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Abstract. Let 0 < θ ≤ 2, N ≥ 1 and T > 0. We are concerned with the Cauchy problem for the fractional
semilinear parabolic equation

{
∂t u + (−�)θ/2u = f (u) in R

N × (0, T ),

u(x, 0) = u0(x) ≥ 0 in R
N .

Here, f ∈ C[0, ∞) denotes a rather general growing nonlinearity and u0 may be unbounded. We study
local in time solvability in the so-called critical and doubly critical cases. In particular, when f (u) =
u1+θ/N [log(u + e)

]a , we obtain a sharp integrability condition on u0 which explicitly determines local
in time existence/nonexistence of a nonnegative solution.

1. Introduction

Let 0 < θ ≤ 2, N ≥ 1 and T > 0. We study existence and nonexistence of a
local in time solution of the Cauchy problem for the fractional semilinear parabolic
equation {

∂t u + (−�)θ/2u = f (u) in R
N × (0, T ),

u(x, 0) = u0(x) in R
N ,

(1.1)

where u0 ≥ 0 and f ∈ C[0,∞) is assumed to be nonnegative and nondecreasing.
First, we consider classical semilinear parabolic equations, i.e., θ = 2. When

u0 ∈ L∞(RN ), (1.1) always has a local in time solution for an arbitrary locally
Lipschitz continuous function f (cf. [4,15]). On the other hand, if u0 is unbounded,
then solvability depends on the integrability properties of u0 and the growth rate of f .
Weissler [20] studied solvability of (1.1) with possibly unbounded and sign-changing
initial function u0 ∈ Lr (RN ).
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Proposition 1.1. ([20]) Let θ = 2, N ≥ 1 and f (u) = |u|p−1u, p > 1.

(i) Assume that one of the following holds:
(1) (subcritical case) r ≥ 1 and r > N

2 (p − 1),
(2) (critical case) r > 1 and r = N

2 (p − 1).
Then for each u0 ∈ Lr (RN ), (1.1) has a local in time classical solution u ∈
C2,1(RN × (0, T )) ∩ C([0, T ), Lr (RN )).

(ii) (supercritical case) For each 1 ≤ r < N
2 (p − 1), there is u0 ∈ Lr (RN ) such

that (1.1) has no local in time nonnegative classical solution.

In Proposition 1.1 the classical solution u satisfies u(t) → u0 in Lr (RN ) as t → 0.
This proposition was generalized to a wide class of nonlinearities and to various

functional spaces. For example, in [8,9] an optimal growth rate of f was obtained
such that (1.1) with θ = 2 has a solution for all u0 ∈ Lr (RN ). In this paper we mainly
study an optimal integrability condition on u0 for an existence of a solution of (1.1)
when f is given.

We need some notation to mention further studies. For 1 ≤ r ≤ ∞, define a
uniformly local Lr space Lr

ul(R
N ) by

Lr
ul(R

N ) :=
{
u ∈ Lr

loc(R
N ); ‖u‖Lrul(RN ) < ∞

}
.

Here,

‖u‖Lrul(RN ) :=

⎧⎪⎨
⎪⎩

sup
y∈RN

(∫
B(y,1)

|u(x)|r dx
)1/r

if 1 ≤ r < ∞,

esssupy∈RN ‖u‖L∞(B(y,1)) if r = ∞,

and B(y, ρ) := {
x ∈ R

N ; |x − y| < ρ
}
. We easily see that L∞

ul (R
N ) = L∞(RN )

and Lr1
ul(R

N ) ⊂ Lr2
ul(R

N ) if 1 ≤ r2 ≤ r1 < ∞. For 1 ≤ r < ∞, let Lr
ul(R

N ) denote
the closure of the space of bounded uniformly continuous functions BUC(RN ) in the
space Lr

ul(R
N ), i.e.,

Lr
ul(R

N ) := BUC(RN )
‖ · ‖Lrul(RN ) .

In [12, Proposition2.2]weobtain basic properties ofLr
ul(R

N ). See also [4,Lemma2.2].
It follows that Lr

ul(R
N ) � Lr

ul(R
N ) for 1 ≤ r < ∞.

In this paper we assume the following:

Assumption A. The function f ∈ C1(0,∞) ∩ C[0,∞) satisfies

f (u) > 0, f ′(u) > 0 and F(u) < ∞ for u > 0, where F(u) :=
∫ ∞

u

dτ

f (τ )

and

the limit q := lim
u→∞ f ′(u)F(u) exists.
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It was proved in [4,13] that q ≥ 1 if the limit q exists. Let p denote a growth rate
of f defined by p := limu→∞ u f ′(u)

f (u)
. When q > 1, by L’Hospital’s rule,

p = lim
u→∞

u f ′(u)F(u)

f (u)F(u)
= q · lim

u→∞
(u)′

( f (u)F(u))′
= q

q − 1
, and hence

1

p
+ 1

q
= 1.

The exponent q can be considered as a conjugate of the growth rate of f . If q > 1,
then f has an algebraic growth. However, the case q = 1 is special. Super-power
nonlinearities are included in this case. The following functions satisfy Assumption A
with q = 1:

f (u) = exp(ur ) (r > 0), f (u) = exp(· · · exp(u) · · ·︸ ︷︷ ︸
n times

) and

f (u) = exp(| log u|r−1 log u) (r > 1).

Let G = G(x, t) be the fundamental solution of

∂t u + (−�)θ/2u = 0 in R
N × (0,∞), (1.2)

where 0 < θ ≤ 2. We recall various properties of G in Section 2 and set

[S(t)w](x) :=
∫
RN

G(x − y, t)w(y)dy for w ∈ L1
ul(R

N ).

Fujishima-Ioku [4] studied (1.1) with nonnegative initial function u0 under Assump-
tion A:

Proposition 1.2. ([4]) Let θ = 2, N ≥ 1 and u0 ≥ 0. Suppose that f satisfies
Assumption A and f ′(u)F(u) ≤ q for large u > 0.

(i) Assume that one of the following holds:
(1) (subcritical case) F(u0)−r ∈ L1

ul(R
N ) for some r > N

2 and r ≥ q − 1,
(2) (critical case) F(u0)−r ∈ L1

ul(R
N ) with r = N

2 and N
2 > q − 1.

Then (1.1) has a local in time nonnegative classical solution u ∈ C2,1(RN ×
(0, T )) in the following sense:

lim
t→0

‖u(t) − S(t)u0‖
L

r
q−1
ul (RN )

= 0 if q > 1,

lim
t→0

‖u(t) − S(t)u0‖L∞(RN ) = 0 if q = 1.
(1.3)

(ii) (supercritical case) Assume that f ∈ C2([0,∞)) is convex and N
2 > q − 1.

For any r ∈ [q − 1, N
2 ) if q > 1 or r ∈ (0, N

2 ) if q = 1, there is a nonnegative
initial function u0 such that F(u0)−r ∈ L1

ul(R
N ) and (1.1) has no local in time

nonnegative classical solution satisfying (1.3).
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Note that in Proposition 1.2 the classical solution u satisfies (1.3). This is a slightly
different initial condition from Proposition 1.1.

When f (u) = u p, the condition F(u0)−r ∈ L1
ul(R

N ) implies thatu0 ∈ Lr(p−1)
ul (RN ).

Then Proposition 1.2 is a generalization of Proposition 1.1.
We define a local in time solution.

Definition 1.3. (Local in time solution) Let u0 ∈ L1
ul(R

N ) be a nonnegative initial
function. By a solution of (1.1) on (0, T )wemean that u(t) ∈ L∞

loc((0, T ), L∞(RN ))∩
L∞((0, T ), L1

ul(R
N )) and u satisfies

∞ > u(t) = S(t)u0 +
∫ t

0
S(t − s) f (u(s))ds for a.e. x ∈ R

N , for t ∈ (0, T ).

(1.4)

We call u a supersolution for (1.1) if u is measurable and satisfies (1.4) with= replaced
by ≥.

In the previous paper of the first author [6] fractional semilinear parabolic equations
were studied.

Proposition 1.4. ([6]) Let 0 < θ ≤ 2, N ≥ 1 and u0 ≥ 0. Assume that Assumption A
holds.

(i) (subcritical case) Suppose that F(u0)−r ∈ L1
ul(R

N ) for some r > N
θ
, where

• r > q − 1, or r = q − 1 and f ′(u)F(u) ≤ q for large u > 0 if q > 1,
• f (u) is convex and f ′(u)F(u) ≤ 1 for large u > 0 if q = 1.
Then (1.1) has a local in time nonnegative solution in the sense of Definition 1.3.

(ii) (supercritical case) Assume that f is convex. For any 0 < r < N
θ
, there is a

nonnegative initial function u0 such that F(u0)−r ∈ L1
ul(R

N ) and (1.1) has no
local in time nonnegative solution in the sense of Definition 1.3.

It should be noted that the definition of a solution in Proposition 1.4 is weaker than
that in Proposition 1.2, and hence Proposition 1.4 is not a direct generalization even
for θ = 2. See [10,11] for existence and nonexistence results in the Lebesgue space
Lr (RN ).
In the proof of Proposition 1.2 a change of variables v(x, t) = F(u(x, t)) plays a

crucial role in constructing a supersolution. However, it does not work for 0 < θ < 2,
because of the nonlocal term (−�)θ/2. In the proof of Proposition 1.4 a supersolution
was constructed without a change of variables. The critical case r = N

θ
was not easy

to analyze and it was not covered by Proposition 1.4. In order to study the critical
case we study in detail a relationship between the integrability properties of u0 and
the growth rate of f .
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We need two functions J and K satisfying the following:

J ∈ C1[0,∞), J (u) > 0 and J ′(u) > 0 for u > 0 (J)

and J ′(u) is nondecreasing for large u > 0.

K ∈ C[0,∞), K (u) > 0 for u > 0 and K (u) is concave and increasing for large u > 0. (K)

The first main result in the present paper is the following:

Theorem 1.5. (Local in time existence) Let 0 < θ ≤ 2, N ≥ 1, u0 ≥ 0 and c > 0.
Suppose that f ∈ C[0,∞) is nonnegative and nondecreasing, and that J satisfies (J).
If there exists a function K satisfying (K) such that one of the following holds:

(i) J (u0) ∈ L1
ul(R

N ) and

lim
v→∞ Ĵ (v)

∫ ∞

v

f̂ (τ )J ′(τ )dτ

J (τ )1+ θ
N

= 0, (1.5)

(ii) J (u0) ∈ L1
ul(R

N ) and

lim sup
v→∞

Ĵ (v)

∫ ∞

v

f̂ (τ )J ′(τ )dτ

J (τ )1+ θ
N

< ∞, (1.6)

where

Ĵ (v) := max
c≤w≤v

J ′(w)K (J (w))

J (w)
and f̂ (τ ) := max

c≤w≤τ

f (w)

K (J (w))
,

then there exists T > 0 such that (1.1) has a local in time nonnegative solution u in
the sense of Definition 1.3 on the interval (0, T ). Moreover, there exists C > 0 such
that

‖J (u(t))‖L1
ul(R

N ) ≤ C for 0 < t < T . (1.7)

When θ = 2, J (u) = u and K (u) = u, Theorem 1.5 corresponds to [8, Theo-
rem 4.4].
By Theorem 1.5 we can derive an existence result in the critical case.

Theorem 1.6. (Critical case) Let 0 < θ ≤ 2, N ≥ 1 and u0 ≥ 0. Suppose that
f satisfies Assumption A. If F(u0)−N/θ ∈ L1

ul(R
N ) and N

θ
> q − 1, then (1.1) has

a local in time nonnegative solution u in the sense of Definition 1.3 on the interval
(0, T ). Moreover, there exists C > 0 such that∥∥∥F(u(t))−N/θ

∥∥∥
L1
ul(R

N )
≤ C for 0 < t < T . (1.8)
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Theorem 1.6 corresponds to [4, Theorem 1.1 (ii)] when θ = 2. In [4, Theorem 1.1]
they impose f ′(u)F(u) ≤ q, which is not assumed in Theorem 1.6. However, it should
be noted that the definition of a solution does not include (1.3), which is different from
that of [4].
In [6] the critical case is considered only when f (u) = u p and f (u) = eu . Theo-

rem 1.6 can be applied to a general nonlinear term f .
Let us again go back to the classical case, i.e., θ = 2 and f (u) = |u|p−1u. Propo-

sition 1.1 does not cover the case where r = 1 and r = N
2 (p − 1), i.e., p = 1 + 2

N .
This case is called a doubly critical case in [2], and is known to be quite delicate. In
this case there is a nonnegative initial function u0 ∈ L1(RN ) such that (1.1) does not
have a nonnegative solution. Nonexistence results can be found in [2,3,8,9,21]. On
the other hand, the following optimal integrability condition was recently obtained in
[14]: (1.1) has a local in time solution if a possibly sign-changing initial function u0
satisfies u0 ∈ ZN/2, where

Zr :=
{
φ(x) ∈ L1(RN );

∫
RN

|φ| (log(|φ| + e))r dx < ∞
}

.

One can check that (1.1) does not have a nonnegative solution with a nonnegative
initial function u0 given in [1], which satisfies u0 ∈ Zr for each r ∈ [0, N

2 ), and hence
ZN/2 is optimal. In the case of time-fractional semilinear parabolic equations critical
and doubly critical cases are studied in [5].

Now, we also consider the fractional case 0 < θ < 2. In the doubly critical case we
focus on the nonlinearity

fa(u) := u1+θ/N [log(u + e)
]a and Fa(u) :=

∫ ∞

u

dτ

fa(τ )
, (1.9)

where a ≥ − (1 + θ
N

)
κ and κ is the largest positive root of

log κ + 2 = κ, i.e., κ � 3.146.

Since a ≥ − (1 + θ
N

)
κ , we can check that f ′

a(u) ≥ 0 for u ≥ 0.
Using Theorem 1.5, we give an optimal integrability condition on u0 for the nonlin-

earity fa and obtain a complete classification for an existence and nonexistence result.

Theorem 1.7. (Doubly critical case) Let 0 < θ ≤ 2, N ≥ 1, u0 ≥ 0 and a ≥
− (1 + θ

N

)
κ . For b ≥ 0, we set

Ja,b(u) := Fa(u)−N/θ
[
log

(
Fa(u)−N/θ + e

)]b
,

where Fa(u) is defined by (1.9). Then the following hold:

(i) a > −1



J. Evol. Equ. Solvability of the Cauchy problem Page 7 of 29 39

(a) (Existence) If Ja,b(u0) ∈ L1
ul(R

N ) for some b > N
θ
or Ja,b(u0) ∈ L1

ul(R
N )

with b = N
θ
, then (1.1) with f (u) = fa(u) has a local in time nonnegative

solution in the sense of Definition 1.3.

(b) (Nonexistence) For each b ∈ [0, N
θ
), there exists a nonnegative function u0 ∈

L1
ul(R

N ) satisfying Ja,b(u0) ∈ L1
ul(R

N ) such that, for every T > 0, (1.1) with
f (u) = fa(u) admits no local in time nonnegative solution in the sense of
Definition 1.3 on (0, T ).

(ii) a = −1

(a) (Existence) If Ja,b(u0) ∈ L1
ul(R

N ) for some b > N
θ
, then (1.1) with f (u) =

fa(u) has a local in time nonnegative solution in the sense of Definition 1.3.

(b) (Nonexistence) For each b ∈ [0, N
θ
], there exists a nonnegative function u0 ∈

L1
ul(R

N ) satisfying Ja,b(u0) ∈ L1
ul(R

N ) such that, for every T > 0, (1.1) with
f (u) = fa(u) admits no local in time nonnegative solution in the sense of
Definition 1.3 on (0, T ).

(iii) − (1 + θ
N

)
κ ≤ a < −1

If u0 ∈ L1
ul(R

N ), then (1.1) with f (u) = fa(u) has a local in time nonnegative
solution in the sense of Definition 1.3.

Theorem 1.7 corresponds to [14, Theorem 1.3] when θ = 2 and a = 0.
As mentioned above, the doubly critical case is quite delicate. In Theorem 1.7 (i)

and (ii) the borderline value of b is N
θ
. However, there exists a nonlinear term such that

the borderline value of b is less than or equal to N
2θ . Thus, b = N

θ
is not necessarily a

critical exponent in the doubly critical case. See Section 5 for details.
Let us explain a sketch of the proofs. The main points of the proofs are a super-

solution for the existence part and the contradiction argument for the nonexistence
part.
The proof of Theorem 1.5 proceeds in a similar manner to [19]. We construct a

function with u0, S(t) and J . In order to show that this is indeed a supersolution, we
estimate an integral term corresponding to (1.4) and the other term. Theorem 1.6 and
the existence part of Theorem 1.7 are shown by applying Theorem 1.5.

In the proof of Theorem 1.7 (i) (b) we improve the method of [7] to obtain an upper
bound of the integral value of constructed u0 over B(0, ρ). Since the singularity of
u0 is strong, this integral value increases faster than the upper bound as ρ → 0. This
is a contradiction. Theorem 1.7 (ii) (b) is based on the nonexistence result of [8].
Specifically, the divergence of the L1-norm of the integral term in (1.4) as t → 0
causes a contradiction.
This paper is organized as follows. In Section 2 we show some properties of S(t)

and Lp
ul(R

N ), and recall properties of the fundamental solution G. In Section 3 we
use these properties and prove Theorems 1.5, 1.6 and 1.7 (i) (a), (ii) (a) and (iii). In
Section 4 we prove Theorem 1.7 (i) (b) and (ii) (b) by contradiction. In Section 5 we
discuss local in time solvability with a condition obtained from Theorem 1.5.
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2. Preliminaries

After this section, let 0 < θ ≤ 2 and N ≥ 1 unless otherwise noted.

Proposition 2.1. (Monotone iterative method) Let u0 ≥ 0 and 0 < T < ∞. Suppose
that f ∈ C[0,∞) is nonnegative and nondecreasing. If there exists a nonnegative
function ū ∈ L∞

loc((0, T ), L∞(RN )) ∩ L∞((0, T ), L1
ul(R

N )) such that

ū(t) ≥ [F(ū)](t) := S(t)u0 +
∫ t

0
S(t − s) f (ū(s))ds for a.e. x ∈ R

N , for t ∈ (0, T ),

then (1.1) has a solution u in the sense of Definition 1.3 on the interval (0, T ) and
0 ≤ u(t) ≤ ū(t).

We show the proof for readers’ convenience. See [16, Theorem 2.1] for details.

Proof. Put u1 := S(t)u0 and un := F(un−1) for n = 2, 3, . . .. Let t ∈ (0, T ). By
induction we have

0 ≤ u1(t) ≤ u2(t) ≤ · · · ≤ un(t) ≤ · · · ≤ ū(t) < ∞ for a.e. x ∈ R
N .

This indicates that the limit limn→∞ un(x, t) which is denoted by u(x, t) exists for
a.e. x ∈ R

N , for t ∈ (0, T ). Then it follows from the monotone convergence theorem
that

lim
n→∞F(un−1) = F(u),

and hence u = F(u). Moreover, we obtain 0 ≤ u(t) ≤ ū(t). �

We recall useful properties of the fundamental solution G of (1.2). It is represented
by

G(x, t) =
⎧⎨
⎩

(4π t)− N
2 exp

(
−|x |2

4t

)
if θ = 2,∫∞

0 gt, θ
2
(s)(4πs)− N

2 exp
(
−|x |2

4s

)
ds if 0 < θ < 2,

where gt, θ
2
(s) is a nonnegative function on [0,∞) defined by

gt, θ
2
(s) := 1

2π i

∫ σ+i∞

σ−i∞
exp

(
zs − t z

θ
2

)
dz, σ > 0, t > 0.

The fundamental solutionG is a positive smooth function inR
N×(0,∞). See [6,7,17].

Moreover, G has the following properties:

G(x, t) = t−
N
θ G(t−

1
θ x, 1), (2.1)

C−1(1 + |x |)−N−θ ≤ G(x, 1) ≤ C(1 + |x |)−N−θ if 0 < θ < 2, (2.2)

G(·, 1) is radially symmetric and G(x, 1) ≤ G(y, 1) if |x | ≥ |y|, (2.3)
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G(x, t) =
∫
RN

G(x − y, t − s)G(y, s)dy, (2.4)∫
RN

G(x, t)dx = 1 (2.5)

for x, y ∈ R
N and 0 < s < t .

Proposition 2.2. (cf. [6, Propositions 2.4 and 2.5]) The following (i) and (ii) hold:

(i) Let 1 ≤ p ≤ q ≤ ∞. Then there exists C > 0 such that

‖S(t)w‖Lq
ul(R

N ) ≤ C

(
t
− N

θ

(
1
p − 1

q

)
+ 1

)
‖w‖L p

ul(R
N )

for t > 0 and w ∈ L p
ul(R

N ). In particular, there exists C > 0 such that

‖S(t)w‖Lq
ul(R

N ) ≤ Ct
− N

θ

(
1
p − 1

q

)
‖w‖L p

ul(R
N )

for small t > 0 and w ∈ L p
ul(R

N ).

(ii) Let 1 ≤ p < q ≤ ∞, C∗ > 0 and w ∈ Lp
ul(R

N ). Then there exists t0 =
t0
(
C∗, ‖w‖L p

ul(R
N ) , N

θ

(
1
p − 1

q

))
such that

‖S(t)w‖Lq
ul(R

N ) ≤ C∗t
− N

θ

(
1
p − 1

q

)
for 0 < t < t0.

Note that the assertion (i) follows from [12, Corollary 3.1] with minor modifications
and that the assertion (ii) is proved on the basis of the proof in [2, Lemma 8]. In the
assertion (ii) the constant C∗ can be taken arbitrarily small.

Proposition 2.3. Let M ≥ 0. Then the following (i) and (ii) hold:

(i) Suppose that J ∈ C[M,∞) is a nonnegative convex function. If v ≥ M in R
N ,

v ∈ L1
ul(R

N ) and J (v) ∈ L1
ul(R

N ), then

J ([S(t)v](x)) ≤ [S(t)J (v)](x) in R
N × (0,∞).

(ii) Suppose that K ∈ C[M,∞) is a nonnegative increasing concave function. If
w ≥ M in R

N and w ∈ L1
ul(R

N ), then

K ([S(t)w](x)) ≥ [S(t)K (w)](x) in R
N × (0,∞).

Proof. Weprove (i). Let (x, t) ∈ R
N ×(0,∞). By (2.5) we have

∫
RN G(x− y, t)dy =

1. Then it follows from Jensen’s inequality that

J ([S(t)v](x)) = J

(∫
RN

G(x − y, t)v(y)dy

)

≤
∫
RN

G(x − y, t)J (v(y))dy = [S(t)J (v)](x).
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Weprove (ii). It suffices to prove the casewhereM = 0. The assertionwithM = 0 is
assumed to hold. We consider the general case where M ≥ 0. Put K̂ (u) := K (u+M)

and ŵ := w − M . We see that K̂ ∈ C[0,∞), 0 ≤ ŵ ∈ L1
ul(R

N ) and K̂ (ŵ) = K (w)

hold. Then it follows that

K̂ ([S(t)ŵ](x)) ≥ [S(t)K̂ (ŵ)](x),
which yields

K ([S(t)(w − M)](x) + M) ≥ [S(t)K (w)](x).
We deduce from [S(t)M](x) = M

∫
RN G(x − y, t)dy = M in R

N × (0,∞) that

K ([S(t)w](x)) ≥ [S(t)K (w)](x) in R
N × (0,∞).

In order to prove (ii) with M = 0, we start with the case where K ∈ C[0, n] and
0 ≤ w ≤ n in R

N for each n ∈ {1, 2, . . .}. Since K is increasing and concave, K−1 ∈
C[K (0), K (n)] is convex. Note that the inequality in (i) holds when J ∈ C[M, L]
and M ≤ v ≤ L in R

N , where M < L . Then we obtain from the assertion (i) that for
K (0) ≤ v ≤ K (n) in R

N ,

K−1([S(t)v](x)) ≤ [S(t)K−1(v)](x) in R
N × (0,∞).

Let w := K−1(v). By the monotonicity of K we have 0 ≤ w ≤ n in R
N and

[S(t)K (w)](x) ≤ K ([S(t)w](x)) in R
N × (0,∞).

Thus the desired inequality can be derived in the case where K ∈ C[0, n] and 0 ≤
w ≤ n in R

N . Then we can consider the case where K ∈ C[0,∞) and w ≥ 0 in R
N .

For n ∈ {1, 2, . . .}, define wn := min{w, n}. We see that

[S(t)K (wn)](x) ≤ K ([S(t)wn](x)) in R
N × (0,∞).

Taking n → ∞, we also obtain the desired inequality in this case, which follows from
the monotone convergence theorem and K ∈ C[0,∞). �

Lemma 2.4. Let M > 0. If w ∈ L1
ul(R

N ), then max{w, M} ∈ L1
ul(R

N ).

Note that Lemma 2.4 follows from [18, Lemma 2.5 (ii)] with p = 1.

3. Existence result

After this section, for any set X and the mappings a = a(x) and b = b(x) from X
to [0,∞), we say

a(x) � b(x) for all x ∈ X

if there exists a positive constant C such that a(x) ≤ Cb(x) for all x ∈ X .
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Proof of Theorem 1.5. Let M > c be large such that J (u) is convex for u ≥ M . Put
u1(x) := max{u0(x), M}. In the case (i) J (u1) ∈ L1

ul(R
N ) holds. In the case (ii) by

Lemma 2.4 J (u1) ∈ L1
ul(R

N ) holds. Let σ > 0 be a constant. We define

ū(t) := J−1 ((1 + σ)S(t)J (u1)) . (3.1)

Since J (u1) ∈ L1
ul(R

N ), the latter estimate in Proposition 2.2 (i) implies that for small
t > 0,

‖ū(t)‖L∞(RN ) ≤ J−1
(
(1 + σ) · Ct−

N
θ ‖J (u1)‖L1

ul(R
N )

)
=: v(t) < ∞. (3.2)

Moreover, for T > 0, J (ū(t)) ∈ L∞
loc((0, T ), L∞(RN )) ∩ L∞((0, T ), L1

ul(R
N ))

follows from the former estimate in Proposition 2.2 (i). Since J (u) is convex for
u ≥ M and ū(t) ≥ M , we obtain J ′(M)(ū(t)−M)+ J (M) ≤ J (ū(t)), which yields

ū(t) ∈ L∞
loc((0, T ), L∞(RN )) ∩ L∞((0, T ), L1

ul(R
N )) for T > 0.

It follows from Proposition 2.3 (i) and the monotonicity of J that

[S(t)u1](x) ≤ J−1 ([S(t)J (u1)](x)) in R
N × (0,∞).

This along with the mean value theorem yields

ū(t) − S(t)u0 ≥ ū(t) − S(t)u1

≥ ū(t) − J−1 (S(t)J (u1))

= J−1 ((1 + σ)S(t)J (u1)) − J−1 (S(t)J (u1))

= (J−1)′ ((1 + ρσ)S(t)J (u1)) σ S(t)J (u1) (3.3)

for some ρ = ρ(x, t) ∈ [0, 1]. Since J (u) is convex for u ≥ M , J−1(u) is concave
for u ≥ J (M). We have

(J−1)′ ((1 + ρσ)S(t)J (u1)) σ S(t)J (u1) ≥ (J−1)′ ((1 + σ)S(t)J (u1)) σ S(t)J (u1)

= σ S(t)J (u1)

J ′ (J−1 ((1 + σ)S(t)J (u1))
)

= σ

1 + σ

J (ū(t))

J ′(ū(t))
. (3.4)

By (3.3) and (3.4) we have

ū(t) − S(t)u0 ≥ σ

1 + σ

J (ū(t))

J ′(ū(t))
. (3.5)

On the other hand, let t > 0 be small. We see that
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∫ t

0
S(t − s) f (ū(s))ds ≤

∫ t

0

∥∥∥∥ f (ū(s))

K (J (ū(s)))

∥∥∥∥
L∞(RN )

S(t − s)K (J (ū(s)))ds.

(3.6)

Let s ∈ (0, t). It follows from Proposition 2.3 (ii) that

S(t − s)K (J (ū(s))) = S(t − s) {K ((1 + σ)S(s)J (u1))}
≤ K (S(t − s) {(1 + σ)S(s)J (u1)})
≤ K ((1 + σ)S(t)J (u1))

= K (J (ū(t))). (3.7)

Using (3.6) and (3.7), we have∫ t

0
S(t − s) f (ū(s))ds ≤ K (J (ū(t)))

∫ t

0

∥∥∥∥ f (ū(s))

K (J (ū(s)))

∥∥∥∥
L∞(RN )

ds

≤ J (ū(t))

J ′(ū(t))
Ĵ (ū(t))

∫ t

0
f̂
(‖ū(s)‖L∞(RN )

)
ds. (3.8)

We prove the case (i). It follows from (3.2) that

Ĵ (ū(t))
∫ t

0
f̂
(‖ū(s)‖L∞(RN )

)
ds ≤ Ĵ (v(t))

∫ t

0
f̂ (v(s))ds

= θ

N
{C(1 + σ) ‖J (u1)‖L1

ul(R
N )}

θ
N Ĵ (v(t))

∫ ∞

v(t)

f̂ (τ )J ′(τ )dτ

J (τ )1+ θ
N

, (3.9)

whereweused a changeof variables τ := v(s) = J−1
(
(1+σ)·Cs− N

θ ‖J (u1)‖L1
ul(R

N )

)
.

Since t > 0 is small, it follows from (1.5) that

θ

N
{C(1 + σ) ‖J (u1)‖L1

ul(R
N )}

θ
N Ĵ (v(t))

∫ ∞

v(t)

f̂ (τ )J ′(τ )dτ

J (τ )1+ θ
N

≤ σ

1 + σ
. (3.10)

Due to (3.8), (3.9) and (3.10), we obtain∫ t

0
S(t − s) f (ū(s))ds ≤ σ

1 + σ

J (ū(t))

J ′(ū(t))
. (3.11)

By (3.5) and (3.11) we have

ū(t) − S(t)u0 ≥
∫ t

0
S(t − s) f (ū(s))ds. (3.12)

Thus ū(t) is a supersolution. By Proposition 2.1 there exists T > 0 such that (1.1) has
a local in time nonnegative solution u in the sense of Definition 1.3 on the interval
(0, T ) and 0 ≤ u(t) ≤ ū(t). Since σ > 0 is a constant, (1.7) follows from (3.1).

We prove the case (ii). In the case (ii) the inequality (3.8) also holds. Since J (u1) ∈
L1
ul(R

N ), it follows fromProposition2.2 (ii) that (3.2) holdswithC and‖J (u1)‖L1
ul(R

N )
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replaced by C∗ and 1, respectively. By the same calculation we have (3.9) with the
same replacement. Due to (1.6) and Proposition 2.2 (ii), we can take a small C∗ > 0
such that for small t > 0,

θ

N
{C∗(1 + σ)} θ

N Ĵ (v(t))
∫ ∞

v(t)

f̂ (τ )J ′(τ )dτ

J (τ )1+ θ
N

≤ σ

1 + σ
. (3.13)

Then the inequality (3.11) follows from (3.8), (3.9) with the same replacement and
(3.13). By (3.5) and (3.11) we have (3.12). Thus ū(t) is a supersolution. The rest of
the proof is the same as (i). We complete the proof. �

Lemma 3.1. Suppose that f satisfies Assumption A. Then the following (i) and (ii)
hold:

(i) If a > q, then f (u)F(u)a → 0 as u → ∞.

(ii) If b > q − 1, then uF(u)b → 0 and
∫∞
u F(τ )bdτ → 0 as u → ∞.

Proof. We prove (i). Let ε > 0 be chosen such that a > q + ε. It follows from
q = limu→∞ f ′(u)F(u) that

d

du

(
f (u)F(u)a−ε

) = F(u)a−ε−1( f ′(u)F(u) − a + ε) < 0 for large u > 0.

Then f (u)F(u)a−ε is decreasing for large u > 0. This along with F(u)ε → 0 as
u → ∞ yields f (u)F(u)a → 0 as u → ∞.

We prove (ii). By L’Hospital’s rule and the assertion (i) we have

lim
u→∞ uF(u)b = lim

u→∞

d
du u

d
du (F(u)−b)

= lim
u→∞

1

b
f (u)F(u)b+1 = 0.

Moreover, it follows from b > q − 1 that we choose δ > 0 such that b
1+δ

> q − 1.

Then we also obtain limu→∞ uF(u)
b

1+δ = 0, and hence F(u)b � u−1−δ for large
u > 0. This leads to∫ ∞

u
F(τ )bdτ �

∫ ∞

u
τ−1−δdτ = u−δ

δ
→ 0 as u → ∞.

We complete the proof. �

Proof of Theorem 1.6. Put r := N
θ
. Since q < r + 1, we can choose α ∈

(
q−1
r ,

min{1, q
r }
)
. Set J (u) := F(u)−r and K (u) := uα . By direct calculation we have

J ′(u) = r

f (u)F(u)r+1 > 0 and J ′′(u) = r(r + 1 − f ′(u)F(u))

f (u)2F(u)r+2 for u > 0.

Due to r + 1 > q = limu→∞ f ′(u)F(u), we obtain r + 1− f ′(u)F(u) > 0 for large
u > 0. Then J ′′(u) > 0 for large u > 0 and J satisfies (J).
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We show that J ′(w)

J (w)1−α

(
= J ′(w)K (J (w))

J (w)

)
and f (w)

J (w)α

(
= f (w)

K (J (w))

)
are nondecreasing

for large w > 0. It follows that

d

dw

(
J ′(w)

J (w)1−α

)
= (1 − α)J (w)α−1 J ′′(w)

(
1

1 − α
− J ′(w)2

J (w)J ′′(w)

)
.

Here we deduce

J ′(w)2

J (w)J ′′(w)
= r

r + 1 − f ′(w)F(w)
→ r

r + 1 − q
as w → ∞.

Since α >
q−1
r , 1

1−α
− r

r+1−q > 0 holds and hence d
dw

(
J ′(w)

J (w)1−α

)
> 0 for large

w > 0. In addition, since α <
q
r ,

d

dw

(
f (w)

J (w)α

)
= ( f ′(w)F(w) − rα)F(w)rα−1 > 0 for large w > 0.

Thus we can take a sufficiently large c > 0 such that J ′(w)

J (w)1−α and f (w)
J (w)α

are nonde-
creasing for w ≥ c. If v > c, then

Ĵ (v)

∫ ∞

v

f̂ (τ )J ′(τ )dτ

J (τ )1+ θ
N

= J ′(v)

J (v)1−α

∫ ∞

v

f (τ )J ′(τ )dτ

J (τ )1+α+ θ
N

= r2

f (v)F(v)rα+1

∫ ∞

v

F(τ )rαdτ.

Note that we use J (τ )1+α+ θ
N = J (τ )1+α+ 1

r . Since rα + 1 > q, it follows from
Lemma 3.1 that f (v)F(v)rα+1 and

∫∞
v

F(τ )rαdτ converge to 0 as v → ∞. Then
L’Hospital’s rule is applicable and we obtain

lim
v→∞

∫∞
v

F(τ )rαdτ

f (v)F(v)rα+1 = lim
v→∞

d
dv

(∫∞
v

F(τ )rαdτ
)

d
dv

(
f (v)F(v)rα+1

) = 1

rα + 1 − q
.

By Theorem 1.5 (ii) there exists T > 0 such that (1.1) has a local in time nonnega-
tive solution u in the sense of Definition 1.3 on the interval (0, T ). Moreover, (1.8)
holds. �

Lemma 3.2. Let 0 < θ ≤ 2, N ≥ 1 and a ∈ R. Let fa and Fa be defined by (1.9).
Then the following hold:

lim
u→∞

log
(
Fa(u)− N

θ + e
)

log(u + e)
= 1 and

lim
u→∞

(
1 + N

θ
− f ′

a(u)Fa(u)

)
log(u + e) =

(
N

θ

)2

a.

In particular, limu→∞
(
1 + N

θ
− f ′

a(u)Fa(u)
)
log

(
Fa(u)− N

θ + e
)

= ( N
θ

)2
a.
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Proof. By direct calculation we have

d
du log

(
Fa(u)− N

θ + e
)

d
du log(u + e)

= N

θ

u + e

fa(u)Fa(u)
· 1

1 + eFa(u)
N
θ

and
d
du (u + e)

d
du ( fa(u)Fa(u))

= 1

f ′
a(u)Fa(u) − 1

.

Since f ′
a(u)Fa(u) → 1 + N

θ
as u → ∞, it follows that limu→∞ d

du ( fa(u)Fa(u)) =
N
θ

> 0, and hence fa(u)Fa(u) → ∞ as u → ∞. Then we obtain from L’Hospital’s
rule that

lim
u→∞

log
(
Fa(u)− N

θ + e
)

log(u + e)
= N

θ
lim
u→∞

u + e

fa(u)Fa(u)
· lim
u→∞

1

1 + eFa(u)
N
θ

= N

θ
lim
u→∞

1

f ′
a(u)Fa(u) − 1

= 1.

Next we mention the latter limit. With the help of integration by parts we have

Fa(u) = N

θ
u− θ

N
[
log(u + e)

]−a − N

θ
aI (u),

where

I (u) :=
∫ ∞

u
τ− θ

N (τ + e)−1 [log(τ + e)
]−a−1

dτ.

Then it follows that

f ′
a(u)Fa(u) = 1 + N

θ
+ N

θ
a

u

u + e

[
log(u + e)

]−1

−
(
1 + N

θ

)
au

θ
N
[
log(u + e)

]a
I (u) − N

θ
a2

u1+ θ
N

u + e

[
log(u + e)

]a−1
I (u),

which yields(
1 + N

θ
− f ′

a(u)Fa(u)

)
log(u + e)

=
(
1 + N

θ

)
au

θ
N
[
log(u + e)

]a+1
I (u) + N

θ
a2

u1+ θ
N

u + e

[
log(u + e)

]a
I (u) − N

θ
a

u

u + e
.

We observe from L’Hospital’s rule that

lim
u→∞ u

θ
N
[
log(u + e)

]a+1
I (u) = lim

u→∞
I ′(u)

d
du

{
u− θ

N
[
log(u + e)

]−a−1
} = N

θ
,

which implies that limu→∞ u1+
θ
N

u+e

[
log(u + e)

]a
I (u) = 0. Then by calculation we

can derive the desired limit. �
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Proof of the existence part in Theorem 1.7. We prove (i) (a) and (ii) (a). Put J (u) :=
Ja,b(u). In order to apply Theorem 1.5 with K (u) = u and a sufficiently large c > 0,
it suffices to show the following properties:

(A) J ′′(v) > 0 for large v > 0,

(B) Ĵ (v) = J ′(v) and f̂ (τ ) = fa(τ )
J (τ )

,

(C) J ′(v) → ∞ and
∫∞
v

fa(τ )J ′(τ )dτ

J (τ )
2+ θ

N
→ 0 as v → ∞,

(D) limv→∞ fa(v)J ′(v)3

J (v)
2+ θ

N J ′′(v)
= 0 for b > N

θ
(when a ≥ −1 and J (u0) ∈ L1

ul(R
N )),

(E) limv→∞ fa(v)J ′(v)3

J (v)
2+ θ

N J ′′(v)
< ∞with b = N

θ
(when a > −1 and J (u0) ∈ L1

ul(R
N )).

Indeed, (C) and (D) imply that we can apply L’Hospital’s rule and obtain

lim
v→∞ J ′(v)

∫ ∞

v

fa(τ )J ′(τ )dτ

J (τ )2+ θ
N

= lim
v→∞

d
dv

(∫∞
v

fa(τ )J ′(τ )dτ

J (τ )
2+ θ

N

)
d
dv

(
1

J ′(v)

)
= lim

v→∞
fa(v)J ′(v)3

J (v)2+ θ
N J ′′(v)

= 0.

By this together with (A) and (B) we see that all the assumptions of Theorem 1.5 (i)
are satisfied. In the same way, if (E) holds instead of (D), then Theorem 1.5 (ii) can
be applied.
Note that we omit the details of the former of (B) and the former of (C), since they

can be seen from (A).
We start with the latter of (B). By direct calculation we have

d

dv

(
fa(v)

J (v)

)
= f ′

a(v)J (v) − fa(v)J ′(v)

J (v)2
.

Put h(v) := Fa(v)− N
θ . It follows that J (v) = h(v)

[
log (h(v) + e)

]b and
J ′(v) = C1(v)

h(v)1+ θ
N

fa(v)

[
log (h(v) + e)

]b
, (3.14)

where

C1(v) := N

θ

{
1 + bh(v)

(h(v) + e) log (h(v) + e)

}
→ N

θ
as v → ∞. (3.15)

Since f ′
a(v) ≥ (

1 + θ
N

)
v

θ
N
[
log(v + e)

]a and (3.14) hold, we have

f ′
a(v)J (v) − fa(v)J ′(v)

≥
(
1 + θ

N

)
v

θ
N
[
log(v + e)

]a · h(v)
[
log (h(v) + e)

]b − C1(v)h(v)1+
θ
N
[
log (h(v) + e)

]b
= h(v)1+

θ
N
[
log (h(v) + e)

]b {(1 + θ

N

)
v

θ
N
[
log(v + e)

]a · h(v)−
θ
N − C1(v)

}
.

(3.16)
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We see from L’Hospital’s rule that

lim
v→∞ v

θ
N
[
log(v + e)

]a · h(v)−
θ
N = lim

v→∞
F ′
a(v)

d
dv

{
v− θ

N
[
log(v + e)

]−a
} = N

θ
. (3.17)

By (3.15) and (3.17) we derive(
1 + θ

N

)
v

θ
N
[
log(v + e)

]a · h(v)−
θ
N − C1(v) → 1 as v → ∞. (3.18)

It follows from (3.16) and (3.18) that limv→∞ f ′
a(v)J (v) − fa(v)J ′(v) = ∞. Thus

we have d
dv

(
fa(v)
J (v)

)
> 0 for large v > 0, which leads to f̂ (τ ) = fa(τ )

J (τ )
.

We mention the latter of (C). It follows from (3.14) that

fa(τ )J ′(τ )

J (τ )2+ θ
N

= C1(v)h(v)1+ θ
N
[
log (h(v) + e)

]b
h(v)2+ θ

N
[
log (h(v) + e)

](2+ θ
N

)
b

= C1(v)

h(v)
[
log (h(v) + e)

](1+ θ
N

)
b
.

By (3.15), (3.17) and Lemma 3.2 we obtain

C1(v) � 1, h(v) � v
[
log(v + e)

] N
θ
a � (v + e)

[
log(v + e)

] N
θ
a and

log (h(v) + e) � log(v + e) for large v > 0, respectively.

Then we derive

fa(τ )J ′(τ )

J (τ )2+ θ
N

� 1

(τ + e)
[
log(τ + e)

] N
θ
a+
(
1+ θ

N

)
b

for large τ > 0. (3.19)

It follows in both cases (i) (a) and (ii) (a) that N
θ
a+(1 + θ

N

)
b > − N

θ
+(1 + θ

N

) N
θ

= 1,
which yields

∫ ∞

v

dτ

(τ + e)
[
log(τ + e)

] N
θ
a+
(
1+ θ

N

)
b

≤ (v + e)
1− N

θ
a−
(
1+ θ

N

)
b

N
θ
a + (

1 + θ
N

)
b − 1

→ 0 as v → ∞.

Thus (3.19) leads to
∫∞
v

f (τ )J ′(τ )dτ

J (τ )
2+ θ

N
→ 0 as v → ∞.

We mention (A). Differentiating (3.14) with (3.15) gives

J ′′(v) = C2(v)
h(v)1+ 2θ

N

fa(v)2

[
log (h(v) + e)

]b−1
. (3.20)

Here C2(v) is defined by

C2(v) := C3(v)

(
1 + N

θ
− f ′

a(v)Fa(v)

)
log (h(v) + e) + C4(v),
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where

C3(v) := N

θ

{
1 + bh(v)

(h(v) + e) log (h(v) + e)

}
→ N

θ

and

C4(v) :=
(
N

θ

)2 bh(v)

h(v) + e

{
2 − h(v)

h(v) + e
+ (b − 1)h(v)

log (h(v) + e) (h(v) + e)

}
→
(
N

θ

)2

b

as v → ∞. We see from Lemma 3.2 that

C2(v) →
(
N

θ

)3

a +
(
N

θ

)2

b as v → ∞.

In both cases (i) (a) and (ii) (a),
( N

θ

)3
a+( N

θ

)2
b > 0 holds. Thus we obtain J ′′(v) > 0

for large v > 0.
It follows from (3.14) and (3.20) that

fa(v)J ′(v)3

J (v)2+ θ
N J ′′(v)

= C1(v)3

C2(v)
[
log (h(v) + e)

] θ
N b−1

.

Since C1(v) → N
θ
and C2(v) → ( N

θ

)3
a+ ( N

θ

)2
b > 0 as v → ∞, the properties (D)

and (E) hold.
It remains to prove (iii). Put J (u) := u and K (u) := u. Then Ĵ (v) = 1 and f̂ (τ ) =

fa(τ )
τ

hold. Indeed, we see that d
dw

(
fa(w)

K (J (w))

)
= d

dw

{
w

θ
N
[
log(w + e)

]a}
> 0 for

large w > 0. Since a < −1, we obtain

Ĵ (v)

∫ ∞

v

f̂ (τ )J ′(τ )dτ

J (τ )1+ θ
N

=
∫ ∞

v

[
log(u + e)

]a
dτ

τ

�
∫ ∞

v

[
log(τ + e)

]a
dτ

τ + e
= −

[
log(v + e)

]a+1

a + 1
→ 0 as v → ∞.

By Theorem 1.5 (i) there exists T > 0 such that (1.1) has a local in time nonnegative
solution u in the sense of Definition 1.3 on the interval (0, T ). �

4. Nonexistence result

Proof of Theorem 1.7 (i) (b). Let ε > 0 be chosen such that ε < min
{ N

θ
(a + 1), N

θ

− b
}
. We define

u0(x) := max

{
M, χB(0,e−1)(x) · |x |−N

(
log

1

|x |
)− N

θ
(a+1)−1+ε

}
,
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where M > 0 is a constant such that fa(u) is convex for u ≥ M , and χB(0,e−1) is a
characteristic function. Let ρ > 0. We deduce from ε < N

θ
(a + 1) that

∫
B(0,ρ)

|x |−N
(
log

1

|x |
)− N

θ
(a+1)−1+ε

dx

=
∫ ρ

0

1

r

(
log

1

r

)− N
θ

(a+1)−1+ε

dr =
(
N

θ
(a + 1) − ε

)−1

·
(
log

1

ρ

)− N
θ

(a+1)+ε

,

(4.1)

and hence |x |−N
(
log 1

|x |
)− N

θ
(a+1)−1+ε ∈ L1(B(0, ρ)). Then u0 ∈ L1

ul(R
N ) holds.

Moreover, it follows that for large u > 0,

Fa(u) =
∫ ∞

u

dτ

τ 1+ θ
N [log(τ + e)]a

≥ N

2θ

∫ ∞

u

θ
N log(τ + e) + aτ

τ+e

τ 1+ θ
N [log(τ + e)]a+1

dτ

= N

2θ
u− θ

N [log(u + e)]−a,

and hence Fa(u)− N
θ ≤ ( 2θN )

N
θ u[log(u + e)] N

θ
a . This estimate implies that

Ja,b(u) � u(log u)
N
θ
a+b for large u > 0,

which yields

Ja,b(u0) � |x |−N
(
log

1

|x |
)b− N

θ
−1+ε

for small |x | > 0.

Since ε < N
θ

− b, we obtain in the same way as (4.1) that |x |−N
(
log 1

|x |
)b− N

θ
−1+ε ∈

L1(B(0, 1)). Then Ja,b(u0) ∈ L1
ul(R

N ) also holds.
The proof is by contradiction. Assume that there exists T > 0 such that (1.1) with

f (u) = fa(u) has a local in time nonnegative solution u in the sense of Definition 1.3
on the interval (0, T ). Let 0 < τ < t < T . It follows from the Fubini theorem that

u(t) = S(t)u0 +
∫ τ

0
S(t − s) fa(u(s))ds +

∫ t

τ

S(t − s) fa(u(s))ds

= S(t − τ)S(τ )u0 + S(t − τ)

∫ τ

0
S(τ − s) fa(u(s))ds +

∫ t

τ

S(t − s) fa(u(s))ds

= S(t − τ)u(τ ) +
∫ t

τ

S(t − s) fa(u(s))ds.

By convexity of fa(u) for u ≥ M together with u(t) ≥ S(t)u0 ≥ M we deduce in a
similar way to [7, Eq. (3.22)] that if ρ > 0 is sufficiently small, then

w(t) ≥ c∗Mτ3
− N

θ G(0, 1)t−
N
θ + 2− N

θ t−
N
θ

∫ t

ρθ

s
N
θ fa(w(s))ds (4.2)
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for almost all 0 < τ < ρθ and ρθ < t < 1
3

{
T − (2ρ)θ

}
, where c∗ > 0 is a constant

depending only on N ,

w(t) :=
∫
RN

u
(
x, t + (2ρ)θ

)
G(x, t)dx and Mτ :=

∫
B(0,ρ)

u(y, τ )dy.

Note that we use (2.3) to obtain [7, Eq. (3.22)].

We prepare another estimate of w. Let 0 < ρ < 1 be small and let ρθ < s < ρ
θ
2 .

It follows that

w(s) ≥
∫
RN

[
S
(
s + (2ρ)θ

)
u0
]
(x)G(x, s)dx

=
∫
RN

∫
RN

G
(
x − y, s + (2ρ)θ

)
u0(y)dy G(x, s)dx

=
∫
RN

∫
RN

G
(
x − y, s + (2ρ)θ

)
G(x, s)dx u0(y)dy

=
∫
RN

G
(
y, 2s + (2ρ)θ

)
u0(y)dy. (4.3)

Here we use G(y, t + s) = ∫
RN G(y − x, t)G(x, s)dx = ∫

RN G(x − y, t)G(x, s)dx
for t > 0, which follows from (2.3) and (2.4). Hereafter, we set s∗ := 2s + (2ρ)θ .
Since s < ρ

θ
2 and ρ > 0 is small, s∗

1
θ < e−1 holds. When θ = 2, we obtain from

putting y = √
s∗z that

∫
RN

G (y, s∗) u0(y)dy

≥ (4πs∗)−
N
2

∫
{√

s∗
2 ≤|y|≤√

s∗
} e− |y|2

4s∗ |y|−N
(
log

1

|y|
)− N

θ
(a+1)−1+ε

dy

≥ (4πs∗)−
N
2

∫
{
1
2≤|z|≤1

} e− |z|2
4 |z|−N

(
log

1√
s∗|z|

)− N
2 (a+1)−1+ε

dz

� s∗− N
2

(
log

4

s∗

)− N
2 (a+1)−1+ε

. (4.4)

On the other hand, when 0 < θ < 2, it follows that

G(y, s∗) = s
− N

θ∗ G

(
s
− 1

θ∗ y, 1

)
� s

− N
θ∗
(
1 + s

− 1
θ∗ |y|

)−N−θ

,
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which yields∫
RN

G (y, s∗) u0(y)dy

� s
− N

θ∗
∫{

s∗
1
θ

2 ≤|y|≤s∗
1
θ

} (1 + s
− 1

θ∗ |y|
)−N−θ

|y|−N
(
log

1

|y|
)− N

θ
(a+1)−1+ε

dy

= s
− N

θ∗
∫
{
1
2≤|z|≤1

} (1 + |z|)−N−θ |z|−N

(
log

1

s∗
1
θ |z|

)− N
θ

(a+1)−1+ε

dz

� s∗− N
θ

(
log

2θ

s∗

)− N
θ

(a+1)−1+ε

.

(4.5)

By (4.3), (4.4) and (4.5) we have w(s) � s∗− N
θ

(
log 2θ

s∗

)− N
θ

(a+1)−1+ε

, which yields

s
N
θ w(s) �

{
s

2s + (2ρ)θ

} N
θ
(
log

1

21−θ s + ρθ

)− N
θ

(a+1)−1+ε

. (4.6)

Since the right hand side of (4.6) is nondecreasing with respect to s, it follows from
s > ρθ that

s
N
θ w(s) � 1(

2 + 2θ
) N

θ

(
log

1(
1 + 21−θ

)
ρθ

)− N
θ

(a+1)−1+ε

,

and hence there exists C1 > 0 such that, for ρθ < s < ρ
θ
2 ,

w(s) ≥ C1s
− N

θ

(
log

1(
1 + 21−θ

)
ρθ

)− N
θ

(a+1)−1+ε

. (4.7)

Since s < ρ
θ
2 and ρ > 0 is small,

C1s
− N

2θ

(
log

1(
1 + 21−θ

)
ρθ

)− N
θ

(a+1)−1+ε

> C1ρ
− N

4

(
log

1(
1 + 21−θ

)
ρθ

)− N
θ

(a+1)−1+ε

> 1.

This along with (4.7) and s < ρ
θ
2 yields

log(w(s) + e) > logw(s) >
N

2θ
log

1

s
>

N

2θ
log

s

ρθ
. (4.8)
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Therefore, another estimate of w is derived.

We are now ready to estimate Mτ . Combining (4.2) with (4.8), we obtain

w(t) ≥ c∗Mτ3
− N

θ G(0, 1)t−
N
θ + 2− N

θ

(
N

2θ

)a

t−
N
θ

∫ t

ρθ

s
N
θ

(
log

s

ρθ

)a

w(s)1+
θ
N ds

(4.9)

for almost all 0 < τ < ρθ and ρθ < t < ρ
θ
2 . Put p := 1 + θ

N ,

c1 := c∗3− N
θ G(0, 1) and ck+1 := 2− N

θ

(
N

2θ

)a

ck
p p − 1(

pk − 1
)
(a + 1)

, k = 1, 2, . . . .

By (4.9) and induction we deduce in a similar way to [7, p.122] that

w(t) ≥ gk(t) := ckMτ
pk−1

t−
N
θ

(
log

t

ρθ

) (pk−1−1)(a+1)
p−1

, k = 1, 2, . . .

and that

∞ > w(t) ≥ gk+1(t) ≥
[
β pMτ

(
log

t

ρθ

) a+1
p−1
]pk

t−
N
θ

(
log

t

ρθ

)− a+1
p−1

≥
[
β pMτ

(
θ

4
log

1

ρ

) a+1
p−1
]pk

t−
N
θ

(
log

t

ρθ

)− a+1
p−1

for almost all ρ
3
4 θ < t < ρ

θ
2 , where β > 0 is a constant such that ck ≥ β pk ,

k = 1, 2, . . .. Then we derive

β pMτ

(
θ

4
log

1

ρ

) a+1
p−1 ≤ 1. (4.10)

It follows that

Mτ =
∫
B(0,ρ)

u(y, τ )dy ≥
∫
B(0,ρ)

[S(τ )u0](y)dy ≥
∫
B(0,ρ)

[
S(τ )

(
u0χB(0,ρ)

)]
(y)dy.

(4.11)

By (4.1) we have u0χB(0,ρ) ∈ L1(RN ), which yields
∥∥∥S(τ )

(
u0χB(0,ρ)

) − u0

χB(0,ρ)

∥∥∥
L1(RN )

→ 0 as τ → 0. Then there exists a subsequence
{
S(τ̃ )

(
u0χB(0,ρ)

)}
τ̃

such that S(τ̃ )
(
u0χB(0,ρ)

) → u0χB(0,ρ) as τ̃ → 0 a.e. in R
N . Thus it follows from
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Fatou’s lemma, (4.10) and (4.11) that

1 �
(
log

1

ρ

) a+1
p−1

∫
B(0,ρ)

[
S(τ )

(
u0χB(0,ρ)

)]
(y)dy

≥
(
log

1

ρ

) a+1
p−1

lim inf
τ̃→0

∫
B(0,ρ)

[
S(τ̃ )

(
u0χB(0,ρ)

)]
(y)dy

≥
(
log

1

ρ

) a+1
p−1

∫
B(0,ρ)

u0χB(0,ρ)dy

=
(
log

1

ρ

) N
θ

(a+1) ∫
B(0,ρ)

u0(y)dy. (4.12)

On the other hand, by (4.1) we have

∫
B(0,ρ)

u0(y)dy ≥
∫
B(0,ρ)

|y|−N
(
log

1

|y|
)− N

θ
(a+1)−1+ε

dx �
(
log

1

ρ

)− N
θ

(a+1)+ε

.

(4.13)

Using (4.12) and (4.13), we obtain

1 �
(
log

1

ρ

)ε

→ ∞ as ρ → 0.

This is a contradiction. We complete the proof. �

Proposition 4.1. (cf. [8, Theorem 4.1 and Lemma 4.2]) Let � be a smooth bounded
domain in R

N . Suppose that f : [0,∞) → [0,∞) is nondecreasing. If

∫ ∞

1

f̃ (τ )dτ

τ 1+ 2
N

= ∞, where f̃ (τ ) := sup
1≤w≤τ

f (w)

w
, (4.14)

then there is a nonnegative function φ ∈ L1(�) such that, for each small t > 0,∥∥∥∥
∫ t

0
S�(t − s) f (S�(s)φ)ds

∥∥∥∥
L1(�)

= ∞. (4.15)

Here S�(t)φ is the solution of the heat equation in � with Dirichlet boundary condi-
tions

∂t u − �u = 0, u|∂� = 0 and u(x, 0) = φ.

Proposition 4.2. Suppose that f : [0,∞) → [0,∞) is nondecreasing. Let0 < θ < 2
and let f̃ (τ ) be defined by (4.14). If

∫ ∞

1

f̃ (τ )dτ

τ 1+ θ
N

= ∞, (4.16)
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then there exists a nonnegative function u0 satisfying u0 ∈ L1(RN ) such that, for each
small t > 0, ∥∥∥∥

∫ t

0
S(t − s) f (S(s)u0)ds

∥∥∥∥
L1(B(0,1))

= ∞. (4.17)

Proposition 4.2 is based on [8, Theorem 4.1 and Lemma 4.2] as well as Proposi-
tion 4.1. Since (4.17) is derived in a similar way to [8, Theorem 4.1], we omit the
details. In the proof of this theorem estimates using the semigroup S(t)with θ = 2 are
applied ( [8, Lemma 2.1 and Corollary 2.2]). Here we provide corresponding lemma
and corollary in the case where 0 < θ < 2.

Lemma 4.3. Let 0 < θ < 2. Then there exists a constant c1 > 0 such that for r > 0,

S(t)χB(0,r) ≥ c1

(
r

r + t
1
θ

)N

χ
B(0,r+t

1
θ )

in R
N × (0,∞). (4.18)

Moreover, there exists a constant c2 > 0 such that for r > 0,

S(t)χB(0,r) ≥ c2
1

(1 + r−θ t)
N
θ

χ
B(0,r+t

1
θ )

in R
N × (0,∞). (4.19)

Corollary 4.4. There exists a constant c > 0 such that for r > 0 and t > 0,∫
RN

S(t)χB(0,r) ≥ cr N .

Note that Corollary 4.4 follows from integrating (4.18) over R
N .

Proof of Lemma 4.3. It follows from (2.1) and (2.2) that

G(x − y, t) = t−
N
θ G(t−

1
θ (x − y), 1)

≥ C−1t−
N
θ (1 + t−

1
θ |x − y|)−N−θ

= C−1t (t
1
θ + |x − y|)−N−θ for x ∈ R

N , y ∈ R
N and t ∈ (0,∞).

(4.20)

We consider the case where r ≥ t
1
θ . Let x ∈ B(0, r+ t

1
θ ) be fixed. Then there exists

a ∈ B(0, r) satisfying B(a, t
1
θ ) ⊂ B(0, r) such that |x − y| < 3t

1
θ for y ∈ B(a, t

1
θ ).

By (4.20) we have

G(x − y, t) � t−
N
θ for y ∈ B(a, t

1
θ ),

which implies that

[S(t)χB(0,r)](x) =
∫
B(0,r)

G(x − y, t)dy ≥
∫
B(a,t

1
θ )

G(x − y, t)dy
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�
∫
B(a,t

1
θ )

t−
N
θ dy � 1.

We consider the case where r ≤ t
1
θ . Let x ∈ B(0, r + t

1
θ ) and y ∈ B(0, r). Since

|x − y| < 2r + t
1
θ , it follows from (4.20) that

G(x − y, t) ≥ C−1t (t
1
θ + 2r + t

1
θ )−N−θ � t (r + t

1
θ )−N−θ .

This along with r ≤ t
1
θ yields

[S(t)χB(0,r)](x) �
∫
B(0,r)

t (r + t
1
θ )−N−θdy � r N t (r + t

1
θ )−N−θ

= r N

(r + t
1
θ )N

t

(r + t
1
θ )θ

≥ r N

(r + t
1
θ )N

t

(t
1
θ + t

1
θ )θ

�
(

r

r + t
1
θ

)N

.

Therefore, in both cases (4.18) holds.

It remains to prove (4.19). Since

(
r

r+t
1
θ

)N

= 1

(1+r−1t
1
θ )

θ · N
θ

, it suffices to show

(1 + r−1t
1
θ )θ � 1 + r−θ t.

Let p ≥ 1. It follows that 1 + v p ≤ (1 + v)p for v ≥ 0. When 0 < θ ≤ 1, putting

v = r−θ t and p = 1
θ
, we have (1+ r−1t

1
θ )θ ≤ 1+ r−θ t . When 1 ≤ θ < 2, it follows

that
( 1+w

2

)θ ≤ 1+wθ

2 for w ≥ 0. Putting w = r−1t
1
θ , we obtain (1 + r−1t

1
θ )θ ≤

2θ−1(1 + r−θ t). Therefore, in both cases (4.19) holds. �

Lemma 4.5. Let a = −1 and b ∈ [0, N
θ
]. If w ≥ 0 in R

N and w ∈ L1(RN ), then
Ja,b(w) ∈ L1(RN ).

Proof. It suffices to prove Ja,b(v) � v for v ≥ 0. By (3.14) we have

J ′
a,b(v) = C1(v)

Fa(v)− N
θ

−1

fa(v)

[
log

(
Fa(v)−

N
θ + e

)]b
.

Since a = −1, we obtain

Fa(v) ≥ log(v + e)
∫ ∞

v

dτ

τ 1+ θ
N

= N

θ
v− θ

N log(v + e),

which yields Fa(0)−
N
θ = limv→0 Fa(v)− N

θ = 0 and

J ′
a,b(v) � C1(v)

[
log(v + e)

]− N
θ

[
log

(
Fa(v)−

N
θ + e

)]b

= C1(v)

⎡
⎣ log

(
Fa(v)− N

θ + e
)

log(v + e)

⎤
⎦
b [

log(v + e)
]b− N

θ .
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It follows from (3.15), Lemma 3.2 and b ≤ N
θ
that J ′

a,b(v) � 1 for large v > 0.

Moreover, we observe from (3.15) and limv→0 Fa(v)− N
θ = 0 that limv→0 C1(v) = N

θ
.

Then J ′
a,b(v) � 1 holds for small v > 0. Thus we have J ′

a,b(v) � 1 for v > 0, which
leads to Ja,b(v) � v for v ≥ 0. Note that we use Ja,b(0) = limv→0 Ja,b(v) = 0,

which follows from Fa(0)−
N
θ = 0. �

Proof of Theorem 1.7 (ii) (b). We prove the case where θ = 2. Since there exists

σ > 1 such that fa(w)
w

= w
2
N
[
log(w + e)

]−1 is nondecreasing for w ≥ σ , and
fa(w)

w
→ ∞ as w → ∞, f̃ (τ ) = fa(τ )

τ
= τ

2
N
[
log(τ + e)

]−1 for τ ≥ σ . Then we
obtain∫ ∞

1

f̃ (τ )dτ

τ 1+ 2
N

≥
∫ ∞

σ

dτ

τ log(τ + e)
≥
∫ ∞

σ

dτ

(τ + e) log(τ + e)
= [

log log(τ + e)
]∞
σ

= ∞.

Let � = B(0, 1). By Proposition 4.1 there is a nonnegative function φ ∈ L1(�)

such that (4.15) holds for each small t > 0. We define u0(x) := φ(x) if x ∈ �, and
u0(x) := 0 if x ∈ R

N\�. Then u0 ∈ L1(RN ) holds, and Ja,b(u0) ∈ L1(RN ) holds by
Lemma 4.5. It follows that L1(RN ) ⊂ L1

ul(R
N ), since C∞

0 (RN ) ⊂ L1(RN ) is dense
and C∞

0 (RN ) ⊂ BUC(RN ). Thus we have u0 ∈ L1
ul(R

N ) and Ja,b(u0) ∈ L1
ul(R

N ).
The proof is by contradiction. Assume that there exists T > 0 such that (1.1) with

f (u) = fa(u) has a local in time nonnegative solution u in the sense of Definition 1.3
on (0, T ). In particular, u(t) ∈ L∞((0, T ), L1

ul(R
N )) follows. By (1.4)we have u(t) ≥

S(t)u0 and

u(t) ≥
∫ t

0
S(t − s) f (u(s))ds ≥

∫ t

0
S(t − s) f (S(s)u0)ds. (4.21)

We see that S(t)u0 ≥ S�(t)u0|� = S�(t)φ in � × (0,∞), and hence

u(t) ≥
∫ t

0
S�(t − s) f (S�(s)φ)ds in � × (0, T ).

This along with (4.15) yields ‖u(t)‖L1(�) = ∞ for small t > 0. Then we obtain
u(t) �∈ L∞((0, T ), L1

ul(R
N )), which is a contradiction.

We prove the case where 0 < θ < 2. In the same way as in the case where θ = 2
we obtain (4.16). By Proposition 4.2 there exists a nonnegative function u0 satisfying
u0 ∈ L1(RN ) such that, for each small t > 0, (4.17) holds. For the same reason as in
the case where θ = 2, u0 ∈ L1

ul(R
N ) and Ja,b(u0) ∈ L1

ul(R
N ) hold.

The proof is also by contradiction. Assume that (1.1) with f (u) = fa(u) has a
local in time nonnegative solution u in the sense of Definition 1.3. Due to (4.17)
and (4.21), we have ‖u(t)‖L1(B(0,1)) = ∞ for small t > 0. Then we obtain u(t) �∈
L∞((0, T ), L1

ul(R
N )), which is a contradiction. �

5. Discussion

In this paper we consider a local in time nonnegative solution of the equation (1.1) in
critical and doubly critical cases. In our theorems we derive the solvability for a wider
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class of nonlinear terms. In the doubly critical case we obtain a complete classification
for the solvability, using the integrability condition on u0 when f (u) is given by (1.9).

The existence result is based on Theorem 1.5. In this section we focus on (1.5). Let
J satisfy (J). When K (u) = u and f (w)

J (w)
is nondecreasing for large w > 0, by taking

c > 0 sufficiently large it follows that

Ĵ (v)

∫ ∞

v

f̂ (τ )J ′(τ )dτ

J (τ )1+ θ
N

= J ′(v)

∫ ∞

v

f (τ )J ′(τ )dτ

J (τ )2+ θ
N

.

As mentioned in the proof of the existence part in Theorem 1.7, we obtain from
L’Hospital’s rule that

lim
v→∞ J ′(v)

∫ ∞

v

f (τ )J ′(τ )dτ

J (τ )2+ θ
N

= lim
v→∞

d
dv

(∫∞
v

f (τ )J ′(τ )dτ

J (τ )
2+ θ

N

)
d
dv

(
1

J ′(v)

)
= lim

v→∞
f (v)J ′(v)3

J (v)2+ θ
N J ′′(v)

=: α.

Let θ = 2. Then the following hold:

(i) When J (v) = vr (r > 1), α < ∞ is equivalent to limv→∞ f (v)

v
1+ 2

N r
< ∞. Thus

this case corresponds to [8, Theorem 3.4].

(ii) Let f satisfy Assumption A. When J (v) = F(v)−r and q < r + 1, we have
α = 0 if r > N

2 , 0 < α < ∞ if r = N
2 , and α = ∞ if 0 < r < N

2 . Thus this
case corresponds to [4, Theorems 1.1 and 1.2].

The finiteness of α leads to the existence of a local in time solution of (1.1).

Example 5.1. Let 0 < θ ≤ 2 and

f (u) = (u + 1)1+
θ
N exp

(√
log(u + 1)

)( θ

N
+ 1

2
√
log(u + 1)

)−1

.

Then it follows that F(u) = (u + 1)− θ
N exp

(
−√log(u + 1)

)
and that f satisfies

Assumption A with q = 1 + N
θ
. Let

J (u) = Jb(u) := F(u)−
N
θ

[
log

(
F(u)−

N
θ + e

)]b
.

Then we have

α = 0 if b >
N

2θ
, 0 < α < ∞ if b = N

2θ
, and α = ∞ if 0 < b <

N

2θ
.

Thus Theorem 1.5 implies that a local in time nonnegative solution of (1.1) exists if
Jb(u0) ∈ L1

ul(R
N ) for some b > N

2θ , or Jb(u0) ∈ L1
ul(R

N ) with b = N
2θ .
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Example 5.1 indicates that the borderline value of b is less than or equal to N
2θ , and

hence the borderline value of b is different from that in Theorem 1.7 (i) and (ii). Since
Theorem 1.5 can be applied to a wide class of f and J , further studies are needed in
the doubly critical case.
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