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Abstract. We examine the large-time behavior of axisymmetric solutions without swirl of the Navier–
Stokes equation in R

3. We construct higher-order asymptotic expansions for the corresponding vorticity.
The appeal of this work lies in the simplicity of the applied techniques: Our approach is completely based
on standard L2-based entropy methods.

1. Introduction and results

In the present work, the large-time behavior of axisymmetric solutions to the three-
dimensional Navier–Stokes equations is investigated. Our aim is to describe interme-
diate asymptotics of any solution near equilibrium. Even though the assumed axisym-
metry reduces the dimension of the problem and thus the level of its difficulty, some
rewarding examples, e.g. vortex rings, are contained in this class of incompressible
flows. Moreover, opposed to solutions in the planar two-dimensional setting, axisym-
metric solutions are exposed to vortex stretching and carry thus certain genuinely
three-dimensional features.
We start by recalling that the full three-dimensional Navier–Stokes equations are

the following system of partial differential equations

∂t u − �xu + u · ∇xu + ∇x p = 0 in R3 × [0,∞) ,

∇x · u = 0 in R3 × [0,∞) ,

where u = u (x, t) ∈ R
3 denotes the velocity of the fluid and p = p (x, t) ∈ R is the

pressure. For notational simplicity, we have rescaled the equation in such a way that
the kinetic viscosity and the density of the fluid both are normalized to unity.
To describe axisymmetric solutions, we introduce the usual cylindrical coordinates

(r, z, θ) in R3 defined via x = (r cos(θ), r sin(θ), z) with unit basis vectors given by

er =
⎛
⎝
cos(θ)

sin(θ)

0

⎞
⎠ , eθ =

⎛
⎝

− sin(θ)

cos(θ)

0

⎞
⎠ , ez =

⎛
⎝
0
0
z

⎞
⎠ .
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Fluid configurations are called axisymmetric if they are invariant under rotations about
the vertical axis, that is, the axisymmetric fluid velocity is independent of the angle θ

so that u = u(r, z, t). We furthermore assume that the swirl component u · eθ of the
velocity field vanishes. This second assumption has the effect, that the velocity field is
also invariant under reflections by any plane containing the z-axis. The velocity field
now reads as

u(x, t) = ur (r, z, t) er + uz (r, z, t) ez . (1)

To simplify the language use in the following,wewill simply speak of the axisymmetric
setting when referring to (1).

Writing thevorticity in cylindrical variables, that is,∇x×u = (
r−1∂θuz − ∂zuθ

)
er+

(∂zur − ∂r uz) eθ + r−1 (∂r (ruθ ) − ∂θur ) ez , we see that the hypothesis in (1) implies
that the vorticity is determined by a scalar quantity,

∇x × u = ω eθ , where ω = ∂zur − ∂r uz

—very similarly to the planar two-dimensional case. The velocity field in turn can be
recovered from the scalar vorticity by solving the linear elliptic system

∂zur − ∂r uz = ω, ∂r ur + 1

r
ur + ∂zuz = 0 (2)

in the meridional half spaceH = {(r, z) : r ∈ (0,∞), z ∈ R}, equipped with the free-
slip boundary conditions ur = ∂zur = 0 at {r = 0}. Notice that the second identity in
(2) is nothing but the incompressibility condition restated in cylindrical coordinates.
The time evolution of ω is described by the following scalar equation

∂tω + u · ∇ω − ur
r

ω = �ω + 1

r
∂rω − ω

r2
in H × [0,∞) (3)

with the homogeneous Dirichlet boundary condition ω = 0 at {r = 0}. The second
term on the left-hand side describes the advection by the flow, while the third term
on the left-hand side accounts for possible vortex stretching. The occurrence of this
term is different from the planar setting, where vortex stretching effects are absent.
The derivative terms on the right-hand side of (3) come simply from the Laplacian
in R

3 written in cylindrical variables and the remaining expression results from dif-
ferentiating the azimuthal basis vector eθ . Here and in the following, we interpret the
standard non-indexed differentiation symbols with respect to cylindrical coordinates,
i.e., ∇ = (∂r , ∂z)

T and accordingly � = ∇ · ∇ = ∂2r + ∂2z .
The theory for the vorticity stream formulation (2), (3) of the axisymmetric Navier–

Stokes equations parallels in many aspects the one in the planar two-dimensional
setting, see, for instance, [2,4,11,14,22,29] regarding regularity and well-posedness,
[1,7,13,15,17–19,25,29,32] for studies of the inviscid limit and [14,23,30] for ques-
tions regarding the large-time behavior. For us most notable are some of the results by
Gallay and Šverák and their improvements by Vila, which we recall in the following.
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Theorem A. [14,30] The large-timebehavior of any solutionω ∈ C0((0,∞), L1(H)∩
L∞(H)) with r2w ∈ L∞((0,∞), L1(H)) is given by

t2ω
(
r̂
√
t, ẑ

√
t, t

)
→ I(ω0)

16
√

π
r̂ e− r̂2+ẑ2

4 as t → ∞, (4)

where I(ω0) is the fluid impulse,

I(ω0) :=
∫

r2ω0(r, z)drdz < ∞,

and the convergence holds in L p (H) for all p ∈ [1,∞].

We remark that we will distinguish between the Lebesgue spaces L p(H) and
L p(R3). Here, the first ones are defined with respect to the two-dimensional mea-
sure drdz on the meridional half-plane H while the second one is equipped with the
full three-dimensionalmeasure dx . Notice thatwhen acting on axisymmetric functions
or sets, it holds that dx = 2πrdrdz.

As expected, the fluid impulse is preserved during the evolution,

I(ω(t)) = I(ω0) for any t, (5)

and we will occasionally write in the following simply I instead of I(ω0). In fact,
Gallay and Šverák show well-posedness for the Navier–Stokes equation (3) with in-
tegrable initial data, and they establish the large-time behavior (4) for non-negative
vorticities. By enhancing the semi-group arguments of [14], Vila then notes that the
sign condition is not necessary for establishing these asymptotics. The main observa-
tion in [30] is that the quantity ‖r2ω‖L1(H) remains uniformly bounded for all times,
which replaces the conservation of the fluid impulse in the Gallay–Šverák paper.
It is interesting to notice that the profile which prescribes the large-time behavior

of the solution ω is the self-similar solution ζ∗ of the linearized equation

∂tζ = �ζ + 1

r
∂rζ − 1

r2
ζ, (6)

that is,

ζ∗(t, r, z) = 1

t2
ρ∗

(
r√
t
,

z√
t

)
, ρ∗(r̂ , ẑ) = 1

16
√

π
r̂ e− r̂2+ẑ2

4 ,

where the prefactor is chosen in such a way that it normalizes the impulse, I(ζ∗) =
I(ρ∗) = 1.
In a certain sense, this feature is caused by the Dirichlet boundary conditions valid

for ω at the boundary of the half-plane H. Indeed, these boundary conditions enforce
the decay of the (scale invariant) L1 norm, and more generally,

‖ω(t)‖L p(H) ∼ t−2+1/pI(ω0) as t → ∞,
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which is a direct consequence of the asymptotics (4). For large times, the quadratic
terms in the Navier–Stokes equations (3) are thus negligible and the dynamics of the
vorticity are then governed by the linear equation (6).

We want to emphasize that this behavior differs significantly from the planar two-
dimensional setting, in which the L1 norm is non-increasing, but in general not de-
caying, for instance, for vorticity distributions of definite sign. Here, the large-time
behavior is described by the Oseen vortices, which are self-similar solutions to the
nonlinear planar vorticity equation.
In the general three-dimensional setting, the decay in time of (specified) solutions to

the Navier–Stokes equations is known for almost forty years, see for instance [12,20,
21,26,31]. In [24],Miyakawa and Schonbeck provide optimal decay rates for solutions
of Navier–Stokes equations in arbitrary space dimensions. They also contribute a
characterization of solutions that satisfy the given optimal decay rate. In [16], Gallay
and Wayne consider the three-dimensional case and prove the same characterization
via invariant manifold techniques and also detect resonances between the different
decay rates.
The purpose of the present paper is to study the large-time asymptotic behavior to

higher order. More specifically, we demonstrate how higher-order asymptotics and
sharp convergence rates can be obtained, as soon as the convergence to the self-similar
profile, or more precisely the decay behavior ‖ω(t)‖L p(H) = O (

t−2+1/p
)
, is known.

Certainly, our results could also be derived from the deeper and more abstract findings
of [16]. However, what is charming in our new contribution is that our proofs are based
on fairly simple L2-based entropy methods and do not require any sophisticated or
elaborate concepts.
Our result applies to situations, in which the initial vorticity is sufficiently concen-

trated,
∫

ω0(r, z)
2re

r2+z2
4 d(r, z) < ∞. (7)

The condition is trivially satisfied for compactly supported configurations, which are
the ones that are physically relevant. We will see later on, that this it is beneficial in
the study of the large time behavior. Notice also that by Jensen’s inequality, the bound
(7) entails that r2ω0 ∈ L1(H).

In the remaining part of this section, we will give our results on higher-order asymp-
totic expansions of the vorticity ω. We state these as corollaries because they will be
deduced from a rather general result for the relative quantity, Theorem 1.5. Remember,
that we will permanently assume ω0 ∈ L1 (H) and

∥∥r2ω0
∥∥
L1(H)

< ∞.

Corollary 1.1. Let ω be a solution of the axisymmetric vorticity equation (3) with
initial datum ω0 such that (7) holds. Then there exists a constant α ∈ R such that

‖ω(t) −
(
I(ω0) + αz

t + 1

)
ζ∗(t)‖L2(R3) � log(t + 1)(t + 1)−9/4.
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The constant α in the statement can be explicitly computed. This corollary imme-
diately yields sharp bounds for the first correction of ω, namely

‖ω(t) − I (ω0) ζ∗(t)‖L2(R3) � (t + 1)−7/4,

for all t ≥ 0. Now that the first part of our main result is formulated, we like to
compare it to already existing works on the asymptotic behavior of solutions of the
axisymmetric Navier–Stokes equations without swirl. We already mentioned [14],
where Gallay and Šverák proved, besides the well-posedness result for initial data in
L1(H), convergence towards the self-similar profile of the linearized equation (for non-
negative solutions with finite impulse). They proved the convergence in L p (H) for
every p ∈ [1,∞]. Recently, Vila derived a second-order asymptotic expansion for the
vorticity in L p (H) for p ∈ [1,∞], see [30] and obtained the same convergence rate (in
a different norm), including the logarithmic resonance term. More than twenty years
ago, Gallay and Wayne investigated the large-time behavior of solutions to the three-
dimensional Navier–Stokes equations without any symmetry assumptions, see [16].
In this setting they already developed second-order asymptotics for the vorticity and
identified the first resonance term. In principle, our results can be obtained from their
results by exploiting the symmetry in hindsight, but the invariant manifold techniques
they use are much more complicated and elaborate.
To the best of our knowledge, the higher-order asymptotic expansions in the follow-

ing corollaries are new for the axisymmetric Navier-Stokes equations without swirl.
We consider first configurations whose total fluid impulse is trivial. This way, the
slowest modes in the frequency spectrum, see Theorem 1.4 below, will not be excited
and we obtain better decay rates.

Corollary 1.2. Let ω be a solution of the axisymmetric vorticity equation (3) with
initial datum ω0 satisfying (7) and I (ω0) = 0. Then there exist constants α, β, γ ∈ R

such that

‖ω(t) − αz

t + 1
ζ∗(t) − 1

t + 1

(
β

(
2 − z2

t + 1

)
+ γ

(
8 − r2

t + 1

))
ζ∗ (t) ‖L2(R3)

� log(t + 1)(t + 1)−11/4.

Also the constants β and γ can be computed explicitly, see Theorem 1.5 and the
proof of the corollary in the beginning of Sect. 2.

For our last corollary, we additionally demand that the initial datum ω0 is an even
function in the z-direction. This geometric assumption annihilates the impact of the
next eigenfunction. Thus, no additional correction term arises.

Corollary 1.3. Letω be given as inCorollary 1.2. Additionally assume thatω0(r, z) =
ω0(r,−z). Then it holds that

‖ω(r, z, t) − 1

t + 1

(
β

(
2 − z2

t + 1

)
+ γ

(
8 − r2

t + 1

))
ζ∗ (t) ‖L2(R3)

� log(t + 1)(t + 1)−13/4.
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In our work [28], we imposed similar (and even more extensive) geometric con-
ditions to obtain higher order asymptotic expansions of solutions of the thin-film
equation.
In the following subsection, we will transfer equation (3) into a more manageable

equation for the relative quantity in self-similar variables.

1.1. Relative quantity and main result

The convergence result (4) motivates the following change of variables into self-
similar ones. We define

h
(
t̂, r̂ , ẑ

) = (t + 1)2ω (t, r, z)

and m
(
t̂, r̂ , ẑ

) = (t + 1)3/2u (t, r, z)

where t̂ = log(t + 1), r̂ = (t + 1)−1/2r, ẑ = (t + 1)−1/2z.

(8)

In self-similar variables the vorticity equation (3) takes the form

∂t̂ h = �̂h + 1

r̂
∂r̂ h + 1

2

(
r̂
ẑ

)
· ∇̂h + 2h − h

r̂2
+ e−t̂

{
1

r̂
mr̂ h − m · ∇̂h

}

and the relation between the vorticity h and the velocity field m remains determined
by the linear elliptic system (2). Note that the impulse I is preserved under the above
change of variables, that is

∫
r2ω(t, r, z) drdz =

∫
r̂2h

(
r̂ , ẑ, t̂

)
dr̂dẑ, (9)

and therefore, the conservation law (5) is translated into

I(h(t̂)) = I(h0), (10)

for any t̂ ≥ 0. Hence, the convergence result (4) can be rephrased in the new variables
as

h(t̂) → h∗:=I (h0) ρ∗ in L p (H) as t̂ → ∞.

In particular, any Lebesgue norm is uniformly controlled, that is
∥∥h(t̂)

∥∥
L p(H)

≤ C for all t̂ > 0. (11)

With these bounds at hand, we will derive sharp rates for the convergence of h to-
wards h∗. Our arguments can be iterated to obtain convergence rates for higher order
asymptotics as well (under additional assumptions on the initial data).
To do so, it turns out to be useful to work with the relative quantity f :=h/ρ∗. Its

evolution is described by

∂t̂ f + L f = e−t̂
{
1

2

(
r̂
ẑ

)
· m f − m · ∇̂ f

}
, (12)
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where

L f = −�̂ f + 1

2

(
r̂
ẑ

)
· ∇̂ f − 3

r̂
∂r̂ f.

The linear operator L is symmetric and non-negative in the Hilbert space L2 (μ) =
L2 (H, μ), equippedwith the standard scalar product 〈 f, g〉μ:= ∫

f g dμ, where dμ =
1

16
√

π
r̂3e− r̂2+ẑ2

4 dr̂dẑ = r̂2ρ∗dr̂dẑ. Indeed, the linear operator can be rewritten as

L f = −μ−1∇̂ ·
(
μ∇̂ f

)
and it holds that

∫
gL f dμ =

∫
∇̂g · ∇̂ f dμ,

for sufficiently smooth test functions f and g. Note that μ is a probability measure.
It follows immediately from the definitions of both the relative variable and the

measure, that the mean of f is preserved during the evolution. Indeed, it holds that

〈 f 〉μ:=
∫

f dμ = I(h), (13)

and the fluid impulse is preserved, cf. (10), so that

〈 f (t̂)〉μ = 〈 f0〉μ, (14)

for any t̂ ≥ 0.
The well-posedness result for the vorticity equation (3) ensures the existence of a

solution ω and this solution translates into a solution f of equation (12). Furthermore,
this solution f satisfies

∥∥ f (t̂)
∥∥
L1(μ)

≤ C because of the uniformcontrol of‖r2ω(t)‖L1

established in [30]. Due to the suitably chosen change of variables in (8), the initial
time t = 0 ismapped to t̂ = 0 and the concentration assumption (7) onω0 is equivalent
to the fact that f0 ∈ L2(μ). An L2 theory for (12) is considered in Lemma 2.2 for
completeness.
A crucial part of our approach consists in explicitly computing the spectrum of L

and of the corresponding eigenfunctions. Even though the equation (12) is nonlinear,
the leading order convergence rates of f are given by the eigenvalues of the linear
operator. The nonlinear parts can be considered as error terms and can be suitably
controlled. In the following theorem, we identify the spectrum of the linear operator
and the associated eigenfunctions.

Theorem 1.4. (Spectrum of the linear operator) The spectrum σ(L) of the linear
operator L is purely discrete in L2 (μ). The eigenvalues are given by

λ�,n = � + n

2
where �, n ∈ N0.

The corresponding eigenfunctions are polynomials of the form

ψ�,n(r, z) = c�,nL
(1)
�

(
r2

4

)
Hn

( z
2

)
,
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where Hn denotes the n-th Hermite polynomial and L(1)
� the �-th associated Laguerre

polynomial. Hence, the eigenvalues 2m
2 and 2m+1

2 have multiplicity m + 1. Further-
more, the eigenfunctions

{
ψ�,n : �, n ∈ N0

}
form an orthonormal basis of L2 (μ),

where the constant c�,n is merely a normalization factor.

We refer to the Chapters 18.1 and 18.3 in [3] for definitions and properties of the
Hermite and Laguerre polynomials.
For the rest of the paper we relabel the eigenvalues in a strictly increasing order,

that is σ(L) = {
λk = k

2 : k ∈ N0
}
with corresponding eigenfunctions ψk, j for j ∈

{1, . . . , Nk}.
Before stating the main result, we like to illustrate the heuristics of our approach.

Equivalently to the convergence of h towards h∗, we expect the relative quantity f to
converge to its mean 〈 f 〉μ = I(h0), such that the relative error f − 〈 f 〉μ decays to
zero. Notice that the limit value 〈 f 〉μ = I(h0) of f (t) is proportional to the projection
〈 f, 1〉μ of f onto the eigenfunction corresponding to the smallest eigenvalue λ0 = 0.
As a result, by considering the relative error f (t) − 〈 f 〉μ we remove λ0 from the
spectrum and we show that the quantity f (t) − 〈 f 〉μ decays exponentially fast with
rate of the next largest eigenvalue λ1 = 1/2.

In order to improve on the rate of convergence, we eliminate the leading order term
by supposing that the fluid impulse 〈 f0〉μ is zero, cf. (13), (14). This way, the relative
quantity f (t)will itself vanish asymptotically. The following abstract result yields the
precise leading order asymptotics together with the leading order corrections under
the assumption that the first n eigenmodes are not excited.

Theorem 1.5. Let n ∈ N0 be given and let f be a solution of (12) with initial datum
f0 ∈ L2(μ) such that

lim
t̂→∞

eλk t̂ 〈 f (
t̂
)
, ψk, j 〉μ = 0 (15)

for all k = 0, . . . , n−1and j = 1, . . . , Nk. Then there exist coefficients an,1, . . . , an,Nn

and an+1,1, . . . , an+1,Nn+1 such that
∥∥∥∥∥∥
f
(
t̂
) − e−λn t̂

Nn∑
j=1

an, jψn, j − eλn+1 t̂
Nn+1∑
j=1

an+1, jψn+1, j

∥∥∥∥∥∥
L2(μ)

� t̂ e−λn+2 t̂ for all t̂ ≥ 0.

The coefficients are determined by

an, j := lim
t̂→∞

eλn t̂ 〈 f (
t̂
)
, ψn, j 〉μ. (16)

Similar statements were derived earlier, for instance, in the context of the porous
medium equation [27], the thin film equation [28], and the fast diffusion equation
[8,10]. Notice that the number of correction terms in the theorem is restricted to
two. Furthermore, a polynomial factor t̂ has to be added on the right-hand side if
both correction terms are built-in. It is caused by resonances. These two limitations
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originate from the distribution of the eigenvalues and the structure of the nonlinear
part of (12). Due to the different scaling, the quadratic part of the vorticity equation
(3) is transformed under the performed change of variables into the exponentially
decaying part of (12). More particularly, the nonlinearity does not decay twice as fast
as the solution f but, due to the prefactor e−t̂ , even faster. Indeed, if f decays like
e−λt̂ , we expect the nonlinear part to decay like e−(1+λ)t̂ . Thus, only correction terms
corresponding to eigenvalues λ̃ with λ ≤ λ̃ < 1+ λ can be handled suitably. Because
of the structure of the eigenvalues, this limits their number to two. In addition, the
resonance term appears since 1 + λ is an eigenvalue whenever λ is an eigenvalue.

In the following section, we will turn to the proofs of our results.

2. Proofs

We split this section into three subsections. In the first one, we derive the Corollar-
ies 1.1 to 1.3 from Theorems 1.4 and 1.5. In Sect. 2.2, we will compute the spectrum
(and the corresponding eigenfunctions) of the linear operatorL. The information about
the spectrum of L finally enables us to prove Theorem 1.5 in Sect. 2.3.

2.1. Higher order asymptotics—Proofs of Corollaries 1.1 to 1.3

All corollaries of Theorem1.5 given in the first sectionwill be proved using the same
strategy. We start by considering the leading order asymptotics stated in Corollary 1.1
and choose n = 0 in Theorem 1.5. In this case, the assumption stated in (15) is actually
empty, and because the eigenvalues λ0 = 0 and λ1 = 1/2 have both multiplicity 1, it
holds that

‖ f (t̂) − a0,1ψ0,1 − e−t̂/2a1,1ψ1,1‖L2(μ) � t̂ e−t̂ ,

for any t̂ ≥ 1. Actually, according to Theorem 1.4, the eigenfunctions corresponding
to the first two eigenvalues take the simple form ψ0,1 = 1 and ψ1,1 = ẑ/

√
2, and we

infer from (16) and the conservation (14) that

a0,1 = 〈 f0〉μ, a1,1 = lim
t̂→∞

et̂/2〈 f (t̂), z/√2〉μ.

We have noticed in (13) that the mean of f is nothing but the fluid impulse, which is a
conserved (see (5)) and physically meaningful quantity. All other moments an, j have
no particular relevance, and we will thus not keep track of their origin through (16).
We may thus rewrite the above leading order asymptotics as

‖ f (t̂) − I(h0) − e−t̂/2αẑ‖L2(μ) � t̂ e−t̂ ,

for some constant α ∈ R.
In order to rewrite the statement in terms of the original vorticity, we will first go

back from the relative variables to the self-similar ones,

‖(h(t̂) − h∗ − e−t̂/2αẑρ∗)
√
r/ρ∗‖L2(R3) � t̂ e−t̂ ,



72 Page 10 of 22 C. Seis And D. Winkler J. Evol. Equ.

recalling that the three-dimensional Lebesgue measure dx reduces to 2πrdrdz when
integrated against axisymmetric functions. Observing that

√
r/ρ∗ � 1, we may drop

this weight. Performing now the change of variables introduced in (8) and using the
invariance of the fluid impulse under that transformation (9), we arrive at

‖ω(t) − I(ω0)ζ∗(t) − αz

t + 1
ζ∗(t)‖L2(R3) � log(t + 1)(t + 1)−9/4.

This proves Corollary 1.1.
Next,we turn to theproof ofCorollary 1.2. Since the impulseI (ω(t))=〈 f (

t̂
)
, ψ0,1〉μ

is constant in time, the assumption of Theorem 1.5 in the case n = 1 is satisfied if
I (ω0) vanishes. We obtain that

‖ f (t̂) − e−t̂/2a1,1ψ1,1 − e−t̂ (a2,1ψ2,1 + a2,2ψ2,2
) ‖L2(μ) � t̂ e−3t̂/2

since the eigenvalue λ2 = 1 has multiplicity two. The corresponding eigenfunctions
are given by ψ2,1 = (2− ẑ2)/

√
8 and ψ2,2 = (8− r̂2)/

√
32, thus identity (16) yields

a2,1 = lim
t̂→∞

et̂ 〈 f (t̂), (2 − ẑ2)/
√
8〉μ, a2,2 = lim

t̂→∞
et̂ 〈 f (t̂), (8 − r̂2)/

√
32〉μ.

From here on, the statement of Corollary 1.2 follows as in the previous proof.
Lastly, we prove Corollary 1.3. By assumption, the initial data ω0 is even in the

z-variable. Since the axisymmetric vorticity equation (3) is invariant under reflections
in the z-variable, uniqueness of the solution ω(t) to (3) guarantees that it inherits the
same symmetry property from its initial datum. We immediately deduce that

a1,1 = lim
t̂→∞

et̂/2〈 f (
t̂
)
, ẑ/

√
2〉μ = lim

t→∞
1√
2

∫
zr2ω(t)drdz = 0,

since the term
∫
zr2ω(t)drdz vanishes for all t ≥ 0 due to the symmetry of ω. This

allows us to apply Theorem 1.5 in the case n = 2 and the proof proceeds in the
established way. Note that the same reasoning as for a1,1 shows that the constants

a3,1:= lim
t̂→∞

e3t̂/2〈 f (
t̂
)
, ψ3,1〉μ and a3,2:= lim

t̂→∞
e3t̂/2〈 f (

t̂
)
, ψ3,2〉μ

both vanish as well, since ψ3,1 ∼ 6ẑ − ẑ3 and ψ3,2 ∼ ẑ(8 − r̂2) are odd in the
z-direction. Therefore, no second correction term appears in the statement of Corol-
lary 1.3. We see that the symmetry assumption on ω0 does not only rule out the impact
of the eigenfunction ψ1,1 but also of any other odd eigenfunction.

After deriving the main results for the vorticity ω, we now investigate the spectrum
of the linear operator L.
2.2. The spectrum of the linear operator L—Theorem 1.4

In this subsection, our aim is to diagonalize the differential operatorL in the Hilbert
space L2(μ). Determining the eigenvalues of a linear differential operator is a classical
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task in mathematical physics and, more generally, the theory of (non-)linear partial
differential equations. It is often convenient, to exploit the symmetries of the operator
to reduce the dimensionality of the problem. This can be done by making a separation-
of-variables ansatz. In our setting, we decompose the linear operator L into its radial
and axial parts, that is,

L = Lr + Lz where Lr = −∂2r + 1

2
r∂r − 3

r
∂r , Lz = −∂2z + 1

2
z∂z,

and we will look for eigenfunctions of the form f (r, z) = φ(r)ψ(z).
It is convenient to rescale variables in order to transform the differential operators

into a kind-of “textbook” form. More precisely, we introduce

s = r2

4
and y = z

2
,

so that

Ls = −s∂2s + (s − 2)∂s, Ly = −1

4
∂2y + 1

2
y∂y .

The corresponding eigenvalue equations are Laguerre and Hermite differential equa-
tions, respectively. For any �, n ∈ N0, it thus holds

Ls L
(1)
� = �L(1)

� , Ly Hn = n

2
Hn, (17)

where L(1)
� are Laguerre polynomials and Hn are Hermite polynomials. These form an

orthogonal basis of L2(R+, se−s) and L2(R, e−y2), respectively.We refer to Chapters
18.1 and 18.3 in the monograph [3] for references.

This observation motivates to consider and orthonormal basis of L2(μ) given by

φ�(r) ⊗ ψn(z) = cn,�L
(1)
� (r2/4)Hn(z/2),

for some constants cn,� suitably chosen, so that

f (r, z) =
∑
�,r

〈 f, φ� ⊗ ψn〉φ�(r)ψn(z).

The eigenvalues of L are then precisely the eigenvalues φ�(r) ⊗ ψn(z), which can be
computed by using (17), namely,

L(φ� ⊗ ψn) = ψnLrφ� + φ�Lzψn =
(
� + n

2

)
φ� ⊗ ψn .

With an orthonormal basis consisting of eigenfunctions ψ�,n :=φ� ⊗ψn at hand, we
can rewrite L as follows

L f =
∞∑

n,�=0

λ�,n〈 f, ψ�,n〉μψ�,n,
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where λ�,n :=� + n
2 . By standard results from functional analysis, see, e.g., Chapter

X.1 in [9], an operator of this form is self-adjoint and its spectrum is given by

σ (L) = {
λ�,n

} =
{
� + n

2
: �, n ∈ N0

}
.

The results in Theorem 1.4 are thus derived.
An important tool for L2-based proofs is the Poincaré inequality which enables us

to estimate the Dirichlet form of the operatorL, that is the L2(μ) norm of the gradient.
Its standard version in the Gauss space is the Brascamp–Lieb inequality

1

2

∥∥ f − 〈 f 〉μ
∥∥2
L2(μ)

≤ ‖∇ f (t)‖2L2(μ)
, (18)

where 〈 f 〉μ denotes the integral of f with respect to the probabilitymeasureμ, see, for
instance, [5,6]. Having the precise information on the spectrum at hand, we are able
to compute the sharp constant easily. Indeed, setting g = f − 〈 f 〉μ for convenience,
we use the eigenvalue expansion of g to write

‖∇g‖2L2(μ)
= 〈g,Lg〉μ =

∞∑
n=0

Nn∑
j=1

〈g,Lψn, j 〉μ〈g, ψn, j 〉μ =
∞∑
n=0

λn

Nn∑
j=1

〈g, ψn, j 〉2μ.

Because ψ0,1 ≡ 1 and since g has zero mean, the zeroth mode can be neglected. For
all other modes, we bound λn ≥ λ1 = 1/2, so that

‖∇g‖2L2(μ)
≥ 1

2

∞∑
n=0

Nn∑
j=1

〈g, ψn, j 〉2μ = 1

2
‖g‖2L2(μ)

,

which is just (18).

2.3. Main result for relative quantity—Proof of Theorem 1.5

In the remaining part, we only work with the equations for f or h. For notational
convenience we thus drop the hats of the spatial and time variables.
As usual in L2-theory based arguments, we will test solutions f of (12) against

other functions like eigenfunctions or the solution itself. While the linear part of the
equation behaves quite well in this situation, the nonlinear part has to be treated with
more care. For convenience, we state an integration by parts identity for arbitrary
functions f and g, that will be used several times in the sequel: It holds that

1

2

∫
g

(
r
z

)
· m f dμ −

∫
gm · ∇ f dμ =

∫
∇g · m f dμ + 2

∫
mr

r
g f dμ, (19)

where we used the explicit form of the measure μ and the fact that the divergence-free
condition of the velocity fieldm in cylindrical coordinates is equivalent to∇·(rm) = 0.

We need an estimate on the (rescaled) velocity vector field.
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Lemma 2.1. Letω be a solution with initial dataω0 as in TheoremA and let m denote
the corresponding rescaled velocity field (8). Then it holds that

‖m(t)‖L∞(H) � 1 for all t ≥ 0.

Proof. The estimate relies on an interpolation estimate derived by Gallay and Šverák
in [14] and a priori estimates on the rescaled vorticity field. Indeed, the estimate is a
direct consequence of an interpolation in Proposition 2.3 from [14],

‖m‖L∞(H) � ‖h‖1/2
L1(H)

‖h‖1/2L∞(H)
,

where h is the vorticity corresponding tom, and from the uniform bounds in (11). �
We use the velocity bound to ensure that L2(μ) is a reasonable solution space.

Lemma 2.2. Suppose that f is a solution to (12) with initial data f0 ∈ L2(μ). Then
f (t) ∈ L2(μ) for any t and it holds that

‖ f (t) − 〈 f 〉μ‖L2(μ) � e−t/2.

In particular, f (t) is uniformly bounded in L2(μ).

Proof. The proof of this estimate is fairly standard. We recall that the fluid impulse
〈 f 〉μ is preserved (14), and we compute, integrating by parts twice, using (19),

1

2

d

dt
‖ f − 〈 f 〉μ‖2L2(μ)

+ ‖∇ f ‖2L2(μ)
= e−t (〈 f − 〈 f 〉μ,m · ∇ f 〉μ + 2〈 f − 〈 f 〉μ, r−1mr f 〉μ

)
.

We estimate the velocity vector uniformly with the help of Lemma 2.1, and invoke the
Cauchy–Schwarz inequality to obtain

1

2

d

dt
‖ f − 〈 f 〉μ‖2L2(μ)

+ ‖∇ f ‖2L2(μ)

� e−t‖ f − 〈 f 〉μ‖L2(μ)

(
‖∇ f ‖L2(μ) + |〈 f 〉μ| + ‖r−1( f − 〈 f 〉μ)‖L2(μ)

)
.

Via the Hardy inequality from Lemma A.1 in the appendix and the Poincaré inequal-
ity in (18), we notice that the last error term above can be dropped. Using Young’s
inequality, (13) and the conservation of the fluid impulse, we thus arrive at

1

2

d

dt
‖ f − 〈 f 〉μ‖2L2(μ)

+ (1 − Ce−t )‖∇ f ‖2L2(μ)

≤ Ce−t
(
‖ f − 〈 f 〉μ‖L2(μ) + ‖ f − 〈 f 〉μ‖2L2(μ)

)
.

Applying the Poincaré inequality (18) once more, we obtain an estimate that is of the
form considered in part (a) of the Gronwall lemma A.2 with λ = 1/2 and μ = 1.
Integration yields thus the first statement of the proposition. With help of the triangle
inequality we immediately obtain

‖ f (t)‖L2(μ) � e−t/2 + |〈 f 〉μ| � 1

since 〈 f 〉μ is constant in time, cf. (14). �
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The above lemma does not only legitimize L2(μ) as a solution space, but also serves
as the starting point for higher order asymptotics. In Proposition 2.4, we will derive
faster decay rates of f with help of a dynamically improved Poincaré inequality via
induction over the eigenvalues. Lemma 2.2 will constitute the base case.
In our derivation of Theorem 1.5, it will be important to ensure that low frequency

eigenmodes are asymptotically suppressed. This will be guaranteed if the solution is
decaying fast enough. Indeed, the following result shows that, up to higher order error
terms, the spectral gap estimate can be improved along the nonlinear evolution as in
the linear case, cf. (18).

Proposition 2.3. (Dynamically improved Poincaré inequality) Let f be a solution of
(12) with initial datum f0 ∈ L2(μ) satisfying

‖ f (t)‖L2(μ) � e−λn t for all t ≥ 0

and a given n ∈ N0. Then the following two inequalities hold.

(a) There exists a constant C ≥ 0 such that

λn+1‖ f (t) − e−λn t
Nn∑
j=1

an, jψn, j‖2L2(μ)

≤ ‖∇( f (t) − e−λn t
Nn∑
j=1

an, jψn, j )‖2L2(μ)
+ Ce−2λn+2t

holds for all t ≥ 0. Here an, j := lim
t→∞ eλn t 〈 f (t), ψn, j 〉μ.

(b) There exists a constant C ≥ 0 such that

λn+2‖ f (t) − e−λn t
Nn∑
j=1

an, jψn, j − e−λn+1t
Nn+1∑
j=1

an+1, jψn+1, j‖2L2(μ)

≤ ‖∇( f (t) − e−λn t
Nn∑
j=1

an, jψn, j − e−λn+1t
Nn+1∑
j=1

an+1, jψn+1, j )‖2L2(μ)

+ Ce−2λn+2t

holds for all t ≥ 0. The constants an, j are given as in part (a) and accordingly
an+1, j := lim

t→∞ eλn+1t 〈 f (t), ψn+1, j 〉μ.

Note that a priori it is not clear that the constants an, j and an+1, j are finite.

Proof. We commence with the proof of part (a). As a start, we expand f in eigenfunc-
tions, i.e., f = ∑∞

k=0
∑Nk

j=1〈 f, ψk, j 〉μψk, j and compute, using the orthonormality of
the eigenfunctions that
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‖ f − e−λn t
∑
j

an, jψn, j‖2L2(μ)
=

∑
m, j

〈 f, ψm, j 〉2μ − 2e−λn t
∑
j

an, j 〈 f, ψn, j 〉μ

+e−2λn t
∑
j

a2n, j . (20)

Similarly, using in addition the symmetry of the linear operator L, we notice that

‖∇( f − e−λn t
∑
j

an, jψn, j )‖2L2(μ)

=
∑
m, j

λm〈 f, ψm, j 〉2μ − 2λne
−λn t

∑
j

an, j 〈 f, ψn, j 〉μ + e−2λn tλn
∑
j

a2n, j .

For the first term on the right-hand side, we have that

∑
m, j

λm〈 f, ψm, j 〉2μ ≥ λn+1

∑
m, j

〈 f, ψm, j 〉2μ −
n∑

m=0

∑
j

(λn+1 − λm)〈 f, ψm, j 〉2μ,

and using the identity (20), we then find

‖∇( f − e−λn t
∑
j

an, jψn, j )‖2L2(μ)

≥ λn+1‖ f − e−λn t
∑
j

an, jψn, j‖2L2(μ)
−

n∑
m=0

∑
j

(λn+1 − λm)〈 f, ψm, j 〉2μ

+ 2(λn+1 − λn)e
−λn t

∑
j

an, j 〈 f, ψn, j 〉μ − e−2λn t (λn+1 − λn)
∑
j

a2n, j

= λn+1‖ f − e−λn t
∑
j

an, jψn, j‖2L2(μ)
−

n−1∑
m=0

∑
j

(λn+1 − λm)〈 f, ψm, j 〉2μ

− (λn+1 − λn)
∑
j

(〈 f, ψn, j 〉μ − e−λn t an, j
)2

.

(21)

We have to ensure that the second and the third term on the right-hand side are of the
order O(e−2λn+2t ).

Let us first consider the evolution of the projections 〈 f (t), ψm, j 〉μ for m < n. In
view of the imposed decay on f , it is clear that they are decaying faster than e−λmt .
Indeed, it holds that

eλmt |〈 f (t), ψm, j 〉μ| ≤ eλmt‖ f (t)‖L2(μ) � e−(λn−λm )t , (22)

by the assumption in the lemma, and the right-hand side is decaying to zero form < n.
In order to improve on the rate, we use the equation. Applying the projection to (12)
yields

d

dt
〈 f, ψm, j 〉μ + λm〈 f, ψm, j 〉μ = 1

2
e−t 〈

(
r
z

)
· m f, ψm, j 〉μ − e−t 〈m · ∇ f, ψm, j 〉μ.
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Using the integration by parts formula (19), the derivatives can be put onto the eigen-
function,

d

dt
〈 f, ψm, j 〉μ + λm〈 f, ψm, j 〉μ = e−t 〈 f,∇ψm, j · m〉μ + 2e−t 〈 f, r−1mrψm, j 〉μ.

Using the decay assumption on the solution, we thus obtain the estimate∣∣∣∣
d

dt
〈 f, ψm, j 〉μ + λm〈 f, ψm, j 〉μ

∣∣∣∣ � e−(λn+1)t‖m‖L∞
(
‖∇ψm, j‖L2(μ) + ‖r−1ψm, j‖L2(μ)

)
.

Thanks to the Hardy-type inequality from Lemma A.1, the terms involving the eigen-
functions are controlled by ‖ψm, j‖L2(μ) + ‖∇ψm, j‖L2(μ) = 1+ √

λm . Moreover, the
velocity is bounded thanks to Lemma 2.1. We thus find that∣∣∣∣

d

dt

(
eλmt 〈 f, ψm, j 〉μ

)∣∣∣∣ � e−(λn−λm+1)t . (23)

If m < n, we use the observation (22) to deduce that

|〈 f (t), ψm, j 〉μ| � e−(λn+1)t = e−λn+2t . (24)

If m = n, we observe that t �→ d
dt

∣∣eλn t 〈 f (t), ψn, j 〉μ
∣∣ is a Cauchy sequence and

therefore there exists a constant an, j , indeed given by an, j = lim
t→∞ eλn t 〈 f (t), ψn, j 〉μ,

such that
∣∣eλn t 〈 f (t), ψn, j 〉μ − an, j

∣∣ � e−t .

Multiplying this estimate by e−λn t , we obtain the same decay behavior as in (24), and
thus, plugging both bounds into (21) finishes the proof of part (a).
The proof of part (b) proceeds essentially in the same way. It holds that

λn+2‖ f − e−λn t
∑
j

an, jψn, j − e−λn+1t
∑
j

an+1, jψn+1, j‖2L2(μ)

≤ ‖∇( f − e−λn t
∑
j

an, jψn, j − e−λn+1t
∑
j

an+1, jψn+1, j )‖2L2(μ)

+
n−1∑
m=0

∑
j

(λn+2 − λm)〈 f, ψm, j 〉2μ

+ (λn+2 − λn)
∑
j

(〈 f, ψn, j 〉μ − e−λn t an, j
)2

+ (λn+2 − λn)
∑
j

(〈 f, ψn+1, j 〉μ − e−λn+1t an+1, j
)2

.

The only term that is new compared to the case considered in (a) is the one displayed
in the last line above. For this, we note that the estimate in (23) (where nowm = n+1)
becomes ∣∣∣∣

d

dt

(
eλn+1t 〈 f, ψn+1, j 〉μ

)∣∣∣∣ � e−(λn−λn+1+1)t = e−t/2,

and from this point on, we may conclude as before. �
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We like to remark that the maximal number of correction terms for the dynamically
improved Poincaré inequality is two—at least when relying upon our elementary
proof. This observation provides another explanation for the constraint on the number
of correction terms in the main Theorem 1.5.
The following proposition illustrates why the decaying hypothesis in the previous

proposition can actually be assumed to prove ourmain result, although the assumptions
in Theorem 1.5 seem to be weaker.

Proposition 2.4. Let n ∈ N0 and f a solution of (12) with initial datum f0 ∈ L2(μ)

such that

lim
t→∞ eλk t 〈 f (t), ψk, j 〉μ = 0 (25)

for all k = 0, . . . , n − 1 and j = 1, . . . , Nk. Then it holds that

‖ f (t)‖L2(μ) � e−λn t for all t ≥ 0.

Proof. Weprove the statement via induction over n. In the base case n = 0, assumption
(25) is empty and λ0 = 0. The statement ‖ f (t)‖L2(μ) � 1 is covered by Lemma 2.2
since f0 ∈ L2(μ).
Let us now assume that (25) holds true for all k ≤ n and in addition that

‖ f (t)‖L2(μ) � e−λn t (26)

by induction hypothesis. Our goal is to improve the exponential decay rate from
λn to λn+1. The argument is very similar to that of Lemma 2.2, which we have to
improve. With estimate (26) and the assumption (25) at hand, the Poincaré inequality
Lemma 2.3, part (a), provides

λn+1 ‖ f (t)‖2L2(μ)
≤ ‖∇ f (t)‖2L2(μ)

+ Ce−2λn+2t . (27)

We now compute the L2 decay of f by testing the evolution and integrating by
parts,

1

2

d

dt
‖ f ‖2L2(μ)

+ ‖∇ f ‖2L2(μ)
= e−t

(∫
1

2

(
r
z

)
· m f 2dμ −

∫
f m · ∇ f dμ

)
.

Using the integration-by-parts identity (19), the latter turns into

d

dt
‖ f ‖2L2(μ)

+ 2‖∇ f ‖2L2(μ)
≤ 2e−t

(∫
f m · ∇ f dμ + 2

∫
mr

r
f 2dμ

)
.

We now estimate the right-hand side with the help of the velocity bound in Lemma 2.1
and the Hardy-type inequality in Lemma A.1,

∣∣∣∣
∫

f m · ∇ f dμ + 2
∫

mr

r
f 2dμ

∣∣∣∣
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� ‖m‖L∞
(
‖ f ‖L2(μ)‖∇ f ‖L2(μ) + ‖r−1 f ‖L2(μ)‖ f ‖L2(μ)

)

� ‖ f ‖2L2(μ)
+ ‖ f ‖L2(μ)‖∇ f ‖L2(μ),

so that via Young’s and Poincaré’s estimate (27)

d

dt
‖ f ‖2L2(μ)

+ (2λn+1 − Ce−t )‖ f ‖2L2(μ)
� e−2λn+2t

for some C > 0. We invoke the Gronwall inequality from part (a) of Lemma A.2 to
deduce

‖ f (t)‖L2(μ) � e−λn+1t

as desired. �

Finally, we are in the position to prove our main result.

Proof of Theorem 1.5. We start by noticing that, under the hypothesis of the theorem,
Propositions 2.4 and 2.3 imply that

λn+2‖ f (t) − ψn(t) − ψn+1(t)‖2L2(μ)
≤ ‖∇( f (t) − ψn(t) − ψn+1(t))‖2L2(μ)

+Ce−2λn+2t , (28)

where we have set

ψm(t) = e−λmt
Nm∑
j=1

am, jψm, j ,

for m = n, n + 1. Noticing that the ψm’s solve the linear equation ∂tψm +Lψm = 0,
we have that

∂t ( f − ψn − ψn+1) + L ( f − ψn − ψn+1)

= e−t
{
1

2

(
r
z

)
· m ( f − ψn − ψn+1) − m · ∇ ( f − ψn − ψn+1)

+ 1

2

(
r
z

)
· m (ψn + ψn+1) − m · ∇ (ψn + ψn+1)

}
.

Using the symmetry ofL and the integration-by-parts identity (19),we consequentially
compute

1

2

d

dt
‖ f − ψn − ψn+1‖2L2(μ)

+ ‖∇( f − ψn − ψn+1)‖2L2(μ)

= e−t
{
1

2

∫
( f − ψn − ψn+1)

2
(
r
z

)
· mdμ

−
∫

( f − ψn − ψn+1)m · ∇ ( f − ψn − ψn+1) dμ
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+ 1

2

∫
( f − ψn − ψn+1)

(
r
z

)
· m (ψn + ψn+1) dμ

−
∫

( f − ψn − ψn+1)m · ∇ (ψn + ψn+1) dμ

}

= e−t
{∫

( f − ψn − ψn+1)m · ∇( f − ψn − ψn+1) dμ

+ 2
∫

mr

r
( f − ψn − ψn+1)

2 dμ

+
∫

(ψn + ψn+1)m · ∇( f − ψn − ψn+1) dμ

+
∫

mr

r
(ψn + ψn+1)( f − ψn − ψn+1) dμ

}
.

We may uniformly estimate the velocity term with the help of Lemma 2.1. Making
use of the Hardy-type inequality from Lemma A.1 and using the trivial bounds

‖ψn + ψn+1‖L2(μ) + ‖∇(ψn + ψn+1)‖L2(μ) � e−λn t ,

we find that

d

dt

∥∥ f − ψn − ψn+1
∥∥2
L2(μ)

+ 2
∥∥∇( f − ψn − ψn+1)

∥∥2
L2(μ)

� e−t
{
‖ f − ψn − ψn+1‖L2(μ)‖∇( f − ψn − ψn+1)‖L2(μ) + ‖ f − ψn − ψn+1‖2L2(μ)

}

+ e−λn+2t
{
‖ f − ψn − ψn+1‖L2(μ) + ‖∇( f − ψn − ψn+1)‖L2(μ)

}
.

An application of Young’s inequality followed by the Poincaré estimate (28) then
gives

d

dt
‖ f − ψn − ψn+1‖2L2(μ)

+ (2λn+2 − Ce−t ) ‖ f − ψn − ψn+1‖2L2(μ)
� e−2λn+2t .

The statement of the theorem now directly follows with from the Gronwall inequality
in Proposition A.2 part (b). �
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Appendix—Some elementary estimates

In this appendix we collect some rather standard result, whose proofs we provide
for the convenience of the reader.

Lemma A.1. (Hardy-type inequality) It holds that

‖ψ‖L2(ρ∗) � ‖ψ‖L2(μ) + ‖∂rψ‖L2(μ).

Proof. The estimate can be derived by a suitable integration by parts in one space
dimension. We write and compute

∫ ∞

0
ψ2re− r2+z2

4 dr = 1

2

∫ ∞

0
ψ2

(
d

dr
r2

)
e− r2+z2

4 dr

= −
∫ ∞

0
ψ∂rψr2e− r2+z2

4 dr + 1

4

∫ ∞

0
ψ2r3e− r2+z2

4 dr,

from which we derive with the help of Young’s inequality that

∫ ∞

0
ψ2re− r2+z2

4 dr �
∫ ∞

0
ψ2r3e− r2+z2

4 dr +
∫ ∞

0
(∂rψ)2r3e− r2+z2

4 dr.

Integration in z gives the desired result. �

Lemma A.2. (Gronwall-type inequalities) Let a function F : [0,∞) → [0,∞) and
two constants 0 ≤ λ < μ be given.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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(a) Assume that there exists a constant C > 0 such that F satisfies

d

dt
F + (λ − Ce−t )F ≤ Ce−μt for all t ≥ 0.

Then it holds that

F(t) � e−λt for all t ≥ 0.

(b) Assume that there exists a constant C > 0 such that F satisfies

d

dt
F + (λ − Ce−t )F ≤ Ce−λt for all t ≥ 0.

Then it holds that

F(t) � (1 + t)e−λt for all t ≥ 0.

Proof. We can prove both statements simultaneously, allowing for μ = λ.
We define φ(s) = λ − Ce−s and compute

d

dt

(
exp

(∫ t

0
φ(s)ds

)
F(t)

)
≤ C exp

(∫ t

0
φ(s)ds − μt

)

= C exp
(
(λ − μ)t − C(1 − e−t )

)
� e(λ−μ)t .

Integration in time gives the respective results. �
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