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Abstract. We study the solvability of the second boundary value problem of the Lagrangianmean curvature
equation arising from special Lagrangian geometry. By the parabolic method, we obtain the existence and
uniqueness of the smooth uniformly convex solution, which generalizes the Brendle–Warren’s theorem
about minimal Lagrangian diffeomorphism in Euclidean metric space.

1. Introduction

In this work, we are interested in the long time existence and convergence of convex
solutions for special variables, which solves the fully nonlinear equation

∂u

∂t
= F

(
λ(D2u)

)
− f (x), t > 0, x ∈ �, (1.1)

associated with the second boundary value condition

Du(�) = �̃, t > 0, x ∈ ∂�, (1.2)

and the initial condition

u = u0, t = 0, x ∈ � (1.3)

for given F , f and u0, where Du and D2u are the gradient and the Hessian matrix
of the function u, respectively, � and �̃ are two uniformly convex bounded domains
with smooth boundary in Rn and λ(D2u) = (λ1, . . . , λn) are the eigenvalues of D2u.
One of our main goal to study the flow is to obtain the existence and uniqueness of
the smooth uniformly convex solution for the second boundary value problem of the
Lagrangian mean curvature equation

{
Fτ (λ(D2u)) = κ · x + c, x ∈ �,

Du(�) = �̃,
(1.4)
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where κ ∈ R
n is a constant vector, c is a constant to be determined and

Fτ (λ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

∑n
i=1 ln λi , τ = 0,

√
a2+1
2b

∑n
i=1 ln

λi+a−b
λi+a+b , 0 < τ < π

4 ,

−√
2

∑n
i=1

1
1+λi

, τ = π
4 ,

√
a2+1
b

∑n
i=1 arctan

λi+a−b
λi+a+b , π

4 < τ < π
2 ,

∑n
i=1 arctan λi , τ = π

2 ,

(1.5)

where a = cot τ , b = √| cot2 τ − 1|. Regarding the equation, the details can be seen
in [32].
Let

gτ = sin τδ0 + cos τg0, τ ∈
[
0,

π

2

]

be the linear combined metric of the standard Euclidean metric

δ0 =
n∑

i=1

dxi ⊗ dxi +
n∑
j=1

dy j ⊗ dy j

and the pseudo-Euclidean metric

g0 = 1

2

n∑
i=1

dxi ⊗ dyi + 1

2

n∑
j=1

dy j ⊗ dx j

in Rn × R
n .

Under the framework of calibrated geometry in (Rn × R
n, gτ ), Warren [1] firstly

obtained the special Lagrangian equation as the form

Fτ (λ(D2u)) = c, (1.6)

which is a special case of (1.4) when κ ≡ 0. Then, (x, Du(x)) is aminimal Lagrangian
graph in (Rn × R

n, gτ ).
If τ = 0, (1.6) becomes the famous Monge–Ampère equation

det D2u = e2c.

As for τ = π
2 , one can show that (1.6) is the classical special Lagrangian equation

n∑
i=1

arctan λi (D
2u) = c. (1.7)

The special Lagrangian Eq. (1.7) was first introduced by Harvey and Lawson in [2]
back in 1982. Its solutions u were shown to have the property that the graph (x, Du(x))
in (Rn×R

n, δ0) is a Lagrangian submanifold which is absolutely volume-minimizing,
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and the linearization at any solution is elliptic. They proved that a Lagrangian graph
(x, Du(x)) in (Rn × R

n, δ0) is minimal if and only if the Lagrangian angle is a
constant, that is, (1.7) holds. Interestingly, several methods for studying the Bernstein-
type theorems occured in the literature [3,4]. Jost and Xin [3] used the properties of
harmonic maps into convex subsets of Grassmannians. Yuan [4] showed that entire
convex solutions of (1.7) must be a quadratic polynomial based on the geometric
measure theory.
The Dirichlet problem for the Lagrangian mean curvature equation with various

phase constraints had been studied by Collins et al. [5] and Bhattacharya [6]. Bhat-
tacharya and Shankar had obtained the regularity for convex viscosity solutions in
[7,8]. We refer the reader to the appendix in [9–11] for interior estimates with criti-
cal and supercritical phase. Singular C1,α solutions constructed in [12,13] show that
interior regularity is not possible for subcritical phases |
| <

(n−2)π
2 , without an

additional convexity condition, as in [14–16], and that the Dirichlet problem is not
classically solvable for arbitrary smooth boundary data.
Moreover, we nowbriefly remark on some relevant work about Hessian and gradient

estimates of the Lagrangian mean curvature equation. The convex smooth solutions
withC1,1 phase were obtained in [17]. TheC4 solutions with critical and supercritical
phase were considered in [18–21]. Bhattacharya and Wall considered the shrinkers,
expanders, translators and rotators of the Lagrangian mean curvature flow in [22].
People have worked on showing the existence of the minimal Lagrangian graphs

(κ ≡ 0), and Du is a diffeomorphism from � to �̃. That is,
{
Fτ (λ(D2u)) = c, x ∈ �,

Du(�) = �̃.
(1.8)

Here, Du is a minimal Lagrangian diffeomorphism from � to �̃. In the case of
τ = 0, in dimension 2, Delanoë [23] obtained a unique smooth solution for the
second boundary value problem of the Monge–Ampère equation if both domains are
uniformly convex. Later the generalization of Delanoë’s theorem to higher dimensions
was given by Caffarelli [24] and Urbas [25]. Using the parabolic method, Schnürer
and Smoczyk [26] also obtained the existence of solutions to (1.8). As far as τ = π

2
is concerned, Brendle and Warren [27] proved the existence and uniqueness of the
solution by the elliptic method, and the second author [28] obtained the existence
of solution by considering the second boundary value problem for Lagrangian mean
curvature flow. Then by the elliptic and parabolic method, the second author with
Ou [29], Ye [30] and Chen [31] proved the existence and uniqueness of the solution
for 0 < τ < π

2 .
We are now in a position to find out the Lagrangian graph (x, Du(x)) prescribed

constant mean curvature vector κ in (Rn × R
n, gτ ) such that Du is the diffeomor-

phism between two uniformly convex bounded domains. Thus, it can be described by
Eq. (1.4), seeing [32].
By the continuity method, it follows from our early work [32] that we obtain the

existence and uniqueness of the smooth uniformly convex solution to (1.4). That is
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Theorem 1.1. For τ ∈ (
0, π

2

]
, there exists some positive constant ε0 depending only

on � and �̃, such that if |κ| ≤ ε0, then there exists a uniformly convex solution
u ∈ C∞(�̄) and a unique constant c solving (1.4), and u is unique up to a constant.

Theorem 1.1 exhibits an extension of the previous work on κ = 0 done by Brendle–
Warren [27], Huang [28], Huang–Ou [29], Huang–Ye [30] and Chen–Huang–Ye [31].
In the present paper, we pursue a strategy of deriving asymptotic convergence the-

orem to the solutions of (1.1)–(1.3) for proving Theorem 1.1 based purely on the
previous results of Altschuler and Wu [33], Schnürer [34], and Kitagawa [35].
Motivated by the work of Huang–Ou [29] and Huang–Ye [30], we introduce a class

of nonlinear functions containing Fτ (λ), τ ∈ (0, π
2 ].

For 0 < α0 < 1, let F(λ1, . . . , λn) be a C2+α0 symmetric function defined on

�+
n := {

(λ1, . . . , λn) ∈ R
n : λi > 0, i = 1, . . . , n

}
,

and satisfy

−∞ < F(0, . . . , 0) < F(+∞, . . . ,+∞) < +∞, (1.9)
∂F

∂λi
> 0, 1 ≤ i ≤ n on �+

n , (1.10)

and
(

∂2F

∂λi∂λ j

)
≤ 0 on �+

n . (1.11)

For any (μ1, . . . , μn) ∈ �+
n , denote

λi = 1

μi
, 1 ≤ i ≤ n,

and

F̃(μ1, . . . , μn) := −F(λ1, . . . , λn).

Assume that
(

∂2 F̃

∂μi∂μ j

)
≤ 0 on �+

n . (1.12)

For any s1 > 0, s2 > 0, define

�+
]s1,s2[ =

{
(λ1, . . . , λn) ∈ �+

n : 0 ≤ min
1≤i≤n

λi ≤ s1, max
1≤i≤n

λi ≥ s2

}
.

We assume that there exist positive constants
1 and
2, depending on s1 and s2, such
that for any (λ1, . . . , λn) ∈ �+

]s1,s2[,


1 ≤
n∑

i=1

∂F

∂λi
≤ 
2, (1.13)
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and


1 ≤
n∑

i=1

∂F

∂λi
λ2i ≤ 
2. (1.14)

Remark 1.2. Since

∂2 F̃

∂μi∂μ j
= − ∂2F

∂λi∂λ j
λ2i λ

2
j − 2λ3i δi j

∂F

∂λi
,

we cannot deduce (1.12) from (1.10) and (1.11).

For f (x) ∈ C2+α0(�̄), we define

osc
�̄

( f ) := max
x,y∈�̄

| f (x) − f (y)|,

and

Aδ :=
{
f (x) ∈ C2+α0(�̄) : f is concave, osc

�̄
( f ) ≤ δ

}
.

The constant δ is any positive constant satisfying

δ < min

{
F(+∞, . . . ,+∞) − max

�̄
F

(
λ(D2u0)

)
,min

�̄
F

(
λ(D2u0)

)

−F(0, . . . , 0)

}
.

Remark 1.3. Let f (x) = κ · x and if |κ| is sufficiently small, then f (x) ∈ Aδ .

Our main results are the following:

Theorem 1.4. Let F satisfy the structure conditions (1.9)–(1.14) and f ∈ Aδ . If

|Df | ≤ θ
1

2
· 1

max ¯̃
�

|Dh| (1.15)

holds, where θ and h depending only on �̃ appear in Definition 3.1. Then for any
given initial function u0 which is uniformly convex and satisfies Du0(�) = �̃, the
uniformly convex solution of (1.1)–(1.3) exists for all t ≥ 0 and u(·, t) converges to
a function u∞(x, t) = ũ∞(x) + c∞ · t in C1+ζ (�̄) ∩ C4+α(D̄) as t → ∞ for any
D ⊂⊂ �, 0 < ζ < 1 and 0 < α < α0. That is,

lim
t→+∞ ‖u(·, t) − u∞(·, t)‖C1+ζ (�̄) = 0, lim

t→+∞ ‖u(·, t) − u∞(·, t)‖C4+α(D̄) = 0.

And ũ∞(x) ∈ C1+1(�̄) ∩ C4+α0(�) is a solution of
{
F

(
λ(D2u)

) = f (x) + c∞, x ∈ �,

Du(�) = �̃.
(1.16)
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The constant c∞ depends only on �, �̃, u0, f , δ and F. The solution to (1.16) is
unique up to additions of constants.
Especially, if F and f are smooth, then there exist a uniformly convex solution

u∞(x) ∈ C∞(�̄) and a constant c∞ solving (1.16).

The rest of this article is organized as follows. The next section is to present the
structure condition for the operator Fτ and then we can exhibit that Theorem 1.1
is a corollary of Theorem 1.4. To prove the main theorem, we verify the short time
existence of the parabolic flow inSect. 3. Thus, Sect. 4 is devoted to carry out the strictly
oblique estimate and the C2 estimate. Eventually, we give the long time existence and
convergence of the parabolic flow in Sect. 5.
Throughout the following, Einstein’s convention of summation over repeated in-

dices will be adopted. We denote, for a smooth function u,

ui = ∂u

∂xi
, ui j = ∂2u

∂xi∂x j
, ui jk = ∂3u

∂xi∂x j∂xk
, . . . .

2. Preliminary step of Theorem 1.1

In the following, we are going to describe the analytic structure of the operator Fτ

by direct computation.
It is obvious that Fτ (λ1, . . . , λn), τ ∈ (

0, π
2

]
is a smooth symmetric function defined

on �+
n . For technical reasons, it is necessary to push further the calculation, and we

get

Fτ (0, . . . , 0) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n
√
a2+1
2b ln a−b

a+b , 0 < τ < π
4 ,

−√
2n, τ = π

4 ,

n
√
a2+1
b arctan a−b

a+b , π
4 < τ < π

2 ,

0, τ = π
2 ,

Fτ (+∞, . . . ,+∞) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, 0 < τ < π
4 ,

0, τ = π
4 ,

nπ
√
a2+1
4b , π

4 < τ < π
2 ,

nπ
2 , τ = π

2 ,

∂Fτ

∂λi
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
a2+1

(λi+a)2−b2
, 0 < τ < π

4 ,

√
2

(1+λi )
2 , τ = π

4 ,

√
a2+1

(λi+a)2+b2
, π

4 < τ < π
2 ,

1
1+λ2i

, τ = π
2 ,
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and

∂2Fτ

∂λi∂λ j
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 2
√
a2+1(λ j+a)δi j

[(λi+a)2−b2]2
, 0 < τ < π

4 ,

− 2
√
2δi j

(1+λi )
3 , τ = π

4 ,

− 2
√
a2+1(λ j+a)δi j

[(λi+a)2+b2]2
, π

4 < τ < π
2 ,

− 2λ j δi j(
1+λ2i

)2 , τ = π
2 ,

for i, j = 1, . . . , n. Then,

−∞ < Fτ (0, . . . , 0) < Fτ (+∞, . . . ,+∞) < +∞, τ ∈
(
0,

π

2

]
, (2.1)

∂Fτ

∂λi
> 0, 1 ≤ i ≤ n on �+

n , (2.2)

and
(

∂2Fτ

∂λi∂λ j

)
≤ 0 on �+

n . (2.3)

For any (λ1, . . . , λn) ∈ �+
]s1,s2[, we get that

n∑
i=1

∂Fτ

∂λi
∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ √
a2+1

(s1+a)2−b2
, n

√
a2+1

a2−b2

]
, 0 < τ < π

4 ,
[ √

2
(1+s1)2

, n
√
2
]
, τ = π

4 ,
[ √

a2+1
(s1+a)2+b2

, n
√
a2+1

a2+b2

]
, π

4 < τ < π
2 ,

[
1

1+s21
, n

]
, τ = π

2 ,

(2.4)

and

n∑
i=1

∂Fτ

∂λi
λ2i ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
s22

√
a2+1

(s2+a)2−b2
, n

√
a2 + 1

]
, 0 < τ < π

4 ,

[
s22

√
2

(1+s2)2
, n

√
2

]
, τ = π

4 ,

[
s22

√
a2+1

(s2+a)2+b2
, n

√
a2 + 1

]
, π

4 < τ < π
2 ,

[
s22

1+s22
, n

]
, τ = π

2 .

(2.5)

For any (μ1, . . . , μn) ∈ �+
n , denote

λi = 1

μi
, 1 ≤ i ≤ n,
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and

F̃τ (μ1, . . . , μn) := −Fτ (λ1, . . . , λn).

Then,

∂ F̃τ

∂μi
= λ2i

∂Fτ

∂λi
, μ2

i
∂ F̃τ

∂μi
= ∂Fτ

∂λi
,

and

∂2 F̃τ

∂μi∂μ j
= −λ3i

(
λi

∂2Fτ

∂λ2i
+ 2

∂Fτ

∂λi

)
δi j

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 2
√
a2+1(μi+a)

[(1+aμi )
2−(bμi )

2]2
δi j , 0 < τ < π

4 ,

− 2
√
2δi j

(1+μi )
3 , τ = π

4 ,

− 2
√
a2+1(μi+a)

[(1+aμi )
2+(bμi )

2]2
δi j ,

π
4 < τ < π

2 ,

− 2μi δi j(
1+μ2

i

)2 , τ = π
2 .

Therefore, we obtain

∂ F̃τ

∂μi
> 0, 1 ≤ i ≤ n on �+

n ,

and
(

∂2 F̃τ

∂μi∂μ j

)
≤ 0 on �+

n . (2.6)

By the discussion above, we have

Proposition 2.1. For τ ∈ (0, π
2 ], the operator Fτ (λ) satisfies the structure conditions

(1.9)–(1.14).

In fact, there are more operators satisfying the structure conditions (1.9)–(1.14). For
any constants α > 1 and ε > 0, define the operator as follows:

Sα(λ1, . . . , λn) = −
n∑

i=1

1

(ε + λi )α
.

Therefore, if

F
[
D2u

]
= Sα

(
λ

(
D2u

))
, (2.7)

then F
[
D2u

]
satisfies the structure conditions (1.9)–(1.14).

In the next three sections, we are going to prove Theorem 1.4 through the short time
existence of the parabolic flow, the strictly oblique estimate and the C2 estimate based
on a Schnürer’s convergence result.
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3. The short time existence of the parabolic flow

Let Pn be the set of positive definite symmetric n × n matrices, and λ1(A), . . .,
λn(A) be the eigenvalues of A. For A = (ai j ) ∈ Pn , denote

F[A] := F (λ1(A), . . . , λn(A))

and

(ai j ) = (ai j )
−1, Fi j = ∂F

∂ai j
, Fi j,rs = ∂2F

∂ai j∂ars
.

Let us recall the relevant Sobolev spaces ( cf. Chapter 1 in [36]). For every multi-
index β = (β1, β2, . . . , βn), βi ≥ 0 for i = 1, 2, . . . , n with length |β| = ∑n

i=1 βi

and j ≥ 0, we set

Dβu := ∂ |β|u
∂xβ1

1 ∂xβ2
2 · · · ∂xβn

n

, DβD j
t u := ∂ |β|+ j u

∂xβ1
1 ∂xβ2

2 · · · ∂xβn
n ∂t j

.

We state the definition of the usual functional spaces as follows (k ≥ 0):

Ck(�) = {u : � → R : ∀β, |β| ≤ k, Dβu is continuous in �},
Ck(�̄) = {u ∈ Ck(�) : ∀β, |β| ≤ k, Dβu can be extended by continuity to ∂�},
Ck, k2 (�T ) = {u : �T → R : ∀β, j ≥ 0, |β| + 2 j ≤ k, DβD j

t u is continuous in �T },
Ck, k2 (�̄T ) = {u ∈ Ck, k2 (�T ) : ∀β, j ≥ 0, |β| + 2 j ≤ k,

DβD j
t u can be extended by continuity to ∂�T }.

Moreover, Ck(�̄) and Ck, k2 (�̄T ) are Banach spaces equipped with the norm

‖u‖Ck (�̄) =
∑
|β|≤k

sup
�̄

|Dβu|

and

‖u‖
Ck, k2 (�̄T )

=
∑

j≥0,|β|+2 j≤k

sup
�̄T

|DβD j
t u|,

respectively.
We now present the definition of Hölder spaces. Let α ∈ [0, 1], define the α-Hölder

coefficient of u in � as

[u]α,� = sup
x �=y,x,y∈�

|u(x) − u(y)|
|x − y|α .

If [u]α,� < +∞, then we call u Hölder continuous with exponent α in �. If there
are not ambiguity about the domains �, we denote [u]α,� by [u]α . Similarly, the
(α, α

2 )-Hölder coefficient of u in �T can be defined by

[u]α, α
2 ,�T = sup

(x,t) �=(y,τ ),(x,t),(y,τ )∈�T

|u(x, t) − u(y, τ )|
|x − y|α + |t − τ | α

2
,
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and u is Hölder continuous with exponent (α, α
2 ) in �T if [u]α, α

2 ,�T < +∞. Mean-

while, we denote [u]α, α
2 ,�T by [u]α, α

2
. We denote Ck+α(�̄) as the set of functions

belonging to Ck(�̄) whose k-order partial derivatives are Hölder continuous with
exponent α in � and Ck+α(�̄) is a Banach space equipped with the following norm

‖u‖Ck+α(�̄) = ‖u‖Ck (�̄) + [u]k+α,

where

[u]k+α =
∑
|β|=k

[Dβu]α.

Likewise, we denote Ck+α, k+α
2 (�̄T ) as the set of functions belonging to Ck, k2 (�̄T )

whose (k, k
2 )-order partial derivatives are Hölder continuous with exponent (α, α

2 ) in

�T and Ck+α, k+α
2 (�̄T ) is a Banach space equipped with the following norm:

‖u‖
Ck+α, k+α

2 (�̄T )
= ‖u‖

Ck, k2 (�̄T )
+ [u]k+α, k+α

2
,

where

[u]k+α, k+α
2

=
∑

|β|+2 j=k

[DβD j
t u]α, α

2
.

By the methods on the second boundary value problems for equations of Monge–
Ampère type [25], the parabolic boundary condition in (1.2) can be reformulated as

h(Du) = 0, x ∈ ∂�, t > 0,

where we need

Definition 3.1. A smooth function h : Rn → R is called the defining function of �̃

if

�̃ = {p ∈ R
n : h(p) > 0}, |Dh|∂�̃ = 1,

and there exists θ > 0 such that for any p = (p1, . . . , pn) ∈ �̃ and ξ = (ξ1, . . . , ξn) ∈
R
n ,

∂2h

∂pi∂p j
ξiξ j ≤ −θ |ξ |2.

We can also define h̃ as the defining function of �. That is,

� = { p̃ ∈ R
n : h̃( p̃) > 0}, |Dh̃|∂� = 1, D2h̃ ≤ −θ̃ I,

where θ̃ is some positive constant. Thus, the parabolic flow (1.1)–(1.3) is equivalent
to the evolution problem

⎧⎨
⎩

∂u
∂t = F

(
λ(D2u)

) − f (x), t > 0, x ∈ �,

h(Du) = 0, t > 0, x ∈ ∂�,

u = u0, t = 0, x ∈ �.

(3.1)
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To establish the short time existence of classical solutions of (3.1), we use the inverse
function theorem in Fréchet spaces and the theory of linear parabolic equations for
oblique boundary condition. The method is along the idea of proving the short time
existence of convex solutions on the second boundary value problem for Lagrangian
mean curvature flow [28]. We include the details for the convenience of the readers.

Lemma 3.2. (Ekeland, see Theorem 2 in [37]) Let X and Y be Banach spaces with
the norms ‖ · ‖1 and ‖ · ‖2, respectively. Suppose

h̄ : X → Y

is continuous and Gâteaux-differentiable, with h̄[0] = 0. Assume that the derivative
Dh̄[x] has a right inverse T[x], uniformly bounded in a neighborhood of 0 in X. That
is, for any y ∈ Y ,

Dh̄[x]T[x]y = y,

and there exist R > 0 and m > 0 such that

‖x‖1 ≤ R �⇒ ‖T[x]‖2 ≤ m.

For every y ∈ Y , if

‖y‖2 <
R

m
,

then there exists some x ∈ X such that

‖x‖2 < R,

and

h̄[x] = y.

As an application of Lemma 3.2, we obtain the following inverse function theorem
which will be used to prove the short time existence result for Eq. (3.1).

Lemma 3.3. (See Lemma 2.2 in [30]) Let X and Y be Banach spaces with the norms
‖ · ‖1 and ‖ · ‖2, respectively. Suppose

J : X → Y

is continuous andGâteaux-differentiable, with J (v0) = w0. Assume that the derivative
DJ [v] has a right inverse L[v], uniformly bounded in a neighborhood of v0. That is,
for any y ∈ Y ,

DJ [v]L[v]y = y,
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and there exist R > 0 and m > 0 such that

‖v − v0‖1 ≤ R �⇒ ‖L[v]‖2 ≤ m.

For every w ∈ Y , if

‖w − w0‖2 <
R

m
,

then there exists some v ∈ X such that

‖v − v0‖1 < R,

and

J (v) = w.

We will use the following short time existence and regularity results for linear
second-order parabolic equation with strict oblique boundary condition:

Lemma 3.4. (See Theorems 8.8 and 8.9 in [38]) Assume that f̃ ∈ Cα0,
α0
2 (�̄T ) for

some 0 < α0 < 1, T > 0, and G(x, p), G p(x, p) are in C1+α0(�) for any compact
subset � of ∂� × R

n such that inf∂�〈Gp, ν〉 > 0 where ν is the inner normal vector
of ∂�. Let u0 ∈ C2+α0(�̄) be strictly convex and satisfy G(x, Du0) = 0. Then, there
exists T ′ > 0 (T ′ ≤ T ) such that we can find a unique solution which is strictly convex

in x variable in the class C2+α0,
2+α0
2 (�̄T ′) to the following equations:

⎧⎨
⎩

∂u
∂t − ai j (x, t)ui j = f̃ (x, t), T ′ > t > 0, x ∈ �,

G(x, Du) = 0, T ′ > t > 0, x ∈ ∂�,

u = u0, t = 0, x ∈ �,

where ai j (x, t) ∈ Cα0,
α0
2 (�̄T ), 1 ≤ i, j ≤ n and [ai j (x, t)] ≥ a0I for some positive

constant a0.

By the property of C2+α0,
2+α0
2 (�̄T ′) and u(x, t)|t=0 = u0(x), we obtain

lim
t→0

‖u(·, t) − u0(·)‖C2+α0 (�̄) = 0. (3.2)

For any α < α0, we have

|(D2u(x, t) − D2u0(x)) − (D2u(y, τ ) − D2u0(y))|
|x − y|α + |t − τ | α

2

≤ |(D2u(x, t) − D2u0(x)) − (D2u(y, t) − D2u0(y))|
|x − y|α

+|t − τ | α0−α

2
|(D2u(y, t) − D2u0(y)) − (D2u(y, τ ) − D2u0(y))|

|t − τ | α0
2

.
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Then, we get

‖D2u − D2u0‖Cα, α
2 (�̄T ′ ) ≤ max

0≤t≤T ′ ‖D2u(·, t) − D2u0(·)‖Cα(�̄)

+T ′ α−α0
2 ‖D2u − D2u0‖

Cα0,
α0
2 (�̄T ′ )

. (3.3)

Combining (3.2) with (3.3), we obtain

lim
T ′→0

‖D2u − D2u0‖Cα, α
2 (�̄T ′ ) = 0, (3.4)

which will be used later.
According to the proof in [25], we can verify the oblique boundary condition.

Lemma 3.5. (See Urbas [25]) Let ν = (ν1, ν2, . . . , νn) be the unit inward normal
vector of ∂�. If u ∈ C2(�̄) with D2u ≥ 0, then there holds h pk (Du)νk ≥ 0.

Now, we can prove the short time existence of solutions of (3.1), which is equivalent
to the problem (1.1)–(1.3).

Proposition 3.6. According to the conditions in Theorem 1.4, there exist some T ′′ > 0
and u ∈ C2+α, 2+α

2 (�̄T ′′) which depend only on �, �̃, u0, f , δ and F, such that u is a
solution of (3.1) and is strictly convex in x variable.

Proof. Denote the Banach spaces

X = C2+α,1+ α
2 (�̄T ), Y = Cα, α

2 (�̄T ) × C1+α, 1+α
2 (∂� × (0, T ]) × C2+α(�̄),

where

‖ · ‖Y = ‖ · ‖
Cα, α

2 (�̄T )
+ ‖ · ‖

C1+α, 1+α
2 (∂�×(0,T ]) + ‖ · ‖C2+α(�̄).

Define a map

J : X → Y

by

J (u) =
⎧⎨
⎩

∂u
∂t − F[D2u] + f (x), (x, t) ∈ �T ,

h(Du), (x, t) ∈ ∂� × (0, T ],
u, (x, t) ∈ � × {t = 0}.

Thus, the strategy is to use the inverse function theorem to obtain the short time
existence result.
The computation of the Gâteaux derivative shows that for any u, v ∈ X ,

DJ [u](v) := d

dτ
J (u + τv)|τ=0 =

⎧⎨
⎩

∂v
∂t − Fi j [D2u]vi j , (x, t) ∈ �T ,

h pi (Du)vi , (x, t) ∈ ∂� × (0, T ],
v, (x, t) ∈ � × {t = 0}.
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Using Lemmas 3.4 and 3.5, there exists T1 > 0 such that we can find

û ∈ C2+α0,1+ α0
2 (�̄T1) ⊂ X

to be strictly convex in x variable, which satisfies the following equations:
⎧⎨
⎩

∂ û
∂t − �û = F[D2u0] − �u0 − f, T1 > t > 0, x ∈ �,

h(Dû) = 0, T1 > t > 0, x ∈ ∂�,

û = u0, t = 0, x ∈ �.

(3.5)

We see that there exists R > 0, such that u is strictly convex in x variable if

‖u − û‖
C2+α, 2+α

2 (�̄T1 )
< R.

For each Z := ( f̄ , ḡ, w̄) ∈ Y , using Lemma 3.4 again, we know that there exists a
unique v ∈ X (T = T1) satisfying DJ [u](v) = ( f̄ , ḡ, w̄), that is,

⎧⎨
⎩

∂v
∂t − Fi j [D2u]vi j = f̄ , T1 > t > 0, x ∈ �,

h pi (Du)vi = ḡ, T1 > t > 0, x ∈ ∂�,

v = w̄, t = 0, x ∈ �.

Using Schauder estimates for linear parabolic equation to oblique boundary condition
(cf. Theorems 8.8 and 8.9 in [38]), we obtain for some positive constant m,

‖v‖
C2+α, 2+α

2 (�̄T1 )
≤ m

(
‖ f̄ ‖

Cα, α
2 (�̄T1 )

+ ‖ḡ‖
C1+α, 1+α

2 (∂�×(0,T1])
+ ‖w̄‖C2+α(�̄)

)
.

For T = T1, by the definition of the Banach spaces X and Y , we can rewrite the above
Schauder estimates as

‖v‖X ≤ m‖Z‖Y .

If ‖Z‖Y ≤ 1, then we have

‖v‖X ≤ m.

It means that the derivative DJ [u](v) = Z has a right inverse v = L[u](Z) and

‖L[u]‖ := sup
‖Z‖Y≤1

‖L[u](Z)‖X ≤ m.

If we set

f̂ = ∂ û

∂t
− F[D2û] + f, w0 = ( f̂ , 0, u0), w = (0, 0, u0),

then we can show that

‖ f̂ − 0‖
Cα, α

2 (�̄T1 )
= ‖�û − �u0 + F[D2u0] − F[D2û]‖

Cα, α
2 (�̄T1 )

≤ ‖�û − �u0‖Cα, α
2 (�̄T1 )

+ ‖F[D2u0] − F[D2û]‖
Cα, α

2 (�̄T1 )

≤ C‖D2û − D2u0‖Cα, α
2 (�̄T1 )

,
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where C is a constant depending only on the known data. Using (3.4), we conclude
that there exists T ′′ > 0 (T ′′ ≤ T1) to be small enough such that

‖ f̂ − 0‖
Cα, α

2 (�̄T ′′ ) ≤ C‖D2û − D2u0‖Cα, α
2 (�̄T ′′ ) <

R

m
.

Therefore,

‖w − w0‖Y = ‖0 − f̂ ‖
Cα, α

2 (�̄T ′′ ) <
R

m
.

By Lemma 3.3, we obtain the desired result. �

Remark 3.7. By the strong maximum principle, the strictly convex solution to (3.1)
is unique.

4. The strict obliqueness estimate and the C2 estimate

In this section, the C2 a priori bound is accomplished by making the second deriva-
tive estimates on the boundary for the solutions of fully nonlinear parabolic equations.
We also refer to the recent preprint [32] for a proof of separation in elliptic setting with
the same criterion as the one used in the present work. This treatment is similar to the
problems presented in [25,26,28], but requires some modification to accommodate
the more general situation. Specifically, the structure conditions (1.13) and (1.14) are
needed in order to derive differential inequalities from barriers which can be used.
For the convenience, we denote β = (β1, . . . , βn) with β i := h pi (Du), and ν =

(ν1, . . . , νn) as the unit inward normal vector at x ∈ ∂�. The expression of the inner
product is

〈β, ν〉 = β iνi .

By Proposition 3.6 and the regularity theory of parabolic equations, we may as-
sume that u is a strictly convex solution of (1.1)–(1.3) in the class C2+α,1+ α

2 (�̄T ) ∩
C4+α,2+ α

2 (�T ) for some T > 0.

Lemma 4.1. (u̇-estimates) If the convex solution to (1.1)–(1.3) exists and f ∈ Aδ ,
then

min
�̄

F[D2u0] − max
�̄

f (x) ≤ u̇ ≤ max
�̄

F[D2u0] − min
�̄

f (x),

where u̇ := ∂u
∂t .

Proof. From (1.1), a direct computation shows that

∂(u̇)

∂t
− Fi j∂i j (u̇) = 0.
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Using the maximum principle, we see that

min
�̄T

(u̇) = min
∂�̄T

(u̇).

Without loss of generality, we assume that u̇ �= constant . If there exists x0 ∈ ∂�,
t0 > 0, such that u̇(x0, t0) = min�̄T

(u̇). On the one hand, since 〈β, ν〉 > 0, by the
Hopf Lemma (cf. [39,40]) for parabolic equations, there must hold in the following:

u̇β(x0, t0) �= 0.

On the other hand, we differentiate the boundary condition and then obtain

u̇β = h pk (Du)
∂ u̇

∂xk
= ∂h(Du)

∂t
= 0.

It is a contradiction. So we deduce that

u̇ ≥ min
�̄T

(u̇) = min
∂�̄T |t=0

(u̇) = min
�̄

(
F[D2u0] − f (x)

)
≥ min

�̄
F[D2u0] − max

�̄
f (x).

For the same reason, we have

u̇ ≤ max
�̄T

(u̇) = max
∂�̄T |t=0

(u̇) = max
�̄

(
F[D2u0] − f (x)

)
≤ max

�̄
F[D2u0] − min

�̄
f (x).

Putting these facts together, the assertion follows. �

Lemma 4.2. Let (x, t) be an arbitrary point of �T , and λ1(x, t), . . ., λn(x, t) be
the eigenvalues of D2u at (x, t). Suppose that (1.9) and (1.10) hold, if osc�̄( f ) ≤ δ

and u is a strictly convex solution to (1.1)–(1.3), then there exists μ > 0 and ω > 0
depending only on F[D2u0] and δ such that

min
1≤i≤n

λi (x, t) ≤ μ, max
1≤i≤n

λi (x, t) ≥ ω.

Proof. By condition (1.10) and Lemma 4.1, we obtain

F

(
min
1≤i≤n

λi (x, t), . . . , min
1≤i≤n

λi (x, t)

)
≤ F[D2u] = u̇ + f (x)

≤ max
�̄

F[D2u0] + f (x) − min
�̄

f (x)

≤ max
�̄

F[D2u0] + osc
�̄

( f )

≤ max
�̄

F[D2u0] + δ

< F (+∞, . . . ,+∞) ,
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and

F

(
max
1≤i≤n

λi (x, t), . . . , max
1≤i≤n

λi (x, t)

)
≥ F[D2u] = u̇ + f (x)

≥ min
�̄

F[D2u0] + f (x) − max
�̄

f (x)

≥ min
�̄

F[D2u0] − osc
�̄

( f )

≥ min
�̄

F[D2u0] − δ

> F(0, . . . , 0).

By the monotonicity of F and condition (1.9), we get the desired result. �

By Lemma 4.2, the points (λ1, λ2, . . . , λn) are always in �+
]μ,ω[ under the flow. So

we can obtain:

Lemma 4.3. Let (x, t) be an arbitrary point of �T , and λ1(x, t), . . ., λn(x, t) be the
eigenvalues of D2u at (x, t). Suppose that (1.9) and (1.10) hold, if osc�̄( f ) ≤ δ and
u is a strictly convex solution to (1.1)–(1.3), then there exists 
1 > 0 and 
2 > 0
depending only on F[D2u0] and δ such that F satisfies the structure conditions (1.13)
and (1.14).

In the following, we always assume that
1 > 0 and
2 > 0 are universal constants
depending on the known data.
For technical needs below, we introduce the Legendre transformation of u. For any

x ∈ R
n , define

x̃i := ∂u

∂xi
(x), i = 1, 2, . . . , n,

and

ũ(x̃1, . . . , x̃n, t) :=
n∑

i=1

xi
∂u

∂xi
(x, t) − u(x, t).

In terms of x̃1, . . ., x̃n and ũ(x̃1, . . . , x̃n, t), we can easily check that

(
∂2ũ

∂ x̃i∂ x̃ j

)
=

(
∂2u

∂xi∂x j

)−1

.

Let μ1, . . ., μn be the eigenvalues of D2ũ at x̃ = Du(x). We denote

μi = λ−1
i , i = 1, 2, . . . , n.

Then,

∂ F̃

∂μi
= λ2i

∂F

∂λi
, μ2

i
∂ F̃

∂μi
= ∂F

∂λi
.
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Moreover, it follows from (3.1) that
⎧⎨
⎩

∂ ũ
∂t = F̃(D2ũ) + f (Dũ), t > 0, x̃ ∈ �̃,

h̃(Dũ) = 0, t > 0, x̃ ∈ ∂�̃,

ũ = ũ0, t = 0, x̃ ∈ �̃,

(4.1)

where h̃ is the defining function of �, and ũ0 is the Legendre transformation of u0.

Remark 4.4. By Lemma 4.2, if u is a strictly convex solution to (1.1)–(1.3), then the
eigenvalues of D2u and D2ũmust be in�+

]μ,ω[ and�+
]ω−1,μ−1[, respectively. Therefore,

F̃ also satisfies the structure conditions (1.13) and (1.14).

In order to establish the C2 estimates, we make use of the method to do the strict
obliqueness estimates, a parabolic version of a result of Urbas [25] which was given in
[26]. Returning to Lemma 3.5, we get a uniform positive lower bound of the quantity
inf∂� h pk (Du)νk which does not depend on t under the structure conditions of F .

Lemma 4.5. Let F satisfy the structure conditions (1.9)–(1.14) and f ∈ Aδ . If u
is a strictly convex solution to (1.1)–(1.3) and |Df | satisfies (1.15), then the strict
obliqueness estimate

〈β, ν〉 ≥ 1

C1
> 0 (4.2)

holds on ∂� for some universal constant C1, which depends only on F, u0, �, �̃ and
δ, and is independent of t .

Remark 4.6. Without loss of generality, in the following, we set C1,C2, . . . , to be
constants depending only on the known data.

Proof. The proof follows the similar computations carried out in [32].
Define

v = 〈β, ν〉 + h(Du).

Let (x0, t0) ∈ ∂� × [0, T ] such that

〈β, ν〉(x0, t0) = h pk (Du(x0, t0))νk(x0, t0) = min
∂�×[0,T ]〈β, ν〉.

By rotation, we may assume that t0 > 0 and ν(x0, t0) = (0, 0, . . . , 1) =: en . By the
above assumptions and the boundary condition, we obtain

v(x0, t0) = min
∂�×[0,T ] v = min

∂�×[0,T ]〈β, ν〉 = h pn (Du(x0, t0)).

By the convexity of � and its smoothness, we extend ν smoothly to a tubular neigh-
borhood of ∂� such that in the matrix sense

(νkl) := (Dkνl) ≤ − 1

C2
diag(1, . . . , 1, 0), (4.3)
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where C2 is a positive constant. By Lemma 3.5, we see that h pn (Du(x0, t0)) ≥ 0.
At (x0, t0), we have

0 = vr = h pn pk ukr + h pkνkr + h pk ukr , 1 ≤ r ≤ n − 1. (4.4)

At this point, we point out a key estimate

vn(x0, t0) ≥ −C3 (4.5)

which will be proved later, where C3 is a constant depending only on �, u0, h, h̃ and
δ.

It is not hard to check that (4.5) can be rewritten as

h pn pk ukn + h pkνkn + h pk ukn ≥ −C3. (4.6)

Multiplying (4.6) with h pn and (4.4) with h pr , respectively, and summing up together,
we obtain

h pk h pl ukl ≥ −C3h pn − h pk h pl νkl − h pk h pn pl ukl . (4.7)

Using (4.3), and

1 ≤ r ≤ n − 1, h pk ukr = ∂h(Du)

∂xr
= 0, h pk ukn = ∂h(Du)

∂xn
≥ 0, −h pn pn ≥ 0,

we have

h pk h pl ukl ≥ −C3h pn + 1

C2
|Dh|2 − 1

C2
h2pn ≥ −C4h pn + 1

C4
− 1

C4
h2pn ,

where we use |Dh|2 − h2pn = ∑n−1
k=1 h

2
pk and let C4 = max{C2,C3}. For the last term

of the above inequality, we distinguish two cases at (x0, t0).
Case (i). If

−C4h pn + 1

C4
− 1

C4
h2pn ≤ 1

2C4
,

then

h pk (Du)νk = h pn ≥
√
1

2
+ C4

4

4
− C2

4

2
.

It shows that there is a uniform positive lower bound for the quantity min∂�×[0,T ] h pk
(Du)νk .

Case (ii). If

−C4h pn + 1

C4
− 1

C4
h2pn >

1

2C4
,

then we obtain a positive lower bound of h pk h pl ukl .
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Let ũ be the Legendre transformation of u, then ũ satisfies

⎧⎨
⎩

∂ ũ
∂t = F̃(D2ũ) + f (Dũ), T > t > 0, x̃ ∈ �̃,

h̃(Dũ) = 0, T > t > 0, x̃ ∈ ∂�̃,

ũ = ũ0, t = 0, x̃ ∈ �̃,

(4.8)

where h̃ is the defining function of �, and ũ0 is the Legendre transformation of u0.
The unit inward normal vector of ∂� can be expressed by ν = Dh̃. For the same
reason, ν̃ = Dh, where ν̃ = (ν̃1, ν̃2, . . . , ν̃n) is the unit inward normal vector of ∂�̃.

Let β̃ = (β̃1, . . . , β̃n) with β̃k := h̃ pk (Dũ). We note that one can also define

ṽ = 〈β̃, ν̃〉 + h̃(Dũ),

in which

〈β̃, ν̃〉 = 〈β, ν〉.

Denote x̃0 = Du(x0). Then, we obtain

ṽ(x̃0, t0) = v(x0, t0) = min
∂�̃×[0,T ]

ṽ.

Using the same methods, under the assumption of

ṽn(x̃0, t0) ≥ −C5, (4.9)

we obtain the positive lower bounds of h̃ pk h̃ pl ũkl , or

h pk (Du)νk = h̃ pk (Dũ)ν̃k = h̃ pn ≥
√
1

2
+ C4

5

4
− C2

5

2
.

We notice that

h̃ pk h̃ pl ũkl = νiν j u
i j .

Then by the positive lower bounds of h pk h pl ukl and h̃ pk h̃ pl ũkl , the desired result
follows from

〈β, ν〉 =
√
ui jνiν j h pk h pl ukl , (4.10)

which is proved in [25].
It remains to prove the key estimate (4.5) and (4.9).
We prove (4.5) first. By D2h̃ ≤ −θ̃ I and (1.13), we have

Lh̃ ≤ −θ̃

n∑
i=1

Fii , (4.11)
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where

L := Fi j∂i j − ∂t .

On the other hand,

Lv = h pk pl pmνk F
i j uli umj + 2h pk pl F

i jνk j uli

+h pk pl F
i j ul j uki + h pk pl νk Lul + h pk Lνk + h pk Luk . (4.12)

Now, we estimate the first term on the right-hand side of (4.12). By the diagonal basis
and (1.14), we have

|h pk pl pmνk F
i j uli umj | ≤ C

n∑
i=1

∂F

∂λi
λ2i ≤ C6,

where C6 is a constant depending only on h, �, 
1, 
2, u0 and δ. Similarly, we also
get

|h pk pl F
i j ul j uki | ≤ C

n∑
i=1

∂F

∂λi
λ2i ≤ C7.

For the second term, by Cauchy inequality, we obtain

|2h pk pl F
i jνk j uli | ≤ C

n∑
i=1

∂F

∂λi
λi = C

n∑
i=1

√
∂F

∂λi

√
∂F

∂λi
λi

≤ C

(
n∑

i=1

∂F

∂λi

) 1
2
(

n∑
i=1

∂F

∂λi
λ2i

) 1
2

≤ C8.

By (1.1), we have Lul = fl . Then, we get

|h pk pl νk Lul | ≤ C9, |h pk Luk | ≤ C10.

It follows from (1.13) that

|h pk Lνk | ≤ C11

n∑
i=1

Fii .

Inserting these into (4.12) and using (1.13), it is immediate to check that there exists
a positive constant C12 depending only on h, �, 
1, 
2, u0 and δ, such that

Lv ≤ C12

n∑
i=1

Fii . (4.13)
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Denote a neighborhood of x0 in � by

�ρ := � ∩ Bρ(x0),

where ρ is a positive constant such that ν is well-defined in �ρ . To obtain the key
estimate, we need to consider the function

�(x) := v(x, t) − v(x0, t0) + C0h̃(x) + A|x − x0|2,
where C0 and A are positive constants to be determined. On ∂� × [0, T ], it is
clear that � ≥ 0. Since v is bounded, we can choose A large enough such that
on

(
� ∩ ∂Bρ(x0)

) × [0, T ]

�(x)=v(x, t) − v(x0, t0) + C0h̃(x) + A|x − x0|2≥v(x, t) − v(x0, t0) + Aρ2≥0.

By the strict concavity of h̃, we have

�(C0h̃(x) + A|x − x0|2) ≤ C(−C0θ̃ + 2A)

n∑
i=1

Fii .

Then by choosing C0 � A, we obtain

�(v(x, 0) − v(x0, t0) + C0h̃(x) + A|x − x0|2) ≤ 0.

We apply the maximum principle to get

(v(x, 0) − v(x0, t0) + C0h̃(x) + A|x − x0|2)|�ρ

≥ min
(∂�∩Bρ(x0))∪(�∩∂Bρ(x0))

(v(x, 0) − v(x0, t0) + C0h̃(x) + A|x − x0|2)
≥ 0.

Combining (4.11) with (4.13) and letting C0 be large enough, one yields

L� ≤ (−C0θ̃ + C12 + 2A)

n∑
i=1

Fii ≤ 0.

From the above arguments, we verify that � satisfies

{
L� ≤ 0, (x, t) ∈ �ρ × [0, T ],
� ≥ 0, (x, t) ∈ (∂�ρ × [0, T ]) ∪ (�ρ × {t = 0}). (4.14)

Using the maximum principle, we deduce that

� ≥ 0, (x, t) ∈ �ρ × [0, T ].
Combining it with �(x0, t0) = 0, we obtain 〈∇�, en〉|(x0,t0) ≥ 0, which gives the
desired key estimate (4.5).
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Finally, we prove (4.9). The proof of (4.9) is similar to the one of (4.5). Define

L̃ = F̃ i j∂i j + f pi ∂i − ∂t .

By (4.8), we see that L̃ũl = 0, and thus

L̃ ṽ = F̃ i j ũm j ũli h̃ p̃k p̃l p̃m ν̃k + 2h̃ p̃k p̃l F̃
i j ũli ν̃k j + F̃ i j h̃ p̃k ν̃ki j + h̃ p̃k p̃l F̃

i j ũl j ũki

+h̃ p̃k f p̃i ν̃ki .

By making use of the following identities

∂ F̃

∂μi
= λ2i

∂F

∂λi
, μ2

i
∂ F̃

∂μi
= ∂F

∂λi
,

we deduce that F̃ satisfies the structure conditions (1.9)–(1.14). Repeating the proof
of (4.13), we have

L̃ ṽ ≤ C13

n∑
i=1

F̃ ii , (4.15)

where C13 depends only on �̃, �, 
1, 
2, δ and u0.
Denote a neighborhood of x̃0 in �̃ by

�̃r := �̃ ∩ Br (x̃0),

where r is a positive constant such that ν̃ is well-defined in �̃r . Consider

�̃(y) := ṽ(y, t) − ṽ(x̃0, t0) + C̃0h(y) + Ã|y − x̃0|2,
where C̃0 and Ã are positive constants to be determined. It is clear that �̃ ≥ 0
on ∂�̃ × [0, T ]. Since ṽ is bounded, we can choose Ã large enough such that on(
�̃ ∩ ∂Br (x̃0)

)
× [0, T ]

�̃(y) ≥ ṽ(y, t) − ṽ(x̃0, t0) + Ãr2 ≥ 0.

By the strict concavity of h, we have

�
(
C̃0h(y) + Ã|y − x̃0|2

)
≤ C(−C̃0θ + 2 Ã)

n∑
i=1

F̃ ii .

Then by choosing C̃0 � Ã, we have

�
(
ṽ(y, 0) − ṽ(x̃0, t0) + C̃0h(y) + Ã|y − x̃0|2

)
≤ 0.

It follows from the maximum principle that

(ṽ(y, 0) − ṽ(x̃0, t0) + C̃0h(y) + Ã|y − x̃0|2)|�̃r

≥ min
(∂�̃∩Br (x̃0))∪(�̃∩∂Br (x̃0))

(ṽ(y, 0) − ṽ(x̃0, t0) + C̃0h(y) + Ã|y − x̃0|2)
≥ 0.
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By (1.14) and (4.15), it is not difficult to show that

L̃�̃(y) ≤
(
C13 − C̃0θ

2
+ 2 Ã

)
n∑

i=1

F̃ ii + 2 Ã f p̃i (yi − x̃0i )

−C̃0

(
θ

2

n∑
i=1

F̃ ii − f p̃i ∂i h

)
.

In order to make

L̃�̃(y) ≤ 0,

we only need to choose C̃0 � Ã and

|Df | ≤ θ
1

2
· 1

max ¯̃
�

|Dh| .

Consequently,
{
L̃�̃ ≤ 0, (y, t) ∈ �̃r × [0, T ],
�̃ ≥ 0, (y, t) ∈ (∂�̃r × [0, T ]) ∪ (�̃r × {t = 0}). (4.16)

Therefore, we get (4.9) as same as the argument in (4.5). Thus, we complete the proof
of the lemma. �

Similar to Proposition 2.6 in [27], by making use of (4.13), we can obtain

Lemma 4.7. Fix a smooth function H : � × �̃ → R and define ϕ(x, t) = H(x,
Du(x, t)). Then for any (x, t) ∈ �T ,

|Lϕ| ≤ C
n∑

i=1

Fii

holds for some positive constant C, which depends only on H, �, �̃, 
1, 
2, f and
δ.

The following definition provides a basic connection between (4.1) and (3.1) and
will be used frequently in the sequel.

Definition 4.8. We say that ũ in (4.1) is a dual solution to (3.1).

We now proceed to carry out the global C2 estimate. The strategy is to reduce the
C2 global estimate of u and ũ to the boundary.

Lemma 4.9. If u is a strictly convex solution of (3.1) and there hold (1.10), (1.11)
and (1.13), then there exists a positive constant C14 depending only on n, �, �̃, 
1,
u0, δ and diam(�), such that

sup
�T

|D2u| ≤ max
∂�×[0,T ] |D

2u| + max
�̄

|D2u0| + C14 sup
�

|D2 f |. (4.17)
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Proof. Without loss of generality, we may assume that � lies in cube [0, d]n . Let
L := Fi j∂i j − ∂t .

For any unit vector ξ , differentiating the equation in (3.1) twice in direction ξ gives

Luξξ + Fi j,rsui jξursξ = fξξ .

Then by the concavity of F on �+
n , we have

Luξξ = −Fi j,rsui jξursξ + fξξ ≥ fξξ .

Let

v = sup
∂�T

uξξ + 1


1

(
ned −

n∑
i=1

exi

)
sup
�

| fξξ |.

By direct calculation and (1.13), we obtain

Fi j∂i jv = − 1


1
sup
�

| fξξ |
(

n∑
i=1

exi Fii

)

≤ − 1


1
sup
�

| fξξ |
(

n∑
i=1

Fii

)

≤ − sup
�

| fξξ |.

Therefore,

Lv = Fi j∂i jv − ∂tv ≤ − sup
�

| fξξ |,

and thus

L(v − uξξ ) ≤ −
(
sup
�

| fξξ | + fξξ

)
≤ 0.

It is obvious that v − uξξ ≥ 0 on ∂�T . Then, by the maximum principle, we obtain

sup
�T

uξξ ≤ sup
�T

v ≤ sup
∂�T

uξξ + ned


1
sup
�

| fξξ |

≤ max
∂�×[0,T ] |D

2u| + max
�̄

|D2u0| + C14 sup
�

|D2 f |.

This completes the proof of (4.17). �

Next, we estimate the second-order derivative on the boundary. By differentiating
the boundary condition h(Du) = 0 in any tangential direction ς , we have

uβς = h pk (Du)ukς = 0. (4.18)
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The second-order derivative of u on the boundary is controlled by uβς , uββ and uςς .
In the following, we give the arguments as in [25], one can see there for more details.
At x ∈ ∂�, any unit vector ξ can be written in terms of a tangential component

ς(ξ) and a component in the direction β by

ξ = ς(ξ) + 〈ν, ξ 〉
〈β, ν〉β,

where

ς(ξ) := ξ − 〈ν, ξ 〉ν − 〈ν, ξ 〉
〈β, ν〉β

T ,

and

βT := β − 〈β, ν〉ν.

By the strict obliqueness estimate (4.2), we have

|ς(ξ)|2 = 1 −
(
1 − |βT |2

〈β, ν〉2
)

〈ν, ξ 〉2 − 2〈ν, ξ 〉 〈β
T , ξ 〉

〈β, ν〉
≤ 1 + C15〈ν, ξ 〉2 − 2〈ν, ξ 〉 〈β

T , ξ 〉
〈β, ν〉

≤ C16. (4.19)

Denote ς := ς(ξ)
|ς(ξ)| , then by (4.18), (4.19) and (4.2), we obtain

uξξ = |ς(ξ)|2uςς + 2|ς(ξ)| 〈ν, ξ 〉
〈β, ν〉uβς + 〈ν, ξ 〉2

〈β, ν〉2 uββ

= |ς(ξ)|2uςς + 〈ν, ξ 〉2
〈β, ν〉2 uββ

≤ C17(uςς + uββ), (4.20)

where C17 depends only on �, �̃, 
1, 
2, δ and the constant C1 in (4.2). Therefore,
we only need to estimate uββ and uςς , respectively.
Further, we have

Lemma 4.10. Let F satisfy the structure conditions (1.9)–(1.14) and f ∈ Aδ . If u is
a strictly convex solution of (3.1), then there exists a positive constant C18 depending
only on u0, �, �̃, 
1, 
2 and δ, such that

max
∂�T

uββ ≤ C18. (4.21)

Proof. Let x0 ∈ ∂�, t0 ∈ [0, T ] satisfy uββ(x0, t0) = max∂�T uββ . Consider the
barrier function

� := −h(Du) + C0h̃ + A|x − x0|2.
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For any x ∈ ∂�, Du(x) ∈ ∂�̃, then h(Du) = 0. It is clear that h̃ = 0 on ∂�. As same
as the proof of (4.14), we can find the constants C0 and A such that

{
L� ≤ 0, (x, t) ∈ �ρ × [0, T ],
� ≥ 0, (x, t) ∈ (∂�ρ × [0, T ]) ∪ (�ρ × {t = 0}). (4.22)

By the maximum principle, we get

� ≥ 0, (x, t) ∈ �ρ × [0, T ].

Combining it with �(x0, t0) = 0, we obtain �β(x0, t0) ≥ 0, which implies

∂h

∂β
(Du(x0, t0)) ≤ C0.

On the other hand, we see that at (x0, t0),

∂h

∂β
= 〈Dh(Du), β〉 = ∂h

∂pk
uklβ

l = βkuklβ
l = uββ.

Let C18 = C0. Therefore,

uββ = ∂h

∂β
≤ C18,

whence the result follows. �

Next, we estimate the double tangential derivative.

Lemma 4.11. Let F satisfy the structure conditions (1.9)–(1.14) and f ∈ Aδ . If u is
a strictly convex solution of (3.1) and |Df | satisfies (1.15), then there exists a positive
constant C19 depending only on u0, �, �̃, 
1, 
2 and δ, such that

max
∂�×[0,T ] max|ς |=1,〈ς,ν〉=0

uςς ≤ C19. (4.23)

Proof. Without loss of generality, we assume that x0 ∈ ∂�, t0 ∈ (0, T ], en is the
unit inward normal vector of ∂� at x0, and e1 is the tangential vector of ∂� at x0,
respectively, such that

max
∂�×[0,T ] max|ς |=1,〈ς,ν〉=0

uςς = u11(x0, t0) =: M.

For any x ∈ ∂�, we have by the proof of (4.19),

uξξ = |ς(ξ)|2uςς + 〈ν, ξ 〉2
〈β, ν〉2 uββ

≤
(
1 + C20〈ν, ξ 〉2 − 2〈ν, ξ 〉 〈β

T , ξ 〉
〈β, ν〉

)
M + 〈ν, ξ 〉2

〈β, ν〉2 uββ. (4.24)
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Without loss of generality, we assume that M ≥ 1. Then by (4.2) and (4.21), we have

uξξ

M
+ 2〈ν, ξ 〉 〈β

T , ξ 〉
〈β, ν〉 ≤ 1 + C21〈ν, ξ 〉2. (4.25)

Let ξ = e1, then

u11
M

+ 2〈ν, e1〉 〈β
T , e1〉

〈β, ν〉 ≤ 1 + C21〈ν, e1〉2. (4.26)

As in the proof of Proposition 2.14 in [27], let η : R → R be a smooth cutoff function
satisfying η(s) = s for s ≥ 1

C1
and η(s) ≥ 1

2C1
for all s ∈ R.

We see that the function

w := A|x − x0|2 − u11
M

− 2〈ν, e1〉 〈βT , e1〉
η(〈β, ν〉) + C21〈ν, e1〉2 + 1 (4.27)

satisfies

w|∂�×[0,T ] ≥ 0, w(x0, t0) = 0.

Then, it follows by (4.17) that we can choose the constant A large enough such that

w|(∂Bρ(x0)∩�)×[0,T ] ≥ 0.

Consider

−2〈ν, e1〉 〈βT , e1〉
η(〈β, ν〉) + C21〈ν, e1〉2 + 1

as a known function depending on x and Du. Then by Lemma 4.7, we obtain

∣∣∣∣L
(

−2〈ν, e1〉 〈βT , e1〉
η(〈β, ν〉) + C21〈ν, e1〉2 + 1

)∣∣∣∣ ≤ C22

n∑
i=1

Fii .

Combining the above inequality with the proof of Lemma 4.9, we have

Lw ≤ C23

n∑
i=1

Fii .

As in the proof of Lemma 4.10, we consider the function

ϒ := w + C0h̃.

A standard barrier argument shows that

ϒβ(x0, t0) ≥ 0.

Therefore,

u11β(x0, t0) ≤ C24M. (4.28)
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On the other hand, differentiating h(Du) twice in the direction e1 at (x0, t0), we have

h pk uk11 + h pk pl uk1ul1 = 0.

The concavity of h yields that

h pk uk11 = −h pk pl uk1ul1 ≥ θM2.

Combining it with h pk uk11 = u11β , and using (4.28), we obtain

θM2 ≤ C24M.

Then, we get the upper bound of M = u11(x0, t0) and thus the desired result
follows. �

By Lemma 4.10, Lemmas 4.11 and (4.20), we obtain the C2 a priori estimate on
the boundary.

Lemma 4.12. Let F satisfy the structure conditions (1.9)–(1.14) and f ∈ Aδ . If u is
a strictly convex solution of (3.1) and |Df | satisfies (1.15), then there exists a positive
constant C25 depending only on u0, �, �̃, 
1, 
2 and δ, such that

max
∂�T

|D2u| ≤ C25. (4.29)

In terms of Lemmas 4.9 and 4.12, we readily conclude:

Lemma 4.13. Let F satisfy the structure conditions (1.9)–(1.14) and f ∈ Aδ . If u is
a strictly convex solution of (3.1) and |Df | satisfies (1.15), then there exists a positive
constant C26 depending only on u0, �, �̃, 
1, 
2 and δ, such that

max
�̄T

|D2u| ≤ C26. (4.30)

In the following, we describe the positive lower bound of D2u. For (4.1), by con-
sidering the Legendre transformation of u, define

L̃ := F̃ i j∂i j + f p̃i ∂i − ∂t .

Then, our goal is to show the upper bound of D2ũ and the argument is very similar to
the one used in the proof of Lemma 4.13 by the concavity of f and the condition that
|Df | being sufficiently small. For the convenience of readers, we give the details.

At the beginning of the repeating procedure, we have

Lemma 4.14. Suppose that f is concave on �. If ũ is a strictly convex solution of
(4.1), then there holds

sup
�̃T

|D2ũ| ≤ max
∂�̃T

|D2ũ|. (4.31)
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Proof. For any unit vector ξ̃ , differentiating the equation in (4.1) twice in direction ξ̃

gives

L̃ũ ξ̃ ξ̃ + F̃ i j,rs ũi j ξ̃ ũrsξ̃ + ∂2 f

∂ p̃i∂ p̃ j
ũi ξ̃ ũ j ξ̃ = 0.

Then by the concavity of F̃ on �+
n and f on �, we have

L̃ũ ξ̃ ξ̃ = −F̃ i j,rs ũi j ξ̃ ũrsξ̃ − ∂2 f

∂ p̃i∂ p̃ j
ũi ξ̃ ũ j ξ̃ ≥ 0.

Then, by the maximum principle, we obtain

sup
�̃T

ũ ξ̃ ξ̃ ≤ sup
∂�̃T

ũ ξ̃ ξ̃ .

This completes the proof of (4.31). �
Recall that β̃ = (β̃1, . . . , β̃n) with β̃k := h̃ pk (Dũ) and ν̃ = (ν̃1, ν̃2, . . . , ν̃n) is the

unit inward normal vector of ∂�̃. Similar to the discussion of (4.18), (4.19) and (4.20),
for any tangential direction ς̃ , we have

uβ̃ς̃ = h̃ pk (Dũ)ũkς̃ = 0. (4.32)

Then, the second-order derivative of ũ on the boundary is also controlled by uβ̃ς̃ , uβ̃β̃

and uς̃ ς̃ .
At x̃ ∈ ∂�̃, any unit vector ξ̃ can be written in terms of a tangential component

ς̃ (ξ̃ ) and a component in the direction β̃ by

ξ̃ = ς̃ (ξ̃ ) + 〈ν̃, ξ̃ 〉
〈β̃, ν̃〉 β̃,

where

ς̃ (ξ̃ ) := ξ̃ − 〈ν̃, ξ̃ 〉ν̃ − 〈ν̃, ξ̃ 〉
〈β̃, ν̃〉 β̃

T ,

and

β̃T := β̃ − 〈β̃, ν̃〉ν̃.

We observe that 〈β̃, ν̃〉 = 〈β, ν〉. Therefore,
|ς̃ (ξ̃ )| ≤ C27, (4.33)

and similar to the calculation in (4.24), one should deduce that

ũ ξ̃ ξ̃ ≤ C28(ũς̃ ς̃ + ũβ̃β̃ ), (4.34)

where ς̃ := ς̃ (ξ̃ )

|ς̃ (ξ̃ )| and C28 depends only on �, �̃, 
1, 
2, δ and the constant C1 in

(4.2). Then, we also only need to estimate ũβ̃β̃ and ũς̃ ς̃ , respectively.
Indeed, as shown by Lemma 4.10, we state
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Lemma 4.15. Let F satisfy the structure conditions (1.9)–(1.14) and f ∈ Aδ . If ũ is
a strictly convex solution of (4.1) and |Df | satisfies (1.15), then there exists a positive
constant C29 depending only on u0, �, �̃, 
1, 
2 and δ, such that

max
∂�T

ũβ̃β̃ ≤ C29. (4.35)

Proof. Let x̃0 ∈ ∂�̃, t0 ∈ [0, T ] satisfy ũβ̃β̃ (x̃0, t0) = max∂�T ũβ̃β̃ . To estimate the
upper bound of ũβ̃β̃ , we consider the barrier function

�̃ := −h̃(Dũ) + C0h + A|y − x̃0|2.
For any y ∈ ∂�̃, t ∈ [0, T ], Dũ(y, t) ∈ ∂�, then h̃(Dũ) = 0. It is clear that h = 0
on ∂�̃. Similar to the proof of (4.16), first we have

L̃(C0h) = C0

(
F̃ i j hi j + f p̃i hi

)
≤ C0

(
−θ

n∑
i=1

F̃ ii + f p̃i hi

)
,

and

L̃
(
A|y − x̃0|2

)
= 2A

n∑
i=1

F̃ ii + 2A f p̃i (yi − x̃0i ) .

Similar to the proof of (4.13), we get

L̃
(
−h̃(Dũ)

)
= F̃ i j

(
−h̃ p̃k p̃l ∂ki ũ∂l j ũ

)
≤ C30

n∑
i=1

F̃ ii .

Therefore, we obtain

L̃�̃(y) ≤
(
C30 − C0θ

2
+ 2A

) n∑
i=1

F̃ ii + 2A f p̃i (yi − x̃0i )

−C0

(
θ

2

n∑
i=1

F̃ ii − f p̃i ∂i h

)
.

As the proof of (4.16) in terms of |Df | satisfying (1.15), we can find the constants
C0 and A such that

{
L̃�̃ ≤ 0, (y, t) ∈ �̃r × [0, T ],
�̃ ≥ 0, (y, t) ∈ (∂�̃r × [0, T ]) ∪ (�̃r × {t = 0}). (4.36)

By the maximum principle, we get

�̃(y, t) ≥ 0, (y, t) ∈ �̃r × [0, T ].
Combining it with �̃(x̃0, t0) = 0, we obtain �̃β̃ (x̃0, t0) ≥ 0, which implies

∂ h̃

∂β̃
(Dũ(x̃0, t0)) ≤ C0.
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On the other hand, we see that at (x̃0, t0),

∂ h̃

∂β̃
= 〈Dh̃(Dũ), β̃〉 = ∂ h̃

∂pk
ũkl β̃

l = β̃k ũkl β̃
l = ũβ̃β̃ .

Therefore, letting C29 = C0, we get

ũβ̃β̃ = ∂ h̃

∂β̃
≤ C29.

�

Next, we estimate the double tangential derivative of ũ.

Lemma 4.16. Let F satisfy the structure conditions (1.9)–(1.14) and f ∈ Aδ . If ũ is
a strictly convex solution of (4.1) and |Df | satisfies (1.15), then there exists a positive
constant C31 depending only on u0, �, �̃, 
1, 
2 and δ, such that

max
∂�̃×[0,T ]

max
|ς̃ |=1,〈ς̃ ,ν̃〉=0

ũς̃ ς̃ ≤ C31. (4.37)

Proof. Assume that x̃0 ∈ ∂�̃, t0 ∈ [0, T ] and en is the unit inward normal vector of
∂�̃ at x̃0. Let

max
∂�̃×[0,T ]

max
|ς̃ |=1,〈ς̃ ,ν̃〉=0

ũς̃ ς̃ = ũ11(x̃0, t0) =: M̃ .

For any y ∈ ∂�̃, t ∈ [0, T ], we have by the proof of (4.19) and (4.33),

ũ ξ̃ ξ̃ = |ς̃ (ξ̃ )|2ũς̃ ς̃ + 〈ν̃, ξ̃ 〉2
〈β̃, ν̃〉2 ũβ̃β̃

≤
(
1 + C32〈ν̃, ξ̃ 〉2 − 2〈ν̃, ξ̃ 〉 〈β̃

T , ξ̃ 〉
〈β̃, ν̃〉

)
M̃ + 〈ν̃, ξ̃ 〉2

〈β̃, ν̃〉2 ũβ̃β̃ . (4.38)

Without loss of generality, we assume that M̃ ≥ 1. Then, by (4.2) and (4.35), we have

ũ ξ̃ ξ̃

M̃
+ 2〈ν̃, ξ̃ 〉 〈β̃

T , ξ̃ 〉
〈β̃, ν̃〉 ≤ 1 + C32〈ν̃, ξ̃ 〉2. (4.39)

Let ξ̃ = e1, then

ũ11

M̃
+ 2〈ν̃, e1〉 〈β̃

T , e1〉
〈β̃, ν̃〉 ≤ 1 + C32〈ν̃, e1〉2. (4.40)

We see that the function

w̃ := A|y − x̃0|2 − ũ11

M̃
− 2〈ν̃, e1〉 〈β̃

T , e1〉
〈β̃, ν̃〉 + C32〈ν̃, e1〉2 + 1 (4.41)
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satisfies

w̃|∂�̃×[0,T ] ≥ 0, w̃(x̃0, t0) = 0.

Then, by (4.31) we can choose the constant A large enough such that

w̃|(�̃∩∂Br (x̃0))×[0,T ] ≥ 0.

Consider

−2〈ν̃, e1〉 〈β̃
T , e1〉

〈β̃, ν̃〉 + C32〈ν̃, e1〉2 + 1

as a known function depending on x̃ and Dũ. Then, by the proof of Lemma 4.7, we
also obtain

∣∣∣∣∣L̃
(

−2〈ν̃, e1〉 〈β̃
T , e1〉

〈β̃, ν̃〉 + C32〈ν̃, e1〉2 + 1

)∣∣∣∣∣ ≤ C33

n∑
i=1

F̃ ii .

By making use of the concavity of F̃ and f , it yields

L̃ũ11 = −F̃ i j,rs ũi j1ũrs1 − ∂2 f

∂ p̃i∂ p̃ j
ũi1ũ j1 ≥ 0.

Combining the above inequality with the proof of Lemma 4.15, by f ∈ Aδ and |Df |
satisfying (1.15), we have

L̃w̃ ≤ C34

n∑
i=1

F̃ ii .

As in the proof of Lemma 4.15, consider the function

ϒ̃ := w̃ + C0h.

A standard barrier argument makes conclusion of

ϒ̃β̃ (x̃0, t0) ≥ 0.

Therefore,

ũ11β̃ (x̃0) ≤ C35M̃ . (4.42)

On the other hand, differentiating h̃(Dũ) twice in the direction e1 at (x̃0, t0), we have

h̃ pk ũk11 + h̃ pk pl ũk1ũl1 = 0.

The concavity of h̃ yields that

h̃ pk ũk11 = −h̃ pk pl ũk1ũl1 ≥ θ̃ M̃2.
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Combining it with h̃ pk ũk11 = ũ11β̃ , and using (4.42), we obtain

θ̃ M̃2 ≤ C35M̃ .

Then, we get the upper bound of M̃ = ũ11(x̃0, t0) and thus the desired result
follows. �

By Lemma 4.15, Lemma 4.16 and (4.34), we obtain the C2 a priori estimate of ũ
on the boundary.

Lemma 4.17. Let F satisfy the structure conditions (1.9)–(1.14) and f ∈ Aδ . If ũ is
a strictly convex solution of (4.1) and |Df | satisfies (1.15), then there exists a positive
constant C36 depending only on u0, �, �̃, 
1, 
2 and δ, such that

max
∂�̃T

|D2ũ| ≤ C36. (4.43)

By Lemmas 4.14 and 4.17, we can see that

Lemma 4.18. Let F satisfy the structure conditions (1.9)–(1.14) and f ∈ Aδ . If ũ is
a strictly convex solution of (4.1) and |Df | satisfies (1.15), then there exists a positive
constant C37 depending only on u0, �, �̃, 
1, 
2 and δ, such that

max¯̃
�T

|D2ũ| ≤ C37. (4.44)

By Lemmas 4.13 and 4.18, we conclude that

Lemma 4.19. Let F satisfy the structure conditions (1.9)–(1.14) and f ∈ Aδ . If u is
a strictly convex solution of (3.1) and |Df | satisfies (1.15), then there exists a positive
constant C38 depending only on u0, �, �̃, 
1, 
2 and δ, such that

1

C38
In ≤ D2u(x, t) ≤ C38 In, (x, t) ∈ �̄T , (4.45)

where In is the n × n identity matrix.

5. Longtime existence and convergence

We will need the following proposition, which essentially asserts the convergence
of the flow.

Proposition 5.1. (Huang and Ye, see Theorem 1.1 in [41]) For any T > 0, we assume

that u ∈ C4+α, 4+α
2 (�̄T ) is a unique solution of the nonlinear parabolic Eq. (3.1), which

satisfies

‖ut (·, t)‖C(�̄) + ‖Du(·, t)‖C(�̄) + ‖D2u(·, t)‖C(�̄) ≤ C̃1, (5.1)

‖D2u(·, t)‖Cα(D̄) ≤ C̃2, ∀D ⊂⊂ �, (5.2)
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and

inf
x∈∂�

(
n∑

k=1

h pk (Du(x, t))νk

)
≥ 1

C̃3
, (5.3)

where the positive constants C̃1, C̃2 and C̃3 are independent of t ≥ 1. Then, the solution
u(·, t) converges to a function u∞(x, t) = ũ∞(x) + C∞ · t in C1+ζ (�̄) ∩ C4(D̄) as
t → ∞ for any D ⊂⊂ �, ζ < 1, that is

lim
t→+∞ ‖u(·, t) − u∞(·, t)‖C1+ζ (�̄) = 0, lim

t→+∞ ‖u(·, t) − u∞(·, t)‖C4(D̄) = 0.

And ũ∞(x) ∈ C2(�̄) is a solution of

{
F(D2u) − f (x) = C∞, x ∈ �,

h(Du) = 0, x ∈ ∂�.
(5.4)

The constant C∞ depends only on � f , and F. The solution to (5.4) is unique up to
additions of constants.

Now, we can give

Proof of Theorem 1.4. This a standard result by our C2 estimates and uniformly
oblique estimates, but for convenience we include here a proof.
Part 1: The long time existence.
By Lemma 4.19, we know the global C2,1 estimates for the solutions of the flow

(1.1)–(1.3). Using Theorem14.22 in Lieberman [38] andLemma 4.5, we can show that
the solutions of the oblique derivative problem (3.1) have global C2+α,1+ α

2 estimates.
Now, let u0 be a C2+α0 strictly convex function as in the conditions of Theorem

1.4. We assume that T is the maximal time such that the solution to the flow (3.1)
exists. Suppose that T < +∞. Combining Proposition 3.6 with Lemma 4.19 and
using Theorem 14.23 in [38], there exists u ∈ C2+α,1+ α

2 (�̄T ) which satisfies (3.1)
and

‖u‖
C2+α,1+ α

2 (�̄T )
< +∞.

Then, we can extend the flow (3.1) beyond the maximal time T . So that we deduce
that T = +∞. Then, there exists the solution u(x, t) for all times t > 0 to (1.1)–(1.3).

Part 2: The convergence.
By the boundary condition, we have

sup
�̄T

|Du| ≤ C̃4,

where C̃4 is a constant depending on � and �̃. Using lemma 4.19, it yields

‖ut (·, t)‖C(�̄) + ‖Du(·, t)‖C(�̄) + ‖D2u(·, t)‖C(�̄) ≤ C̃5,
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where the constant C̃5 depending only on u0, �, �̃, 
1, 
2 and δ. By intermediate
Schauder estimates for parabolic equations (cf. Lemma 14.6 and Proposition 4.25 in
[38]), for any D ⊂⊂ �, we have

[D2u]α, α
2 ,DT ≤ C sup

�T

|D2u| ≤ C̃6,

and

sup
t≥1

‖D3u(·, t)‖C(D̄) + sup
t≥1

‖D4u(·, t)‖C(D̄)

+ sup
xi∈D,ti≥1

|D4u(x1, t1) − D4u(x2, t2)|
max{|x1 − x2|α, |t1 − t2| α

2 } ≤ C̃7,

where C̃6, C̃7 are constants depending on the known data and dist(∂�, ∂D). Using
Proposition 5.1 and combining the bootstrap arguments as in [32], we finish the proof
of Theorem 1.4. �

Finally, we can present

Proof of Theorem 1.1. By Proposition 2.1 and Remark 1.3, we see that Theorem 1.1
is a direct consequence of Theorem 1.4. �
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