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Weak solutions and supersolutions in L1

for reaction-diffusion systems

Michel Pierre

A Philippe, mon maı̂tre et ami

Abstract. We prove here that limits of nonnegative solutions to reaction-diffusion systems whose nonlinearities
are bounded in L1 always converge to supersolutions of the system. The motivation comes from the question of
global existence in time of solutions for the wide class of systems preserving positivity and for which the total
mass of the solution is uniformly bounded. We prove that, for a large subclass of these systems, weak solutions
exist globally.

1. Introduction

This paper is motivated by the general question of global existence in time of solutions
to reaction-diffusion systems of the form:

ut − d1�u = f (u, v) on Q,

vt − d2�v = g(u, v) on Q,

u(0, ·) = u0(·) ≥ 0, v(0, ·) = v0(·) ≥ 0,

u, v satisfy some good boundary conditions on ∂�,


 (1)

where Q = (0, +∞) × �, � is a regular bounded open subset of R
N , d1, d2 > 0 and f, g

are regular functions whose nonlinear structure is such that two main properties occur:

- the nonegativity of solutions of (1) is preserved in time,
- the total mass of the solutions is uniformly bounded in time.

The functions f, g may also depend on time and space variable (f = f (t, x, u, v)).
With good boundary conditions on ∂� like for instance u = v = 0 or ∂nu = ∂nv = 0

(where ∂n is the normal derivative at the boundary), nonnegativity will be preserved in time,
like for systems of ordinary differential equations, as soon as

∀u, v ≥ 0, f (0, v) ≥ 0, g(u, 0) ≥ 0. (2)

Mathematics Subject Classification (2000): 35K10, 35K45, 35K57.
Key words: parabolic system, reaction-diffusion, blowup, global existence, semilinear system.



154 m. pierre J.evol.equ.

The second property will occur for instance when

f + g ≤ 0. (3)

Indeed, by just integrating the sum of the two equations, we obtain∫
�

u(t) + v(t) ≤
∫

�

u0 + v0.

Together with nonnegativity, this yields an L1-bound of the solution uniformly in time. A
general question is to understand how these two properties help to provide global existence
in time of solutions.

Note that, if we had uniform L∞-bounds rather than L1-bounds, we would deduce global
existence in time of “classical” solutions, by standard results for reaction-diffusion systems.
By “classical” solution, we mean “bounded” solution, so that, by well-known regularity
results, a “classical” solution also has classical derivatives at least a.e. and the equations
are understood pointwise.

The point here is that bounds are a priori only in L1 and one cannot apply the L∞-
approach even if the initial data are regular.

This situation frequently comes out in applications where positivity of the unknowns
u, v is implicit from their definition (they are densities, concentrations, normalized tem-
peratures,. . . ) and where the total mass is preserved or, at least, controlled in time. This
explains why these systems have been studied in several places in the literature. Let us refer
here to [11, 17] for a survey and references.

To help understand the situation, let us mention two particular examples of the nonlin-
earities we are considering:

f (u, v) = u3v2 − u2v3, g(u, v) = −u3v2 + γ u2v3, where 0 ≤ γ ≤ 1. (4)

f (u, v) = c1(x, t)uαvβ, g(u, v) = c2(x, t)uαvβ, (5)

where α, β > 1, and c1, c2 are regular functions such that

a.e. (t, x) ∈ Q, c1(x, t) + c2(x, t) ≤ 0. (6)

Obviously, for bounded initial data, we will have local existence of classical solutions.
With some extra assumptions, like for instance γ = 0 in (4) or c2 ≤ 0 in (5), global existence
of classical solutions may be proved. It is not straightforward: several approaches may be
found in [13, 7, 8, 3, 14].

But for our purpose here, the main fact to remember is that, although one has an
uniform L1-bound in time, “classical” solutions may not globally exist when the diffu-
sion coefficients d1, d2 are not equal (global existence obviously holds if they are equal).
As surprisingly proved in [16, 17], it may indeed happen that, under assumptions (2), (3),
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solutions blow up in finite time in L∞! In particular, classical bounded solutions do not
exist globally in time.

We emphasize the fact that, in the examples of blow up provided in [16, 17], not only
(3) holds, but even

f + λ0g ≤ 0 for some λ0 ∈ [0, 1). (7)

Note that (3) together with (7) imply that

f + λ g ≤ 0 for λ ∈ [λ0, 1].

As we will see in more details later, under this more restrictive assumption, not only u, v are
bounded in L1(�), but the nonlinear terms f (u, v), g(u, v) are also bounded in L1(QT )

for all 0 < T < ∞ and QT = (0, T ) × �.
A first main purpose of this paper is to prove that, under the latter stronger assump-

tion, global existence on [0, ∞) of weak solutions holds for the above considered systems
(although these solutions may blow up in L∞ at some time). By “weak” solution, we essen-
tially mean solution in the sense of distributions or, equivalently here, solution in the sense
of the variation of constant formula with the corresponding semigroups (see Appendix). In
particular, classical derivatives may not exist. Such weak L1-solutions had already been
considered in [15, 10, 3] to handle initial data in L1. However, an extra condition of “tri-
angular” structure of the nonlinearities was required (which would, for instance, imply
γ = 0 in example (4)).

Concerning the above examples, our result here means that weak solutions exist globally
for the nonlinearities (4) if γ ∈ [0, 1) and for the nonlinearities (5) if, moreover, c1 + λ0c2

≤ 0 for some λ0 ≥ 0, λ0 �= 1. But, according to [16, 17], weak solutions in example (5)
may blow up in finite time in Lp(�) for p large. We do not know specifically what happens
for example (4), but we know that similar polynomial nonlinearities do lead to blow up in
finite time [16, 17].

One of the main steps in the proof turns out to be interesting by itself for reaction-
diffusion systems. One knows that maximum principle is valid for equations, but generally
not for systems. It turns out that systems do nevertheless share some order properties with
equations, no matter their structure: this is also a purpose of this paper to point it out.

To explain this point, let us first consider an equation and a sequence of nonnegative
regular solutions of

∂un/∂t − �un = Fn(un) on QT

where Fn : [0, +∞) → R converges uniformly on bounded sets to the continuous function
F : [0, +∞) → R. Assume that

Fn(un) is bounded in L1(QT ) independently of n.
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Assume also that un satisfies, for instance, the boundary condition un(t, ·) = 0 on ∂� and
that un(0, .) is bounded in L1.

Then, up to a subsequence, un converges in L1(QT ) to a supersolution u of the equation,
namely

∂u/∂t − �u ≥ F(u) on QT , (8)

in the sense of distributions.
The proof of this fact goes essentially as follows. Thanks to the L1 bound on the non-

linear term Fn(un) and to the parabolic boundary conditions, un is relatively compact in
L1(QT ). Up to a subsequence, one can assume that un converges in L1(QT ) and almost
everywhere to a function u. Then, Fn(un) converges pointwise to the integrable function
F(u). Unfortunately, this is not enough to pass to the limit in the equation.

Then, let us introduce a truncation procedure: for k ≥ 1 and r ≥ 0, set τk(r) = min {r, k}.
By a simple computation, we obtain for all k, n:

∂τk(un)/∂t − �τk(u
n) ≥ τ ′

k(un)Fn(un) on QT .

But, τ ′
k(un) = 0 where un > k. For k fixed, since Fn(un) is bounded independently of

n on the set where un ≤ k, then, τ ′
k(un)Fn(un) converges, not only pointwise, but also in

L1(QT ) to τ ′
k(u)F (u), so that

∂τk(u)/∂t − �τk(u) ≥ τ ′
k(u)F (u) on QT .

We now let k go to ∞ to obtain (8).
Obviously, this approach does not extend as such to a sequence un, vn of solutions of a

2×2 system since, multiplying the first equation by T ′
k(un) does not take care of unbounded

values of vn. However, we are able to prove that the same result holds and this is another
main goal of this paper: when the nonlinearities remain bounded in L1(QT ), the limit is a
supersolution of the system.

2. The main results

Let � be a bounded open subset of R
N with regular boundary. We denote Q :=

(0, +∞) × �, and for T ∈ (0, +∞), QT := (0, T ) × �.
Let f, g : Q × [0, +∞)2 → R satisfy the usual local Lipschitz conditions:

f, g are measurable, ∀ T > 0, f (·, ·, 0, 0), g(·, ·, 0, 0) ∈ L1(QT ),

∃ K : [0, +∞) → [0, +∞) nondecreasing such that
a.e. (t, x) ∈ [0, +∞) × �, ∀ M > 0, ∀ r, s, r̂, ŝ ∈ (0, M),

|f (t, x, r, s) − f (t, x, r̂, ŝ)| + |g(t, x, r, s) − g(t, x, r̂, ŝ)| ≤ . . .

. . . K(r)(|r − r̂| + |s − ŝ|).




(9)
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The condition (2) will take the form

a.e. (t, x) ∈ Q, ∀ u, v ≥ 0, f (t, x, 0, v) ≥ 0, g(t, x, u, 0) ≥ 0. (10)

We will also assume that conditions (3)+(7) are satisfied in a weaker sense:

∃ λ0 ∈ [0, 1), such that ∀ λ ∈ [λ0, 1],
a.e.(t, x) ∈ Q, ∀ r, s ≥ 0,

f (t, x, r, s) + λ g(t, x, r, s) ≤ σ (r + s) + h(t, x),

where σ ≥ 0, and h ∈ L1(QT ), ∀ T > 0, h ≥ 0.


 (11)

THEOREM 2.1. Let f, g be given as in (9) and let d1, d2 > 0. Assume that f, g

satisfy the positivity property (10) and the structure condition (11). Then, for all u0, v0 ∈
L1(�), u0, v0 ≥ 0, there exists a global nonnegative solution (u, v) on [0, +∞) of

u, v ∈ C([0, +∞); L1(�)) ∩ L1
loc([0, +∞); W

1,1
0 (�)),

u(0, ·) = u0, v(0, ·) = v0,

∀ T > 0, f (·, ·, u(·, ·), v(·, ·)), g(·, ·, u(·, ·), v(·, ·)) ∈ L1(QT ),

ut − d1�u = f (t, x, u, v) in D′(Q),

vt − d2�v = g(t, x, u, v) in D′(Q).




(12)

Here and hereafter, equations are understood in the sense of distributions D′(Q), that
is, for all test-function ϕ in the space C∞

0 (Q) of infinitely differentiable functions with
compact support in Q, we have:

−
∫

Q

u (ϕt + d1�ϕ) =
∫

Q

ϕ f,

and similarly for v. It is well-known that (12) is equivalent to the variation of constant
formula, that is to say (see Appendix)

u(t) = Sd1(t)u0 +
∫ t

0
Sd1(t − s)f (s, ·, u(s, ·), v(s, ·)) ds,

where Sd1(·) is the semigroup generated in L1(�) by the Laplacian operator with homoge-
neous boundary conditions (and the similar formula for v).

REMARK. The boundary condition u = v = 0 on ∂� is understood here in the sense
that a.e.t, u(t), v(t) ∈ W

1,1
0 (�). As usual, for all 1 ≤ p < +∞, W

1,p

0 (�) is the closure
of the space C∞

0 (�) equipped with the norm

‖w‖
W

1,p
0

:= {‖w‖p

Lp(�) + ‖∇w‖p

Lp(�)N
}1/p.

As it will be clear from the proof, a similar result could be stated for Neumann boundary
conditions or for more general boundary conditions. One must however be careful when
choosing two different boundary conditions for u and v (see [4, 12]).
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As announced in the introduction, the second main result of this paper deals with limits
of approximate solutions of systems when the nonlinearities are bounded in L1.

THEOREM 2.2. Let (un, vn) be a sequence of (regular) nonegative solutions of

un, vn ∈ C([0, T ]; L2(�)) ∩ L2((0, T ); W
1,2
0 (�)),

unt , vnt , �un, �vn ∈ L2(QT ),

Fn(·, ·, un(·), vn(·)), Gn(·, ·, un(·), vn(·)) ∈ L2(QT ),

∂un/∂t − d1�un = Fn(t, x, un, vn) on QT ,

∂vn/∂t − d2�vn = Gn(t, x, un, vn) on QT ,




(13)

where Fn, Gn : Q × [0, +∞)2 → R converge in the following sense to F, G : Q ×
[0, +∞)2 → R satisfying (9): for all M > 0, εn

M tends to zero in L1(QT ) as n → +∞
where

εn
M = sup

0≤r,s≤M

{|Fn(·, ·, r, s) − F(·, ·, r, s)| + |Gn(·, ·, r, s) − G(·, ·, r, s)|}. (14)

Assume that Fn(·, ·, un(·), vn(·)), Gn(·, ·, un(·), vn(·)) are bounded in L1(QT ) indepen-
dently of n. Assume also that un(0), vn(0) are bounded in L1.

Then, up to a subsequence, un, vn converge to u, v in L1(QT ) satisfying

u, v ∈ L∞((0, T ); L1(�)) ∩ L1((0, T ); W
1,1
0 (�)),

F (·, ·, u(·, ·), v(·, ·)), G(·, ·, u(·, ·), v(·, ·)) ∈ L1(QT ),

∂u/∂t − d1�u ≥ F(t, x, u, v) in D′(QT ),

∂v/∂t − d2�v ≥ G(t, x, u, v) on D′(QT ).


 (15)

Moreover, if un(0), vn(0) converge to u0, v0 in L1(�), then, for all nonnegative ϕ ∈ C∞
0 (�),

we have

lim inf
t→0

∫
�

u(t)ϕ ≥
∫

�

u0ϕ, lim inf
t→0

∫
�

v(t)ϕ ≥
∫

�

v0ϕ. (16)

REMARK. Although it is not essential, we assume here that the solutions are
“regular”, in the sense that they have derivatives unt , �un in L2. This allows to make
direct computations. Without L2-regularity, we could also do it by using one more approxi-
mation process. Theorem 2 (which we prove first) will be sufficient for the approximate
solutions considered in Theorem 1 which are regular by construction.

The above inequations are understood in the sense of distributions in Q: this means that
for all nonnegative test-functions ϕ of C∞

0 (Q),

−
∫

Q

u (ϕt + d1�ϕ) ≥
∫

Q

ϕ F,

and the same for v.
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Obviously, estimate (16) says that the initial data of u, v are above the limit of the initial
data of un, vn. More precisely, since u(t) is bounded in L1(�), one may find a nonnegative
Radon measure u0+ and a sequence tk tending to zero as k tends to +∞ such that u(tk)

converges to u0+ in the sense of measures. Then, for all such limit u0+ , by (16), we have
u0+ ≥ u0, and the same for v.

3. The proofs

We will use the following more or less classical compactness lemma for the heat operator
(a proof may be found e.g. in [2]; comments are also given in Appendix)

LEMMA 3.1. Let d > 0, w0 ∈ L1(�), H ∈ L1(QT ). Then there exists a unique
solution of

w ∈ C([0, T ]; L1(�)) ∩ L1((0, T ); W
1,1
0 (�)),

∂w/∂t − d�w = H in D′(QT ), w(0, ·) = w0.

}
(17)

Moreover, for all s, q ≥ 1 with 2s−1 + Nq−1 > N + 1, there exists C = C(q, s, �, d)

such that

‖w‖L∞(0,T ;L1(�)) + ‖w‖
Ls(0,T ;W 1,q

0 (�))
≤ C [‖H‖L1(QT ) + ‖w0‖L1(�)]. (18)

Finally, the mapping (H, w0) → w is compact from L1(QT ) × L1(�) into L1(QT ).

Proof of Theorem 2.2. By Lemma 3.1, if (un, vn) is the sequence considered in
Theorem 2.2, up to a subsequence, we may assume that un, vn converge in L1(QT ) and a.e.

to u, v ∈ L∞(0, T ; L1(�)) ∩ L1(0, T ; W
1,1
0 (�)). According to the type of convergence

of Fn, Gn to F, G, Fn(t, x, un, vn) converge a.e. to F = F(t, x, u, v) and the same for
Gn, G, but this pointwise convergence is not sufficient by itself to pass to the limit in the
equations and this is where the more difficult step starts.

We introduce truncation functions. For technical reasons, we need them to be a little
more regular than in the introduction. For all k > 0, we define a C2- function Tk , such that

∀r ∈ [0, k], Tk(r) = r ; ∀ r ≥ k, Tk(r) ≤ k + 1,

∀ r ≥ 0, 0 ≤ T ′
k(r) ≤ 1 ; ∀r ≥ k + 1, T ′

k(r) = 0,

0 ≤ −T ′′
k (r) ≤ C(k).




For instance, we may choose Tk as Tk(r) = r on [0, k] and

∀r ∈ [k, k + 1], Tk(r) = (r − k)4/2 − (r − k)3 + r; ∀r > k + 1, Tk(r) = k + 1/2.
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Now, we fix η > 0 and we introduce zn := Tk(un + η vn). Using the equations satisfied by
un, vn, we obtain

∂zn/∂t − d1�zn = T ′
k(un + η vn)(Fn + ηGn)

+ η(d2 − d1)S
1
n + d1S

2
n, (19)

where

S1
n = T ′

k(un + η vn)�vn, S2
n = −T ′′

k (un + η vn)|∇(un + η vn)|2 ≥ 0. (20)

The main point is to pass to the limit as n tends to ∞ in the equation (19), η and k being
fixed. Let us look successively at the four terms involved.

Note first that the last term is nonnegative so that we may just forget it.
Since zn tends to z = Tk(u + η v) in L1(QT ), ∂zn/∂t − d1�zn converges in the sense

of distributions to ∂z/∂t − d1�z.
Next, by the type of convergence of Fn, Gn to F, G (see (14)) and by the continuity

property of F, G, T ′
k(un + η vn)(Fn + η Gn) converges pointwise and in L1(QT ) to

T ′
k(u+η v)(F +η G): indeed, on one hand, T ′

k(un+η vn) = 0 on the set [un+η vn ≥ k+1].
On the other hand, on the set [un + η vn ≤ k + 1], we have:

|Fn(t, x, un, vn) − F(t, x, un, vn)| ≤ εn
(k+1)(1+n−1)

(t, x),

and the right hand side tends to zero in L1(QT ) and a.e. as n tends to +∞. Moreover,

F(t, x, un(t, x), vn(t, x)) → F(t, x, u(t, x), v(t, x)), a.e.(t, x),

and remains bounded on the set [un + η vn ≤ k + 1] by

ζ(t, x) := sup
r≤k+1,s≤(k+1)η−1

|F(t, x, r, s)|,

which is in L1(QT ) by the conditions (9) on F (and similarly for Gn, G).
Note that, by Fatou’s Lemma and the L1-bounds on Fn, Gn, F, G are in L1(QT ).
Now we are left with the main step: estimating S1

n . For this, we need the following
lemma.

LEMMA 3.2. There exists C depending only on the bounds on ‖Fn‖L1(QT ),

‖Gn‖L1(QT ), ‖u0‖L1(�), ‖v0‖L1(�) such that

∀ k ≥ 1,

∫
[un≤k]

|∇un|2,
∫

[vn≤k]
|∇vn|2 ≤ Ck. (21)
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Let us postpone the proof of this lemma and continue the proof of Theorem 2.2. We
will denote by C(k) all positive constants depending only on k. Let ϕ ∈ C∞

0 ([0, T ] × �).
Then, for all t ∈ [0, T ]∫

Qt

ϕS1
n = −

∫
Qt

∇vn[T ′
k(un + η vn)∇ϕ + ϕ T ′′

k (un + η vn)∇(un + η vn)],

so that, using the properties of Tk

| ∫
Qt

ϕS1
n| ≤ {∫[un+η vn≤k+1] |∇vn|2}1/2[{∫

QT
|∇ϕ|2}1/2

+ C(k)‖ϕ‖L∞(QT ){
∫

[un+η vn≤k+1] |∇un + η vn|2}1/2].

Note that [un + η vn ≤ k + 1] is included in [un ≤ k + 1] and in [vn ≤ (k + 1)η−1]. We
bound the last term from above as follows:

{∫[un+η vn≤k+1] |∇un + η vn|2}1/2 ≤ {∫[un≤k+1] |∇un|2}1/2

+ η{∫[vn≤(k+1)η−1] |∇vn|2}1/2.

Setting D(ϕ) := {∫
QT

|∇ϕ|2}1/2 + ‖ϕ‖L∞(QT ) and using Lemma 3.2, we deduce∣∣∣∣
∫

Qt

ϕS1
n

∣∣∣∣ ≤ D(ϕ)C(k)η−1/2[1 + η1/2]. (22)

We can now let n tend to +∞ in (19). We will denote by 〈Z, ϕ〉 the result of a distri-
bution Z of D′(QT ) applied to the C∞

0 -test-function ϕ. We obtain for any nonnegative
test-function ϕ

〈zt − d1�z − T ′
k(u + η v)(F + η G), ϕ〉 ≥ −C(k)η1/2D(ϕ).

Now, we let η tend to zero in the above inequality. Since, z = Tk(u + η v) tends to Tk(u)

in L1(QT ) and since T ′
k(u + η v) remains uniformly bounded by 1 and tends a.e. to T ′

k(u),
we can pass to the limit in the sense of distributions to find

∂Tk(u)/∂t − d1�Tk(u) ≥ T ′
k(u) F in D′(QT ).

Finally, we let k tend to +∞: by monotonicity, Tk(u) tends to u in L1(QT ) and T ′
k(u)

tends a.e. to 1; since F ∈ L1(QT ), we can pass to the limit and obtain

∂u/∂t − d1�u ≥ F in D′(QT ).

Let us now look at the initial data: we assume that un(0), vn(0) tend in L1(�) to u0, v0.
We go back to equation (19) and multiply by ϕ ∈ C∞

0 (�), nonnegative, to obtain∫
�

[zn(t) − zn(0)]ϕ ≥
∫

Qt

d1zn�ϕ + ϕ[η(d2 − d1)S
1
n + T ′

k(un + η vn)(Fn + η Gn)].
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We recall (22) which gives a bound from below for S1
n . Letting n tend to ∞ leads to∫

�

[z(t) − Tk(u0 + η v0)]ϕ ≥
∫

Qt

d1z�ϕ + ϕT ′
k(u + η v)(F + η G) − C(k, ϕ)η1/2.

We let η tend to zero, then k tend to ∞: as before, using that F ∈ L1(QT ), we may pass
to the limit to obtain∫

�

[u(t) − u0]ϕ ≥
∫

Qt

d1u�ϕ + ϕF.

Letting now t tend to zero gives

lim inf
t→0

∫
�

u(t)ϕ ≥
∫

�

u0ϕ.

This is the statement of (16).

Proof of Lemma 3.2. We choose Tk as above. Multiplying the equation in un by Tk(un)

gives

∂

∂t

∫
�

jk(un) + d1

∫
�

T ′
k(un)|∇un|2 =

∫
�

Tk(un) Fn, (23)

where jk(r) = ∫ r

0 Tk(s) ds. Note that jk(r) ≤ (k + 1) r . After integrating (23) in time, we
obtain

d1

∫
[un≤k]

|∇un|2 ≤ (k + 1)

{∫
QT

|Fn| +
∫

�

un(0)

}
,

whence the estimate (21) for un. The proof is the same for vn.

Proof of Theorem 2.1. The first step is to truncate the data in order to solve an approximate
problem. We set u0n := inf{u0, n}, v0n := inf{v0, n}. We truncate the nonlinearities f, g

in such a way that they be bounded and that they keep satisfy the same conditions (9, 10,
11). For this, we introduce a C∞

0 function ψ1 : [0, +∞)2 → [0, 1] satisfying

∀ 0 ≤ r, s ≤ 1, ψ1(r, s) = 1; ∀ r, s ≥ 2, ψ1(r, s) = 0.

Next, we set ψn(r, s) = ψ1(r/n, s/n). With this choice, for all n, 0 ≤ ψn ≤ 1, and ψn

tends pointwise to 1 as n tends to ∞.
In order to take care of the fact that f (·, ·, 0, 0) is only in L1(QT ), we also truncate it

and, for technical reasons, we introduce

Fn(t, x) := τK(n)2n(f (t, x, 0, 0)), Gn(t, x) := τK(n)2n(g(t, x, 0, 0)),

where τk(r) = r if |r| ≤ k, τk(r) = k if r > k, τk(r) = −k if r < −k.
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Finally, we define

fn(t, x, r, s) := ψn(r, s)[f (t, x, r, s) − f (t, x, 0, 0)] + Fn(t, x),

gn(t, x, r, s) := ψn(r, s)[g(t, x, r, s) − g(t, x, 0, 0)] + Gn(t, x).

}
(24)

One easily verifies thatfn, gn converge tof, g in the sense (14) and thatfn, gn satisfies the
same conditions (9,10,11) as f, g. Note that fn, gn are even globally Lipschitz continuous
with respect to r, s with a constant depending on n. Note also that fn, gn satisfy (11)
with the same λ0, σ, h as for f, g. For the nonegativity condition (10), we remark that, if
f (t, x, 0, 0) > K(n) 2n, then

fn(t, x, 0, s) ≥ −K(n) 2n + Fn(t, x) = 0,

and otherwise Fn(t, x) ≥ f (t, x, 0, 0) so that

fn(t, x, 0, s) ≥ ψn(0, s)f (t, x, 0, s) + [1 − ψn(0, s)]f (t, x, 0, 0) ≥ 0,

whence (10) and similarly for gn.
Note finally that fn, gn are uniformy bounded since

∀ r, s, |fn(t, x, r, s)| + |gn(t, x, r, s)| ≤ 3 K(2 n) 2 n. (25)

By a classical fixed point theorem (see e.g. Appendix), there exists a unique “classical”
and nonnegative solution un, vn of

un, vn ∈ C([0, +∞); L2(�)) ∩ L2
loc([0, +∞); W

1,2
0 (�)),

un(0, ·) = u0n, vn(0, ·) = v0n,

∀ T ∈ (0, +∞), unt , vnt , �un, �vn ∈ L2(QT ),

fn(·, ·, un(·, ·), vn(·, ·)), gn(·, ·, un(·, ·), vn(·, ·)) ∈ L∞(QT ),

∂un/∂t − d1�un = f (t, x, un, vn) in Q,

∂vn/∂t − d2�vn = g(t, x, un, vn) on Q.




(26)

Adding the two equations in un, λvn, we obtain for all λ ∈ [λ0, 1],∫
�

un(t) + λvn(t) −
∫

Qt

fn + λgn ≤
∫

�

u0n + λv0n. (27)

(Here, we used,
∫
�

�un ≤ 0 and the same for vn which is true because un, vn are non-
negative on � and equal to zero on ∂�, see e.g. [6]). Using now (11), we deduce in
particular that∫

�

un(t) + λvn(t) −
∫

Qt

σ (un(s) + vn(s)) + h(s) ≤
∫

�

u0n + λv0n. (28)

From this linear Gronwall type inequality, we deduce that

sup
t∈(0,T )

{‖un(t)‖L1(�) + ‖vn(t)‖L1(�} ≤ C(T , ‖h‖L1 , σ, ‖u0n‖L1 , ‖v0n‖L1). (29)
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Now, the hypothesis (11) implies that

‖fn + λgn‖L1(QT ) ≤ −
∫

QT

fn + λgn + ‖σ (un + vn) + h‖L1(QT ).

Together with (27) and (29), this implies that ‖fn + λgn‖L1(QT ) is bounded for all λ ∈
[λ0, 1]. Since, λ0 �= 1, this implies that fn and gn are separately bounded in L1(QT ).

As a consequence, we are in the conditions of application of Theorem 2.2. It follows
that, up to a subsequence, un, vn converge a.e. on Q and in L1(QT ) for all T > 0 to a
supersolution (u, v) of our problem in the sense of (15) with F, G replaced by f, g.

To go from a supersolution to a solution, we argue as follows. Let ϕ be a C∞
0 , nonnegative

test-function. We already know that

−
∫

QT

u (ϕt + d1�ϕ) ≥
∫

QT

ϕ f, −
∫

QT

v (ϕt + d2�ϕ) ≥
∫

QT

ϕ g.

To obtain the reverse inequality for each, it is sufficient to prove that

−
∫

QT

(u + v)ϕt + (d1u + d2v)�ϕ ≤
∫

QT

ϕ(f + g), (30)

starting from

−
∫

QT

(un + vn)ϕt + (d1un + d2vn)�ϕ =
∫

QT

ϕ(fn + gn). (31)

By L1-convergence of un, vn, the left hand side of (31) does converge to the left hand side
of (30). Since fn + gn converges a.e. to f + g, and since, by (11), we have the pointwise
estimate

σ(un + vn) + h − (fn + gn) ≥ 0,

by Fatou’ Lemma, we deduce that

lim inf
n→∞

∫
QT

[σ(un + vn) + h − (fn + gn)]ϕ ≥
∫

QT

[σ(u + v) + h − (f + g)]ϕ.

This gives the expected reverse inequality (30).
We now have to verify that u, v have the right initial data u0, v0. We already have one

inequality by Theorem 2.2. (see 16). The bound inL∞(0, T ; L1(�)) implies that {u(t), v(t),

t ∈ (0, T )} are compact for the weak convergence of measures on � (i.e. against continuous
test-functions ϕ with compact support in �). If u0+ , v0+ is a weak-limit for a subsequence
u(tk), v(tk) where limk→+∞ tk = 0, we already now (see Theorem 2.2) that

u0+ ≥ u0, v0+ ≥ v0.



Vol. 3, 2003 Weak solutions and supersolutions in L1 165

We will prove that

lim sup
t→0

∫
�

u(t) + v(t) ≤
∫

�

u0 + v0. (32)

It will then follow that u0+ = u0, v0+ = v0: this uniqueness of the possible weak limits
and the fact that there is no loss of mass imply that u(t), v(t) converge as t → 0, for the
narrow convergence of measures, to u0, v0, namely (see Appendix)

∀ ϕ ∈ Cb(�), lim
t→0

∫
�

ϕu(t) =
∫

�

ϕu0,

and the same for v. But, by the uniqueness Lemma 5.1 of the Appendix, we may then
deduce that u, v ∈ C([0, T ]; L1(�)) for all T > 0, which finishes the proof of Theorem
2.1.

To prove (32), we start from (28) with λ = 1 and we pass to the limit in n:

a.e.t,

∫
�

u(t) + v(t) ≤
∫

Qt

σ (u(s) + v(s)) + h(s) +
∫

�

u0 + v0.

Then, (32) follows directly from this inequality.

4. Some comments

The question of global existence for systems (1) when only (2) and (3) hold remains
open (it is the case of example (4) when γ = 1 and of example (5)). A main new difficulty
is that no more L1 bound on the nonlinear terms f, g is available. It is likely that some kind
of weak solutions exist globally in time, but to prove it would first require to introduce a
quite weaker notion of solution. It could be possible that some notion of “renormalized”
solution may work where the nonlinearities are truncated in the definition.

The analysis made here is not particular to 2×2 systems. Theorem 2 may be generalized
to N × N systems where all the N nonlinearities are bounded in L1(QT ). The idea is to
replace in the proof Tk(u+η v) by Tk(u1 +η[u2 + . . . uN ]) if we denote by (u1, ..., uN) the
unknown of the system. Theorem 1 also extends: we then have to assume that N linearly
independent relations of the form

∑N
i=1 λifi ≤ with λi ≥ 0 hold. This will provide the L1

bound on all the fi .
One could also replace the Laplacian operators d1�, d2� by more general elliptic oper-

ators.
Elliptic versions of the same results may be proved for systems of the form

u + A1 u = f (u, v) + F on �,

v + A2 v = g(u, v) + G on �,

u, v satisfy some good boundary conditions on ∂�,



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where F, G are given nonegative functions on �, A1, A2 are good elliptic operators and
f, g satisfy (2,3,7). As a nontrivial case, we might think for instance to the simple choice
A1 = −�, A2 = −� − dux1x1 with d not too small. Here the difficulty is the proof of
existence of solutions and the question is quite similar to proving global existence for the
parabolic system (1). Then by the same technique, we can prove existence of weak solutions
under similar hypotheses on the nonlinearities. One may also state an elliptic version of
Theorem 2.2. The limit case (only (3)) is open as well in this elliptic situation.

5. Appendix

About Lemma 3.1 let us first comment on the proof of Lemma 3.1. A starting point may
be the L2-theory: for u0 ∈ L2(�), H ∈ L2(QT ), there exists a unique solution of

u ∈ C([0, T ]; L2(�)) ∩ L2((0, T ); W
1,2
0 (�))

ut , �u ∈ L2(QT ),

∂u/∂t − d�u = H in L2(QT ), u(0) = u0.


 (33)

Moreover,

u(t) = Sd(t) u0 +
∫ t

0
Sd(t − s) H(s) ds, (34)

where Sd(·) is the semigroup in L2(�) whose infinitesimal generator is the Laplacian
operator −�, with domain D(−�) = H 2(�) ∩ H 1

0 (�).

This may be found in several places in the literature, as well as the contraction property

∀ p ∈ [1, +∞], ‖Sd(t)u0‖Lp(�) ≤ ‖u0‖Lp(�), (35)

(see e.g. [9, 1, 5]).
Thanks to the contraction property in L1(�), the solution of (33) may be extended to

u0 ∈ L1(�), H ∈ L1(QT ) with u ∈ C([0, T ]; L1(�)) at least. It is also given by the
formula (34) where, now, Sd(·) is the realization of the heat semigroup in L1(�) (see
e.g. [6]) -we also denote it by Sd(·)-. To obtain that u ∈ L1(0, T ; W

1,1
0 (�)), we need

the estimates (18). They may be obtained by duality from the L∞-estimates for the heat
operator (see e.g. [9], Th. III.7.1), namely

‖u‖L∞(QT ) ≤ C

N∑
i=1

‖hi‖Ls′ (O,T ;Lq′
(�)

,

for the solution of (33) with H = ∑N
i=1 ∂hi/∂xi .

For the uniqueness part, one has to be careful when working in an L1-setting. Remember,
for instance, that there is not uniqueness for the problem

u ∈ W
1,1
0 (O), �u = 0 in D′(O),
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without any regularity on the open subset O of R
N (a counterexample is given by

u(x) = 1 − |x|2−N for N ≥ 3 and O = {x ∈ R
N \ {0}; |x| < 1}).

But we do have uniqueness if O = � is regular -which we assumed throughout this paper-
(see e.g. [6]). Again, this uniqueness result relies, by duality, on regularizing properties of
the Laplacian in good domains.

We also have uniqueness for the parabolic problem. We will state it in a general way that
we actually need in this paper. We denote by Cb(�) the continuous and bounded functions
from � into R.

LEMMA 5.1. Let w ∈ L∞(0, T ; L1(�)) ∩ L1
loc((0, T ], W 1,1

0 (�)) be a solution of

∂w/∂t − d�w = H in D′(QT ),

∀ ϕ ∈ Cb(�), ϕ ≥ 0, limt→0
∫
�

ϕ w(t) = ∫
�

ϕ w0.

}
(36)

Then,

w(t) = Sd(t)w0 +
∫ t

0
Sd(t − s) H(s) ds.

In particular, w ∈ C([0, T ]; L1(�)) ∩ L1(0, T ; W
1,1
0 (�)).

We refer e.g. to [2] for details of the proof. As explained above, it is based on regularity
property of the dual problem.

Note that the initial data are understood here in the sense of the “narrow” convergence
for measures, that is to say that the test-functions ϕ in (36) have to be taken in Cb(�). The
uniqueness would not be true if they were to be taken only among continuous functions
with compact support in �.

About existence of regular solutions for systems: we consider the functions fn, gn defined
in (24). Since they are defined only for r, s ∈ [0, +∞)2, we extend them in the variable r, s

to R
2 by � ◦ fn, � ◦ gn where � is the projection in R

2 onto [0, +∞)2. We still denote by
fn, gn this extension. The main point is that fn, gn are globally Lipschitz continuous on R

2.
To prove existence of a classical solution to the system (26), for all T ∈ (0, +∞), we

consider the mapping S from X = C
(
[0, T ]; L1(�)

)2 into itself which to (Û , V̂ ) associates
(U, V ) defined by

U(t) = Sd1(t)u0n +
∫ t

0
Sd1(t − s)fn(s, ·, Û (s), V̂ (s)) ds,

V (t) = Sd2(t)v0n +
∫ t

0
Sd2(t − s)gn(s, ·, Û (s), V̂ (s)) ds.

Since, fn, gn are globally Lipschitz in r, s, one easily proves that there exists p such that Sp

is a strict contraction from X into itself, whence the existence of a unique weak solution to the
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system. By the above uniqueness results and the L2-theory, since all the data u0n, v0n, fn, gn

are uniformly bounded and therefore inL2, the solution has the regularity announced in (26).
For the positivity, classically we multiply the equation in un by −u−

n =: inf {un, 0} to
obtain

∂/∂t

∫
�

(
u−

n

)2 ≤ −2
∫

[un<0]
unfn(t, x, un, vn).

But, by construction, on [un < 0], fn(t, x, un, vn) ≥ 0, since it is equal either to fn

(t, x, 0, vn) if vn ≥ 0 or to fn(t, x, 0, 0) if vn ≤ 0. We deduce that u−
n = 0 and similarly

v−
n = 0.
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