consider rationals p/q
with 2n ≤ q < 2n+1. For any two such rationals, notice that

∣

∣

∣

∣

p

q
− p′

q′

∣

∣

∣

∣

≥ 1

qq′
> 2−2(n+1) =: 2rn.

Thus, any interval of length 2rn can contain at most one rational. In particular,
the intervals B(p/q, rn) are disjoint.

Now let An be as in Step 3. By definition, WK(ψ) = lim supn→∞An ∩ K.
Then, in view of (4) and the fact that ψ is decreasing we have, for n sufficiently
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large,

µ(An) ≤
∑

2n≤q<2n+1

∑

p∈Z

µ(B(p/q, ǫrn)) (ǫrn := ψ(2n))

≪ (22nψ(2n))α
∑

2n≤q<2n+1

∑

p∈Z

µ(B(p/q, rn)) (by (1))

≤ (22nψ(2n))αµ(K) (by disjointness).

The Borel–Cantelli lemma implies the desired statement. �

5. Proof of Theorem 2

To a certain extent the proof of Theorem 2 is similar to that of Theorem 1.

Step 1: Preliminaries. Without loss of generality we can assume that ψ(r) → 0
as r → ∞. Suppose that this was not the case. Then WK(ψ) = K by Dirichlet’s
theorem and so Hs(WK(ψ)) > 0 for any s ≤ δ—see Remark 2 straight after the
statement of Theorem 2.

Without loss of generality we can assume that s > δ−α. If this were not the
case then the sum in the statement of the theorem cannot possibly converge.

Since ψ is monotonic, the convergence of the sum in the statement of the
theorem is equivalent to

∞
∑

n=1

2nα(d+1)/dψ(2n)α+s−δ <∞. (7)

Finally, notice that since s > δ − α, we can assume (4) without any loss of
generality. Otherwise, (7) would be contradicted.

Step 2: A good ρ-cover for WK(ψ). For n ∈ N, let Dn be the disjoint collection
of balls Dn as defined in Step 2 of §4. Since the collection is disjoint and µ satisfies
(2), we have for n sufficiently large,

#Dn · 2−(d+1)(n+1)δ/d ≍
∑

Dn

µ(Dn) = µ
( ◦⋃

Dn

Dn

)

≤ µ(K).

Thus, for n sufficiently large,

#Dn ≪ 2(d+1)(n+1)δ/d. (8)

Now put ǫ :=
√
dψ(2n) and fix some ball Dn ∈ Dn. Let L := L(Dn) be the

(d − 1)-dimensional hyperplane associated with Dn—see Step 2 of §4. In view of
the covering lemma, there exists a finite disjoint collection C(Dn) of balls Bn(ψ)
with centres in K and common radius ψ(2n) such that

⋃

C(Dn)

3Bn(ψ) ⊃ 3Dn ∩ L(ǫ) ∩K (9)
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and
◦⋃

C(Dn)

Bn(ψ) ⊂ 6Dn ∩ L(2ǫ).

The latter together with the fact that µ is absolutely α-decaying implies that

#C(Dn) · ψ(2n)δ ≍
∑

C(Dn)

µ(Bn(ψ)) = µ
( ◦⋃

C(Dn)

Bn(ψ)
)

≤ µ(6Dn ∩ L(2ǫ)) ≪ (2(d+1)(n+1)/dψ(2n))α2−(d+1)(n+1)δ)/d.

Thus, for n sufficiently large,

#C(Dn) ≪ (2(d+1)(n+1)/dψ(2n))α−δ. (10)

Now with An defined as in Step 3 of §4, it follows via (9) that

An ∩K =
⋃

Dn∈Dn

3Dn ∩An ∩K ⊂
⋃

Dn∈Dn

3Dn ∩ L(ǫ) ∩K

⊂
⋃

Dn∈Dn

⋃

Bn(ψ)∈C(Dn)

3Bn(ψ).

In particular, for each k ∈ N the collection

{3Bn(ψ) : Bn(ψ) ∈ C(Dn), Dn ∈ Dn and n = k, k + 1, . . .}

is a ρ-cover for WK(ψ) with ρ = ρ(k) := 3ψ(2k).

Step 3: The finale. Let ρ = ρ(k) := 3ψ(2k). Step 2 together with the definition of
s-dimensional Hausdorff measure implies that

Hs
ρ(WK(ψ)) ≤

∞
∑

n=k

∑

Dn∈Dn

∑

Bn(ψ)∈C(Dn)

(3ψ(2n))s.

Thus, in view of (8) and (10), it follows that for k sufficiently large,

Hs
ρ(WK(ψ)) ≪

∞
∑

n=k

2nα(d+1)/dψ(2n)α+s−δ.

This together with (7) implies that

Hs
ρ(WK(ψ)) → 0 as ρ→ 0 (k → ∞),

and so Hs(WK(ψ)) = 0 as required. �
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