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1. Introduction

The Weyl algebra of differential operators with polynomial coefficients on Euclidean
n-space is the image of the Heisenberg algebra under the Schrédinger representa-
tion. The classical Fourier transform induces an automorphism of the Weyl algebra
which interchanges the role of polynomial multiplication operators and constant
coefficient differential operators. This automorphism (and its generalizations) is
called the duality isomorphism in the present paper. Plancherel and inversion
formulas for the classical Fourier transform can be easily derived from the above
observations by first proving algebraic versions on the cyclic module of the Weyl
algebra generated by the Gaussian. See the survey paper [19] for more details and
references. We generalize this approach to difference Fourier transforms associated
to nonreduced root systems.

Work of Dunkl [13], [14], Heckman [20], Opdam [38], de Jeu [22], Cherednik
(2], [3], [6], Macdonald [34], Noumi [35], [36] and others have led to generalizations
of the Weyl algebra and the underlying Heisenberg algebra, which are naturally
associated to Fourier transforms arising from harmonic analysis on Cartan motion
groups, Riemannian symmetric spaces and compact quantum Riemannian spaces.
In each case the Weyl algebra is replaced by an algebra consisting of differential
(or difference) reflection operators and multiplication operators. This generalized
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Weyl algebra may be realized as the faithful image of (an appropriate degeneration
of) the double affine Hecke algebra under Cherednik’s representation (the analogue
of the Schrodinger representation). In each case the generalized Weyl algebras form
a powerful tool in the study of the related Fourier transforms. The main goal of
the present paper is to extend this picture to include the case of Fourier transforms
arising from harmonic analysis on the simplest quantum analogue of a noncompact
simple Lie group, namely the quantum SU(1,1) group.

Some remarks are here in order on the theory of locally compact quantum
groups. Despite the fact that compact quantum groups are well understood, also
from the viewpoint of harmonic analysis (see e.g., [36]), this is by far not the
case for moncompact semisimple quantum groups. Recent developments though
essentially settled the theory for the quantum SU(1,1) group. A quantization
of the normalizer of SU(1,1) in SL(2,C) was constructed as a locally compact
quantum group by Koelink and Kustermans [25] (see Kustermans and Vaes [31] for
a detailed account on the general theory of locally compact quantum groups). The
harmonic analytic aspects for the quantum SU(1,1) group were analyzed in [23],
[24] and [26]. The harmonic analysis on the quantum SU(1, 1) group in [26] led to
an explicit Fourier transform, whose Plancherel and inversion formula were derived
by classical function-theoretic methods in [27]. The transform is called the Askey—
Wilson function transform since its kernel forms a meromorphic continuation of
the well-known Askey—Wilson polynomials (see [1]) in their degrees.

To explore the role of the double affine Hecke algebra for the Askey—Wilson func-
tion transform, we first need to construct nonsymmetric variants of the transform
which induce the proper analogue of the duality isomorphism on the double affine
Hecke algebra. The construction of the associated kernel is developed in this paper
for nonreduced root systems of arbitrary rank. Two basic features of the kernel
are its explicit series expansion in terms of Macdonald—-Koornwinder polynomials,
and the fact that it is a meromorphic continuation of the Macdonald-Koornwinder
polynomials in their degrees. These results are inspired by Cherednik’s paper [5],
in which such kernels were introduced for reduced root systems.

Restricting attention to rank one, we use these kernels to define nonsymmetric
variants of the Askey—Wilson function transform which induces the analogue of the
duality isomorphism on the double affine Hecke algebra. Instead of defining the
transforms on compactly supported functions (as was done in the classical approach
[27]), we define it now on a space of function consisting of a direct sum of two cyclic
modules of the double affine Hecke algebra. From harmonic analytic point of view
a second cyclic module is needed to take care of the “strange part” of the support of
the Plancherel measure, i.e., the part of the support coming from contributions of
unitary representations of the quantized universal enveloping algebra Ug(su(1,1))
which vanish in the classical limit.

Explicit evaluations of the images of the cyclic vectors under the nonsymmet-
ric Askey—Wilson function transform then suffice to prove algebraic inversion and
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Plancherel type formulas for the nonsymmetric Askey—Wilson function transform.
The image of the cyclic vector of the “classical” module follows from an extension
of the polynomial Macdonald—Koornwinder theory. This in particular entails ex-
plicit formulas for the Macdonald—Koornwinder type constant term of the product
of the inverse of a generalized Gaussian and two Macdonald-Koornwinder polyno-
mials (see [5] for the analogous results in the reduced setup). The computation
of the image of the cyclic vector of the “strange” module (see Proposition 8.12)
is a key result which combines many of the properties of the kernels with some
elementary elliptic function theory. The particularly large number of parameter
freedoms, caused by the fact that we are dealing with nonreduced root systems, is
also used here in an essential way. This may be seen as an extra justification for
the special attention to nonreduced root systems in this paper.

Finally we show that the results described in the previous paragraph easily lead
to new proofs of the Plancherel and inversion formula for the symmetric Askey—
Wilson function transform (see [27] and [43] for the classical function-theoretic
approach).

Considering difference analogues of Harish-Chandra transforms only from the
viewpoint of double affine Hecke algebras lead to several other self-dual differ-
ence Fourier transforms, see e.g., [8] and [9]. This flexibility in choices, com-
bined with the lack in comprehension of non-compact semisimple quantum groups,
thus poses essential problems in deciding which difference analogues of the Harish-
Chandra transform arise from harmonic analysis on non-compact quantum sym-
metric spaces. The present, detailed study of the Askey—Wilson function transform
from the viewpoint of double affine Hecke algebras hopefully provides some new
insights on this matter.

The paper is organized as follows. In Section 2 we introduce the double affine
Hecke algebra, the duality isomorphism and the analogue of the Gaussian. In Sec-
tion 3 we introduce the concept of difference Fourier transforms. We furthermore
explain what the main techniques are going to be in the study of such transforms.
In Section 4 we show how the polynomial Macdonald-Koornwinder transform (in-
troduced in [41]) fits into this general scheme. In Section 5 we introduce kernels
with which explicit integral transforms can be constructed that fit into the concept
of difference Fourier transforms. We call the kernels Cherednik kernels since they
generalize kernels introduced by Cherednik in [5]. In Section 6 we study the main
properties of the Cherednik kernels. In particular, we show that the Cherednik
kernels meromorphically extend the Macdonald—Koornwinder polynomials in their
degrees, and that they satisfy a natural duality property which extends the duality
of the Macdonald—Koornwinder polynomials. In Section 7 we study an extension
of the Macdonald—Koornwinder transform, acting on the cyclic module generated
by the inverse of the Gaussian. It forms the second example of a difference Fourier
transform in the sense of Section 3. In Section 8 we restrict attention to rank
one. We define the nonsymmetric Askey—Wilson function transform as an integral
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transform with kernel given by the (rank one) Cherednik kernel. We show that it
also qualifies as a difference Fourier transform in the sense of Section 3. We prove
inversion and Plancherel Theorems on the algebraic and on the L2-level. In the Ap-
pendix we finally discuss certain bounds for Macdonald-Koornwinder polynomials
that are needed for the construction of the Cherednik kernels.

Acknowledgements. The author is supported by a fellowship from the Royal
Netherlands Academy of Arts and Sciences (KNAW).

2. The double affine Hecke algebra

2.1. The affine root system of type CVC,. Denote by ¢; (i = 1,...,n) the
standard orthonormal basis of the n-dimensional Euclidean space (R™, (,-)). Let

Y={te *eihicicion U{F26:} CR"

be the root system of type C),. Let Aff(R™) be the space of affine linear transfor-
mations f: R™ — R. As a vector space, Aff(R™) ~ R"™ & RJ via the formula

(v+ X)) (w) = (v,w) + A, v,weR" NeR.

We extend the form (-,-) to a positive semi-definite form on Aff(R™) by requiring
the constant function ¢ to be in the radical of (-,-). Then

R =Y+ 75 C Aff(R")

is the affine root system of type C,. Associated with f € R, we have the reflection
r; € Glg(Aff(R™)) defined by

RN iY')
Ti(9) =g 2<f,f>

The affine Weyl group W is the subgroup of GI(Aff(R™)) generated by all the
reflections ry (f € R).

There are two important descriptions of W, namely as a Coxeter group, and as
a semi-direct product of a finite reflection group with a lattice. For the presentation
of W as a Coxeter group, we choose the standard basis {ag, a1, ..., a,} of the affine
root system R by

fi g€ Aff(R™).

ap =0 — 261, a; =€ — €11, Gn =26,

fori=1,...,n—1, and we set r; = r,, for the associated simple reflections. The
above choice of basis induces a decomposition of ¥ and R in positive roots and
negative roots, the positive roots being given by

Z+ = {Gi + 6]‘}1‘<j U {261‘}1’, R+ = 2+ U {f €ER ‘ f(O) > O}
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Furthermore, it is well known that the affine Weyl group W is generated by the
simple reflections r; (i = 0,...,n). The fundamental relations between the simple
reflections r; are given by the Coxeter relations

Tl iTipl = Tip1 il T, 1 =0,0=n—1,
TiTi41Ts = Ti41T5T541, = 1,...,71—2,
’I“i?"j :’I"jTi, |Z—]| 22,
r2 =1, i=0,...,n.

Let Wy C W be the subgroup of W generated by r1,...,7,. Then Wy is the
Weyl group of the root system ¥, hence isomorphic to S, x (£1)" with S, the
symmetric group in n letters. Let A be the Wy-invariant Z-lattice of R™ with basis

{ei}ia .
A= @ Zei.
=1

The lattice A can be naturally identified with the coroot lattice as well as with
the weight lattice of the root system X. The second description of the affine Weyl
group W is given by

W ~ WO x A

with the lattice elements A € A acting on Aff(R™) by the formula
M) =F+(f, N, A e, feAff(R").
Finally we note that the set
Ry = RU w% U w%" C Aff(R")

is a (nonreduced) affine root system having W as its associated affine Weyl group.
In Macdonald’s [33] terminology, R, is the affine root system of type CVC,,.

2.2. Difference multiplicity functions. The nonreduced affine root system
R, of type CVC, has five W-orbits, namely

a a
WaOa W?O7 Wai; W(Zn, W?na
where i may be arbitrarily chosen from the index set {1,...,n —1}.

A W-invariant complex-valued function on R, is called a multiplicity function.
We denote a multiplicity function by t = {t¢}secr,.,., with t; € C its value at the
root f € Ry, and we set t; =1 when f € Aff(R") \ R,,.

In the theory presented in the next (sub-)sections, a sixth generic parameter
q% € C* appears. Its square g is a parameter that arises from the realization of the
group algebra C[W] as the algebra of difference reflection operators with constant
coefficients. The pair a = (t, q%), where t is a multiplicity function and q% e Cx,
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is called a difference multiplicity function. Alternatively, a difference multiplicity
function « can be represented by an ordered six-tuple

= (tvq%) = (t07u07tn7un7t7q%)7

where
to = tay, ug = tag/2, t =1, =1, t, =ta,, Up = tq, /2,
where i may be any integer from the index set {1,...,n —1}.

We define two “involutions” ¢ and 7 on difference multiplicity functions, both
preserving the parameter q%. The involution o acts on a = (t, q%) by interchang-
ing the value of t on the Wag-orbit with its value on Wa, /2, while 7 acts by
interchanging the value of t on the Wag-orbit with its value on Wag/2. The new
difference multiplicity functions are denoted by «, and a.., respectively.

Associated with a generic difference multiplicity function « = (¢, q% ), we write
ap = (t71,¢72) with t! = {t;l}feRm, for the difference multiplicity function
with inverted parameters.

If an object H depends on a difference multiplicity function o = (t, q%), then
e.g., Higr (or H 77) denotes the object H depending on the difference multiplicity
function oior = ((a4)s)r. For example, if

H=H

(to.u0,t i g %)’
then

Hior = Hior o im0 4 by
Throughout the remainder of this section we fix a generic difference multiplicity
function a = (t,¢2).

2.3. Difference reflection operators. Let A = C[z*!] be the algebra of Laurent
polynomials in n indeterminates = = (x1, ..., x,), C(z) the quotient field of A and
O = O((C*)™) the ring of analytic functions on the complex torus (C*)". We
write M = M((C*)") for the field of meromorphic functions on (C*)™. Since
(C*)™ is a connected domain of holomorphy, M is isomorphic to the quotient field
of O (see e.g. [19, Thm. 7.4.6]). We have natural inclusions

AcC C(x) c M, ACOcCM.
Let C[W] be the group algebra of the affine Weyl group W over C.
Definition 2.1. The algebra D, of g-difference reflection operators with meromor-
phic coefficients is defined by
Dy = M @c C[W]
with multiplication

(g ®@v)(h®@w)=g(vh) ® vw, g heM, w,veW,
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where W ~ W, x A acts as field automorphisms on M by the formulas

()\h) (x) = h(q)‘lasl, 2z, . .. ,q)‘"zn),
(rih) () = h(T1, .., Tie1, Tit1, Tiy Tty -+, Tn), (2.1)
(rnh)(x) =h(w1,. . 21,1,

for h(z) = h(z1,...,2n) E M, A=3" Nje; € Aand fori=1,...,n— 1.

Note that the action (2.1) of W depends on the sixth parameter q% of the
underlying difference multiplicity function o. When confusion can arise on the un-
derlying difference multiplicity function, we say that W acts by constant coefficient
g-difference reflection operators when the action is given by (2.1) (i.e., when the

sixth parameter of the underlying difference multiplicity function is q% ).
The algebra D, acts on M by

((gw)h)(z) = g(z)(wh)(z), ge M, weW (2.2)

for h € M, with the action of W on M as given by (2.1). Here we use the notation
g(x)w or gw for a pure tensor g ® w € D,. We use the terminology that D, (or a
subalgebra of D) acts as ¢-difference reflection operators on some function space
on the complex torus (C*)™ when the action is given by formula (2.2), with the
action of W on functions h defined by (2.1).

We define monomials by

ol = q%xi\lxg‘z xi‘b" ceA
for any f = A + %mé e A+ %Zé, where A = >, A\je;. Again note here that
this definition depends on the sixth parameter q% of the underlying difference
multiplicity function «, but it will always be clear from the context what the
underlying difference multiplicity function is. Associated to any root f € R and

any difference multiplicity function « = (t, q% ), we now construct explicit difference
reflection operators Ty = T} € D, as follows.

Definition 2.2. For f € R, the difference reflection operator Ty = T € Dy is
defined by
Ty =ty + 1ty c(2)(ry —id),
with coefficient cf(z) = ¢ (z) € C(x) given by
(1= ttgjoxl ) (14 t5t; 2l /2)

cr(x) = T (2.3)

when f/2 € R, and
(1 —t2zf)
() = =7y

when f/2 & Ry,
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Note that the formula (2.4) for ¢y in case that f/2 ¢ R,, can formally be
written as (2.3) in view of the convention that t; = 1 when g € Aff(R™) \ R,,.

The following crucial theorem, due to Cherednik in the reduced setup, was
proved by Noumi [36].

Theorem 2.3. The g-difference reflection operators T; = T5* € D, defined by
T; = T,, (j = 0,...,n), satisfy the fundamental commutation relations of the

affine Hecke algebra of type 5n In other words, they satisfy the braid relations
LT 1T = T T 15, i=0,i=n-1,
LT T = T, (1 Ti T4, 1=1,...,n—2, (2.5)
and the quadratic relations
(T — tj)(T; + ;1) =0, j=0,...,m, (2.6)

in the algebra Dy.

Following Noumi [36], one can now define the Y-operators Y; = Y;* € D, for
i=1,...,n by

Y, =T Ty TpTpr - - T ToT - T (2.7)

The operator Y; is naturally associated to the lattice element €; € A considered as
an element of the affine Weyl group W ~ Wy x A, since

€ =Ti " Tp1TnpTp—1- " T1T0T1 - Ti—1 € W

is a reduced expression for ¢; € A C W. The following result follows from Theorem
2.3 and from the algebraic structure of affine Hecke algebras (see Lusztig [32] and
Noumi [36]).

Corollary 2.4. The operators Y; € Dy (i =1,...,n) pairwise commute.

The analogue of Cherednik’s double affine Hecke algebra can be defined explic-
itly in terms of generators and relations, see Sahi [39] (see also [41] and [42] for
alternative presentations). We take a shortcut in this paper by defining the double
affine Hecke algebra H directly in its image under Cherednik’s faithful realization
of H as ¢-difference reflection operators and multiplication operators (the analogue
of the Schrédinger realization of the Heisenberg algebra). For this we observe that
M, and hence A C M, is naturally embedded in D, via

g—gQe, geM,

where e € W is the identity element.
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Definition 2.5. The double affine Hecke algebra H = H, C D, is the unital
sub-algebra of D, generated by T; (j =0,...,n) and A.

It is clear that H is also generated as algebra by Yij[l7 xiil and T; fori =1,...,n.
Observe that H acts on A C M and on O C M by restriction of the natural action
of Dy on M.

2.4. The duality isomorphism. The Heisenberg algebra has a copy of SLy(Z)
in its automorphism group, generated within the metaplectic representation by the
Fourier transform and multiplication by the Gaussian. These two isomorphisms,
as well as their realization within the metaplectic representation, generalize to the
setup of double affine Hecke algebras.

In this subsection we introduce the isomorphism of the double affine Hecke
algebra associated with (the analogue of) the Fourier transform. In the follow-
ing subsection, we consider the isomorphism associated with multiplication by the
generalized Gaussian.

We first recall the so-called e-transform, see Sahi [39].

Theorem 2.6. There exists a unique, unital algebra isomorphism
e=¢€: H=Hy — Hio

satisfying
e(Y;) =y, e(T;) = Tiigfla €(x;) = Yiig

fori=1,...,n. Furthermore, € * = €4,.

By [41, Lem. 7.3] the assignment
Ti— x;17 T — Tji_1

fori=1,...,nand j =0,...,n uniquely extends to a unital algebra isomorphism
T :’H — H;. Furthermore, if I : M — M denotes the involution

(Ig)(z) =g(x™"), geM
where 2! = (z7', 25", ...,z 1), then it is easy to check that
ToX =1(X)ol, X eHn. (2.8)

Composing now € with f, we obtain the “duality isomorphism” (see [41, Def. 7.5])
we are looking for.

Corollary 2.7. The map 0 = i, o€ : H — H, is an algebra isomorphism,
satisfying
oz oYy ) = T¢, o(T;) =17, o(Y;) =zt

K3 K2

fori=1,...,n.
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Remark 2.8. Note here that we use the notation o for the isomorphism o of
the double affine Hecke algebra, as well as for the involution on the (difference)
multiplicity function o = (t, q%). Which one is used should always be clear from
the context (as a generic rule, o as involution on difference multiplicity functions
will always be written as a sub-(or super-)index, in contrast with o regarded as an
isomorphism of the double affine Hecke algebra). Such conventions will also hold
for other (anti-)isomorphisms of the double affine Hecke algebra defined at later
stages.

In [41, Prop. 8.8] it is proved that the nonsymmetric (polynomial) Macdonald—
Koornwinder transform induces the automorphism ¢ on H, see also Section 4.

2.5. The Gaussian. We assume in this subsection that the parameter q% in
the generic difference multiplicity function a = (to,u07tn7un,t,q%) has modulus
unequal to one.

Cherednik introduced an analogue of the Gaussian for double affine Hecke al-
gebras for reduced root systems, see [5] and references therein. In this subsection
we generalize Cherednik’s construction to the nonreduced setup.

Recall the standard notations for g-shifted factorials (see [16]),

m k—1
(Zl7~~-aZmQQ)k:H(ZiQQ)k7 (z:9), = H(lfzqi)’ (2.9)

where z1,...,2m,2 € Cand k € NU{oo} with N={0,1,2,...}. Here the modulus
of ¢ should be taken < 1 when k = oc.

Definition 2.9. i) For |¢| < 1 the Gaussian G(-) = G, (-) € M is defined by the
infinite product

Gwy= [ Ottt
fEWaoNR4

n

= H(—q%toualxi, —q%tougl/%‘;Q)O@ .
i=1
ii) For |¢| > 1 the Gaussian G(-) = G4 (-) € M is defined by the infinite product

Gz)= [] a+ trty el /?)
feEWaoNR_

n

=T (~a = toug wi, —q 2 toug fussqa ™) .-
=1

Remark 2.10. a) We used two different ways of representing the Gaussian in
Definition 2.9, the first in terms of the root data, the second in terms of g-shifted
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factorials. The equivalence of the two expressions can be easily verified using that
Wag N Ry = X' + (14 2N)§ (2.10)
where X! C ¥ is the set of roots of length two:
Y= {4+2¢]i=1,...,n}.
b) The Gaussians for |g| < 1 and |g| > 1 are related by the formula

G(z) = Gy (z) 7" (2.11)
c) If to = up and |q| < 1, then
G(:zrf1 = H(*ql/zxn *ql/Qxi_l;Q)oo = (Q;Q);on Z q<A”\>/2x’\ (2.12)
i=1 AEA

in view of the Jacobi triple product identity [16, (1.6.1)] for theta functions. Up to
the (irrelevant) constant (q; q) (;", this coincides with the definition of the Gaussian

of type C,, as given by Cherednik, see [5] and references therein.

Proposition 2.11. The inner automorphism
X—GXG!

of Dy restricts to an algebra isomorphism 7 =74 : H — H,. Its action on a set of
algebraic generators of H is given by

(%) = 3, (Ti) =17, (To) = ¢ 2an Ty

fori=1,...,n.

Proof. 1t suffices to show that conjugation by G on the algebraic generators of
H C D, is as stated in the proposition. Clearly, conjugation by G maps the
coordinate functions z; to themselves. Conjugation with G maps T; to T for
i=1,...,n since G is Wy-invariant and since T; = T for i = 1,...,n (indeed, 7
acts on o = (t,¢2) by interchanging the parameters to = ta, and ug = tg, /2, which
only occur in the generator Tp).

It remains to prove that 7(Tp) = ¢~ 221TJ ~'. Observe that the action of the
simple reflection ro € W C D, on the Gaussian G € M is given by

(1+toug q2a7")

(TOG)(SC) = G(ql‘il,$27...7$n) = — T
! (14 toug 'qg~2a1)

G(),

hence
(1- touoq%xfl)(l + toualq_%xl)
(1-— qxfz) (2.13)

1 _
=q cx1Y, 1620 (z).

to cao () =ty
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Furthermore, observe that

(to — tg") + (uo — ug ")g2ay’

1-— qx1_2
(uo —ug gz + (to — to g2 ey (2.14)
1—qa;?

to — ty  Cag () =

1
= 2

_1 _ _
=q 2z (uy " — ug 1020(90)).

We then compute in D, using (2.13) and (2.14),

-1 -1 -1 G
GTyG " =tg— ty Cag + 19 Cag—=T0
ToG
-1 -1 -1 7 -1 7
=q 21 (uo — Uy Cqy T Up caoro)
-1 T—1
=4q leTO B

which completes the proof of the proposition. a

2.6. SLo-type commutation relations. Let w € W and choose a reduced
expression w = r;, 7, - - - ;. We denote

Tw:aniz"'Til E7_[7

which is independent of the choice of reduced expression since the T}’s satisfy the
én—braid relations. Similarly, ¢, = t;,ti, ---t;, € C is independent of the reduced
expression of w, where t; = t,, is the value of the multiplicity function t at the
simple root a; € R.

Let wy € Wy be the longest Weyl group element in Wy. Then for all X € H,
we have the relations

(cp,0000,00)(X) = ﬂ;O2XT£O = (05 0 Tor 0 Orgr © Trg 0 0+ 0 T)(X),

(07500, 07)(X) = (T00,00)(X). (2.15)

Here the composition of isomorphisms on the right-hand side of the first equality
in (2.15) is well defined since 070 = 70T when acting on difference multiplicity
functions.

The relations (2.15) between the isomorphisms o and 7 of H should be viewed
as the analogues of the characterizing relations

~q_ (1O} _ —x3 o~ ~p
o —(01 = (o7)°, 0T =70

= (%) 7= (01)

of the modular group SLy(Z).

for the generators
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We do not give a detailed proof of the relations (2.15) since they are not needed
in the remainder of the paper. We refer to [4, Thm. 2.3] for the analogous result
in case of reduced root systems. We only note here that the first equality in (2.15)
follows from the simpler formula (0, 0 0)(X) = T, ' XT,,, for X € H.

3. General remarks on difference Fourier transforms

In this section the concept of Fourier transforms associated with o is introduced in
an informal manner. Rigorous statements will follow in subsequent sections.

Let V =V, and W = W, be some function spaces on the complex torus (C*)"
on which H acts as g-difference reflection operators. We assume that V is stable
under the inversion operator (Ig)(x) := g(z~!). This in particular implies that
H; acts as g~ '-difference reflection operators on V. The relation between the two
actions on V is given by the formula (2.8).

The starting point of our considerations is the search for explicit linear trans-
formations

F=F,:V—->W,,

which satisfy
FoX=0(X)oF, VX eH, (3.1)

where o is the duality isomorphism of H, see Corollary 2.7. We call such a lin-
ear endomorphism F' a Fourier transform associated with o, or sometimes just a
difference Fourier transform.

We are mainly interested in difference Fourier transforms F' which can be real-
ized as integral transforms. The property (3.1) then formally translates to explicit
transformation properties of the associated kernels under the action of the double
affine Hecke algebra. To be more precise, we first need to recall certain anti-
isomorphisms of the double affine Hecke algebra H which play the role of adjoint
maps.

Lemma 3.1. i) There exists a unique unital antialgebra isomorphism I = 1, :
H — H; satisfying
HI) =T/, @) =27
forj=0...,nandi=1,...,n. Furthermore, {~! = f;.
ii) There exists a unique unital antialgebra isomorphism ¢« = 1o : H — H
satisfying
UT) =T,  uz) =

forj=0....,nandi=1,...,n. Furthermore, 1”1 = 1.

Proof. i) See [39, Prop. 7.1].
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ii) This follows from the fact that ¢ := {y ot = {1 oI : H — H is a unital
antialgebra isomorphism which fixes the generators 7 and z; for j =0,...,n and
1=1,...,n. ]

Suppose now that we are given a linear map F' : V — W, of the form
(Fg)(v) = (9.€:(v719), g€V (3.2)
for some kernel &;, with (~, ) = (~, )a some bilinear form satisfying

for X € H, g € V and h in some completion of V. At a formal level, the con-
dition that the map F : V — W, defines a Fourier transform associated with o
corresponds to the transformation behavior

(X€(y,)) (@) = (Vs(X)€(2))(v), X €Hy (3.3)
of the kernel €;, where ¥ = v, : H — H, is the antiisomorphism
Y =tis00101.

Here the double affine Hecke algebra acts by ¢~ !-difference reflection operators on
both sides of (3.3). The antiisomorphism ¢ is the so-called duality antiisomorphism,
see [39] and [41]. In particular, it has the following special properties.

Proposition 3.2. The map v = {1, 0 03 o I is the unique unital antissomorphism
¥ H — Hy satisfying

V() =Y, (@) =17, () =t

fori=1,...,n. In particular, =1 = 1,.
Proof. This is an easy verification, see e.g., [39, Sect. 7] for details. O

The transformation behavior (3.3) for a kernel &; hints at several important
(and desirable) properties for ;. For instance the fact that ¢ maps the com-
muting Y-operators to multiplication operators implies that &;(v,-) is a common
eigenfunction of Yi:t € H; with eigenvalue ;" ! for i = 1,...,n. Furthermore, the
“involutivity” w{ - ;o of the antiisomorphism ); hints at the symmetric role of
the geometric parameter « and the spectral parameter v in &;(v,2). In fact, the
kernels we encounter indeed turn out to satisfy the duality property

€ (v, z) = Ego(2,7) (3.4)

after a proper choice of normalization.

The property that a transform F' satisfies the transformation behavior (3.1)
turns out to be a very strong condition. In fact, for the transforms we encounter
in this paper, the corresponding modules V' and W are cyclic H-modules, or they
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consist of a direct sum of two cyclic H-modules. In each case, the cyclic vectors
are given explicitly. The transformation behavior (3.1) of F' reduces the study of
the transform to the explicit evaluation of the image of the cyclic vectors under
F. Again by the transformation behavior (3.1) of F', the computation of the image
of the cyclic vectors reduce to explicit constant term evaluations (e.g. Macdonald
type constant term identities and Macdonald-Mehta type identities).

To analyze inversion formulas for difference Fourier transforms, we make a simi-
lar, formal analysis for Fourier transforms J, = J,_ : W, — V associated with the
isomorphism o1, i.e., linear maps satisfying the opposite transformation behavior

JyoX =0"YX)oJ,, VX €Hg, (3.5)

where V' and W are as before. When no confusion can arise on the underlying
isomorphism, we also use the terminology difference Fourier transforms for such
transforms J,.

We now assume that J, is of the form

(Jag)(x) = [gv 6('717)]07 (36)
with [-,+] = [-,"]a a bilinear form satisfying
[Xg,h] = [9,(X)h]

for X € H, g € W and for & in some completion of W. The fact that J, is a
Fourier transform associated with o~! then formally relates to the transformation
behaviour

(Xe(y,)(@) = (V(X)€(,2))(v), XeH (3.7)

of the kernel €, since ¢ = 1, o 0. Here the double affine Hecke algebra acts on
both sides of (3.7) by g¢-difference reflection operators. In view of the (expected)
duality (3.4) of the kernels, it is therefore plausible that a given difference Fourier
transform F': V' — W, of the form (3.2) can be inverted by an explicit transform J,,
which has the same kernel as F', but depending now on the difference multiplicity
function ay, instead of a. All these features are shown to be true for the difference
Fourier transforms considered in this paper.

It is clear from the above considerations that the first priority should be to
construct kernels € satisfying the transformation behavior (3.7) under the action
of the double affine Hecke algebra. The first example of such a kernel &(~,z)
can be defined in terms of Macdonald—Koornwinder polynomials, but the spectral
parameter v then runs through the discrete, polynomial spectrum of the operators
Y; € H. This restrictive kernel can be used to define the so-called polynomial
Macdonald-Koornwinder transform (see [41]), which gives a first example of a
difference Fourier transform. In Section 4 we explain the concepts introduced in
this section for the polynomial Macdonald—Koornwinder transform.

In Section 5 we meromorphically extend this polynomial kernel & while pre-
serving the desired transformation behavior (3.7) under the action of the double
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affine Hecke algebra. This kernel was written down explicitly by Cherednik [5] for
reduced root systems. In Section 7 and Section 8 we construct and study related
difference Fourier transforms in full detail, following closely the general philosophy
as explained in this section.

4. The Macdonald—Koornwinder transform

In this section we recall a known example of a Fourier transform F : V — W,
associated with o, the so-called Macdonald-Koornwinder transform (see [41]). In
this case F' is defined as an integral transform with kernel expressed in terms of
nonsymmetric Macdonald—Koornwinder polynomials. In subsection 4.1 we intro-
duce the modules V and W; in Subsection 4.2 we introduce the kernel & and in
Subsection 4.3 we define the associated bilinear forms (-,-) and [-,-]. In Subsection
4.4 we construct the Macdonald—Koornwinder transform and its inverse. Most re-
sults can be found directly or indirectly in [36], [39] or in [41] (see also the lecture
notes [42]). T have decided to be quite detailed in this section, since the results play
a key role throughout this paper. Furthermore, the theory is presented in such a
way that it directly fits into the general scheme of difference Fourier transforms as
discussed in Section 3.

Throughout this section we fix a generic multiplicity function o = (t, q2). After
Subsection 4.2 we impose extra conditions on «, see the beginning of Subsection 4.3.

4.1. The modules. For the Macdonald-Koornwinder transform F : V — W,
we take V' to be the cyclic H-module A, with cyclic vector 1 € A the Laurent
polynomial identically equal to one. The target space W = W, = Fy(Sto) is the
linear space of functions g : St — C with finite support, where S = S, C (C*)”
is the spectrum of the commuting elements Yi,...,Y,, € H, considered as an
endomorphism of A via their action as g-difference reflection operators.

We now introduce the H-module structure on Fo(Sis). In [41, Prop. 8.8] the
H-module structure on Fy(Sis) was constructed in an indirect manner, using the
Macdonald-Koornwinder transform in an essential way. In order to emphasize the
natural order of definitions and results in the study of Fourier transforms associated
with o (see Section 3), we give here a detailed account on a direct construction of
the H-module structure on Fo(Sis ).

We first need to recall the explicit form of the polynomial spectrum S = S,,
see e.g., [39] and [41]. It is naturally parametrized by the lattice A,

S = {S)\ ‘ A€ A},
with sy = s§ given by

sy = (3)\,17 5325 e 5)\7n)7 Sxni = (tnto)(m(>\)76i)t(/>m(A)yeq,)q(NEi)’
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where pp, (), pr(X) € A are given by
pm(/\) = Z Sgn(<)‘aa>)av’ pl(/\) = Z Sgn(</\’a>)av'

aezﬁ ouEElJr

Here sgn(m) is equal to 1 if m € N and equal to —1 if m € Z g, X} and E;’ are the
positive roots of 3 of squared length two and four respectively, and oV = 2a/{a, a)
is the coroot of «.

Observe that the spectrum S does not depend on the parameters ug and wu,, of
the difference multiplicity function o, and that the spectral points sy = s satisfy

sh=s7',  VYieA

Note also that sy = s§ € S is the spectral point corresponding to the common
eigenfunction 1 € A of the Y-operators Y7,...,Y,.

Let F(St0) be the space of functions ¢ : St — C (without finiteness conditions).
We first introduce an action of W on F(S;,), which we call the dot action. It is
defined by

(w-g)(si7) =g(sk ), weW, XeA

for g € F(S;,) with the action of W on A defined by

(_1_A17>\27)\3a-~'a)‘n)7 .7207
’I"j')\: (>\17"'7>\j—1aAj+17>\ja)\j+27"'7>\n)7 1§j§n71,
()‘17'”7)\77,717_)\774)7 J:n

Note that A\- = A+ p for A\, u € A, where A € A is viewed as an affine Weyl group
element in W ~ Wy x A.

Lemma 4.1. Fiz j € {0,...,n} arbitrary.
a) For any function g : (C*)™ — C we have

(rig) () = (i - gls., ) (s3)
when XA € A satisfies rj - A # X\, where ;g is the action of r; € W on g as constant
coefficient q-difference reflection operator (see (2.1)).
b) The rational function cq; € C(x) is regular at the spectral points s € Sio.

Furthermore,
caj(sia)z() S i A=A (4.1)

for all X € A.

Proof. a) See the proof of [39, Thm 5.3].

b) It is important to recall here that the difference multiplicity function « is
assumed to be generic. The regularity follows then from the explicit expressions
for ¢,; and s € S;,. In a similar manner one checks that cao(sig) # 0 for all A € A.
Since rg - A # X for all A € A, this proves (4.1) for j = 0.
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For j € {1,...,n — 1} we observe that
Ca, (31/;\0) -0 < (Si‘f)aj — (tnun)*(Pm(A)vaj)t*(ﬂm()\)»aj)q*(%aj) —¢2
by the explicit expression for ¢,; (see (2.4)). On the other hand, it is easy to check
that (s37)% = t~2 if and only if 7 - A = \.

For j = n the condition ¢, (si ) = 0 is equivalent to the condition that ( i“T)éﬂ

is equal to (t,u,)~! or to —t; lu,, in view of (2.3). By the explicit expression for
s)\ , only the equality ( ig)en = (tnu,)~ ! can happen for some A € A. Furthermore,

one easily checks that (s 10)5" = (tpu,)~ ! if and only if r,, - A = A\, which proves
(4.1) for j = n. O

Using the above lemma we can define an action of H on F(S;,) as follows.

Lemma 4.2. For g € F(St,) and X € H, set

(X - 9)(s) = (X7)(s), s € Syo, (4.2)
where g : (C*)" — C is an arbitrary function satisfying g|s,, = g, and with the
action of X € H on g in the right-hand side of (4.2) by g-difference reflection

operators. Then (4.2) is well defined (i.e., independent of the choice of extension
g of g), and it defines a left action of H on F(Sis).

Proof. Tt suffices to prove that formula (4.2) is independent of the choice of exten-
sion g of g € F(S;»). This is clear when X € H is multiplication by a Laurent
polynomial p € A. Lemma 4.1 shows that

(T59)(s) = tjg(s) + t7 ca, () ((rj - 9)(s) = 9(s)),  Vs€Sp  (4.3)
for j € {0,...,n}; hence (4.2) is also independent of the choice of extension g of ¢

when X = T (=0,...,n). Since T; ( =0,...,n) and the p € A generate H as
an algebra, a btralghtforward 1nduct1ve argument shows that (4.2) is well defined
for all X € H. O

The standard basis of (S, ) consists of the delta functions 6, = 05 € Fo(Sio)
for u € A, which are defined by

5 (Sicr) _ 1, lf A= s
0, if A#pu.

Lemma 4.3. The subspace Fo(Sto) C F(Sio) of functions with finite support is a
cyclic H-submodule of F(Sio), with cyclic vector §g € Fo(Sio)-

Proof. By (4.3) it is clear that Fo(S;s) C F(Sto) is an H-submodule.
Since W acts transitively on A under the dot action, we may define the height
h(M\) € N of A € A to be smallest nonnegative integer m such that w - A = 0 for
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some w € W of length m. To complete the proof of the lemma we show that
0x € H - 8o C Fo(Si») by induction to the height of A € A.

It suffices to prove the induction step. Let m € Z and assume that §,, € H-do
for all p € A with h() < m. Let A € A with h(A) = m. Choose a w € W satisfying
l(w)=mand w-A=0. Let w=ry,r;, -1, beareduced expression. We define
inductively

>\j1:7‘ij')\j+1€1\, j=1....,m
starting with A,,+1 := A. Observe that A\ = 0, and that the \; (i =1,...,m) are
pairwise different. Indeed, if the \; are not pairwise different, then v - A = 0 for
some u € W with length strictly smaller than h(\), which is a contradiction. By
(4.3) it follows that

Tyr-00=(Ti,Tip_, - Th) G0 =cxdx+ D cudy

nEA:
B <h())

for some constants ¢, € C, with leading coefficient given explicitly by

m
_ 41 fo
ey =1y, H Cij(shj+1)’
i=1

cf. [41, Lem. 9.2]. Now c) # 0 by Lemma 4.1b), since \; = i, - A\j11 # Ajq1 for
j=1,...,m. Hence d\ € H - dg by the induction hypothesis. O

4.2. The kernel. The algebra of Laurent polynomials A decomposes in common
eigenspaces of Y; € H,
A= As)

s€S
with A(s) for s € § = S, the subspace

A(s)={pe Alr(Y)p=r(s)p, Vr € A}.

Here r(Y') € H for r € A is obtained by replacing the variables x1,...,x, by the
invertible, commuting operators Y7,...,Y, € H,. The common eigenspaces A(s)
are one-dimensional. We fix a unique eigenfunction E(s;-) = Eq(s;-) € A(s) for
s € § by requiring the normalization

E(s;s57) = 1. (4.4)
In particular, E(sp;-) =1 € A is the Laurent polynomial identically equal to one.

The Laurent polynomials {E(s;-)|s € 8} are called the Macdonald-Koornwinder
polynomials, cf. [39]. We now define a kernel

@A(', ) = @A’a(~7~) :SI X (Cx)n — C

by
Caals,x)= Eq(s7h 1), se S, ze (CHO™
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Proposition 4.4. For X € H and s € S; we have
(X€a(s,))(x) = (V(X) - €al-,2))(s)

where H acts on the left-hand side as q-difference reflection operators.

Proof. This follows from [41, Prop. 7.8] and from the definition of 4, using for-
mula (4.3). O

The duality between the spectral and geometric parameter of the kernel &4
now reads as follows.

Theorem 4.5. For all s € Sy and v € Sy,
Cals,v) =€ g0(v,s). (4.5)

Proof. See Sahi [39, Thm. 7.4]. O

4.3. The bilinear forms. In the remainder of this section we choose 0 < q% <1
and 0 < t < 1 arbitrarily, and add generic parameters tg, ug, t,, u, € C* to obtain
a generic difference multiplicity function

1 1
o = (t7 q2 ) = (t07 Uo, tn7 Unp, t7 qZ )
We construct suitable bilinear forms

(4 )= ()0 Ax AT

and
['7 ']A = [‘7 '].A,a :]:0(810) X -7:0(81;0) —C
satisfying the desired transformation properties
(Xp,r) , = (0, 1(X)7) 4, Vp,r € A,
respectively
[X - g,hla = [g,u(X) - hla, Vg.h € Fo(Sio)

under the action of X € H. We start with the definition of (-, ')A' Let A=A, €
M be the weight function

A(z) = fl‘R{ @) (4.6)

The fact that A(x) is well defined and meromorphic follows from the fact that
lg] < 1.
In case that the moduli of the Askey—Wilson parameters

{a,b,¢,d} = {tnun, —tnugl, q%touo, —q%tougl} (4.7)
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are strictly less than one, we can define the bilinear form (~, )

0:1)a = s [0z DA%, prea
’]I‘TL

a4 by

where T is the counterclockwise oriented unit circle in the complex plane (centered
at zero), and df = % e dlz—: is the standard product measure on T™. For the
bilinear form (~, ) 4 In case that some of the Askey—Wilson parameters have moduli
larger than one, one needs to integrate over 7", where 7 = 7, C C is a suitable
deformation of the unit circle T, in order to avoid certain poles of the weight
function A. For a detailed discussion we refer to the paper [40], where 7 is called
a t-contour. Here we only give the basic properties of such a deformed contour 7:
it is assumed to be a rectifiable, closed, counterclockwise oriented contour around
the origin, which satisfies 7-1 = 7 (set theoretically), and for which the Askey—
Wilson parameters a, b, c and d are contained in the interior of 7. The following
result follows from [41, Prop. 8.3].

Proposition 4.6. For all p,r € A and X € H = H,,
(Xp,7) = (0, 1(X)r) ,.

Remark 4.7. Proposition 4.6 is also valid for p and r being arbitrary analytic
functions on the complex torus (C*)™.

It follows from Proposition 4.6 that
(E(v;~),E¢(s_1;-))A:0, V,SES, v#£s (4.8)

since {(Y;) = (Yf)_1 fori=1,...,n.

Next we proceed by introducing [-, ] 4. The Weyl group Wy ~ S,, x (+1)™ acts
on A by permutations and sign changes of the coordinates. For A € A we write
wy, € S, x (£1)" for the element of minimal length such that wy '\ € A+, where

A+={>\=Z)\i6i|>\12/\22'-'2/\n20}

are the partitions of length < n. Let uy be the S,,-component of wy. Let ny be the
number of parts A; of A which are strictly smaller than zero. The discrete weight
function N = N, : Sto — C is now defined by

T=s

N(s{7) = Res <A(I)) A€ A, (4.9)

icr X1 Tp

where the multiple residue Res is given by

Res (1) = (-1)™ Res < Res ( - Res () - >> .
_do —fo __ o _ o
T=SX Tuy (DTN uy (1) \Fua@ T uy (2) Ty (n) =53 uy (n)
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The bilinear form [-,-]4 = [, "] 4o is defined by
9. hla= > a(hEN(G), g, € Fo(Sio)- (4.10)
SESto

Note that the definition of the bilinear form also makes sense for arbitrary functions
g,h € F(Sis), provided that the sum is absolutely convergent. The following
proposition follows now from the proof of [41, Prop. 8.9].

Proposition 4.8. For all X € H and all g, h € Fo(Sts),
(Xg,hla = [g,(X)D]a. (4.11)

Remark 4.9. Formula (4.11) also holds true when g, h € F(S;,) as long as abso-
lute convergence of the sums are ensured.

4.4. The difference Fourier transforms. We define the Macdonald—Koorwinder
transform Fy = Fq o : A — Fo(Si) by

(Fap)(s) = (p,€as(s™,)) ,, peEA
for s € S;. Furthermore, we define a linear map J4 = Ju,o : Fo(Sts) — A by

(JAQ) () = [g,€a,0(7)]a, 9 € Fo(Sto)-

The following proposition is now immediate from the previous subsections and
Section 3, see also [41, Prop. 8.8 & 8.9].

Proposition 4.10. a) The Macdonald-Koornwinder transform Fu : A — Fo(Sy)
1s a Fourier transform associated with o.
b) The map Ja : Fo(Sts) — A is a Fourier transform associated with o'

We mention as an immediate corollary the following result.

Theorem 4.11. a) Fla : A — Fo(Sy) is a linear bijection with inverse ¢ Jaq,
with the non-zero constant c4 given by
ca = (1,1)AN0(551).
b) We have
(B ) By(s™ ), _ No
1), N, (s 1)

foralls € S.

Proof. See [41, Thm. 8.10]. Since the proof is illustrative for later arguments, we
shortly recall the proof.
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a) By the orthogonality relations (4.8) of the Macdonald—Koornwinder polyno-
mials, we have

Fa(l) = (1,1)A53.
On the other hand, since @A(sgl,x) = E(sp;z) =1,
Ja0(05) = No(sgh)1 € A.

The statement now immediately follows from Proposition 4.10, since A (respec-
tively Fo(St)) is a cyclic H-module (respectively cyclic H,-module) with cyclic
vector 1 (respectively 7).

b) This follows by computing the right-hand side of

cAE(s;") = Jao(Fa(E(s;7), s€S
directly from the definitions of F4 and J 4, using the orthogonality relations (4.8).
O

One can reformulate the orthogonality relations in terms of an algebraic Plan-
cherel type theorem by introducing two additional transforms Fq4 = Fa 4 : A —

Fo(St) and Ja = Ja,a : Fo(Sto) — A,

(Fap)(s) = (€a(s.).p) 4

(Jag) (@) = [I€a10(-,2), gl 4
for p € A, g € Fo(Sio) and s € Sy, where I is the inversion operator (Ig)(s) =
g(s™') mapping Fo(St,) onto Fy(S,). By the previous theorem, Fa : A — Fo(St)
is a linear bijection with inverse ¢;'Ja,, : Fo(St) — A. Furthermore, J4 , (re-
spectively F'y) is the adjoint of F)y (respectively J4 ) in the sense that

[Fap. glac = (p: Ja09) 4

(J.A,o’gap)_A = [97 FAP}A,U

for all p € A and g € Fy(S;). This leads to the following Plancherel type theorem.

(4.12)

Corollary 4.12. a) For all p,7 € A,

[Fap, ﬁA”]A,a =ca(p, T)A'
b) For all g,h € Fo(Sy),

(Ja,09, jA,oh)A =calg,hlao-
Proof. a) For p,r € A we compute

ca(p,r) , = (Jao(Fap),r) , = [Fap, Fur)a.
The proof of b) is similar. O
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We end this section by recalling the explicit form of the weights A and N(s)
(s € Sir) in terms of g-shifted factorials. The expressions take their most natural
form by splitting off the nonsymmetric part of the weight functions A € M and
N(s) (s € Sir). Explicitly, we can write for the weight function A,

A(z) = C(x)At (x), (4.13)
with C = C, € C(z) and AT = A} € M given by
cw)= [ calw)  A*@ = [ —. (4.14)

wes P cr(x)
f(0)>0

and AT is easily seen to be Wy-invariant. In fact, AT is given explicitly in terms
of g-shifted factorials by

At (z) = ﬁ (77 %) o

-1 -1 -1 —1.
e (awi,axi yowg, bxy  cxy, el dxy, d; ,q)oc

1 1 (4.15)

-1 - -1 —
(xi:cj,xixj y Ly Xg, T, l'j

1.
X H —1 ’Q)loo ) ’

2 427 21 2.1 .—1.
1<i<i<n (t a:zxj,txlxj Jthxy Txg, ttry z;iq

see e.g., [42, Lem. 3.12].
For the discrete weight N(s) (s € St ), splitting of the nonsymmetric part gives
the formula
N(s37) = C(s¥)N*(s57) (4.16)
for A € A, where At € A" is the unique element in (Wy - A\) N AT, and with
Nt = N7 given by

+
NT(st7) = Res A=) , Ve At
a m:sﬁa Ty Tn

see [41, (8.17) & (8.20)]. Then results in [40] (see also [41, Rem. 8.12]) lead to the

expression

N+ (Sig) n (qa2t4(n—i); q) » (q—labcdt4(n—i)) —Hi
(a2t4(n—i); q)

25
(a2t2(n—i) abt2(n—i) aCtQ(n—i) adt2(n—i); q)
X 2= ;< ) 7 2(n—3) ’ D I ¢
qt2(n=1) qat2(n=9) /b qat2(n=9) /¢ qat2("=D) /d;q)
( / / /d:4),, (4.17)

(qa2t2(2n—i—j) a242@n—i—j+1). )

% H ’ P ity
e (qa2t2(2n—i—j—1), a2¢2(2n—i—j), q)
<i<j<n

it
(qt2(]_z)7 t2(]_1+1); q)

% _ _ Hi— g
(th(J_Z_l)’ tQ(J_l); q) }

Hi—Hj
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for all p =3, pie; € AT.
4.5. The symmetric theory. The symmetrizer C, = C¢ € H is defined by

Cy = - > twTo.

> t
weWy "w weWy

Observe that Cy € Hyp = H§, where Hy is the subalgebra of H generated by
Ty,...,T, (which is isomorphic to the finite Hecke algebra of type C,). In fact,
the symmetrizer C, is the idempotent of Hy corresponding to the trivial character
T, —t; (i=1,...,n) of Hy.

Observe that H{ consists of reflection operators only, since the g-difference
operators only arise from the affine root ag. In particular, C';. only depends on the
values t,t,, and u, of the multiplicity function t.

Let Ay C A be the algebra of Wy-invariant Laurent polynomials in 4. Then
C, acting as reflection operator, defines a projection

O+S.A*>.A+

since T;C4(g) = t;C+(g) for i = 1,...,n and g € A. Applying the symmetrizer
Cy leads directly to symmetric variants of the results in the previous subsections,
mainly due to the stability of C; under the (anti)isomorphisms we have encoun-
tered so far:

UCH) =Cy,  H(Cy) =1(Cy) =CL,

(4.18)
T(Cy) =CF,  o(Ch) =4(Cy) = CT.

In particular, applying the symmetrizer Cy € H to the Macdonald-Koornwinder
polynomials leads to the following results.

Proposition 4.13. a) For all A € A, we have
C4E(sx;-) = CLE;(s}; ) (4.19)

in Ay. Furthermore, the expression (4.19) only depends on the Wy-orbit Wy - A of
A€eA.
b) Denote St =St = {sx |\ € AT}, and define Et(s;-) = EX(s;-) fors € St
by
Et(s;) = CLE(s;-), VseST.

Then {E*(s;-)|s € ST} is the unique basis of Ay whose basis elements satisfy the
conditions

p(V)E™(s;) =p(s)E™(s;-),  Vpe Ay,
ET(s;sf) = 1.

c) Et(s;v) = Ef(v;s) for s € ST and v € Sf (duality).
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Proof. a) This follows from [41, (8.12)] and from the proof of [41, Cor. 8.11].
b) This is well known, see e.g. [36], [39] or [41].
c¢) See Sahi [39, Thm. 7.4], and references therein. O

We note that the coefficient of #* in the monomial expansion of E*(sy;z) for
A € A" is known explicitly in product form, see [41, Cor. 9.4] and references
therein. It is known as the evaluation theorem. In our present notations it reads
as follows.

Theorem 4.14. Let A = Y. \je; € AT, The coefficient ¢y = ¢ € C of x> in the
monomial expansion of ET(sx;x) is given explicitly by
ﬁ (g~ *abedt* =1, q) o\ (at?(r=D)A
c\ = - - : ,
A 11 (ath(n—z), actQ(n—z)7 adt2(n—z)’ q—labcdtQ(n—z); q)A‘

(q_ladetQ(Qn_i_j); q) At (tZ(]_Z)’ q) Ai—Aj

X — — ,
1§E§n (q—labcdt2(2n—z—J+1); q) NtA (tQ(J—H-l); q) Y

where we used the Askey—Wilson parametrization (4.7) for part of the multiplicity
function a.

The basis elements E*(s;-) (s € ST) are known as the (normalized) symmetric
Macdonald—Koornwinder polynomials. Up to an explicit multiplicative constant,
they coincide with Koornwinder’s [30] multivariable analogues of the Askey—Wilson
polynomials. This can be proved by relating the g-difference reflection operator

m,(Y) =Y+ +Y, +Y 7 4+ Y, L eH (4.20)

acting on Ay to Koornwinder’s [30] multivariable second-order g-difference op-
erator of Askey—Wilson type, see Noumi [36] (see [42] for a detailed treatment in
English). In particular, in the rank one setup (n = 1), ET(s,,;-) form € AT ~ Nis
the well known Askey—Wilson polynomial [1] of degree m. In terms of the standard
notation [16] for basic hypergeometric series,

a1,a2,...,0 > (a1, az,...,ar3 ), b bhGom D) lbomr b
r¥s 5 7Z = _1 3 ok
o (e i ) = X e )

this leads to the explicit series expansion

Et(sm;x) = 493 (q

-m ,m—1

, abed, ax,a/x
T / ;q,q> (4.21)

for the symmetric, rank one Macdonald-Koornwinder polynomial, see [37] for a
detailed account. The Askey—Wilson parameters a, b, ¢,d play a symmetrical role
in both the Askey—Wilson second-order g-difference operator as well as in the poly-
nomial spectrum ST. Consequently, E¥(s,,;x) is, up to a multiplicative constant,
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invariant under permuting the Askey—Wilson parameters {a,b,c,d}. The corre-
sponding identity for the balanced 4¢3 is known as Sear’s transformation formula,
see [16, (2.10.4)]. This can be generalized to the higher rank setup. We formulate
here two cases, the first corresponds to interchanging the role of a and b, the second
corresponds to interchanging the role of ¢ and d.

Proposition 4.15. Let {a,b,c,d} be the Askey—Wilson parametrization (4.7) of
part of the difference multiplicity function o = (to, uo, tn, Un, t,q2).
a) Set 8 = (to,uo, tn, —u;l,t,q%). Then sf =% for all X € AT and

n (actQ(n—i) adtQ(n_i)‘ q) b g
—+ . _ ) ’ )\i _ + . +
Eg(sniw) = (H (bet2(n=0), bdt2(n=1); q) ( ) Ealonz),  VA€AT

i=1 a
b) Set v = (to, fual,tn,un,t,q%). Then s = s§ for all X\ € AT and
Ef(sx;x) = E} (sx; ), VAeAT.

Proof. For A\ € AT we write E (sy;z) = Y P (z) with ¢y = ¢§ given as in The-
orem 4.14. The Laurent polynomial Py is the unique eigenfunction of p(Y) with
eigenvalue p(s) for all p € A, whose coefficient of z* in its monomial expansion is
equal to one.
Now the operators Y; (i = 1,...,n) as well as the spectral points s, € S+t

(A € AT) are invariant under replacement of uy by —ug ' (respectively wu, by
—u,;1). Indeed, for the Y; this follows from the fact that the g-difference reflection
operators T; € H (j = 0,...,n) are invariant under replacement of ug by —ug !
(respectively u, by —u,'). For the spectral points sy € ST this simply follows
from the fact that the spectrum is independent of ug and of u,,. We conclude that
PP () = P} (x) = P(x) for all A € At, hence

P cY

Ef(sxiw) = 2 B (sniz), B (sxia) = = Bf (sx;)

15 15
for all A € AT. The proposition now follows from the explicit expressions for the
coefficients ¢y, see Theorem 4.14. O

Let F; (S) be the space of functions g € Fo(S) which are Wy-invariant under
the dot action. Observe that F; (S) may be identified with the space Fo(S*) of
functions g : ST — C of finite support by the natural restriction map.

The restriction of the Macdonald-Koornwinder transform F4 to Ay can be
written as integral transform with Wy-invariant integrand as follows. By Proposi-
tion 4.6, (4.18) and Proposition 4.13 we have

(FAP) (8;1) = (p7 E+(5)\+; .))A’ pe A—i—a A€ Aa

where AT is the unique element in (Wy - A) N A*. The restriction of the bilinear



436 J. V. Stokman Sel. math., New ser.

form (~, ) 4 to A4 can be rewritten using the formula
> (we)(x) = C(sf7), (4.22)
weWy

see [41, Lem. 8.1 & Lem. 8.2], leading to the identity

C(sy)

(p’ lr).A = nnl (p’ T)_A,+) p,rE A+; (423)

with the bilinear form (~, ')A L= (~, ')A o oD Ay given by

(1) 0 = e [[ror@ar @, prea. w2
TTL

T

In particular, the restriction of the Macdonald—Koornwinder transform F 4 to A4
becomes

C(s5)
2nn)

(Fap)(syh) = (p, E*(sx+; ~))A7Jr7 pe Ay, NeAT. (4.25)
Similar arguments show that F ‘Ala, = Fala,. In particular, the Plancherel type
formulas for the Macdonald-Koornwinder transform F 4 (see Corollary 4.12) reduce
to genuine Plancherel formulas when restricting to Wy-invariant functions.

The same arguments can now be applied to handle the restriction of the trans-
form J4 : Fo(Sio) — A to the subspace F (Sir) of Wo-invariant functions. In
this case, one needs Proposition 4.8 and the discretized version

> ety =c(si) (4.26)
pneEWyn-A
of (4.22), see e.g., [41, Lem. 8.2] for a proof. It leads to the formula
Jag = Tag = C(s5) S (i) B (5 )N (s17) (1.27)
AEAT
for g € F (Str). By Theorem 4.11a) and formulas (4.25), (4.27) and (4.22), the

orthogonality relations of the nonsymmetric Macdonald—Koornwinder polynomials
(see (4.8) and Theorem 4.11b)) reduce to the orthogonality relations

(E*(s3), E(v3)) 4 4 _ Nj(sg )
(L1) ., Ny (s71)

for the symmetric Macdonald-Koornwinder polynomials, where J5 ,, is the Krone-
cker delta function on S*.

Under suitable values of the difference multiplicity function «, the integration
contour can be shifted to T™ on the cost of some extra (partly discrete) contribu-
tions to the measure. This in particular leads to a positive orthogonality measure

Os,vs Vs,veSt (4.28)



Vol. 9 (2003) Difference Fourier transforms for nonreduced root systems 437

for the symmetric Macdonald-Koornwinder polynomials, see [40] for more details.
We also remark that the constant term (1 1) is exactly the multivariable Askey—

Wilson integral, evaluated by Gustafson in [17] Explicitly, it reads as follows:
t2 abcdt2(2n i—1). q)

( = 92"n! H { t2(n 7,+1)’ q)oo

(4.29)

1
. (abt?(*=0) act?(n=1) aqdt?>(n=1) bet2(n=0) bdt2(n=1) cdt2(=1); q) } '

5. The construction of the Cherednik kernels

We assume throughout this section that
o= (t7 q%) = (tO? uO) t’n) uTL? t’ q%)
is a difference multiplicity function with 0 < q% < land 0 <t <1, and with generic
parameters to, ug, tn, U, € C*. As was explained in Section 3, the construction of
non-polynomial Fourier transforms associated with ¢ hinges on the existence of
nonzero kernels
E=¢,: (CH)"x (C)" = C
€ =CEy, : (C)" x (C)" = C
satisfying the transformation behavior
(X€(r.)) () = (BEXEC.2) (7). X e,
(X€(y,) (@) = (¥3(X)€; (@) (v), X €Hy

with respect to the duality antiisomorphism 1. Here e.g., (X &(7,))(z) means the
action of X € H as g-difference reflection operator on the function x — €&(v,x),
which also makes sense when € is assumed to be a meromorphic function on (C*)™x
(C*)™, ctf. Subsection 2.3.

If we require ¢ and €; to be meromorphic and “as regular as possible”, then
kernels € and €; satisfying (5.1) turn out to be unique up to a multiplicative con-
stant. We call them the Cherednik kernels since they generalize kernels introduced
by Cherednik in [5] to the setup of nonreduced root systems.

We note that the classical approach to study existence of such a kernel €(y, x) =
€, (7, ) is by analyzing the solution space of the spectral problem

Yig=~7'9, i=1...n, (5.2)

for the commuting Y-operators Y; € H. We follow here a drastically different
approach, which is inspired by Cherednik’s paper [5]. The philosophy is to construct
the special solutions €(vy,z) of the spectral problem (5.2) as an explicit series
expansion in terms of the Macdonald—Koornwinder polynomials. The important

(5.1)
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step in the construction is to associate a so-called auziliary kernel § = §,, to €, for
which the spectral problem (5.2) translates into a transformation property of the
type

(with the Y-operators on each side depending on different multiplicity functions).
Invoking the polynomial theory, it becomes now plausible that such an auxiliary
kernel § can be constructed as explicit series expansions involving the Macdonald—
Koornwinder polynomials in the variables x as well as in the variables . This is
indeed the case, as is explained in full detail in this section.

5.1. Auxiliary kernels. Instead of studying kernels &, &; € M ((C*)™ x (C*)")
satisfying the transformation behavior (5.1) directly, it turns out to be convenient
to study certain auxiliary kernels § = §a, 8t = Fay € M(((CX)” X ((CX)") first,
which are related to € and €; by the formulas

3(v,2) = Gor ()7 'Gr(2) 1 E(7, 2),
3i(1,2) = Gio(7)Gi(2) € (v, @),

where G = G, € M is the Gaussian. The kernel §; may be alternatively written
as

(5.3)

F1(v,2) = Gor (7)1 Gr(2) M€ (v )
in view of (2.11).

Lemma 5.1. Let £ = ko : H — Hror and k! = /ﬁé : ' H — Hiror be unital
anti-isomorphisms defined by

K=T oy, or, k! =tror 0 Trg 0y 0T L. (5.4)

Under the correspondence (5.3), the transformation behavior (5.1) for the mero-
morphic kernels € and €; are equivalent to the transformation behavior

(X3(,)) (@) = (k- (X)F(,2))(7), X € Hx, (5-5)

(X3:(7,) (@) = (5, (X)Fs(,2)) (1), X € Hyr (5.6)

for the auziliary meromorphic kernels § and .

Proof. This follows from the fact that conjugation by the Gaussian induces the iso-
morphism 7 on H (see Proposition 2.11), and that the inversion operator (Ig)(vy) =
g(y~1) induces the isomorphism  on H. As an example, we prove the transfor-
mation behavior for §; under the assumption that &; satisfies (5.1). We use the
formula

§1(v,2) = Gi(@) (I (G0 ()€ (- 2))) (7),
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which follows from (5.3) since the Gaussian is Wy-invariant. Then we compute for
X € Hyr,

(XB1(7,)) (@) = Gi(2) (I(Gro () (W1 07 ) (X) €4 (-, 2)) ) (7)
= Gy()(I((ryo 0y o7y (X )Gia()ei(w)))(v)
= ((ttor 010 0 077 1) (X)F4 (- 2)) (7)
= (ki (X)) (7),

which is the desired result. O

In the next lemma we compute the antiisomorphisms x and ! explicitly on suit-
able algebraic generators of H. In particular, we show that these antiisomorphisms
have the desired property that Y-operators are mapped to Y-operators.

We denote

v=U0,=1y---T, 1\T,,)T,, 1---T1 € H, (57)

so that Y7 = UT} in the double affine Hecke algebra H.

Lemma 5.2. a) Fori=1,...,n we have
K(T;) =17, k(Y;) =Y.

Furthermore, k(Ty) = Uror Tg°TUL and k(xy) = qza7 Ty UL
b) Fori=1,...,n we have

RUT) =TT R =Y
Furthermore, k1 (Ty) = Tng’l and k! (xy) = q%Tng’lxlUimT.
Proof. a) The identities x(T;) = T7°7 for i = 1,...,n are immediately clear from
the definitions of 7 and . Since Y;y; = Ti_lYiTi_1 for i = 1,...,n — 1, the

identities x(Y;) = Y77 for i = 1,...,n will follow from (Y1) = ¥7?7. Omitting
the parameter dependencies we compute,

k(Y1) = Y1 (UTy)
=7 (g 2 Un Ty )
=W (g 2 U, Y, ')
=g *Ux1Y; V)
=7 Y g U Ty ") = UTy = Y,
which is the desired result. Furthermore, omitting the parameter dependencies,
k(To)U = k(UTy) = k(Y1) = UTy,

hence (1) = Uror Tg°T UL . The identity (x1) = q227 "I UL follows from

similar (but easier) computations.
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b) The identities x/(T;) = T7™°7 1 for i = 1,...,n are clear. For the identities
K1(Y;) = Y7771 it then suffices to prove that x'(Tp) = T¢™7 1. Omitting the
parameter dependencies we compute,

K (Ty) = trr = (To)
= tr(e Ty )
=t 2 Y, \Un)
= tr(q 2y, Um)
= t7(q 2Ty 'm1)
=1(To) = To_l’

which is the desired result. The proof of the identity x!(z1) = q%TOimT’lxlUimT
is left to the reader. O

5.2. Auxiliary transforms. Recall that O = O((C*)") is the ring of analytic
functions on the complex torus (C*)™.

Definition 5.3. a) A nonzero linear mapping L = L, : A — O is called an
auxiliary transform associated to a when

LoX = (,«;Toi;l)(X)oL, VX € Hir, (5.8)

with the usual action of the double affine Hecke algebras on the function spaces
ACOCM.

b) A nonzero linear mapping Ly = Ly, : A — O is called an auxiliary transform
associated to a; when

LioX = (kl,0%,)(X)oL;, VXE€EH,, (5.9)

with the usual action of the double affine Hecke algebras on the function spaces

AcCOcC M.

In the following lemma we link auxiliary transforms to analytic kernels § and
§+ satisfying the transformation behavior (5.5) and (5.6), respectively.

Lemma 5.4. Suppose that L, Ly : A — O are linear mappings of the form

(Lr)M) =@ )p) 4 (Lep)(0) = (2F(1)) 40

for p € A, with kernels §,§; € O((C*)" x (C*)") (which are then necessarily
unique).

a) L is an auziliary transform associated to « if and only if § satisfies the
transformation behavior (5.5).

b) Ly is an auziliary transform associated to oy if and only if §1 satisfies the
transformation behavior (5.6).
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Proof. By Proposition 4.6 and Remark 4.7 we have that (o, )
isomorphism I, on H,, i.e.,

(Xp,1) 4= (0 3(X)) 4,0 XEH,

when p,r € O. The lemma is now immediate. O

A induces the anti-
\T

In this and the next subsection we study auxiliary transforms in detail. We
prove that they exist and that they are unique up to a multiplicative constant.
Furthermore, we explicitly compute the auxiliary transforms on suitable bases of A.
This leads, via the previous lemma, to the explicit construction of analytic kernels
§ and § satisfying the transformation behaviour (5.5) and (5.6), respectively.

We have the following key lemma.

Lemma 5.5. a) If an auziliary transform L : A — O associated to « exists, then
it is unique up to a multiplicative constant. Furthermore, L(1) = ¢l for some
constant ¢ € C*, where 1 € A is the Laurent polynomial identically equal to one,
and L(A) C A.

b) If an auziliary transform Ly : A — O associated to oy exists, then it is
unique up to a multiplicative constant. Furthermore, Li(1) = ¢;1 for some constant
c; € C* and Ly(A) C A.

Proof. Let L,Ly : A — O be nonzero linear maps satisfying the transformation
property (5.8) and (5.9), respectively. Since A is a cyclic module for the action of
the double affine Hecke algebra with cyclic vector 1 € A, the lemma follows from
the formulas L(1) = cl and L;(1) = ¢;1 for some constants ¢, c; € C.

We first show that the functions L(1), L1(1) € O are Wy-invariant. We focus on
L(1) (the proof for Li(1) € O is the same). Let i € {1,...,n}. It suffices to prove
that r;(L(1)) = L(1). By the explicit expression of T; € H C D, as a g-difference
reflection operator, we have TiiT(l) = t;'1, where (recall) t; = t fori = 1,...,n—1.
It follows that

L(T;™1) =t L(1).
On the other hand, by the transformation behavior (5.5) of L under the action of
the double affine Hecke algeba, we have
L(T/™1) = (k7 0 171)(TI)L(D)
— T;UT_lL(l)
=t;'L(1) +t;'eq7 (rL(1) — L(1)).

Combining the two outcomes we obtain 7;(L(1)) = L(1) in O.

The next step is to show that L(1),L:(1) € O are in fact W-invariant, where
W acts as constant coefficient ¢-difference reflection operators on O by (2.1). It
suffices to show that ro(L(1)) = L(1) and ro(L4(1)) = L4(1), where 7o € W is the
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simple reflection associated to the simple root ag. For L;(1) it follows from the
identity (/s;{T 0 1,)(T§) = T§™ that ro(L;(1)) = Ly(1) by repeating the argument
of the previous paragraph. For L(1), we observe that
L(Y{™1) = LY} By (s75 ) = sph L(1)
on the one hand, where
S(:ng _ ualtgltZ(lfn)

is the first coordinate of the spectral point ng € Sir. On the other hand,
LYT1) = (5 047 1) (%) L(D)
=YL
=I5 UL L(1)
_ t;th(lfn)Té’T*lL(l),
since we have seen that
Uy = TETTGT - TS TS TSN - TS TTET

acts as multiplication by t,t>»~1) on L(1). Hence Tg™ 'L(1) = uy'L(1), and a
similar argument as before yields ro(L(1)) = L(1).

The completion of the proof of the lemma is now standard: by the change of
variables

2miw = (6271'1101 2miwe 27rwm)

r=e€ € € )

we obtain analytic functions
wHL(l)(GQWiuJ)7 w'_)Li(l)(eZ‘n'iw)

on C*/T'y, where I'y = Z™ + Z"v and v is an element in the upper half plane
satisfying ¢ = €. By Liouville’s Theorem, these functions must be constants. O

We fix a convenient normalization for auxiliary transforms as follows.

Definition 5.6. We call an auxiliary transform L (respectively L) associated to
a (respectively ay) normalized when L(1) = Gro-(s§)1 (respectively Ly(1) =
Gror(85)1).

Remark 5.7. The normalization constant G.,,(s]) can be written as

n

Gror(sh) = [ (b=, fasq) !
i=1

in terms of the Askey—Wilson parametrization (4.7) for part of the multiplicity
function a.
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The fact that the above choice of normalization is the natural one becomes
clear in the next subsection. From the previous lemma it follows that a normalized
auxiliary transform associated to « (respectively ay) is unique, provided that it
exists.

In the following statement we use the stability

st=s7",  VA€EA, (5.10)

which follows from the fact that the spectral points sy € S = S, only depend on
the values of the multiplicity function t on the root subsystem R C R,,,.

Corollary 5.8. Suppose that L,Ly : A — O are normalized auziliary transforms
associated to oo and oy, respectively. Then for s € S, we have

L(EIT(sfl; ) =d"(s)Eor(s;-),
Ly(E-(s)) = d¥ (57 1) Eor(s5)
for unique functions d” € F(S;) and d¥™ € F(S;,) satisfying d7(s]) = diT(ng) =
Gror(s]).
Proof. For i =1,...,n we have
(fi‘r ° i;l)(y’f‘r) — }/;07-—17
hence for s € S,
YT (B (57 ) = LY B (5715 )) = 57 (B (5715 ).

Furthermore, L(E;(s7';+)) € A, hence by the polynomial Macdonald-Koornwin-
der theory (see Subsection 4.2) and by (5.10),

L(Egr(s7'50)) = d7(s) Eor (s3)
for some constant d”(s) € C. The normalization d”(sf) = G- (s]) follows from
the normalization of L and the fact that By, (s57;-) = Eqr(s37;-) = 1 is the Laurent
polynomial identically equal to one. The formulas for L; are proved similarly, now
using the fact that
(kfr 0 1) (V) = Y,77
fori=1,...,n. O

Definition 5.9. We call the functions d” € F(S,) and d*” € F(St,) in Corollary
5.8 the generalized eigenvalues associated to the normalized auxiliary transform L
and Ly, respectively.

We prove in the next subsection the ezistence of the normalized auxiliary trans-
forms associated to o and oy by determining the related generalized eigenvalues d”
and d*™ explicitly.
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5.3. The generalized eigenvalues. In this subsection we give full details on
determining the generalized eigenvalue d™ € F(S;). It leads to the existence of the
normalized auxiliary transform associated to a. At the end of the subsection we
indicate how a similar procedure leads to the explicit expression for the generalized
eigenvalue d¥™ € F(Sy,).

Recall that the space F(S;) consisting of functions ¢ : S; — C is an Hiro-
module in view of Lemma 4.2. Since S; = S,., the space F(S;) also has the
structure of an Hysro-module. We consider F (S:) as a commutative algebra by
pointwise multiplication, and we view F(S;) as a subalgebra of End¢(F(S;)) by
identifying g € F(S,) with the endomorphism of F(S;) defined as multiplication

by g.

Lemma 5.10. Let d” € F(S;) and let L : A — A be the linear map defined by
L(Er(s79) = d7(s)Egr(s3 ), Vs eES,.

If
Xod =d ovpro(X), VX €EHps (5.11)

within the endomorphism ring Endc(F(Sr)), where Vize : Hize — Hioro is the
unital algebra isomorphism defined by

1 -1
Vire = TO’TO’ o on O Kr O iq— o ¢i7— 5

then L satisfies the transformation behavior (5.8) under the action of the double
affine Hecke algebra Hy,.

Proof. The space F(S;, A) consisting of functions ¢ : S, — A is an Hj,,-module
by
(X-o)M)(@) = (X-d:)(7),  2€(C)", v€S;

with ¢, € F(S;) defined by ¢.(v) = ((b('y))(x) Since S; = S,-, the same formula
defines an Hy,ro-module structure on F(S;, A). Furthermore, pointwise multipli-
cation defines a commutative algebra structure on F(S,, A).

The canonical embedding F(S;) — F(S-,A) of algebras via the map C — A,
A — Al is compatible with the above actions of the double affine Hecke algebras
Hiro and Hipro. For ¢ € F(S:, A) and s € S; we write (X - ¢)(s) for the action
of X on ¢ as described above, while we write X (¢(s)) for the action of X on the
element ¢(s) € A.

Fix d™ € F(S;) and define a linear map L : A — A by

L(Ei’r(sil; )) = dT(S)EUT(S; '), Vs e S,,—.

Assume furthermore that (5.11) holds true for some (yet to be determined) algebra
isomorphism vir» : Hire — Hioro. We define ¢1, ¢2 € F(S;, A) by

$1(s) = L(Etr(s™1)) = L(€as-(s,)),
¢2(5) = E(,.,.(S; ) = GA,UT(5717 )
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for s € S;, so that ¢ = d"¢o in the algebra F(S;,.A). Then we compute for s € S,
and X € Hir, by Proposition 4.4,

(X : ¢1)(3) = L<¢1;,-1(X)€A71T(Sv ))7

where we use the Hj,-action on A in the right-hand side of the equality. On the
other hand, under the above assumptions,

(X - ¢1)(s) = (X - (d7¢2))(s)
= (dT (Vro(X) - ¢2))(3)
= d"(5) (V57 © trore © Vire) (X)(92(s))
= (Vo7 0 Ttore © Vpro) (X)(¢1(5)).
Equating both outcomes yields
L(X€ar(5,7) = (Yo7 © toro 0 Vire 0 P1r) (X) (41(s))

for s € §; and X € Hy,. On the other hand, L satisfies the intertwining property
(5.8) when

L(X€ar(s,0) = (kr 0 171)(X) (¢1(5))
for all s € S, and X € Hy,. This will thus be the case when
UV} 0 ttore O Vire 0ty = Ky 0 171,
i.e., when the isomorphism vi,, is given by
Vire = Toro ©Yor 0 fir 047 09 .

O

We thus search for a function d” € F(S;), normalized by d"(s]) = Gror(5]),
which induces the isomorphism vy, : Hiro — Higsro via the formula (5.11).

Proposition 5.11. i) We have Viry = Tiro, with T : H — H, the isomorphism as
defined in Proposition 2.11.

il) The normalized auxiliary transform L : A — A associated to « exists. Its
generalized eigenvalue d” is given by

d"(s) = Gror(8), VseS,.
In other words,
L(EIT(571§ )) = Gro7(8)Eor(8;°), VseS:.
Proof. i) First observe that 7, defines an algebra isomorphism 74,5 : Hire —

Hioro since 070 = T7oT when acting upon difference multiplicity functions. Hence
we only have to show that the action of 14, and T3, coincides on the algebraic
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generators Tiim (t=0,...,n) and x; of Hi,,. We omit parameter dependencies
in the following computations. It is easy to check that

v(Ty) =T, =7(T3), i=1,...,n.
Furthermore, we have
v(y) = tus i T @) =t (YY)
= tr(Y1) = f¥(V1) = t(a7") = 21 = 7(21).
Since Y7 = UT, with U € H given by (5.7), we furthermore obtain
v(To) = tyr i~ ¢~ (Tp)
=t YT (UTY)
=tori! (27U
= tyYr(Uz1)
= (g2 2y ' T)
= (g2, 'UT'Y)
= f(g*e;'UN)
= q%xlT(;l = 7(Tp)

where we use in the last equality that the sixth coordinate of the underlying differ-
ence multiplicity function is ¢~ 2, so that Tim(TéEW) = qéxngom_l. We conclude
that vi;o = Tiro-

ii) Using the realization of the isomorphism 7 as conjugation by the Gaussian
and using Lemma 4.2, we observe that the function

d™(s) = Giro(5) ™' = Gror(s), VseS;

satisfies (5.11). Furthermore, for this function d™ we have the desired normalization
d7(s7) = Gror(s]). The result now follows from Lemma 5.10. O

We leave it as an exercise to the reader to repeat the arguments of this subsection
to determine the normalized auxiliary transform L; associated to ay. It leads to
the transformation behavior

Xodm =d" o (gr o rf, 037 097 ) (X)

=d¥or L (X)), VX €Hry

TOT

in Endg (F(S;-)) for the associated generalized eigenvalue d*” € F(S;,), and hence
to the following result.

Proposition 5.12. The normalized auziliary transform Ly : A — A ewists. Its
generalized eigenvalue d*™ € F(Sy.) is given by

A7 (5) = Gror(s) = Gror(s™Y), Vs €S
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In other words,

Li(Er(s;-)) = Gror(5)Egr(s;-), VseS,.

5.4. The Cherednik kernels. In this subsection we construct meromorphic
kernels €, ¢; satisfying the transformation behavior (5.1) under the action of the
double affine Hecke algebra. For this it suffices to construct kernels §,§; €
O((C*)™ x (C*)™) such that the normalized auxiliary transforms L and Ly as-
sociated to a and a4 are given by

(Lp) (’7) = (S’(’ya ')ap)Aﬂ.v (Lip) (7) = (pa 51(73 .))A,T’ vP €A (512)

respectively, cf. Lemma 5.1 and Lemma 5.4. Formal series expansions in Mac-
donald—Koornwinder polynomials can now immediately be written down for such
kernels § and §; in view of Proposition 5.11, Proposition 5.12 and the orthogonality
relations (4.8) for the Macdonald-Koornwinder polynomials. To ensure that these
formal series expansions define analytic kernels, we need to determine bounds for
the Macdonald—-Koornwinder polynomials E(sy;-) in their degree A € A. The
following proposition suffices for our purposes.

Proposition 5.13. For any compact set K C (C*)", there exists a constant C =
Ck > 0 such that

|E(sx;z)| < CVY VazeK, VYXeA,
where N(A) = Y0 [Nil for A =301  Nie; € AL
The proof of the proposition, which is a bit technical, is based on explicit re-
currence relations for the Macdonald—Koornwinder polynomials. These recurrence

relations are a direct consequence of Proposition 4.4. For details of the proof, we
refer the reader to the appendix.

Remark 5.14. For the symmetric Macdonald—Koornwinder polynomials, we have
for any compact set K C (C*)",

|E(sx;2)] <OV vreK, VieAt,

for some constant C = Cx > 0. This follows for instance from Proposition 5.13,
Lemma 9.1, the fact that N(w - u) = N(u) for w € Wy and p € A and from the
explicit expansion

Flaro ) — o(sh)
E"(sy;z) = Z

HEWG-A CU(S(i))

(@)

E(su;x), Ae AT,

of the symmetric Macdonald-Koornwinder polynomial as a linear combination of
the nonsymmetric ones, see [41, Thm. 6.6] or [42, Thm. 3.27].
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Corollary 5.15. a) The series expansion

T) = Gror(s) E (s;x)Es(s; 5.13
$(v. @) SEZST (ET(3§')7E17(5715'))A77 r(s;2)Eor(s;7) ( )

converges absolutely and uniformly on compacta of (C*)™ x (C*)™. The series
expansion § defined by (5.13) is the unique analytic kernel on (C*)™ x (C*)™ such
that (Lp)(v) = (§(7, ~),p)AT for all p € A, where L is the normalized auziliary
transform associated to c. ’

b) The series expansion

T) = Gror(s) Fir(s 5 2)Eyr(s; .14
%’1(77 ) SEZST (ET(S;.)7EIT(S_1;'))A’T i‘r( ;2)Egr(857) (5.14)

converges absolutely and uniformly on compacta of (C*)™ x (C*)™. The series
expansion §y defined by (5.14) is the unique analytic kernel on (C*)™ x (C*)™
such that (Lip)(v) = (p, 31(7,-))AT for all p € A, where Ly is the normalized
auxiliary transform associated to aii

Proof. We first prove that the series expansions (5.13) and (5.14) converge abso-
lutely and uniformly on compacta of (C*)™ x (C*)™. For this we need to consider
the behavior of the coefficients

Gror(s) _ 1 o -
(Br(si) Bir(s75) - Neolsg)(1,1) 4, ror(8)Nra(s7) - (519)

as a function of s € S; in the expansion sums (5.13) and (5.14), see Theorem 4.11
for the second equality in (5.15). By the Wy-invariance of the Gaussian and by
Lemma 4.1, we have for A € A,

GT(TT(SK) = GTO'T(S7)—\+)7 (516)

where AT is the unique element in (Wy - A) N AT, Using the explicit expression of
the Gaussian G and using that

n

8; _ (tnuotQ(”_l)q“l,tnuotQ("_Q)qM7 s tauegt), o= mei e AT
=1

it is now easy to show that

T 2(n—1i). 1 i)\ M
N W L
G-,—GT (56) e (qatQ(n—Z)/d’ q)u d

3

3

for 4 € A" (cf. Remark 5.7), where we used the Askey—Wilson parametrization
(4.7) for part of the multiplicity function «. We thus obtain the bounds

Gror(s3)] < el Vg2 0w en (5.18)
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for certain A-independent constants c1,co > 0.
We have seen that the factor Nm(siT) can be evaluated explicitly, see (4.16)
and (4.17). From these explicit expressions and from Lemma 9.1 it follows that

INA(sS) < dydd Y, waen

for certain A-independent coefficients dq,ds > 0. Combined with Proposition 5.13
and the fact that 0 < ¢ < 1, we see that the “Gaussian term” ¢‘»*/2 in the
bounds for G, ensure the absolute and uniform convergence of the sums (5.13)
and (5.14) on compact subsets of (7, x) in (C*)™ x (C*)™. In particular, the series
expansions (5.13) and (5.14) define analytic kernels §,§; € O((C*)™ x (C*)™).

By the orthogonality relations (4.8) for the Macdonald—Koornwinder polynomi-
als and the explicit series expansions (5.13) and (5.14) for § and §, it is immediate
that

(3(77 ')7 EiT(5_1§ '))A,T = GTO’T(S)EUT(S;’Y) = (ET(S; ')’31(7’ '))A;ﬂ Vs e S,

In view of Proposition 5.11 and Proposition 5.12; we conclude that the normalized
auxiliary transforms L and L; associated to o and oy are given by the integral
transforms (5.12), with § and §; the analytic kernels defined by the series expan-
sions (5.13) and (5.14), respectively. Clearly, the linear mappings (5.12) determine
the analytic kernels § and §; uniquely (cf. Lemma 5.4). O

Definition 5.16. a) The kernel € = €, € M((C*)™ x (C*)™) defined by
€(y,2) = Gor (V)G ()3 (7, 2),

with § the explicit series expansion (5.13), is called the Cherednik kernel associated
to a.
b) The kernel €; = &,, € M(((CX)" x (C*)™) defined by

ei(’ywx) - (’7) ( ) ( 1,{E)7

with §; the explicit series expansion (5 14), is called the Cherednik kernel associated
to ay.

We can now state the following main result of this section.

Theorem 5.17. a) Up to a multiplicative constant, the Cherednik kernel & asso-
ciated to a is the unique non-zero meromorphic kernel such that
i) The function Gor(7) 1G(x) " €(y,2) depends analytically on (vy,z) €
(CX)n X (Cx)n
ii) For all X € H = Mo we have (X€(v,-))(z) = ((X)E(,2)) (7).
b) Up to a multiplicative constant, the Cherednik kernel €; associated to oy is
the unique non-zero meromorphic kernel such that
i) The function Gyr(v) 'Gr(x) '€ (v,2) depends analytically on (v, z) €
(CX)™ x (CX).
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ii) For all X € H; we have (X€;(y,-))(z) = (v1(X)€;(-,2)) (7).

Proof. a) It follows immediately from Corollary 5.15, Lemma 5.4 and Lemma 5.1

that € satisfies properties i) and ii). Suppose that € is another non-zero meromor-
phic kernel satisfying i) and ii). Then

§(% T) = GUT('Y)ilGT(x)ilé(% )

depends analytically on (y,z) € (C*)® x (C*)". Furthermore, the linear map
L:A— O, defined by (Ep) (v) = (§(fy, ~),p)A , for p € A, is an auxiliary transform
associated to « in view of Lemma 5.1 and Lemma 5.4. Lemma 5.5 then shows that
L = cL for some constant ¢ € C*, where L is the normalized auxiliary transform
associated to a. By Corollary 5.15 we conclude that § = ¢§, where § is given by
the series expansion (5.13), and hence € = c&. The proof of b) is similar to the
proof of a). O

6. Properties of the Cherednik kernels

In this section we further analyze the Cherednik kernels. In Subsection 6.1 we
prove an evaluation formula, which allows one to normalize the Cherednik kernels
in such a manner that they meromorphically extend the Macdonald—Koornwinder
polynomials in their degrees (as will be shown in Subsection 6.2). In Subsection
6.1 we furthermore prove the duality of the normalized Cherednik kernels between
their geometric and spectral parameters. In Subsection 6.3 we consider symmetric
Cherednik kernels. In the case of reduced root systems, many of the results in this
section reduce to statements in Cherednik’s paper [5].

We keep the same generic conditions on the multiplicity function a = (t, ¢
in Section 5.

=

) as

6.1. Evaluation formula and duality. Let § and §; be the auxiliary kernels
as defined by the series expansions (5.13) and (5.14), respectively. By the normal-
ization (4.4) of the Macdonald-Koornwinder polynomials and (5.15), we have

(17 1)_,4,7— SES, GTUT(SS)NTU(SE)T)

By (4.16), (4.26) and by (5.16), the sum in (6.1) can be rewritten as

S(s8777,5577) = =F(s5777,857).  (6.1)

Gror(5)Nyo(s™! Gror(s)N}, (s7!
3 (8)No ( ):Z (s)N7(s™1)

= —. (6.2)
sES, GTUT(SE)NTU(S(% ) Gwr(86)Nr+n(85 )

seS;

This sum can be evaluated as follows.
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Proposition 6.1. In terms of the Askey—Wilson parametrization (4.7) for part of
the difference multiplicity function c,

GTO’T abct2(2n i—1) d t2 i—mn) ad
SES;!— GTU’T(SO)NTG' i=1 q t / )th / 7q)oo
Proof. We combine (4.17) and (5.17) to obtain the explicit expression
n 4(n—1i 1 Ai
Z H (qabet*"=0) /d; 7)), ( —qz ) P2
n—i 2(n—1
i (abet*(=0) /d; q),,, . \adt (n—i)
(abtz(” D, act> ™= abet>=1) /d; q)
th(n %) qth(n % /d qct2(n %) /d q
( ) (6.4)

< 11

1<i<j<n

{(qabctQ(Q” i=9) /d, abet>2n—i— JH)/d; q)

(qabth(zn*i*jfl)/d, ab0t2(2n7i7j)/d; q) PRy
it

(qt20=9, 201D )
@G0 2G0g), }

for the left-hand side of (6.3), where A\; = (), ¢;) for i =1,...,n. Now this can be
evaluated using the limit case g4 — —oo of van Diejen’s [12, Thm. 2.2] multiple
Roger’s gps-sum. After straightforward simplifications (see also [12, (3.7a)]), we
obtain the desired evaluation formula.

It follows from the product formula (6.3) that the special values (6.1) of the
auxiliary kernels are non-zero (in view of the generic conditions on the difference
multiplicity function «).

Observe that the spectrum S satisfies the stability conditions

Sga — SK, SKTU — S’I)’\O’T — S>\
for all A € A, since s € S only depends on the values of t on the root subsystem
R C R,,. In particular, the product formula (6.3) leads to an explicit evaluation
of the non-zero values 3(53,53") and Si(s%,sg). Since G, (respectively G,.) is
regular at s (respectively sg) and G- (s§) # 0 (respectively Gy (sop) # 0), we may
define normalized Cherednik kernels € and €; associated to o and oy respectively
by requiring

QE(5(1)750 ) =1=¢E(s0,57)- (6.5)

This choice of normalization determines the Cherednik kernels € and &; uniquely
in view of Theorem 5.17. Furthermore, by Corollary 5.15, Lemma 5.1 and (5.15),
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the normalized Cherednik kernels € and &; may be explicitly written as

e(’y,.’lﬁ) = GU-,—(’)/)GT(JT) Z MT(S)EGT(SQ’wET(S;x)a

SES, (6 6)
@i(’%l‘) = GO’T(’Y)GT(m) Z ,U/T(S>E<7‘r(3§’Y_l)Ei‘r(s_l;x)u
sES,
with p = po € F(S) defined by
-1
p(s) = Co—G”(S)N”(S ), seS (6.7)

GUT(SO)NU(SE)

and with the (non-zero) normalization constant Cy = C§ € C* chosen in such a
way that (6.5) holds true. In other words, Cj is chosen in such a way that

1
w(s) = =———=rzoy (6.8)
Sgg Gror(s5)G(557)
By Proposition 6.1 and Remark 5.7, the constant Cy can be evaluated explicitly
in terms of the Askey—Wilson parametrization (4.7) of part of the difference mul-
tiplicity function c,

. n (adt2(n_i)7 bdt2(n_i), cdtQ(n—i)7 bctQ(n—i)7 dt2(i—n)/a; q)oo
U H (abcdt2(2n—i—l); q) :

i=1

(6.9)

o0

Combined with (4.16), (4.17) and (5.17), this entails an explicit expression for the
weight u € F(S) in terms of g-shifted factorials, cf. the expression (6.4).

Theorem 6.2 (Duality). The normalized Cherednik kernels € and €; associated
to a and oy, respectively, satisfy the duality property

QE(’Y’:L') = Qza(xvv)a ij;(’}/,x) = ina(xa’)’)'

Proof. This follows immediately from the characterization Theorem 5.17 for Che-
rednik kernels, the fact that 1~ = 1), for the duality anti-isomorphism 1 : H —
H, and the fact that the chosen normalization of the Cherednik kernels is self-dual.

|

6.2. Polynomial reduction. Let v € S be a spectral point of the Y-operators
YieH (i=1,...,n), considered as endomorphisms of .A. Then we have observed
that the Macdonald-Koornwinder polynomial E(v;-) € A is the unique Laurent
polynomial satisfying

p(Y)E(v;-) =p(v)E(v;-), VpeA (6.10)

and satisfying the normalization E(v; s%") =1.
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On the other hand, the normalized Cherednik function &(v,z) associated to o
is regular at v = v~!, and the meromorphic function &(v~!,.) € M satisfies

p(Y)@(’l}_l; )= p(v)(’i(v_l, ), Vpe A,

whence it is tempting to believe that &(v~1, -) is a constant multiple of the nor-
malized Macdonald-Koornwinder polynomial FE(v; -). In this section, we show that
this is indeed the case. The argument essentially amounts to the fact that the mero-
morphic common eigenfunction &(v~!, -) of the Y-operators is “regular enough”
to ensure that €(v~!, -) € A by standard elliptic function theory, and hence it can
only be a constant multiple of the Macdonald-Koornwinder polynomial F(v; -).

To make the arguments rigorous and transparent, we study properties of certain
explicit function transforms in detail, following similar lines of reasoning as for the
auxiliary transforms (see Subsections 5.2 and 5.3).

The starting point for the definitions of these transforms forms the explicit
series expansions (6.6) for the normalized Cherednik kernels € and &;. The bound
on the associated weight p, € F(S;), as derived in the proof of Corollary 5.15,
allows us to define the following two transforms in terms of series expansions which
absolutely and uniformly converge on compacta of (C*)".

Definition 6.3. We define linear mappings H, Hy : A — O G, C M by
(Hp) (x 2) Y pe(s)p(s™)Er(s;2),

SES,

(Hyp) (x 2) Y pr(s)p(s ) Byr(s i)

sES,

(6.11)

for all p € A.

The transforms H and H; are linked to €(v™!, ) and € (v, -) for v € S as
follows. Observe that the factor E,,(s; vil) for s € S, occurring in the explicit
expansion sum (6.6) for (v, -) can be rewritten by the duality (4.5) as

EO’T(S; U_l) = Eo"ra(v§ 8_1) = ETO'T(U; 8_1)

since o070 = ToT when acting upon difference multiplicity functions, and s} = s§7,
sy = 877 for all A € A. This implies that

¢ 2) = Gor (V) H (Eror (v; +))(2), YveS (6.12)

with H : A — M the linear map defined in (6.11). In exactly the same fashion, we
can write

¢ 2) = Gor (V) Hi (Ergr (v ) (), V0 ES (6.13)

with Hy : A — M the linear map defined in (6.11). The main step now is to prove
that the images of the transforms H and Hy are contained in A. For this, we first
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compute the intertwining properties of H and H; under the action of the double
affine Hecke algebra. Recall the anti-isomorphisms x and k! defined in Lemma, 5.1.

Lemma 6.4. a) For X € Horo = Hror,
HoX = (Ti omiw OLTUT)(X)OH7 (6.14)

with the double affine Hecke algebra acting as q-difference reflection operators on
both sides.
b) For X € Hg—q—g— - HTU’T}

HioX = (/{i.m.r o i.m.,.) (X)oHy, (6.15)

with the double affine Hecke algebra acting as q-difference reflection operators on
the left-hand side and as ¢~ '-difference reflection operators on the right-hand side.

Proof. a) Up to an (irrelevant) multiplicative constant, Hp can be written as

(Hp) (33) =G, (x)[G*ra‘rpv e.A,‘r(' ) ‘r)]A,TU

by (6.7), see Subsections 4.2 and 4.3 for the used notations. We thus obtain for
X e HTO’T
HoX = (TT me Olro OTTO’T)(X) oH

by Proposition 2.11, Proposition 4.8, Remark 4.9, Proposition 4.4 and Lemma 4.2.
Now computing the isomorphism 7 0 Yr5 0 L1y © Tror : Hror — H on the algebraic
generators T]T‘” (j =0,...,n) and z1 of H,,, and comparing the outcome with
Lemma 5.2 shows that

Tr O wra Olrg OTror = Ti o ’qu—gT Olror
(both sides map 7777 to T} for j =0,...,n and z; to q%TOxflU’l).
b) By (2.11), we can write Hyp up to an (irrelevant) multiplicative constant as
(Hip)(2) = G(2) " Grorp, I€ 447 (-, 7)) Arros
where (Ig)(s) = g(s7!) for g € F(S;,A) and s € St;. A similar computation as
for a) now shows that
HI oX = (TJr_l Olﬂim OTTO' Olro OTTG’T)(X) OHi

for X € H,sr. The lemma follows from the fact that

T—‘-_l ° ,lizjiTO' © T'ra' Olrg © Tror = Kiror © i‘ra‘r
as unital algebra isomorphisms from H,,, onto H;, which again can be checked by
computing the images of the algebraic generators 777 (i =1,...,n), Y777 and x;
of H,,+ explicitly for both isomorphisms. O

Note the similarities between the maps H,H; : A — M and the auxiliary
transforms L, Ly : A — O defined before: they nearly satisfy the same intertwining
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properties with respect to the action of the double affine Hecke algebra (up to some
elementary (anti-)isomorphisms ¢, I, ). For the auxiliary transforms L, Ly : A — O
we used the intertwining properties to prove that L1 and Ly1 are constant multiples

of 1 € A, see Lemma 5.5. A similar argument can now be applied to the transforms
H, Hi A — M.

Lemma 6.5. The transforms H, Hy : A — M satisfy
H1=G,r(s0)"'1 = Hyl,

where 1 € A is the Laurent polynomial identically equal to one.

Proof. In view of Lemma 6.4 we can repeat the arguments of the proof of Lemma
5.5 to prove that H1 € M is W-invariant (with W acting as constant coefficient
g-difference reflection operators) and that Hyl € M is W-invariant (with YW now
acting as constant coefficient ¢~ !-difference reflection operators). So in terms of
exponential coordinates

= e27rzw _ (627r1w1’e27r1w2’ .

eZﬂ'iwn)

L) )

we obtain meromorphic functions
W — H(l)(ez’”w), W — H¢<1)(62m’w)
on the compact torus C"/I'y, with I'; = Z" + Z" v and v an element in the upper
half plane satisfying ¢ = ¢?™*. Now both the maps w H(l)(e%iw)GT (e2miw) =1
and w — Hy(1)(e*™) G (e*™)~! are analytic in w € C™. Since
n
G, (6271-1111) _ H
j=1

it now follows that the function w; — H(1)(e*™) and w; — Hy(1)(e*™™) for
fixed, regular wy, € C (k # j) is elliptic with period lattice Z + Z v, whose possible
poles are at most simple and located at

(u+Z+Nv)U(—u+Z—Nv), (6.16)

1

1 — ; 1 — i
(7(]5U0t0 1627”7”-7 ,—q?2 uOtO 16—27rzw] : q)oo

)

where u € C is chosen such that e?™ = —g~2uj't;. Standard elliptic function
theory now implies that the functions w; — H(1)(e*™™) and w; — Hy(1)(e* )
are constant. Consequently, the meromorphic functions H1, H;1 € M, regarded
as analytic functions on the open, dense set of elements in (C*)", which do not
belong to the zero set of G- € O, are constant. Hence H1, H;1 € O, and they
are constant on (C*)™.

To complete the proof, we note that

H(1)(s¢7) = Gr(sg) Y pir(s)
SES,
= Gor(50) T €(sh, 557) = Gorls0) ™!



456 J. V. Stokman Sel. math., New ser.

by the normalization of the Macdonald—-Koornwinder polynomials and of the Che-
rednik kernel. Similarly one can show that H¢(1)(s§) = Gor(s0) O

The following corollary is immediate from Lemma 6.4 and from (the proof of)
Lemma 6.5.

Corollary 6.6. The linear maps H,H; : A — OG;, are, up to a multiplicative
constant, uniquely determined by the intertwining properties (6.14) and (6.15) re-
spectively under the action of the double affine Hecke algebra H, .

Continuing the same line of arguments as for auxiliary transforms, we can now
state the following consequence of Lemma 6.5.

Corollary 6.7. a) The transform H maps into A. Furthermore,
H(E;67(v;")) = e(v)E(v;-), VveS=S85,r

for some e € F(S).
b) The transform Hy maps into A. Furthermore,

Hy (Emf(zfl; ) = es(v)Ex(v;+), Vv e S
for some e; € F(S;).
Proof. By Lemma 6.4 and Lemma 6.5, we clearly have H(A) C A and H;(A) C A.
Combining this fact with the formulas
(t1 0 Kl gy 0 Lror) (Y77T) = Y
(Firor © dror) (V777) = YV

fori=1,...,n, and using Lemma 6.4 and the results of Subsection 4.2, we directly
obtain the second statement of the corollary (compare with the proof of Corollary
5.8). O

Corollary 6.7 combined with (6.12) and (6.13) already prove that €(s~!,) for
s € S (respectively ¢;(v™1,.) for v € &) is a constant multiple of E(s;-) (respec-
tively Ey(v;-)). The next aim is to prove that the constant multiple is in fact always
equal to one. For the proof of this result we first need to compute the functions
e € F(S) and ey € F(Sy), see Corollary 6.7. Again, the method is similar to the
computation of the generalized eigenvalues of the auxiliary transforms L and Ly,
respectively.

Lemma 6.8. The maps e € F(S) and ey € F(St) are given explicitly by
e(:) = GUT(')_1|87 e¢(~) = GGT(')_llsi'
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Proof. Let € € F(S) and let H : A — A be the linear map defined by
H(Eqr(v; ) =€) E(v; -), YoveS.

Suppose furthermore that €, considered as an endomorphism of F(S) = F(Ser0),
induces an algebra isomorphism Vi, : Hisr — Hios by the formula

Xo0e=¢001,r(X), VX EHpr

in Endc(F(S)), where Hi,r and Hy, act via the dot action on F(S) = F(Spre)-
By repeating the arguments of the proof of Lemma 5.10, we deduce that if the
isomorphism 7., satisfies

Vo 0ty © Vo © for 0 Yore = 110 Ko7 O Lror, (6.17)
then the linear map H has the intertwining property
HoX = (trowl  ot;0r)(X) 0o H (6.18)
for all X € Hyre = Hror- Note now that (6.17) is equivalent to

Vtgr =Tg0tpofso ’{-{—o-r Olrgr O Yor O Tior
B T_';l,

where the last equality follows from computing both sides explicitly on suitable
algebraic generators of Hi,,. By Proposition 2.11, Lemma 4.2 and (2.11), we
conclude that if € equals Gi,(-)|s = Gor(-)"!|s up to a multiplicative constant,
then € induces the isomorphism vi,,, and hence the corresponding linear map
H has the intertwining property (6.18). By the uniqueness of such linear maps
(see Corollary 6.6), we conclude that these are in fact the only possibilities for
¢ € F(S) for which the associated linear maps H have the intertwining property
(6.18). Applying this result to H and using the normalization H1 = G,,(s0)'1,
we conclude that e(-) = Gor ()7 ts.

The proof for e; is similar; the arguments lead to the transformation behavior

Xo €t = €50 (Ticf o 7/)1 O Kiror © :I:TO'T o war)(X) O €t
:eioTaT(X)a VXGHO'T
in Endc(F(Sy)), where the function ey is considered as a multiplication operator

in the endomorphism space Endc(F(St)) = Ende(F(Stors)). It follows from this
that 61(-) = GUT(-)_1|31. ]

We are now in the position to prove that the normalized Cherednik kernel mero-
morphically extends the Macdonald-Koornwinder polynomials in their degrees.

Theorem 6.9. a) Let € be the normalized Cherednik kernel associated to o. For
allvesS,
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where E(v; ) = E4(v; -) is the normalized Macdonald—Koornwinder polynomial
corresponding to the spectral point v € S.
b) Let &; be the normalized Cherednik kernel associated to oy. For all v € Sy,

¢;(v7", ) = Ey(v; ),

where Ey(v; -) = Eq, (v; -) is the normalized Macdonald-Koornwinder polynomial
corresponding to the spectral point v € Sy.

Proof. By formula (6.12), Corollary 6.7 and Lemma 6.8, we have
(0, ) = Gor () H (Eror (1)
= Gor(v)e(v)E(v; )
= E(v;)
for v € §. The proof for &; is similar. O

Several direct consequences can be derived by combining the explicit series
expansion (6.6) of the normalized Cherednik kernel with its polynomial reduction
(see Theorem 6.9).

Corollary 6.10. a) The expansion of the inverse Gaussian G- € O in terms of
Macdonald—Koornwinder polynomials is given by

GT($)71 = GO’T(SO) Z NT(S)ET(S;x)

SES,

= Gor(s0) Z MT(S)EIT(S_1§33)~

SES,

Here the series converges absolutely and uniformly for x in compacta of (C*)™.
b) For all s € S = Syrr, we have the identities

Borg (YT 1)(GTY) = %”UTT(('S;’))E(S; NG,
BurolY7) (671) = G By (s

i O.

Proof. a) By Theorem 6.9, the normalized Cherednik kernels € and €; satisfy
6(8517 ) =1= 61(505 ) (619)

The identities now follow by substituting the explicit series expansions (6.6) for &
and €; into (6.19).

b) We prove the first equality, the second is similar. By a), by the polynomial
duality E,rq(s;v71) = E,r(v;s™!) forv e S, =S, and s € S = S,r0, and by
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the explicit expansion (6.6) for the Cherednik kernel €,

EUTO’(S;YT_l)(GT =Gor 80 Z /J/T Eoro 5 Yo 1)<ET(U7))
vES,
= O'T SO Z ,LLT o"ro’ _1)ET(U;')
vES,
= GO‘T(SO) Z ,Uf‘r(v)Ea-r(’U; 5_1)ET(U; )
vES,
GUT(SO) —1 -1
= —@ . G .
Gon(5) (s7,)G;
The formula then follows from the polynomial reduction €(s~1,-) = E(s;-) of the
Cherednik kernel &, see Theorem 6.9. |

Remark 6.11. The series expansion of G;! € O in terms of Macdonald-Koorn-
winder polynomials (see Corollary 6.10a)) may be regarded as a generalization of
the Jacobi triple product identity, cf. Remark 2.10c).

6.3. Symmetrization. Recall that the symmetrizer Cy € Hy C 'H was used in
Subsection 4.5 to derive Wy-invarariant versions of all main results on Macdonald—
Koornwinder polynomials. In this subsection we consider the action of the sym-
metrizer Cy on the normalized Cherednik kernel €.

Definition 6.12. Let ¢ be the normalized Cherednik kernel associated to «. The
meromorphic kernel ¢¥(-,-) = €£(-,-) € M((C*)" x (C*)") defined by

et (y,2) = (C+&(7,"))(2)

is called the symmetric Cherednik kernel associated to a.

In the following lemma we give some elementary properties of the symmetric
Cherednik kernel.

Lemma 6.13. Let €T be the symmetric Cherednik kernel associated to c.
a) @*(% x) s WO invariant in x.
) € (3,2) = (CT€(.2)) (7).
c) €t (y,z) is WO invariant in .
) +(so, s%) =1 (normalization).
Proof. a) This follows from T;Cy = t;Cy for i = 1,...,n and the explicit form of
the reflection operators T;; compare with the proof of Lemma 5.5.
b) This follows from (4.18) and from the transformation behavior of the Chered-
nik kernel under the action of the double affine Hecke algebra H, see Theorem 5.17.
c¢) This is immediately clear from b) and from the proof of a).
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d) For any g € OG,,, we have

(T? ) (s§) = tig(s), i=1,...,n
since the rational function ¢, € C(x) occurring in the definition of 7T} vanishes at

st, see Lemma 4.1b). In particular, (C’ig)(sg) = g(st) for g € OG4,. Tt follows

that for generic « € (C*)™ (in particular, for z = s7),
€ (sp,7) = (CTE(,2)) (s5) = €(s,2) = 1,

where the last equality follows from the polynomial reduction of &, see Theorem
6.9. In particular, by part c) of the lemma, € (sg, s§) = QE*(S%, sg) = 1. O

We denote G (s)NH(5~1)
S)NJI (s~
M+( s) = CO"T—<T+¢7
Gor(s0)No (s5)
with Cp = C§ € C the normalization constant (6.9). Note that the normalization
constant is chosen in such a way that

1
+(s) = S) = AT oy
2 18 =D mls) = Gy

seEST sSES

seST, (6.20)

see (6.2) for the first equality and (6.8) for the second equality. Applying the results
of Proposition 4.13 now leads to the following result.

Proposition 6.14. The symmetric Cherednik kernel € associated to o is given
by the series expansion

€ (y,2) = Gor(1)Gr(x) Y il (s)BS (552)ES (5i7),
seSt

with the series converging absolutely and uniformly on compacta of (C*)™ x (C*)™.

Proof. Let the symmetrizer C, respectively C7, act on the z-variables, respectively
the ~-variables, within the series expansion (6.6) of &(v,x), and apply (4.18) and
Proposition 4.13. We obtain

€T (7,2) = Gor(7)Gr(z) > ( > MT(SZ))ENS};%)EL(S‘KT;7)~
AEAT peWn-A

By (4.16), (4.26) and (5.16), and by the explicit expressions (6.7) and (6.20) for p,
and pf, respectively, we obtain

Y ne(s]) =uf(s),  VYAeAt,
peEWn-A

from which the explicit series expansion for the symmetric Cherednik function now
immediately follows. The convergence properties of the series are clear from e.g.,
(the proof of) Corollary 5.15 and Remark 5.14. O
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Define the spherlcal subalgebra H* ="HZ of the double affine Hecke algebra H by

Observe that X € H is an element of X' if and only if T; X = ;X = XT; for all
i=1,...,n. In particular, any element X € H*, considered as endomorphism of
M, maps into the field M of Wy-invariant meromorphic functions, and factorizes
through the projection Cy : M — M. Note furthermore that the duality anti-
isomorphism ¢ restricts to an anti-isomorphism ¢ : H* — H} since ¢(C) = CT.

Symmetrizing the main properties of the normalized Cherednik kernels € and
¢, leads to the following main result of this subsection.

Theorem 6.15. a) €1 (vy,z) = (Ci 7,-))(x) (inversion-invariance).
b) For X eH*, (X&T (v, ))(z)= (1/1( YET (-, 2))(v) (transformation behavior).
c) @3+(%ﬂ?) =€} (x,7) (duality)

Et(s;x) for s € ST (polynomial reduction).

Proof. a) Similarly as for the normalized Cherednik kernel € (see Lemma 6.13),
we have (Ciéi(% N (z) = (CJirUin(~,x))(’y). Using Proposition 4.13, the series
expansion (6.6) for €, (2.11) and (4.18), we can repeat now the arguments of the
proof of Proposition 6.14 to show that

(Che(r,))(@) = 2) Y 1 (8)ES (s50) B (57)
seST
= ¢T(v,2).
b) For X € H* we compute, using the transformation behavior of the normal-
ized Cherednik kernel € under the action of H (see Theorem 5.17),

(Xe"(7,)(x) = (X&(y, )
= (P(X)€(,2))(7)
= (v(X )(’3+(', z))(7),

where we used Lemma 6.13b) and ¢(X) € HJ in the last equality.
c¢) This follows from the duality of the normalized Cherednik kernel & (see
Theorem 6.2) and Lemma 6.13b),

€ (y,2) = (C4+€(v,))(2) = (C1 & (7)) (2) = €7 (2,7).
d) This follows from the polynomial reduction of the normalized Cherednik
kernel (see Theorem 6.9) and Lemma 6.13c),

Et(s, ) =eF(s71))
=C €(s7',)
=C1B(s;7) = E¥(s3)
for all s € S*. O
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Remark 6.16. Note that A, C H™ (considered as multiplication operators), as
well as A1 (Y) C HT, where A (Y) is the subalgebra of elements p(Y') (p € A1) in
H (e.g., by applying the duality anti-isomorphism %, to the inclusion A, C HJ).
In view of Theorem 6.15b) we thus conclude that

p(Y)QE+(’y,-) :p(7)€+(77')7 p(Ya)é—i_('vx) :p($)€+("$) (6'21)

for all p € A,. The algebra of commuting ¢-difference reflection operators A (Y),
considered as endomorphisms of M, can be identified with an algebra generated
by n algebraically independent, commuting ¢-difference operators (see van Diejen
[10] for an explicit description of these g-difference operators). One of these ¢-
difference operators may be taken to be Koornwinder’s [30] multivariable extension
of the Askey—Wilson second order g-difference operator, see [36] and Subsection 4.5.
The formulas (6.21) thus show that the symmetric Cherednik function €+ (v,-) €
M is a common eigenfunction for these g-difference operators.

We note that Corollary 6.10 in symmetrized form reads as follows.

Corollary 6.17. a) The expansion of the inverse Gaussian G- € O in terms of
symmetric Macdonald—Koornwinder polynomials is given by

G- (2)™t = Gyr(s0) Z ut(s)Et (s;2).

seSt

Here the series converges absolutely and uniformly on compacta of (C*)™.
b) For all s € ST =S}, we have the identity

Ga"r (50)

+ (s YT -1y _
El (s;YT)(GY) Gorls)

oTO

E*(s;)Gt

in O.
Proof. The proof is completely analogous to the proof of Corollary 6.10. O

The explicit relations of the symmetric Macdonald—Koornwinder polynomials
under permutations of the parameters {a, b, ¢, d} (see Proposition 4.15) can be lifted
to the symmetric Cherednik kernel. We give one explicit example.

Proposition 6.18. With the notation as in Proposition 4.15,

(a0, 26D o) L\ G ()
et _ ( L. oo | 2o Vgt (y, ).
ﬁ(%ﬂv) (H (bct2(n—1)’qt2(l—n)/ad; q)oo Ga,, () =(%.2)

i=1

Proof. We use the explicit expansion of €T in terms of symmetric Macdonald—
Koornwinder polynomials (see Proposition 6.14) to prove the proposition. We
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consider what happens to each term in this expansion sum when replacing the
difference multiplicity function « by S.
Observe that the spectral points s} € S} are invariant under replacement of
a by (. By Proposition 4.15 the Macdonald—Koornwinder polynomials in the
expansion sum transform as
Ef (%) = B, (s5i),

Qor

n (act2(n7i)’qatQ(nfi)/d;q) v b As
B (s5a) = (H . ASLIY <> Eo. (s:)

N (bet?>(n=0) qbt2(n=0) /d; q) ,  \a

for A € AT. The weights p (s7) (A € A1) can be expressed in terms of g-shifted
factorials in view of the formulas (6.20), (6.9), (4.17) and (5.17); compare with the
formula (6.4) in the proof of Proposition 6.1. From this it follows by a straightfor-
ward computation that

MBT s7) ﬁ actz("’i) qt2(i7")/bd‘q) (bctQ("ﬂ'),qth("*")/d;q)Ai (E)Ai
Maf 3/\ 41 thQ(n i), qt2(i— n)/ad q) (act2(n7i)’qat2(n7i)/d; q)Ai

b

Since Gg, () = G4, (x), the proposition now follows by a direct computation using
the explicit series expansion for €1 (see Proposition 6.14). a

Remark 6.19. The behavior of the symmetric Macdonald-Koornwinder polyno-
mials and of the symmetric Cherednik kernel under permutations of the Askey—
Wilson parameters {a,b,c,d} (see Proposition 4.15 and Proposition 6.18, respec-
tively) can be extended to the nonsymmetric level. For the Macdonald—Koornwinder
polynomials, one now uses the evaluation formula for nonsymmetric Macdonald—
Koornwinder polynomials as proved in [41, Thm. 9.3]. We do not give the formulas
explicitly, since we do not need them in the present paper.

We end this subsection by relating the one variable setup (n = 1) to the theory
of basic hypergeometric series. Note first that the roots of medium length in R,
are no longer present for rank one. In particular, the parameter ¢ in the difference
multiplicity function « disappears. Furthermore, the rank one double affine Hecke
algebra involves two difference reflection operators, namely Ty and T}, = T;. The
associated Y-operator is Y =Y; = T1Tj, see e.g. [37] for details.

In rank one, the action of Y + Y1 € A, (Y) C H' on Wy-invariant meromor-
phic functions on C* (i.e., meromorphic functions f satisfying f(z~!) = f(z)),
essentially coincides with the action of the standard Askey—Wilson second-order
g-difference operator involving four parameters {a, b, ¢, d}, which are related to the
difference multiplicity function « via formula (4.7), see e.g., [37, Prop. 5.8]. In
particular, €*(v,:) € M, is a meromorphic eigenfunction of the Askey—Wilson
second order g-difference operator, which admits an explicit series expansion in
terms of the Askey—Wilson polynomials, see Proposition 6.14. On the other hand,
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a basis of eigenfunctions for the Askey—Wilson second-order ¢-difference operator
was given explicitly by Ismail and Rahman [21] in terms of very-well-poised g¢7
basic hypergeometric series, see also Suslov [44]. Here the very-well-poised g7
basic hypergeometric series, denoted by gW7, is defined by

oo

Z 1 —aq% (a7b7 ¢, dveaf;Q)ka

W ;b7 7d7 ) ;’ = )
sWe(aibedre, f0.2) = l—a (g.qa/bqa/c,qa/d,qa/e,qa/f;q),

see [16] for details. To relate these solutions with ¥, we thus need to evaluate
the explicit series expansion for €+ (see Proposition 6.14) in terms of g¢7 basic
hypergeometric series. This was done in [43]. The result is as follows, see [43,
Thm. 4.2] and use (4.21).

Theorem 6.20. In the one variable setup (n = 1), the symmetric Cherednik kernel
€T can be written as
(qaxvy/d, qary/dx, q/ad, qa/d; q)
(abévy, qv/d, qx/d,q/dx;q)
x sWr(abéy/q; ax,a /@, @y, by, év; 4,/ dv)

when |q/az7| < 1, where we have denoted {a,b,c,d} and {EL,ZND, c, J} for the Askey—
Wilson parameters (4.7) associated to a and o, respectively.

(v, ) =

Remark 6.21. a) The meromorphic continuation for the expression of €+ as a
gWr series can be written explicitly as a sum of two balanced 4¢3’s using Bailey’s
formula [16, (2.10.10)], see [43, (3.2)].

b) Theorem 6.20 shows that the Cherednik kernel €T in rank one (n = 1) is
the special eigenfunction of the Askey—Wilson second-order g¢-difference operator
named the Askey—Wilson function in [27] and [43] (which was defined in these pa-
pers in terms of the gW7 series). In [26] the Askey—Wilson function was interpreted
as a spherical function on the noncompact quantum group SU,(1,1). In particular,
the kernel ¢ in rank one may be regarded as the natural g-analogue of the Jacobi
function (see also [28]).

7. An extension of the Macdonald—Koornwinder transform

In this section we study a difference Fourier transform which is closely related to the
Macdonald-Koornwinder transform (see Section 4). In fact, one essentially replaces
in the Macdonald-Koornwinder transform F4 the kernel €4 ; by the normalized
Cherednik kernel €;, and the cyclic module A by the cyclic H-module AG™1. We
follow closely the general line of arguments for difference Fourier transforms as
explained in Section 3. The results in this section generalize results of Cherednik
[5], [8] to the nonreduced setup, as well as results in [43] to the multivariable setup.
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Throughout this section we keep the same assumptions on the difference mul-
1 1
tiplicity function oo = (t,¢2) = (to, uo, tn, Un,t,q2) as in Section 5.

7.1. The transform. Recall the definition of the contour 7 = 7, in Subsection
4.3. We fix in this section such a contour 7, satisfying the additional requirement
that the parameter d/q = fq*%tgua Lis in the exterior of 7. It is convenient to
fix the contour 7 once and for all, although the main definitions in this section are
easily seen to be independent of this choice.

The extra assumption on the fixed contour 7 = 7, implies that the pairings
(v)4 = ()4, and (-,-) ,, on A can be written as integrals over the same
deformed torus 7 " ’

1 B dx

(1) 4 = T /T / P A@
(7.1)

1 1 dz

(1) e = e /T / Py A )T

for p,r € A. We furthermore use the formulas (7.1) as the definitions of (p, r)A
and (p, r) Ar for those meromorphic functions p and r which are regular on 7.

Consider now the subspace V =V, = AG™! € O. For all X € H = H,, we
have
X(pG_l) = (T(X)p)G_l, peEA,

hence AG™! is a cyclic H-module, with cyclic vector G™!. Let &; be the normalized
Cherednik kernel associated to a. Since G- (7) 'Gr(z) '€ (v, ) is analytic at
(v,z) € (C*)" x (C*)™ and G, € M is regular on 7", we may define the transform
F=F,: AG™! - OG,, by

(Fg)(v) = (9.€¢:(v" 1) ,» g€ AGT. (7.2)

We collect some elementary properties of F'.

Lemma 7.1. a) For allp € A,
F(pG™) () = (p. €71, )GY) 4, (7.3)

b) F: AG™! — M is a Fourier transform associated with o.

Proof. a) By a direct computation using the explicit expression of the weight func-
tion A (see (4.13) and (4.15)) and of the Gaussian G, we have

G(x)7'G (2)A(z) = A (). (7.4)

The claim is now immediate in view of the special choice of contour 7.
b) The advantage of the expression (7.3) is that the kernel

Ei(y )G = € (v )G



466 J. V. Stokman Sel. math., New ser.

is analytic on (C*)™ for generic v € (C*)™, hence the adjoint of X € H, acting on
p in the pairing (7.3) is {-(X) (see Remark 4.7). We now compute for X € H,

F(X(pG™))(7) = F((T(X)p)G_l)(v)
= (1(X)p, @i LG 4
= (».( ir o T)(X)(&(r)G)) 4
= (Z(F(p )) (),
with Z € ‘H, given by
= (oo tyom; ' otr 0 7)(X) = o(X).
Here the last equality follows by computing the left-hand side and the right-hand

side explicitly on a set of algebraic generators of H. O

Consider the subspace W, = W, = AG,, C M. For all X € H, we have
X(pGaT) = (7-0_7—1 (X)p)GU‘n pEA,
hence AG,, is a cyclic H,-module with cyclic vector G,,. The expansion formula

(6.6) for the normalized Cherednik kernel &; leads now to the following result.

Proposition 7.2. The difference Fourier transform F defines a linear bijection
F: AG™!' — AG,.. Explicitly, we have for all s € S; = Syr,

F(ET(‘S? ')G_l)(’Y) = Do Gro7(5)Eor(5:7)Gor(7), (7.5)
with Dq the constant
n (t27 thQ(nfi)’ dt2(i7n)/a’ qt2(i7n)/ad; q)oo

Dy = C(st? , , , ,
0 ( 0 ) H (q7 t2(n_l+1), abt2(n—z)’ actQ(n—z); q)oo

(7.6)

where we used the Askey—Wilson parametrization (4.7) for part of the difference
multiplicity function «.

Proof. We use the series expansion (6.6) for the kernel &; together with (7.3) and the
orthogonality relations (4.8) for the Macdonald—Koornwinder polynomials. Then
we obtain for s € S,

F(E(s:)G71) () = Gor(7) Y 117 (0) (Er(53), Brr (v715)) 1 Bor (v57)

VES,
= ,u‘r(s) (E'r(5§ ')7 EIT(S_l; ')>A77_E0‘T(S; W)GUT(’Y)‘
By the explicit expression (6.7) for . and by Theorem 4.11b), this simplifies to
F(ET(5§ ')G_l)( ) = Do Gror(8)Eor(8:7)Gor (V)
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with the constant Dg given by
Ci(1,1) Ar
G’TO'T 86) .

Dy =
(

Now Dg can be evaluated explicitly using (4.23), (4.29), Remark 5.7 and (6.9).
(

(7.6) for the constant Dy. O

7.2. The inverse transform. The next step is to invert the difference Fourier
transform F : AG™! — AG,,. We define a transform J, = J,_ by the formula

(Jog) (@) = [9: €(2)]ae = D 9(s)€(s,2)No(s) (7.7)
SESy

for g € AG,.. The defining sum (7.7) converges absolutely and uniformly for x in
compacta of (C*)™. This follows from the alternative expression

(Jag) (SU) - [gv QEA('aw)]A,Uv g € AG o, (78)

(see Theorem 6.9), combined with the bounds for the Gaussian and for the Mac-
donald-Koornwinder polynomials €4(s,z) = E(s™!;z) (s € S), see (5.18) and
Proposition 5.13 respectively. In particular, J, defines a linear map J, : AG,, — O.

Lemma 7.3. J, : AG,. — O is a Fourier transform associated with o1,

Proof. This follows from (7.8), Lemma 4.2, Remark 4.9, Proposition 4.4 and the
fact that 0~! = 4, o ¢, as unital algebra isomorphisms from H, to . O

Proposition 7.4. The difference Fourier transform J, defines a bijection J, :
AGyr — AG™'. Ezxplicitly, we have for s € Sy = Syr,

Jo (Eor(8;)Gor ) (2) = By Gror(s) " Er(s;2)G(2) 7",

with the constant Ey € C given by

B + n (abcdtzmn*i*l); q)
Ey = NO’(SO) H { (adtQ(n—i)7 bdt2(n—i), Cdi-Q(’:o—z)7 q>oo

i=1

(7.9)

1
X : : : : ,
(bet2(n=)  bet2(n=1) | dt2(i=n) [a, qt2(=") [ad; q) - }

where we used the Askey—Wilson parametrization (4.7) for part of the difference
multiplicity function .

Proof. In view of (7.8), (6.6), (4.5) and the definition (6.7) for the weight p € F(S),
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we easily see that

Gor(s )No(Si) -1 -1 -1
%GW(S) ¢ (s, 2)G(x)

GO’T NO’ !
= Gor(50)No (%) Gror(8) LB, (s;2)G(x) !,

Co
where we used the polynomial reduction in the second equality (see Theorem 6.9).
By Remark 5.7 and (6.9), the coefficient GUT(SO)NJ(S(%)/CO is easily seen to be
equal to the constant Ey as defined in (7.9). O

Jo (EUT(S; ')GUT)(:C) =

Recall the notation c4 = (1, 1)AN(,(50_1) from Theorem 4.11.

Corollary 7.5. The difference Fourier transform F : AG™' — AGg. is a linear
bijection, with inverse c;‘l Jy i AGyr — AG™1L.

Proof. Proposition 7.2 and Proposition 7.4 imply that F' o J, = DyFyld on AG,,
and J, o F = DygFyId on AG~!. It thus suffices to show that DoEy = c4. Now by
(4.29) and by the explicit expressions (7.6), (7.9) for Dy and Ej, it follows that

C(sy")
DoEo = N,(s}) 271;{” (L1) 4y = No(sp)(1,1) , = ca, (7.10)
where the second equality follows from (4.23). O

7.3. Plancherel-type formulas. In this subsection we prove Plancherel-type
formulas for the transform F' and its inverse 0;‘1 J. For this, we introduce two new

transforms F : AG~™! — OG,, and ja : AGyr — O by
(Fg)(1) = (€(1:),9) 0o (Joh) (@) = [T€(,2), h]a (7.11)
for g € AG™! and h € AG,,, with I the inversion operator (Ig)(y) = g(v71).

Repeating the arguments of the previous subsections lead to the following result.

Proposition 7.6. The transform F defines a linear bijection F : AG™' — AGy.,
whose inverse is given by c;ll Jy : AGyr — AG™Y. Explicitly, we have

ﬁ(Ei‘r<3_1§ ')G_l)('Y) = Do Gr57(8)Eor(8:7)Gor (7),
Jo (Bor(83)Gor ) () = By Gror(s) ' Eir (s 2)G(a) 7
for s € §; = Syr, with the constants Dy € C and FEo € C given by (7.6) and (7.9),

respectively.

The transforms F and J, are defined in such a way that

[Fg, h]A,o = (97 jah>_A; (Jahag)A = [haﬁg]A,o
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for all g € AG~! and h € AG,,. This can be proved by interchanging integration
and summation using Fubini’s Theorem, which is justified by the polynomial reduc-
tion of the Cherednik kernels (Theorem 6.9) and by the bounds for the Macdonald—
Koornwinder polynomials (Proposition 5.13). This leads now immediately to the
following Plancherel-type formulas.

Proposition 7.7. a) Let g,h € AG~L. Then

[ngﬁh]/l,a = C.A(gah)A'
b) Let g,h € AG,.. Then

(Jagv ja'h)A = C.A[gah]A,o”

Combining Proposition 7.7 with Proposition 7.2, Proposition 7.6 and (7.10)
leads to the following formulas involving Macdonald-Koornwinder polynomials.
Corollary 7.8. Let s,v € S; = Syr. Then

DOGTUT(S)GTUT(U) [EO'T(S; ')GU‘H EUT(U; ')GUT]A,U =
= Eo(E;(s;)G™', By (071 )GTY)
with Dy and Ey given by (7.6) and (7.9), respectively.

A’

The explicit formulas of Corollary 7.8 are the analogues of the orthogonality
relations (4.8) and quadratic norm evaluations (Theorem 4.11b)) for the Macdo-
nald-Koornwinder polynomials.

With the main results for the difference Fourier transform F : AG™! — AG,
now established, we can make the connection with the Macdonald—Koornwinder
transform F4 and its inverse c;‘1 Ja,- more explicit. Since the inverse transform
J, is a discrete transform supported on the polynomial spectrum S;, we may as
well consider F' and .J, as maps

Fres : AG71 - (AGUT)‘S¢3 Jres,a : (~’46‘Y¢7‘r)|$_4F - AG71 (712)

by restriction of the spectral variable v to S;. Here the space (AGUT) |s, is again
a (cyclic) Ho-submodule of F(S;) by Lemma 4.2. The transforms Fcs and Jyes,o
are then Fourier transforms associated to o and o~ !, respectively, and 0;‘1 Jres,o 18
the inverse of the transform F..;. Moreover, the transforms F..s and Jy¢s,» can be
expressed as
(Fresg)(s) = (g’ eAyi(sil"))Av s € Si’
(Jres,ah) (LL') = [ha QS_A(', x)]A,G

forg € AG"tand h € (.AGM) |5, » which coincide with the defining formulas for the
Macdonald-Koornwinder transform Fyu : A — Fo(S;) and the discrete transform
JA,U : .7:0(81) — A.

(7.13)
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In particular, the Macdonald—-Koornwinder transform and its extension to the
cyclic H-module AG~! can be treated together in a uniform manner by considering
difference Fourier transforms on the H-module V = V,, defined by

V=A® AG ! c M,
and on the H,-submodule W, = W,_ defined by

W, = .7'—0(81) D (AGUT) - ]:(Si)

|Ss

(clearly, the sum is direct in both cases). The transforms F.. : V — W, and
Jres,o + We — V are then defined by (7.13), now with g € V and h € W,,. These
extended transforms Fr., : V — W, and Jyes, @ W, — V are Fourier trans-
forms associated to o and ¢!, respectively, and c;tl Jres,o is the inverse of Fi.s.
Furthermore, applying Fubini’s Theorem we have the Plancherel-type formulas

[Fresgvﬁresh]fl,a = CA(g7h)A7 gvh € ‘/a

_ (7.14)
(Jres,aga Jres,ah)A = C.A[g7 h]A,Ua g, h e Wo’a

with ﬁres :V —- W, and jresﬁ : W, — V the transforms

(Fresg) (S) = (GA(S’ ')79)Aa (j;“es,crh) ((E) = [IQEA,i('ax)a h]A,a’

for s € St, g € V and h € W, where [ is the inversion operator (Ig)(v) = g(v™').
By the explicit expressions for the images of suitable bases of V' and W, under
Fres, Fres and Jyes,o, Jres,o, respectively (see Section 4 as well as this section), the
Plancherel-type formulas (7.14) lead to the orthogonality relations and quadratic
norm evalutions of the Macdonald—Koornwinder polynomials and to the formulas
of Corollary 7.8. It also leads to “mixed identities”, for which g and h in (7.14) are
taken from different summands in V' (respectively W,,). These mixed identities are
completely covered by the following integral formulas for Macdonald-Koornwinder
polynomials.

Proposition 7.9. Forve S =S8,,, and s € S;,
(E(v;), Brr (s -)Gil)A = DoGor(0)Gror(8)Esr(s;v7h).

Proof. Let v € S and s € S;. Let §,-1 € Fy(St) be the function which is one at
v~ € St and zero otherwise. Then (4.8) and Theorem 4.11b) imply that

Fres(B(v;-)) = (E(v;-), By(v™15)) 6,1 = WA) Gymr.

On the other hand,
ﬁres(EiT(Sil; ')Gil) = DOGTUT(S)EUT(S; ')Ga‘r~

Combining these two formulas with the first Plancherel-type formula in (7.14) leads
to the desired identity. a
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7.4. The symmetric theory. The results on the extended Macdonald—Koorn-
winder transform F : AG~! — AG,, and its inverse J, : AG,, — AG~! can be
symmetrized in the usual manner by applying the symmetrizer C;. € Hy C H. We
collect the main formulas in this subsection.

We define the symmetric transforms F* = F} : A,G™" — M and J} = J} :
A Gyr — M by the formulas

(F+g) (7) = (g’ €+(77 .))Aﬂt’
(J;T.—h) (.T) = [h7 €+(" x)]-A,-hU = [h7 (’E;"(x, ')]A,-hoa

for g € A,G7' and h € A, G-, where the integration for the pairing (~, ‘)A N
(4.24)) is over the deformed torus 7" with 7 as in the previous subsection, and
with [, ] a4+ = [, ] 4,+,a defined by

[frglas = Y f(s)g(s)NT(s™)

565;

(7.15)

(see

for functions f and g such that the sum is absolutely convergent. By standard
arguments (cf. Subsection 4.5) we obtain

_ o
(Fg)(7) = (Fg)(7) = CQ(nSL!) (Ftg)(7), g€ AG,

(Joh)(z) = (Joh)(2) = Colsp) (JFR) (x),  h € ApGor.

We obtain from these formulas the following result.

(7.16)

Theorem 7.10. The transform F1 defines a linear bijection F* : A,G™! —
Ay Gy, whose inverse is given by (cf) " I : AyGor — ALG™!, where the con-
stant cj‘ is given by

ch=NS(s5h)(1, 1) 4y (7.17)

Furthermore, we have the Plancherel formulas
[F+g7F+h]A,+,U:c; <g7h)A+a g7hEA+G_17
(J:g, J;rh)A’Jr = CI [9,h) A +.0, g,he A G,y

Proof. First note that for functions g, h € F(S;) which are Woy-invariant under the
dot-action,

9, M a0 = Col55)[9, Bl A 40

provided that the sums absolutely converge, cf. (4.27). An analogous statement
holds true for (o, ) A See (4.23). By the inversion formula and Plancherel formula
for F' and by (7.16), it then suffices to note that

o
2" ca=Nj(sg")(1,1)

— ; (7.18)
C(s¢7)Co (50) At
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which follows from (4.16) and (4.23). O

We finish the subsection by symmetrizing the explicit formulas in Proposition
7.2, Proposition 7.4, Corollary 7.8 and Proposition 7.9. We define constants D{)"
and E; by

Do + _ Eo
csy) 7 Colsh)
with Dy and Ey given by (7.6) and (7.9), respectively. Note that Df Ef = ¢
by (7.10) and (7.18). Using standard symmetrization techniques, one obtains the
following proposition.

(7.19)

Proposition 7.11. Let s,u € S} =S8}, andv e St =871,,.
a) The transform F7T satisfies

FH(EL(s:)G71)(7) = Df Gror(s)ES(537)Gor (7).
b) The transform J} satisfies
JF(ES (85)Gor)(2) = Ef Gror(s) ' Ef (s;2)G(z) ™.
c) The following identities are valid:
D5 Gire ()G (4) (B2 (85 )G By (65 Gorrlt 4.0 =

= Ey (Bf (s;)G7H EF (wi )G

d) We have the integral evaluations

(E+(”§ ), B (s ')Gil)Aﬁ_ = Dy Gor(0)Gror () B, (550).

8. The (non)symmetric Askey—Wilson function transform

In this section we restrict attention to rank one (n = 1). We study nonsymmetric
analogues of the (spherical) Fourier transform on the noncompact quantum SU(1, 1)
group, following the general philosophy of Section 3.

Recall that the Jacobi function transform is a generalized Fourier transform
with kernel given by the Jacobi function. It has an interpretation (for certain
discrete parameter values) as the spherical Fourier transform on SU(1, 1), see e.g.,
[29]. In recent papers of Koelink and the author, see [26], [27] and [28], a Fourier
transform was defined and studied which admits an interpretation as a (spherical)
Fourier transform on the noncompact quantum group SU,(1,1). The transform,
named the Askey—Wilson function transform, is an integral transform with kernel
given by the so-called Askey—Wilson function.

By Theorem 6.20 and Remark 6.21b), the Askey—Wilson function is precisely
the symmetric rank one Cherednik kernel &*. This observation naturally leads to
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nonsymmetric variants of the Askey—Wilson function transform, defined as integral
transforms involving the normalized rank one Cherednik kernels € and &;. These
transforms qualify as difference Fourier transforms in the sense of Section 3. The
underlying spaces are given explicitly as direct sums of two cyclic H-modules.

In Subsection 8.1 we define the bilinear forms and the cyclic H-modules. In
Subsection 8.2 we define the (non)symmetric Askey—Wilson function transforms. In
Subsection 8.3 we analyze the transforms on the first, “classical” cyclic H-module,
which reduces to (the rank one case) of the extended Macdonald—Koornwinder
transform as discussed in the previous section. In Subsection 8.4 we compute the
image of the cyclic vector of the second, “strange” H-module under the transforms.
In Subsection 8.5 we prove algebraic Plancherel and inversion formulas for the
(non)symmetric Askey-Wilson function transform. In Subsection 8.6 we show how
these results can be extended to the L2-level for the symmetric Askey—Wilson
function transform, yielding new proofs for the main results of [27].

In this section we keep the same generic assumptions on the difference multi-
plicity function o = (¢, q%) = (to, ug, t1,u1, q%) as in Section 5. Recall that in the
rank one setup (n = 1), the roots in R,,, of medium length have disappeared, hence
the associated parameter ¢ in the multiplicity function t disappears (see [37] for the
detailed treatment of the polynomial theory in the rank one setup). In addition, an
extra parameter e € C* enters in the definition of the nonsymmetric Askey—Wilson
function transform, which we only assume to be generic (unless stated explicitly
otherwise).

8.1. The bilinear forms. It is well known from the theory of elliptic functions
that there exists, up to a multiplicative constant, a unique meromorphic function
P. =P¥ € M = M(C*) satistying the invariance properties

Po(z7Y) = Peo(x), P.(qgx) = Pe(x),
and with divisor on the elliptic curve C* /¢% (written multiplicatively) given by
Div(Pe) = (d) + (A7) — (e) — (7).
Here and in the remainder of this section we use the Askey—Wilson parametrization
{a,b,¢c,d} = {tyus, tiuy?, q%touo, —q%touo_l} (8.1)

for the difference multiplicity function «, cf. (4.7). The function P, is closely
related to the Weierstrass P-function. We fix P, here by defining it as a quotient

of Jacobi theta-functions. For this we introduce the notation 6(y1,y2,...,yn) =
0(y1)0(y2) - - - O(yy) for products of the renormalized Jacobi theta function
O(x) = (z,q/z;q) . (8.2)
Then we fix P, = PS € M uniquely as the quotient
O(dx, dx™!
P () = AL D) (83)

O(ex,ex—1)’
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Since P, € M is W-invariant, the associated multiplication operator in End¢ (M)
commutes with the action of the double affine Hecke algebra H on M.
We now define new weight functions W, = W € M and W, = W, € M by

We(x) = Pe(x)A(z), W (z) = Pe(x)AT(2) (84)

with A = A, the weight function for the rank one Macdonald—Koornwinder poly-
nomials (see (4.6)) and AT = A the weight function for the symmetric rank one
Macdonald-Koornwinder polynomials (see (4.14)). Observe that the weight func-
tion W, is Wy-invariant, i.e., W, (z=1) = W (z). In terms of g-shifted factorials,
the weight function A is given by

(:EQ,qx*Q;q)oo
(axa qax—1 bz, qbx—1, cx,cxt,dx,dx 1 q)

Ax) = ,

see (4.13), (4.14) and (4.15), whence W, € M can be expressed as
(22, qx2,qx/d, q/dx; q)

(ax,qax*l,bx,qu*%cm,cx*l;q)ocQ(ex,exfl)'

We(z) =

Similarly the weight function W is given by

(22,272, qu/d, q/dz;q)
(ax, ax~1 br,bx—1 cx,cx—1; q)OOH(ex, ex—1)’

For € > 0 sufficiently small, let C. C C be a closed, counterclockwise oriented recti-
fiable Jordan curve around the origin 0 € C satisfying C-! = C, (set-theoretically),
and containing the sequences

{aq™,bg™, cq™,¢" "™ /d | m € N} U {eq™ | m € Z, |eq™| < e '} (8.5)

in its interior, respectively the eq™ (m € Z) with |eg™| > €~ ! in its exterior. In
the special case that a, b, c and ¢/d have moduli < 1, we may choose the contour
C. to be the unit circle in the complex plane with two deformations, one to include
the poles eq™ with moduli < e~! and one to exclude the poles e 1¢™ with moduli
> €.

For such ¢ > 0 sufficiently small, we define now two pairings as follows. For
meromorphic functions g, h € OG, we define the pairing (g, h)S = (g, h)S* by the
formula

1 dz
h)E = — h(z™ YW, (z)—. 8.6
015 = 5 [ oG (56)
Similarly, we define the pairing (g,h)¢ , = (g,h)¢S for meromorphic functions
g,h € OG; by
o0k = 5 [ g W @) (87)
97 e’+ - 27TZ CE g e T . .

€

By Cauchy’s Theorem, the pairings (g, h)¢ and (g, h)¢ , are independent of the
choice of contour C, satisfying the specific defining conditions as stated above.
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We now define two subspaces V& = Vb and Vst = Vsine of OG, by
Vecl :Ape_lG_l, Vstr :AGT (88)

Furthermore, we write V., = Vele and V3" = V'™ for the associated subspaces
of Wy-invariant functions,

VA = ALPIIGTY, VT = ALG,. (8.9)

The superscripts ¢l and str stand for “classical” and “strange” respectively. This
terminology is motivated by the fact that V. (respectively V") covers the contri-
butions of the Plancherel measure of the spherical Fourier transform on the quan-
tum group SU,(1,1) which arise from the unitary principal series representations
(respectively strange series representations), see e.g., [26] and [43].

Observe that V< and V! are cyclic H-submodules of M with corresponding
cyclic vectors PG~ and G, respectively. In fact, for any p € A and X € H we
have

X(pP,'G™) = (r(X)p)P G,
X(pGr) = (1 (X)p) G

and the action of H, preserves the subspace A of Laurent polynomials. Any func-
tion g € V. vanishes at points z € (eq?)*!, hence VI NV*" = {0}. We define the
‘H-module M, = M2 by

(8.10)

M, =VI Vs c OG,. (8.11)

The subspace M} = M* C M, consisting of Wy-invariant functions in M, is
given by the direct sum
! t
M =V eVt

Observe that the identity Gy, = G~! implies that M, is also Hy-stable under the
natural action of H; on M as g~ !-difference reflection operators. The explicit
formulas are given by

X(pP G = (7, (X)p)P G
X (pGr) = (1:(X)p) G-~

for p € A and for X € H;.
Lemma 8.1. For g,h € M., the limits

3 c _y c

<gah>e El\r% <g7h>67 <gah>€,+ EI\I% <gvh>e,+

exist.
Proof. We prove the lemma for the pairing (-, -)e + (the proof for (-,-). is similar).

Let g,h € M,. Let € > 0 be sufficiently small. We may rewrite the integral over C.
in the definition of (g, h)¢ , by an integral over an (e-independent) closed, rectifiable
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Jordan curve C on the cost of picking up residues at points of the form eq' and
e~ 1q=! for m. <1< ly, where m, € Z is the smallest integer such that leg™e| < e 1,
and with [y € Z some suitably chosen, fixed integer. Hence convergence of the limit
will follow from the convergence of the series

S ol Al Res (M) 7 (8.12)

= X
1<lo =Y

with 3, = eq’. In case that g € V¢ or h € V. these sums vanish. When g, h €
Vst = AG,, then

9] < coctld" /2, VI <l (8.13)

for some constants cg, c; > 0, and similarly for h. Furthermore,

+
Res <_W(x))
- =5 § €T

T=Y;

for some constants dg,d; > 0 (which e.g., follows from the explicit expression [27,
(5.8)] for the residue of the weight function W at y='). Hence the Gaussian
contributions qu/ 2 in the asymptotics of g and h force the convergence of (8.12).
This completes the proof of the lemma. O

<dydl', Vi<l

Proposition 8.2. The bilinear form (-,-)e on M. induces the anti-isomorphism i
on H. In other words,

<Xgah>e = (g,i(X)h)a
for X € H and g,h € M,.

Proof. Tt suffices to prove the proposition for X = T and X = T;. By the explicit
form of the operators T}, we have for j = 0 and for j =1,

P ~ ~ dx
T, = (oI = o [ {0 @hie) - o)D) } o, (W) T
with h(z) = h(z~!) and with the r;’s acting as constant coefficient g-difference
reflection operators. For j = 1, the function z — ¢, (2)We(x) is ri-invariant,
hence the right-hand side vanishes by the inversion-invariance of the contour C..
Taking the limit € \, 0 and using Lemma 8.1 then yields (T g, h)e = (g, 1(T1)h)e.

For j = 0, the function x +— ¢4, (x)We(x) is ro-invariant, hence

~ dx

(Tog. s = o 3T = 52 [ g@hlar e @We() -

A straightforward computation shows that the poles in C* of the integrand are
simple and contained in the zero set of

€T (aa:, qaz~t br,qbx ™t cx, qcx ™!, qx/d, ¢* /dx; q)ooe(ex, ex™h).
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Now let m € Z be the smallest integer satisfying |eq™| < e~!. By the assumptions
on the contour C¢ and by Cauchy’s Theorem, we pick up poles at eq™ and at

e~ '¢'~™ when shifting C. to ¢qC., whence

(Tog, h)e — {9, H(To)h)e =

=ty (9(q" "™ e )leg™) — g(eg™)h(¢*"™e ")) Res

r=eq™

(Cao(:v)We(x)) .

T

Now take the limit € \, 0 and use the bounds derived in the proof of Lemma 8.1.
This implies that (Tog, hYe = (g, 1(To)h)e, as desired. O

Remark 8.3. Observe that the conditions on the functions g and  in Lemma 8.1
and Proposition 8.2 may be relaxed. For instance, Lemma 8.1 and Proposition 8.2
hold true when g € M, and h € OG, with h satisfying

Iy < coc)!,  VI<Io (8.14)

for some constants cg,c; > 0, where [y € Z is some arbitrary, fixed integer and
y = eq. If h = h, € OG; furthermore depends analytically on an additional
parameter 7 € C* and (8.14) holds true uniformly for + in compacta of C*, then
the proof of Lemma 8.1 in addition implies that (g, h,). depends analytically on
v e C*, for all g € M.

8.2. The transforms. In order to define the (non)symmetric Askey—Wilson func-
tion transform we need to establish certain bounds for the normalized Cherednik
kernels € and €; associated to o and ay respectively, as well as for the normal-
ized symmetric Cherednik kernel ¢*. In fact, we prove bounds for the analytic
functions G 1€(-, ylﬂ), Grles(, ylﬂ) and G;1&* (-, y) in | € Z, where y; = eq'.

Lemma 8.4. For any compact set K C (C*)", there exist constants C,D > 0
(depending on K), such that

|Gor(7) " €(r, ) < CDI,
|Gor(7) " €4(7, ) < CDI,
|Gor(v) 7 €F (3, 0)| < CDI,
for alll € Z and all v € K, where y; = eq.

Proof. Recurrence relations for the normalized Cherednik kernels € and €; are
essentially the same as Pieri formulas for the polynomial kernel €4, since the
kernels satisfy the same transformation behaviour under the action of the double
affine Hecke algebra (see Proposition 4.4 and Theorem 5.17). Hence the proof
of the bounds for the Macdonald—Koornwinder polynomials (see Proposition 5.13
and the appendix) can be easily adjusted to obtain the desired bounds for the
analytic functions G, 1&(-, ') and G1 € (-, y). We leave the precise details to
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the reader. The bounds for €™ follows easily from the bounds for &, using e.g., the
formula €*(v,z) = (C4€(v, ")) (). O

Proposition 8.5. a) The assignment

(‘7:69) (7) = <g’ 61(7—17 ')>e

for g € M, defines a linear map Fe = F& : M. — OGyr. Furthermore, F. is a
Fourier transform associated with o.
b) The assignment

(jeg) (’V) = <ga I@(’}Q ')>e
for g € M, with (Ih)(z) = h(z~1), defines a linear map J. = J& : M, — OG .

Furthermore, J. is a Fourier transform associated with o .

Proof. a) Remark 8.3 and Lemma 8.4 imply that the map

V{9, Gor (V)T € (v ))e

for fixed g € M, defines an analytic function on C*. Hence F, defines a linear map
Fe : M. — OG,.. By Proposition 8.2, Remark 8.3 and the general arguments of
Section 3 it is clear that F. is a Fourier transform associated with o. The proof of
b) is similar. O

Corollary 8.6. The assignment

(FL9)(v) = {9, €7 (7, ))e,+
for g € M} defines a linear map F = F : M} — OG,,. Furthermore,

C(sk
Feg=Jeg = —(20 L £t

for all g € M.
Proof. By similar arguments as in the proof of Proposition 8.5, we have that F.

defines a linear map F} : M} — OG,.. By (4.18), Lemma 6.13, Proposition 8.2,
Remark 8.3 and Theorem 6.15a), we obtain

(Feg) (V) = (Teg) () = (9, €* (7, ))e

for ¢ € MF. Symmetrizing the integral using (4.22) and the decomposition
We(x) = C(x)WS (x) gives

sk
(9. € () = SE g e ().

for g € M, which completes the proof. O
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By Theorem 6.20 the transform JF is, up to a multiplicative constant, precisely
the Askey—Wilson function transform as defined and studied in [27]. The only
difference is that the transform Ff in [27] is (initially) defined on a certain space
of compactly supported functions, while . in this subsection is defined on the
space M (which is a more natural subspace from the viewpoint of double affine
Hecke algebras). It turns out though that for restricted parameter values, their
continuous extensions to the L2-level do coincide (see [27], [43] and Subsection 8.6).

In order to distinguish the two transforms F, and FJ, we use the following

terminology throughout the remainder of the paper.

Definition 8.7. a) The transform F, : M. — OG,, is called the Askey—Wilson
function transform.

b) The transform F} : M} — OG,, is called the symmetric Askey—Wilson
function transform.

8.3.The classical part of the transforms. In this subsection we consider the
difference Fourier transforms F, and J. on the cyclic H-submodule Ved c M..
This is related to the extended (rank one) Macdonald-Koornwinder transforms F

and F of the previous section in the following way.

Lemma 8.8. a) Forp € A,
F@P G =FG ) (), T@P.'G) () = F(UIp)GH) (),

where I is the inversion operator (Ig)(z) = g(z~1).
b) Forpe Ay,

FHpP G () = FF(pG~ 1) (y),

with F* the extended (rank one) Macdonald—Koornwinder transform defined by
(7.15).

Proof. a) Let T = 7., be a deformed circle as defined in Subsection 7.1. For p € A
we have

FPG )0 = 5 | g6 e )6 1 Aw S
= (prl’ @i(’yil’ ))A
= F(pG™) ().

Here the first equality holds by Cauchy’s Theorem since P, 1W, = A is regular at
the points = € (eq?)*!. The proof for 7, is similar.
b) The proof is similar to the proof of a). O

Invoking the main results on the extended Macdonald-Koornwinder transform,
we arrive at the following result.
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Corollary 8.9. a) The Askey—Wilson function transform F. restricts to a linear
bijection F : V. — VsIo . Explicitly, we have

Fe(Er(s; )P G (7) = DoGror () Eor(5:7)Gor (7) (8.15)
for all s € S; = Sy7, with Dy = D the constant

(be,d/a,q/ad;q)
(¢,qab,ac;q)

Do = (8.16)

b) The difference Fourier transform J. restricts to a linear bijection J, : V! —
Vstre - Explicitly, we have

Te(I(Esr (s )P G (1) = DoGror(8)Esr(5:7)Gor(7)

for all s € Sy, with Dy = D§ the constant (8.16).
c) The symmetric Askey—Wilson function transform FF restricts to a linear
bijection F : V., — Vo Eaplicitly, we have

Fo (E:_(‘S? '),Pe_lG_l)(V) = Dy Gror(8) B (5:7)Gor ()

for alls € St =S8,

oT?

with D(J{ = Da“a the constant

b 2be dfasgfadiq)
0 (¢,ab,ac;q)

(8.17)

Proof. a) By Lemma 8.8 and Proposition 7.2, formula (8.15) holds with the constant
Dy given by (7.6). Now for rank one (n = 1), C(sgo) = 1 — ab, hence (7.6) reduces
to (8.16). The proof of b) and c¢) are similar, now using Proposition 7.6 and
Proposition 7.11, respectively. O

8.4. The Fourier transform of the Gaussian. We consider the transforms
F. and J, on the cyclic H-submodule V" = AG,. Since F, and J. are Fourier
transforms associated with o and o ! respectively, it suffices to evaluate the image
of the cyclic vector G, under F, and under .. This amounts to the same thing,
since Corollary 8.6 implies
C(sy7)
(feGT)(’Y) = (jeGT)('Y) = TO
We start with the following one-variable g-analogue of the Macdonald—Mehta inte-
gral.

(FFGH) (). (8.18)

Lemma 8.10. We have the explicit evaluation

2 O(abce)
(g, ab, ac, be; q) ., Olae, be, ce) '

(FGr) (s0) =
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Proof. By the polynomial reduction, we have € (s, ) = 1, hence

(FFG-)(s0) = lim = /c GT(sc)Wj(x)d—x

8.19
e\ 271 T ( )

Since
(22,1/2%q) _

GV @) = (az,a/w,bx, b/, cx,c/x;q)  O(ex,e/)’

(8.20)

the right-hand side of (8.19) can be easily matched with the one variable ¢-Mac-
donald-Mehta integral [43, (5.9)], with the parameter « in [43, (5.9)] taken to be e
(observe in particular that (FG-)(so) does not depend on the parameter d). Its
evaluation (see [43, Thm. 5.5]) yields the desired result. O

Remark 8.11. One of the goals in this section is to prove the main results on the
symmetric Askey-Wilson function transform (see [27] and [43]) using only affine
Hecke algebra techniques and some explicit “constant term” evaluations. It is
therefore noteworthy to mention that two proofs of the evaluation of the above
Macdonald-Mehta type integral are available which only use some direct basic
hypergeometric series manipulations (see [43, Appendix B]).

Proposition 8.12. The image of the Gaussian G, under the symmetric Askey—
Wilson function transform FF is given by

2(q/ads;q) .

+ _ —1 —1
(7 GT)(W)f(q’ab’ac;q)wg(aabe?Ceyqe/d)Peﬁ(v) Go(7)7Y,

with the parameter e, € C defined by

1
q2
uotle'

€r = —

Proof. We consider the Wy-invariant meromorphic function f € OG,G,, defined
by
2

fy) = ) Go()(FGr) () = Go (V) (FLGF) (7). (8.21)

We first show that f is invariant under the action of 1o € W, i.e., that f(¢gy™!) =
f(v). We compute

sko
@7 £)) = 0 G, () (G a7 0 07 0 7 )T ()
ske
= ) ¢, (R (e 07T ) ()

= uof(7),
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since Y7T7 ™! acts on 1 € A as multiplication by the constant ugtit;* = uo.
By the explicit form of the g-difference reflection operator Tiy”, we conclude that
f is ro-invariant. Hence f € M is W-invariant. So f may be regarded as a
meromorphic function on the elliptic curve T' = C* /¢% (written multiplicatively).
The only possible poles of f on T are at most simple and located at —q%"’zulua 1

and —q_%'*‘Zul_luo7 since f € OG,G,, and
1

GO’(’Y)GO'T(’Y) = 1 — 1 — .
0(—qzurug 'y, —qusug 'y 1)

By standard elliptic function theory it follows that
0(ev. ey ")

0(—q2urug 'y, —q7 urug 'y=1)

fy=CPi(y~t=cC (8.22)
for some € € C* and some C € C. The choice of € € C* in (8.22) is not unique.
In fact, if (8.22) is valid for € = u for some choice of constant C, then all other
possible choices for & are given by (ug?)**.

We fix now a pair (€, C) such that equation (8.22) is satisfied. The next step is to
derive explicit identities for C' and € using the evaluation of the Macdonald-Mehta
type integral (see Lemma 8.10) and using symmetries in the four Askey—Wilson
parameters a,b,c and d. These additional identities in C' and € can be solved
explicitly and lead to the explicit expressions for C' and € as given in the statement
of the proposition.

We first evaluate f(sg) = f(tot1) in two different ways. Since G, (tot1) =

(ad, q/be; q) ;01, we have by (8.21) and by Lemma 8.10,

2 O(abce)
q,ab, ac, ad; q) O(bc) O(ae, be, ce) ’

f(totr) = (

In particular we have f(tot;) # 0, which implies that & ¢ (tot1¢%)*' and C # 0.
On the other hand, by (8.22),

O(tot1é,ty "t 1)

fltot) = C O(ad, be)

Combining the two identities, we obtain an expression for the constant C' in terms
of é:

_ 2(q/ad; Q)OO 0 (abce)

N (q,ab, ac; q)oo O(ae, be, ce, toty €, to_ltl_lé).

(8.23)

In order to find é explicitly, we mimic the previous approach by evaluating
f(—ty '#1) in two different ways. In order to do so, we consider a new multiplicity
function 3 by

_ 1
6 = (tO;UOath —Uq 1aq2)a
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i.e., the value u; of the multiplicity function t at the orbit Way is replaced by ful_l.

In terms of the Askey—Wilson parametrization (8.1), this amounts to interchanging
the role of a and b. Note that 3, = (—ufl,uo,tl,to,q%), so that sp” = —uy M.
Using the duality and the polynomial reduction of the symmetric Cherednik kernel
€T (see Theorem 6.15), as well as the symmetry of €™ when interchanging the role
of a and b (see Proposition 6.18), we derive

¢l (—uytty, ) = €L (y, —ui ')
_ (bca q/ad; CI)DO Ga,. (v
~ (ac,q/bd;q) _ Gp,. (v
_ (bc, q/ad; CI>DO Ga, . (v
~ (ac,q/bd;q) _ Gg,. (v

eg (7? _ufltl)

oo

)
)
)
)

Interchanging the role of ¢y and wu; (i.e., replacing a by «,) then gives the explicit
evaluation formula

(qa/d, q/ad; q)oo (cx, c/x; q)oo
(ac,c/a;q) . (qz/d,q/dz;q)

e (—ty 'ty z) =

Hence we obtain

(qa/d,q/ad;q)

(f:GT)(_taltl) = (ac, c/a; Q)oooo K, (824)

with K given by

_ imi . (ca:,c/x;q)oo i dx
K=1 ,/CFGT()( W ()2

qr/d,q/dz;q) ¢ @

It follows from the explicit form (8.20) of the integrand G,W; that K is the
Macdonald-Mehta type integral (FG;)(so) in which the parameter c is replaced
by the parameter ¢/d. In particular, Lemma 8.10 yields an explicit evaluation
for K. Formula (8.21) combined with (8.24) then shows that

flty't) = ( : (F&G) (=15 t)

_ (qa/d,q/adsq)
~ (d/b,ac;q) _0(c/a) K (8.25)
2(q/ads q) . 6(qabe/d)
(q,ab, ac; Q)OOH(d/b, c/a) O(ae, be,qe/d)’
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On the other hand, (8.22) and (8.23) show that
O(—toty "e, —ty 't1€)

—ty't) =C
J(=to ) 0(d/b,c/a) <26
B 2(q/ad;q) O(abce, —toty '€, —ty '11€) (8.26)
B (g, ab, ac; q)ooe(d/b, c/a) O(ae, be, ce, tot1 &,y 117 E)
Comparing (8.25) and (8.26) leads to the identity
O(—toty '€, —t; 't1€)  0(qabe/d, ce) (8.27)

O(totr6,ty 't e)  O(abee,ge/d)’

In other words, if (8.22) holds true for the pair (€,C), then € is necessarily a
solution of (8.27).

It is easy to verify that é := e, = —q? /ugtye is a solution of (8.27), as well as

e, 1. Furthermore, the left-hand side of (8.27) is an elliptic function in é on

™
I

T = C*/q%, hence standard elliptic function theory shows that (eng)il are all
possible solutions for é of equation (8.27). Hence we conclude that (eng)il are
all the possible values for € such that (8.22) holds true for some constant C.

For the choice é = e, in the equation (FG,)(y) = CPZ(y)"1G,(y)"!, the
corresponding constant C' is given by

2(q/ad;q)
(q, ab, ac; q) Olae,be, ce,qe/d)

in view of (8.23). This completes the proof of the proposition. O

8.5. Algebraic inversion and Plancherel formulas. The results of the previ-
ous subsections easily lead to an algebraic inversion formula for the Askey—Wilson
function transform. For the formulation we introduce normalization constants
K. =K and K} = K® by

b .
He = W\/ﬁ(ae, be, ce, ge/d),
(¢, ab, ac; Q§O o
Kt = = \/G(CLB, bea ce, qe/d)’

° 2(q/ad;q)_,
where we choose an arbitrary branch of the square root. Observe that the constants
K. and K are self-dual, i.e., K¢ = K. and Kl = K;;"’. We define normalized
difference Fourier transforms .5’-~'e = .7?3 and je = je"‘ on M, by

Fo=K.F., Jo=K.JT.. (8.29)

Similarly, we define the normalized symmetric Askey—Wilson function transform
Fr =FF H*on M} by

Fr =KIFr. (8.30)
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The algebraic inversion formulas can now be formulated as follows.

Theorem 8.13. a) The normalized Askey—Wilson functzon transform .7: defines
a linear bijection f M. — Mg . Its inverse is given by ji Mg — M.

b) The normalized symmetric Askey—Wilson function transform fe"’ defines a
linear bijection Fr : M} — M0 . Its inverse is given by fe‘t” c M7 — MF.

Proof. a) By Corollary 8.9,

(¢/ad;q)

PG = A(PGTN0) = mES G (83)

in view of the explicit expression (8.16) for Dy and Remark 5.7. Furthermore, by
(8.18) and Proposition 8.12,

(FGr)(7) = (T.G-) ()
_ (¢/ad;q)
(¢, qab, ac; q) __0(ae, be, ce, ge/d)

(8.32)

P (1) Go(y) 71

It follows from (8.31) and (8.32) that F. and J. map the cyclic vector of V.
(respectively V*") to a multiple of the cyclic vector of V"7 (respectively V. :7).
Since F, and J, are Fourier transforms associated with o and o ! respectively, F,
and J. thus define linear mappings

FeyJe: M — M . (8.33)
Observe that the extended parameter map
(a,e) = (ag, e5)

is an involution. By the definition (8.28) of the constant K. and by (8.31), (8.32)
and (8.33), we obtain

(T, 0 Fe) (PG = 279 G = (FL 0 J) (PG,
(Jeiofe)(G) G (-7:5 OJE)( )

Since F, and J, are Fourier transforms associated with o and o, ! respectively,
and G,,P;71G™1 € M, generate M, as H-module, we conclude that

IS o Fe =K 1|y, = FJ 0 Te.

Combined with (8.33), this completes the proof of part a).
b) This follows from a) and from Corollary 8.6. O

We already noticed that .7-~'e and ._78 restrict to linear bijections .7:6, ._76 V;Cl
Vstro - see Corollary 8.9. By (the proof of) the above theorem, the difference
Fourier transforms F, and je also restricts to linear bijections fe,Je I VAL
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Vecﬂl"’. In a similar fashion it follows that the normalized symmetric Askey—Wilson

function transform F restricts to a linear bijection F : Vstrt — Vbt In
the following proposition we describe these transforms on a suitable basis of V"

(respectively of Vi),
Proposition 8.14. a) For s € S;, we have

Fe(Br(5::)G7) () = mEm(S‘lw_l)Pi (G (y) 7,

1
=—— ©F . o -1 —1
DER.Cog(s) Lo (7P, ()7 G ()

with Dy and K, the explicit constants (8.16) and (8.28) respectively.
b) For s € ST, we have

T

-.76 (ET(S; )GT> (7)

1
DK Gly(s)
with D§ and K] the explicit constants (8.17) and (8.28) respectively.

FH(EL(s)G:) (7) EX (s;7)P2 (v) " G (1),

Proof. We derive the formulas for 7., the other cases are derived in a similar
fashion. Let s € S;. Since 070 = ToT when acting on the difference multiplicity
function a, we have by Corollary 8.9 and Theorem 8.13,

1

7 .. _ 7 | 1O . \po —1-1
TAB51)67) = g (e o F2) oot P2 161)
1
=—— FE .(s:)P° —-1n-1
DgKeGTU(S) (87 )Pe(, Go‘ i
which is the desired result. O

Remark 8.15. Corollary 8.9 and Proposition 8.14 give an explicit description of
the image of a suitable basis of M, (respectively M) under the (non)symmetric
Askey—Wilson function transform. For the symmetric Askey—Wilson function trans-
form, a different proof for these formulas was derived in [43, Thm. 5.2].

We end this subsection with the following algebraic Plancherel type formulas
for the (non)symmetric Askey—Wilson function transform.

Theorem 8.16. a) For all g,h € M,,

(Feg: 1(Teh))S, = (g, Ih)e,

with I the inversion operator (If)(y) = f(y71).
b) For all g,h € M,

<ﬁjg’ﬁjh>gg,+ = (gvh>e,+'
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Proof. a) By a formal computation using the duality of the normalized rank one
Cherednik kernels € and €; (see Theorem 6.2), we obtain

(Feg, Ih)Z, = (9. I(FEh))e,  (Teg: IN)E, = (9. I(TZ h))e (8.34)
for g € M. and h € M . For a rigorous proof of formula (8.34) we need to justify
that limits and integrations may be interchanged in the formal computation. In
case g € V., this is easily justified by Lemma 8.4 and by Fubini’s Theorem, since
g vanishes on (e¢”)*!. In a similar fashion, (8.34) is proved to be correct when
he Ve,

Let now g € VS and h € V"9, We write h = J.f with f € V. Then
Theorem 8.13 shows that f = ;Egoh. We derive that

(Feg, INYS. = (Fug, I(T.f))2.

= (TS, 0 Fe)(9). 11)e

= <g7 If>8

= <g7I(‘7:gah)>€'

Here the second equality is allowed since f € V., and the third equality follows
from Theorem 8.13. The second identity in (8.34) for g € V5" and h € Vst"e

follows by a similar computation.
Formula (8.34) combined with Theorem 8.13 now shows that

(Feg, I(Teh))Z, = (g,1h).

for g,h € M,.
b) This follows by similar arguments as for the nonsymmetric Askey—Wilson
function transform (see part a)). O

8.6. The L?-theory. The results thus far obtained for the symmetric Askey—
Wilson function transform F. are sufficient to derive “analytic” Plancherel and
inversion formulas as follows.

We need to restrict the parameter domain first in order to obtain positive mea-
sures. As usual, we assume throughout this subsection that 0 < q% < 1. We
assume furthermore that the parameter e and the difference multiplicity function

« satisfy the conditions

e <0, 0<bec<a<d/q,

8.35
bd, cd > q, ab,ac < 1, ( )

where we used the Askey-Wilson parametrization (8.1) for the difference multi-
plicity function «. These conditions are invariant under the extended involution
(a,€) — (ay,es). For generic parameters satisfying these conditions, we define a
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measure m(-) = m%(-

) by
/f(x)dme(x) = %/ET P @)% 4+ 3 (@) + ) Res (Wj(y))

y=z
z€D,

where D, = D} U D is the discrete set
DF ={a¢" |k eN: a¢® > 1},
D; ={ed"|k€Z : eq" < —1}.

By continuous extension in the parameters, we obtain a positive measure m¢ for
all parameters «, e satisfying (8.35), see [27] and [43] for details. The support of
m®is TU D, U Dt

For the remainder of this subsection we fix parameters « and e satisfying the
conditions (8.35). Let L? (m.) be the Hilbert space consisting of L?-functions f
with respect to the measure m. satisfying f(z) = f(z7!) me-a.e. Clearly, the
space M may be considered as subspace of L3 (m.). The following result from
[43, Prop. 6.7] tells us exactly when M} C L2 (m,) is dense.

Proposition 8.17. Let k € Z be the unique integer such that 1 < |eq®| < ¢~ 1.
Then M} C L2 (m.) is dense if and only if |e;'q*| > 1.

Proof. Using the explicit results on the extended, symmetric rank one Macdonald—
Koornwinder transform FT as derived in Subsection 7.4 (see also [43]), the proof
can be reduced to proving the density of some polynomial space in an explicit L?-
space of square integrable functions with respect to a compactly supported measure.
The proof then follows from standard density results. For a detailed proof we refer
the reader to [43, Prop. 6.7]. O

As a consequence of Proposition 8.17 we arrive at a new proof for the ana-
lytic inversion and Plancherel formula for the symmetric Askey—Wilson function
transform, see [27, Thm. 1] for the classical approach.

Theorem 8.18. Let k € Z be the unique integer such that 1 < |eq®| < ¢~' and
assume that le;1¢"| > 1. The normalized symmetric Askey—Wilson function trans-
form F} (see (8.30)) uniquely extends by continuity to a surjective isometric iso-
morphism

FF L% (me) — L3 (m?),

€o

with inverse given by

T+o . 72 2

FLo L3 (md ) — L3 (me).
Proof. The conditions on the parameters «,e are invariant under the involution
(a,€) — (ag,e5). Hence L3 (mg ) is defined, and M} C L2 (m.), M7 C

€o
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Lf_(mg”) are both dense by Proposition 8.17. The result now follows immedi-

ately from the algebraic inversion and Plancherel formula for J?j , see Theorem

8.13 and Theorem 8.16. O

9. Appendix

In this section we prove the bounds for the Macdonald-Koornwinder polynomials
as stated in Proposition 5.13.
Let A; ={A € A|r;- X # A} and denote

Si:{s,\|/\6A,-}§S
for i = 0,...,n. Let F(S;) be the space of functions g : S; — C. Recall the

definition of ¢; :=¢,, € C(x) for i =0,...,n, see (2.3) and (2.4). We first observe
the following elementary fact.

Lemma 9.1. The functions |c;?(-)| € F(S) and |c}7(-)|"! € F(S;) are bounded
fori=0,...,n.

Proof. This follows immediately from Lemma 4.1b) and from the explicit expression
of the spectral points s, € S (see Subsection 4.1), since the parameters are assumed
to be generic. a

If A=), M€ € A, then we call \; the ith coordinate of A. For A € A\ {0}
we denote uy € Wy for the unique element of minimal length such that the first
coordinate of u;l - A is strictly negative. There are essentially two cases to consider
here; if some of the coordinates of A are strictly negative, then uy = r;_17;_9 - 71
with ¢ > 1 the smallest such that A\; < 0 (and uy = 1 € Wy the identity element
when ¢ = 1). If all coordinates of A are nonnegative and A; > 0, Ajy1 = -+ =
An =0, then uy =7;---rp_1ry7Tp—1---71. Finally, for 0 € A the zero element, we
denote ug =71 - Tp_1TnTn_1-- 71 € Wy. Observe that

Tyy =Tt TorTnTp1- T =U €M
(see (5.7)), since ug = 11+ rp_1TpTn—1---71 is a reduced expression in Wy. We

prove the following refinement of Proposition 5.13.

Lemma 9.2. Let K C ((CX)" be a compact set. Then there exist positive constants
Cy (independent of K) and Cs (dependent of K) such that

|E(sx; )| < CM"eNYN vz e K vaeA.

Since I(uy) < 2n —1 for all A € A and E(sp;-) = 1, Proposition 5.13 is a direct
consequence of Lemma 9.2. We start with a preliminary lemma.
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Lemma 9.3. For all p € A,
Un” (8 B (103 8) = tn (07 (52) = 1) B(s2) + 27 (Uso - E(-52)) (s).
Proof. By (4.3) and the definition of Ty,

(ToioE(. ;1)) (su) = (u' — uncgg(su))E(su; ) + Uncy”(8,) E(srg 3 2). (9.1
On the other hand,

(157 B(5)) () = (T - T€a(2)) (s,)
= (g1 €l ) (s;h)
= (Vo (T§ T E(543)) ()

by Proposition 4.4, where I : F(S;) — F(S) is the “inversion map” (Ig)(s) =
g(s™h). Now ¢, (T ') = Uzy = uyt — u, + 27 UL, see [39] or [42, Appendix]
for the second equality, and (f, 0 1)(U~!) = Us,; hence

(Tg” -E(-; m)) (su) = (u; ! — un)E(s,; ) + 331_1 (Uia -E(-; x)) (5u)- (9.2)
Subtracting (9.1) from (9.2) gives the result. O

In a similar fashion as in the proof of Lemma 9.3 we obtain from Proposition
4.4 the relations

(TwE(s;)) () = (T4~ - B(52))(s) (9.3)
for w € Wy and s € S.
Let A € A\ {0} and set p = (rouy') - A. Observe that N(u) = N(\) — 1, as
follows easily from the definition of the action W on A and from the definition of
uy € Wy. Lemma 9.3 applied to 4 now gives the recurrence relation

UnC%U(S(Touil)_A)E(Su;\I_)\; z) = 27" (Uso - B(- ;x))(s(mu;l).)\)
+uy, (cg"(s(mu;l)_)\) — ].)E(S(Tougl).)\;x).

Let < be the Bruhat order on W,. We apply T,,, acting upon A on the z-
variable, to both sides of (9.4). For the left-hand side, we obtain in view of (9.3)
an expression of the form

K()\)E(s)”:v)—i— Z ew()‘)E(s(qu)*lv\;x)-
weWy
w=uy

(9.4)

The coefficient K (\) can be computed explicitly as follows (compare with the proof
of Lemma 4.3). Let uy = r;,7i, - - - 7;, be a reduced expression for uy € Wy, so that
I =1(uy), and define

Njg1 = (ri; - TiyTiy ) - A, j=0,...,1,
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with the convention that A\; = A. Observe that A\jy; = u;l - A, and that \; =
Ti; * Aj+1 # Ajg1 for j =1,...,n, cf. the proof of Lemma 4.3. Then
I(ux)
K(\) = untukcgg(s(mu;l)_/\) | I EHCYS (9.5)
j=1

and K (\) # 0 due to Lemma 4.1b). Furthermore, |K()\)|~! is uniformly bounded
for A € A\ {0} in view of Lemma 9.1. Similarly, |e, ()| is uniformly bounded
for A € A\ {0} and w € Wy with w < u;'. Finally, note that {(u,) < l(uy) for
p= (uyw)~!- X with A € A\ {0}, w € Wy and w < u; . Hence we conclude that
acting by T, on the left-hand side of (9.4) yields an expression of the form

KOEGxo) + Y e Blsya) 96)
HEWH-A
Hup)<l(ux)

with K(\) given by (9.5) and
KW <L el <L (9.7)

for all A € A\ {0} and p € Wy - A such that I(u,) < l(uy), for some constant L > 0.
To deal with the action of T3, on the right-hand side of (9.4), we need the

commutation relations between the T; and z; in ‘H for 7,5 = 1,...,n. They are
given by

Tixi—1 = xi-1T5, 1=2,...,n,

TixiTi:$i+1, izl,...,ﬂ—l,

(@ Tt = un) (@, T+ ') = 0,
see e.g., [39] or [42, Prop. 6.5]. In view of (9.3), applying T, to the first term in
the right-hand side of (9.4) then yields an expression of the form

(X . E(~;JC))(S(T0U;1)_>\) + Z I?(Xj{ - E(- ;x))(s(rou;l)_A) (9.8)
i

with X, X, ¢ € Hg‘g independent of A\, where (recall) Hg‘g C Hjio is the subalgebra

generated by Tf” (¢ =1,...,n). Finally, applying T,,, to the second term in the
right-hand side of (9.4), yields

un(cga(s(mu;\l)‘)\) - 1) (Tjg—l E( ; .’L‘))(S(Tou;\l).)\). (99)
Combining (9.6), (9.8) and (9.9), applying T, to (9.4) gives the identity
EWE@sxao)=— > chmBlsuia)+ Y 25(Xje - EC32))(540u190)
HEWH-A 1<j<n
up)<l(ux) E=£1

+ (X . E(-;x))(s(mu;1)_)\) + up, (COG(S(mugl)-)\) — 1) (Tgi’*l - E(- ;(I}'))(S(rou)—\l)_)\).
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This formula will now be used inductively. Observe that the terms
(Z-E(:2)) (5(0u1)0); (Ti71 BC52)) (3gust)n)

with Z = X, X ¢ are linear combinations of F(s,;z) with u € Wy - ((rouy ') - \)
and with coefficients which are uniformly bounded for all A € A\ {0} and p €
Wo - ((rouy')-A), in view of Lemma 9.1. Combined with the uniform bounds (9.7),
we conclude that there exists a constant M > 1 such that

[E(sxi)| <M > [E(su;a)|
nEWH-A
[(up)<t(ux) (910)

+M(1—|—2nmax 2t ) E(sy;
wef)) DD 1)
vEWL-((rouy ~)-\)

for all A € A\ {0}, where the maximum is taken over j € {1,...,n} and £ € {£1}.
Now fix a compactum K C ((Cx)n, and choose a constant C; > 2|Wp|M and a
constant Cy > 1 (depending on K), such that

M1+ 2 ma(af ) Wolc2 < 2, (9.11)
z,7,

where the maximum is taken over x € K, j € {1,...,n} and £ € {£1}. Fix
A € A\ {0}, and assume that
|E(su;x)| < C’i(u“)CéV(#), Ve K

when p € A satisfies either N(p) < N(A), or N(u) = N(A) and l(u,) < {(uy).
We use now the fact that N(v) = N(w - v) for all w € Wy and v € A, and that
N((rouy ) -A) = N(A) — 1 for A € A\ {0}, to derive from (9.10) that
N()\) l(u“)
; <
max|E(s; )] <MC, G

pnEWy-A
W) <i(ux)

1+ M (1 4 2n max(|zt N1 C’l(u”)
(1 + 20 max((25) ¢ >
HEWo-((rouy ~)-\)

<M|Wo| (3" V07 4 (1 2nmax((aS) 607 e
575
1 ) 1
Sﬁc«é\/()\)ci( 2) + 505\7(/4)
SC;V(A)Ci(uA),

where we used [(u,) < 2n—1 for u € A in the second equality, the estimates (9.11)
and C7 > 2|Wy|M in the third equality, and the fact that C; > 1. This proves
Lemma 9.2, and hence Proposition 5.13.
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