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Abstract. We define a bijection from Littlewood–Richardson tableaux to rigged configurations
and show that it preserves the appropriate statistics. This proves in particular a quasi-particle
expression for the generalized Kostka polynomials KλR(q) labeled by a partition λ and a sequence
of rectangles R. The generalized Kostka polynomials are q-analogues of multiplicities of the
irreducible GL(n, C)-module V λ of highest weight λ in the tensor product V R1 ⊗ · · · ⊗ V RL .
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1. Introduction

1.1. Kostka polynomials

The irreducible highest weight polynomial representations V λ of the general linear
group GL(n, C) are labeled by partitions λ = (λ1, . . . , λn) with n parts obey-
ing λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. The Kostka number Kλη indexed by a partition
λ = (λ1, . . . , λn) and a sequence of nonnegative integers η = (η1, . . . , ηL) is the
multiplicity of V λ in the tensor product V (η1)⊗· · ·⊗V (ηL). It has a combinatorial
interpretation as the number of column-strict tableaux of shape λ and content η,
denoted by CST(λ; η).

The Kostka number has an important q-analogue Kλη(q), which is a polyno-
mial in q with nonnegative integer coefficients that specializes to Kλη at q = 1.
A combinatorial expression for Kλη(q) was provided by Lascoux and Schützenber-
ger [17]. They define a statistic c(T ), called charge, for each column-strict tableau T
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such that the coefficient of qk in Kλη(q) is the number of tableaux in CST(λ; η) of
charge k:

Kλη(q) =
∑

T∈CST(λ;η)

qc(T ). (1.1)

The Kostka polynomials occur in many different areas of mathematics and
mathematical physics. For example, they can also be defined as the transition
matrix between the Schur functions and the Hall–Littlewood symmetric functions
which form bases of the ring of symmetric functions [19]. A geometrical interpreta-
tion of Kλη(q) was given by Lusztig [15]. Another combinatorial description of the
Kostka polynomials that will be most relevant here is the interpretation in terms
of rigged configurations.

1.2. Rigged configurations and fermionic formulas

In their study of the XXX model using Bethe Ansatz techniques, Kirillov and
Reshetikhin [12] obtained an expression for the Kostka polynomials as the gener-
ating function of rigged configurations. Rigged configurations index the solutions
of the Bethe Ansatz equations; they are sequences of partitions obeying certain
conditions together with quantum numbers or riggings labeling the parts of the
partitions.

Let RC(λ; η) be the set of rigged configurations associated to λ and η, and write
the elements as (ν, J) ∈ RC(λ; η) where ν denotes the sequence of partitions and J
the quantum numbers. The set of rigged configurations is also endowed with a
statistic, denoted by cc. In reference [12] an algorithm for a statistic-preserving
bijection between the set of column-strict Young tableaux CST(λ; η) and the set
of rigged configurations RC(λ; η) was given. In particular, this bijection connects
the generating function of rigged configurations to the charge representation of the
Kostka polynomials (1.1), so that

Kλη(q) =
∑

(ν,J)∈RC(λ;η)

qcc(ν,J). (1.2)

In fact, the sum over the quantum numbers in (1.2) can be performed explicitly
to yield

Kλη(q) =
∑

ν∈C(λ;η)

qcc(ν)pν(q),

where pν(q) is a product of q-binomial coefficients (see Theorem 2.10). This rep-
resentation of the Kostka polynomials is exactly in quasi-particle form. In recent
years, much research has been devoted to the study of quasi-particle representations
of characters of conformal field theories and configuration sums of exactly solvable
lattice models (see for example [1], [2], [3], [4], [5], [7], [8], [21], [27], [28] and refer-
ences therein). These quasi-particle representations are physically interesting [9],
[10] because they reflect the particle structure of the underlying model.
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1.3. Generalized Kostka polynomials

Recently certain generalizations of the Kostka polynomials were introduced and
studied [13], [21], [23], [24], [25], [26]. These generalized Kostka polynomials KλR(q)
are labeled by a partition λ and a sequence of rectangles R = (R1, . . . , RL), that
is, each Ri = (ηµi

i ) is a partition of rectangular shape. They are q-analogues of the
Littlewood–Richardson coefficients cR

λ which are multiplicities of the irreducible
GL(n, C)-module V λ of highest weight λ in the tensor product V R1 ⊗ · · · ⊗ V RL .
This multiplicity is equal to the cardinality of the set of Littlewood–Richardson
tableaux LRT(λ;R) [6]. When all Ri are single rows (in which case Ri = (ηi)), the
generalized Kostka polynomial KλR(q) reduces to the Kostka polynomial Kλη(q).
Conjecturally, the generalized Kostka polynomials coincide with special cases of the
spin generating functions over ribbon tableaux of Lascoux, Leclerc and Thibon [16].

In references [21], [23] the generalized Kostka polynomials were expressed as the
generating function of Littlewood–Richardson tableaux with a generalized charge
statistic cR, extending the result for the Kostka polynomials of Lascoux and Schütz-
enberger [17]:

KλR(q) =
∑

T∈LRT(λ;R)

qcR(T ).

A representation of the generalized Kostka polynomials in terms of rigged config-
urations was conjectured in [13], [21].

In this paper it is shown that the algorithm described in [11] gives a statistic-
preserving bijection between Littlewood–Richardson tableaux and rigged configura-
tions. This bijection extends the bijection between column-strict Young tableaux
and rigged configurations [12], and in particular provides a proof of the quasi-
particle representation of the generalized Kostka polynomials as conjectured
in [13], [21].

1.4. Outline of the paper

This paper is organized as follows. In Section 2 the set of Littlewood–Richardson
(LR) tableaux and the set of rigged configurations corresponding to a sequence of
rectangles are defined. The charge expression of the generalized Kostka polynomials
is recalled and the quasi-particle representation is stated. In Section 3 several oper-
ations on rectangles and their analogues on LR tableaux and rigged configurations
are discussed. These operations are crucial for the definition of the bijection φR be-
tween LR tableaux and rigged configurations as given in Definition-Proposition 4.1.
The definition of the bijection is based on the operations of splitting off the last
column of the last rectangle in R and, if the last rectangle is a single column,
removing one box from it. The algorithm of ref. [11] for the bijection, which is
computationally simpler but less suitable for the proofs, is stated in Section 4.2.

The Evacuation Theorem 5.6 is proved in Section 5. It states that under the
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bijection the evacuation of LR tableaux corresponds to the complementation of
quantum numbers on rigged configurations. In Section 6 another recurrence for φR

is given based on operations involving rows instead of columns as used in Definition-
Proposition 4.1. This formulation of φR is in a sense transpose to the description
of φRt using the column operations where Rt = (Rt

1, . . . , Rt
L) and Rt

i is the trans-
pose of Ri. It is used in Section 7 to prove the Transpose Theorem 7.1. Like
the LR coefficients, the generalized Kostka polynomials have a transpose sym-
metry which has been explained combinatorially by a transpose bijection on LR
tableaux [21], [24] and by a transpose bijection on rigged configurations [13]. The
Transpose Theorem shows that the bijection from LR tableaux to rigged configu-
rations intertwines these two transpose bijections. In references. [21], [24] families
of statistic-preserving embeddings between sets of LR tableaux were defined. The
Embedding Theorem 8.3 of Section 8 shows that these embeddings on LR tableaux
correspond to an inclusion on rigged configurations under the bijection between LR
tableaux and rigged configurations. The proof of the Embedding Theorem relies
on the Evacuation Theorem. In Section 9 it is finally shown that the bijection is
statistic preserving. The proof uses the Transpose Theorem 7.1 and the Embed-
ding Theorem 8.3 to reduce to the case that all rectangles in R are single boxes.
In the single box case the property that the bijection is statistic preserving can be
checked explicitly. Some technical proofs are relegated to Appendices A and B.

2. Charge and quasi-particle representation of the generalized Kostka
polynomials

In this section we define the set of Littlewood–Richardson tableaux and the set
of rigged configurations, and recall the charge representation of the generalized
Kostka polynomials (2.3). The quasi-particle representation of the generalized
Kostka polynomials, to be proved in this paper, is stated in Theorem 2.10.

2.1. Littlewood–Richardson tableaux

Given a partition λ and a sequence of partitions R = (R1, . . . , RL), define the
tensor product multiplicity

cR
λ = dim HomGL(n)(V λ, V R1 ⊗ · · · ⊗ V RL)

where V λ is the irreducible GL(n, C)-module of highest weight λ. There are many
well-known equivalent formulations of the celebrated Littlewood–Richardson rule,
which give the multiplicity cR

λ as the cardinality of a certain set of tableaux (see [6]).
We refer to sets of tableaux that have this cardinality as LR tableaux. Here we
recall various well-known notions of LR tableaux, which count the multiplicity cR

λ

when R is a sequence of rectangles. One of these is particularly well suited for use
with the bijection to rigged configurations.
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First a few tableau definitions are necessary. The English convention is used
here for partition diagrams and tableaux. For a partition λ denote by ST(λ) the
set of standard tableaux of shape λ. Given a possibly skew column-strict tableau T
in an alphabet A and B a subinterval of A, denote by T |B the restriction of T to B,
which is by definition the skew column-strict tableau given by erasing from T the
letters that are not in B. Define the row-reading word of T to be the concatenation
word(T ) = . . . v2v1, where vr is the word given by the r-th row of T read from left to
right. Knuth [14] defined an equivalence relation on words denoted v ∼=K w. Given
a word w there is a unique column-strict tableau P (w) such that word(P (w)) ∼=K w;
this is the Schensted P -tableau of the word w. Write P (T ) := P (word(T )) for the
skew column strict tableau T .

Let R = (R1, . . . , RL) be a sequence of partitions. For 1 ≤ j ≤ L let Bj be
an interval of integers such that if i < j, x ∈ Bi and y ∈ Bj , then x < y. Set
B =

⋃L
j=1 Bj . Let Zj be any column-strict tableau of shape Rj in the alphabet Bj

for 1 ≤ j ≤ L. Define the set SLR(λ;Z) to be the set of column-strict tableaux T
of shape λ in the alphabet B such that P (T |Bj

) = Zj for all j. It is well known
that |SLR(λ;Z)| = cR

λ .

Example 2.1. Suppose Rj has µj parts for all j. Define Bj = [µ1 + · · ·+ µj−1 +
1, µ1 + · · ·+µj−1 +µj ]. Let Zj be the column-strict tableau of shape Rj whose r-th
row is filled with copies of the r-th largest letter of Bj , namely, µ1 + · · ·+µj−1 + r.
Then the set SLR(λ;Z) is equal to the set of LR tableaux LRT(λ;R), which was
defined in [13], [21] for the case when each Rj is a rectangle.

Example 2.2. Let |Rj | = Nj and N = N1 + · · · + NL. Define the successive
subintervals of [1, N ] given by Bj = [N1 + · · · + Nj−1 + 1, N1 + · · · + Nj−1 + Nj ]
for 1 ≤ j ≤ L. Let Zj be any standard tableau of shape Rj in the alphabet Bj .
Then the set SLR(λ;Z) is given by the set of standard tableaux of shape λ that is
compatible with a certain labeling of the cells of the partitions Rj (see [20], [29]).

Remark 2.3. In the situation of standard tableaux as given in Example 2.2, if
partitions Rj are rectangles, there is a much simpler characterization of SLR(λ;Z).
Namely, the standard tableau S of shape λ is in SLR(λ;Z) if and only if, for every
index j and every pair of letters x and y in Bj , if y is immediately south (resp.
west) of x in Zj , then in S, y is in a row (resp. column) strictly south (resp. west)
of that of x.

Example 2.4. In the characterization of SLR(λ;Z) given in Remark 2.3, it is
important that each Rj be a rectangle. Take λ = (2, 2) and R = ((1), (2, 1)). Then
for any choice of Z1 and Z2, |SLR(λ;Z)| = 1, but there are no tableaux satisfying
the criterion in Remark 2.3.

Let us fix two canonical choices for the Zj . The column-wise standard tableau
CW(ν) of the partition shape ν is given by placing the numbers νt

1 + · · ·+ νt
c−1 +1

through νt
1 + · · · + νt

c from top to bottom in the c-th column for all c. Let T + x
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denote the tableau obtained by adding x to every entry of the tableau T . Given
a sequence of rectangles R, define the sequence of tableaux ZCj (1 ≤ j ≤ L) by
ZCj = CW(Rj) + |Rj−1|+ · · ·+ |R2|+ |R1|. Similarly, one can define the row-wise
standard tableau RW(ν) of shape ν given by placing the numbers ν1+ · · ·+νr−1+1
through ν1 + · · · + νr from left to right in the r-th row, for all r. Define ZRj =
RW(Rj) + |Rj−1|+ · · ·+ |R2|+ |R1| for 1 ≤ j ≤ L.

Definition 2.5. Set

CLR(λ;R) := SLR(λ; (ZC1, . . . ,ZCL)),

RLR(λ;R) := SLR(λ; (ZR1, . . . ,ZRL)).

The set CLR(λ;R) will be used for the bijection with rigged configurations.
Observe that for any choice of Zj and Z ′j (with Rj a rectangle for all j), a bijec-

tion SLR(λ;Z) → SLR(λ;Z ′) is given by relabeling. Namely, let S ∈ SLR(λ;Z).
Then for each j and each cell s in Rj , replace the letter Zj(s) in S by Z ′j(s). In
particular there is a bijection

γR : CLR(λ;R) → RLR(λ;R). (2.1)

Note that the ordinary transposition of standard tableaux tr : ST(λ) → ST(λt)
restricts to a bijection

tr : CLR(λ;R) → RLR(λt;Rt). (2.2)

Here λt stands for the transpose of the partition λ and Rt = (Rt
1, . . . , Rt

L) is the
sequence of rectangles obtained by transposing each rectangle of R.

Remark 2.6. A bijection βR : LRT(λ;R) → CLR(λ;R) is given by a trivial rela-
beling. Recall the alphabets B1 through BL from Example 2.1. Let T ∈ LRT(λ;R).
Then the tableau βR(T ) is obtained from T by replacing the occurrences of the r-th
largest letter of the subalphabet Bj , from left to right, by the numbers in the r-th
row of ZCj . Alternatively, βR = γ−1

R ◦ std where the bijection std : LRT(λ;R) →
ST(λ) is Schensted’s standardization map. Also βR = tr ◦ std ◦ tr′LR, where tr′LR is
the LR-transpose map LRT(λ;R) → LRT(λt;Rt) defined in [13].

Definition 2.7. The bijection trLR : CLR(λ;R) → CLR(λt;Rt) is given by
trLR := tr ◦γR = γRt ◦tr where γR and tr are defined in (2.1) and (2.2) respectively.

Example 2.8. Let R = ((3, 3), (2, 2, 2, 2), (1, 1, 1)) as in [13, Example 10]. We give
the set CLR(λ;R). B1 = [1, 6], B2 = [7, 14], B3 = [15, 17], and

Z1 = 1 3 5
2 4 6 Z2 =

7 11
8 12
9 13
10 14

Z3 =
15
16
17

.
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For λ = (5, 4, 3, 2, 2, 1), the set CLR(λ;R) is given below, listed in order as the
images of the set LRT(λ;R) in [13, Example 11] under the bijection βR.

1 3 5 7 11
2 4 6 12
8 13 15
9 14
10 16
17

1 3 5 7 11
2 4 6 15
8 12 16
9 13
10 14
17

1 3 5 11 15
2 4 6 12
7 13 16
8 14
9 17
10

1 3 5 11 15
2 4 6 16
7 12 17
8 13
9 14
10

Example 2.9. When R = ((1)N ) and λ is a partition of N , CLR(λ;R) = ST(λ).
When R = ((η1), . . . , (ηL)), LRT(λ;R) = CST(λ; η), the set of column-strict
tableaux of shape λ and content η, and βR is Schensted’s standardization map.

It was shown in refs. [21], [23] that the set LRT(R) = ∪λLRT(λ;R) has the
structure of a graded poset with covering relation given by the R-cocyclage and
grading function given by the generalized charge, denoted cR. The bijection βR also
induces a graded poset structure on CLR(R) = ∪λCLR(λ;R); by abuse of notation
we denote its grading function also by cR. The generalized Kostka polynomial is
the generating function of LR tableaux with charge statistic [21], [23]:

KλR(q) =
∑

T∈CLR(λ;R)

qcR(T ). (2.3)

This extends the charge representation of the Kostka polynomials Kλη(q) of Las-
coux and Schützenberger [17], [18]. The generalized Kostka polynomials KλR(q)
specialize to Kλη(q) when R = ((η1), . . . , (ηL)) is a sequence of single rows.

2.2. Rigged configurations

Let R = (R1, . . . , RL) be a sequence of rectangular partitions such that Rj has
µj rows and ηj columns for 1 ≤ j ≤ L; this convention differs from [13]. Denote
by |λ| the size of the partition λ and set |R| = |R1| + · · · + |RL|. For |λ| = |R| a
(λt;Rt)-configuration is a sequence of partitions ν = (ν(1), ν(2), . . . ) with the size
constraints

|ν(k)| =
∑
j>k

λt
j −

L∑
a=1

µa max(ηa − k, 0). (2.4)
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Define mn(ρ) as the number of parts of the partition ρ equal to n and Qn(ρ) =
ρt
1 + ρt

2 + · · ·+ ρt
n, the size of the first n columns of ρ. Let ξ(k)(R) be the partition

whose parts are the heights of the rectangles in R of width k. The vacancy numbers
for the (λt;Rt)-configuration ν are the numbers (indexed by k ≥ 1 and n ≥ 0)
defined by

P (k)
n (ν) = Qn(ν(k−1))− 2Qn(ν(k)) + Qn(ν(k+1)) + Qn(ξ(k)(R)) (2.5)

where ν(0) is the empty partition by convention. In particular P
(k)
0 (ν) = 0 for all

k ≥ 1. The (λt;Rt)-configuration ν is admissible if P
(k)
n (ν) ≥ 0 for all k, n ≥ 1,

and the set of admissible (λt;Rt)-configurations is denoted by C(λt;Rt). Set

cc(ν) =
∑

k,n≥1

α(k)
n (α(k)

n − α(k+1)
n )

where α
(k)
n is the size of the n-th column in ν(k). Finally, define the q-binomial as[

m + n
m

]
=

(q)m+n

(q)m(q)n

for m,n ∈ Z≥0 and zero otherwise where (q)m = (1− q)(1− q2) · · · (1− qm).
With this notation we can state the following quasi-particle expression of the

generalized Kostka polynomials conjectured in [13], [21], stemming from the anal-
ogous expression of Kirillov and Reshetikhin [12] for the Kostka polynomial.

Theorem 2.10 (Quasi-particle representation). For a sequence of rectangles R
and a partition λ such that |λ| = |R|

KλR(q) =
∑

ν∈C(λt;Rt)

qcc(ν)
∏

k,n≥1

[
P

(k)
n (ν) + mn(ν(k))

mn(ν(k))

]
. (2.6)

Expression (2.6) can be reformulated as the generating function over rigged
configurations. To this end we need to define certain labelings of the rows of the
partitions in a configuration. For this purpose one should view a partition as a
multiset of positive integers. A rigged partition is by definition a finite multiset
of pairs (n, x) where n is a positive integer and x is a nonnegative integer. The
pairs (n, x) are referred to as strings; n is referred to as the length or size of the
string and x as the label or quantum number of the string. A rigged partition
is said to be a rigging of the partition ρ if the multiset, consisting of the sizes of
the strings, is the partition ρ. So a rigging of ρ is a labeling of the parts of ρ by
nonnegative integers, where one identifies labelings that differ only by permuting
labels among equal sized parts of ρ.
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A rigging J of the (λt;Rt)-configuration ν is a sequence of riggings of the parti-
tions ν(k) such that every label x of a part of ν(k) of size n satisfies the inequalities

0 ≤ x ≤ P (k)
n (ν). (2.7)

The pair (ν, J) is called a rigged configuration. The set of riggings of admissible
(λt;Rt)-configurations is denoted by RC(λt;Rt). Let (ν, J)(k) be the k-th rigged
partition of (ν, J). A string (n, x) ∈ (ν, J)(k) is said to be singular if x = P

(k)
n (ν),

that is, its label takes on the maximum value.

Remark 2.11. Observe that the definition of the set RC(λt;Rt) is completely
insensitive to the order of the rectangles in the sequence R. However the notation
involving the sequence R is useful when discussing the bijection φR : CLR(λ;R) →
RC(λt;Rt), since the ordering on R is essential in the definition of CLR(λ;R).

The set of rigged configurations is endowed with a natural statistic cc [13, (3.2)]
defined by

cc(ν, J) = cc(ν) +
∑

k,n≥1

|J (k)
n | (2.8)

for (ν, J) ∈ RC(λt;Rt). Here J
(k)
n denotes the partition inside the rectangle of

height mn(ν(k)) and width P
(k)
n (ν) given by the labels of the parts of ν(k) of size n.

Since the q-binomial
[

P+m

m

]
is the generating function of partitions with at most

m parts each not exceeding P , Theorem 2.10 is equivalent to the following theorem.

Theorem 2.12 (Rigged configuration representation). For a sequence of rectan-
gles R and a partition λ such that |λ| = |R|

KλR(q) =
∑

(ν,J)∈RC(λt;Rt)

qcc(ν,J). (2.9)

The proof of this theorem follows from the bijection φR :CLR(λ;R)→RC(λt;Rt)
of Definition-Proposition 4.1 and Theorem 9.1 below.

3. Maps on rectangles, Littlewood–Richardson tableaux and rigged con-
figurations

In this section we define several operations on sequences of rectangles and their
counterparts on the sets of LR tableaux and rigged configurations. These opera-
tions underlie the recursive definition of the bijection φR : CLR(λ;R) → RC(λt;Rt)
as given in Definition-Proposition 4.1. A summary of the definitions and results of
this section is given in Table 1.
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3.1. Operations on sequences of rectangles

Let R = (R1, R2, . . . , RL) be a sequence of rectangles such that Rj = (ηµj

j ) has
µj rows and ηj columns. Let R∧ be the sequence of rectangles obtained from R
by splitting off the last column of RL; formally, R∧j = Rj for 1 ≤ j ≤ L − 1,
R∧L = ((ηL − 1)µL) and R∧L+1 = (1µL). Note that if the last rectangle of R is a
single column, then (ignoring the empty rectangle) R∧ = R. If the last rectangle
of R is a single column, let R be given by removing one cell from the column RL;
Rj = Rj for 1 ≤ j ≤ L − 1 and RL = (1µL−1). Let R∨ be given by splitting off
the first column of R1; if R1 is a single column, then R∨ = R. If R1 is a single
column, let R̃ be given by removing one cell from the column R1. Finally, let
Rev = (RL, . . . , R2, R1) denote the reverse of R.

Remark 3.1. Given any sequence of rectangles, there is a unique sequence of
transformations of the form R → R∧ or R → R resulting in the empty sequence,
where R → R∧ is only used when the last rectangle of R has more than one column.

3.2. Maps between sets of LR tableaux

For each operation on sequences of rectangles, there is a natural (injective) map
on the corresponding sets of LR tableaux of a fixed shape.

Observe that there are inclusions

ı∧ : CLR(λ;R) → CLR(λ;R∧)

ı∨ : CLR(λ;R) → CLR(λ;R∨)

which correspond to the transformations R → R∧ and R → R∨ on rectangles.
Recall that ST(λ) denotes the set of standard tableaux of shape λ and define

ST(λ−) =
⋃

ρlλ ST(ρ), where ρ and λ are partitions and ρ l λ means that ρ ⊂ λ

and λ/ρ is a single cell. There is a bijection

− : ST(λ) → ST(λ−)

S 7→ S−
(3.1)

where S− is the standard tableau obtained by removing the maximum letter from S.
Obviously S is uniquely determined by its shape and the tableau S−. If the last
rectangle of R is a single column, write

CLR(λ−;R) =
⋃
ρlλ

CLR(ρ;R).

The following result is an immediate consequence of the definitions.



Vol. 8 (2002) Bijection between LR tableaux and rigged configurations 77

Proposition 3.2. Suppose the last rectangle of R is a single column.
1. The map (3.1) restricts to an injection − : CLR(λ;R) → CLR(λ−;R).
2. If µL = 1, then − is bijective.
3. Suppose µL > 1 and T ∈ CLR(λ−;R) such that the cell λ/shape(T ) is

in the r-th row. Then T is in the image of − if and only if the cell
shape(T )/shape(T−) is in the r′-th row with r′ < r.

The injection − : CLR(λ;R) → CLR(λ−;R) corresponds to the operation R →
R on rectangles. Next we describe a dual operation to S 7→ S− giving rise to the
analogue of R → R̃ on LR tableaux.

Fix partitions σ ⊂ λ such that the skew shape λ/σ has two cells. Consider the
set of saturated chains in Young’s lattice of partitions under inclusion that have
maximum element λ and minimum element σ:

C[σ, λ] := {σ l ρ l λ}. (3.2)

If λ/σ is connected (that is, its two cells are adjacent) then C[σ, λ] is a singleton,
whose intermediate partition ρ is obtained by adjoining the inner of these two cells
to σ or removing the outer of the two cells from λ. If λ/σ is disconnected (that is, its
two cells are not adjacent) then C[σ, λ] has exactly two elements, whose intermediate
partitions are obtained by adjoining either of the two cells to σ or removing either
of the two cells from λ. Let τ = τσ,λ be the involution on C[σ, λ] that has order
two if |C[σ, λ]| = 2 (and of course must be the identity when |C[σ, λ]| = 1).

Definition-Proposition 3.3. For |λ| > 0, there is a unique bijection D : ST(λ) →
ST(λ−) denoted S 7→ SD such that:

(D1) If |λ| = 1, then 1D = ∅.
(D2) If |λ| = N > 1, S ∈ ST(λ), then SD is uniquely defined by the properties

that SD− = S−D, and the shape of SD is the intermediate partition in the
chain

τ(σ l shape(S−) l λ)

where σ = shape(S−D).
S is uniquely determined by its shape and the tableau SD.

Using the characterization of D in Definition-Proposition 3.3, it can be shown
[22] that D is computed by the following well-known tableau algorithm.

Lemma 3.4. For S ∈ ST(λ) with |λ| = N , SD is obtained by removing the
number 1 from S, subtracting one from each entry, and sliding the resulting skew
tableau to partition shape, that is, SD = P (S|[2,N ] − 1). More generally for any
0 ≤ i ≤ N ,

SDi

= P (S|[i+1,N ] − i).

Say that the index i is a descent of the standard tableau S if i + 1 appears in a
later row in S than i does.
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Lemma 3.5. Suppose S ∈ ST(λ) and |λ| = N ≥ 2. Let r and r′ be the rows of
the cells shape(S)/shape(SD) and shape(SD)/shape(SD2

). Then 1 is a descent of
S if and only if r′ < r.

Proof. The partition shape(SD2
) is calculated by Lemma 3.4 as the shape obtained

by sliding the skew tableau S|[3,N ] to partition shape, first into the cell of S contain-
ing the letter 2 (vacating the cell s) and then into the cell of S containing the letter 1
(vacating s′). Moreover s = shape(S)/shape(SD) and s′ = shape(SD)/shape(SD2

).
However shape(SD2

) can be calculated another way. Take the two-letter tableau
U = S|[1,2] and slide it to the southeast into the cells of S|[3,N ] occupied by 3, then 4,
etc., producing the skew tableau V . Then shape(SD2

) is given by shape(S) −
shape(V ). It is clear that the cells of V containing 1 and 2 are s′ and s, respectively.
But sliding preserves Knuth equivalence, so 2 is in a later row than 1 in U (or S)
if and only if it is in V . ¤

Suppose the first rectangle of R is a single column. Define

CLR(λ−; R̃) =
⋃
ρlλ

CLR(ρ; R̃).

The analogue of R → R̃ is given by the following proposition.

Proposition 3.6. Suppose the first rectangle of R is a single column.
1. The bijection D :ST(λ)→ST(λ−) restricts to an injection D : CLR(λ;R) →

CLR(λ−; R̃).
2. If µ1 = 1, then D is bijective.
3. Suppose that µ1 > 1 and T ∈ CLR(λ−; R̃) such that the cell λ/shape(T )

is in the r-th row. Then T is in the image of D if and only if the cell
shape(T )/shape(TD) is in the r′-th row with r′ < r.

Proof. 1 follows by Lemma 3.4, the definition of CLR, and the fact that restriction
to subintervals preserves Knuth equivalence. For 2 and 3, let T ∈ CLR(λ−; R̃).
If there is a tableau S ∈ CLR(λ;R) such that T = SD, then by Lemma 3.4 S is
obtained from T by sliding T + 1 to the southeast into the cell λ/shape(T ), and
placing a 1 in the northwest corner. If µ1 = 1, then immediately S ∈ CLR(λ;R),
proving 2. If µ1 > 1 then by construction S ∈ CLR(λ;R) if and only if 1 is a
descent of S. By Lemma 3.5 point 3 follows. ¤

Let us discuss carefully the commutation of − and D in (D2) in Definition-
Proposition 3.3. Define

ST(λ−−) =
⋃

σlρlλ

ST(σ),

where the right hand side is a disjoint union. By definition, for each chain C =
(σ l ρ l λ), there is a distinguished copy of ST(σ) in ST(λ−−) denoted ST(σ)C ,
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and for T ∈ ST(σ), denote its copy in ST(σ)C by TC . The point is that when λ/σ is
disconnected there are two copies of ST(σ) in ST(λ−−) and they are distinguished
by the chain C. By abuse of notation let τ denote the involution on ST(λ−−) that
sends TC → Tτ(C). In this notation, which concerns itself with the intermediate
partition in the chain C, (D2) is expressed as

− ◦D = τ ◦D ◦ − (3.3)

viewed as maps ST(λ) → ST(λ−−).
Suppose both the first and last rectangles of R are single columns. Of course

R̃ = R̃. Define
CLR(λ−−; R̃) =

⋃
σlρlλ

CLR(σ; R̃).

The identity of maps (3.3) restricts to the identity of maps CLR(λ;R) −→
CLR(λ−−; R̃):

− ◦D = τ ◦D ◦ − (3.4)

Define Schützenberger’s evacuation map

ev : ST(λ) → ST(λ)

S 7→ Sev (3.5)

where Sev ∈ ST(λ) is defined by Sev = S if λ = ∅ and Sev− = SDev.
The following result is well known and easy to prove.

Proposition 3.7. ev is an involution satisfying

ev ◦ − = D ◦ ev and ev ◦D = − ◦ ev.

Lemma 3.8. Let |λ| = N and S ∈ ST(λ). Then for any 1 ≤ i ≤ j ≤ N ,

P (Sev|[i,j] − (i− 1)) = P (S|[N+1−j,N+1−i] − (N − j))ev.

Proof. By Lemma 3.4, (3.3), and the definitions,

P (S|[i,j] − (i− 1)) = P ((S|[1,j])|[i,j] − (i− 1))

= S−
N−jDi−1

= SDi−1−N−j

.

Using this and Proposition 3.7, we have

P (Sev|[i,j] − (i− 1)) = SevDi−1−N−j

= S−
i−1DN−jev

= P (S|[N+1−j,N+1−i] − (N − j))ev.

¤
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Observe that the tableau in the singleton set CLR(R1, (R1)) evacuates to itself.
Using this fact, induction, Lemma 3.8, the definition of CLR, and the fact that
Knuth equivalence is preserved under restriction to subintervals, it follows that the
evacuation map (3.5) restricts to a bijection

ev : CLR(λ;R) → CLR(λ;Rev).

Of course R∧ev = (Rev)∨. By definition the following diagram commutes

CLR(λ;R) ev- CLR(λ;Rev)

ı∧

? ?
ı∨

CLR(λ;R∧) -
ev

CLR(λ;R∧ev)

(3.6)

where ı∨ is defined with respect to the sequence of rectangles Rev. Since ev is
an involution, one may exchange the roles of ı∧ and ı∨, of R∧ and R∨, and of R
and Rev.

3.3. Maps between sets of rigged configurations

For the various transformations of sequences of rectangles, one has the following
maps between the corresponding sets of rigged configurations.

Define the map
∧ : RC(λt;Rt) → RC(λt; (R∧)t)

by declaring that ∧(ν, J) is obtained from (ν, J) ∈ RC(λt;Rt) by adding a singular
string of length µL to each of the first ηL− 1 rigged partitions. Note that ∧ is the
identity map if RL is a single column.

Lemma 3.9. ∧ is a well-defined injection that preserves the vacancy numbers of
the underlying configurations.

Proof. Let (ν∧, J∧) = ∧(ν, J). It is enough to show that ν∧ is a (λt; (R∧)t)-
configuration that has the same vacancy numbers as ν. First we verify that the
partitions in ν∧ have the correct size. To this end set χ(true) = 1 and χ(false) = 0.
Then

|ν∧(k)| = χ(k < ηL)µL + |ν(k)|

= χ(k < ηL)µL +
∑
j>k

λt
j −

L∑
a=1

µa max(ηa − k, 0)

=
∑
j>k

λt
j −

L−1∑
a=1

µa max(ηa − k, 0)

− µL{max(ηL − 1− k, 0) + max(1− k, 0)}.
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Next we check that the vacancy numbers remain the same. Note that

Qn(ν∧(k))−Qn(ν(k)) = χ(1 ≤ k < ηL)min(µL, n),

valid for k ≥ 0. Then for k, n ≥ 1,

P (k)
n (ν∧)− P (k)

n (ν)

= min(µL, n){χ(1 ≤ k − 1 < ηL)− 2χ(1 ≤ k < ηL) + χ(1 ≤ k + 1 < ηL)}
+ min(µL, n)(δηL−1,k + δ1,k − δηL,k)

= 0

where δa,b = χ(a = b). ¤
Define the map

∨ : RC(λt;Rt) → RC(λt; (R∨)t)

by declaring that ∨(ν, J) is obtained from (ν, J) ∈ RC(λt;Rt) by adding a string
with label zero and length µ1 to each of the first η1 − 1 rigged partitions. If R1 is
a single column then ∨ is the identity.

By Remark 2.11, the proof of Lemma 3.9 also shows that:

Lemma 3.10. ∨ is a well-defined injection that preserves the vacancy numbers
of the underlying configurations.

Define the involution

θR : RC(λt;Rt) → RC(λt;Rt) (3.7)

by θR(ν, J) = (ν, P − J), which is shorthand for saying that θR preserves the
underlying configuration and replaces the label x of a string (n, x) ∈ (ν, J)(k) by its
colabel, which is by definition the number P

(k)
n (ν)−x, its complement with respect

to the vacancy number of the string. In light of Remark 2.11, one may also define

θev
R : RC(λt;Rt) → RC(λt;Revt)

which complements the quantum numbers as θR and in addition reverses the se-
quence of rectangles.

By definition the following diagram commutes:

RC(λt;Rt) θev
R - RC(λt;Revt)

∧

? ?
∨

RC(λt; (R∧)t) -
θev

R∧
RC(λt; (R∧)evt)

(3.8)
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where ∨ acts with respect to the reversed sequence of rectangles Rev. Since θev
R is

an involution one may exchange the roles of ∧ and ∨, of R∧ and R∨, and of R
and Rev.

Suppose the last rectangle of R is a single column. Define the set

RC(λ−t;R
t
) =

⋃
ρlλ

RC(ρt;R
t
).

The key algorithm on rigged configurations is given by the map

δ : RC(λt;Rt) → RC(λ−t;R
t
),

defined as follows. Let (ν, J) ∈ RC(λt;Rt). Define `
(0)

= µL. By induction select
the singular string in (ν, J)(k) whose length `

(k)
is minimal such that `

(k−1) ≤ `
(k)

.
Let rk(ν, J) denote the smallest k for which no such string exists, and set `

(k)
= ∞

for k ≥ rk(ν, J). Then δ(ν, J) = (ν, J) is obtained from (ν, J) by shortening each
of the selected singular strings by one, changing their labels so that they remain
singular, and leaving the other strings unchanged.

Let us compute the change in vacancy numbers under δ. Recalling that ν(0) = ∅,
observe that

Qn(ν(k))−Qn(ν(k)) = χ(k ≥ 1)χ(n ≥ `
(k)

)

for k ≥ 0. Then for k ≥ 2 and n ≥ 0 we have

P (k)
n (ν)− P (k)

n (ν) = χ(n ≥ `
(k−1)

)− 2χ(n ≥ `
(k)

) + χ(n ≥ `
(k+1)

)

= χ(`
(k−1) ≤ n < `

(k)
)− χ(`

(k) ≤ n < `
(k+1)

).

Recall that `
(0)

= µL. For k = 1 and n ≥ 0,

P (1)
n (ν)− P (1)

n (ν) = − 2χ(n ≥ `
(1)

) + χ(n ≥ `
(2)

) + χ(n ≥ µL)

= χ(`
(0) ≤ n < `

(1)
)− χ(`

(1) ≤ n < `
(2)

).

Therefore for all k ≥ 1 and n ≥ 0 we have

P (k)
n (ν)− P (k)

n (ν) = χ(`
(k−1) ≤ n < `

(k)
)− χ(`

(k) ≤ n < `
(k+1)

). (3.9)

As before mn(ρ) denotes the number of parts of size n in the partition ρ. One
may easily verify (see also [13, Appendix]) that for all k, n ≥ 1

− P
(k)
n−1(ν) + 2P (k)

n (ν)− P
(k)
n+1(ν)

= mn(ν(k−1))− 2mn(ν(k)) + mn(ν(k+1)) + mn(ξ(k)(R))

≥ mn(ν(k−1))− 2mn(ν(k)) + mn(ν(k+1)).

(3.10)

In particular the vacancy numbers have the partial convexity property (see [13,
(11.1)])

P (k)
n (ν) ≥ 1/2(P (k)

n−1(ν) + P
(k)
n+1(ν)) if mn(ν(k)) = 0. (3.11)

Repeated use of (3.11) leads to the following result.
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Lemma 3.11. Let ν be an admissible configuration and mn(ν(k))=0 for a<n<b.

1. P
(k)
n (ν) ≥ min(P (k)

a (ν), P (k)
b (ν)) for a ≤ n ≤ b.

2. If P
(k)
c (ν) = 0 for some a < c < b then P

(k)
n (ν) = 0 for all a ≤ n ≤ b.

3. If P
(k)
c (ν) = P

(k)
c+1(ν) = 1 for some c such that a ≤ c < b, then P

(k)
n (ν) = 1

for all a < n < b.

The following proposition is important for the definition of the bijection φR

between rigged configurations and LR tableaux to be defined in Section 4.

Proposition 3.12. Let (ν, J) ∈ RC(λt;Rt) where the last rectangle of R is a single
column.

1. The map δ is a well-defined injection such that δ(ν, J) ∈ RC(ρt;R
t
) where

ρ is obtained from λ by removing the corner cell in the column of index
rk(ν, J).

2. If µL = 1, then δ is bijective.
3. If µL > 1, then (ν′, J ′) ∈ RC(ρt;R

t
) is in the image of δ if and only if

rk(ν′, J ′) ≥ rk(ν, J).

Proof. To prove that δ is well defined it needs to be shown that (ν, J) = δ(ν, J)
is an admissible rigged (ρt;R

t
)-configuration. Let us first show that ρ obtained

from λ by removing the corner cell in column of index rk(ν, J) is indeed a partition.
Assume the contrary. This means that λt

r = λt
r+1 where r = rk(ν, J). By [13,

(11.2)] P
(k)
n (ν) = λt

k − λt
k+1 for large n, so that P

(r)
n (ν) = 0. Let ` be the size

of the largest part of ν(r). Then by Lemma 3.11 it follows that P
(r)
n (ν) = 0

for all n ≥ `. Since mn(ν(r)) = 0 for n > ` and P
(k)
n (ν) ≥ 0 for all k ≥ 1,

n ≥ 0, inequality (3.10) implies in particular that mn(ν(r−1)) = 0 for n > `.
This means that 1 ≤ `

(r−1) ≤ `. Since P
(r)
` (ν) = 0 and m`(ν(r)) > 0 there

is a singular string of length ` in ν(r) weakly bigger than `
(r−1)

. However, this
contradicts the assumption that r = rk(ν, J) which would imply that there is no
such singular string. Hence ρ is a partition. By the definition of rk(ν, J) it is clear
that |ν(k)| = |ν(k)| − χ(k < rk(ν, J)). Since ηL = 1 it follows from (2.4) that ν is a
(ρt;R

t
)-configuration.

Next we need to show that (ν, J) is admissible. Denote by J
(k)
n (ν, J) the maximal

rigging occurring in the strings of length n in (ν, J)(k) (which is set to zero if n
does not appear as a part in ν(k)). Then to prove the admissibility of (ν, J) we
need to show for all n, k ≥ 1 that

0 ≤ J (k)
n (ν, J) ≤ P (k)

n (ν). (3.12)

Fix k ≥ 1. Since only one string of size `
(k)

changes in the transformation
(ν, J)(k) → (ν, J)(k) one finds that J

(k)
n (ν, J) = J

(k)
n (ν, J) for 1 ≤ n < `

(k) − 1,
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J
(k)
n (ν, J) = P

(k)
n (ν) for n = `

(k) − 1 and 0 ≤ J
(k)
n (ν, J) ≤ J

(k)
n (ν, J) for n ≥ `

(k)
.

Hence by (3.9) the inequality (3.12) can only be violated when `
(k−1) ≤ n < `

(k)
.

By the construction of `
(k)

there are no singular strings of length n in (ν, J)(k) for
`
(k−1) ≤ n < `

(k)
. This means that J

(k)
n (ν, J) ≤ P

(k)
n (ν) − 1 if n occurs as a part

in ν(k), that is mn(ν(k)) > 0. Hence due to (3.9) the condition (3.12) is fulfilled for
these n.

It remains to prove that P
(k)
n (ν) ≥ 0 for all n such that mn(ν(k)) = 0 and

`
(k−1) ≤ n < `

(k)
. Note that mn(ν(k)) = 0 if mn(ν(k)) = 0 for `

(k−1) ≤ n < `
(k)−1.

By [13, Lemma 10] it suffices to prove (3.12) for all k and n such that mn(ν(k)) > 0.
Therefore the only remaining case for which (3.12) might be violated occurs when

m`−1(ν(k)) = 0, P
(k)
`−1(ν) = 0, `

(k−1)
< ` and ` finite

where ` = `
(k)

. We show that these conditions cannot be met simultaneously.
Let p < ` be maximal such that mp(ν(k)) > 0; if no such p exists set p = 0.
By Lemma 3.11 P

(k)
`−1(ν) = 0 is only possible if P

(k)
n (ν) = 0 for all p ≤ n ≤ `.

By (3.10) we find that mn(ν(k−1)) = 0 for p < n < `. Since `
(k−1)

< ` this implies
that `

(k−1) ≤ p. If p = 0 this contradicts the condition `
(k−1) ≥ 1. Hence assume

that p > 0. Since P
(k)
p (ν) = 0 and mp(ν(k)) > 0 there is a singular string of length

p in (ν, J)(k) and therefore `
(k)

= p. However, this contradicts p < ` = `
(k)

. This
concludes the proof of the admissibility of (ν, J) and also the proof of the well
definedness of δ.

For the proof of the injectivity of δ, and points 2 and 3 we require the algorithm
δ
−1

defined on RC(λ−t;R
t
) as follows. Recall that (ν, J) ∈ RC(λ−t;R

t
) means

that (ν, J) ∈ RC(ρt;R
t
) for some ρ l λ. Suppose that the cell λ/ρ has column

index c in λ. Set s(k) = ∞ for k ≥ c. For 1 ≤ k < c select by downward induction
the singular string in (ν, J)(k) whose length s(k) is maximal such that s(k) ≤ s(k+1);
set s(k) = 0 if no such string exists. Then (ν, J) = δ

−1
(ν, J) is obtained from (ν, J)

by adding one box to the selected strings (and adding a string of length one if
s(k) = 0) with labels such that they remain singular, and leaving all other strings
unchanged.

It is obvious from the constructions and (3.9) that for (ν, J) ∈ RC(λt;Rt),
δ
−1 ◦ δ(ν, J) = (ν, J) since s(k) = `

(k) − 1. This proves that δ is an injection and
concludes the proof of point 1.

It follows immediately from the definition of δ that rk(δ(ν, J)) ≥ rk(ν, J) for
(ν, J) ∈ RC(λt;Rt) where µL > 1. Hence, if (ν′, J ′) ∈ RC(ρt;R

t
) is in the image

of δ, then rk(ν′, J ′) ≥ rk(ν, J). To prove the reverse and point 2 we introduce
the set RC′(λ−t;R

t
) ⊂ RC(λ−t;R

t
) as follows. For µL = 1 set RC′(λ−t;R

t
) =
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RC(λ−t;R
t
). For µL > 1, (ν, J) ∈ RC′(λ−t;R

t
) if rk(ν, J) ≥ c where c is the

column index of the cell λ/ρ and ρ l λ is the partition corresponding to (ν, J).
It will be shown that

δ
−1

: RC′(λ−t;R
t
) → RC(λt;Rt)

is well defined. Then set (ν, J) = δ
−1

(ν, J) for (ν, J) ∈ RC′(λ−t;R
t
). Notice that

the condition rk(ν, J) ≥ c implies that `
(k) ≤ s(k) where `

(k)
and s(k) are the

lengths of the selected strings in (ν, J) under δ and δ
−1

, respectively. In particular,
`
(0) ≤ `

(1) ≤ s(1) so that s(0) := µL − 1 ≤ s(1). Using this one may easily verify
that for all k ≥ 1 and n ≥ 0 the change in vacancy numbers under δ

−1
is given by

P (k)
n (ν)− P (k)

n (ν) = χ(s(k−1) < n ≤ s(k))− χ(s(k) < n ≤ s(k+1)). (3.13)

It follows from the constructions of δ and δ
−1

and (3.13) that δ ◦ δ
−1

(ν, J) =
(ν, J) for (ν, J) ∈ RC′(λ−t;R

t
). This implies that the image of δ is given by

RC′(λ−t;R
t
) proving point 3. Since for µL = 1, RC′(λ−t;R

t
) = RC(λ−t;R

t
) it

follows that in this case δ is a bijection proving point 2.
We are left to prove that δ

−1
is well defined, that is, for every (ν, J)∈RC′(λ−t;R

t
)

the rigged configuration (ν, J) = δ
−1

(ν, J) is admissible. This can be shown in a
very similar fashion to the proof of the well definedness of δ. Hence we only highlight
the main arguments. By construction there are no singular strings of length n in
(ν, J)(k) for s(k) < n ≤ s(k+1). Hence by (3.13) and [13, Lemma 10] we need to
show this time that for ` = s(k) the conditions

m`+1(ν(k)) = 0, P
(k)
`+1(ν) = 0, ` < s(k+1) and ` finite (3.14)

cannot all be met simultaneously for all k ≥ 1. Fix k ≥ 1. Let ` < p be minimal
such that mp(ν(k)) > 0; if no such p exists, set p = ∞. By Lemma 3.11 the
condition P

(k)
`+1(ν) = 0 implies that P

(k)
n (ν) = 0 for all ` ≤ n ≤ p. The condition

that ` is finite requires k < c where recall that c is the column index of the cell λ/ρ.
First assume that k = c− 1. If p is finite, i.e., ` is not the largest part in ν(k),

then there exists a singular string of length p since P
(k)
p (ν) = 0 as argued above.

But this means ` < s(k) which contradicts our assumptions. Hence, assume that `

is the largest part in ν(k). By [13, (11.2)] one finds that P
(k)
n (ν) = ρt

k − ρt
k+1 for

large n. Since P
(k)
n (ν) = 0 for n ≥ ` this requires ρt

k = ρt
k+1. Since λ is a partition,

this implies that c 6= k + 1 which contradicts the assumption. Hence (3.14) cannot
occur for k = c− 1.

Now assume that k < c−1 which implies that s(k+1) is finite. Since P
(k)
n (ν) = 0

for ` ≤ n ≤ p one finds from (3.10) that mn(ν(k+1)) = 0 for ` < n < p, which means
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that ν(k+1) does not contain any parts of size n. When ` is not the largest part in
ν(k), that is, p is finite, we conclude that s(k+1) ≥ p. However, since P

(k)
p (ν) = 0,

there exists a singular string of size p in (ν, J)(k) and hence s(k) ≥ p > `. This
contradicts s(k) = `. When ` is the largest part in ν(k), that is, p is infinite, we
infer that the largest part in ν(k+1) can be at most of size `. This implies s(k+1) ≤ `
which contradicts the assumption ` < s(k+1). This concludes the proof that the
conditions (3.14) cannot occur and shows that δ

−1
is well defined. ¤

Suppose the first rectangle of R is a single column. Define the set

RC(λ−t; R̃t) =
⋃
ρlλ

RC(ρt; R̃t).

Define the map δ̃ : RC(λt;Rt) → RC(λ−t; R̃t) such that the diagram commutes:

RC(λt;Rt) θev
R - RC(λt;Revt)

δ̃

? ?
δ

RC(λ−t; R̃t) -
θev

R̃

RC(λ−t; R̃evt).

(3.15)

More precisely, for (ν, J) ∈ RC(λt;Revt), let δ(ν, J) ∈ RC(ρt; R̃evt) for ρ l λ.
Then for (ν, J) ∈ RC(λt;Rt), δ̃(ν, J) = (θev

R̃ev ◦ δ ◦ θev
R )(ν, J) ∈ RC(ρt; R̃t) and

define r̃k(ν, J) = rk(θev
R (ν, J)). Observe that by definition and Proposition 3.12, δ̃

is an injection, with image given by (ν′, J ′) ∈ RC(ρt; R̃t) such that r̃k(ν′, J ′) ≥ c

where c is the column of the cell λ/ρ. The map δ̃ is given explicitly by the following
algorithm. Define ˜̀(0) = µ1. Inductively select a string in (ν, J)(k) with label 0 and
with length ˜̀(k) minimal such that ˜̀(k−1) ≤ ˜̀(k). Then r̃k(ν, J) is the minimum
index k for which such a string does not exist; set ˜̀(k) = ∞ for k ≥ r̃k(ν, J). Then
δ̃(ν, J) = (ν̃, J̃) is given by shortening the selected strings by one and keeping their
labels zero, and changing the labels on all other strings such that their colabels do
not change. The computation for (3.9) yields

P (k)
n (ν)− P (k)

n (ν̃) = χ(˜̀(k−1) ≤ n < ˜̀(k))− χ(˜̀(k) ≤ n < ˜̀(k+1)) (3.16)

for k ≥ 1 and n ≥ 0.

Lemma 3.13. Suppose the first and last rectangles of R are single columns. Then
δ and δ̃ commute. Moreover, for all (ν, J) ∈ RC(λt;Rt) one of the following
conditions holds, and the second can only hold if r := rk(ν, J) = r̃k(ν, J) and
λt

r = λt
r−1.

1. rk(δ̃(ν, J)) = rk(ν, J) and r̃k(δ(ν, J)) = r̃k(ν, J).
2. rk(δ̃(ν, J)) = rk(ν, J)− 1 and r̃k(δ(ν, J)) = r̃k(ν, J)− 1.
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The proof of Lemma 3.13 is rather technical and is placed in Appendix A. The
statement regarding rk and r̃k requires some explanation. Define

RC(λ−−t; R̃
t

) =
⋃

σlρlλ

RC(σt; R̃
t

).

Similarly as for CLR(λ−−; R̃), define the involution τ on RC(λ−−t; R̃
t

) by (ν, J)C 7→
(ν, J)τ(C). Then Lemma 3.13 says precisely that

δ̃ ◦ δ = τ ◦ δ ◦ δ̃ (3.17)

as maps RC(λt;Rt) → RC(λ−−t; R̃
t

).
For the reader’s convenience the analogous maps on LR tableaux and rigged

configurations as defined in this Section and their main relations are listed in Ta-
ble 1.

Rectangles LR tableaux Rigged configurations

R → R∧ ı∧ ∧

R → R∨ ı∨ ∨

R → R − δ

R → R̃ D δ̃

R → Rev ev θev
R

− ◦D = τ ◦D ◦ − δ ◦ δ̃ = τ ◦ δ̃ ◦ δ

ev ◦D = − ◦ ev θev
R̃
◦ δ̃ = δ ◦ θev

R

ev ◦ ı∧ = ı∨ ◦ ev θev
R∧ ◦ ∧ = ∨ ◦ θev

R

Table 1. Maps defined in Section 3 and some of their relations

4. The Bijection

4.1. Definition

We require two bijections φR and φ̃R between Littlewood–Richardson tableaux
and rigged configurations. The quantum number bijection φR : CLR(λ;R) →
RC(λt;Rt) is defined inductively based on Remark 3.1 in Definition-Proposition 4.1
below. Recall that θR complements the quantum numbers of a rigged configuration
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(see (3.7)). The coquantum number bijection φ̃R : CLR(λ;R) → RC(λt;Rt) is
defined as

φ̃R := θR ◦ φR. (4.1)

It is φ̃R that preserves the statistics (see Theorem 9.1).

Definition-Proposition 4.1. There is a unique family of bijections φR :
CLR(λ;R) → RC(λt;Rt) indexed by R, such that:

1. If the last rectangle of R is a single column, then the following diagram
commutes:

CLR(λ;R) −- CLR(λ−;R)

φR

? ?
φR

RC(λt;Rt) -
δ

RC(λ−t;R
t
).

(4.2)

2. The following diagram commutes:

CLR(λ;R) ı∧- CLR(λ;R∧)

φR

? ?
φR∧

RC(λt;Rt) -
∧

RC(λt;R∧t).

(4.3)

Proof. The proof proceeds by the induction on R given by Remark 3.1. Suppose
first that R is the empty sequence. Then both CLR(λ;R) and RC(λt;Rt) are the
empty set unless λ is the empty partition, in which case CLR(λ;R) is the singleton
consisting of the empty tableau, RC(λt;Rt) is the singleton consisting of the empty
rigged configuration, and φ∅ is the unique bijection CLR(∅; ∅) → RC(∅; ∅).

Suppose that the last rectangle of R is a single column. Then 2 holds trivially
since R∧ = R and ı∧ and ∧ are the identity maps. Consider 1. By induction,
for every partition ρ such that ρ l λ the result holds for the pair (ρ;R). Any
map φR satisfying (4.2) is injective by definition and unique by induction. For
the existence and surjectivity of φR it suffices to show that the bijection φR :
CLR(λ−;R) → RC(λ−t;R

t
) maps the image of − : CLR(λ;R) → CLR(λ−;R)

onto the image of δ : RC(λt;Rt) → RC(λ−t;R
t
). If µL = 1 then − and δ are

bijections by Propositions 3.2 and 3.12, respectively, proving the assertion. Hence
assume µL > 1. Let c and c′ be the column indices of the cells λ/ρ and ρ/σ for
the partitions σ l ρ l λ, respectively. By Proposition 3.2, T ∈ CLR(ρ;R) with
shape(T−) = σ is in the image of − : CLR(λ;R) → CLR(λ−;R) if and only if
c ≤ c′. Similarly by Proposition 3.12, (ν, J) ∈ RC(ρt;R

t
) with rk(ν, J) = c′ is in

the image of δ : RC(λt;Rt) → RC(λ−t;R
t
) if and only if c ≤ c′. This proves the

assertion about the images of − and δ.
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Suppose the last rectangle of R has more than one column, that is ηL > 1.
Any map φR satisfying 2 is injective by definition and unique by induction. For
existence and surjectivity it is enough to show that the bijection φR∧ maps the
image CLR∧(λ;R∧) of ı∧ : CLR(λ;R) → CLR(λ;R∧) onto the image RC∧(λt;R∧t)
of ∧ : RC(λt;Rt) → RC(λt;R∧t). A rigged configuration (ν, J) is in RC∧(λt;R∧t)
if and only if (ν, J) ∈ RC(λt;R∧t) and (ν, J)(k) contains a singular string of length
µL for all 1 ≤ k < ηL. An LR tableau T is in CLR∧(λ;R∧) if and only if T ∈
CLR(λ;R∧) and the column index ci of the cell shape(Ti)/shape(Ti−1) and the
column index ci of the cell shape(T i)/shape(T i−1) where Ti = T−

µL−i

and T i =
(ı∧(T0))−

µL−i

obey ci < ci for all 1 ≤ i ≤ µL. This follows from the definition of
CLR and Remark 2.3.

Set (νi, Ji) = δ
µL−i

(ν, J) for 0 ≤ i ≤ µL, ci = rk(νi, Ji) and denote the length
of the string in (νi, Ji)(k) selected by δ by `

(k)
i . Similarly set (ν, J) = ∧(ν0, J0) and

(νi, Ji) = δ
µL−i

(ν, J) for 0 ≤ i ≤ µL, define ci = rk(νi, Ji) and denote the length
of the string in (νi, Ji)(k) selected by δ by `

(k)

i . Hence to prove that the bijection
φR∧ maps the image of ı∧ onto the image of ∧ one needs to show that

Claim. For (ν, J) ∈ RC(λt;R∧t), `
(k)
µL = µL for 0 ≤ k < ηL if and only if ci < ci

for 1 ≤ i ≤ µL.

We begin by showing that ci < ci if `
(k)
µL = µL for 0 ≤ k < ηL. First, notice that

`
(k)
i = i for 0 ≤ k < ηL and `

(k)

i = i for 0 ≤ k < ηL − 1. (4.4)

For i=µL this equation holds since both (ν, J)=(νµL
, JµL

) and (ν, J) = (νµL
, JµL

)
are in the image of ∧. Now assume (4.4) to be true at i. This means that there
are singular strings of length i in the first ηL − 1 (ηL − 2) partitions of νi (νi).
Hence by construction these turn into singular strings of length i − 1. Since by
definition `

(0)
i−1 = `

(0)

i−1 = i − 1 this implies (4.4) at i − 1. We claim that for k ≥ 1
and 0 ≤ i ≤ µL

P (k)
n (νi) ≥ J (k)

n (νi, Ji) +
i∑

m=1

χ(`(k)
m ≤ n < `(k+1)

m ) (4.5)

where J
(k)
n (ν, J) is the maximal label occurring in the strings of length n in (ν, J)(k)

and J
(k)
n (ν, J) = 0 if there is no string of length n in ν(k). Equations (4.4) and (4.5)

imply
`
(k+1)
i ≤ `

(k)

i for all k ≥ 0. (4.6)

This can be shown by induction on k. The initial condition follows immediately
from (4.4). By construction `

(k−1)

i ≤ `
(k)

i which becomes by induction hypothesis
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`
(k)
i ≤ `

(k)

i . Inequality (4.5) implies that there are no singular strings of length n in
(νi, Ji)(k) for `

(k)
i ≤ n < `

(k+1)
i which proves (4.6). The condition (4.6) immediately

implies that ci < ci.
It remains to show (4.5), whose proof proceeds by descending induction on i,

with base case i = µL. To establish the base case it is shown by induction on j
(0 ≤ j ≤ µL) that

P (k)
n (νj) ≥ J (k)

n (νj , Jj) +
µL∑

m=j+1

χ(`(k)
m ≤ n < `(k+1)

m ) for all k ≥ 1. (4.7)

Since (ν, J) = (νµL
, JµL

) is an admissible rigged configuration, P
(k)
n (ν) ≥ J

(k)
n (ν, J)

which implies (4.7) at j = µL. Now we assume (4.7) to be true at j + 1 and show
its validity at j. Since by Proposition 3.12 all (νj , Jj) are admissible, P

(k)
n (νj) ≥

J
(k)
n (νj , Jj). This settles (4.7) for n < `

(k)
j+1 because in this case the sum over m

vanishes, since by construction

`
(k)
1 < `

(k)
2 < · · · < `(k)

µL
. (4.8)

Let us now consider the case n ≥ `
(k)
j+1. The only string that changes in the

transformation (νj+1, Jj+1)(k) → (νj , Jj)(k) is one singular string of length `
(k)
j+1.

The riggings of all other strings remain unchanged. In particular, J
(k)
n (νj , Jj) =

J
(k)
n (νj+1, Jj+1) for n > `

(k)
j+1 and J

(k)
n (νj , Jj) ≤ J

(k)
n (νj+1, Jj+1) for n = `

(k)
j+1.

Hence for n ≥ `
(k)
j+1 we find

P (k)
n (νj) = P (k)

n (νj+1) + χ(`(k)
j+1 ≤ n < `

(k+1)
j+1 )

≥ J (k)
n (νj+1, Jj+1) +

µL∑
m=j+1

χ(`(k)
m ≤ n < `(k+1)

m )

≥ J (k)
n (νj , Jj) +

µL∑
m=j+1

χ(`(k)
m ≤ n < `(k+1)

m )

where the first line follows from (3.9) and n ≥ `
(k)
j+1, and in the second line the

induction hypothesis is used. This concludes the inductive proof of (4.7).
Since by definition (ν, J) = ∧(ν0, J0) and ∧ preserves the vacancy numbers by

Lemma 3.9, (4.7) at j = 0 implies (4.5) at i = µL. Now assume that (4.5) holds
at i. Because of the admissibility of (νi−1, Ji−1) and (4.8) at k + 1, (4.5) holds at
i − 1 for n ≥ `

(k+1)
i−1 . Hence assume n < `

(k+1)
i−1 . Since `

(k+1)
i−1 < `

(k+1)
i ≤ `

(k)

i by



Vol. 8 (2002) Bijection between LR tableaux and rigged configurations 91

(4.8) and (4.6), in particular n ≤ `
(k)

i − 2. Hence we find for n < `
(k+1)
i−1

P (k)
n (νi−1) = P (k)

n (νi)− χ(`
(k−1)

i ≤ n < `
(k)

i )

≥ J (k)
n (νi, Ji) +

i−1∑
m=1

χ(`(k)
m ≤ n < `(k+1)

m )

where the first line follows from (3.9) and n ≤ `
(k)

i − 2, and in the second line the
induction hypothesis and (4.6) are used. Since J

(k)
n (νi−1, Ji−1) = J

(k)
n (νi, Ji) for

n ≤ `
(k)

i − 2, this yields (4.5) at i − 1. This concludes the proof of (4.5) and also
that of the forward direction of the claim.

Next we prove the reverse direction of the claim. More precisely, we show that

`
(k)
i = i for 0 ≤ k < ηL and 1 ≤ i ≤ µL (4.9)

if ci < ci. Since (ν, J) = (νµL
, JµL

) is in the image of ∧ it follows by construction
that

`
(k)

i = i for 0 ≤ k < ηL − 1 and 1 ≤ i ≤ µL. (4.10)

We claim that for k ≥ 1 and 1 ≤ i ≤ µL + 1

P (k)
n (νi−1) ≥ J (k)

n (νi−1, Ji−1) +
µL∑

m=i

χ(`
(k−1)

m ≤ n < `
(k)

m ). (4.11)

The condition ci < ci and (4.11) imply by induction on k that

`
(k)
i ≤ `

(k−1)

i for all 1 ≤ i ≤ µL and k ≥ 1. (4.12)

Before proving this notice the following. Let δ
−1

be the inverse algorithm of δ as
introduced in the proof of Proposition 3.12 and let s

(k)
i be the length of the singular

string in (νi−1, Ji−1)(k) selected by δ
−1

. Note that δ
−1 ◦ δ(νi, Ji) = (νi, Ji) and

s
(k)
i = `

(k)
i − 1. If (νi−1, Ji−1)(k) does not contain singular strings of length n for

a ≤ n < b and s
(k)
i < b, then by construction s

(k)
i < a and by s

(k)
i = `

(k)
i − 1 also

`
(k)
i ≤ a. Now we prove (4.12) by induction on k. For k > ci equation (4.12) is

true because in this case `
(k−1)

i = ∞.
Now consider k = ci. Then (4.11) implies that there are no singular strings of

length n ≥ `
(ci−1)

i in (νi−1, Ji−1)(ci) since `
(ci)

i = ∞. Since ci < ci the variable
`
(ci)
i is finite. This implies that `

(ci)
i ≤ `

(ci−1)

i which is (4.12) for k = ci. Now
assume (4.12) to be true at k + 1. By construction `

(k)
i ≤ `

(k+1)
i which implies by
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the induction hypothesis that `
(k)
i ≤ `

(k)

i . Because of (4.11) there is no singular

string of length n in (νi−1, Ji−1)(k) with `
(k−1)

i ≤ n < `
(k)

i . Hence `
(k)
i has to obey

condition (4.12). Together with `
(0)
i = i, (4.12) and (4.10) immediately imply (4.9).

We are left to prove (4.11). Using δ
−1

one proves in an analogous fashion
to (4.7) that

P (k)
n (νj) ≥ J (k)

n (νj , Jj) +
j∑

m=1

χ(`
(k−1)

m ≤ n < `
(k)

m )

for all k ≥ 1 and 0 ≤ j ≤ µL. Since (νµL
, JµL

) = (ν, J) = ∧(ν0, J0) and ∧ pre-
serves the vacancy numbers by Lemma 3.9, this inequality at j = µL implies (4.11)
at i = 1. Now assume (4.11) to be true at i − 1. Using (3.9) and `

(k)
i−1 ≤ `

(k−1)

i−1

equation (4.11) at i follows by similar arguments to those used to prove (4.5). ¤

4.2. Direct algorithm for the bijection

Here we state the original algorithm for the bijection φR between Littlewood–
Richardson tableaux and rigged configurations as given in [11]. It combines points
1 and 2 of the Definition-Proposition 4.1 which has the advantage that it is com-
putationally simpler. For the proofs the formulation of Definition-Proposition 4.1
is however more convenient.

Let T ∈ CLR(λ;R) be an LR tableaux for a partition λ and a sequence of
rectangles R = (R1, . . . , RL). Set N = |λ| and Bj = [|R1| + · · · + |Rj−1| +
1, |R1| + · · · + |Rj |]. To obtain (ν, J) = φR(T ) one recursively constructs a rigged
configuration (ν, J)(x) for each letter 1 ≤ x ≤ N occurring in T . Set (ν, J)(0) = ∅.
Suppose that x ∈ Bj , and denote the column index of x in T by c and the column
index of x in ZCj by c′. Define the numbers s(k) for c′ ≤ k < c as follows.
Let s(c−1) be the length of the longest singular string in (ν, J)(c−1)

(x−1). Now select

inductively a singular string in (ν, J)(k)
(x−1) for k = c− 2, c− 3, . . . , c′ whose length

s(k) is maximal such that s(k) ≤ s(k+1); if no such string exists, set s(k) = 0. Then
(ν, J)(x) is obtained from (ν, J)(x−1) by adding one box to the selected strings with
labels such that they remain singular, leaving all other strings unchanged. Then
the image of T under φR is given by (ν, J) = (ν, J)(N).

For the above algorithm it is necessary to be able to compute the vacancy num-
bers of an intermediate configuration ν(x). Suppose x occurs in ZCj in column c′.
In general R(x) = (R1, . . . , Rj−1, shape(ZCj |[1,x])) is not a sequence of rectangles.
If shape(ZCj |[1,x]) is not a rectangle, one splits it into two rectangles, one of width
c′ and one of width c′ − 1. The vacancy numbers are calculated with respect to
this new sequence of rectangles.
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Example 4.2. The nontrivial steps of the above algorithm applied to the third
tableau of Example 2.8 are given in Table 2. A rigged partition is represented by
its Ferrers diagram where to the right of each part the corresponding rigging is
indicated. The vacancy numbers are given to the left of each part. For example
R(12) = ((3, 3), (2, 2, 1, 1)) so that the vacancy numbers of (ν, J)(12) are calculated
with respect to the sequence of rectangles ((3, 3), (2, 2), (1, 1)).

x (ν, J)(1)(x) (ν, J)(2)(x) (ν, J)(3)(x) (ν, J)(4)(x)

11 0 0 0 0

12 0 0 0 0

14 0 0 0 0

15 1 1 0
0

0
0

0
0

0
0 0 0

16 1 1 0
0

0
0

0
0

0
0 0 0

17 1 1 1
0

0
0

0
0

0
0 0 0

Table 2. Example for the bijection algorithm (see Example 4.2)

It is relatively straightforward to see that the above described algorithm is
indeed an algorithm for the bijection of Definition-Proposition 4.1. By induction
it suffices to study the effect of the last µL letters of the LR tableaux T , that
is, N − µL < x ≤ N . Recall that ∧, which corresponds to splitting off the last
column of RL, adds a singular string of length µL to each of the first ηL− 1 rigged
partitions and leaves the vacancy numbers invariant. By construction, these extra
singular strings are removed by δ

µL . This has the same effect as restricting the
removal/addition of boxes to the partitions ν

(k)
(x) with ηL = c′ ≤ k as is the case for

the algorithm of this section. One may also show that the vacancy numbers of the
intermediate rigged partitions obtained from the the algorithm and the recursive
definition of Definition-Proposition 4.1 are the same for ν

(k)
(x) with k 6= ηL − 1.

For ν
(ηL−1)
(x) the vacancy numbers from the algorithm cannot be smaller than the
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corresponding ones coming from Definition-Proposition 4.1, and are the same when
R(x) is a sequence of rectangles. This difference for non-rectangular R(x) is harmless
since no strings in ν

(ηL−1)
(x) are changed by the algorithm.

5. Evacuation Theorem

In this section we prove the Evacuation Theorem 5.6 which relates the evacuation of
LR tableaux to the complementation of quantum numbers on rigged configurations.
The proof requires intertwining relations of φR with R → R∨ and R → R̃ which
are derived in Section 5.1.

5.1. Intertwining of φR with R → R∨ and R → R̃

Lemma 5.1. ∧ ◦ ∨ = ∨ ◦ ∧.

Proof. If R consists of more than one rectangle or R is a single rectangle with
more than two columns, the commutativity of ∧ and ∨ is obvious. If R is a
single column, then both ∧ and ∨ are the identity and obviously commute. So
it may be assumed that R is a single rectangle with exactly two columns. Then
R∧ = R∨ = ((1µ1), (1µ1)). This means that the outer function in both ∧ ◦ ∨

and ∨ ◦ ∧ acts as the identity. So R∧∨ = R∧, R∨∧ = R∨, and for all (ν, J) ∈
RC(λt;Rt), ∧(∨(ν, J)) = ∨(ν, J) and ∨(∧(ν, J)) = ∧(ν, J). So it must be
shown that ∨(ν, J) = ∧(ν, J). Since ∧ (resp. ∨) adds a string of length µ1

with singular (resp. zero) label to the first rigged partition of (ν, J), it must be
shown that P

(1)
µ1 (ν) = 0 for all (ν, J) ∈ RC(λt;Rt). It may be assumed that

λ = R1 for otherwise RC(λt;Rt) is empty. Then RC(λt;Rt) is the singleton set
consisting of the empty rigged configuration (∅, ∅). One computes the vacancy
number P

(1)
µ1 (∅) = 0. ¤

Lemma 5.2. Suppose the last rectangle of R is a single column. Then δ◦∨ = ∨◦δ.
Proof. Let `∨

(k)
be the lengths of strings selected by δ acting on ∨(ν, J) =

(ν∨, J ∨). To prove the lemma it suffices to show that `∨
(k)

= `
(k)

for all k ≥ 1.
By Lemma 3.10, P

(k)
n (ν) = P

(k)
n (ν∨) for all k, n ≥ 1. Since (ν∨, J ∨)(k) is obtained

from (ν, J)(k) by adding the string (µ1, 0) for 1 ≤ k ≤ η1 − 1, it is clear that
`∨

(k) ≤ `
(k)

for all k. Let k be minimal such that `∨
(k)

< `
(k)

. Then the string
(µ1, 0) was selected in (ν∨, J ∨)(k), so that `∨

(k)
= µ1 and P

(k)
µ1 (ν∨) = P

(k)
µ1 (ν) = 0.

Now `
(k−1)

= `∨
(k−1) ≤ `∨

(k)
= µ1 and µ1 = `∨

(k)
< `

(k)
. By (3.9) we have

P
(k)
µ1 (ν) = P

(k)
µ1 (ν) − χ(`

(k−1) ≤ µ1 < `
(k)

) + χ(`
(k) ≤ µ1 < `

(k+1)
) = −1, which is

a contradiction. Thus there is no such k. ¤
For future use let us formalize a general nonsense lemma.
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Lemma 5.3. Suppose we have a diagram of the following kind:

• F //

G

²²

ÂÂ@
@@

@@
@@

•

H

²²

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

• //

²²

•

²²• // •

•
K

//

??ÄÄÄÄÄÄÄ •

j
__@@@@@@@

Viewing this diagram as a cube with front face given by the large square, suppose
the square diagrams given by all the faces of the cube except the front commute.
Assume also that the map j is injective. Then the front face must also commute.

Proof. The commuting faces yield the equality j ◦ K ◦ G = j ◦ H ◦ F . Since j is
injective this implies K ◦G = H ◦ F as desired. ¤

The following lemma gives the intertwining of φR with R → R∨.

Lemma 5.4. The following diagram commutes:

CLR(λ;R) ı∨- CLR(λ;R∨)

φR

? ?
φR∨

RC(λt;Rt) -
∨

RC(λt; (R∨)t).

(5.1)

Proof. The proof proceeds by the induction that defines the bijection φ.
Suppose the last rectangle of R has more than one column; this subsumes the

base case R = (R1). Clearly R∨∧ = R∧∨. Consider the diagram

CLR(λ;R) ı∨ //

φR

²²

ı∧

''OOOOOOOOOOO
CLR(λ;R∨)

φR∨

²²

ı∧

vvmmmmmmmmmmmmm

CLR(λ;R∧) ı∨ //

φR∧
²²

CLR(λ;R∧∨)

φR∧∨
²²

RC(λt;R∧t)
∨

// RC(λt; (R∧∨)t)

RC(λt;Rt)
∧

77ooooooooooo

∨
// RC(λt; (R∨)t)

∧

hhQQQQQQQQQQQQQ
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We wish to show the front face commutes. By Lemma 5.3 and the injectivity of ∧,
it is enough to show that all the other faces commute. The back face is assumed
to commute by induction, the left and right faces commute by the definition of
the bijections φ (see (4.3)), the commutation of the top face is obvious, and the
commutativity of the bottom face follows from Lemma 5.1.

For the remaining case suppose the last rectangle of R is a single column. Clearly
R∨ = R∨. Consider the diagram

CLR(λ;R) ı∨ //

φR

²²

−

''OOOOOOOOOOO
CLR(λ;R∨)

φR∨

²²

−

vvmmmmmmmmmmmmm

CLR(λ−;R)
ı∨ //

φR

²²

CLR(λ−;R∨)

φR∨
²²

RC(λ−t;R
t
)

∨
// RC(λ−t; (R∨)t)

RC(λt;Rt)
δ

77ppppppppppp

∨
// RC(λt; (R∨)t)

δ

hhQQQQQQQQQQQQQ

δ is injective, so again by Lemma 5.3 it suffices to check that all faces but the
front, commute. The back face commutes by induction. The left and right faces
commute by the definition of φ. The top face obviously commutes. The bottom
face commutes by Lemma 5.2. ¤

The intertwining relation of φR with R → R̃ is stated in the next Lemma.

Lemma 5.5. Suppose the first rectangle of R is a single column. Then the follow-
ing diagram commutes:

CLR(λ;R) D - CLR(λ−; R̃)

φR

? ?
φ

R̃

RC(λt;Rt) δ̃ - RC(λ−t; R̃t).

(5.2)
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Proof. Suppose that the last rectangle of R is also a single column; this case sub-
sumes the base case that R = (R1) is a single column. Clearly R̃ = R̃.

CLR(λ;R) D //

φR

²²

−

&&NNNNNNNNNNNN CLR(λ−; R̃)

φ
R̃

²²

−

wwooooooooooo

CLR(λ−;R)
D //

φR

²²

CLR(λ−−; R̃)

φ
R̃

²²

RC(λ−t;R
t
)

δ̃

// RC(λ−−t; R̃
t

)

RC(λt;Rt)

δ

88qqqqqqqqqqq

δ̃

// RC(λ−t; R̃t)

δ

ggOOOOOOOOOOO

In the above diagram there is a map

φ
R̃

: CLR(λ−−; R̃) → RC(λ−−t; R̃
t

). (5.3)

This is to be understood in the most obvious way, namely, that given a chain of
partitions C = (σ l ρ l λ), and T ∈ CLR(σ; R̃), then φ

R̃
(TC) = φ

R̃
(T )C , that

is, the copy of T ∈ CLR(σ; R̃) labeled by C is mapped to the copy of φ
R̃
(T ) ∈

RC(σt; R̃
t

) indexed by the same chain C.

We use the approach of Lemma 5.3. The back face commutes by induction,
the left and right faces by the definition of φ, the top face commutes up to the
involution τ on CLR(λ−−; R̃) by (3.4), and the bottom face commutes up to the

involution τ on RC(λ−−t; R̃
t

) by (3.17). Based on the above commutation up to

τ , it still follows that δ ◦ δ̃ ◦φR = δ ◦φR̃ ◦D as maps into RC(λ−−t; R̃
t

). Moreover

δ is injective as a map into the disjoint union RC(λ−−t; R̃
t

), so it follows that the
front face commutes.

In the remaining case, the last rectangle of R has more than one column. Then
R̃∧ = R̃∧. We have the following diagram:
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CLR(λ;R) D //

φR

²²

ı∧

''NNNNNNNNNNNN CLR(λ−; R̃)

φ
R̃

²²

ı∧

wwnnnnnnnnnnnn

CLR(λ;R∧) D //

φR∧
²²

CLR(λ−; R̃∧)

φ
R̃∧

²²
RC(λt;R∧t)

δ̃

// RC(λ−t; (R̃∧)t)

RC(λt;Rt)
∧

77ppppppppppp

δ̃

// RC(λ−t; R̃t)

∧

hhPPPPPPPPPPPP

∧ is injective, the back face commutes by induction and the left and right faces
by the definition of φ. The commutation of the top face is obvious. The bottom
face commutes by conjugating the result of Lemma 5.3 by θev. By Lemma 5.2 the
front face commutes. ¤

5.2. Proof of the Evacuation Theorem

Theorem 5.6 (Evacuation Theorem). The following diagram commutes:
CLR(λ;R) ev- CLR(λ;Rev)

φR

? ?
φRev

RC(λt;Rt) -
θev

R

RC(λt;Revt).

Proof. If R is empty the result holds trivially. Suppose that the last rectangle
of R has more than one column. Obviously R∧ev = (Rev)∨ and R∨ev = (Rev)∧.
Consider the diagram:

CLR(λ;R) ev //

φR

²²

ı∧

''OOOOOOOOOOO
CLR(λ;Rev)

φRev

²²

ı∨

vvnnnnnnnnnnnn

CLR(λ;R∧) ev //

φR∧
²²

CLR(λ;R∧ev)

φR∧ev

²²
RC(λt;R∧t)

θev
R∧

// RC(λt;R∧evt)

RC(λt;Rt)
∧

77ooooooooooo

θev
R

// RC(λt;Revt)
∨

hhPPPPPPPPPPPP
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∨ is injective, the back face commutes by induction, the top and bottom faces are
given by the commutative diagrams (3.6) and (3.8), the left face commutes by the
definition of φR, and the right face commutes by (5.1) with Rev in place of R. So
by Lemma 5.3 the front face commutes.

Suppose that the last rectangle of R is a single column. Obviously R
ev

= R̃ev

and R̃ev = Rev. Consider the diagram:

CLR(λ;R) ev //

φR

²²

−

''OOOOOOOOOOO
CLR(λ;Rev)

φRev

²²

D

vvnnnnnnnnnnnn

CLR(λ−;R)
ev //

φR

²²

CLR(λ−;R
ev

)

φRev

²²

RC(λ−t;R
t
)

θev
R

// RC(λ−t;R
evt

)

RC(λt;Rt)
δ

77ppppppppppp

θev
R

// RC(λt;Revt)
δ̃

ggPPPPPPPPPPPP

δ̃ is injective, the back face commutes by induction, the top face commutes by
Proposition 3.7, the bottom face commutes by (3.15) replacing R by Rev and using
that θev

R is an involution, the left face commutes by the definition of φR, and the
right face commutes by (5.2) with Rev in place of R. So by Lemma 5.3 the front
face commutes. ¤

6. Another recurrence for φR

The bijection φR is defined by a recurrence that removes columns from the last
rectangle. In this section it is shown that φR may be defined by an analogous
recurrence which removes rows from the last rectangle. This recurrence shall be
used to prove some properties of the transpose maps on LR tableaux and rigged
configurations.

6.1. Splitting off the first or last row

Let R< be obtained from R by splitting off the first row from the first rectangle
so that the first rectangle in R< is (η1). Similarly, let R> be obtained from R by
splitting off the last row from the last rectangle. Recall the transpose map trLR of
Definition 2.7. Note that (Rt)∨ = R<t. Define ı< : CLR(λ;R) → CLR(λ;R<) as

ı< := trLR ◦ı∨ ◦ trLR .
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Note that R>t = (Rt)∧. Similarly define ı> : CLR(λ;R) → CLR(λ;R>) as

ı> := trLR ◦ı∧ ◦ trLR . (6.1)

Observing that R>ev = Rev<, it follows from the definitions of ı< and ı>, (3.6)
and the commutativity of trLR and ev that the following diagram commutes:

CLR(λ;R) ı>- CLR(λ;R>)

ev

? ?
ev

CLR(λ;Rev) -
ı< CLR(λ;R>ev).

(6.2)

Let > : RC(λt;Rt) → RC(λt;R>t) be the inclusion map. Then define < by
the following commutative diagram:

RC(λt;Rt) >- RC(λt;R>t)

θev
R

? ?
θev

R>

RC(λt;Revt) -
< RC(λt;R>evt).

(6.3)

For (ν, J) ∈ RC(λt;Rt) set (ν>, J>) = >(ν, J). Note that

P (k)
n (ν>) = P (k)

n (ν) + χ(k = ηL)χ(1 ≤ n < µL).

Since θev
R reverses the sequence of rectangles and complements the quantum num-

bers this implies that <(ν, J) is obtained from (ν, J) by replacing (n, x) ∈ (ν, J)(η1)

by (n, x+1) for 1 ≤ n < µ1, and leaving all other riggings invariant. In particular,
< preserves the colabels.

Lemma 6.1. The following diagram commutes:

CLR(λ;R) ı<- CLR(λ;R<)

φR

? ?
φR<

RC(λt;Rt) -
< RC(λt;R<t).

(6.4)

Proof. Suppose first that L ≥ 2 and that RL has more than one column. Note that
R<∧ = R∧<.
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CLR(λ;R) ı<
//

φR

²²

ı∧

''OOOOOOOOOOO
CLR(λ;R<)

φR<

²²

ı∧

vvmmmmmmmmmmmm

CLR(λ;R∧) ı<
//

φR∧
²²

CLR(λ;R<∧)

φR<∧
²²

RC(λt;R∧t)
<

// RC(λt; (R<∧)t)

RC(λt;Rt)
∧

77ppppppppppp

<
// RC(λt;R<t)

∧

hhPPPPPPPPPPPP

The top face commutes since ı< and ı∧ are both relabelings that replace different
subalphabets. The bottom face commutes since ∧ adds singular strings and <

preserves colabels and hence preserves singularity of strings. The left and right
faces commute by the definition of φ, and the back face commutes by induction.
Since ∧ is injective, by Lemma 5.3 the front face commutes as desired.

Suppose L ≥ 2 and the last rectangle is a single column.

CLR(λ;R) ı<
//

φR

²²

−

''NNNNNNNNNNN
CLR(λ;R<)

φR<

²²

−
wwooooooooooo

CLR(λ−;R)
ı<

//

φR

²²

CLR(λ;R
<

)

φ
R<

²²

RC(λ−t;R
t
)

<
// RC(λt;R

<t
)

RC(λt;Rt)
δ

88ppppppppppp

<
// RC(λt;R<t)

δ

ggNNNNNNNNNNN

The commutation of the top face is obvious. Since < preserves colabels, it is
straightforward to verify that the bottom face commutes. The left and right faces
commute by the definition of φ and the back face by induction. Since δ is injective
by Lemma 5.3 the front face commutes.

The remaining case is L ≤ 1. It may be assumed that CLR(λ;R) 6= ∅ for
otherwise there is nothing to show. By [23, Prop. 33] CLR(λ;R) is a singleton if R
has at most two rectangles. But ı< : CLR(λ;R) → CLR(λ;R<) is an embedding
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and R< has at most two rectangles so that CLR(λ;R<) is a singleton. Since φR

and φR< are bijections, RC(λt;Rt) and RC(λt;R<t) are also singletons. So the
embedding < must send the unique element of RC(λt;Rt) to the unique element
of RC(λt;R<t) and the required commutation follows. ¤
Lemma 6.2. The following diagram commutes:

CLR(λ;R) ı>- CLR(λ;R>)

φR

? ?
φR>

RC(λt;Rt) -
> RC(λt;R>t).

(6.5)

Proof. Consider the diagram

CLR(λ;R) ı>
//

φR

²²

ev

''OOOOOOOOOOO
CLR(λ;R>)

φR>

²²

ev

vvnnnnnnnnnnnn

CLR(λ;Rev) ı<
//

φRev

²²

CLR(λ;Rev<)

φRev<

²²
RC(λt;Revt)

<
// RC(λt;Rev<t)

RC(λt;Rt)
θev

R

77ooooooooooo

>
// RC(λt;R>t)

θev
R>

hhPPPPPPPPPPPP

The back face commutes by (6.4) for Rev, the top and bottom faces commute
by (6.2) and (6.3), the left and right faces commute by the Evacuation Theo-
rem 5.6 for R and R>, and θev

R> is injective. Therefore the front face commutes by
Lemma 5.3. ¤

6.2. Removal of a cell from a single row

Suppose RL is a single row. Then R∧ is given by splitting off one cell from the
end of the row RL, and R∧ is obtained from R by removing the cell at the end
of RL. As usual define CLR(λ−;R∧) :=

⋃
ρlλ CLR(ρ;R∧) and RC(λ−t;R∧

t
) :=⋃

ρlλ RC(ρt;R∧
t
). The bijection − : ST(λ) → ST(λ−) restricts to an injection

− : CLR(λ;R) → CLR(λ−;R∧).

Define the map ∂ : RC(λt;Rt) → RC(λ−t;R∧
t
) by the following algorithm. Let

(ν, J) ∈ RC(λt;Rt). Define the integers `(0) = · · · = `(ηL−1) = 1. For k ≥ ηL,
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inductively define `(k) to be minimal such that `(k) ≥ `(k−1) and there is a singular
string of length `(k) in (ν, J)(k). Let rk(ν, J) be the minimal index such that such
a singular string does not exist, and set `(k) = ∞ for k ≥ rk(ν, J). Then ∂(ν, J) is
obtained from (ν, J) by shortening each of the selected singular strings in (ν, J)(k)

(for ηL ≤ k < rk(ν, J)) by one and keeping them singular, and leaving all other
strings unchanged.

Lemma 6.3. Suppose the last rectangle of R is a single row. The following diagram
commutes:

CLR(λ;R) −- CLR(λ−;R∧)

φR

? ?
φ

R∧

RC(λt;Rt) -
∂

RC(λ−t;R∧
t
).

(6.6)

Proof. Consider the diagram

CLR(λ;R)
− //

φR

²²

ı∧

''OOOOOOOOOOO CLR(λ−;R∧)

φ
R∧

²²

CLR(λ;R∧)

−
66nnnnnnnnnnnn

φR∧
²²

RC(λt;R∧t)
δ

''OOOOOOOOOOOO

RC(λt;Rt)
∂

//

∧
88ppppppppppp

RC(λ−t;R∧
t
).

This diagram may be viewed as a prism whose top and bottom are triangles and
whose front is the diagram (6.6) which must be proved. The back left and back
right faces commute by the definition of φ. The top triangle obviously commutes.
It suffices to show that the bottom triangle commutes. This is done by computing
δ ◦ ∧ explicitly. Let (ν, J) ∈ RC(λt;Rt). Then ∧(ν, J) = (ν∧, J ∧) is obtained
from (ν, J) by adding a singular string of length 1 to each of the first ηL− 1 rigged
partitions. Let `

(k)
be the lengths of the singular strings chosen by δ acting on

(ν∧, J ∧). Since `
(0)

= 1 by definition, the singular strings that were added by ∧,
are selected by δ, so `

(k)
= 1 for 1 ≤ k ≤ ηL−1. Then it is obvious that for k ≥ ηL

that δ acting on (ν∧, J ∧), selects the same strings that ∂ does, acting on (ν, J).
The result is now clear. ¤
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6.3. The new recurrence for φR

If the last rectangle of R is a single row, then one may use the commutative
diagram (6.6) to express φR inductively in terms of φR∧ . If the last rectangle of
R has more than one row, then one may apply the commutative diagram (6.5) to
express φR in terms of φR> . It will be shown in Section 7 that this recurrence,
which also defines φR, is in a sense transpose to the usual definition of the bijection
φRt .

7. Transpose maps

Recall the LR-transpose bijection trLR : CLR(λ;R) → CLR(λt;Rt) of Defini-
tion 2.7. An analogous RC-transpose bijection exists for the set of rigged con-
figurations denoted by trRC : RC(λt;Rt) → RC(λ;R), which was described in [13,
Section 9]. In the following we recall its definition and prove the Transpose Theo-
rem 7.1.

Let (ν, J) ∈ RC(λt;Rt) and let ν have the associated matrix m with entries mij

as in [13, (9.2)]
mij = α

(i−1)
j − α

(i)
j (7.1)

for i, j ≥ 1, where α
(i)
j is the size of the j-th column of the partition ν(i), recalling

that ν(0) is defined to be the empty partition. The configuration νt in (νt, J t) =
trRC(ν, J) is defined by its associated matrix mt given by

mt
ij = −mji + χ((i, j) ∈ λ)−

L∑
a=1

χ((i, j) ∈ Ra) (7.2)

for all i, j ≥ 1. Here (i, j) ∈ λ means that the cell (i, j) is in the Ferrers diagram
of the partition λ with i specifying the row and j the column.

For all k, n ≥ 1, a rigging J of ν determines a partition J
(k)
n inside the rectangle

of height mn(ν(k)) and width P
(k)
n (ν) given by the labels of the parts of ν(k) of

size n. The partition J
t(n)
k corresponding to (νt, J t) = trRC(ν, J) is defined as

the transpose of the complementary partition to J
(k)
n in the rectangle of height

mn(ν(k)) and width P
(k)
n (ν).

By [13, (9.7)] and [13, Lemma 10], it follows that

if mn(ν(k)) > 0 then P (k)
n (ν) = mk(νt(n))

if mk(νt(n)) > 0 then P
(n)
k (νt)= mn(ν(k)).

(7.3)

This is weaker than the assertion [13, (9.10)], which does not seem to follow from
only the assumption mn(ν(k)) > 0 or mk(νt(n)) > 0. Fortunately equation (7.3)
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still suffices to well define the map trRC. To see this, observe that it still follows
from [13, Section 9] that trRC is an involution on the level of configurations. For
trRC to be well defined for the riggings, it is enough to show that the rectangle of
height mn(ν(k)) and width P

(k)
n (ν) and the rectangle of height mk(νt(n)) and width

P
(n)
k (νt), are either transposes of each other or are both empty. But this follows

from (7.3). Hence trRC is an involution for rigged configurations.
We shall prove [13, Conjecture 16].

Theorem 7.1 (Transpose Theorem). The following diagram commutes:

CLR(λ;R) trLR- CLR(λt;Rt)

φR

? ?
φRt

RC(λt;Rt) -
trRC

RC(λ;R).

(7.4)

Theorem 7.1 follows again from Lemma 5.3 by the usual arguments and requires
the following two results. Note that Rt>t = R∧.

Lemma 7.2. The following diagram commutes:

RC(λt;Rt) ∧- RC(λt;R∧t)

trRC

? ?
trRC

RC(λ;R) -
> RC(λ;R∧).

(7.5)

Proof. Let (ν, J) ∈ RC(λt;Rt) and set (ν∧, J ∧) = ∧(ν, J). Recall that (ν∧, J ∧) is
obtained from (ν, J) by adding a singular string of length µL to each of the first
ηL − 1 rigged partitions in (ν, J). Let m∧ be the matrix associated to ν∧. Then

m∧
ij = mij + χ(1 ≤ j ≤ µL)

{
χ(i = ηL)− χ(i = 1)

}
.

Using furthermore that

L+1∑
a=1

χ((i, j) ∈ R∧a ) =
L∑

a=1

χ((i, j) ∈ Ra)

+ χ(1 ≤ i ≤ µL)
{
χ(j = 1)− χ(j = ηL)

}
one finds by (7.2) that m∧

ij
t = mt

ij . Since > is an inclusion it follows that the
configurations of trRC ◦∧(ν, J) and > ◦ trRC(ν, J) coincide. Since ∧ preserves the
vacancy numbers by Lemma 3.9 also the riggings coincide. ¤
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Lemma 7.3. Suppose the last rectangle of R consists of a single column. Then
the following diagram commutes:

RC(λt;Rt) δ - RC(λ−t;R
t
)

trRC

? ?
trRC

RC(λ;R) -
∂

RC(λ−;R).

(7.6)

The proof of this Lemma is given in Appendix B.

Proof of Theorem 7.1. If R is empty the result holds trivially. If RL has more than
one column consider the diagram:

CLR(λ;R)
trLR //

φR

²²

ı∧

''OOOOOOOOOOO
CLR(λt;Rt)

φRt

²²

ı>

wwnnnnnnnnnnnn

CLR(λ;R∧)
trLR //

φR∧
²²

CLR(λt;R∧t)

φR∧t

²²
RC(λt;R∧t)

trRC

// RC(λ;R∧)

RC(λt;Rt)
∧

77ooooooooooo

trRC

// RC(λ;R)
>

ggPPPPPPPPPPPP

Since trLR is an involution the top face commutes by (6.1). The bottom face
commutes by Lemma 7.2 and the back face by induction. The left face is the
commutative diagram (4.3) and the right face that of Lemma 6.2. Since > is
injective the front face commutes by Lemma 5.3.

Suppose the last rectangle is a single column. Consider the diagram:

CLR(λ;R)
trLR //

φR

²²

−

''NNNNNNNNNNN
CLR(λt;Rt)

φRt

²²

−
wwnnnnnnnnnnn

CLR(λ−;R)
trLR //

φR

²²

CLR(λ−t;R
t
)

φ
Rt

²²
RC(λ−t;R

t
) trRC

// RC(λ−;R)

RC(λt;Rt)
δ

77ppppppppppp

trRC

// RC(λ;R)

∂

ggPPPPPPPPPPPP
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∂ is injective, the back face commutes by induction, the commutativity of the top is
trivial and that of the bottom face follows from Lemma 7.3. The left face commutes
by (4.2) and the right face by (6.6) with λ and R replaced by their transposes. So
by Lemma 5.3 the front face commutes. ¤

8. Embeddings

In [21, Section 6.1] and [24, Section 2.3] embeddings were given between sets of
LR tableaux of the form LRT(λ;R). We restate these embeddings in terms of the
tableaux CLR(λ;R) and show in Theorem 8.3 that they are induced by inclusions
of the corresponding sets of rigged configurations under the coquantum version φ̃
of the map φ (see (4.1)), thereby proving [13, Conjecture 18].

8.1. Embedding definitions

Define the partial order λ D µ on partitions by |λ| = |µ| and λ1 + · · · + λi ≥
µ1 + · · · + µi for all i. Let R and R′ be two sequences of rectangles. Recall that
ξ(k)(R) is the partition whose parts are the heights of the rectangles in R of width
k. Say that R D R′ if ξ(k)(R) D ξ(k)(R′) for all k ≥ 1. Clearly R D R′ and R′ D R
if and only if R′ is a reordering of R. Thus the relation R D R′ is a preorder. It is
generated by the following two relations (see [24, Section 2.3])

(E1) R D R+ where Ri = R+
i for i > 2, R1 = (ca), R2 = (cb), R+

1 = (ca−1),
R+

2 = (cb+1) for a− 1 ≥ b + 1 and c a positive integer.
(E2) R D spR where spR denotes the sequence obtained from R by exchanging

the rectangles Rp and Rp+1.

For the relation (E1) define the embedding ı+ by the commutation of the dia-
gram

CLR(λ;R) ı+- CLR(λ;R+)

trLR

? ?
trLR

CLR(λt;Rt) -
inclusion

CLR(λt;R+t).

(8.1)

For the relation (E2) we have the following result.

Definition-Proposition 8.1. For 1 ≤ p ≤ L − 1 there are unique bijections
σp : CLR(λ;R) → CLR(λ; spR) satisfying the following properties:

1. If p < L−1, then σp commutes with restriction to the initial interval B−BL

where B and BL are as in the definition of CLR(λ;R).
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2. If p = L− 1, then the following diagram commutes:

CLR(λ;R) σp- CLR(λ; spR)

ev

? ?
ev

CLR(λ;Rev) -
σ1

CLR(λ; s1(Rev)).

Proof. One may reduce to the case p = L − 1 using 1, then to the case p = 1
using 2, and then to the case p = 1 and L = 2 using 1 again. In this case the sets
of tableaux are all empty or all singletons by [23, Prop. 33] and the result holds
trivially. ¤
Remark 8.2. In the case that Rj is a single row of length ηj for all j, by Example
2.9 there is a bijection of CLR(λ;R) with the set of column-strict tableaux of shape
λ and content η. The action of the bijections σp on the column-strict tableaux are
the automorphisms of conjugation defined by Lascoux and Schützenberger [18].

Let R D R′. Then R′ may be obtained from R by a sequence of transfor-
mations of the form (E1) and (E2); fix such a sequence. Define the embedding
iR
′

R : CLR(λ;R) → CLR(λ;R′) as the corresponding composition of embeddings
of the form ı+ and σp. By [24, Theorem 4] it follows that the embedding iR

′
R is

independent of the sequence of transformations (E1) and (E2) leading from R to
R′. This fact also follows immediately from Theorem 8.3 below.

For rigged configurations, it follows immediately from the definitions that if
R D R′, then there is an inclusion RC(λt;Rt) ⊆ RC(λt; (R′)t) which shall be
denoted by jR′

R .

Theorem 8.3 (Embedding Theorem). Let R D R′. Then the diagram commutes:

CLR(λ;R) iR′
R - CLR(λ;R′)

φ̃R

? ?
φ̃R′

RC(λt;Rt) jR′
R - RC(λt; (R′)t).

(8.2)

Clearly it suffices to prove Theorem 8.3 in the cases (E1) and (E2).

8.2. The case (E1)

Suppose R D R+ as in (E1). Define the embedding + : RC(λt;Rt) → RC(λt;R+t)
by the commutativity of the diagram

RC(λt;Rt) inclusion- RC(λt;R+t)

θR

? ?
θR+

RC(λt;Rt) -
+

RC(λt;R+t).

(8.3)
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Note that + preserves colabels. The following result immediately proves Theo-
rem 8.3 in the case (E1).

Lemma 8.4. The diagram commutes:

CLR(λ;R) ı+- CLR(λ;R+)

φR

? ?
φR+

RC(λt;Rt) -
+

RC(λt;R+t).

Proof. For L ≥ 3 the proof of this lemma is the same as the proof of Lemma 6.1
with R< (resp. ı<, <) replaced by R+ (resp. ı+, +). Note that in the remaining
case L ≤ 2 both R and R+ have at most two rectangles so that CLR(λ;R) and
CLR(λ;R+) are singletons, and the proof follows again by arguments similar to
those of the proof of Lemma 6.1. ¤

8.3. The case (E2)

The case (E2) of Theorem 8.3 is an immediate consequence of the following result.

Lemma 8.5. The diagram commutes:

CLR(λ;R) σp- CLR(λ; spR)

φR

? ?
φspR

RC(λt;Rt) RC(λt; (spR)t).

(8.4)

Proof. Recall the intervals of integers Bj (1 ≤ j ≤ L) in the definition of the
set CLR(λ;R). It follows from the definition of σp that for all S ∈ CLR(λ;R),
(σpS)|Bj

= S|Bj
for j > p + 1. Using this fact and the definition of φR, one may

reduce to the case L = p + 1. So it may be assumed that L = p + 1. Obviously
(spR)ev = s1(Rev). Consider the diagram

CLR(λ;R)
σp //

φR

²²

ev

''OOOOOOOOOOO
CLR(λ; spR)

φspR

²²

ev

vvlllllllllllll

CLR(λ;Rev)
σ1 //

φRev

²²

CLR(λ; s1(Rev))

φs1(Rev)

²²
RC(λt;Revt) RC(λt; (s1R

evt))

RC(λt;Rt)
θev

R

77ooooooooooo
RC(λt; spR

t).
θev

spR

hhQQQQQQQQQQQQQ
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The commutation of the bottom face is obvious. The top face commutes by defini-
tion and the left and right faces commute by Theorem 5.6. The desired commuta-
tion of the front face is reduced to the commutation of the back face. Replacing R
by Rev it may now be assumed that p = 1. Applying a previous reduction it may
also be assumed that L = 2. But in this case the sets in (8.4) are all singletons or
all empty, so the diagram (8.4) commutes. ¤

8.4. Connection with LRT(λ;R)

In [13, Section 10], [21, Section 6.1] and [24, Section 2.3] embeddings θR′
R :

LRT(λ;R) → LRT(λ;R′) were defined when R D R′. They are related to the
embeddings iR

′
R : CLR(λ;R) → CLR(λ;R′) by the bijection βR : LRT(λ;R) →

CLR(λ;R) of Remark 2.6.

Proposition 8.6. Let R D R′. The diagram commutes:

LRT(λ;R) θR′
R - LRT(λ;R′)

βR

? ?
βR′

CLR(λ;R) -
iR′
R

CLR(λ;R′).

(8.5)

For the proof recall the evacuation map Ev : LRT(λ;R) → LRT(λ;Rev). Let
n =

∑L
j=1 µj be the sum of heights of rectangles in R. There is a unique involution

T 7→ TEv on column-strict tableaux of shape λ in the alphabet [1, n] defined by

shape((TEv)|[1,i]) = shape(P (T |[n−i+1,n]))

for all 1 ≤ i ≤ n. The bijection Ev restricts to a bijection LRT(λ;R) →
LRT(λ;Rev) [13].

Lemma 8.7. The diagram commutes:

LRT(λ;R) Ev- LRT(λ;Rev)

βR

? ?
βRev

CLR(λ;R) -
ev CLR(λ;Rev).

(8.6)

Sketch of Proof. βR = γ−1
R ◦ std by Remark 2.6. Using the well-known fact

std ◦Ev = ev ◦ std it is enough to show that the following diagram commutes:

RLR(λ;R) ev- RLR(λ;Rev)

γR

? ?
γRev

CLR(λ;R) -
ev CLR(λ;Rev).
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By [18] Sev = P (#word(S)) for S ∈ ST(λ) where #w is the reverse of the com-
plement of the word w in the alphabet [1, |λ|]. Let WR(R) (resp. WC(R)) be the
set of standard words w such that the standard tableau P (w) is in RLR(λ;R)
(resp. CLR(λ;R)). The relabeling bijection γR : RLR(λ;R) → CLR(λ;R) extends
to a map WR(R) → WC(R) in an obvious way. This relabeling map satisfies
P (γR(w)) = γR(P (w)) [24, Lemma 36]. It is not hard to see that #◦γR = γRev ◦#
as maps WR(R) → WC(Rev). For all S ∈ RLR(λ;R) we have

(γR(S))ev = P (#γR(S)) = P (#γR(word(S)))

= P (γRev(#word(S))) = γRev(P (#word(S)))

= γRev(Sev).

¤
Proof of Proposition 8.6. Again the result follows from the special cases (E1)
and (E2). Consider the case (E1). By the definition of the relabeling map βR

and the fact that in this case both θR′
R and iR

′
R only change the subtableaux corre-

sponding to the first two rectangles, one may reduce to the case that L = 2. By [23,
Prop. 33] all sets are either singletons or empty. The vertical maps are bijections
and the horizontal maps are embeddings, so the diagram must commute.

Denote by sp the rectangle switching bijection on LRT(λ;R) as defined in [13,
Section 7] (see also [23, Section 2.5]). In the case (E2), neither sp nor σp disturb the
subtableaux corresponding to the rectangles Rj for j > p + 1. Therefore it may be
assumed that L = p + 1. Now the evacuation map is applied to the diagram (8.5):

LRT(λ;R)
sp //

βR

²²

Ev

''OOOOOOOOOOO
LRT(λ; spR)

βspR

²²

Ev

vvmmmmmmmmmmmmm

LRT(λ;Rev)
s1 //

βRev

²²

LRT(λ; s1(Rev))

βs1(Rev)

²²
CLR(λ;Rev)

σ1
// CLR(λ; s1(Rev))

CLR(λ;R)
σp

//

ev

77ooooooooooo
CLR(λ; spR)

ev

hhQQQQQQQQQQQQQ

The left and right faces commute by Lemma 8.7. The top face commutes by the
proof of [13, Lemma 5], and the bottom commutes by the definition of σp. To
obtain the desired commutation of the front face, it is enough to show that the
back face commutes. But the back face is the special case p = 1 with R replaced
by Rev. This reduces to the case p = 1. As before one may reduce to the case that
L = p + 1 = 2. But in this case by [23, Prop. 33] the sets are all singletons or all
empty, so the diagram commutes. ¤
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8.5. Single rows

Let rows(R) be obtained by slicing all of the rectangles of R into single rows.
Clearly R D rows(R) and rows(R) is minimal with respect to the preorder D.
Define iR := i

rows(R)
R : CLR(λ;R) → CLR(λ; rows(R)). Recall that Schensted’s

standardization map gives a bijection from column-strict tableaux of shape λ and
content (ηµ1

1 , ηµ2
2 , . . . , ηµL

L ) onto CLR(λ; rows(R)), so that iR essentially embeds
CLR(λ;R) into column-strict tableaux.

9. Statistics for LR tableaux and rigged configurations

Recall that both the set of LR tableaux and the set of rigged configurations are
endowed with statistics, given by the charge cR(T ) for T ∈ CLR(λ;R) and cc(ν, J)
for (ν, J) ∈ RC(λt;Rt). The statistic cc(ν, J) was given in (2.8) and an explicit
expression for the generalized charge cR(T ) can be found in [23, (2.1)].

The objective of this section is to prove that φ̃ preserves the statistics, which
settles [13, Conjecture 9].

Theorem 9.1. Let T ∈ CLR(λ;R). Then cR(T ) = cc(φ̃R(T )).

Proof. Recall the embedding iR : CLR(λ;R) → CLR(λ; rows(R)) of Section 8.5.
By [24, Prop. 7], for all S ∈ CLR(λ;R) we have crows(R)(iR(S)) = cR(S). On the
other hand by Theorem 8.3, φ̃rows(R)(iR(S)) = φ̃R(S). By replacing R by rows(R)
it may be assumed that R consists of single rows.

The transpose maps are applied to reduce to the case of single columns. Re-
call the definition of the number n(R) [13, (2.7)]. For all S ∈ CLR(λ;R) we
have cRt(trLR(S)) = n(R) − cR(S) by [24, Prop. 24 and Theorem 26] and [21,
Lemma 6.5]. For all (ν, J) ∈ RC(λt;Rt) we have cc(trRC(ν, J)) = n(R) − cc(ν, J)
by [13, (9.12)]. Moreover

trRC ◦φ̃R = trRC ◦θR ◦ φR = θRt ◦ trRC ◦φR

= θRt ◦ φRt ◦ trLR = φ̃Rt ◦ trLR

by the definitions of φ̃R, trRC, θR, and Theorem 7.1. From these facts, by replacing
R with Rt it may be assumed that R consists of single columns.

Applying the first reduction again, it may be assumed that R consists of single
cells. Observe that in this case CLR(λ;R) = ST(λ). It is possible to verify cR(S) =
cc(φ̃R(S)) for S ∈ ST(λ) directly. It is known that for all S ∈ ST(λ), cR(S) = c(S)
where c(S) is the ordinary charge of a standard tableau S [19, Section III.6]. Let
asc(S) denote the number of ascents in S, that is, the number of indices i such that
i+1 is in a later column in S than i. It follows immediately from the definition of c
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that c(S−) = c(S)−asc(S). By induction it suffices to show that if φ̃R(S) = (ν, J),
then asc(S) is equal to α

(1)
1 and cc(ν, J)− cc(δ̃(ν, J)) = α

(1)
1 .

It is first shown that asc(S) = α
(1)
1 . Denote (ν̃, J̃) = δ̃(ν, J), let α̃

(k)
n be the

size of the n-th column in ν̃(k) and let ˜̀(k) be the length of the selected string of
label zero in (ν, J)(k) in passing to (ν̃, J̃)(k). By induction asc(S−) = α̃

(1)
1 where

φ̃R̃(S−) = δ̃(ν, J) = (ν̃, J̃). (At this point the astute reader may be concerned
that the relation between φ̃R and φR involves θR whereas the relation between δ

and δ̃ involves θev
R (compare (3.15)); however, since R consists only of single boxes

θR = θev
R ). Now

α
(1)
1 − α̃

(1)
1 = χ(˜̀(1) = 1).

Thus it must be shown that ˜̀(1) = 1 if and only if N − 1 is an ascent of S where
N = |λ|. Let c and c− be the column indices of the letters N and N − 1 in S and˜̀̃(k)

the length of the string selected by δ̃ in (ν̃, J̃)(k). First suppose that ˜̀(1) = 1.

Then ˜̀̃(k)

≥ ˜̀(k) for all 0 ≤ k < c. Hence c > c− by (3.16) with k = c − 1.

Conversely, if ˜̀(1) > 1, then ˜̀̃(k)

< ˜̀(k) for all 0 ≤ k < c so that c ≤ c−. This
proves asc(S) = α

(1)
1 .

Now it is shown that cc(ν, J)−cc(δ̃(ν, J)) = α
(1)
1 when R consists of single cells.

To this end we first compute

cc(ν)− cc(ν̃) =
∑

k,n≥1

α(k)
n (α(k)

n − α(k+1)
n )

−
∑

k,n≥1

(α(k)
n − δn, ˜̀(k))(α(k)

n − α(k+1)
n − δn, ˜̀(k) + δn, ˜̀(k+1))

=
∑
k≥1

(2α(k)˜̀(k)
− α

(k)˜̀(k+1)
− α

(k+1)˜̀(k)
− χ(˜̀(k) < ˜̀(k+1))).

(9.1)

Next let us determine the difference of the sums of quantum numbers. Recall
that δ̃ does not change the colabels of unselected strings, and that the vacancy
numbers change by (3.16). The selected strings have label zero before and after
being shortened. Then

∑
k,n≥1

|J (k)
n | −

∑
k,n≥1

|J̃(k)

n |

=
∑

k,n≥1

(mn(ν(k))− δn, ˜̀(k))(χ(˜̀(k−1) ≤ n < ˜̀(k))− χ(˜̀(k) ≤ n < ˜̀(k+1)))

=
∑
k≥1

(α(k)˜̀(k−1)
− α

(k)˜̀(k)
)−

∑
k≥1

(α(k)˜̀(k)
− α

(k)˜̀(k+1)
) +

∑
k≥1

χ(˜̀(k) < ˜̀(k+1)).

(9.2)
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By (9.1) and (9.2) we have cc(ν, J)− cc(ν̃, J̃) = α
(1)˜̀(0) = α

(1)
1 . ¤

The cocharge of an LR tableau T ∈ CLR(λ;R) is defined as coR(T ) = ‖R‖ −
cR(T ) where ‖R‖ =

∑
i<j |Ri ∩ Rj |. Recall that for λ and µ partitions CST(λ;µ)

denotes the set of column-strict tableaux of shape λ and content µ. By Example 2.9
the set CST(λ;µ) equals LRT(λ;R) where R = ((µ1), . . . , (µL)), and identifying
the two sets the cocharge of a column-strict tableau T is given by co(T ) = coR(T ).

Recall the map βR : LRT(λ;R) → CLR(λ;R) of Remark 2.6. Then, identifying
CST(λ;µ) and LRT(λ;R), the coquantum version of the original bijection [12]
between column-strict tableaux and rigged configurations is given by φ̃Rt◦trLR ◦βR.

Corollary 9.2. Let T be a column-strict tableau of shape λ and partition content
µ = (µ1, . . . , µL) and 1 ≤ r ≤ L an index such that µr > µr+1 where µL+1 = 0.
Let T ′ be obtained from T by applying the automorphism of conjugation (see Re-
mark 8.2) σ = σL−1σL−2 . . . σr that changes the content to (µ1, . . . , µr−1, µr+1, . . . ,
µL, µr), then removing the rightmost copy of the letter L, and then applying the
automorphism of conjugation σ−1 to change the content to (µ1,. . . ,µr−1, µr−1,

µr+1, . . . , µL). Let R = ((µ1), . . . , (µL)) and (ν, J) = φ̃Rt ◦ trLR ◦βR(T ). Then

co(T )− co(T ′) = α(1)
µr

where α
(1)
µr is the size of the µr-th column of ν(1).

Proof. By Lemma 8.5 it suffices to prove the result in the case that µ = (µ1, . . . , µL)
is any sequence of positive integers, r = L, and T ′ is obtained from T by removing
the rightmost copy of the letter L. Set S = trLR ◦βR(T ), S′ = trLR ◦βRtt(T ′),
(ν, J) = φ̃Rt(S) and (ν′, J ′) = φ̃Rt(S′). By [21, Lemma 6.5] and [24, Theorem 26]
coR(trLR(S)) = cRt(S). Hence

co(T )− co(T ′) = cRt(S)− cRt(S′)

= cc(φ̃Rt(S))− cc(φ̃Rt(S′) by Theorem 9.1

= cc(ν, J)− cc(ν′, J ′).

Notice that (ν, J) ∈ RC(λ;R) where Rt is a sequence of single columns. Similar
calculations to (9.1) and (9.2) yield cc(ν, J)− cc(ν′, J ′) = α

(1)
µL . ¤

Appendix A. Proof of Lemma 3.13

The proof of Lemma 3.13 is given here by Lemmas A.2 and A.3. After the lemmas
it is explained why the statements regarding rk and r̃k in Lemma 3.13 follow from
Lemma A.2.
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In this section the following notation is used. Let R = (R1, . . . , RL) be a
sequence of rectangles with Ri = (ηµi

i ), such that R1 and RL are single columns
and |R| ≥ 2 and let λ be a partition and (ν, J) ∈ RC(λt;Rt). Write

δ(ν, J) = (ν, J)

δ̃(ν, J) = (ν̃, J̃)

δ̃ ◦ δ(ν, J) = (ν̃, J̃)

δ ◦ δ̃(ν, J) = (ν̃, J̃).

Furthermore, let `
(k)

, ˜̀(k), ˜̀(k)

and ˜̀(k)

denote the lengths of the strings that are
shortened in the transformations (ν, J) 7→ (ν, J), (ν, J) 7→ (ν̃, J̃), (ν, J) 7→ (ν̃, J̃)

and (ν̃, J̃) 7→ (ν̃, J̃), respectively.

Remark A.1. Note that except for the strings that change length in the trans-
formations, a string has label zero before applying δ if and only it does afterwards,
and a string is singular before applying δ̃ if and only if it is afterwards.

If δ and δ̃ select the same string in ν(k) (that is, both select a string with the
same length and same label), say that the doubly singular case holds for ν(k).
Otherwise say that the generic case holds for ν(k).

The next lemma shows that ν̃ = ν̃.

Lemma A.2. If the generic case holds for ν(k), then `
(k)

= ˜̀(k)

and ˜̀(k) = ˜̀(k)

.
Otherwise suppose the doubly singular case holds for ν(k). Let ` := `

(k)
= ˜̀(k) be

the common string length. Then

1. If ˜̀(k)

< ` (or ˜̀(k)

< `), then ˜̀(k)

= ˜̀(k)

= `− 1, and m`−1(ν(k+1)) = 0.

2. If ˜̀(k)

= ` (or ˜̀(k)

= `), then ˜̀(k)

= ˜̀(k)

= `.

3. If ˜̀(k)

> ` (or ˜̀(k)

> `), then ˜̀(k)

= ˜̀(k)

, ˜̀(k+1) ≥ ˜̀(k)

and `
(k+1) ≥ ˜̀(k)

.

Moreover, if ˜̀(k)

= ∞, then λt
k = λt

k+1.

Lemma A.3. J̃ = J̃.

Together Lemmas A.2 and A.3 establish the desired result that (ν̃, J̃) = (ν̃, J̃).
Given Lemma A.2, the assertions of Lemma 3.13 on the relationships between

r = rk(ν, J), r̃ = r̃k(ν, J), r̃ = r̃k(δ(ν, J)), and r̃ = rk(δ̃(ν, J)) are now established.
Suppose r < r̃. Then `

(r)
= ∞ > ˜̀(r) and the generic case holds for (ν, J)(r).

It follows that for all k ≥ r, ˜̀(k)

= ˜̀(k) and ˜̀(k)

= `
(k)

. Therefore r̃ = r̃ and r̃ ≤ r.

Suppose r̃ < r. Then ˜̀(r̃) = ∞ > `
(r̃)

. It follows that Case 3 holds for (ν, J)(r̃).
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But then ˜̀(r̃)

= ˜̀(r̃) = ∞ so that r̃ ≤ r̃ < r < r̃, which is a contradiction. Therefore
r̃ = r and r̃ = r̃ as desired.

If r > r̃ a similar proof shows r̃ = r and r̃ = r̃. So it may be assumed

that r = r̃ = r. Notice that ˜̀(r) = `
(r)

= ∞ implies that ˜̀(r)

= ˜̀(r) = ∞
so that r̃ ≤ r and r̃ ≤ r. Suppose Case 3 does not hold for (ν, J)(r−1). Then˜̀(r−1)

≤ ˜̀(r−1) < ∞ and ˜̀(r−1)

≤ `
(r−1)

< ∞ so that r̃ ≥ r and r̃ ≥ r. Thus
r̃ = r̃ = r as desired. Otherwise suppose Case 3 holds for (ν, J)(r−1). Recall that

in Case 3 one has ˜̀(r−1)

= ˜̀(r−1)

. If ˜̀(r−1)

< ∞, then r̃ = r̃ = r as desired.

Otherwise ˜̀(r−1)

= ˜̀(r−1)

= ∞ so that r̃ ≤ r − 1, r̃ ≤ r − 1, and furthermore

λt
r−1 = λt

r. Suppose that ˜̀(r−2)

= ∞. Then it is clear from Lemma A.2 that either

˜̀(r−2) = ∞ or ˜̀(r−1) = ∞, contradicting the definition of r. Similarly ˜̀(r−2)

= ∞
leads to a contradiction. Hence r̃ = r̃ = r − 1 as desired.

The rest of this section is devoted to the proofs of Lemmas A.2 and A.3.

Proof of Lemma A.2. The proof proceeds by induction on k. There is nothing
to prove unless at least one of `

(k)
and ˜̀(k) is finite. If one is finite and the

other infinite, then obviously δ and δ̃ choose different strings and ˜̀(k)

= ˜̀(k) and˜̀(k)

= `
(k)

. So it is assumed that both `
(k)

and ˜̀(k) are finite.
For the base case k = 0, observe that the doubly singular case holds precisely

when R = ((1µ1)). Then RC(λt;Rt) is empty unless λ = (1µ1), and in that
case consists of the empty rigged configuration (∅, ∅). Then `

(0)
= ˜̀(0) = µ1 and˜̀(0)

= ˜̀(0) = µ1 − 1. But rk(∅, ∅) = r̃k(∅, ∅) = 1, so this case is never used in the

inductive step. In the generic case L ≥ 2, ˜̀(0)

= ˜̀(0) = µ1 and ˜̀(0) = `
(0)

= µL.
Now assume k ≥ 1. Note that

`
(k) ≥ ˜̀(k−1)

˜̀(k) ≥ ˜̀(k−1)

.

(A.1)

If the generic case, Case 1 or Case 2 occurs at k− 1, this follows immediately from

`
(k) ≥ `

(k−1) ≥ ˜̀(k−1)

and ˜̀(k) ≥ ˜̀(k−1) ≥ ˜̀(k−1)

. For Case 3 at k − 1 (A.1) holds
by induction hypothesis.

Generic case. Observe that ˜̀(k) = ˜̀(k)

is obtained from `
(k)

= ˜̀(k)

under con-
jugation by the involution θev

R , so we shall only prove the latter. By Remark A.1,

the singular string in ν(k) of length `
(k)

remains singular in passing to ν̃(k). Since˜̀(k−1)

≤ `
(k)

by (A.1), it follows that ˜̀(k)

≤ `
(k)

.



Vol. 8 (2002) Bijection between LR tableaux and rigged configurations 117

If ˜̀(k)

= `
(k)

we are done. By induction hypothesis ˜̀(k)

≥ ˜̀(k−1)

≥ `
(k−1) − 1.

Let us first assume that `
(k−1) ≤ ˜̀(k)

< `
(k)

. By Remark A.1 this is only possible
if the string selected by δ acting on ν̃(k) is the string shortened by δ̃ acting on ν(k).
This string in ν̃(k) has length ˜̀(k)−1 and label 0. We show that this cannot occur.
For this it is enough to show that

P
(k)˜̀(k)−1

(ν̃) > 0 if `
(k−1)

< ˜̀(k) ≤ `
(k)

and ˜̀(k−1)

< ˜̀(k). (A.2)

Otherwise we may assume that `
(k−1) − 1 = ˜̀(k)

< `
(k)

. This means that Case 3

occurs at k − 1 so that m
`
(k−1)−1

(ν(k)) = 0 and ˜̀(k−1) = `
(k−1)

. Hence ˜̀(k)

=

`
(k−1) − 1 can only occur if ˜̀(k) = ˜̀(k−1) = `

(k−1)
. To prove that this cannot

happen it suffices to show that

P
(k)˜̀(k)−1

(ν̃) > 0 if m ˜̀(k−1)−1(ν
(k)) = 0 and `

(k−1)
= ˜̀(k−1) = ˜̀(k) ≤ `

(k)
. (A.3)

By (3.16) with n = ˜̀(k) − 1,

P
(k)˜̀(k)−1

(ν̃) = P
(k)˜̀(k)−1

(ν)− χ(˜̀(k−1) ≤ ˜̀(k) − 1). (A.4)

We proceed by considering various cases that exhaust all possibilities, and show
that (A.2) and (A.3) both hold in each case.

First assume that m ˜̀(k)−1(ν
(k)) = 0 and ˜̀(k−1) = ˜̀(k). Since `

(k−1) ≤ ˜̀(k) ≤ `
(k)

by assumption, P
(k)˜̀(k)

(ν) ≥ 1, for otherwise `
(k)

= ˜̀(k) and δ and δ̃ would select the

same string in ν(k). By Lemma 3.11 with n = ˜̀(k)−1 it follows that P
(k)˜̀(k)−1

(ν) ≥ 1,

which by (A.4) implies P
(k)˜̀(k)−1

(ν̃) ≥ 1. This proves in particular (A.3).
For all remaining cases (A.3) holds vacuously. Hence it may be assumed that

the hypotheses of (A.2) hold.
Assume that m ˜̀(k)−1(ν

(k)) > 0 and ˜̀(k−1) < ˜̀(k). Since ˜̀(k−1) ≤ ˜̀(k) − 1 < ˜̀(k)

and `
(k−1) ≤ ˜̀(k) − 1 < `

(k)
, there cannot be strings in ν(k) of length ˜̀(k) − 1 that

have label zero or are singular. Since there are strings in ν(k) of length ˜̀(k)−1, there
must be an available label that is neither zero nor maximum. Thus P

(k)˜̀(k)−1
(ν) ≥ 2,

and by (A.4), P
(k)˜̀(k)−1

(ν̃) ≥ 1.

Now assume that m ˜̀(k)−1(ν
(k)) > 0 and ˜̀(k−1) = ˜̀(k). Since `

(k−1)
< ˜̀(k) ≤ `

(k)

there cannot be a singular string of length ˜̀(k) − 1 in ν(k). Hence P
(k)˜̀(k)−1

(ν) ≥ 1

and by (A.4) P
(k)˜̀(k)−1

(ν̃) ≥ 1.
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Finally consider the case m˜̀(k)−1(ν
(k)) = 0 and ˜̀(k−1) < ˜̀(k). By (A.4) if

P
(k)˜̀(k)−1

(ν) ≥ 2, then we are done, so it may be assumed that P
(k)˜̀(k)−1

(ν) = 1. Let `

be maximal such that ` < ˜̀(k) and m`(ν(k)) ≥ 1. If no such ` exists set ` = 0.

Suppose that P
(k)˜̀(k)

(ν) = 0. By the definition of ˜̀(k), m ˜̀(k)(ν(k)) ≥ 1. Hence

there is a string of length ˜̀(k) in ν(k), which is singular since its vacancy number is
zero. Due to the assumption that `

(k−1)
< ˜̀(k) ≤ `

(k)
, the definition of `

(k)
yields

`
(k)

= ˜̀(k). This means that the doubly singular case holds for ν(k), which is a
contradiction.

Suppose P
(k)˜̀(k)

(ν) = 1. By Lemma 3.11 we have P
(k)
n (ν) = 1 for ` < n ≤ ˜̀(k)

and 0 ≤ P
(k)
` (ν) ≤ 1. By (3.10), mn(ν(k−1)) = 0 for ` + 1 < n < ˜̀(k) and

0 ≤ m`+1(ν(k−1)) ≤ 1.
First consider m`+1(ν(k−1)) = 0. If ` = 0, there is no string of length smaller

than ˜̀(k) in ν(k−1) so that ˜̀(k−1) ≥ ˜̀(k). This contradicts the assumptions. So
assume that ` > 0. Since ˜̀(k−1) ≤ ` and `

(k−1) ≤ `, this requires that the strings of
length ` in ν(k) are neither singular nor have label zero so that P

(k)
` (ν) ≥ 2. This

is a contradiction.
Hence assume that m`+1(ν(k−1)) = 1. By (3.10) at n = ` + 1, this implies that

P
(k)
` (ν) = 0. Since ˜̀(k) > ` and `

(k)
> ` this requires that ˜̀(k−1) = `

(k−1)
= ` + 1

and hence P
(k−1)
`+1 (ν) = 0. Since m`+1(ν(k−1)) = 1, Case 1 or Case 3 occurs at

k − 1. If Case 3 occurs, ˜̀(k−1)

= ˜̀(k−1)

≥ ˜̀(k) which contradicts the assumptions.
Therefore ν(k−1) must be in Case 1 and ` > 0. By induction m`(ν(k)) = 0 which
contradicts the definition of `.

Now suppose P
(k)˜̀(k)

(ν) = 2. Again (3.10) and Lemma 3.11 fail unless ˜̀(k) = `+2

and P
(k)
` (ν) = 0. By (3.10) with n = ` + 1 = ˜̀(k) − 1, m`+1(ν(k−1)) = 0. If

` = 0, then ˜̀(k−1) < ˜̀(k) = 2 which forces ˜̀(k−1) = 1, but there is no string of
length 1 in ν(k−1), which is a contradiction. So suppose ` > 0. Since `

(k−1)
< ˜̀(k),˜̀(k−1) < ˜̀(k) and m˜̀(k)−1(ν

(k−1)) = 0, one finds `
(k−1) ≤ ` and ˜̀(k−1) ≤ `. Also

there is a string of length ` in ν(k), which is both singular and has label zero since
P

(k)
` (ν) = 0. But ` < ˜̀(k) ≤ `

(k)
, which contradicts the definition of `

(k)
and ˜̀(k).

If P
(k)˜̀(k)

(ν) > 2, then there is an immediate contradiction since (3.11) fails for

n = ˜̀(k) − 1.
This completes the proof of (A.2) and (A.3) and hence the proof of the generic

case for ν(k).

Doubly singular case. Since there is a string of length ` in ν(k) that is both
singular and has label zero, it must have vacancy number zero, that is, P

(k)
` (ν) = 0.
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Case 1: ˜̀(k)

< `. By induction we have ˜̀(k)

≥ ˜̀(k−1)

≥ ˜̀(k−1) − 1. First assume

that ˜̀(k−1) ≤ ˜̀(k)

< `. In the light of Remark A.1, δ̃ must select the string in ν(k)

that was shortened by δ in the transformation (ν, J) 7→ (ν, J), so that ˜̀(k)

= `− 1.
This string in ν(k) is singular since it was shortened by δ and has label zero since

it is selected by δ̃, so P
(k)
`−1(ν) = 0. The case ˜̀(k−1) − 1 = ˜̀(k)

< ` can only
occur for Case 1 at k − 1. By induction this implies that m ˜̀(k−1)−1(ν

(k)) = 0.

For ˜̀(k−1) − 1 = ˜̀(k)

one needs m ˜̀(k−1)−1(ν
(k)) > 0 so that ` = ˜̀(k−1). Hence˜̀(k)

= `− 1 and P
(k)
`−1(ν) = 0 as before.

The goal is to show that ˜̀(k)

=`−1. Since ˜̀(k) =`, it follows that m`−1(ν̃(k))≥1.

It suffices to show that ˜̀(k−1)

≤ `− 1 and P
(k)
`−1(ν̃) = 0. For then ˜̀(k)

< `, and by

the same arguments as before, it follows that ˜̀(k)

= `− 1.
By (3.9), (3.16), and P

(k)
`−1(ν) = 0,

P
(k)
`−1(ν) = P

(k)
`−1(ν̃) + χ(˜̀(k−1) ≤ `− 1)

= χ(`
(k−1) ≤ `− 1).

(A.5)

Suppose that ˜̀(k−1)

≥ `. Now ˜̀(k−1)

≤ ˜̀(k)

= ` − 1, so ˜̀(k−1)

6= ˜̀(k−1)

. By

induction, the generic case holds for ν(k−1), and ˜̀(k−1)

= ˜̀(k−1) and ˜̀(k−1)

= `
(k−1)

.

So `
(k−1)

= ˜̀(k−1)

≥ ` and ˜̀(k−1) = ˜̀(k−1)

≤ ` − 1. This leads to a contradiction

in evaluating (A.5), so ˜̀(k−1)

≤ `− 1.

Suppose P
(k)
`−1(ν̃) ≥ 1. Then by (A.5), ˜̀(k−1) ≥ ` and `

(k−1) ≤ ` − 1. Since

˜̀(k−1) 6= `
(k−1)

, by induction the generic case holds for ν(k−1) and ˜̀(k−1)

= ˜̀(k−1) ≥
`, which contradicts ` > ˜̀(k)

≥ ˜̀(k−1)

. Therefore P
(k)
`−1(ν̃) = 0 and ˜̀(k)

= ˜̀(k)

=
`− 1.

To finish Case 1 it suffices to show that m`−1(ν(k+1)) = 0. Since it has been
shown that P

(k)
`−1(ν̃) = 0, (A.5) becomes

P
(k)
`−1(ν) = χ(˜̀(k−1) ≤ `− 1) = χ(`

(k−1) ≤ `− 1). (A.6)

Suppose that P
(k)
`−1(ν) = 0. By (A.6), ˜̀(k−1) = ` and `

(k−1)
= `. Now ˜̀(k−1)

≤˜̀(k)

= `− 1 < ˜̀(k−1), so Case 1 holds for ν(k−1). By induction ˜̀(k−1)

= ˜̀(k−1) − 1
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and m ˜̀(k−1)−1(ν
(k)) = 0, that is, m`−1(ν(k)) = 0. By (3.10) for n = `−1, it follows

that m`−1(ν(k+1)) = 0, as desired.

Otherwise P
(k)
`−1(ν) = 1. Here ` ≥ 2. By (A.6), ˜̀(k−1) ≤ `−1 and `

(k−1) ≤ `−1.

By the minimality of ˜̀(k) and `
(k)

, there cannot be strings in ν(k) of length ` − 1
that are singular or have label zero, so m`−1(ν(k)) = 0. Applying (3.10) at n = `−1
and using the fact that P

(k)
` (ν) = 0 (since the doubly singular case holds for ν(k))

one obtains
P

(k)
`−2(ν) + m`−1(ν(k−1)) + m`−1(ν(k+1)) ≤ 2. (A.7)

If m`−1(ν(k−1)) = 2, then by (A.7) m`−1(ν(k+1)) = 0 as desired. Suppose
m`−1(ν(k−1)) = 1. If P

(k)
`−2(ν) = 1, then again we conclude m`−1(ν(k+1)) = 0

by (A.7). So assume that P
(k)
`−2(ν) = 0. If m`−2(ν(k)) = 0, then by (3.10) with

n = `− 2, P
(k)
`−1(ν) = 0, which is a contradiction. Otherwise m`−2(ν(k)) ≥ 1. Then

there is a singular string of length ` − 2 in ν(k). By the definition of `
(k)

we have
`
(k−1)

> `−2, that is, `
(k−1)

= `−1. Similarly, ˜̀(k−1) = `−1. Since m`−1(ν(k−1)) =

1, by induction the doubly singular case holds for ν(k−1). Now ˜̀(k−1)

≤ ˜̀(k)

=
` − 1 = ˜̀(k−1), so Case 3 is impossible. Since m`−1(ν(k−1)) = 1, Case 2 is also
impossible. So Case 1 holds for ν(k−1). It follows that m˜̀(k−1)−1(ν

(k)) = 0, that is,
m`−2(ν(k)) = 0. But this is a contradiction.

Suppose that m`−1(ν(k−1)) = 0. Then `
(k−1) ≤ ` − 2 and ˜̀(k−1) ≤ ` − 2.

This yields a contradiction unless ` > 2. By the minimality of `
(k)

and ˜̀(k),
there cannot be strings in ν(k) of length ` − 2 that are either singular or have
label zero, so it follows that either m`−2(ν(k)) = 0 or P

(k)
`−2(ν) ≥ 2. Using (A.7)

the latter immediately yields the desired result m`−1(ν(k+1)) = 0, so assume that
m`−2(ν(k)) = 0 and P

(k)
`−2(ν) ≤ 1.

If P
(k)
`−2(ν) = 0, by (3.10) with n = `− 2, it follows that P

(k)
`−1(ν) = 0, which is a

contradiction. So P
(k)
`−2(ν) = 1.

Let p < `− 1 be maximal such that mp(ν(k)) ≥ 1; if no such p exists, set p = 0.
Then by Lemma 3.11, P

(k)
n (ν) = 1 for p < n < ` and P

(k)
p (ν) ≤ 1. By (3.10) it

follows that mn(ν(k−1)) = 0 for p+1 < n < `−1 and m`−1(ν(k−1))+m`−1(ν(k+1)) ≤
1. If m`−1(ν(k−1)) = 1, then m`−1(ν(k+1)) = 0 as desired. Hence assume that
m`−1(ν(k−1)) = 0.

Suppose P
(k)
p (ν) = 1 which implies p > 0. Then by (3.10) it follows that

mp+1(ν(k−1)) = 0. Since ˜̀(k−1) < `−1 and `
(k−1)

< `−1, it follows that ˜̀(k−1) ≤ p

and `
(k−1) ≤ p. Also mp(ν(k)) ≥ 1 since p > 0. Then there is a singular string

of length p in ν(k) or one of label zero, contradicting the definition of `
(k)

or
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˜̀(k). Therefore P
(k)
p (ν) = 0. By (3.10) for n = p + 1, we have mp+1(ν(k−1)) +

mp+1(ν(k+1)) ≤ 1.
Suppose that mp+1(ν(k−1)) = 0. If p > 0, then the proof proceeds as before. If

p = 0, then there are no strings in ν(k−1) of length less than `. This contradicts˜̀(k−1) ≤ `− 1. So assume that mp+1(ν(k−1)) = 1.

Certainly ˜̀(k−1) ≤ p + 1 and `
(k−1) ≤ p + 1. If either ˜̀(k−1) ≤ p or `

(k−1) ≤ p,
then there is a string in ν(k) of length p that (due to P

(k)
p (ν) = 0) is either singular

or has label zero. But p < `, contradicting the definition of `
(k)

or ˜̀(k). So˜̀(k−1) = p + 1 and `
(k−1)

= p + 1. Since mp+1(ν(k−1)) = 1, mn(ν̃(k−1)) = 0 for
p < n < `.

Now ˜̀(k−1)

≤ ˜̀(k)

= `− 1, so ˜̀(k−1)

≤ p < p + 1 = `
(k−1)

. So Case 1 holds for

ν(k−1). By induction ˜̀(k−1)

= `
(k−1) − 1 = p and mp(ν(k)) = 0 which contradicts

the construction of p. This concludes the proof of Case 1.

Using the involution θev
R , the above argument also shows that if ˜̀(k)

< `, then

˜̀(k)

= ˜̀(k)

= `− 1.

Case 2: ˜̀(k)

= `. It will be shown that ˜̀(k)

= `. By Case 1, ˜̀(k)

≥ `.

The assumption ˜̀(k)

= ` implies that m`(ν(k)) ≥ 1. Since `
(k)

= ` one part
of size ` is shortened in passing from ν(k) to ν(k), so that m`(ν(k)) ≥ 2. Now
P

(k)
` (ν) = 0, so there is at least one singular string in ν(k) that is not selected by δ̃

acting on (ν, J). By Remark A.1 this string remains singular of length ` in passing
to ν̃(k). This shows that there is a singular string of length ` in ν̃(k). Thus to prove˜̀(k)

= ` it suffices to show that ˜̀(k−1)

≤ `.

If ˜̀(k−1)

≤ `
(k−1)

, then ˜̀(k−1)

≤ `
(k−1) ≤ `

(k)
= `. Otherwise ˜̀(k−1)

> `
(k−1)

,

so Case 3 holds for ν(k−1), and by induction ˜̀(k−1)

= ˜̀(k−1)

≤ ˜̀(k)

= `.

By applying θev
R this also shows that if ˜̀(k)

= `, then ˜̀(k)

= `.

Case 3: ˜̀(k)

> `. By Cases 1 and 2 it follows that ˜̀(k)

> `. It will be shown that˜̀(k)

= ˜̀(k)

and that

P
(k)
`+1(ν) = 0 (A.8)

P
(k)
`−1(ν) = 2−m`(ν(k−1)) (A.9)

m`(ν(k+1)) = 0. (A.10)

Suppose m`(ν(k)) ≥ 2. Since P
(k)
` (ν) = 0, there is a string in ν(k) of length
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` and label zero that is not selected by δ in passing to ν(k). By Remark A.1 it

follows that there is a string in ν(k) of length ` with label zero. Since ˜̀(k)

> `, this

string cannot be selected, that is, ˜̀(k−1)

> `. Now ˜̀(k−1) ≤ ˜̀(k) = ` < ˜̀(k−1)

. By

induction Case 3 holds at k− 1. This implies in particular ˜̀(k) ≥ ˜̀(k−1)

> `, which
is a contradiction.

Therefore m`(ν(k)) = 1. By (3.10) with n = `, P
(k)
` (ν) = 0, and m`(ν(k)) = 1,

we have
P

(k)
`−1(ν) + P

(k)
`+1(ν) + m`(ν(k−1)) + m`(ν(k+1)) ≤ 2. (A.11)

We distinguish the three cases m`(ν(k−1))∈{0, 1, 2}. We start with m`(ν(k−1))=0.
Recall that `

(k−1) ≤ `
(k)

= ` and ˜̀(k−1) ≤ ˜̀(k) = `. However the inequalities must
be strict since there are no strings of length ` in ν(k−1). So

`
(k−1) ≤ `− 1˜̀(k−1) ≤ `− 1. (A.12)

If m`−1(ν(k)) > 0, then necessarily P
(k)
`−1(ν) ≥ 2 since otherwise a string in ν(k)

of length ` − 1 is selected by δ or δ̃, contradicting `
(k)

= ˜̀(k) = `. By (A.11) we
conclude that P

(k)
`−1(ν) = 2, P

(k)
`+1(ν) = 0, and m`(ν(k+1)) = 0.

Now assume m`−1(ν(k)) = 0. By (3.9) with n = ` − 1, `
(k−1) ≤ ` − 1, and

`
(k)

= `, we have
P

(k)
`−1(ν) = P

(k)
`−1(ν) + 1. (A.13)

Suppose that P
(k)
`−1(ν) = 0. Since m`−1(ν(k)) = 1, there is a string of length

` − 1 and label zero in ν(k). But ˜̀(k)

> `, so the only way that this string is not

selected is if ˜̀(k−1)

> ` − 1. But by (A.12) ` − 1 ≥ ˜̀(k−1), so ˜̀(k−1)

> ˜̀(k−1).

This is Case 3 for ν(k−1). By induction ˜̀(k−1)

= ˜̀(k−1)

> ˜̀(k−1) = `
(k−1)

and˜̀(k) ≥ ˜̀(k−1)

. But ˜̀(k) = ` and ˜̀(k−1)

≥ ` so ˜̀(k−1)

= `. Then m`(ν(k−1)) ≥ 1.
However `

(k−1) ≤ ` − 1 by (A.12) so m`(ν(k−1)) ≥ 1, which is a contradiction.
Therefore P

(k)
`−1(ν) ≥ 1. By (A.13), P

(k)
`−1(ν) ≥ 2, so by (A.11), P

(k)
`−1(ν) = 2,

P
(k)
`+1(ν) = 0 and m`(ν(k+1)) = 0 as above.

Next consider m`(ν(k−1)) = 1. Suppose that P
(k)
`−1(ν) = 0. By (3.9)

P
(k)
`−1(ν) = P

(k)
`−1(ν) + χ(`

(k−1) ≤ `− 1). (A.14)

Therefore `
(k−1) ≥ ` = `

(k) ≥ `
(k−1)

, so that `
(k−1)

= `. Similarly ˜̀(k−1) = `.
Then in ν(k−1) there is only one string of length ` and both δ and δ̃ select it. So for
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ν(k−1) we are in Case 1 or Case 3. Suppose it is Case 3. Then ˜̀(k−1)

= ˜̀(k−1)

>˜̀(k−1) = `
(k−1)

= ` and ˜̀(k) ≥ ˜̀(k−1)

> ` which is a contradiction. Suppose it

is Case 1. Then ˜̀(k−1)

= ˜̀(k−1) − 1 = ` − 1. By (A.14), P
(k)
`−1(ν) = 0. Since

`
(k)

= `, m`−1(ν(k)) ≥ 1. So there is a singular string of length ` − 1 in ν(k) and˜̀(k−1)

= `−1. By definition, ˜̀(k)

= `−1, which contradicts the assumption ˜̀(k)

> `.
Therefore P

(k)
`−1(ν) ≥ 1. By (A.11) it follows that P

(k)
`−1(ν) = 1, P

(k)
`+1(ν) = 0 and

m`(ν(k+1)) = 0.
Finally consider m`(ν(k−1)) = 2. By (A.11), P

(k)
`−1(ν) = 0, P

(k)
`+1(ν) = 0, and

m`(ν(k+1)) = 0. So (A.8), (A.9), and (A.10) are proved.
Since P

(k)
` (ν) = P

(k)
`+1(ν) = 0 (see (A.8)) it follows from Lemma 3.11, that if

p > ` and mn(ν(k)) = 0 for all ` < n < p, then P
(k)
n (ν) = 0 for ` ≤ n ≤ p.

Equation (3.10) furthermore implies that mn(ν(k+1)) = 0 for ` < n < p.
Suppose ν(k) has a string longer than `. Let p be minimal such that p > ` and

mp(ν(k)) ≥ 1. Since the string in ν(k) of length p is selected by neither δ nor δ̃ but
has vacancy number zero, its length remains p, its label stays zero in ν(k), and it
remains singular in ν̃(k). Neither ν(k) nor ν̃(k) have strings of length n for ` ≤ n < p.

Since ˜̀(k−1)

≤ ` and ˜̀(k−1)

≤ ` by (A.1) and since by assumption ˜̀(k)

> ` and˜̀(k)

> `, it follows that ˜̀(k)

= p = ˜̀(k)

. Moreover, by the previous paragraph
and (A.10), mn(ν(k+1)) = 0 for ˜̀(k) = `

(k)
= ` ≤ n < p, so that ˜̀(k+1) ≥ p and

`
(k+1) ≥ p.

Otherwise there is no string in ν(k) longer than `. Then ˜̀(k)

= ˜̀(k)

= ∞ and
rk(ν̃, J̃) = r̃k(ν, J) = k. Moreover, the above result holds for all p > `, so that
mn(ν(k+1)) = 0 for n > `. But by (A.10) m`(ν(k+1)) = 0 so that ˜̀(k+1) = `

(k+1)
=

∞ and rk(ν, J) = r̃k(ν, J) = k + 1.
By the appendix in [13] it follows that

λt
k − λt

k+1 = lim
n→∞P (k)

n (ν).

But the right-hand side is zero so that λt
k = λt

k+1. ¤

Proof of Lemma A.3. ν̃ = ν̃ by Lemma A.2, whose entire proof will be used re-
peatedly without additional mention.

Selected strings. Consider a string in (ν, J)(k) that is either selected by δ or δ̃,
or is such that its image under δ (resp. δ̃) is selected by δ̃ (resp. δ). It is shown
that the image of any such string under both δ̃ ◦ δ and δ ◦ δ̃ has the same label.
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Selected strings, generic case. In the generic case for ν(k), Remark A.1 shows
that the string (˜̀(k), 0) ∈ (ν, J)(k) is sent to the string (˜̀(k)−1, 0) under either δ ◦ δ̃

or δ̃ ◦ δ, and that a singular string of length `
(k)

in (ν, J)(k) is sent to a singular
string of length `

(k) − 1 under either δ ◦ δ̃ or δ̃ ◦ δ.

Selected strings, doubly singular case. Write ` = ˜̀(k) = `
(k)

. The string
(`, 0) ∈ (ν, J)(k) is also singular.

Selected strings, Case 1. Here only the string (`, 0) ∈ (ν, J)(k) and its images

under δ and δ̃ are selected. Moreover P
(k)
`−1(ν) = P

(k)
`−1(ν̃) = 0 and ˜̀(k)

= ˜̀(k)

= `−1.
The string (`, 0) is sent to a string of length `−2 and singular label under δ ◦ δ̃ and
zero label under δ̃ ◦ δ. Hence it must be shown that P

(k)
`−2(ν̃) = 0. Applying (3.9)

and (3.16),

P
(k)
`−2(ν̃) = P

(k)
`−2(ν)− χ(˜̀(k−1) ≤ `− 2)− χ(˜̀(k−1)

≤ `− 2). (A.15)

We divide into cases as in the proof of Case 1 in Lemma A.2. Suppose first that
P

(k)
`−1(ν) = 0. Then m`−1(ν(k)) = 0, and applying (3.10) with n = `−1 one obtains

P
(k)
`−2(ν) = 0. The admissibility of ν̃ and (A.15) imply P

(k)
`−2(ν̃) = 0.

By (A.6) the only alternative is P
(k)
`−1(ν) = 1, which implies that ˜̀(k−1) ≤ `− 1

and `
(k−1) ≤ ` − 1. By (A.7) m`−1(ν(k−1)) ≤ 2. As in the proof of Case 1 in

Lemma A.2, we distinguish the three cases given by m`−1(ν(k−1)) ∈ {0, 1, 2}.
Suppose m`−1(ν(k−1)) = 2. By (A.7) and (A.15) P

(k)
`−2(ν) = 0 and P

(k)
`−2(ν̃) = 0.

Suppose m`−1(ν(k−1)) = 1. By (A.7) P
(k)
`−2(ν) ≤ 1. By (A.15) it suffices to show

that either ˜̀(k−1) ≤ `− 2 or ˜̀(k−1)

≤ `− 2. Suppose neither holds. Then ˜̀(k−1) >

`−2 and ˜̀(k−1)

> `−2. Thus ˜̀(k−1) = `−1. Since m`−1(ν(k−1)) = 1 and ˜̀(k−1) =

`− 1, it follows that m`−1(ν̃(k−1)) = 0. But then `− 1 = ˜̀(k)

≥ ˜̀(k−1)

> `− 2, so˜̀(k−1)

= ` − 1. However there are no strings of length ` − 1 in ν̃(k−1), which is a
contradiction.

Suppose m`−1(ν(k−1)) = 0. By (A.7) P
(k)
`−2(ν) ≤ 2, so by (A.15) it is enough to

show that ˜̀(k−1) ≤ ` − 2 and ˜̀(k−1)

≤ ` − 2. In this subcase ˜̀(k−1) ≤ ` − 2 and

`
(k−1) ≤ ` − 2. Suppose ˜̀(k−1)

> ` − 2. Now ` − 1 = ˜̀(k)

≥ ˜̀(k−1)

> ` − 2 so˜̀(k−1)

= ˜̀(k)

= `−1. But m`−1(ν(k−1)) = 0 and ˜̀(k−1) ≤ `−2, so m`−1(ν̃(k−1)) = 0,

contradicting ˜̀(k−1)

= `− 1.
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Selected strings, Case 2. Here there are two copies of the singular string (`, 0) ∈
(ν, J)(k). If we think of δ as selecting one of them and δ̃ the other, then the proof
is the same as in the generic case.

Selected strings, Case 3. Let p = ˜̀(k)

= ˜̀(k)

. It satisfies p > ` and P
(k)
p (ν) = 0.

Moreover ˜̀(k+1) ≥ p and `
(k+1) ≥ p. The strings that will be selected are singular

strings (`, 0) and (p, 0) in (ν, J)(k).
The string (`, 0) maps to a string of length `−1, with label zero under δ ◦ δ̃ and

singular label under δ̃ ◦ δ. The string (p, 0) is sent to a string of length p− 1, with
singular label under δ ◦ δ̃ and to zero label under δ̃ ◦ δ.

It must be shown that

P
(k)
`−1(ν̃) = 0 (A.16)

P
(k)
p−1(ν̃) = 0. (A.17)

First (A.16) is established. By (3.9) and (3.16)

P
(k)
`−1(ν̃) = P

(k)
`−1(ν)− χ(̃`

(k−1)

≤ `− 1)− χ(`
(k−1) ≤ `− 1). (A.18)

By (A.9) m`(ν(k−1)) ≤ 2. We divide into cases for the choices of m`(ν(k−1)) ∈
{0, 1, 2}.

Suppose m`(ν(k−1)) = 2. By (A.9) P
(k)
`−1(ν) = 0. It follows immediately from

the admissibility of ν̃ and (A.18) that P
(k)
`−1(ν̃) = 0.

Suppose m`(ν(k−1)) = 1. By (A.9) P
(k)
`−1(ν) = 1, so by (A.18) it is enough to

show that either `
(k−1) ≤ ` − 1 or ˜̀(k−1)

≤ ` − 1. Suppose neither holds. Then

` = `
(k) ≥ `

(k−1)
> ` − 1 so `

(k−1)
= `. Also by (A.1) ` = ˜̀(k) ≥ ˜̀(k−1)

> ` − 1

so that ˜̀(k−1)

= `. Now m`(ν(k−1)) = 1 and `
(k−1)

= ` so m`(ν(k−1)) = 0,

contradicting ˜̀(k−1)

= `.
Suppose m`(ν(k−1)) = 0. By (A.9) P

(k)
`−1(ν) = 2, so by (A.18), to prove (A.16)

it is enough to show that `
(k−1) ≤ ` − 1 and ˜̀(k−1)

≤ ` − 1. By (A.12) we have

`
(k−1) ≤ `− 1 and ˜̀(k−1) ≤ `− 1. Suppose ˜̀(k−1)

> `− 1. Since ˜̀(k−1)

≤ ˜̀(k) = `

by (A.1), it follows that ˜̀(k−1)

= `. Now m`(ν(k−1)) = 0 and `
(k−1) ≤ ` − 1 so

m`(ν(k−1)) = 0. This contradicts ˜̀(k−1)

= `.

Now let us prove (A.17). Using p = ˜̀(k)

> ˜̀(k) and ˜̀(k+1) ≥ ˜̀(k)

= p, by (3.9)
and (3.16) we have

P
(k)
p−1(ν̃) = P

(k)
p−1(ν)− χ(˜̀(k−1)

≤ p− 1) + 1.
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Since P
(k)
p−1(ν) = 0, it must be shown that ˜̀(k−1)

≤ p−1. This is certainly the case,

for otherwise by (A.1), ` = `
(k) ≥ ˜̀(k−1)

≥ p, which is a contradiction.

Unselected strings. For the rest of the proof, assume that (n, x) is a string in
(ν, J)(k) that is not selected by δ̃ or δ, and is such that its image under δ (resp. δ̃)
is not selected by δ̃ (resp. δ).

Using the fact that δ preserves labels and δ̃ preserves colabels, it is enough to
show that P

(k)
n (ν)− P

(k)
n (ν̃) = P

(k)
n (ν)− P

(k)
n (ν̃), which by (3.16) is equivalent to

χ(˜̀(k−1) ≤ n < ˜̀(k))− χ(˜̀(k) ≤ n < ˜̀(k+1))

= χ(̃`
(k−1)

≤ n < ˜̀(k)

)− χ(̃`
(k)

≤ n < ˜̀(k+1)

).
(A.19)

Observe that for a ≤ b, χ(a ≤ n < b) = χ(a ≤ n) − χ(b ≤ n). Consider the
functions

∆(k)
n = χ(˜̀(k) ≤ n)− χ(̃`

(k)

≤ n)

b−(k)
n = χ(mn(ν(k+1)) ≥ 1)∆(k)

n

b=(k)
n = χ(mn(ν(k)) ≥ 1)∆(k)

n

b+(k)
n = χ(mn(ν(k−1)) ≥ 1)∆(k)

n .

For parts n that occur in ν(k), (A.19) is equivalent to

b−(k−1)
n − b=(k)

n = b=(k)
n − b+(k+1)

n . (A.20)

It will be shown that b−(k)
n = b=(k)

n = b+(k)
n = 0 if n is an unselected string in

ν(k+1), ν(k), ν(k−1), respectively, which implies (A.20).

Unselected strings, generic or Case 2. In this case ˜̀(k)

= ˜̀(k), so that ∆(k)
n =

0, and b−(k)
n = b=(k)

n = b+(k)
n = 0.

For the rest of the proof write ` = ˜̀(k) = `
(k)

.

Unselected strings, Case 1. Here ˜̀(k)

= ` − 1, so that ∆(k)
n = −χ(n = ` − 1).

Moreover m`−1(ν(k)) = 0 and m`−1(ν(k+1)) = 0. We have

b=(k)
n = −χ(n = `− 1)χ(m`−1(ν(k)) ≥ 1) = 0

b−(k)
n = −χ(n = `− 1)χ(m`−1(ν(k+1)) ≥ 1) = 0

b+(k)
n = −χ(n = `− 1)χ(m`−1(ν(k−1)) ≥ 1).
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It must be shown that b+(k)
n = 0 if n is an unselected string in ν(k−1) or equivalently

that m`−1(ν(k−1)) = 0 if ` − 1 is an unselected string in ν(k−1). Again we follow
the division into cases of the proof of Lemma A.2.

If P
(k)
`−1(ν) = 0, it also follows by (3.10) with n = `− 1 that m`−1(ν(k−1)) = 0.

Otherwise P
(k)
`−1(ν) = 1. We have m`−1(ν(k)) = 0, ˜̀(k−1) ≤ ` − 1 and `

(k−1) ≤
`− 1. Also by (A.7)

P
(k)
`−2(ν) ≤ 2−m`−1(ν(k−1)). (A.21)

Consider the three cases m`−1(ν(k−1)) ∈ {0, 1, 2}.
If m`−1(ν(k−1)) = 0 there is nothing to show. Suppose m`−1(ν(k−1)) = 1. It

must be shown that there are no unselected strings of length `− 1 in ν(k−1). Thus
it suffices to show that either ˜̀(k−1) = `− 1 or `

(k−1)
= `− 1, for then the unique

string in ν(k−1) of length ` − 1 is selected. So assume that ˜̀(k−1) ≤ ` − 2 and
`
(k−1) ≤ ` − 2. By (A.21) P

(k)
`−2(ν) ≤ 1. Let p be maximal such that p < ` − 1

and mp(ν(k)) ≥ 1; if it does not exist set p = 0. If p = ` − 2, it follows from

P
(k)
`−2(ν) ≤ 1, ˜̀(k−1) ≤ `− 2 and `

(k−1) ≤ `− 2 that either δ̃ or δ selects a string of

length `−2 in ν(k), which contradicts the minimality of ˜̀(k) and `
(k)

. Hence assume
that p < `−2. By Lemma 3.11, P

(k)
n (ν) = 1 for p+1 ≤ n ≤ `−1 and P

(k)
p (ν) ≤ 1.

Moreover by (3.10) mn(ν(k−1)) = mn(ν(k+1)) = 0 for p + 2 ≤ n ≤ `− 2 and

P (k)
p (ν) + mp+1(ν(k−1)) + mp+1(ν(k+1)) ≤ 1. (A.22)

Suppose P
(k)
p (ν)=1. This case can only occur if p≥1. By (A.22) mp+1(ν(k−1))=

0, so that ˜̀(k−1) ≤ p and `
(k−1) ≤ p. But mp(ν(k)) ≥ 1, so there is either a string

in ν(k) of length p < ` that is singular or of label 0, contradicting the minimality
of ˜̀(k) and `

(k)
.

Therefore P
(k)
p (ν) = 0. If `

(k−1) ≤ p (which can only happen if p ≥ 1), since
mp(ν(k)) ≥ 1 there is a singular string (p, 0) in (ν, J)(k), contradicting the definition

of `
(k)

= `. So `
(k−1)

> p and similarly ˜̀(k−1) > p. Since it is assumed that
`
(k−1) ≤ `− 2 and ˜̀(k−1) ≤ `− 2, and there are no strings in (ν, J)(k−1) of lengths

n such that p + 2 ≤ n ≤ ` − 2, it follows that `
(k−1)

= ˜̀(k−1) = p + 1 and
mp+1(ν(k−1)) = 1.

This rules out the generic case and Case 2 for ν(k−1). Case 1 for ν(k−1) is
also ruled out, for otherwise if p ≥ 1, then by induction mp(ν(k)) = 0 which is

a contradiction, and if p = 0, then ˜̀(k−1)

= `
(k−1) − 1 = p = 0, which is also a

contradiction.
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Suppose Case 3 holds for ν(k−1), that is, ˜̀(k−1)

= ˜̀(k−1)

> ˜̀(k−1) = `
(k−1)

=
p+1. But `

(k−1)
= p+1 and mn(ν(k−1)) = 0 for p+2 ≤ n ≤ `−2, so mn(ν(k−1)) = 0

for p + 2 ≤ n ≤ ` − 2. This implies ˜̀(k−1)

≥ ` − 1. Also ` − 1 = ˜̀(k)

≥ ˜̀(k−1)

so˜̀(k−1)

= `−1. Thus the unique string in (ν, J)(k−1) of length `−1 is selected while
passing from δ(ν, J) to δ̃(δ(ν, J)).

Suppose m`−1(ν(k−1)) = 2. By (A.21), P
(k)
`−2(ν) = 0. If m`−2(ν(k)) = 0, then

by (3.10) it follows that P
(k)
`−1(ν)=0, which is a contradiction. Thus m`−2(ν(k))≥1.

By the minimality of `
(k)

= ˜̀(k) = `, it follows that ˜̀(k−1) ≥ `−1 and `
(k−1) ≥ `−1.

Since it is assumed that ˜̀(k−1) ≤ `−1 and `
(k−1) ≤ `−1, we have `

(k−1)
= ˜̀(k−1) =

` − 1. It must be shown that both of the strings of length ` − 1 in (ν, J)(k−1) get
selected. Since m`−1(ν(k−1)) = 2, Case 3 does not hold for ν(k−1). Case 1 does
not hold either, for otherwise m`−2(ν(k)) = 0, which is a contradiction. Therefore
either the generic case or Case 2 holds for ν(k−1) and either way, both strings in
(ν, J)(k−1) of length `− 1 are selected.

Unselected strings, Case 3. Here ∆(k)
n = χ(` ≤ n < ˜̀(k)

). It follows from the

proof of Lemma A.2 that mn(ν(j)) = 0 for k − 1 ≤ j ≤ k + 1 and ` < n < ˜̀(k)

.
Hence b=(k)

n = χ(n = `)χ(m`(ν(k)) ≥ 1), b−(k)
n = χ(n = `)χ(m`(ν(k+1)) ≥ 1), and

b+(k)
n = χ(n = `)χ(m`(ν(k−1)) ≥ 1). However in Case 3, m`(ν(k)) = 1, so that

there are no other strings in (ν, J)(k) of length ` other than the one selected by δ

and δ̃. So b=(k)
n = 0 for all applicable strings (n, J). By (A.10) also b−(k)

n = 0.
It is enough to show that b+(k)

n = 0, that is, m`(ν(k−1)) = 0 if ` is an unselected
string. By (A.9) we distinguish the cases m`(ν(k−1)) ∈ {0, 1, 2}. If m`(ν(k−1)) = 0
we are done.

Suppose that m`(ν(k−1)) = 1. By definition `
(k−1) ≤ ` and ˜̀(k−1) ≤ `. If˜̀(k−1) = ` or `

(k−1)
= `, then the only string of length ` in (ν, J)(k−1) is selected. So

suppose `
(k−1) ≤ `−1. Then by (A.9) and (A.14) P

(k)
`−1(ν) = 0. Since m`−1(ν(k)) ≥

1 and ˜̀(k)

> `, it follows that ˜̀(k−1)

≥ `. On the other hand ˜̀(k−1)

≤ ˜̀(k) = ` by

(A.1), so ˜̀(k−1)

= `. Thus the lone string in ν(k−1) of length ` is selected in passing

from ν(k−1) to ν̃
(k−1)

.
Finally suppose m`(ν(k−1)) = 2. By (A.9) P

(k)
`−1(ν) = 0. It follows from (A.14)

that P
(k)
`−1(ν) = 0 and `

(k−1) ≥ `. Since `
(k−1) ≤ `

(k)
= `, we have `

(k−1)
= `.

Similarly ˜̀(k−1) = `. It is enough to show that either the generic case or Case 2
holds for ν(k−1) for then both strings of length ` in ν(k−1) are selected. By (A.1)˜̀(k−1) = ` = ˜̀(k) ≥ ˜̀(k−1)

, so Case 3 for ν(k−1) is ruled out. Suppose Case 1 holds
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for ν(k−1). Then `
(k−1)

= ˜̀(k−1) = ` and ˜̀(k−1)

= ˜̀(k−1) − 1 = ` − 1. By (3.9)
with n = ` − 1, P

(k)
`−1(ν) = P

(k)
`−1(ν) = 0. Now m`−1(ν(k)) ≥ 1, so there is a string

(`− 1, 0) ∈ (ν, J)(k). But `− 1 = ˜̀(k−1)

so this is a contradiction to the definition

of ˜̀(k)

> `. ¤

Appendix B. Proof of Lemma 7.3

Lemma 7.3 is established here by Corollary B.6 and Lemma B.7.
Let R = (R1, . . . , RL) such that Rj = (ηµj

j ) with ηL = 1, λ a partition

and (ν, J) ∈ RC(λt;Rt). Denote (ν, J) = δ(ν, J) ∈ RC(ρt;R
t
) and (νt, J t) =

trRC(ν, J) ∈ RC(λ;R). Let `
(k)

be the lengths of the strings selected by δ and
r = rk(ν, J), the minimum index such that `

(r)
= ∞. By Proposition 3.12 the

partition ρ is obtained by removing the corner cell (λt
r, r) of λ.

Recall that to every configuration ν there is an associated matrix (7.1). Let δm
be the matrix of ν. Then for all i, j ≥ 1,

mij − (δm)ij = χ(i− 1 ≥ 1)χ(j = `
(i−1)

)− χ(j = `
(i)

).

The matrix of the RC-transpose of δm can be calculated as follows.

((δm)t)ij = −(δm)ji + χ((i, j) ∈ ρ)−
L∑

a=1

χ((i, j) ∈ Ra)

= −mji + χ(j − 1 ≥ 1)χ(i = `
(j−1)

)− χ(i = `
(j)

) + χ((i, j) ∈ λ)

− χ((i, j) = (λt
r, r))−

L∑
a=1

χ((i, j) ∈ Ra) + χ((i, j) = (µL, 1))

= mt
ij + χ(i = `

(j−1)
)− χ(i = `

(j)
)− χ((i, j) = (λt

r, r)).

Let ∂mt be the matrix of the configuration of ∂(νt, J t) and `(k) the lengths of the
strings selected by ∂. Then

(∂mt)ij = mt
ij − χ(i− 1 ≥ µL)χ(j = `(i−1)) + χ(i ≥ µL)χ(j = `(i)).

Thus the configurations of ∂ ◦ trRC(ν, J) and trRC ◦δ(ν, J) coincide if and only if

− χ(i− 1 ≥ µL)χ(j = `(i−1)) + χ(i ≥ µL)χ(j = `(i))

= χ(i = `
(j−1)

)− χ(i = `
(j)

)− χ((i, j) = (λt
r, r)).

(B.1)
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Remark B.1. By the definition of the RC-transpose map, there cannot be a
singular string of length n in ν(k) and a singular string of length k in νt(n).

Remark B.2. Let i, j ≥ 1. Suppose (i, j + 1) ∈ λ, that is, λt
j+1 ≥ i. Then by [13,

(9.7)] for the admissible (λt;Rt)-configuration ν, we have mj(νt(i)) = P
(j)
i (ν).

Similarly if (i + 1, j) ∈ λ, then mi(ν(j)) = P
(i)
j (νt).

Lemma B.3. Suppose that ν is an admissible configuration of type (λt;Rt). Then
for all n ≥ λt

k, P
(k)
n (ν) = λt

k − λt
k+1.

Proof. By [13, (11.2)], we have

P (k)
n (ν) = λt

k − λt
k+1 +

L∑
a=1

min(0, n− µa)δηa,k (B.2)

whenever n ≥ ν
(k−1)
1 , n ≥ ν

(k)
1 , and n ≥ ν

(k+1)
1 . But in the proof of [13, Lemma 10]

it is shown that λt
p+1 ≥ ν

(p)
1 for all p, and in particular for k− 1 ≤ p ≤ k +1. Thus

for n ≥ λt
k, (B.2) holds. It suffices to show that the sum over a is zero. Suppose

not. Then there is a rectangle Ra in R whose width is ηa = k and its height µa

satisfies µa > n ≥ λt
k. This means that Ra is not contained in λ, which contradicts

the assumption that RC(λt;Rt) is nonempty. ¤
Define the sets of pairs of positive integers

Hδ = {(i, j) | i = `
(j)}

H∂ = {(i, j) | j = `(i)}.

Let H = Hδ ∪H∂ and H+ = H ∪ {(λt
r, r)}.

Remark B.4. H ⊂ λ. To see this, by [13, Lemma 10], mn(ν(k)) > 0 implies that
n ≤ λt

k+1, that is, (n, k + 1) ∈ λ and hence (n, k) ∈ λ. Likewise, mk(νt(n)) > 0
implies k ≤ λn+1, that is, (n+1, k) ∈ λ and hence (n, k) ∈ λ. This also shows that
every cell of Hδ is not at the end of its row in λ and every cell of H∂ is not at the
bottom of its column in λ.

Lemma B.5. (λt
r, r) 6∈ H and H+ is a rookwise connected subset of the Ferrers

diagram of λ that can be viewed as leading from the cell (1, 1) to the cell (λt
r, r)

where cells of Hδ are viewed as commands to proceed to the east by one column and
cells of H∂ are commands to proceed south by a row.

Proof. Define the cell si = (i, 1) for 1 ≤ i ≤ µL − 1; si ∈ H∂ by definition. Also
si ∈ λ since RC(λt;Rt) is assumed to be nonempty which by the Littlewood–
Richardson rule implies that λ contains RL = (1µL). By induction suppose that
the cell sm−1 ∈ H ∩ λ has been defined for m ≥ µL. Let sm be the cell just east
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of sm−1 if sm−1 ∈ Hδ and the cell just south of sm−1 if sm−1 ∈ H∂ . This is well
defined since Hδ ∩H∂ = ∅ by Remark B.1. Moreover sm ∈ λ by Remark B.4. If
µL > 1, the algorithm defines sµL

= (µL, 1). If µL = 1, we define s1 = (1, 1).
We shall show that one of three possibilities must occur, which are mutually

disjoint by Remarks B.1 and B.4.
1. sm is a corner cell of λ.
2. sm ∈ Hδ.
3. sm ∈ H∂ .

Write sm = (i, j).
Suppose that there is a singular string in (ν, J)(j) of length i. Then it will be

shown that i = `
(j)

and (i, j) ∈ Hδ. By construction either sm−1 = (i, j − 1) or
sm−1 = (i − 1, j). Suppose that sm−1 = (i, j − 1), that is, i = `

(j−1)
. Then by

definition i = `
(j)

and (i, j) ∈ Hδ. Otherwise sm−1 = (i − 1, j). By definition
(`

(j−1)
, j−1) ∈ Hδ, and by the construction of s1 through sm, we have (i′, j) ∈ H∂

for `
(j−1) ≤ i′ ≤ i − 1, for otherwise the path would have proceeded into column

j+1. In particular for such i′ there are no singular strings of length i′ in (ν, J)(j) by
Remark B.1, so that by definition i = `

(j)
. Similarly if there is a singular string in

(νt, J t)(i) of length j, then j = `(i) and (i, j) ∈ H∂ . Otherwise it may be assumed
that there is not a singular string in (ν, J)(j) of length i and there is not a singular
string in (νt, J t)(i) of length j.

Under these assumptions, the following situations lead to contradictions:

mi(ν(j)) = P
(j)
i (ν) = 0 (B.3)

mj(νt(i)) = P
(i)
j (νt) = 0. (B.4)

Suppose (B.3) holds. In the base case m = µL, we have (i, j) = (µL, 1). Recall
that RL = (1µL). This implies that mµL

(ξ(1)(R)) > 0. In particular it follows
immediately from (3.10) with k = j = 1 and n = i = µL that (B.3) is impossible.

Otherwise assume that we are in the inductive case m > µL. Applying (3.10)
with n = i and k = j, it follows that mi(ν(j−1)) = 0 and P

(j)
i−1(ν) = 0. The former

immediately implies (i, j−1) 6∈ H. By construction, since (i, j−1) 6∈ H, it must be
the case that sm−1 = (i− 1, j) ∈ H∂ . Thus there is a singular string of length j in
(νt, J t)(i−1), so that mj(νt(i−1)) > 0. By (7.3), mi−1(ν(j)) = P

(i−1)
j (νt). Suppose

this common value is nonzero. By (7.3), P
(j)
i−1(ν) = mj(νt(i−1)) > 0, which is a

contradiction. Therefore mi−1(ν(j)) = 0. But also P
(j)
i−1(ν) = 0, so that (B.3) holds

for (i − 1, j). But this is a contradiction by induction since (i − 1, j) is earlier in
the path than (i, j). Similarly (B.4) leads to a contradiction.

Now the proof divides into four cases depending on whether the cells (i + 1, j)
and (i, j + 1) are in λ or not.
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Suppose first that both (i, j +1) ∈ λ and (i+1, j) ∈ λ. By Remark B.2 we have
a := mi(ν(j)) = P

(i)
j (νt) and b := mj(νt(i)) = P

(j)
i (ν). If a > 0 and b > 0 then by

the definition of the RC-transpose map on riggings, there is either a singular string
of length i in (ν, J)(j) or a singular string of length j in (νt, J t)(i), contradicting
a previous assumption. If a > 0 and b = 0 then there is a string of length i in
(ν, J)(j) with vacancy number zero, so it is singular, which is a contradiction. A
similar contradiction is reached if a = 0 and b > 0. If a = b = 0, then one obtains
the impossibility (B.3).

Next suppose (i, j + 1) ∈ λ and (i + 1, j) 6∈ λ so that λt
j = i = λt

j+1. By

Lemma B.3 with k = j and n = i = λt
j we have P

(j)
i (ν) = 0. If mi(ν(j)) > 0 then

there is a singular string of length i in (ν, J)(j), which is a contradiction, and if
mi(ν(j)) = 0 one obtains the impossibility (B.3).

In a similar manner one rules out the case (i, j + 1) 6∈ λ and (i + 1, j) ∈ λ.
The last remaining case is (i, j + 1) 6∈ λ and (i + 1, j) 6∈ λ. But (i, j) ∈ λ so

(i, j) is a corner cell of λ. This finishes the proof of the trichotomy.
Now it is enough to show that if sm = (i, j) is a corner cell of λ, then j = r =

rk(ν, J). There cannot be a cell of Hδ in the j-th column or the path would have
crossed into the (j +1)-st column. Thus j ≥ r. If j > 1, then by construction there
is a cell of Hδ in the (j− 1)-st column, so j ≤ r and therefore j = r. If j = 1, then
Hδ is empty and `

(1)
= ∞, and again j = r since both equal 1. ¤

Corollary B.6. The configurations of trRC ◦δ(ν, J) and ∂ ◦ trRC(ν, J) coincide.

Proof. Follows directly from (B.1) and Lemma B.5. ¤

Lemma B.7. The riggings of trRC ◦δ(ν, J) and ∂ ◦ trRC(ν, J) coincide.

Proof. Let (ν, J) = δ(ν, J), (νt, J t) = trRC(ν, J), (νt, J
t
) = trRC ◦δ(ν, J) and

(νt, J t) = ∂ ◦ trRC(ν, J). Denote the corresponding partitions by J
(k)

n , J
t(k)
n , J

t(k)

n

and J t
(k)

n , respectively. The aim is to show that J
t(n)

k = J t
(n)

k for all n, k ≥ 1.
Since the transpose of a rigging depends on the vacancy number and the vacancy
number changes under δ according to (3.9), we need to distinguish several ranges
for n.

First suppose that `
(k−1) ≤ n < `

(k)−1. In this case the riggings are not changed
by δ so that J

(k)
n = J

(k)

n , and furthermore the largest part of J
(k)
n is smaller than

P
(k)
n (ν), since by the definition of `

(k)
there are no singular strings in the range of

n. The rectangle corresponding to J
(k)

n has height mn(ν(k)) = mn(ν(k)) and width
P

(k)
n (ν) = P

(k)
n (ν) − 1 by (3.9). Hence, compared to J

t(n)
k , J

t(n)

k has one part of
length mn(ν(k)) less. It follows from Lemma B.5 that `(n) = k. Since furthermore
µL ≤ `

(k−1) ≤ n, this implies that ∂ removes one part of length P
(n)
k (νt) from

J
t(n)
k . It also ensures that mk(νt(n)) > 0. By (7.3), P

(n)
k (νt) = mn(ν(k)) which
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proves J
t(n)

k = J t
(n)

k .

Next suppose that `
(k)

< n < `
(k+1)

. Again by the choice of n we have J
(k)
n =

J
(k)

n , and the rectangle containing J
(k)

n has height mn(ν(k)) = mn(ν(k)) and width
P

(k)
n (ν) = P

(k)
n (ν) + 1 by (3.9). Hence, compared to J

t(n)
k , J

t(n)

k has an extra part
of size mn(ν(k)). By Lemma B.5, k = `(n) − 1 so that ∂ adds an extra part of

size P
(n)
k (νt) to J

t(n)
k and mk(νt

(n)
) > 0. By Corollary B.6 this also implies that

mk(νt(n)) > 0. Hence one finds by (7.3) that P
(n)
k (νt) = P

(n)
k (νt) = mn(ν(k)) =

mn(ν(k)). This shows that J
t(n)

k = J t
(n)

k .

Now assume that n = `
(k)

and `
(k)

< `
(k+1)

. Since n = `
(k)

the largest part
of J

(k)
n equals P

(k)
n (ν), which is removed under δ. The rectangle corresponding

to J
(k)

n has height mn(ν(k)) = mn(ν(k)) − 1 and width P
(k)
n (ν) = P

(k)
n (ν) + 1.

Hence, compared to J
t(n)
k , J

t(n)

k has an extra part of size mn(ν(k)) − 1. From
Lemma B.5 we find that `(n) = k + 1, so that ∂ adds a part of size P

(n)
k (νt) to

J
t(n)
k . Since ∂ added a part, mk(νt(n)) = mk(νt

(n)
) > 0 which by (7.3) implies that

P
(n)
k (νt) = mn(ν(k)) − 1. Hence P

(n)
k (νt) = P

(n)
k (νt) = mn(ν(k)) = mn(ν(k)) − 1

by (7.3).

Next assume that n = `
(k)

= `
(k+1)

. Again J
(k)

n is obtained from J
(k)
n by

removing a part of size P
(k)
n (ν), and this time the rectangle corresponding to J

(k)

n

has height mn(ν(k)) = mn(ν(k))−1 and width P
(k)
n (ν) = P

(k)
n (ν). Therefore J

t(n)

k =

J
t(n)
k . By Lemma B.5 we have `(n−1) ≤ k < `(n) − 1 so that also J t

(n)

k = J
t(n)
k ,

which proves the assertion.

Consider the case n = `
(k)−1 and `

(k−1)
< `

(k)
. By the assumptions on n there

is no singular string of length n in ν(k) so that the largest part of J
(k)
n is smaller

than P
(k)
n (ν). Under δ a part of size P

(k)
n (ν) = P

(k)
n (ν)− 1 gets added to J

(k)
n , and

the rectangle corresponding to J
(k)

n has height mn(ν(k)) = mn(ν(k)) + 1 and width
P

(k)
n (ν)− 1. Hence, compared to J

t(n)
k , a part of size mn(ν(k)) is missing in J

t(n)

k .
By Lemma B.5 `(n) = k. Hence ∂ removes a part of size P

(n)
k (νt) from J

t(n)
k . But

P
(n)
k (νt) = mn(ν(k)) by (7.3) because mk(νt(n)) > 0 since k = `(n).

Now assume that n+1 = `
(k)

= `
(k−1)

. The partition J
(k)

n is obtained from J
(k)
n

by adding a part of size P
(k)
n (ν) = P

(k)
n (ν) and its rectangle has height mn(ν(k)) =

mn(ν(k)) + 1 and width P
(k)
n (ν). Hence J

t(n)

k = J
t(n)
k . By Lemma B.5, `(n) < k <

`(n+1) if k > 1, which implies that ∂ preserves the rigging so that J t
(n)

k = J
t(n)
k

proving the assertion. If k = 1, then n = `
(0)− 1 = µL− 1. In this case ∂ also does

not change the rigging so that J t
(n)

k = J
t(n)
k .
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Finally assume that none of the above cases holds for n so that mn(ν(k)) =
mn(ν(k)), P

(k)
n (ν) = P

(k)
n (ν) and J

(k)

n = J
(k)
n which implies that J

t(n)

k = J
t(n)
k . If

n ≥ `
(k+1)

one finds by Lemma B.5 that k ≤ `(n) − 2. If n < `
(k−1)

for k > 1,
Lemma B.5 implies that k > `(n). The remaining case is n < `

(0)
= µL. In all

three cases ∂ does not alter J
t(n)
k so that indeed J t

(n)

k = J
t(n)

k . ¤
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