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A geometric proof of the definability of Hausdorff limits
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Abstract. We give a geometric proof of the following well-established theorem for o-minimal
expansions of the real field: the Hausdorff limits of a compact, definable family of sets are definable.
While previous proofs of this fact relied on the model-theoretic compactness theorem, our proof
explicitly describes the family of all Hausdorff limits in terms of the original family.
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Introduction

Let R be an o-minimal expansion of the real field; throughout this paper, definable
means “definable in R with parameters from R”. We refer the reader to [4] or
[5] for the basic properties of o-minimal structures used in this paper; however,
since the dimension of definable sets is fundamental to this paper, we quickly give
a definition sufficient for the present setting. By Theorem 2.11 in [4, Chapter 3],
every definable set S ⊆ R

n is a finite union of (embedded) topological submanifolds
of R

n (n ∈ N), each again definable. Therefore, we define

dim S := max {dim M : M ⊆ S is a def. top. submanifold of R
n} ,

where dim M is the usual topological dimension of M . As verified in [4, Chapter
4], this defines a dimension for definable sets, and for definable manifolds this
dimension agrees with the usual manifold dimension.

We now fix an arbitrary bounded, definable set A ⊆ R
m+n, and we write

A′ = Πm(A), where Πm : R
m+n −→ R

m is the projection onto the first m co-
ordinates, and Aa = {x ∈ R

n : (a, x) ∈ A} for a ∈ R
m. In this paper, we describe

the Hausdorff limits of the family (Aa)a∈A′ as follows.

Theorem. Assume that Aa is closed for every a ∈ A′. There exist M ≥ m and a
definable, compact B ⊆ R

M+n such that, with B′ = ΠM (B),
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(1) for every a ∈ A′ there is b ∈ B′ with Aa = Bb;
(2) for every subsequence (bi)i∈N of B′ such that lim bi = b, the limit lim Bbi

exists and equals Bb;
(3) dimB′ = dim A′ and dim {b ∈ B′ : Bb �= Aa for all a ∈ A′} < dim A′.

L. Bröcker [2] proved the theorem in the case where R is the real field. D. Marker
and C. Steinhorn [7], and later A. Pillay [8] show that types are definable in any
R, which implies the theorem. A more precise statement of the theorem along the
lines below, as well as a different model-theoretic proof, was recently announced
by L. van den Dries [3].

To be more precise, we let Kn be the space of all compact subsets of R
n equipped

with the Hausdorff metric. (We consider ∅ ∈ Kn with d(A, ∅) = ∞ for all nonempty
A ∈ Kn.) Let FA : R

m −→ Kn be the map defined by FA(a) := cl(Aa). We associate
a dimension to the image FA(A′) of A′ under FA as follows (see [3] for more details).
The quivalence relation ∼ defined on A′ by a ∼ b if and only if Aa = Ab is definable.
Thus by Proposition (1.2)(ii) in [4, Ch. 6], there is a definable set A′′ ⊆ A′ of
representatives. Then FA(A′′) = FA(A′), and we put dimFA(A′) := dimA′′. (The
reader may easily verify, using [4, Ch. 4], that this dimension is well defined.)

Convention. Given a sequence (ai) ∈ A′, we say that the sequence (Aai
) con-

verges to C ∈ Kn if the sequence (cl Aai
) converges in Kn to C, and in this

situation we write C = lim Aai
.

Let F ⊆ Kn; we refer to any point in clKn
(F ) as a limit set of F . Note

that L ∈ Kn is a limit set of FA(A′) if and only if there is a sequence (ai)i∈N of
parameters in A′ such that lim Aai

= L. We say that F ⊆ Kn is definable if there
are k and a definable family B ⊆ R

k+n such that F = FB(Πk(B)).
With these notions, the theorem above can be restated as

Theorem 1. Let F ⊆ Kn be definable. Then clKn
(F ) is definable and

dim(clKn
(F ) \ F ) < dim(F ).

Following Van den Dries’s lecture at Luminy in June 2001, we came up with a
geometric proof of Theorem 1 using the foliation techniques developed in our paper
[6]; we now give a summary of the main ideas involved. Theorem 1 suggests that
the function FA is “modelled” by a definable function in the following sense:

Definition. A bounded, definable function f : A′ −→ R
k represents FA if the

map
(a, f(a)) 	→ cl(Aa) : gr f −→ Kn

has a continuous extension to cl(gr f). (Throughout the paper, grh denotes the
graph of h, for any function h.) In other words, a definable f : A′ −→ R

k represents
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FA if and only if for any two sequences (ai) and (bj) of parameters in A′ such that
lim(ai, f(ai)) and lim(bj , f(bj)) exist, the limits lim Aai

and lim Abj
also exist and

lim(ai, f(ai)) = lim(bj , f(bj)) =⇒ lim Aai
= lim Abj

.

Indeed, we prove Theorem 1 by establishing

Theorem 2. FA has a definable representation.

To define a representation of FA, we would like to uniformly select points in the
limit sets of FA(A′); but since the set of all sequences of parameters in A′ is not
definable, we need another way to characterize these limit sets. Thus, for any set
S ⊆ R

k we define fr(S) = cl(S) \ S, and we put

fr′(A) = {(a, x) ∈ A′ × R
n : x ∈ fr(Aa)} .

First, by cell decomposition we may assume that A is a C1-cell. We then view
the fibers of A as the leaves of a (trivially obtained) distribution on A. Using the
jet space techniques developed in our paper [6], we blow up this distribution on
A to obtain a finite collection of new integrable distributions. These distributions
depend only on A and not on any particular limit set of FA(A′). We then show
(Proposition 8) that every limit set of FA(A′) is, outside of the corresponding limit
set of Ffr′(A)(A′) (roughly speaking), a union of integral manifolds of these new
distributions.

Second, since the fibers of fr′(A) have strictly lower dimension than the fibers of
A, we will be able to assume inductively that Ffr′(A) has a definable representation,
say g : A′ −→ R

k. Replacing the parameter space A′ by the graph of g (a procedure
we call lifting A via g, see Definition 10), we can definably subtract the family of all
limit sets of Ffr′(A)(A′) from the domains of the distributions found above. Inside
the remaining smaller domains, any limit set of FA(A′) will actually be a union of
leaves of the (correspondingly restricted) distributions.

Third, as any leaf of an integrable distribution is uniquely determined by any
one of its points, we can then define a representation f of FA using a definable
choice argument on (the lifting of) A, see Section 4.

What complicates matters is that the above procedure only works as described
for those new distributions whose domains are (roughly speaking) open subsets of
cl(A). To deal with this problem, we need to choose a stratification compatible
with the domains of the new distributions and then proceed essentially as above
by reverse induction on the dimension of the strata. Correspondingly, the notion
of representation needs to be relativized to each stratum.

Finally, Theorem 1 follows from Theorem 2 by applying the lifting argument
once more (see Corollary 12).

Throughout this paper, we let ‖x‖ := max{|x1|, . . . , |xk|} for x ∈ R
k. Given

x ∈ R
n and δ > 0 we put B(x, δ) = {y ∈ R

n : ‖x − y‖ < δ}.
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1. Limits of η-bounded fibers

Let A ⊆ R
m+n be as in the introduction. In this section, we obtain a local desciption

of the limit sets of FA(A′) in the case where the fibers of A are sufficiently smooth.
More precisely, we fix p ≥ 0 and assume in this section that A is a Cp-cell. Thus,
for each a ∈ A′, the fiber Aa is a Cp-cell of dimension d ≤ n, A′ is a Cp-cell of
dimension d′ ≤ m and dimA = d′ + d.

First, we write A as a finite union of sets of the following nature: given η > 0,
a C1-manifold V ⊆ R

n of dimension d is η-bounded if for all x ∈ V there is
a matrix L = (lij) ∈ Mn−d,d(R) such that ‖L‖ := maxi,j |li,j | ≤ η and TxV ={
(u,Lu) : u ∈ R

d
}
.

Remark. Let η > 0 and V ⊆ R
n an η-bounded, embedded manifold of class C1

and dimension d. Then for any x ∈ V , there is an open box U containing x and
an dη-Lipschitz map f : Πd(U) −→ R

n−d such that V ∩ U = gr f (here the notion
“Lipschitz” is used with respect to the norm ‖ · ‖).

For the next lemma, we let Σn be the set of all permutations on {1, . . . , n}.
For σ ∈ Σn, we also denote by σ : R

n −→ R
n the permutation of coordinates

σ(x1, . . . , xn) = (xσ(1), . . . , xσ(n)).

Lemma 3. Let E ⊆ R
n be a linear subspace of dimension d. Then there exist

σ ∈ Σn and a matrix L ∈ Mn−d,d(R) such that ‖L‖ ≤ 1 and σ(E) = {(u,Lu) ∈
R

n : u ∈ R
d}.

Proof (by Stéphane Lamy). Given a basis {v1, . . . , vd} of E and σ ∈ Σn, we denote
by (v1, . . . , vd)σ the (signed) volume of the parallelepiped in R

d spanned by the
vectors Πd(σ(v1)), . . . ,Πd(σ(vd)), and we choose a σ0 ∈ Σ such that the absolute
value of (v1, . . . , vd)σ0 is maximal. Since the map (v1, . . . , vd) 	→ (v1, . . . , vd)σ is d-
linear for each σ, we see that σ0 is independent of the particular basis considered;
we claim that the lemma works with σ = σ0.

To see this, we assume for simplicity of notation that σ0 is the identity map on
R

n. Then Πd(E) = R
d, so there is a matrix L = (li,j) ∈ Mn−d,d(R) (with respect

to the standard bases for R
d and R

n−d) such that E = {(u,Lu) : u ∈ R
p}. Let

{e1, . . . , ed} be the standard basis of R
d, and consider the vectors vk = (ek, Lek) ∈

E for k = 1, . . . , d; clearly {v1, . . . , vd} is a basis of E. For i ∈ {1, . . . , n − d}
and j ∈ {1, . . . , d} we denote by σi,j ∈ Σ the permutation that exchanges the
j-th and the (p + i)-th coordinates. Then li,j = (v1, . . . , vd)σi,j

for all i, j, and the
maximality of |(v1, . . . , vd)σ0 | gives |li,j | ≤ |(v1, . . . , vd)σ0 | = 1 for all i and j, and
hence ‖L‖ ≤ 1, as required. �
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Corollary 4. For each σ ∈ Σn there is a definable open subset Aσ of A such that

A =
⋃

σ∈Σn

Aσ

and for every a ∈ R
m, the set σ((Aσ)a) is a 2-bounded, embedded manifold of

dimension d and class Cp.

Proof. Let Gd
n be the Grassmannian of all d-dimensional vector subspaces of R

n,
considered as a compact algebraic submanifold of R

n2
(see [1, Section 3.4]; in the

next section, we discuss related notions in more detail). The set E2 = {E ∈ Gd
n :

∃L ∈ Mn−d,d(R) such that ‖L‖ < 2 and E = {(u,Lu) : u ∈ R
d}} is an open,

semialgebraic subset of Gd
n, and the map g : A −→ Gd

n defined by g(a, x) = TxAa

is definable. The corollary now follows from Lemma 3. �

Next, we prove a basic fact about limit sets of FA(A′) in the case where the
fibers of A are η-bounded. Let N ∈ N (obtained by o-minimality) be such that for
any a ∈ R

m and any open box U ⊆ R
n, the set Aa ∩ U has at most N connected

components.

Lemma 5. Let η > 0 and assume that for each a ∈ A′, the fiber Aa is η-bounded.
Let (ai) be a sequence in R

m such that both lim Aai
and lim fr(Aai

) exist. Then for
every x ∈ lim Aai

\lim fr(Aai
) there are a box U ⊆ R

n containing x and dη-Lipschitz
functions f1, . . . , fN : Πd(U) −→ R

n−d such that

lim Aai
∩ U = (gr f1 ∩ U) ∪ · · · ∪ (gr fN ∩ U).

Proof. For simplicity of notation, we assume throughout the proof that η = 1; the
proof for general η is similar. Let x ∈ lim Aai

\ lim fr(Aai
), and choose ε > 0 such

that B(x, 3ε) ∩ fr(Aai
) = ∅ for all i (after passing to a subsequence if necessary).

We let U = B(x, ε) and V = Πd(U) × W , where

W =
{
w ∈ R

n−d : |wk − xd+k| < 3dε for k = 1, . . . , n − d
}

.

We now fix an i. By our assumptions, for any u ∈ Πd(U)
(∗) there is a δ > 0 such that Aai

∩ (B(u, δ) × W ) is the union of at most N
disjoint graphs of d-Lipschitz functions from B(u, δ) to W .

Let x ∈ Aai
∩U ; we claim that the component C of Aai

∩ V that contains x is the
graph of a d-Lipschitz function g : Πd(U) −→ W .

To prove this covering property, we choose δ as in (∗) for u = Πd(x) and let
g : B(u, δ) −→ W be the corresponding d-Lipschitz function such that g(u) =
(xd+1, . . . , xn). We extend g to all of Πd(U) as follows: for each v ∈ ∂Πd(U), we let
v′ ∈ [u, v] be the point closest to v such that g extends to a d-Lipschitz function
gv along the line segment [u, v′] satisfying gr(gv) ⊆ Aai

∩ V . Then (∗) implies that
v′ = v for each v ∈ ∂Πd(U).
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Moreover, the extension g : Πd(U) −→ W defined in this way is continuous
(and hence d-Lipschitz): let v ∈ Πd(U) be such that g is continuous at v′ for
every v′ ∈ [u, v). Let δ′ be obtained for this v in place of u as in (∗), and let
h1, . . . , hq : B(v, δ′) −→ W be the corresponding distinct d-Lipschitz functions.
We assume that g(v) = h1(v). Shrinking δ′ if necessary, we may assume that
there is µ > 0 such that for any s, t ∈ B(v, δ′) and any 1 ≤ k < l ≤ q we
have |hk(s) − hl(t)| > µ. Let v′ ∈ [u, v) ∩ B(v, δ′) be close enough to v so that
|g(v′) − g(v)| < µ/4; then g(v′) = h1(v′) as well. Since g is continuous at v′, it
follows that g(s) = h1(s) for all s sufficiently close to v′. But then the continuity
of g along the radial segments [u, t], t ∈ ∂Πd(U), and our choice of δ′ imply that
g = h1 in a neighbourhood of v. This proves the claim.

By the claim, for all i there are definable d-Lipschitz functions f1,i, . . . , fN,i :
Πd(V ) −→ R

n−d such that every connected component of Aai
∩ V intersecting

U is the graph of some fl,i and for all l, l′ ∈ {1, . . . , N}, either fl,i = fl′,i or
gr fl,i ∩ gr fl′,i = ∅, and

Aai
∩ U = (gr f1,i ∩ U) ∪ · · · ∪ (gr fN,i ∩ U).

Passing to a subsequence if necessary, we may therefore assume that each sequence
(fl,i)i converges to a d-Lipschitz function fl : Πd(V ) −→ R

n−d. Clearly gr fl ⊆
lim Aai

. On the other hand, if x′ ∈ lim Aai
∩ U , then x′ ∈ lim(Aai

∩ U), so by the
above x′ ∈ lim(gr fl,i ∩ U) for some l, that is, x′ ∈ gr fl. �

2. Blowing up in jet space

We denote by Gd
n the Grassmannian of all d-dimensional vector subspaces of R

n,
considered as a compact algebraic submanifold of R

n2
(see [1, Section 3.4] for de-

tails). We shall not notationally distinguish between d-dimensional vector subspaces
of R

n and the corresponding elements of Gd
n.

Let p ≥ 1 and V ⊆ R
m+n. We call V a fiberwise manifold of class Cp

if Va is a submanifold of R
n of class Cp for each a ∈ R

m. Assume that V is a
fiberwise manifold of class Cp and let q ≤ p. A map g : V −→ Gd

n is called a
fiberwise d-distribution on V of class Cq if for each a ∈ Πm(V ), the map
ga : Va −→ Gd

n given by ga(x) = g(a, x) is a d-distribution on Va of class Cq. (If
V is a manifold, we can associate a d-distribution g̃ : V −→ Gd

m+n to g by putting
g̃(a, x) = {0m} × g(a, x), where 0m is the origin of R

m.)
Let g : V −→ Gd

n be a fiberwise distribution of class Cq. We say that g is
tangent to V if g(a, x) ⊆ TxVa for every (a, x) ∈ V . A manifold Z ⊆ V is an
integral manifold of g if there is an a ∈ R

m such that Z = {a} × Za and
TxZa = g(a, x) for every x ∈ Za. (We do not assume that an integral manifold is
embedded or connected, and we consider the empty set to be an integral manifold of
any fiberwise distribution). The fiberwise distribution g is integrable at (a, x) ∈ V
if there is an integral manifold of g containing (a, x). We simply say that g is
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integrable if g is integrable at every (a, x) ∈ V .

Remark 6. As discussed in [6, Section 1], if V and g are definable and of class
C2, then the set {(a, x) ∈ V : g is integrable at (a, x)} is definable.

Below we put n0 := n and nq := nq−1 + n2
q−1 for q > 0, and for 0 ≤ r ≤ q

we let πq
r : R

m+nq −→ R
m+nr be the projection on the first m + nr coordinates.

Clearly the values n0, . . . , nq depend on n, but we shall not explicitly indicate this
dependence as it will usually be clear from context. Similarly, we generally omit
mentioning m (as for instance in the notation “πq

r”). Finally, we put J0 := R
n and

Jq := R
n × Gd

n0
× · · · × Gd

nq−1
for 1 ≤ q ≤ p.

Definition 7. Assume that g is tangent to V and of class Cq for some q ≤ p. For
r ∈ {0, . . . , q}, the r-th blow-up br g of g is obtained as follows: V 0

g := V and
b0 g := g, and for r > 0 we let V r

g := gr(br−1 g) and

br g :=
(
πr

r−1

∣∣V r
g

)∗ br−1 g,

the (fiberwise) pull-back of br−1 g via πr
r−1

∣∣V r
g . Note that for each a ∈ R

m and
r > 0 we have br ga = (br g)a.

Example. The fiberwise Gauss map g : V −→ Gd
n defined by g(a, x) = TxVa

is a fiberwise distribution of class Cp−1 on V that is tangent to V and integrable.
In this case, we simply write V q in place of V q

g , for q = 0, . . . , p.

We now return our attention to the definable set A. We assume throughout this
section that A is a Cp-cell; so the set Aq is a Cp−q-cell that is also a fiberwise
manifold for each q = 0, . . . , p, and Aq

a is a Cp−q-cell of dimension d. Moreover,
πq

r(fr′(Aq)) = fr′(Ar) for all 0 ≤ r ≤ q, because each Aq is bounded.
For the next proposition, we write A =

⋃
Aσ such that the set σ((Aσ)a) is

2-bounded for each σ ∈ Σn, as obtained from Corollary 4, and put

B =
⋃

σ∈Σn

fr′
(
(Aσ)1

)
.

Let C ⊆ R
m+n be a definable, fiberwise manifold and g : C −→ Gd

n a definable,
fiberwise distribution on C, both of class C2. Put D = gr(g) ⊆ R

m×J1. We assume
that

(i) D ⊆ fr(A1) ∩ Π−1
m (fr A′), and there is a definable W ⊆ fr(A1) ∩ Π−1

m (fr A′)
such that for any a ∈ fr(A′), both Wa and Wa ∪ Da are open in fr(A1)a;

(ii) if there exists an (a, x) ∈ C such that ga(x) ⊆ TxCa and ga is integrable at
x, then g is tangent to C and integrable.

(The W in (i) will appear in the proof of Theorem 2 as a result of the necessary
relativization described in the introduction.) For any subsequence (ai) of A′ such
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that ai → a and lim A1
ai

and lim Bai
exist, we put

L(ai) = (Da ∩ lim A1
ai

) \ (
lim Bai

∪ cl(Wa ∩ lim A1
ai

)
)
.

Proposition 8. Exactly one of the following holds: either
(1) L(ai) = ∅ for all subsequences (ai) of A′ converging to a such that ai → a

and lim A1
ai

and lim Bai
exist; or

(2) g is tangent to C and integrable, and for any subsequence (ai) of A′ such
that ai → a and lim A1

ai
and lim Bai

exist, the set L(ai) is an embedded
integral manifold of b1 ga and is open in lim A1

ai
.

Remark. Let σ ∈ Σn and write σ(a, x) = (a, xσ(1), . . . , xσ(n)) for any (a, x) ∈
R

m+n and σS = {σ(a, x) : (a, x) ∈ S} for any S ⊆ R
m+n. Then the conjugate

map gσ = σ ◦ g ◦ σ−1 : σC −→ Gd
n satisfies

g(a, x) ⊆ TxCa if and only if gσ(σ(a, x)) ⊆ Tσx(σC)a.

Moreover, σ induces a diffeomorphism σ1 : R
m × J1 −→ R

m × J1 defined by
σ1(a, x, x1) = (σ(a, x), σx1) (here we consider x1 as a subset of R

n to which σ is
applied; note that σ1 is also just a permutation of coordinates). Then

b1 gσ = σ1 ◦ b1 g ◦ (σ1)−1,

and if (ai) is a subsequence of A′ such that ai → a and lim A1
ai

exists, then lim σA1
ai

also exists and
(σD)a ∩ lim σA1

ai
= σ1(Da ∩ lim A1

ai
).

Proof of Proposition 8. By the remark, after replacing A by Aσ for each σ ∈ Σn,
we may assume for the rest of this proof that A is 2-bounded and B = fr′(A1).

Let (ai) be a subsequence of A′ such that ai → a and both limA1
ai

and
lim fr(A1

ai
) exist and write L = L(ai). Assume that L �= ∅, and choose an arbitrary

(x, x1) ∈ L. Since Wa ∪ Da is open in fr(A1)a and (x, x1) /∈ cl(Wa ∩ lim A1
ai

),
there is an open box V ⊆ R

n1 such that (x, x1) ∈ V and cl(V ) ∩ lim A1
ai

⊆
Da \

(
lim Bai

∪ cl(Wa ∩ lim A1
ai

)
)
. Writing V = V0 ×V1 with V0 ⊆ R

n, we may also
assume that Da ∩

(
cl(V0)× fr(V1)

)
= ∅, because Da is the graph of the continuous

map ga and Ca is locally closed.
On the other hand, V ∩ lim A1

ai
= V ∩ lim(V ∩ A1

ai
) = V ∩ lim(AV )1ai

, where
AV = {(a, y) ∈ A : (y, TyAa) ∈ V }. We now claim that x /∈ lim fr((AV )ai

): in fact,
the previous paragraph implies that fr(Aai

)∩ cl(AV,ai
) = ∅ for all sufficiently large

i, and hence fr(AV,ai
) ⊆ fr(V0) for all sufficiently large i, which proves the claim.

We therefore apply Lemma 5 with AV in place of A and η = 2, to obtain a
corresponding open neighbourhood U ⊆ Πn(V ) of x and f1, . . . , fN . We let l ∈
{1, . . . , N} be such that x ∈ gr(fl). We claim that fl is differentiable at z = Πd(x)
with Tx gr(fl) = g(a, x); since x is arbitrary, this then implies that each gr(fl) is an
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embedded, connected integral manifold of ga. Assumption (ii) and [6, Lemma 1.6]
now imply that g is tangent to C and integrable. Since (x, x1) ∈ L was arbitrary,
it follows that L is an embedded integral manifold of b1 g, as desired.

To prove the claim, let fl,i be the definable functions corresponding to fl as
in the proof of Lemma 5. After a linear change of coordinates if necessary, we
may assume that ga(x) = R

d (the subspace spanned by the first d coordinates).
It now suffices to show that fl is η-Lipschitz at x for every η > 0, since then
Tx gr(fl) = R

d. So let η > 0; since lim(AV )1ai
⊆ Da = gr(ga) and x ∈ Ca, and

because Ca is locally closed and ga is continuous, there is a neighborhood U ′ ⊆ U
of x such that gr(fl,i)∩U ′ is η

d -bounded for all sufficiently large i. Thus by Lemma
5 again, fl is η-Lipschitz at x, as required. �

3. Lifting

As described in the introduction, we need to make our notion of representation
relative: Let W ⊆ R

m+n, and let M ∈ N and f : A′ −→ R
M . We say that f

represents FA in W (or f is a representation of FA in W ) if
(i) f is bounded and definable, and
(ii) if (ai) and (bi) are subsequences of A′ converging to a and lim f(ai), lim f(bi),

lim Aai
and lim Abi

exist, then

lim f(ai) = lim f(bi) =⇒ Wa ∩ lim Aai
= Wa ∩ lim Abi

.

Note that f represents FA in R
m+n if and only if f represents FA in the sense of the

introduction. The following observations are elementary; we leave their verification
to the reader.

Lemma 9. (1) Let A1, A2 ⊆ R
m+n be definable such that A = A1∪A2, and assume

fj : A′ −→ R
kj represents FAj , for j = 1, 2. Then (f1, f2) : A′ −→ R

k1+k2

represents FA.
(2) Let Wj ⊆ R

m+n and fj : A′ −→ R
kj be a representation of FA in Wj, for

j = 1, 2. Then (f1, f2) : A′ −→ R
k1+k2 represents FA in W1 ∪ W2.

(3) Assume that f : A′ −→ R
M represents FA in W ⊆ R

m+n, and let k ≤ n.
Then for any subsequences (ai) and (bi) of A′ converging to a such that
lim f(ai), lim f(bi), lim Aai

and lim Abi
exist, we have

lim f(ai) = lim f(bi) =⇒ Πk(Wa ∩ lim Aai
) = Πk(Wa ∩ lim Abi

).

Definition 10. Let f : A′ −→ R
M and S ⊆ R

m+n. The lifting of S via f is
defined as

liftf S =
{
(a, b, x) ∈ R

m+M+n : (a, x) ∈ S and (a, b) ∈ cl(gr f)
}

.
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Proposition 11. Let W ⊆ R
m+n and assume that f : A′ −→ R

M represents FA in
W . Then for any subsequence (ai) of A′ such that (ai, f(ai)) → (a, b) and lim Aai

exists, we have

Wa ∩ lim Aai
= (liftf W )(a,b) ∩ cl(liftf A)(a,b).

Proof. Let V = liftf W and B = cl(liftf A). Let (ai) be a subsequence of A′ such
that (ai, f(ai)) → (a, b) and lim Aai

exists. Since B is closed, we have lim Aai
⊆

lim B(ai,f(ai)) ⊆ B(a,b). Hence Wa ∩ lim Aai
⊆ V(a,b) ∩ B(a,b). Conversely, let x ∈

V(a,b) ∩ B(a,b), and let (ci, xi) be a subsequence of A such that (ci, f(ci)) → (a, b)
and xi → x. Passing to a subsequence if necessary, we may assume that lim Aci

exists. Since f represents FA in W , it follows that Wa ∩ lim Aci
= Wa ∩ lim Aai

; in
particular, x ∈ Wa ∩ lim Aai

. �

Corollary 12. Let f : A′ −→ R
M be a representation of FA.

(1) For any a ∈ A′, we have cl(liftf A)(a,f(a)) = cl(Aa), and for any ωi ∈ cl(gr f)
such that ωi → ω, we have lim cl(liftf A)ωi

= cl(liftf A)ω.
(2) If D′ ⊆ A′ is such that f

∣∣D′ is continuous, then cl′(A) ∩ Π−1
m (D′) is closed

in Π−1
m (D′).

In particular, clKn
(FA(A′)) = FB(Πm(B)) where B := cl(liftf A), which proves

Theorem 1 for F = FA(A′).

Proof. We write again B = cl(liftf A). For (1), given a ∈ A′ and taking ai = a for
each i, we obtain from Proposition 11 that B(a,f(a)) = cl(Aa). Let ωi ∈ cl(gr f)
such that ωi → ω. By Proposition 11 with W = R

m+n, there is for each i an ai ∈ A′

such that
‖ωi − (ai, f(ai))‖ <

1
i

and d (Bωi
, Aai

) <
1
i
.

Then (ai, f(ai)) → ω and by Proposition 11 again, limBωi
= lim Aai

= Bω.
For (2), let D′ ⊆ A′ such that f

∣∣D′ is continuous. Then for any subsequence
(ai) of D′ such that ai → a ∈ D′, we have f(ai) → f(a), so lim cl(Aai

) =
lim B(ai,f(ai)) = B(a,f(a)) = cl(Aa) by part (1), which proves part (2). �

4. Defining a representation

Here we consider the special situation that we will obtain in the proof of Theorem 2,
after blowing up the fibers of A in jet space and lifting A to a larger parameter space
as outlined in the introduction. We assume here that A is a definable, fiberwise
manifold of class Cp.

Blowing up the fibers of A in jet space and lifting A will produce (after changing
m and n accordingly) a definable set D ⊆ fr(A) ∩ Π−1

m (fr A′) and a definable map
g : D −→ Gd

n such that
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(i) D is a fiberwise manifold and g a fiberwise distribution on D, both of class
C2, and g is tangent to D and integrable;

(ii) fr(D) is closed;
(iii) for every subsequence (ai) of A′ such that ai → a ∈ Πm(D) and lim Aai

exists, the set Da ∩ lim Aai
is an embedded integral manifold of ga and an

open subset of lim Aai
.

With these assumptions in place, we define a map φ : cl(A) −→ [0,∞] by

φ(a, x) = d
(
(a, x), fr(D)

)
;

for each a ∈ cl(A′), we write φa : cl(A)a −→ [0,∞] for the map φa(x) = φ(a, x).
(If fr(D) = ∅, then φ(a, x) = ∞ for all (a, x) ∈ cl(A).) The function φ is definable,
and hence so is the set

C = {(a, x) ∈ A : φa attains a local maximum at x} .

By cell decomposition and definable choice, there are N ∈ N and a definable,
bounded function f = (f1, . . . , fN ) : A′ −→ R

Nn such that for every a ∈ A′ and
every connected component Sa of Ca, there is a j such that fj(a) ∈ Sa.

Proposition 13. The function f represents FA in D.

Proof. Let (ai) be a subsequence of A′ such that lim ai = a, lim fj(ai) = cj for
j = 1, . . . , N and L = lim Aai

exists. Let Z be a connected component of L ∩ Da;
since L is an embedded integral manifold of g and is also closed in Da, it suffices
to show that cj ∈ Z for some j ∈ {1, . . . , N}.

Since Z is closed in Da, φa

∣∣Da > 0 and φa

∣∣fr(Da) = 0, the function φa

∣∣Z attains
a maximal value λ0. We let K0 = φ−1

a ({λ0}) ∩ Z; note that K0 is compact. Since
L ∩ Da is open in L, there are 0 < λ2 < λ1 < λ0 and an open neighborhood U of
K0 in R

n such that
(i) L ∩ U = Z ∩ U , and
(ii) for all sufficiently large i, we have φa(x) ≤ λ2 for all x ∈ Aai

∩ fr(U), and
there exists a y ∈ Aai

∩ U satisfying φa(y) ≥ λ1.
Thus, for all sufficiently large i, the set Cai

has a connected component Sai
that is

contained in U . In particular, fj(i)(ai) ∈ U for some j(i) for all sufficiently large i,
and it follows that cj ∈ L ∩ U ⊆ Z for some j, as desired. �

5. Proof of Theorem 2

Let A ⊆ R
m+n be bounded and definable, and put A′ = Πm(A) and d =

max{dim Aa : a ∈ R
m}. We proceed by induction on d.

We first assume that d = 0. Then by o-minimality and Lemma 9, we may
assume there is a bounded, continuous, definable function f : A′ −→ R

n such that
A = gr(f). This f clearly represents FA.
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We now assume that d > 0 and that Theorem 2 holds for lower values of d.
By Lemma 9, we may assume that A is a definable Cp-cell of dimension d′ + d,
where d′ = dim(A′) and p ≥ d′ + d is fixed; hence each Aa for a ∈ A′ is a definable
Cp-cell of dimension d, and we only need worry about the limits limAai

such that
ai → a ∈ fr(A′). We now proceed in two main steps to reduce to the special
situation of the previous section.

Step 1: blowing up in jet space. Let G : A −→ Gd
n be the fiberwise Gauss

map of A and write Aq = Aq
G for q = 0, . . . , p. Note that dim fr(Aq) < d′ + d, and

for any sequence (ai) in A′ such that ai → a ∈ fr(A′) and lim Aq
ai

exists, we have
lim Aq

ai
⊆ fr(Aq)a.

For each q = 0, . . . , p, we let Cq be a stratification of fr(Aq) ∩ Π−1
m (fr A′) into

definable Cp+2 cells (see Proposition (1.13) of [4, Ch. 4]) such that, with π = πq+1
q ,

(a) if q < p, then Cq is compatible with π(C) for each C ∈ Cq+1.
By Remark 6, after refining each Cq if necessary we may also assume that for every
C ∈ Cq that is the graph of a definable map g : π(C) −→ Gd

nq
,

(b) if there is an (a, z) ∈ π(C) such that g(a, z) ⊆ Tz π(C)a and g is integrable
at (a, z), then g is tangent to π(C) and integrable.

By Lemma 9, if FA has a representation in C, for each C ∈ C0, then FA has a
representation in fr(A)∩Π−1

m (frA′), which in turn implies Theorem 2. We therefore
fix an arbitrary q ∈ {0, . . . , p− 1} and C ∈ Cq such that dim(C) ≥ q, and we prove
that FAq has a representation in C. (This in particular implies that FA has a
representation in any C ∈ C0, as desired.)

We proceed by reverse induction on dim C ≤ d′ + d − 1. Thus, if dim(C) <
d′ + d − 1, we also assume that for any q′ ∈ {0, . . . , p − 1} and C ′ ∈ Cq′

such that
dim C ′ > dim C and dimC ′ ≥ q′, FAq′ has a representation in C ′.

Below we write again π in place of πq+1
q . By (a) above, for any sequence (ai) in

A′ such that ai → a ∈ fr(A′) and lim Aq+1
ai

exists, we have

Ca ∩ lim Aq
ai

⊆
⋃

D∈Cq+1

C⊆π(D)

π
(
Da ∩ lim Aq+1

ai

)
.

Thus by Lemma 9 it suffices to find, for every D ∈ Cq+1 satisfying C ⊆ π(D),
a representation of FAq+1 in D. If dimD > dim C for such a D, then dimD ≥
q + 1 as well and we are done by the inductive hypothesis. We therefore put CC ={
D ∈ Cq+1 : C ⊆ π(D) and dimD = dim C

}
and assume that D ∈ CC ; so D is

the graph of a definable, fiberwise distribution g : π(D) −→ Gd
nq

of class Cp+2.
As Cq+1 is a stratification, the sets W =

⋃ {
E ∈ Cq+1 : dim E > dim D

}
and

W∪D are open in fr(Aq+1)∩Π−1
m (fr(A′)). Hence by (b) above, Proposition 8 applies

with B =
⋃

σ∈Σnq
fr′

(
((Aq)σ)1

)
: either

(i) the set L(ai) = (Da ∩ lim Aq+1
ai

) \ (
lim Bai

∪ cl(Wa ∩ lim Aq+1
ai

)
)

is empty
for every subsequence (ai) of A′ such that ai → a and lim Aq+1

ai
and lim Bai

exist, or
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(ii) g is tangent to π(D) and integrable (and hence b1 g is tangent to D and
integrable) and L(ai) is an embedded integral manifold of b1 ga and an
open subset of lim Aq+1

ai
for any subsequence (ai) of A′ such that ai → a

and lim Aq+1
ai

and lim Bai
exist.

Step 2: lifting Aq+1. Since dim(Ba) < d for all a ∈ R
m and A′ = ΠM (B), the

inductive hypothesis gives a representation fB : A′ −→ R
NB of FB. Furthermore,

by the inductive hypothesis FAq+1 has a representation in E for every E ∈ Cq+1

satisfying dim E > dim D, so by Lemma 9, FAq+1 has a representation fW : A′ −→
R

NW in W . We define f ′ : A′ −→ R
NB+NW by f ′(a) = (fB(a), fW (a)); then f ′

represents FAq+1 in W and represents FB . We now lift all our data via f ′: we write
m′ = m + NB + NW and put

Ã = liftf ′ Aq+1, B̃ = liftf ′ B, D̃ = liftf ′ D and W̃ = liftf ′ W ;

note that Ã and D̃ are fiberwise manifolds. We shall show that some f : gr(f ′) −→
R

N represents FÃ in D̃; the function h : A′ −→ R
N defined by h(a) = f(a, f ′(a))

then represents FAq+1 in D, as desired.
Let (ai) be any subsequence of A′ such that (ai, f

′(ai)) → (a, b) and lim Aai

exists. First, from Proposition 11 with B and R
m+nq+1 in place of A and W we

obtain
lim Bai

= cl
(
B̃

)
(a,b)

. (1)

Second, from Proposition 11 with Aq+1 in place of A we obtain

Wa ∩ lim Aq+1
ai

= W̃(a,b) ∩ cl
(
Ã

)
(a,b)

. (2)

Since the right-hand side is equal to
(
W̃ ∩ cl

(
Ã

))
(a,b)

, we define

Ẽ = D̃ ∩
(
cl(B̃) ∪ cl′

(
W̃ ∩ cl(Ã)

))
;

it follows that, with L(ai) as in (i) above,

L(ai) = (D̃(a,b) ∩ lim Ã(ai,f ′(ai))) \ Ẽ(a,b)

= (D̃ \ Ẽ)(a,b) ∩ lim Ã(ai,f ′(ai)).

On the other hand, equalities (1) and (2) above also imply that Ẽ(a,b) ⊆
lim Aq+1

ai
. Since (ai) is arbitrary, it follows that the function f ′′ : gr(f ′) −→

R
NB+NW defined by f ′′(a, f ′(a)) = f ′(a) represents FÃ in Ẽ. It therefore suffices

to find a representation of FÃ in D̃ \ Ẽ.

Step 3: defining a representation. If L(ai) = ∅ for all subsequences (ai) of A′

such that ai → a and lim Aai
exists, then any function f : gr(f ′) −→ R

N represents
FÃ in D̃ \ Ẽ. We therefore assume from now on that some such L(ai) is nonempty,
and hence by (ii) above that g is tangent to π(D) and integrable. We now define
g̃ : D̃ −→ Gd

n by g̃(a, b, x) = b1 g(a, x); then g̃ is tangent to D̃ and integrable.
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The only remaining problem preventing us from applying Proposition 13 now
is that fr

(
D̃ \ Ẽ

)
may not be closed. However, it follows from (1) and (2) above

that dim Ẽ(a,b) < d for any (a, b) ∈ cl(gr f ′). Therefore by the inductive hypothesis,
there is a representation h : Πm′(Ẽ) −→ R

N of FẼ .
Note that Πm′(Ẽ) ⊆ Πm′(D̃), and let {D′

1, . . . , D
′
k} be a partition of Πm′(D̃)

into definable cells compatible with Πm′(Ẽ) and such that h
∣∣D′

j is continuous
for each j satisfying D′

j ⊆ Πm′(D̃). Then for any j, since D̃ = liftf ′ D, the set
D̃j = D̃∩Π−1

m′ (D′
j) is a cell. Moreover, h represents FẼ and cl′(Ẽ) = Ẽ, so Corollary

12(2) implies that the set Ẽj = Ẽ∩Π−1
m′ (D′

j) is a closed subset of D̃j ; in particular,
fr

(
D̃j \ Ẽj

)
is closed.

Therefore, Proposition 13 applies, with Ã, D̃j \ Ẽj and g̃
∣∣(D̃j \ Ẽj

)
in place of

A, D and g. Thus, for each j there is a representation fj : gr(f ′) −→ R
Nj of FÃ in

D̃j \ Ẽj . It follows that f = (f1, . . . , fk) : gr(f ′) −→ R
N1+···+Nk represents FÃ in

D̃ \ Ẽ, as desired. This finishes the proof of Theorem 2.
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