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Abstract. Let X be a smooth complete curve, G be a reductive group and P ⊂ G a para-

bolic. Following Drinfeld, one defines a (relative) compactification B̃unP of the moduli stack of
P -bundles on X. The present paper is concerned with the explicit description of the Intersec-

tion Cohomology sheaf of B̃unP . The description is given in terms of the combinatorics of the
Langlands dual Lie algebra ǧ.
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Introduction

0.1. This paper merges several points of view on a geometric object introduced
by V. Drinfeld. In the incarnation studied here, this is a relative compactification
of the moduli stack of principal bundles with respect to a parabolic subgroup (of
a given reductive group) over a curve.

Since its discovery several years ago, Drinfeld’s compactification has found sev-
eral remarkable applications in geometric representation theory, some of which
are discussed in this introduction. These applications include a construction of
the “correct” geometric Eisenstein series functor (cf. [BG]); a geometric study of
quantum groups at a root of unity and representations of Lie algebras in positive
characteristic; a realization of the combinatorial pattern introduced by Lusztig
in [Lu1] in terms of intersection cohomology. In particular, one obtains an interest-
ing and unexpected relation between Eisenstein series and semi-infinite cohomology
of quantum groups at a root of unity (cf. [FFKM]).

The main result of this paper is a calculation of the intersection cohomology
sheaf of Drinfeld’s compactification.
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0.2. The space B̃unP

Let X be a smooth complete curve, G a reductive group and P ⊂ G a parabolic
subgroup. Let us denote by BunG the moduli stack of principal G-bundles on X
and by BunP the moduli stack of P -bundles.

The inclusion of P in G gives rise to a representable morphism p : BunP →
BunG, and it is a problem that arises most naturally in geometric representation
theory to look for a relative compactification of BunP along the fibers of this map.

A construction of such a compactification was suggested by Drinfeld. In this
way we obtain a new algebraic stack, denoted B̃unP , endowed with a map p̃ :
B̃unP → BunG such that p̃ is now proper , and BunP is contained inside B̃unP as
an open substack.

The main complication, as well as the source of interest, is the fact that the stack
B̃unP is singular. Basically, the present paper is devoted to study of singularities
of B̃unP .

0.3. Eisenstein series

The authors of [BG] considered the following problem: For X, G and P as before,
let M be the Levi factor of P and BunM the corresponding moduli stack. Using
BunP one can introduce a naive Eisenstein series functor, which maps the derived
category Db(BunM ) to Db(BunG).

However, since the map p is not proper, this functor is “not quite the right
one” from the geometric point of view. For example, it does not commute with
the Verdier duality and does not preserve purity. It turns out that using the
compactified stack B̃unP , one can introduce another functor EisG

M between the
same categories, which will have much better properties. The authors of loc.cit.
called it the geometric Eisenstein series functor.

When our ground field is a finite field Fq, both the naive and the corrected
Eisenstein series functor give rise to operators between the corresponding functions
spaces, i.e., from Funct(BunM (Fq)) to Funct(BunG(Fq)), the former being the usual
Eisenstein series operator in the theory of automorphic forms.

The naive operator essentially amounts to taking the trace of the Frobenius
element acting on the cohomology of the fibers of the map p : BunP → BunG,
whereas the operator arising from the corrected functor EisG

M corresponds to taking
the hyper-cohomology of the intersection cohomology sheaf IC

B̃unP
along the fibers

of p̃ : B̃unP → BunG.
One of the results announced (but not proved) in [BG] was Theorem 2.2.12,

which compared the naive Eisenstein series operator with the corrected one.
Namely, the latter must be the product of the former and an appropriate L-
function.

The proof of this theorem essentially amounts to an explicit description of the
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intersection cohomology sheaf IC
B̃unP

, in terms of the combinatorics of the Lang-
lands dual Lie algebra ǧ, or more precisely, in terms of the symmetric algebra
Sym•(ǔ(P )) (here ǔ(P ) is the Lie algebra of the unipotent radical of the corre-
sponding parabolic in Ǧ), viewed as an M̌ -module.

In the present paper we establish the required explicit description of IC
B̃unP

.

0.4. Semi-infinite flag variety and quantum groups

Let us now explain another perspective on the behavior of the above IC sheaf.
Consider the semi-infinite flag “variety” G((t))/B((t)), where B is the Borel sub-
group of G. Since the pioneering work of Feigin and Frenkel [FF], people have been
trying to develop the theory of perverse sheaves (constructible with respect to a
given stratification) on G((t))/B((t)) and, in particular, to compute the IC sheaf
on it.

The problem is that G((t))/B((t)) is very essentially infinite-dimensional, so
that the conventional theory of perverse sheaves, defined for schemes of finite type,
was not applicable. Since it was (and still is) not clear whether there exists a direct
definition of perverse sheaves on G((t))/B((t)), the authors of [FFKM] proposed
the following solution.

They introduced certain finite-dimensional varieties, called the Zastava spaces
Zµ in terms of maps of a projective line into the flag variety (the parameter µ is
the degree of the map, i.e., it is an element in the coroot lattice of G). They argued
that the these spaces provided “models” for G((t))/B((t)) from the point of view
of singularities of the strata.

Moreover, it was shown in [FFKM] that the stalks of certain perverse sheaves
on Zµ are given by the periodic Kazhdan–Lusztig polynomials of [Lu1], and this
agrees with the anticipated answer for G((t))/B((t)). Therefore, the Zastava spaces
provide a geometric interpretation of Lusztig’s combinatorics. This, combined with
the earlier work of Feigin and Frenkel, allowed the authors of [FFKM] to come up
with a conjecture that ties a certain category of perverse sheaves on G((t))/B((t)),
thought of as sheaves on Zµ, with the category of representations of the small
quantum group.

The basic characteristic of the Zastava spaces, discovered in [FFKM], is that
they are local in nature, which expresses itself in the factorization property .
Namely, each Zµ is fibered over the configuration space Xµ, equal to the product of
the corresponding symmetric powers of X, i.e., Xµ = Π

i
X(ni). If µ = µ1 +µ2 there

is an isomorphism Zµ ' Zµ1 × Zµ2 , after both sides are restricted to the subspace
(Xµ1 ×Xµ2)disj of Xµ1 ×Xµ2 corresponding to non-intersecting configurations.

0.5. Intersection cohomology of the parabolic Zastava spaces

Now, the key fact for us is that the Zastava spaces Zµ, appropriately generalized
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in the case of an arbitrary parabolic P , provide “local models” for the singularities
of the stack B̃unP . More precisely, it turns out that the parabolic Zastava spaces
and the stack B̃unP are, locally in the smooth topology, isomorphic to one another.
Thus, the problem of calculation of IC

B̃unP
reduces to an analogous problem for

the parabolic Zastava spaces Zθ (θ now is an element of a certain quotient lattice).
Here we are dealing with the following remarkable phenomenon: the stack B̃unP

is defined via the global curve X and it classifies P -bundles on our curve which
have degenerations at finitely many points. Therefore, one may wonder whether
the singularities of B̃unP near a point corresponding to such a degenerate P -bundle
would depend only on what is happening at the points of degeneration, and this is
what our comparison with the Zastava spaces actually proves.

To carry out the calculation of ICZθ , we employ an inductive procedure on the
parameter θ, using the factorization property mentioned above. (We should note
that the present argument is quite different and is in fact simpler than the one used
in [FFKM] to treat the case of P = B.)

The connection between the stalks of ICZθ (and hence, of IC
B̃unP

) and the Lang-
lands dual Lie algebra ǧ is explained as follows The fiber of Zθ over a given point
of Xθ is a product of intersections of semi-infinite orbits in the affine Grassmannian
GrG corresponding to G. (In fact, the whole space Zθ can be thought of as a sub-
space of the corresponding version of the Beilinson–Drinfeld affine Grassmannian.)
The required link to ǧ is provided by the Drinfeld–Ginzburg–Lusztig–Mirković–
Vilonen theory of spherical perverse sheaves on GrG, cf. [MV].

0.6. The naive compactification

To conclude, let us mention that in addition to B̃unP , the stack BunP of parabolic
bundles admits another, in a certain sense more naive, relative compactification,
which we denote BunP . This second compactification can be though of as a blow-
down of B̃unP ; in particular, we have a proper representable map r : B̃unP →
BunP .

By the Decomposition Theorem, r!(ICB̃unP
) contains ICBunP

as a direct sum-
mand. In the last section we give an explicit description of both r!(ICB̃unP

) and

ICBunP
. The answer for the stalks of ICBunP

is formulated in terms of Sym•(ǔ(P )f )
where f ∈ Lie M̌ is a principal nilpotent.

Note that the latter vector space is exactly the one appearing in [Lu2]. There-
fore, the stack BunP provides a geometric object whose singularities reproduce the
parabolic version of the periodic Kazhdan–Lusztig polynomials of [Lu2].

0.7. Notation

In this paper we will work over the ground field Fq. However, the reader will readily
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check that all our results can be automatically carried over to the characteristic 0
situation.

Throughout the paper, G will be a connected reductive group over Fq, assumed
split. Moreover, we will assume that its derived group G′ = [G,G] is simply
connected.

We will fix a Borel subgroup B ⊂ G and let T be the “abstract” Cartan, i.e.,
T = B/U , where U is the unipotent radical of B. We will denote by Λ the coweight
lattice of T and by Λ̌–its dual, i.e., the weight lattice; 〈·, ·〉 is the canonical pairing
between the two.

The semi-group of dominant coweights (resp., weights) will be denoted by Λ+
G

(resp., by Λ̌+
G). The set of vertices of the Dynkin diagram of G will be denoted

by I; for each i ∈ I there corresponds a simple coroot αi and a simple root α̌i.
The set of positive coroots will be denoted by ∆ and their positive span inside Λ,
by Λpos

G . (Note that, since G is not semi-simple, Λ+
G is not necessarily contained in

Λpos
G .) By ρ̌ ∈ Λ̌ we will denote the half sum of positive roots of G and by w0 the

longest element in the Weyl group of G. For λ1, λ2 ∈ Λ we will write that λ1 ≥ λ2

if λ1 − λ2 ∈ Λpos
G , and similarly for Λ̌+

G.
Let P be a standard proper parabolic of G, i.e., P ⊃ B; let U(P ) be its unipotent

radical and M := P/U(P )–the Levi factor. To M there corresponds a subdiagram
IM in I. We will denote by Λ+

M ⊃ Λ̌+
G, Λpos

M ⊂ Λpos
G , ρ̌M ∈ Λ̌, wM

0 ∈ W , ≥
M

, etc.

the corresponding objects for M .
To a dominant coweight λ̌ ∈ Λ̌ one attaches the Weyl G-module, denoted V λ̌,

with a fixed highest weight vector vλ̌ ∈ V λ̌. For a pair of weights λ̌1, λ̌2, there is a
canonical map V λ̌1+λ̌2 → V λ̌1 ⊗ V λ̌2 that sends vλ̌1+λ̌2 to vλ̌1 ⊗ vλ̌2 .

Similarly, for ν̌ ∈ Λ̌+
M , we will denote by U ν̌ the corresponding Weyl module

for M . There is a natural functor V 7→ VU(P ) from the category of G-modules
to that of M -modules and we have a canonical morphism U λ̌ → (V λ̌)U(P ), which
sends the corresponding highest weight vectors to one another.

Unless specified otherwise, we will work with the perverse t-structure on the
category of constructible complexes over various schemes and stacks. If S is a
constructible complex, hi(S) will denote its i-th perverse cohomology sheaf. The
intersection cohomology sheaves are normalized so that they are pure of weight 0.
In other words, for a smooth variety Y of dimension n, ICY ' (Q`( 1

2 )[1])⊗n, where
Q`( 1

2 ) corresponds to a chosen once and for all square root of q in Q`.
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1. Drinfeld’s compactifications

1.1. Let P be a parabolic subgroup of G and let H ⊂ P be either the unipotent
radical U(P ) or [P, P ]. Consider the following functor Schemes → Categories:

To a scheme S we associate the category of triples (FG,FP/H , κ), where FG

(resp., FP/H) is a principal G-bundle (resp., a principal P/H-bundle) on X × S
and κ is a collection of maps of coherent sheaves

κV : (VH)FP/H
→ VFG

,

defined for every G-module V, such that for every geometric point s ∈ S, κVs is
injective, and such that the Plücker relations hold. This means that for V, being the
trivial representation, κV is the identity map OX×S → OX×S and for a morphism
V1 ⊗ V2 → V3, the diagram

(VH
1 )FP/H

⊗ (VH
2 )FP/H

κV1⊗κV2−−−−−−→ (V1 ⊗ V2)FGy y
(VH

3 )FP/H

κV3−−−−→ (V3)FG

commutes.
Note that the data of κ can be reformulated differently, using Frobenius reci-

procity: for a P/H-module U , let Ind(U) denote the corresponding induced G-
module, i.e., HomP/H(U ,VH) ' HomG(Ind(U),V) for a G-module V, functorially
in V. Then the data of κ is the same as a collection of maps κ defined for every
P/H-module U :

κU : UFP/H
→ (Ind(U))FG

,

which satisfy the Plücker relations in the sense that this map is again the identity
for the trivial representation and for U3 → U1 ⊗ U2 the diagram

(U3)FP/H
−−−−→ (Ind(U3))FGy y

(U1 ⊗ U2)FP/H
−−−−→ (Ind(U1 ⊗ U2))FG

commutes.
In particular, for H = [P, P ], it is sufficient to specify the value of κ on 1-

dimensional representations of P/H, since this group is commutative.
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For a fixed S, it is clear that triples (FG,FP/H , κ) form a groupoid, and for
a map S1 → S2 there is a natural (pull-back) functor between the corresponding
groupoids. In addition, there is a natural forgetful morphism from this functor to
the functor represented by the stack BunG: out of (FG,FP/H , κ) we ”remember”
only FG, which is a G-bundle on X × S.

The following facts are proved in [BG]:

Theorem 1.2. For both choices of H the above functor S 7→ (FG,FP/H , κ) is
representable by an algebraic stack, such that its map to BunG is representable and
proper.

We denote the corresponding stacks by B̃unP (when H = U(P )) and by BunP

(when H = [P, P ]). Their projections to BunG will be denoted by p̃ and p, respec-
tively.

Note that we have a natural map from the stack BunP to both B̃unP and BunP .
Indeed, in both cases, a P -bundle on X × S is the same as a triple (FG,FP/H , κ),
for which the maps κV are injective bundle maps.

Since the condition for a map between vector bundles to be maximal (maximal
means to be an injective bundle map) is open, the above maps BunP → B̃unP and
BunP → B̃unP are open embeddings. The following is also established in loc. cit :

Theorem 1.3. BunP is dense in both B̃unP and BunP .

Finally, note that since U(P ) is contained in [P, P ] we have a natural map
r : B̃unP → BunP , which is proper and whose restriction to BunP is the identity
map.

1.4. By construction, a point of B̃unP (with values in a field) defines a P -bundle
over an open subset X0 of the curve X (in fact X0 is precisely the locus, where the
maps κV are maximal embeddings). We will now describe the partition of these
stacks according to the behavior of (FG,FP/H , κ) on X −X0. First, we will treat
the case of BunP .

Let M be the Levi factor of P . We choose a splitting M ↪→ P ; in particular we
have a well-defined opposite parabolic P− such that P ∩P− = M . We will denote
by IM the corresponding Dynkin subdiagram of I.

Let us denote by ΛG,P the lattice of cocharacters of the torus P/H ' M/[M,M ].
We have the natural projection Λ → ΛG,P , whose kernel is the span of αi, i ∈ IM .
We will denote by Λpos

G,P the sub-semigroup of ΛG,P spanned by the images of αj,
j ∈ I − IM .

Given θ ∈ Λpos
G,P , we will denote by A(θ) the elements of the set of decompositions

of θ as a sum of non-zero elements of Λpos
G,P . In other words, each A(θ) is a way to

write θ = Σ
m

nm · θm, where θm’s belong to Λpos
G,P − 0 and are pairwise distinct. The

length |A(θ)| of a decomposition A(θ) is by definition the sum Σ
m

nm.
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For A(θ) we will denote by XA(θ) the corresponding partially symmetrized power

of the curve, i.e., XA(θ) = Π
m

X(nm). We will denote by
o

XA(θ) the complement of

the diagonal divisor in XA(θ).

We will think of a point of
o

XA(θ) as a collection of pairwise distinct points
x1, ..., xn of X, and to each xk there is an assigned element θk ∈ Λpos

G,P .

Proposition 1.5. There exists a locally closed embedding jA(θ) :
o

XA(θ)×BunP →
BunP . Every field-valued point of BunP belongs to the image a unique jA(θ).

Although the proof is given in [BG], let us indicate the construction of jA(θ).

Proof. Let FP be a point of BunP and xA(θ) = Σ
k

θk · xk a point of
o

XA(θ). We

define the corresponding point of BunP as follows. In the triple (FG,FM/[M,M ], κ),
FG is the G-bundle induced from FP . Now let F ′

M/[M,M ] be the M/[M,M ]-bundle
induced from FP . For each G-dominant weight λ̌ orthogonal to Span(αi), i ∈
IM , let us denote by Lλ̌

F ′M/[M,M]
the corresponding associated line bundle. By

construction, we have the injective bundle maps

κ′λ̌ : Lλ̌
F ′M/[M,M]

→ V λ̌
FG

(here V λ̌ is the Weyl module corresponding to λ̌), which satisfy Plücker relations.
We set FM/[M,M ] := F ′

M/[M,M ](−Σ θk · xk). The corresponding line bundles

Lλ̌
FM/[M,M]

are then Lλ̌
F ′M/[M,M]

(−Σ 〈θk, λ̌〉 · xk). Thus, by composing we obtain the
maps

κλ̌ : Lλ̌
FM/[M,M]

→ V λ̌
FG

,

which are easily seen to satisfy the Plücker relations, as required. ¤
Let us denote the image of jA(θ) in BunP by A(θ)BunP . It is easy to see that the

union of A(θ)BunP is also a locally closed substack of BunP , denoted by θBunP .
If θ is the projection of Σ

i∈I−IM

ni · αi, set Xθ = Π
i∈I−IM

X(ni). By definition,

Xθ is stratified by the spaces
o

XA(θ) for all possible A(θ). As in Proposition 1.5, we
have a locally closed embedding Xθ × BunP → BunP , whose image is our θBunP .

Let us denote by A(θ)B̃unP ⊂ B̃unP the preimage of A(θ)BunP under the map r.
Our next goal is to give a more explicit description of each A(θ)B̃unP .

1.6. Let x ∈ X be a point. Recall that the affine Grassmannian GrG is the
ind-scheme representing the functor Schemes → Sets that attaches to a scheme S
the set of pairs (FG, β), where FG is a principal G-bundle on X × S and β is
an isomorphism FG|(X−x)×S ' F0

G|(X−x)×S , where F0
G is the trivial G-bundle.
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Sometimes, to emphasize the dependence on the point x, we will write GrG,x.
Note that by letting x move along the curve, we obtain a relative version of GrG,
denoted by GrG,X .

In the same way one defines the affine Grassmannians for the groups M , P , P−.
For every G-dominant coweight λ one defines a (finite-dimensional) closed sub-

scheme Gr
λ

G ⊂ GrG by the condition that (FG, β) ∈ Gr
λ

G if for every G-module
whose weights are ≤ λ̌, the meromorphic map βV : VFG

→ VF0
G
' V ⊗ OX×S has

a pole of order ≤ 〈λ,−w0(λ̌)〉 along x× S.
Now let θ be an element of Λpos

G,P . We define the element [(θ) ∈ Λ as follows:
if θ is the projection under Λ → ΛG,P of θ̃ ∈ Span(αj), j ∈ I − IM , then [(θ) =
wM

0 (θ̃), where wM
0 is the longest element in the Weyl group of M . Note that by

construction, [(θ) is M -dominant; in particular, it makes sense to consider Gr
[(θ)

M .
Consider the functor that attaches to a scheme S the set of pairs (FM , βV),

where βV is an embedding of coherent sheaves defined for every G-module V:

βVM : VU(P )
FM

↪→ VU(P )

F0
M

such that
1) The Plücker relations hold in the same sense as before.
2) If VU(P ) is 1-dimensional corresponding to the character ν̌ of M , then βVM

identifies VU(P )
FM

:= Lν̌
FM

with Lν̌
F0

M
(−〈θ, ν̌〉 ·x) ' OX×S(−〈θ, ν̌〉 ·x). (In the

last formula we have used the fact that ν̌ and θ belong to mutually dual
lattices.)

The following proposition is proved in [BG], but we will sketch the argument
due to its importance:

Proposition 1.7. The above functor is representable by a finite-dimensional closed
subscheme, denoted Gr+,θ

M , of GrM . We have an inclusion Gr
[(θ)

M ↪→ Gr+,θ
M , which

induces an isomorphism on the level of reduced schemes.

Proof. Let (FM , βVM ) be an S-point of Gr+,θ
M . To construct a map of functors,

Gr+,θ
M → GrM we must exhibit the maps βUM : UFM

→ UF0
M

for all M -modules U
and not just for those of the form VU(P ). However, we can do that because any
U can be tensored with a 1-dimensional representation of M corresponding to a
G-dominant weight ν̌, so that the new representation will be of the form VU(P ).

By construction, the above map Gr+,θ
M → GrM is a closed embedding. The fact

that Gr+,θ
M is a scheme (and not an ind-scheme) follows from the fact that we can

choose V such that VU(P ) is faithful as a representation of M .
Let (FM , βM ) be an S-point of Gr

[(θ)

M . Then if V is a G-module (whose weights,
we can suppose, are ≤ λ̌ for some G-dominant weight λ̌), the maps βV

U(P )

M :
VU(P )
FG

→ VU(P )

F0
G

are regular, since 〈[(θ),−wM
0 (λ̌)〉 ≤ 0, by the definition of [(θ).
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Hence, Gr
[(θ)

M is contained in Gr+,θ
M . To show that this inclusion is an isomor-

phism on the level of reduced schemes, one has to check that Gr
λ

M ⊂ Gr+,θ
M implies

that [(θ)− λ is a sum of positive coroots of M , which is obvious. ¤

1.8. Now let us consider the following relative version of the above situation. Let
θ be as above and given an element A(θ) let us consider the space Gr+,A(θ)

M over
o

XA(θ), whose fiber over xA(θ) = Σ θk · xk ∈
o

XA(θ) equals Π
k

Gr+,θk

M,xk
.

In addition, we can generalize this further, by replacing the trivial M -bundle
in the definition of GrM by an arbitrary background M -bundle Fb

M . By letting
Fb

M vary along the universal family, i.e., BunM , we obtain the relative version HM

of GrM,X , which is fibered over X × BunM and is known in the literature as the
Hecke stack . The relative version of Gr+,A(θ)

M will be denoted by H+,A(θ)
M and it is

by definition fibered over
o

XA(θ) × BunM .

Proposition 1.9. There exists a canonical isomorphism

A(θ)B̃unP ' BunP ×
BunM

H+,A(θ)
M ,

such that the projection r onto A(θ)BunP on the LHS corresponds to the natural

map of the RHS to BunP ×
o

XA(θ).

The proof is given in [BG] and is, in fact, an easy consequence of Proposition 1.7
above.

1.10. Finally, we are able to state Theorem 1.12, which is the main result of this
paper.

First, let us recall the category of spherical perverse sheaves on GrG, which
by definition consists of direct sums of perverse sheaves IC

Gr
λ
G
, as λ ranges over

the set of G-dominant coweights. It is known that this category possesses a tensor
structure, given by the convolution product, and as a tensor category it is equivalent
to the category Rep(Ǧ) of finite-dimensional representations of the Langlands dual
group Ǧ. In particular, we have the functor Loc : Rep(Ǧ) → Prev(GrG), such
that the irreducible representation of Ǧ with h.w. λ goes over under this functor
to IC

Gr
λ
G
.

We will use the above definitions for M , rather than for G. Recall that ΛG,P

can be canonically identified with the lattice of characters of Z(M̌); for θ ∈ ΛG,P

and an M̌ -representation V , we will denote by Vθ the direct summand of V on
which Z(M̌) acts according to θ. We will call a representation V of M̌ positive if
∀ θ ∈ Λpos

G,P , the perverse sheaf Loc(Vθ) is supported on Gr
[(θ)

M .
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Recall that the nilpotent radical of the dual parabolic ǔ(P ) is naturally a
representation of the group M̌ and let us observe that for θ ∈ Λpos

G,P , the sub-
representation ǔ(P )θ is irreducible.

Lemma 1.11. The representation Sym(ǔ(P )) is positive.

Now, let us fix the notation for the relative versions of the functor Loc. First,
we will denote by LocX the corresponding functor Loc : Rep(M̌) → Perv(GrM,X).
Secondly, given θ, a decomposition A(θ) and a positive M̌ -representation V , we
will denote by LocA(θ)

X (V ) the perverse sheaf on Gr+,A(θ)
M , whose fiber over xA(θ) =

Σ θk · xk ∈
o

XA(θ), i.e., over Π
k

Gr+,θk

M,xk
, is

£
k

Loc(Vθk
)⊗

(
Q`[1]

(
1
2

))⊗|A(θ)|
.

We will use the symbol LocBunM ,X(V ) (resp., LocA(θ)
BunM ,X(V )) to denote the cor-

responding perverse sheaves on HM (resp., H+,A(θ)
M ). Furthermore, by considering

the tensor product BunP ×
BunM

HM we can define a perverse sheaf LocBunP ,X(V )

on it, which is ICBunP
“along the base” (i.e., BunP ) and LocBunM ,X(V ) “along the

fiber” (i.e., HM ), and similarly for the perverse sheaf LocA(θ)
BunP ,X(V ) on

BunP ×
BunM

H+,A(θ)
M .

Theorem 1.12. The ∗-restriction of IC
B̃unP

to A(θ)B̃unP ' BunP ×
BunM

HA(θ)
M is

isomorphic to

LocA(θ)
BunP ,X( ⊕

i≥0
Symi(ǔ(P ))⊗Q`(i)[2i])⊗

(
Q`[1]

(
1
2

))⊗−|A(θ)|
,

where ⊕
i≥0

Symi(ǔ(P ))⊗Q`(i)[2i] is viewed as a cohomologically graded M̌ -module.

2. Zastava spaces

Let θ be an element of Λpos
G,P . In this section we will introduce the Zastava spaces Zθ,

which will be local models for B̃unP .

2.1. Let us recall the space Xθ: if θ = Σ
i∈I−IM

ni ·αi, Xθ = Π
i∈I−IM

X(ni). One may

alternatively view Xθ as the space classifying the data of (FM/[M,M ], βM/[M,M ]),
where FM/[M,M ] is a principal bundle with respect to the group M/[M,M ] on X of
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degree −θ, and βM/[M,M ] is a system of embeddings defined for every G-dominant
weight λ̌ orthogonal to Span(αi), i ∈ IM

βλ̌
M/[M,M ] : Lλ̌

FM/[M,M]
→ Lλ̌

F0
M/[M,M]

' OX ,

such that βλ̌1 ⊗ βλ̌2 = βλ̌1+λ̌2 .
Note that in the product X ×Xθ there is a natural incidence divisor, denoted

by Γθ.
Now, let us define the scheme Mod+,θ

M . By definition, its S-points are pairs
(FM , βM ), where FM is an M -bundle on X ×S such that the induced M/[M,M ]-
bundle is of degree −θ, and βM is a system of embeddings of coherent sheaves
defined for every G-module V

βVM : (VU(P ))FM
↪→ (VU(P ))F0

M
,

such that for a pair of G-modules V1 and V2 we have a commutative diagram

(VU(P )
1 )FM

⊗ (VU(P )
2 )FM

β
V1
M ⊗β

V2
M−−−−−−→ (VU(P )

1 )F0
M
⊗ (VU(P )

2 )F0
My y

(V1 ⊗ V2)
U(P )
FM

β
V1⊗V2
M−−−−−→ (V1 ⊗ V2)

U(P )

F0
M

.

It is easy to see, as in Proposition 1.7, that Mod+,θ
M is indeed representable by

a scheme of finite type.
By construction, we have a natural map πM : Mod+,θ

M → Xθ, which corresponds
to taking for V all possible 1-dimensional M -modules. If (FM , βM ) is an S-point of
Mod+,θ

M , it follows as in Proposition 1.7 that βM defines a trivialization of FM on
X×S−Γθ

S , where Γθ
S is the preimage of Γθ under X×S → X×Mod+,θ

M → X×Xθ.
Moreover, we have:

o

XA(θ) ×
Xθ

Mod+,θ
M ' Gr+,A(θ)

M .

In particular, Mod+,θ
M |∆X

' Gr+,θ
M,X , where ∆X ⊂ Xθ is the main diagonal.

2.2. Finally, we are ready to define Zθ. An S-point of Zθ is a quadruple

(FG,FM , βM , β),

where FG is a G-bundle on X × S, (FM , βM ) is a point of Mod+,θ
M and β is a

trivialization of FG on X × S − Γθ
S , where Γθ

S is as above, such that the following
two conditions are satisfied:

(1) For every G-module V, the natural map V → VU(P−) extends to a regular
surjective map of vector bundles

VFG

β→ VF0
G
→ (VU(P−))F0

M
' VU(P−) ⊗OX×S .
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(2) For every G-module V, the natural map VU(P ) → V extends by means of β
and βM to a regular embedding of coherent sheaves

(VU(P ))FM
→ VFG

.

From the above definition, it follows that Zθ is representable by an ind-scheme.
However, we will see later that Zθ is in fact a scheme of finite type, cf. Proposi-
tion 3.2.

We will denote by πP the natural map Zθ → Mod+,θ
M ; by πG we will denote the

composition πM ◦ πP : Zθ → Xθ.
By definition, Zθ contains as a subscheme the locus of those (FG,FM , βM , β),

for which the maps (VU(P ))FM
→ VFG

are maximal embeddings, i.e. are bundle
maps. We will denote this subscheme by Zθ

max.

Observe now that there is a natural closed embedding: sθ : Mod+,θ
M → Zθ.

Indeed, to (FM , βM ) ∈ Mod+,θ
M we attach (F0

G,FM , βM , β0), where β0 is the tau-
tological trivialization of the trivial bundle.

Remark. Note that for the definition of the Zastava space Zθ, the curve X
need not be complete. Indeed, the only modification is the following. In the
definition of Mod+,θ

M , instead of having pairs (FM , βM ) we can consider triples
(FM , βM , S → Xθ) where βM is such that for every 1-dimensional M -module V λ̌

(such λ̌ is automatically orthogonal to αi, i ∈ IM ), βM induces an isomorphism
V λ̌
FM

' OX×S(−〈θ, λ̌〉 · Γθ
S).

2.3. Factorization property

The fundamental property of the spaces Zθ is their local behavior with respect to
the base Xθ.

Let θ = θ1 + θ2 with θi ∈ Λpos
G,P and let us denote by (Xθ1 ×Xθ2)disj the open

subset of the direct product Xθ1×Xθ2 , which corresponds to xθ1 ∈ Xθ1 , xθ2 ∈ Xθ2 ,
such that the supports of xθ1 and xθ2 are disjoint.

We have a natural étale map (Xθ1 ×Xθ2)disj → Xθ.

Proposition 2.4. There is a natural isomorphism

(Xθ1 ×Xθ2)disj ×
Xθ

Zθ ' (Xθ1 ×Xθ2)disj ×
Xθ1×Xθ2

(Zθ1 × Zθ2).

Proof. Let xθ1 × xθ2 be an S-point of (Xθ1 × Xθ2)disj. By definition, this means
that the divisors Γθ1

S and Γθ2
S in X × S do not intersect. Let (FG,FM , βM , β) be

an S-point of Zθ which projects under πG to the corresponding point of Xθ.
Set (X × S)1 = X × S − Γθ1

S , (X × S)2 = X × S − Γθ2
S , (X × S)0 =

(X×S)1∩(X×S)2. By assumption, (X×S)1∪(X×S)2 = X×S. We define a new
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G-bundle F1
G as follows: over (X × S)1, F1

G is by definition the trivial bundle F0
G;

over (X×S)2, F1
G is identified with FG; the data of β, being a trivialization of FG

over (X × S)0, defines a patching data for F1
G. By construction, F1

G is trivialized
off xθ1 ; let us denote this trivialization by β1.

We introduce the second G-bundle F2
G in a similar fashion: F2|(X×S)2 '

FG|(X×S)2 and F2|(X×S)1 ' F0
G|(X×S)1 . From the construction, F2

G acquires a
trivialization β2 : F2

G|(X×S)2 ' F0
G|(X×S)2 .

In a similar way, from (FM , βM ) we obtain two pairs (F1
M , β1

M ) ∈ Mod+,θ1
M and

(F2
M , β2

M ) ∈ Mod+,θ2
M , which project under πM to xθ1 and xθ2 , respectively.

Thus, from the S-point (FG,FM , βM , β) we obtain two S-points (F1
G,F1

M ,
β1

M , β1) and (F2
G,F2

M , β2
M , β2) of Zθ1 and Zθ2 , respectively. The map in the oppo-

site direction is constructed in the same way. ¤

In the course of the proof we have shown that the space Mod+,θ
M factorizes as

well, i.e. we have a natural isomorphism

(Xθ1 ×Xθ2)disj ×
Xθ

Mod+,θ
M ' (Xθ1 ×Xθ2)disj ×

Xθ1×Xθ2
Mod+,θ1

M ×Mod+,θ2
M ,

compatible with the factorization of Zθ. In addition, it is clear that the section sθ

is compatible with the factorizations in the natural sense.

2.5. The central fiber

Consider the main diagonal ∆X : X → Xθ. For a fixed point x ∈ X let us consider
the corresponding composition ∆x : pt → X → Xθ.

The central fiber Sθ of Zθ is by definition the preimage of the above point under
πG : Zθ → Xθ. We will denote by 0Sθ the intersection Sθ ∩ Zθ

max.
For θ ∈ ΛG,P , let Grθ

P be the preimage under GrP → GrM/[M,M ] of the corre-
sponding point-scheme in GrM/[M,M ]. Both Grθ

P and GrU(P−) are locally closed
subschemes of GrG and let us consider their intersection Grθ

P ∩GrU(P−).

Proposition 2.6. There is a natural identification Grθ
P ∩GrU(P−) ' 0Sθ. The

map 0Sθ πP→ Gr+,θ
M ↪→ GrM corresponds to Grθ

P ∩GrU(P−) ↪→ GrP → GrM .

Proof. By construction, an S-point of 0Sθ is a data of a G-bundle FG on X × S,
with given reductions FP and FP− to P and P−, respectively, such that these
reductions are mutually transversal on (X − x) × S, the M -bundle induced from
FP− is trivialized, and the maps

Lλ̌
FM/[M,M]

→ OX×S(−〈λ̌, θ〉 · x)

are isomorphisms for G-dominant characters λ̌ of M/[M,M ].
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Therefore, over (X−x)×S all the three principal bundles FG, FP and FP− are
trivialized in a compatible way, and the M/[M,M ]-bundle induced from FP is ex-
actly F0

M/[M,M ](−θ ·x). Thus, (FP ,FP−) indeed defines a point of Grθ
P ∩GrU(P−).

Conversely, let us be given an S-point of Grθ
P ∩GrU(P−). I.e., we have a P -

bundle FP and a U(P−)-bundle FU(P−) on X ×S, trivialized on (X −x)×S, and
an isomorphism of the corresponding induced G-bundles

G×
P
FP ': FG :' G ×

U(P−)
FU(P−),

compatible with the trivilizations.
Let FM be the M -bundle induced from FP . It is also trivialized over (X−x)×S,

and it remains to show that the S-point of GrM obtained in this way belongs
to Gr+,θ

M .
By construction, the corresponding M/[M,M ]-bundle is F0

M/[M,M ](−θ · x).
Therefore, we only have to show that for an M -module U of the form VU(P ) for a
G-module V, the map UFM

→ UF0
M

is regular.
For any V as above we have bundle maps

(VU(P ))FM
→ VFG

→ (VU(P−))F0
M

,

and, therefore, the maps (VU(P ))FM
→ (VU(P−))F0

M
are regular.

Lemma 2.7. For any M -module U isomorphic to VU(P ) for some G-module V,
the composition

U → (Ind(U))U(P ) → (Ind(U))U(P−)

is an isomorphism.

(The proof of the lemma is given below.)
Thus, for V1 := Ind(U), we obtain a commutative diagram

UFM
−−−−→ (VU(P )

1 )FMy y
UF0

M
−−−−→ ((V1)U(P−))F0

M
.

in which the upper horizontal and the right vertical arrows are regular, and the
lower horizontal arrow is an isomorphism. Hence, the left vertical arrow is also
regular, which is what we had to prove. ¤

As a consequence, we obtain that since Zθ is a scheme of finite type (which will
be proved shortly), the intersection Grθ

P ∩GrU(P−) is also a scheme of finite type.
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Proof (of Lemma 2.7). Note first that when P is the Borel subgroup, our assertion
is that for a dominant weight λ̌, the vector space (V λ̌)U(B−) is the original 1-
dimensional representation of the Cartan group T corresponding to the character λ̌.

To prove the lemma, it will be more convenient to work in the dual set-up. For
an M -module U , let Coind(U) be the corresponding coinduced G-module, i.e., the
space of global sections of the G-equivariant vector bundle FU on G/P , whose fiber
at 1 ∈ G/P is U .

We need to show that the map (Coind(U))U(P−) → U is an isomorphism when-
ever U is of the form VU(P ) for a G-module V.

First, the vector space U can be identified with the space of U(P−)-invariant
sections of FU on the open U(P−)-orbit on G/P . In particular, the map
(Coind(U))U(P−) → U is always injective. Thus, we have to show that for U '
VU(P ), every U(P−)-invariant section of FU on the open U(P−)-orbit extends reg-
ularly on the entire G/P .

For that, it is sufficient to show that any such section is regular at the generic
point of the complement to the open U(P−)-orbit in G/P . The latter problem
reduces to G = SL(2) and P being the Borel subgroup, in which case it is known,
cf. above. ¤

3. Relation of the Zastava spaces with B̃unP

Our goal now is to show that the space Zθ models the stack B̃unP from the point
of view of singularities.

3.1. First, we have to introduce the following relative version of Zθ.
Let Fb

M be a fixed M -bundle on X and let Fb
G be the induced G-bundle under

our fixed embedding M ↪→ G. The space Zθ
Fb

M
is defined as follows: it classifies

quadruples (FG,FM , βM , β) as in the case of Zθ with the only difference that the
trivial M -bundle F0

M is replaced by Fb
M and the trivial G-bundle F0

G is replaced
by Fb

G.
Since every M -bundle is locally trivial (cf. [DS]), and due to the factorization

property, the spaces Zθ and Zθ
Fb

M
are étale-locally isomorphic.

Similarly, if S is a scheme (or a stack) mapping to BunM , we can define the
space Zθ

S . When S is smooth, then using [DS] we obtain that Zθ
S is locally in the

smooth topology equivalent to Zθ. In practice, we will take S to be BunM .
Along the same lines, we define the relative version Mod+,θ

M,S of Mod+,θ
M . When

S = BunM , we will denote it by Mod+,θ
BunM

.
Recall that the stack BunM splits into connected components numbered by the

elements of ΛG,P . By definition, a point FM belongs to the connected component
Bunθ

M if the associated M/[M,M ]-bundle is of degree −θ. We will use the super-
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script θ to designate the corresponding connected component of the stack B̃unP

or BunP− .

Proposition 3.2. For every θ ∈ Λpos
G,P and θ′ ∈ ΛG,P there is a canonical isomor-

phism between Zθ
Bunθ′

M

and an open sub-stack of B̃un
θ+θ′

P ×
BunG

Bunθ′
P− .

From this proposition it follows, in particular, that Zθ
BunM

is a stack locally of
finite type, and hence Zθ is a scheme of finite type (and not just an ind-scheme).

Proof. Let us analyze what it means to have an S-point of the cartesian product

B̃un
θ+θ′

P ×
BunG

Bunθ′
P− .

By definition, we have a G-bundle, a pair of M -bundles FM and F ′
M and two

systems of maps κ and κ− for every G-module V:

κ : (VU(P ))FM
→ VFG

κ− : VFG
→ (VU(P−))F ′M ,

which satisfy the Plücker relations, with the condition that the κ−’s are surjective,
and the κ’s are injective over every geometric point of S.

We define the open substack (B̃un
θ+θ′

P ×
BunG

Bunθ′
P−)0 by the following condition:

for every geometric point s ∈ S, the P - and P−-structures defined on FG|s by
means of κ and κ− at the generic point of X are mutually transversal.

Let (FG,FM ,F ′
M , βM , β) be an S-point of Zθ

Bunθ′
M

. It is clear that the maps

(VU(P ))FM
→ VFG

and VFG
→ (VU(P−))F ′M ,

as in the definition of Zθ
BunM

indeed define an S-point of (B̃un
θ+θ′

P ×
BunG

Bunθ′
P−)0.

The rest of the proof basically repeats that of Proposition 2.6. To define the

map in the opposite direction, given an S-point of (B̃un
θ+θ′

P ×
BunG

Bunθ′
P−)0, we

define an S-point of Zθ
BunM

as follows.
First, we set the “background” M -bundle to be F ′

M . Let F ′
G denote the induced

G-bundle under M ↪→ G. Secondly, by construction, there exists an open dense
subset (X × S)0 ⊂ X × S, such that FG|(X×S)0 admits reductions simultaneously
to P and P−, which are, moreover, transversal. Hence, over (X × S)0, we have
identifications β : FG ' F ′

G and βM : FM ' F ′
M .

Therefore, it remains to show that βM is such that the maps βUM : UFM
→

UF ′M , which are defined on (X × S)0, extend as regular maps to the entire X × S,
provided that U is of the form VU(P ) for a G-module V. This is done exactly as in
Proposition 2.6. ¤
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3.3. Observe that under the isomorphism of the above proposition, the open sub-
stack Zθ

maxBunM
coincides with the preimage of BunP ⊂ B̃unP . Let us now analyze

the behavior of other strata of B̃unP under the isomorphism of Proposition 3.2.
Recall that for θ ∈ Λpos

G,P we introduced a locally closed substack θBunP ⊂ BunP ,
as the image of the natural map

Xθ × BunP → BunP .

Let θB̃unP ⊂ B̃unP denote the preimage of θBunP under r : B̃unP → BunP .
As in Proposition 1.9 one shows that

θB̃unP ' BunP ×
BunM

Mod+,θ
BunM

.

Let (θ′′B̃un
θ+θ′

P ×
BunG

Bunθ′
P−)0 be the preimage of θ′′B̃un

θ+θ′

P under the natural

projection.

Lemma 3.4. The stack (θ′′B̃un
θ+θ′

P ×
BunG

Bunθ′
P−)0 is empty unless θ− θ′′ ∈ Λpos

G,P .

For θ′′ = θ, the above substack identifies with the image of Mod+,θ

Bunθ′
M

under sθ :

Mod+,θ

Bunθ′
M

↪→ Zθ
Bunθ′

M

.

Proof. Note that an S-point of BunP belongs to θ′′BunP if and only if the following
condition holds: for every G-dominant weight λ̌, orthogonal to Span(αi) for i ∈ IM ,
the corresponding map

κλ̌ : Lλ̌
FM/[M,M]

→ V λ̌
FG

is such that there exists a short exact sequence

0 →M1 → coker(κλ̌) →M2 → 0,

such that M2 is a vector bundle on X ×S, the support of M1 is X-finite and over
any geometric point s ∈ S, the length of M1|s is exactly 〈θ′′, λ̌〉.

Given an S-point of (θ′′B̃un
θ+θ′

P ×
BunG

Bunθ′
P−)0, we can compose the above em-

bedding of sheaves with

V λ̌
FG

κ−−→ (V λ̌
U(P−))F ′M → Lλ̌

F ′M/[M,M]

and we obtain a map between line bundles, such that over every geometric point
s ∈ S its total amount of zeroes is 〈θ′′, λ̌〉. This readily implies the first assertion
of the lemma.
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To prove the second assertion, observe that

(θB̃un
θ+θ′

P ×
BunG

Bunθ′
P−)0 ' (Bunθ′

P− ×
BunG

Bunθ′
P )0 ×

BunM

Mod+,θ
BunM

.

However, the condition on the degree forces that

(Bunθ′
P− ×

BunG

Bunθ′
P )0 ' Bunθ′

M .

Hence,

(θB̃un
θ+θ′

P ×
BunG

Bunθ′
P−)0 ' Mod+,θ

Bunθ′
M

and the fact that its embedding into Zθ
BunM

coincides with sθ follows from the
construction. ¤

3.5. For an element θ′ with θ−θ′ ∈ Λpos
G,P , let us denote by θ′Z

θ the corresponding

locally closed subvariety of Zθ, which is the trace of θ′B̃unP under the isomorphism
of Proposition 3.2. In particular, 0Z

θ = Zθ
max.

As in Proposition 1.9 above, we obtain

θ′Z
θ ' Zθ−θ′

max ×
BunM

Mod+,θ′
M ,

where the map Zθ−θ′
max → BunM used in the definition of the fiber product is

(FM , βM ) ∈ Zθ−θ′ 7→ FM ∈ BunM .

Let us denote by θ′Sθ the intersection of θ′Z
θ with the central fiber Sθ. We

obtain the following description of θ′Sθ:
Let ConvM denote the convolution diagram of the affine Grassmannian of

the group M . By definition, ConvM classifies quadruples (FM ,F ′
M , β̃M , β′M ),

where β̃M is an isomorphism FM |X−x ' F ′
M |X−x and β′M is an isomorphism

F ′
M |X−x ' F0

M |X−x. We have a natural projection pr′ : ConvM → GrM , which
sends (FM ,F ′

M , β̃M , β′M ) 7→ (F ′
M , β′M ) and the projection pr : ConvM → GrM ,

which sends (FM ,F ′
M , β̃M , β′M ) 7→ (FM , β′M ◦ β̃M ).

Projection pr′ makes ConvM a fibration over GrM with the typical fiber iso-
morphic to GrM and we will denote by Conv+,θ

M the closed subscheme of Conv,
which is a fibration over GrM with the typical fiber Gr+,θ

M .
Using Proposition 2.6 we obtain

θ′Sθ ' (Grθ−θ′
P ∩GrU(P−)) ×

GrM

Conv+,θ′
M ,

where GrM ← Conv+,θ′
M is the map pr′.
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3.6. Smoothness issues

Above we have constructed the map

Zθ
Bunθ′

M

' (B̃un
θ+θ′

P ×
BunG

Bunθ′
P−)0 → B̃un

θ+θ′

P .

We do not a priori know whether this map is smooth, since BunP− → BunG is
not smooth. We will now construct an open substack in Zθ

BunM
, which will map

smoothly onto B̃un
θ+θ′

P .
Let u(P ) be the Lie algebra of U(P ) viewed as an M -module. We define

the open substack Bunr
M ⊂ BunM to consist of those M -bundles FM , for which

H1(X,U) = 0, for all M -modules U , which appear as sub-quotients of u(P ). Let
Bunr

P− be the preimage of Bunr
M under the natural projection q : BunP− → BunM .

Lemma 3.7. The restriction of the natural map BunP− → BunG to Bunr
P− is

smooth.

Proof. Since both BunP− and BunG are smooth, it is enough to check the surjec-
tivity on the level of tangent spaces. Thus, let FP− be a P−-bundle and let FG be
the induced G-bundle. We must show that

H1(X, p−FP−
) → H1(X, gFG

)

is surjective if q(FP−) ∈ Bunr
M .

In general, the cokernel of this map is H1(X, (g/p−)FP− ). However, the irre-
ducible subquotients of g/p− as a P−-module are all M -modules, which appear in
the Jordan–Hölder series of u(P ). Hence, the assertion of the proposition follows
from the definition of Bunr

M . ¤

Let Zθ
Bunr

M
denote the corresponding open substack of Zθ

BunM
. From Propo-

sition 3.2 we obtain an isomorphism Zθ
Bunr

M
' ∪

θ′
(B̃un

θ+θ′

P ×
BunG

Bunθ′,r
P− )0. From

the above lemma, we see that the resulting map Zθ
Bunr

M
→ B̃unP is smooth. In

particular, since the stack BunP is smooth, we obtain the following corollary:

Corollary 3.8. The open subscheme Zθ
max of Zθ is smooth.

It is well-known (cf. [DS]) that every open substack of BunG of finite type
belongs to the image of some Bunθ′,r

P− , when −θ′ is large enough. Similarly, it is
easy to see that every open substack of finite type of B̃unP belongs to the image
of Zθ

Bunr
M

for θ large enough. Hence, in order to understand the singularities of

B̃unP , it is sufficient to analyze the singularities of Zθ.
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4. Computation of ICZθ : Statements

4.1. For θ ∈ Λpos
G,P ' Span+(αi, i ∈ I −IM ), let P(θ) denote an element of the set

of partitions of θ as a sum θ = Σ
k

θk, where each θk is a projection under Λ → ΛG,P

of a coroot of G belonging to Span+(αi, i ∈ I − IM ).
We emphasize the difference between P(θ) and A(θ): in the latter case we

decompose θ as a sum of arbitrary non-zero elements of Λpos
G,P .

For a fixed P(θ), let XP(θ) denote the corresponding partially symmetrized
power of the curve. In other words, if θ = Σ

k
nm · θm, where θm’s are pairwise

distinct, XP(θ) = Π
m

X(nm).

Now we need to introduce a version of the Beilinson-Drinfeld affine Grass-
mannian GrP(θ)

M . First, consider the ind-scheme GrP(θ),∞
M , which classifies triples

(xP(θ),FM , βM ), where xP(θ) ∈ XP(θ), FM is an M -bundle on X and βM is the
trivialization of FM away from the support of xP(θ). (We leave it to the reader to
formulate the above definition in terms of S-points, in the spirit of what we have
done before.)

Consider the open subset
o

XP(θ) of XP(θ) equal to the complement of all the
diagonals. Inside GrP(θ),∞

M | o
XP(θ)

we define the closed subset GrP(θ)
M | o

XP(θ)
as fol-

lows: For xP(θ) = Σ θk · xk with all the xk’s distinct, the fiber of GrP(θ),∞
M over it

is just the product of the affine Grassmannians Π
k

GrM,xk
and the fiber of GrP(θ)

M

is set to be Π
k

Gr
[(θk)

M,xk
, where [(θk) is as in Proposition 1.7. The entire GrP(θ)

M is

defined as a closure of GrP(θ)
M | o

XP(θ)
inside GrP(θ),∞

M .

By construction, if (xP(θ),FM , βM ) belongs to GrP(θ)
M , then among the rest, the

trivialization βM has the following property: for every G-module V the map

βV
U(P )

M : (VU(P ))FM
→ (VU(P ))F0

M
' VU(P ) ⊗OX ,

which is defined a priori on X−xP(θ) extends to a regular map on X. Therefore, we
obtain a map iP(θ) : GrP(θ)

M → Mod+,θ
M , which covers the natural map XP(θ) → Xθ.

It is easy to see that the above map iP(θ) is finite.

4.2. Let us denote by ICP(θ) the intersection cohomology sheaf on GrP(θ)
M . We

need to understand more explicitly the behavior of ICP(θ) over the diagonals
in XP(θ).

Thus, let ∆X ⊂ XP(θ) be the main diagonal. By construction, GrP(θ)
M |∆X

is a
subscheme of the relative affine Grassmannian GrM,X . Recall that LocX denotes
the localization functor from Rep(M̌) to the category of perverse sheaves on GrM,X .
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Lemma 4.3. If P(θ) corresponds to θ = Σ
m

nm ·θm, then the ∗-restriction of ICP(θ)

to GrP(θ)
M |∆X

⊂ GrM,X can be canonically identified with

LocX(⊗
m

Symnm(ǔ(P )θm
))⊗

(
Q`

(
1
2

)
[1]

)⊗|P(θ)|−1

,

where |P(θ)| = Σ
m

nm.

Proof. Consider the corresponding non-symmetrized power of the curve Π
m

Xnm .

Over it we can consider the scheme Π
m

(Gr
[(θm)

M,X )×nm and we have a natural proper
map

sym : Π
m

(Gr
[(θm)

M,X )×nm → GrP(θ)
M ,

which covers the usual symmetrization map Π
m

Xnm → XP(θ). Let us denote tem-

porarily by S the direct image sym!(ICΠ
m

(Gr
[(θm)
M,X )×nm

).

The fact that the map which defines convolution of perverse sheaves on the
usual affine Grassmannian GrM is semi-small implies that the above map sym is
small. Hence, S is the Goresky–MacPherson extension of its restriction to the open
subscheme GrP(θ)

M | o
XP(θ)

. In particular, it carries a canonical action of the product

of symmetric groups Π
m

Snm , because this is obviously so over GrP(θ)
M | o

XP(θ)
, and

ICP(θ) coincides with the invariants (S)Πm Snm

.
By construction, the ∗-restriction of S to GrP(θ)

M |∆X
can be identified with

LocX(⊗
m

(ǔ(P )θm
)⊗nm)⊗

(
Q`

(
1
2

)
[1]

)⊗Σ
m

nm−1

.

Therefore, it remains to see that the Π
m

Snm -action on S|∆X
corresponds to the

natural action of the group on ⊗
m

(ǔ(P )θm
)⊗nm . We prove the latter fact as follows:

Since taking the global cohomology is a fiber functor for the category of spherical
perverse sheaves on GrM , it suffices to analyze the Π

m
Snm-action on the direct image

of S under GrP(θ)
M → XP(θ), in which case the assertion becomes obvious. ¤

4.4. The main theorem

Our main technical result is the following theorem:

Theorem 4.5. The !-restriction of ICZθ under sθ : Mod+,θ
M → Zθ can be identified

with

⊕
P(θ)

iP(θ)∗(IC
P(θ))⊗

(
Q`

(
1
2

)
[1]

)−|P(θ)|
.
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Remark. Let us explain to what extent the isomorphism stated in this theorem
is canonical. (In fact, it is not!) The LHS carries the cohomological filtration
(filtration canonique), which corresponds to the filtration on the RHS according to
|P(θ)|. Unfortunately, our proof does not even give a canonical identification for
the associated graded quotients: each iP(θ)∗(IC

P(θ)) appears up to tensoring with
a 1-dimensional vector space.

To prove this theorem, we will proceed by induction on |θ| := Σ
i∈I−IM

ni if

θ = Σ
i∈I−IM

ni · αi. But first, we will derive from it various facts about IC
B̃unP

,

since we will use them to perform the induction step.

4.6. Observe that since ICZθ is Verdier self-dual, from Theorem 4.5 we obtain the
description of sθ∗(ICZθ ) as well. By translating this description to B̃unP using
Proposition 3.2, we obtain the following corollary:

Corollary 4.7. The ∗-restriction of IC
B̃unP

to θB̃unP ' BunP ×
BunM

Mod+,θ
BunM

can

be identified with

⊕
P(θ)

(id×iP(θ))∗(ICBunP ×
BunM

HP(θ)
M

)⊗
(

Q`

(
1
2

)
[1]

)|P(θ)|
,

where HP(θ)
M is the corresponding relative version of GrP(θ)

M over BunM .

From this corollary one easily deduces Theorem 1.12:

Proof (of Theorem 1.12). To simplify the notation, we will take the element A(θ) =
A0(θ) corresponding to the decomposition which consists of one element: θ = θ.
We need to calculate the ∗-restriction of IC

B̃unP
to

A0(θ)B̃unP ' BunP ×
BunM

HA0(θ)
M ' BunP ×

BunM

H+,θ
M,X .

By definition, our embedding jA0(θ) factors through BunP ×
BunM

Mod+,θ
BunM

'

θB̃unP . Note that H+,θ
M,X ⊂ Mod+,θ

BunM
is exactly the preimage of the main diagonal

∆X ⊂ Xθ. Therefore, the sought-for complex is, according to Corollary 4.7, the
direct sum over P(θ) of

(id×iP(θ))∗(ICBunP ×
BunM

HP(θ)
M

)|∆X
⊗

(
Q`

(
1
2

)
[1]

)|P(θ)|
.

Using Lemma 4.3, we obtain that (id×iP(θ))∗(ICBunP ×
BunM

HP(θ)
M

)|∆X
corre-

sponding to P(θ) with θ = Σ
m

nm · θm equals

LocBunP ,X(⊗
m

Symnm(ǔ(P )θm
))⊗ (Q`(1)[2])⊗|P(θ)|)⊗

(
Q`

(
1
2

)
[1]

)⊗−1

.
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However,

⊕
P(θ)

(⊗
m

Symnm(ǔ(P )θm
)⊗ (Q`(1)[2])⊗|P(θ)|) ' ⊕

i≥0
Symi(ǔ(P ))θ ⊗ (Q`(1)[2])⊗i,

which is what we had to show. ¤

4.8. The following result is an interesting byproduct of Corollary 4.7. In order to
save notation, we will formulate it for A(θ) = A0(θ), although the generalization
to an arbitrary A(θ) is straightforward.

Consider the hyperbolic restriction of IC
B̃unP

to the stratum A0(θ)B̃unP . By

definition, this is the !-restriction of IC
B̃unP

to θB̃unP followed by the further ∗-
restriction from θB̃unP to A0(θ)B̃unP .

Corollary 4.9. The hyperbolic restriction (in the above sense) of IC
B̃unP

to

A0(θ)B̃unP ' BunP ×
BunM

H+,θ
M,X is isomorphic to

LocBunP ,X(Sym(ǔ(P ))θ)⊗
(

Q`

(
1
2

)
[1]

)⊗−1

.

Let us draw the reader’s attention to the fact that Corollary 4.9 implies that
the hyperbolic restriction of IC

B̃unP
to A0(θ)B̃unP is a perverse sheaf, up to a

cohomological shift.
The proof of this corollary repeats the above proof of Theorem 1.12, using the

fact that
⊕

P(θ)=
∑
m

nmθm

(⊗
m

Symnm(ǔ(P )θm
)) ' Sym(ǔ(P ))θ.

Remark. We remark again that, due to the non-canonicity of the direct sum
decomposition stated in Theorem 4.5, the isomorphism of Corollary 4.9 is non-
canonical either. We only can claim that the LHS carries a canonical filtration,
which on the RHS coincides with the filtration by the degree. However, in the course
of the proof of Theorem 4.5, we will show that the above hyperbolic restriction can
be canonically identified with LocX(U(ǔ(P ))θ) ⊗ (Q`( 1

2 )[1])⊗−1. It seems natural
to guess (although our proof does not imply it) that our filtration on the LHS
corresponds under this isomorphism to the canonical filtration on U(ǔ(P )).

5. Computation of ICZθ : Proofs

5.1. The goal of this section is to prove Theorem 4.5. Our strategy will be as fol-
lows: from the induction hypothesis we will obtain an almost complete description
of how sθ !(ICZθ ) looks like away from the main diagonal. Then we will explicitly
compute the “contribution” at the main diagonal and hence prove the theorem.

The crucial idea of the proof is the following assertion:
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Proposition 5.2. There is a canonical isomorphism sθ !(ICZθ ) ' πP !(ICZθ ).

We will deduce this proposition from the following well-known lemma:
Let π : Y ′ → Y be a map of schemes and s : Y → Y ′ a section. Assume now

that the group Gm acts on Y ′ in such a way that it “contracts” Y ′ onto Y . This
means that the action map Gm×Y ′ → Y ′ extends to a regular map A1×Y ′ → Y ′,
such that the composition

0× Y ′ → A1 × Y ′ → Y ′

coincides with s ◦ π : Y ′ → Y → Y ′. Let now S be a Gm-equivariant complex
on Y ′.

Lemma 5.3. Under the above circumstances, π!(S) ' s!(S).

We apply this lemma to Y ′ = Zθ and Y = Mod+,θ
M . To construct a Gm-action

we proceed as follows. Let Gm → Z(M) be a 1-parameter subgroup, which acts
as contraction on U(P−). In this way Gm acts on the trivial M -bundle F0

M on X

and hence on Zθ. It remains to verify that Gm indeed contracts Zθ onto Mod+,θ
M .

We do that as follows:
Let Grθ,∞

G be the Beilinson–Drinfeld affine Grassmannian over Xθ. In other
words, a point of Grθ,∞

G is a triple (xθ,FG, β), where xθ ∈ Xθ, FG is a G-bundle
on X and β is a trivialization of FG off the support of xθ. We have the unit
section Xθ → Grθ,∞

G which sends xθ to (xθ,F0
G, β0), where β0 is the tautological

trivialization of the trivial bundle.
In the same way we can consider a Beilinson–Drinfeld version of the affine

Grassmannian for the group U(P−) (denote it Grθ,∞
U(P−)), and we have a locally

closed embedding: Grθ,∞
U(P−) ↪→ Grθ,∞

G .

By construction, our Zθ is a closed subscheme inside Mod+,θ
M ×

Xθ
Grθ,∞

U(P−). The

image of sθ is the product of Mod+,θ
M and the unit section of Grθ,∞

U(P−).
The above Gm-action on Zθ comes from a natural action of this group on

Grθ,∞
U(P−), while the action on Mod+,θ

M is trivial. Therefore, to prove our assertion

we have to show that Gm contracts Grθ,∞
U(P−) to the unit section. However, this

easily follows from the fact that our Gm → Z(M) contracts U(P−) to 1 ∈ U(P−).

5.4. Having established Proposition 5.2, we obtain the following corollary:

Corollary 5.5. When we pass from Fq to Fq, the complex sθ !(ICZθ ) ' πP !(ICZθ )
splits as a direct sum of (cohomologically shifted) irreducible perverse sheaves.

Proof. According to [BBD], πP !(ICZθ ) has weights ≤ 0, since ICZθ is pure of
weight 0. At the same time, [BBD] implies that sθ !(ICZθ ) has weights ≥ 0. Hence,
we obtain that sθ !(ICZθ ) ' πP !(ICZθ ) is pure of weight 0.
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Hence, the assertion of the corollary follows from the Decomposition Theo-
rem. ¤

From now until Section 5.13, we will disregard the Fq-structure on sθ !(ICZθ )
and will prove the isomorphism stated in Theorem 4.5 over Fq. In Section 5.13 we
will show that the direct sum decomposition holds over Fq as well.

Now let us use the induction hypothesis, i.e., our knowledge about sθ′ !(ICZθ′ )
for all θ′ with θ − θ′ ∈ Λpos

G,P . It is easy to see that the factorization property of
Proposition 2.4 implies that locally over Xθ −∆X we do obtain an isomorphism

sθ !(ICZθ ) ' ⊕
P(θ), |P(θ)|6=1

iP(θ)∗(IC
P(θ))[−|P(θ)|].

However, globally we can a priori have a non-trivial monodromy: suppose that
P(θ) corresponds to θ = 2 · θ′, where θ′ is the image of a coroot in Span(αj , j ∈
I −IM ). Then the preimage of Xθ −∆X in XP(θ) is X(2)−∆X , and we can have
an order 2 monodromy. Therefore, so far we can only claim that

sθ !(ICZθ )|Xθ−∆X
' ⊕

P(θ), |P(θ)|6=1
iP(θ)∗(IC

P(θ)⊗π∗M (EP(θ)))[−|P(θ)|]|Xθ−∆X
,

where EP(θ) is an order 2 local system on the preimage of Xθ−∆X in XP(θ), which
can be non-trivial only for P(θ) of the form specified above. Of course, later we
will have to show that all the EP(θ)’s are necessarily trivial.

By combining this with Corollary 5.5 we obtain:

sθ !(ICZθ ) ' ⊕
P(θ), |P(θ)|6=1

iP(θ)∗(KP(θ))[−|P(θ)|]⊕Kθ, (1)

where Kθ is a complex supported on Mod+,θ
M |∆X

' Gr+,θ
M,X and KP(θ) is the

Goresky–MacPherson extension of ICP(θ) |Xθ−∆X
⊗π∗M (EP(θ)) to the whole GrP(θ)

M .
To prove the theorem we have to understand the complex Kθ. This will be done

by analyzing the ∗-restriction of the LHS of (1) to Mod+,θ
M |∆X

.

5.6. Recall that for x ∈ X we denoted by ∆x the embedding pt ↪→ X
∆X
↪→ Xθ. To

simplify the notation, instead of sθ !(ICZθ )|∆X
we will compute sθ !(ICZθ )|∆x

. We
will prove the following assertion:

Proposition 5.7. sθ !(ICZθ )|∆x
, being a complex of sheaves on Mod+,θ

M |∆x
'

Gr+,θ
M , is concentrated in perverse cohomological degrees ≤ 0. Its 0-th perverse

cohomology can be identified with Loc(U(ǔ(P ))θ).

Remark. Note that the a posteriori proven Corollary 4.9 implies that the above
complex has perverse cohomology only in dimension 0.

Recall our definition of the central fiber Sθ. Using Proposition 5.2 and base
change, we obtain that

sθ !(ICZθ )|∆x
' πP !(ICZθ |Sθ ).

The following is a refinement of Proposition 5.7:
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Proposition 5.8. Let θ′ be as above.
(1) πP !(ICZθ |

θ′Sθ ) lives in strictly negative cohomological dimensions if θ′ 6= 0.
(2) The complex πP !(ICZθ |0Sθ ) lives in cohomological dimensions ≤ 0.
(3) h0(πP !(ICZθ |0Sθ )) ' Loc(U(ǔ(P ))θ).

The proof of Proposition 5.8 will use the following facts about the geometry of
the affine Grassmannian, whose proofs will be given in Section 6.

Let us denote by tθ the natural map Grθ
P → Grθ

M .

Theorem 5.9. We have:
(1) tθ! (Q`Grθ

P ∩GrU(P−)
) as a complex of sheaves on Gr+,θ

M lives in the perverse
cohomological dimensions ≤ 〈θ, 2(ρ̌G − ρ̌M )〉.

(2) h〈θ,2(ρ̌G−ρ̌M )〉(tθ! (Q`Grθ
P ∩GrU(P−)

)) ' Loc(U(ǔ(P ))θ).

5.10. Proof of Proposition 5.8

First, from Proposition 3.2 we can compute the dimension of Zθ and we obtain
〈θ, 2(ρ̌G − ρ̌M )〉. Since 0Z

θ is contained in Zθ
max (and Zθ

max is smooth, according
to Corollary 3.8),

ICZθ |0Sθ ' Q`0Sθ [〈θ, 2(ρ̌G − ρ̌M )〉].
Therefore, points 2 and 3 of the proposition follow immediately from Theo-

rem 5.9 combined with Proposition 2.6.
To prove point 1 of the proposition, let us first take θ′ 6= θ. However, θ′Sθ

is contained in θ′Z
θ, we will be able to use the induction hypothesis to calculate

ICZθ |
θ′Sθ :

Recall the identification

θ′Sθ ' (Grθ−θ′
P ∩GrU(P−)) ×

GrM

Conv+,θ′
M

of Section 3.5.
Let us recall also the following construction. Projection pr′ realizes the convo-

lution diagram ConvM as a fibration over GrM with the typical fiber isomorphic
to GrM itself. Hence, starting with a spherical perverse sheaf S on GrM and
an arbitrary complex S ′ on GrM , we can define their twisted external product
S£̃S ′ ∈ D(ConvM ), which is “S ′ along the base”, and “S along the fiber”. The
convolution of S and S ′ is by definition the complex on GrM equal to pr!(S£̃S ′).
It is a basic fact (cf. [Ga]) that if S ′ is a perverse sheaf, then its convolution with
any S as above is perverse as well.

Similarly, if S is a spherical perverse sheaf on GrM and S ′′ is an arbitrary
complex on Grθ−θ′

P ∩GrU(P−) we can construct the complex S£̃S ′′ on

Conv+,θ′
M ×

GrM

(Grθ−θ′
P ∩GrU(P−)).
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By combining Theorem 1.12 with Lemma 4.3 and Proposition 3.2 we obtain
that ICZθ |

θ′Sθ is the direct sum

⊕
P(θ′)

(Loc(⊗
m

Symn′m(ǔ(P )θ′m))[2 · |P(θ′)|])£̃Q`[〈θ − θ′, 2(ρ̌− ρ̌M )〉],

where θ′ = Σn′m · θ′m.
Now, projection πP : θ′Sθ → Gr+,θ

M in the above description of θ′Sθ cor-
responds to Conv+,θ′

M ×
GrM

(Grθ−θ′
P ∩GrU(P−)) → Conv+,θ′

M

pr→ GrM . Therefore,

πP !(ICZθ |
θ′Sθ ) is the sum over P(θ′) of convolutions of

tθ−θ′
! (Q`Grθ−θ′

P ∩GrU(P−)
)[2 · |P(θ′)|+ 〈θ − θ′, 2(ρ̌− ρ̌M )〉]

with the spherical perverse sheaf Loc(⊗
m

Symn′m(ǔ(P )θ′m)). The important thing

is that |P(θ′)| > 0: using Theorem 5.9(2), we obtain that πP !(ICZθ |
θ′Sθ ) lies in

strictly negative cohomological degrees.
Since the convolution of a complex lying in negative perverse cohomological

dimensions on GrM with a spherical perverse sheaf is again a complex lying in
negative cohomological dimensions, point 1 of the proposition follows for θ′ 6= θ.

Finally, let us consider θ′ = θ. In this case, πP : θSθ → Gr+,θ
M is an isomorphism

and it suffices to observe, that by the very definition of intersection cohomology,
IC

θSθ lives in strictly negative cohomological degrees.
Thus, Proposition 5.8 is proved modulo Theorem 5.9, which will be dealt with

later.

5.11. Let us go back to the isomorphism of Equation (1). At this point we are
ready to prove that the local systems EP(θ) are all trivial. For that purpose, we
can assume that P(θ) corresponds to θ = 2 · θ′, as above. Consider

Gr
[(θ′)
M,X ×Gr

[(θ′)
M,X → GrP(θ)

M

iP(θ)−→ Mod+,θ
M .

By induction hypothesis (in the incarnation of Corollary 4.9) and Proposi-
tion 2.4 we have that over X ×X −∆X ,

(sθ !(ICZθ ))|
Gr

[(θ′)
M,X×Gr

[(θ′)
M,X

' LocX(Sym(ǔ(P ))θ′) £ LocX(Sym(ǔ(P ))θ′)[−2]. (2)

The group Z2 acts in a natural way on Gr
[(θ′)
M,X × Gr

[(θ′)
M,X and we have to show

that the Z2-equivariant structure on the LHS of (2) corresponds to the tautological
Z2-equivariant structure on the RHS.
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Let us apply a relative version of Proposition 5.8 for θ′, in which instead of a
fixed x ∈ X we have a pair of distinct points on X. We obtain an isomorphism of
complexes over X ×X −∆X

(sθ !(ICZθ ))|
Gr

[(θ′)
M,X×Gr

[(θ′)
M,X

[2] ' (πP !(ICZθ ))|
Gr

[(θ′)
M,X×Gr

[(θ′)
M,X

[2] '
htop((tθ

′ £ tθ
′
)!(Q`Grθ′

P,X ∩GrU(P−),X ×Grθ′
P,X ∩GrU(P−),X

)) '
LocX(U(ǔ(P ))θ′) £ LocX(U(ǔ(P ))θ′),

where top = 2 · (1 + 〈θ′, 2(ρ̌G − ρ̌M )〉) and Grθ
P,X and GrU(P−),X are the corre-

sponding relative (over X) versions of Grθ
P and GrU(P−), respectively.

The last isomorphism, by construction, intertwines the natural Z2-structure on
(sθ !(ICZθ ))|

Gr
[(θ′)
M,X×Gr

[(θ′)
M,X

and the tautological Z2-structure on the external product

Loc(U(ǔ(P ))θ′) £ Loc(U(ǔ(P ))θ′). By comparing with (2) we obtain the required
assertion.

5.12. To prove the theorem over Fq it remains to analyze the term Kθ. Note that
there is not more than one P(θ) with |P(θ)| = 1. We will denote it by P0(θ). By
definition, GrP0(θ)

M ' Gr
[(θ)

M,X .
We have to show that

Kθ ' iP0(θ)∗(LocX(ǔ(P )θ))[−1].

By the definition of IC, since Kθ|∆X
is a direct summand of sθ !(ICZθ ), it can

have perverse cohomology only in degrees ≥ 1. Let us now restrict both sides of
(1) to Gr+,θ

M,X ' Mod+,θ
M |∆X

and apply the cohomological truncation τ≥1. Using
Lemma 4.3 on the one hand, and the relative (over X) version of Proposition 5.7
on the other hand, we obtain

LocX((U(ǔ(P )))θ)[−1] ' ⊕
P(θ), |P(θ)|6=1

LocX(⊗
k

Symnk(ǔ(P )θk
))[−1]⊕Kθ|∆X

.

Hence, Kθ[1] is a perverse sheaf. Moreover, since U(ǔ(P )) and Sym(ǔ(P )) are
(non-canonically) isomorphic as M̌ -modules, the comparison of multiplicities forces
Kθ[1]|∆X

' LocX(ǔ(P )θ).

5.13. Now let us restore the Fq-structure on sθ !(ICZθ ). To complete the proof of
the theorem, by induction, it suffices to show that the arrow

Kθ|∆X
' LocX(ǔ(P )θ)⊗

(
Q`[1]

(
1
2

))⊗−1

→ sθ !(ICZθ ),
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which is known to split over Fq, splits over Fq as well. For that, it is enough to
show that the complex sθ !(ICZθ )|∆X

is semisimple.
We know already that sθ !(ICZθ )|∆X

⊗ (Q`[1](1
2 )) has perverse cohomology only

in dimension 0, which is equal, as in Proposition 5.8, to

h0

(
tθ! (Q`Grθ

P,X ∩GrU(P−),X
)⊗

(
Q`[1]

(
1
2

))〈θ,2(ρ̌G−ρ̌M )〉)
.

The needed result follows from the fact that the isomorphism of Theorem 5.9(3)
is compatible with the Fq-structure in the sense that

h0

(
tθ! (Q`Grθ

P,X ∩GrU(P−),X
)⊗

(
Q`[1]

(
1
2

))〈θ,2(ρ̌G−ρ̌M )〉)
' LocX((U(ǔ(P )))θ).

6. Intersections of semi-infinite orbits in the affine Grassmannian

6.1. The restriction functors

Let Ox (resp., Kx) denote the completed local ring (resp., local field) at x. We can
form the group-schemes G(Ox), P (Ox), U(P )(Ox) and the corresponding group-
ind-schemes G(Kx), P (Kx), U(P )(Kx). Note, however, that the latter is not only a
group-ind-scheme, but also an ind-group-scheme, i.e., an inductive limit of group-
schemes.

Let ν ∈ Λ be M -dominant and let θ be its image under Λ → ΛG,P . Let us
denote by Grν

P the preimage (tθ)−1(Grν
M ) ⊂ Grθ

P . The schemes Grν
P are nothing

but orbits of the group U(P )(Kx) · M(Ox) on GrG. We will denote by tν the
restriction of the projection tθ : Grθ

P → GrM to Grν
P .

The goal of this section is to prove Theorem 5.9. The starting point is the
following result, which describes the intersections of Grθ

P with Grλ
G inside the affine

Grassmannian GrG (cf. [BD], [BG] and [MV]).
For a G-dominant (resp., M -dominant) coweight λ, let V λ (resp., V λ

M ) denote
the corresponding irreducible representation of Ǧ (resp., M̌).

Theorem 6.2. Let λ be a dominant integral coweight of G.
(1) The intersection Grν

P ∩Grλ
G has dimension ≤ 〈ν + λ, ρ̌G〉.

(2) The irreducible components of Grν
P ∩Grλ

G of dimension 〈ν + λ, ρ̌G〉 form a
basis for HomM̌ (V ν

M ,ResǦ
M̌ (V λ)).

6.3. The case P = B

We will first consider the situation when P = B. Note that in our notation Bun0
B−

is the same as BunU(B−).
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In this case, ΛG,P = Λ and for two elements ν, µ ∈ Λ let us consider the
intersection Grν−µ

B ∩Gr−µ
B− .

First, it is easy to see that the action of tµ∈T (Kx) on GrG identifies Grν
B ∩Gr0B−

with Grν−µ
B ∩Gr−µ

B− for any µ ∈ Λ. To prove the theorem, it suffices to show that
for a given ν ∈ Λpos and some µ ∈ Λ, the intersection Grν−µ

B ∩Gr−µ
B− is of dimension

≤ 〈ν, ρ̌G〉 and
H2〈ν,ρ̌〉

c (Grν−µ
B ∩Gr−µ

B−) ' U(ǔ)ν .

Proposition 6.4. For a fixed ν and µ deep enough in the dominant chamber, the
intersection Grν−µ

B ∩Gr−µ
B− is contained inside Gr−w0(µ)

G .

Proof. Let us identify Gr0B− with the quotient U(B−)(Kx)/U(B−)(Ox).
Since we know already that Grν

B ∩Gr0B− is a scheme of finite type, the preimage
of Grν

B ∩Gr0B− under the projection U(B−)(Kx) → U(B−)(Kx)/U(B−)(Ox) is
contained inside the subgroup

Adtµ(U(B−)(Ox)) ⊂ U(B−)(Kx),

for µ deep enough in the dominant chamber.
Let us now consider Grν−µ

B ∩Gr−µ
B− , which via the action of tµ can be identified

with Grν
B ∩Gr0B− .

We can view Gr−µ
B− as a quotient U(B−)(Kx)/Adt−µ(U(B−)(Ox)), via the ac-

tion of U(B−)(Kx) on t−µ, viewed as an element of GrT ⊂ Gr−µ
B− ⊂ GrG. We ob-

tain that the preimage of Grν−µ
B ∩Gr−µ

B− in U(B−)(Kx) is contained in U(B−)(Ox).
Hence,

Grν−µ
B ∩Gr−µ

B− ⊂ U(B−)(Ox) · t−µ ⊂ G(Ox) · t−µ = Gr−w0(µ)
G .

¤
The above proposition implies the dimension estimate dim(Grν−µ

B ∩Gr−µ
B−) ≤

〈ν, ρ̌G〉 right away.
Indeed, we may assume that µ is such that Grν−µ

B ∩Gr−µ
B− ⊂ Gr−w0(µ)

G . However,
Theorem 6.2(1) implies that dim(Gr−w0(µ)

G ∩Grν−µ
B ) ≤ 〈ν, ρ̌G〉.

To prove the other statements of the theorem, observe that for µ as above, the
irreducible components of Grν−µ

B ∩Gr−µ
B− of dimension 〈ν, ρ̌G〉 are naturally a subset

among the irreducible components of Gr−w0(µ)
G ∩Grν−µ

B of the same dimension.
Let us show that the generic point of every irreducible component K of the

intersection Gr−w0(µ)
G ∩Grν−µ

B of dimension 〈ν, ρ̌G〉 is contained in Grν−µ
B ∩Gr−µ

B− .
Suppose the contrary. Then there exists µ′∈Λ, such that the generic point of K is

contained in Gr−w0(µ)
G ∩Gr−µ′

B− . However, it is easy to see that Gr−w0(µ)
G ∩Gr−µ′

B− 6=∅
implies µ− µ′ ∈ Λpos.
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However, as we have shown above, dim(Grν−µ
B ∩Gr−µ′

B− ) ≤ 〈ν+µ′−µ, ρ̌G〉, which
is smaller than the dimension of K.

Thus, we obtain that

H2〈ν,ρ̌〉
c (Grν−µ

B ∩Gr−µ
B−) ' H2〈ν,ρ̌〉

c (Gr−w0(µ)
G ∩Grν−µ

B ).

However, according to Theorem 6.2(2), the RHS of the above equation can be
canonically identified with the ν−µ-weight space in the irreducible Ǧ-representation
with highest weight −w0(µ). The latter, when µ is large compared to ν, is isomor-
phic to U(ǔ)ν via the action on the lowest weight vector.

6.5. The general case

We fix θ and ν ∈ Λ such that Grν
M ⊂ Gr+,θ

M . Since Grν
M is simply-connected, it

suffices to show that each intersection Grν
P ∩GrU(P−) is of dimension ≤ 〈ν, ρ̌G〉 and

that the number of its irreducible components of dimension exactly 〈ν, ρ̌G〉 equals
the dimension of HomM̌ (V ν

M , U(ǔ(P ))).
For an M -dominant weight µ let us consider the corresponding Grµ

P− ⊂ GrG.
Note that for µ = 0 this subscheme coincides with GrU(P−).

Let Λ′G,P ⊂ ΛG denote the lattice of cocharacters of the center Z(M) of M . If
µ′ ∈ Λ′G,P , the action of the corresponding tµ

′ ∈ Z(M)(Kx) identifies Grν
P ∩Grµ

P−

with Grν−µ′
P ∩Grµ−µ′

P− .

Proposition 6.6. Let µ′ ∈ Λ′G,P be G-dominant and deep enough on the cor-

responding wall of the Weyl chamber. Then the intersection Grν−µ′
P ∩Grµ−µ′

P− is

contained in Grw0(w
M
0 (µ−µ′))

G .

Proof. The initial observation is that each Grν
P ∩Grµ

P− is a scheme of finite type.
We know this fact for µ = 0, since the above intersection is a locally closed sub-
scheme in the Zastava space Zθ.

In general, this assertion can be proven either by introducing the corresponding
analog of the Zastava space over a global curve, or by a straightforward local
argument.

Let us view Grµ
M as a sub-scheme of Grµ

P− , such that Grµ
P− = U(P−)(Kx)·Grµ

M .
As in the case P = B, we obtain that that the preimage of Grν

P ∩Grµ
P− under

U(P−)(Kx)×Grµ
M → Grµ

P−

is contained in a subscheme of the form Adtµ′ (U(P−)(Ox))×Grµ−µ′
M . Hence, the

action of t−µ′ maps Grν
P ∩Grµ

P− inside

U(P−)(Ox) ·Grµ−µ′
M ⊂ Grw0(w

M
0 (µ−µ′))

G .
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¤
The rest of the proof is similar to the case of P = B:
From the above proposition we obtain that the intersection Grν

P ∩Grµ
P− is of

dimension ≤ 〈ν − wM
0 (µ), ρ̌G〉. In particular, Grν

P ∩GrU(P−) is of dimension ≤
〈ν, ρ̌G〉.

Moreover, as in the previous case, we obtain that there is a bijection between
the set of irreducible components of Grν

P ∩GrU(P−) of dimension 〈ν, ρ̌G〉 and the set

of irreducible components of the same dimension of Grν−µ′
P ∩Gr−w0(µ

′)
G , where µ′

is large enough. However, Theorem 6.2(2) implies that the latter set parameterizes
a basis of

HomM̌ (V ν−µ′
M , V

−w0(µ
′)

G ),

which, since µ′ is large compared to ν, can be identified with HomM̌ (V ν
M , U(ǔ(P ))).

7. Intersection cohomology of BunP

In this section we are concerned with describing explicitly the intersection coho-
mology sheaf on BunP . First, we introduce an analogue, Znv,θ, of the Zastava
spaces for BunP (here the superscript nv stands for “naive”).

By definition, Znv,θ is a scheme classifying the data of (xθ,FG, β), where xθ ∈
Xθ, FG is a G-bundle and β is a trivialization of FG off the support of xθ, such
that for every G-dominant weight λ̌ orthogonal to Span(αi), i ∈ IM the induced
meromorphic maps

Lλ̌
F0

M/[M,M]
→ V λ̌

FG
and V λ̌

FG
→ Lλ̌

F0
M/[M,M]

induce a regular map Lλ̌
F0

M/[M,M](−xθ)
→ V λ̌

FG
and a regular and surjective map

V λ̌
FG

→ Lλ̌
F0

M/[M,M]
.

There is a natural proper map Zθ → Znv,θ, which corresponds to “forget-
ting” the data of (FM , βM ). In addition, Znv,θ contains an open subscheme Znv,θ

max

corresponding to the locus, where the maps Lλ̌
F0

M/[M,M](−xθ)
→ V λ̌

FG
are maximal

embeddings, over which we have an isomorphism Zθ
max → Znv,θ

max .
As in the case of Zθ, one easily establishes the factorization property for Znv,θ:

(Xθ1 ×Xθ2)disj ×
Xθ

Znv,θ ' (Xθ1 ×Xθ2)disj ×
Xθ1×Xθ2

(Znv,θ1 × Znv,θ2). (3)

Finally, the spaces Znv,θ model the singularities of BunP in the same sense as Zθ

models the singularities of B̃unP . In other words, an analogue of Proposition 3.2
holds, whose formulation we leave to the reader.
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7.1. It turns out, that although the stack BunP is “simpler” than B̃unP , the
description of its intersection cohomology sheaf is more involved, and in particular
it relies on the description of IC

B̃unP
.

To formulate the main theorem, we introduce the following notation. Recall
that the equivalence Loc between the category of spherical perverse sheaves on
GrM and the category of M̌ -modules admits a quasi-inverse given by the global
cohomology functor: S 7→ H•(GrM ,S).

Under this equivalence, the multiplication by the first Chern class c1(det) of the
determinant line bundle on GrM corresponds to the action of a principal nilpotent
element e ∈ Lie(M̌). Moreover, the cohomological grading of H• corresponds to
the action of a semisimple h ∈ Lie(M̌) contained in a uniquely defined principal sl2-
triple (e, f, h) in Lie(M̌). For a M̌ -module V the Z-grading arising from the action
of h is given by the following rule: the weight subspace Vη has degree 〈η, 2ρ̌M 〉.
This Z-grading on V will be called the principal grading .

For V as above, we will denote by V f the subspace annihilated by f . We will
consider it as a graded vector space, via the principal grading.

We define the functor Loc (V ) from the category of Z-graded vector spaces to
complexes over Spec(Fq) by setting

Loc (V ) = ⊕
n

Vn ⊗ [−n](−n

2
).

In particular, we will apply the functor Loc to M̌ -modules V (or their direct sum-
mands, such as V f ), endowed with the principal grading.

Theorem 7.2. The restriction of ICBunP
to

θBunP ' Xθ × BunP

can be identified with the direct sum over P(θ) = Σ
m

nm · θm of the direct images

under XP(θ) × BunP → Xθ × BunP of

ICBunP
£

(
£
m

(
Loc (ǔ(P )f

θm
)
)(nm)

)
⊗

(
Q`

(
1
2

)
[1]

)⊗2·|P(θ)|
,

where each Loc (ǔ(P )θm
) is viewed as a constant local system on X and the super-

script (nm) designates the nm-th symmetric power.

As a corollary, we obtain the following description of the restriction of ICBunP

to the strata A(θ)BunP :

Theorem 7.3. Let A(θ) be a partition θ =
∑
m

nm ·θm. The ∗-restriction of ICBunP

to A(θ)BunP '
o

XA(θ) ×BunP is isomorphic to IC
A(θ)BunP

tensored by the complex

⊗
m

(
⊕

i≥0
Loc

(
Symi(ǔ(P )f )θm

)
(i)[2i]

)⊗nm

⊗
(

Q`

(
1
2

)
[1]

)⊗−|A(θ)|
.



Vol. 8 (2002) Intersection cohomology of Drinfeld’s compactifications 415

Remark. Suppose G = SLn. Then the parabolic subgroups of G are numbered
by the ordered partitions n = n1 + . . . + nk, ni > 0. Suppose a parabolic sub-
group P corresponds to a non-decreasing partition n = n1 + . . . + nk, 0 < n1 ≤
n2 ≤ . . . ≤ nk. In this case Theorem 7.3 was proved by A. Kuznetsov in the
summer of 1997 (unpublished). His proof made use of Laumon’s compactification
BunL

P [La]. Namely, BunL
P is always smooth (see loc. cit.) and equipped with a

natural dominant representable projective morphism $ : BunL
P → BunP . In case

P corresponds to a non-decreasing partition, A. Kuznetsov proved that $ is small,
and computed the cohomology of its fibers.

Let us mention that in case G = SP (4), and P corresponding to the Dynkin sub-
diagram formed by the long simple root, BunP does not admit a small resolution,
as can be seen from the calculation of IC stalks in codimension 5 (the existence of
such resolution would imply that a fiber has cohomology Q` ⊕Q`[−4]).

7.4. We will deduce Theorem 7.2 from Corollary 4.7. Let Q denote the direct
image of IC

B̃unP
under r : B̃unP → BunP . On the one hand, from Corollary 4.7

and Lusztig’s computation [Lu] of global cohomology of perverse sheaves on affine
Grassmannians, we obtain:

Corollary 7.5. The ∗-restriction of Q to θBunP ' Xθ × BunP is isomorphic to
the direct sum over P(θ) =

∑
nm ·θm of the direct images under XP(θ)×BunP →

Xθ × BunP of

ICBunP
£

(
£
m

(
Loc (ǔ(P )θm

)
)(nm)

)
⊗

(
Q`

(
1
2

)
[1]

)⊗2·|P(θ)|
.

On the other hand, by the Decomposition Theorem, Q is a pure complex, which
contains ICBunP

as a direct summand. Therefore, Theorem 7.2 amounts to identi-
fying the corresponding direct summand in the formula for Q|

θBunP
of the above

corollary. In particular, we obtain that ICBunP
|
θBunP

is a pure complex.
Consider the main diagonal X×BunP → Xθ×BunP , which corresponds to the

partition A(θ) = A0(θ). Let Sθ be the direct summand of ICBunP
|
θBunP

, supported
on X×BunP . By induction and the factorization property , it suffices to show that

Sθ ' ICX×BunP
⊗Loc (ǔ(P )f

θ )⊗Q`(
1
2
)[1].

7.6. We proceed as follows:

Let P(θ)BunP denote the closure of the image of XP(θ)×BunP → Xθ×BunP '
θBunP in BunP . By Corollary 7.5 and the Decomposition Theorem, we have

Q =
⊕

θ∈Λpos
G,P , P(θ)

QP(θ),
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where each QP(θ) is a complex on A(θ)BunP . In particular, we obtain that

Q|
θBunP

'
⊕

θ∈Λpos
G,P , P(θ)

QP(θ)|θBunP
.

Lemma 7.7. For 0 < θ′ < θ, none of the QP(θ′)|θBunP
has a direct summand

supported on the main diagonal X × BunP ⊂ θBunP .

Proof. First, from Corollary 4.7, it is easy to see that each QP(θ′) has the following

form: it is the intersection cohomology sheaf of P(θ′)BunP tensored with a complex
over Spec(Fq).

There is a finite map XP(θ′) × BunP → BunP , defined as in Proposition 1.5,
which normalizes P(θ′)BunP . Hence, it suffices to analyze the ∗-restriction to
θBunP of the direct image of ICXP(θ′)×BunP

under this map.
However, the preimage of θBunP in XP(θ′) × BunP → BunP is XP(θ′) ×

θ−θ′BunP and we can assume that the ∗-restriction of ICXP(θ′)×BunP
to this sub-

stack is known by induction.
In particular, all its direct summands are supported on substacks of the form

XP(θ′) ×XP(θ−θ′) × BunP .

Since, θ′ 6= 0 and θ− θ′ 6= 0, none of these sub-stacks maps onto the main diagonal
in θBunP . ¤

Thus, from Corollary 7.5, we obtain that

ICX×BunP
⊗ (

Loc (ǔ(P )θ)
)⊗Q`

(
1
2

)
[1] ' Sθ ⊕QP0(θ).

Hence, it suffices to see that if we decompose ǔ(P )θ as

ǔ(P )θ = ǔ(P )f
θ ⊕ Im(e : ǔ(P ) → ǔ(P ))θ,

then the induced map

Sθ → ICX×BunP
⊗ (

Loc (ǔ(P )θ)
)⊗Q`

(
1
2

)
[1] → ICX×BunP

⊗

(
Loc (ǔ(P )f

θ )
)
⊗Q`

(
1
2

)
[1]

is an isomorphism.
The latter is established as follows:
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Consider the line bundle L on B̃unP equal to the ratio of the pull-backs of the
determinant line bundles under the maps B̃unP → BunG and B̃unP → BunM ,
respectively. Its restriction to the fibers of rP : B̃unP → BunP over A0(θ)BunP is
equal to a positive power of the determinant line bundle det on GrM . Hence L is a
relatively ample line bundle for B̃unP over BunP . The relative hard Lefschetz the-
orem [BBD] asserts that the multiplication by c1(L)i induces an isomorphism from
Q−i to Qi(i) where Qi denotes the direct summand of Q in perverse cohomological
degree i.

Let us restrict the action of c1(L) to the direct summand of Q|
θBunP

supported
on the main diagonal X × BunP . Under the identification of this summand with

ICX×BunP
⊗ (

Loc (ǔ(P )θ)
)⊗Q`

(
1
2

)
[1]

this action coincides, up to a scalar, with the action of e, by the very definition.
Let us disregard Tate twists and view the above direct summand as a semisimple
graded perverse sheaf.

We have the following general lemma:

Lemma 7.8. Let A• be a graded semisimple object of an abelian category, equipped
with an endomorphism e : A• → A•+2 such that ei : A−i → Ai is an isomorphism.
Suppose A[1] = B⊕C where B is concentrated in negative degrees, and ek : C−k →
Ck is an isomorphism for any k ≥ 0. Then

(a) There is a unique endomorphism f : A• → A•−2 satisfying the relations of
sl2 together with e, h where h|Ai = i;

(b) C = Im(e), and the projection B → A[1]/C = A[1]/ Im(e)←̃Ker(f) identi-
fies B with Ker(f).

The proof of Theorem 7.2 is concluded by applying this lemma to

A• = ICX×BunP
⊗ (

Loc (ǔ(P )θ)
)
, B = Sθ and C = QP0(θ).
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