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Solvability of the Cauchy problem for fractional semilinear
parabolic equations in critical and doubly critical cases

YASUHITO MIYAMOTO AND MASAMITSU SUZUKI

Abstract. Let0 <6 <2, N > 1and T > 0. We are concerned with the Cauchy problem for the fractional
semilinear parabolic equation

du—+ (=N = fu) inRY x (0, 7T),
u(x,0) =ugx) >0 in RV,

Here, f € C[0, oo) denotes a rather general growing nonlinearity and u( may be unbounded. We study
local in time solvability in the so-called critical and doubly critical cases. In particular, when f(u) =
ulto/N [log(u + e)]a, we obtain a sharp integrability condition on ug which explicitly determines local
in time existence/nonexistence of a nonnegative solution.

1. Introduction

Let0 <0 <2, N > 1land T > 0. We study existence and nonexistence of a
local in time solution of the Cauchy problem for the fractional semilinear parabolic
equation

du—+ (=AY 2u = fu) inRN x (0, 7),
u(x,0) = ug(x) in RV,

(1.1)

where ugp > 0 and f € C[0, o) is assumed to be nonnegative and nondecreasing.

First, we consider classical semilinear parabolic equations, i.e., 8 = 2. When
uo € L®@RN), (1.1) always has a local in time solution for an arbitrary locally
Lipschitz continuous function f (cf. [4,15]). On the other hand, if ug is unbounded,
then solvability depends on the integrability properties of u#( and the growth rate of f.
Weissler [20] studied solvability of (1.1) with possibly unbounded and sign-changing
initial function ug € L" (RM).
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Proposition 1.1. ([20]) Let@ =2, N > 1 and f(u) = [u|?"'u, p > 1.

(i) Assume that one of the following holds:
(1) (subcritical case)r > 1 and r > %(p — 1),
(2) (critical case)r > 1 andr = %(p —1).
Then for each ug € L" (RN), (1.1) has a local in time classical solution u €
CEIRYN x (0, T)) N C([0, T), L"(RN)).
(ii) (supercritical case) For each 1 < r < %(p — 1), there is ug € L"(RN) such
that (1.1) has no local in time nonnegative classical solution.

In Proposition 1.1 the classical solution u satisfies u(t) — wuq in L" (RV) ast — 0.

This proposition was generalized to a wide class of nonlinearities and to various
functional spaces. For example, in [8,9] an optimal growth rate of f was obtained
such that (1.1) with = 2 has a solution for all ug € L"(R"). In this paper we mainly
study an optimal integrability condition on u( for an existence of a solution of (1.1)
when f is given.

We need some notation to mention further studies. For 1 < r < oo, define a
uniformly local L space L’;(R") by

loc

LT (RY) = {u € Line®RY): el vy < oo}.

Here,

1/r
sup (/ |u(x)|’dx> if 1 <r < oo,
”u”Lﬁl(RN) ‘= ) yeRN \JB(y.1)

esssupyern [lullzoo(B(y,1)) if r = oo,

and B(y, p) = {x eRN: Ix—y| < ,o}. We easily see that Lglo(RN) = L®RM)
and LI'(RN) ¢ L2RN)if 1 <rp <r <oo.Forl <r < oo, let £7(RY) denote
the closure of the space of bounded uniformly continuous functions BU C (RV) in the
space LSI(RN), ie.,

Lr RNy = BUC(RN)” gy,

In[12, Proposition 2.2] we obtain basic properties of L7 (RN).Seealso [4, Lemma2.2].
It follows that £, (RY) C L" (RV) for 1 < r < oc.
In this paper we assume the following:

Assumption A. The function f € C1(0, 00) N C[0, c0) satisfies

® dr

fw) >0, f'(u) >0and F(u) < oo foru >0, where F(u) := 7@

and

the limit ¢ := lim f'(u)F (u) exists.
u—>00
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It was proved in [4,13] that ¢ > 1 if the limit g exists. Let p denote a growth rate

of f defined by p := lim,_ oo “jf;;‘;) . When ¢ > 1, by L’Hospital’s rule,

im M:q-lim O} ;= 9 ,andhencel+l=1.
u—o0  f(u)F(u) u=oo (fu)Fw)) q—1 P q

The exponent ¢ can be considered as a conjugate of the growth rate of f.If g > 1,
then f has an algebraic growth. However, the case ¢ = 1 is special. Super-power
nonlinearities are included in this case. The following functions satisfy Assumption A
withg = 1:

F@) = exp@”) (> 0), fu) = exp(---exp(u) - --) and
— —

n times
f @) =exp(|logul " logu) (r > 1).
Let G = G(x, t) be the fundamental solution of
du+ (—AN)?u =0 inRY x (0, ), (1.2)

where 0 < 6 < 2. We recall various properties of G in Section 2 and set

[SOHw](x) := / Glx —y,Hw(y)dy forw e Lil(RN).
RN

Fujishima-Ioku [4] studied (1.1) with nonnegative initial function uo under Assump-
tion A:

Proposition 1.2. ([4]) Let & = 2, N > 1 and ug > 0. Suppose that f satisfies
Assumption A and f'(u)F (u) < q for large u > 0.

(i) Assume that one of the following holds:
(1) (subcritical case) F(ug)™" € LLI(RN)for somer > % andr > q — 1,
(2) (critical case) F(uo)™" € Ellﬂ(RN) withr = % and % >q—1
Then (1.1) has a local in time nonnegative classical solution u € C*>'(RN x
(0, 7)) in the following sense:
lim [Ju(t) — S(Ouoll =, =0 ifg>1,
t—0 LL?;l (RN) (1 3)
lim ||M(l)—S(Z)M()||Loo(RN) =0 lfq =1.
t—0

(ii) (supercritical case) Assume that f € C2([0, 00)) is convex and % >q— 1
Foranyr € [q — 1, %) ifg>1lorr e (0, %) if g = 1, there is a nonnegative
initial function ug such that F(ug)™" € L1111 (RNY and (1.1) has no local in time
nonnegative classical solution satisfying (1.3).
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Note that in Proposition 1.2 the classical solution u satisfies (1.3). This is a slightly
different initial condition from Proposition 1.1.

When f (1) = u?, the condition F (ug) ™" € L1 (RY)implies thatug € L\"~V (RV).
Then Proposition 1.2 is a generalization of Proposition 1.1.

We define a local in time solution.

Definition 1.3. (Local in time solution) Let uqg € Lll11 (RY) be a nonnegative initial
function. By asolutionof (1.1) on (0, T') we mean thatu(t) € Ly ((0, T), L™ @®RYHN
L°°((0, T), L}, (RM)) and u satisfies

t

0o > u(t) = S(t)ug +/ S —s)f(u(s))ds forae.x € RN, fort € (0, T).
0
(1.4)

We call u a supersolution for (1.1) if # is measurable and satisfies (1.4) with = replaced
by >.

In the previous paper of the first author [6] fractional semilinear parabolic equations
were studied.

Proposition 1.4. ([6]) Let0 <6 <2, N > 1 and ug > 0. Assume that Assumption A
holds.

(i) (subcritical case) Suppose that F (up)™" € LEII(RN)for somer > %, where
oer>qg—1l,orr=q—1and f'(u)F(u) < q forlargeu > 0ifg > 1,
o f(u)isconvex and f'(u)F(u) < 1 forlargeu > 0ifg = 1.
Then (1.1) has a local in time nonnegative solution in the sense of Definition 1.3.

(ii) (supercritical case) Assume that f is convex. For any 0 < r < %, there is a
nonnegative initial function ug such that F(ug)™" € Lll11 (RNY and (1.1) has no
local in time nonnegative solution in the sense of Definition 1.3.

It should be noted that the definition of a solution in Proposition 1.4 is weaker than
that in Proposition 1.2, and hence Proposition 1.4 is not a direct generalization even
for & = 2. See [10,11] for existence and nonexistence results in the Lebesgue space
L™ (RM).

In the proof of Proposition 1.2 a change of variables v(x, t) = F(u(x, t)) plays a
crucial role in constructing a supersolution. However, it does not work for 0 < 0 < 2,
because of the nonlocal term (—A)?/2. In the proof of Proposition 1.4 a supersolution
was constructed without a change of variables. The critical case r = % was not easy
to analyze and it was not covered by Proposition 1.4. In order to study the critical
case we study in detail a relationship between the integrability properties of u( and
the growth rate of f.
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We need two functions J and K satisfying the following:

J e C0,00), Jw)>0and J'(u) >0 foru >0 )

and J'(u) is nondecreasing for large u > 0.

K € C[0, 00), K(u) > 0 foru > 0 and K (u) is concave and increasing for large u > 0. (K)

The first main result in the present paper is the following:

Theorem 1.5. (Local in time existence) Let0 <6 <2, N > 1, ugp > 0and ¢ > 0.
Suppose that f € C[0, 00) is nonnegative and nondecreasing, and that J satisfies (J).
If there exists a function K satisfying (K) such that one of the following holds:

(i) J(uo) € LL@RN) and

® f(r)J (v)dt

: J(r)H‘% =0, (1.5)

lim J(v)
vV—>00

(ii) J(uo) € L1 (RN) and

© f(0)J (t)dt
—_— <

lim sup J (v) 4 0, (1.6)
vV—>00 v J(‘L’)H_W
where
f(v) ‘= max M and f(r) = max M,
c=w=v J(w) c=w=t K(J(w))

then there exists T > 0 such that (1.1) has a local in time nonnegative solution u in
the sense of Definition 1.3 on the interval (0, T'). Moreover; there exists C > 0 such
that

||](u(t))||L11d(RN) C for 0<t<T. (1.7)

IA

When 6 = 2, J(u) = u and K(u) = u, Theorem 1.5 corresponds to [8, Theo-
rem 4.4].
By Theorem 1.5 we can derive an existence result in the critical case.

Theorem 1.6. (Critical case) Let 0 < 6 < 2, N > 1 and uy > 0. Suppose that
f satisfies Assumption A. If F(ug) N/? ¢ £&1(RN) and % > q — 1, then (1.1) has
a local in time nonnegative solution u in the sense of Definition 1.3 on the interval
(0, T). Moreover, there exists C > 0 such that

| P ="

<C for 0<t<T. (1.8)

LL(RN)
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Theorem 1.6 corresponds to [4, Theorem 1.1 (ii)] when 6 = 2. In [4, Theorem 1.1]
they impose f/(u) F (u) < g, which is not assumed in Theorem 1.6. However, it should
be noted that the definition of a solution does not include (1.3), which is different from
that of [4].

In [6] the critical case is considered only when f(u) = u” and f(u) = €". Theo-
rem 1.6 can be applied to a general nonlinear term f.

Let us again go back to the classical case, i.e., @ = 2 and f(u) = |u|”~'u. Propo-
sition 1.1 does not cover the case where r = 1 and r = %(p —D,ie,p=1+ %
This case is called a doubly critical case in [2], and is known to be quite delicate. In
this case there is a nonnegative initial function ug € L'(RV) such that (1.1) does not
have a nonnegative solution. Nonexistence results can be found in [2,3,8,9,21]. On
the other hand, the following optimal integrability condition was recently obtained in
[14]: (1.1) has a local in time solution if a possibly sign-changing initial function ug
satisfies ug € Zy 2, where

Z, = {¢><x) e L'®Y); /RN 61 Qog(Ig] + ) dx < oo} .

One can check that (1.1) does not have a nonnegative solution with a nonnegative
initial function uq given in [1], which satisfies ug € Z, foreachr € [0, %), and hence
Z /2 is optimal. In the case of time-fractional semilinear parabolic equations critical
and doubly critical cases are studied in [5].

Now, we also consider the fractional case 0 < 6 < 2. In the doubly critical case we
focus on the nonlinearity

© dr

falu) = u'TON [log(u +e)]* and F,(u) := T

(1.9)

where a > — (l + %) k and « is the largest positive root of
logk +2 =k, ie., k2=3.146.

Sincea > — (1 + %) «, we can check that f(u) > 0 for u > 0.
Using Theorem 1.5, we give an optimal integrability condition on uq for the nonlin-
earity f, and obtain a complete classification for an existence and nonexistence result.

Theorem 1.7. (Doubly critical case) Let0 < 6 <2, N > 1, ug > 0O and a >
— (1 + %)K For b > 0, we set

Japtu) = Fa ™ fiog (Fa 7 +¢)]",

where F,(u) is defined by (1.9). Then the following hold:

(i) a > —1
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(a) (Existence) If J, p(up) € Lél(RN)for some b > % or Ju p(up) € EIIII(RN)

withb = ., then (1.1) with f(u) = f,(u) has a local in time nonnegative
0 8
solution in the sense of Definition 1.3.

(b) (Nonexistence) For each b € [0, %), there exists a nonnegative function ug €
Lll11 (RM) satisfying Jq p(uo) € Lll11 (RN such that, foreveryT > 0, (1.1)with
fu) = f,(u) admits no local in time nonnegative solution in the sense of
Definition 1.3 on (0, T).

(ii) a =—1

(a) (Existence) If J, p(uo) € Lllﬂ(RN)for some b > %, then (1.1) with f(u) =
fa(u) has a local in time nonnegative solution in the sense of Definition 1.3.

(b) (Nonexistence) For each b € [0, %], there exists a nonnegative function ug €
Ellﬂ (RN) satisfying Ju p(uo) € Ellﬂ (RN) such that, for every T > 0, (1.1) with
fu) = f,(u) admits no local in time nonnegative solution in the sense of

Definition 1.3 on (0, T).
(iii) —(1+ &)k <a < -1

Ifug € LLI(RN), then (1.1)with f(u) = f,(u) has alocal in time nonnegative
solution in the sense of Definition 1.3.

Theorem 1.7 corresponds to [14, Theorem 1.3] when 6§ = 2 and a = 0.

As mentioned above, the doubly critical case is quite delicate. In Theorem 1.7 (i)
and (ii) the borderline value of b is %. However, there exists a nonlinear term such that
the borderline value of b is less than or equal to %. Thus, b = % is not necessarily a
critical exponent in the doubly critical case. See Section 5 for details.

Let us explain a sketch of the proofs. The main points of the proofs are a super-
solution for the existence part and the contradiction argument for the nonexistence
part.

The proof of Theorem 1.5 proceeds in a similar manner to [19]. We construct a
function with ug, S(¢) and J. In order to show that this is indeed a supersolution, we
estimate an integral term corresponding to (1.4) and the other term. Theorem 1.6 and
the existence part of Theorem 1.7 are shown by applying Theorem 1.5.

In the proof of Theorem 1.7 (i) (b) we improve the method of [7] to obtain an upper
bound of the integral value of constructed ug over B(0, p). Since the singularity of
ug is strong, this integral value increases faster than the upper bound as p — 0. This
is a contradiction. Theorem 1.7 (ii) (b) is based on the nonexistence result of [8].
Specifically, the divergence of the L'-norm of the integral term in (1.4) as t — 0
causes a contradiction.

This paper is organized as follows. In Section 2 we show some properties of S(#)
and Eﬁl (RV), and recall properties of the fundamental solution G. In Section 3 we
use these properties and prove Theorems 1.5, 1.6 and 1.7 (i) (a), (ii) (a) and (iii). In
Section 4 we prove Theorem 1.7 (i) (b) and (ii) (b) by contradiction. In Section 5 we
discuss local in time solvability with a condition obtained from Theorem 1.5.
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2. Preliminaries

After this section, let 0 < 8 < 2 and N > 1 unless otherwise noted.

Proposition 2.1. (Monotone iterative method) Letug > 0and0 < T < oo. Suppose
that f € C[0, 00) is nonnegative and nondecreasing. If there exists a nonnegative
function ii € LE.((0, T), L°(RN)) N L>®((0, T), LY, (RN)) such that

t
u(t) = [Fm)]() == S{t)ug +/ S —s)f(u(s))ds forae x € RY, fort € (0,T),
0

then (1.1) has a solution u in the sense of Definition 1.3 on the interval (0, T) and
0 <u(t) <u().

We show the proof for readers’ convenience. See [16, Theorem 2.1] for details.

Proof. Put uy := S(t)up and u,, := F(uy—1) forn = 2,3,....Lett € (0,T). By
induction we have

0<ui(t) <ur(t) <---<up(t)<---<i(t) <oo forae x € RV.

This indicates that the limit lim,,_, o, u, (x, t) which is denoted by u(x, t) exists for
ae x € RN forr e (0, T). Then it follows from the monotone convergence theorem
that

lim F(up—1) = F(u),
n—oo

and hence u = F(u). Moreover, we obtain 0 < u(t) < u(t). O

We recall useful properties of the fundamental solution G of (1.2). It is represented
by

4rr)=3 x| ifo =2
Gx.1) = (4rt)” 2 exp (—7 ifo =2,
’ - 2
Jo g,,g(S)(4ﬂS)_% exp (—%) ds if0 <6 <2,

where g, g (s) is a nonnegative function on [0, co) defined by

1 o+ioco 0
g 0(8) = -— exp(zs—tzf)dz, oc>0,1t>0.
2 271 Jo—ico

The fundamental solution G is a positive smooth functionin RY x (0, 00). See [6,7,17].
Moreover, G has the following properties:

Gx,1) =1~ 7Gx, 1), 2.1
cCla+xp™M <6, ) <cA+xDV? ifo<o <2, (2.2)
G (-, 1) is radially symmetric and G(x, 1) < G(y, 1) if [x| > |y|, 2.3)
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G(x,t) = / Gx—y,t—s5)G(y,s)dy, 2.4)
RN

/ G(x,dx =1 2.5)
RN

forx,ye RN and0 < s < 1.
Proposition 2.2. (cf. [6, Propositions 2.4 and 2.5]) The following (i) and (ii) hold:

(i) Let 1 < p < g < o00. Then there exists C > 0 such that

N (1 1

”S(t)w”LZl(RN) S C (t_f?(p_q) + 1) ”U}”Lé’l(RN)
fort > 0and w € Lfl (RN). In particular, there exists C > 0 such that

_N(1_1
IS@Owll g @y < €t ° (=) lwll 2 @)

for smallt > 0 and w € Lgl (RM).

(ii) Let 1 < p <q <00, Cy >0andw € El’;l(RN). Then there exists tg =
0 (c*, lwll,r gy - ¥ (% _ é)) such that

_N(1_ 1
||S(t)w||L‘11(RN) <Cyt '’ (” ") for 0 <t <.

Note that the assertion (i) follows from [12, Corollary 3.1] with minor modifications
and that the assertion (ii) is proved on the basis of the proof in [2, Lemma 8]. In the
assertion (ii) the constant C, can be taken arbitrarily small.

Proposition 2.3. Let M > 0. Then the following (i) and (ii) hold:

(i) Suppose that J € C[M, o) is a nonnegative convex function. If v > M in RV,
ve L1111 (RN) and J (v) € Lllﬂ (RN), then

J(S@)vl(x)) < [S@)J)]x) inRY x (0, 00).

(ii) Suppose that K € C[M, o0) is a nonnegative increasing concave function. If
w>MinRYN andw € Lllﬂ(RN), then

K([SOw](x) = [SOK w)](x) in RY x (0, 00).

Proof. We prove (i). Let (x, t) € RV x (0, o0). By (2.5) we have f]RN Gx—y,t)dy =
1. Then it follows from Jensen’s inequality that

JASOVI) = J ( /R Gy, r>v(y>dy>

< /RN Gx =y, nJwy)dy = [S)J ()](x).
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We prove (ii). It suffices to prove the case where M = 0. The assertion with M = 01is
assumed to hold. We consider the general case where M > 0. Put K (u) = Ku+M)
and b := w — M. We see that K € C[0,00),0 < @ € L}, (RY) and K () = K (w)
hold. Then it follows that

R(SO®](x) = [SOK ()] (x),
which yields
K([S()(w — M))(x) + M) = [S(O)K ()] (x).
We deduce from [S(1)M](x) = M [px G(x — y,t)dy = M in RN x (0, co) that
K([SOw](x) = [SOKw)](x) inRY x (0, 00).

In order to prove (ii) with M = 0, we start with the case where K € C[0, n] and
0<w<ninRY foreachn € {1,2,...}. Since K is increasing and concave, K le
C[K (0), K(n)] is convex. Note that the inequality in (i) holds when J € C[M, L]
and M < v < LinRY, where M < L. Then we obtain from the assertion (1) that for
K(0) <v < K(n)inR",

KN ([Sv1x) < [SOK ' @)](x) inRY x (0, 00).
Let w := K ~!(v). By the monotonicity of K we have 0 < w < n in R and
[S(HK w)l(x) < K([SOwlx)) inRY x (0, 00).

Thus the desired inequality can be derived in the case where K € C[0,n] and 0 <
w < n in RY. Then we can consider the case where K € C[0, co) and w > 0 in RV.
Forn € {1, 2, ...}, define w, := min{w, n}. We see that

[S()K (wa)](x) < K(S@w,](x)) inRY x (0, 00).

Taking n — o0, we also obtain the desired inequality in this case, which follows from
the monotone convergence theorem and K € C[0, 00). ]

Lemma 24. Let M > 0. Ifw € L1 (RY), then max{w, M} € L] (RV).

Note that Lemma 2.4 follows from [18, Lemma 2.5 (ii)] with p = 1.

3. Existence result

After this section, for any set X and the mappings a = a(x) and b = b(x) from X
to [0, 00), we say

a(x) <b(x) forallx € X

if there exists a positive constant C such that a(x) < Cb(x) forall x € X.
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Proof of Theorem 1.5. Let M > c be large such that J(u) is convex for u > M. Put
u1(x) := max{ug(x), M}. In the case (i) J(u1) € Lllﬂ(]RN) holds. In the case (ii) by
Lemma 2.4 J(uy) € Eél (RM) holds. Let ¢ > 0 be a constant. We define

at) = J (A +0)St)J(u1)). (3.1

Since J(u1) € LIIJI(RN ), the latter estimate in Proposition 2.2 (i) implies that for small
t >0,

Ol gy < I (A+0) - COT 1T @DI L @v)) =00 < 00, (32)

Moreover, for T > 0, J(i(1)) € L.((0,T), L°@®RN)) N L>®((0, T), LL,(RV))
follows from the former estimate in Proposition 2.2 (i). Since J(u) is convex for
u> M andi(t) > M, we obtain J'(M)(ii(t) — M)+ J (M) < J(u(r)), which yields

i(t) € L0, T), L (RN)) N L®((0, T), LL,(RY)) for T > 0.
It follows from Proposition 2.3 (i) and the monotonicity of J that
[SOu1l(x) < TN ISOJT 1) inRY x (0, 00).

This along with the mean value theorem yields

(1) — S(ug = ii(t) — S(t)uy
>i(t) — I (S (ur))
=7 (A +0)SOT ) — T (ST (u1))
=N (14 po)S®)J (u1)) o St)J (ur) (3.3)

for some p = p(x,1) € [0, 1]. Since J (u) is convex for u > M, J~'(u) is concave
foru > J(M). We have

YA+ pa)SO T (1) o SE)T (1) = (I (1 +0)SE)J (u1)) o S()J (uy)
B o St)J (uy)
(TN + o) S0 T 1))
o J@@)
140 G0 G-4)
By (3.3) and (3.4) we have
u(t) — S(up > c_Ja®) (3.5)

L+o J'(u@)

On the other hand, let # > 0 be small. We see that
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t t
/ S(t—s)f(ﬁ(s))dSS/
0 0

Let s € (0, ¢). It follows from Proposition 2.3 (ii) that

fuls))

K@) St —$)K(J (u(s)))ds.

Lo @RN)

(3.6)

St —s)K(J(u(s)) = St —s){K (1 +0)S(s)J (u1))}
=K St —s){(1+0)SE)J(unh)
=K ({1 +0)S()Ju1))
= K(J(u())). (3.7

Using (3.6) and (3.7), we have

t
[
0

S uls))
K (J(u(s)))

L®([RN)
J(@(r) »
= J' (it (l))J( (t))f ||M(S)||L00(RN)) s.(3.8)

We prove the case (i). It follows from (3.2) that

t t
@) /0 F (1) gy ds < Fw(0)) /O Fas)ds

_® Lo [ T@I @0
= N{C(1+0) ”J(ul)”LLlll(RN)}NJ(U(t)) o J(T)H% , (3.9

where we used a change of variables T := v(s) = J_1<(1+0)~Cs’% ||J(u1)||L11(RN) )
Since ¢ > 0 is small, it follows from (1.5) that
© f(r)J'(1)dt o

0 0 A
y i€ 1T @Dy @wvJ ) P = (3.10)

Due to (3.8), (3.9) and (3.10), we obtain

o J())

/ St —s)f(u(s)ds < 7o TG0 3.11)
By (3.5) and (3.11) we have
t
u(t) — S@ug > / S —s)f(u(s))ds. (3.12)
0

Thus u(t) is a supersolution. By Proposition 2.1 there exists 7 > 0 such that (1.1) has
a local in time nonnegative solution u in the sense of Definition 1.3 on the interval
(0,T)and O < u(t) < u(r). Since o > 0 is a constant, (1.7) follows from (3.1).

We prove the case (ii). In the case (ii) the inequality (3.8) also holds. Since J (1) €
ﬁllﬂ (RV), it follows from Proposition 2.2 (ii) that (3.2) holds with C and || J (u1) | LL®N)
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replaced by C, and 1, respectively. By the same calculation we have (3.9) with the
same replacement. Due to (1.6) and Proposition 2.2 (ii), we can take a small Cy > 0
such that for small ¢ > 0,

© fr)J (v)dt _ o

< . (3.13)
oy J(r)HR l+o

Y. N
N{ «(14+0)IVJ(v())

Then the inequality (3.11) follows from (3.8), (3.9) with the same replacement and
(3.13). By (3.5) and (3.11) we have (3.12). Thus u() is a supersolution. The rest of
the proof is the same as (i). We complete the proof. O

Lemma 3.1. Suppose that f satisfies Assumption A. Then the following (i) and (ii)
hold:

(i) Ifa > q, then f(u)F(u)* — 0asu — oo.
(ii) Ifb > q — 1, then uF (u)? — Ocmdfuoo F(t)Pdt — 0 asu — oo.

Proof. We prove (i). Let ¢ > 0 be chosen such that a > ¢ + ¢. It follows from
q = lim,_, o f'(u) F (u) that

% (f)Fw)*™*) = Fu)* Y f'w)Fu) —a+¢) <0 forlarge u > 0.

Then f(u)F (u)*¢ is decreasing for large u > 0. This along with F(u)® — 0 as
u — oo yields f(u)F(u)* — 0asu — oo.
We prove (ii). By L'Hospital’s rule and the assertion (i) we have

d

| N TR | b _
i aF@ = im = i fWF @ =0
u

Moreover, it follows from b > ¢ — 1 that we choose § > 0 such that 1%5 >q— 1.

b
Then we also obtain lim,_, oo # F (1) ™5 = 0, and hence F(u)? < u~ 173 for large
u > 0. This leads to

00 e} u—&
/ F(v)’dt < / 1% = — 5 0 asu — oo.
u u 8
We complete the proof. 0

q—1
r 9

Proof of Theorem 1.6. Put r := %. Since ¢ < r 4+ 1, we can choose a € (

min{l, %}). Set J(u) := F(u)™" and K (u) := u“. By direct calculation we have

r(r+1— f'wF @)

FWRF ) foru > 0.

J (W) = >0and J'(u) =

.
F@)F (u)+!

Duetor +1 > g =lim,—oo f'(u) F(u), we obtain r + 1 — f'(u) F (1) > 0 for large
u > 0. Then J”(u) > O for large u > 0 and J satisfies (J).
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We show that J(Jz;()“l’la (— Sk W“’”) and Jf(%gx (: K{J(’("u))))) are nondecreasing

for large w > 0. It follows that

a ( J'(w)

1 J' (w)? )
J(w)l_“ :

> =1 - @)W <1 o Tw)J"(w)

Here we deduce

Jw? r LT
Jw)J"(w) r+1—f(wFw) r+l—g

as w — OQ.

q—1 ) R
r’ l—-o r¥l—q
w > 0. In addition, since o < %,

Since o > > 0 holds and hence ﬁ ( S (w) ) > ( for large

J(w)l-«

— AC) = (f'(w)F(w) — ra) F(w)*" ' >0 for large w > 0.
J(w)«
Thus we can take a sufficiently large ¢ > 0 such that J({;(;fla and f are nonde-
creasing for w > c. If v > ¢, then
A © f)J/(T)dT _JW) * f@)J (dr r? /‘O" ra
") ek Tl Somrerd - g@rwe ), T
Note that we use J(r)1+°‘+% = J(r)1+"‘+%. Since ra + 1 > ¢, it follows from

Lemma 3.1 that f(v)F(v)"**! and fvoo F(t)"*dt converge to 0 as v — oo. Then
L’Hospital’s rule is applicable and we obtain

X E@edr ([ F@edn)
v=00 fU)F)retl — vmoo d(f)Fuyretl)  ra+1-q

By Theorem 1.5 (ii) there exists 7 > 0 such that (1.1) has a local in time nonnega-
tive solution u in the sense of Definition 1.3 on the interval (0, 7). Moreover, (1.8)
holds. O

Lemma3.2. Let0 <6 <2, N > land a € R. Let f, and F, be defined by (1.9).
Then the following hold:

_N
log (Fa(u) 0+ e)
lim
u—00 log(u + e)

N N\’
lim (1 + i fa(u)Fa(u)> log(u 4+ ¢) = (g) a.

u— 00

=1and

In particular, lim,_, o (1 + % — fé(u)Fa(M)) log (Fa (u)*% + e) = (%)2 a.
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Proof. By direct calculation we have

%log (Fa(u)_% —l—e) N u+e 1
Llogu+e) 0 faWFa@ |4 eF, )Y
and
Ly +e) 1

() Fa)  fa@) Falu) =1

Since f)(u)Fa(u) — 1+ % as u — oo, it follows that lim,,_, o dd—u(fa(u)Fa(u)) =

% > 0, and hence f,(u)F,(u) — oo as u — oo. Then we obtain from L’Hospital’s

rule that

N
log (Fa(u)_? + e) N u+e 1
lim = — lim - lim N
U—>00 log(u + e) 0 u—co fa(u)Fa(u) u—ooq 4 eF (u)?o
1
=— lim ———— =1
0 u—oo fl(u)Fu(u)—1

Next we mention the latter limit. With the help of integration by parts we have

u

SIS

Fo(u) =

| =

—a« N
[log(u + e)] — gal(u),
where
© e —1 —a—1
Imy=/jr N(t+e)” [log(t +e)] “ dr.
u
Then it follows that

fluw) Fa(u) =1+ N + Ea " [log(u + e)]*1

0 0 u+te

1+

[logu + &))"~ Tw).

N 0 a N su
_<1+§>auN [log(u—i—e)] I(u)—;a o

which yields

Q+%—ﬁmnmﬂmw+a

_ 1+E %[1 ( + )]a+11()+ﬁ 2M1+% [1 ( + )]al()_ﬁ u
= 0 au og(u e u ea ute oglu e u 9(1u+e.
We observe from L’Hospital’s rule that
I N
lim u® [log(u + e)]“Jrl I(u) = lim (u) =,
Uu— 00 0

=00 % {u*% [log(u + e)]_a_l}

9
which implies that lim,_, oo % [log(u + €)]“ I(u) = 0. Then by calculation we

can derive the desired limit. O
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Proof of the existence part in Theorem 1.7. We prove (i) (a) and (ii) (a). Put J(u) :=
Ja.p(u). In order to apply Theorem 1.5 with K (¢) = u and a sufficiently large ¢ > 0,
it suffices to show the following properties:

(A) J"(v) > 0 forlarge v > 0,

(B) J(v) = J'(v) and f(r) = ’;"((ff’

(C) J(v)awandfwMAOasveoo,
J(r)2+N

’ 3
(D) limy—yoo L2970 — 0 for b > ¥ (whena > —1 and J (uo) € LY, (RY)),
TN ()

() 1im, 0 —2OI O _ o6 with b = Y (whena > —1and J (ug) € LL,RV)).
TN I )

Indeed, (C) and (D) imply that we can apply L’Hospital’s rule and obtain

d ( oo fu(x)J' (r)dr)
lim J/(v)f ff0de _ I
2 — d 1
V—>00 J(T) +N V—> 00 £ (m)
g Ja@T@

V()2 7 (v)
By this together with (A) and (B) we see that all the assumptions of Theorem 1.5 (i)
are satisfied. In the same way, if (E) holds instead of (D), then Theorem 1.5 (ii) can
be applied.
Note that we omit the details of the former of (B) and the former of (C), since they
can be seen from (A).
We start with the latter of (B). By direct calculation we have

d (fa(v)) _ JaWJ W) ~ fa@) ')
J) ) J(v)?

Put h(v) := Fa(v)*%. It follows that J (v) = h(v) [log (h(v) + e)]b and

1+4
J'(v) =C (v)% [log (h(w) + )", (3.14)

where
bh(v)

(h(v) + e)log (h(v) + ¢)

N N
Ci(v) ::5{14- }—>5 asv — oo. (3.15)

Since f/(v) = (1 + &) 0% [log(v + ¢)]* and (3.14) hold, we have
fa@)J () = fa@)J' ()
> <1 + %) v [log(v + &)]" - h(v) [log (h(v) + €)]” — C1 WA )7 [log (h(v) + )]’

= h()"* ¥ [log (h(v) + ¢)]’ :<1 + %) v [log(v + )]" - h(v)" ¥ — Cl(v)} .
(3.16)
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We see from L'Hospital’s rule that

lim vF [logw +)]* - h() ¥ = lim ) =%. (3.17)

Vo j—v {v_% [log(v —i—e)]_a}

By (3.15) and (3.17) we derive
0\ o a _o
<1 + N) vV [log(v +e)]" -h(v)™¥ = Ci(v) > 1 asv—oo. (3.18)

It follows from (3.16) and (3.18) that limy— oo /5 (v)J (V) — fo(v)J'(v) = co. Thus

we have < v (%) > ( for large v > 0, which leads to f(‘L’) = Lo@®

NIGE
We mention the latter of (C). It follows from (3.14) that

Ja(®)J'(T) Ci(W)h(v) 7 [log (h(v) +€)]b _ Ci(v)
TR (i) (1+5)e
h(v)**W [log (h(v) + ¢)] h(v) [log (h(v) + €)]

By (3.15), (3.17) and Lemma 3.2 we obtain
ﬂa ﬂa
Ci(v) 1, h(v) Z v[logw+e)]7" 2 (v+e) [log(v+e)] 7" and
log (h(v) + ¢) 2 log(v 4+ ¢) for large v > 0, respectively.
Then we derive
Ja(¥)J ’(T) 1
2+ﬁ 6
J(@)TN (T +e) [log(t +¢)]7 a+(1+"’)b

forlarger > 0. (3.19)

Itfollows in both cases (i) (a) and (ii) (a) that Fa+(1 + &) b > — T +(1+ £) X =1,
which yields

N o
/oo it w +e)1—ga—(1+ﬁ)b
<
v

(t +e) [log(r +)]? a+(1+ )b I

Thus (3. 19)leadst0f°°M—>Oasv—> 00.

2+N

We mention (A). leferentlatmg (3.14) with (3.15) gives

)+ .
7' () = CQ(U)—UN [log (h(v) + )] (3.20)

Here C>(v) is defined by

N
C2(v) == C3(v) <1 to - fa/(v)Fa(v)> log (h(v) + €) + Ca(v),
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where

N bh(v) N
C3(v):=;{1+ }_)5

(h(v) + e)log (h(v) + e)

and

__(N\? bh(v) h(v) (b — Hh() N\?2
Calv) := (6) h(v) +e {2_ h(w) te | log (h(v) +e) (h() +e)} - (*) b

as v — 00. We see from Lemma 3.2 that

N\? N\?
Cr(v) —> (5> a—}—(g) b asv — oo.

In both cases (i) (a) and (ii) (a), (%) (%) b > 0holds. Thus we obtain J” (v) > 0
for large v > 0.
It follows from (3.14) and (3.20) that
fa)J' ) Ci(v)?
0 - 6
JWXNI"W) ) [log (h(v) + )] 7~

Since C(v) — % and Cr(v) — (%)3 a+ (%)2 b > 0as v — oo, the properties (D)
and (E) hold.
It remains to prove (iii). Put J(u) =uand K(u) := u. Then J(v) = l and f(r)

f“(f) hold. Indeed, we see that - (K’(C”J((ww))) = %{ [log(w + )] } > 0 for

large w > 0. Since a < —1, we obtain

Jw [T L@ @dT /°° [log(u + o) dr

v J()HR T

- /"O [log(t + )" dt _ _[log(v +e)
~ L T+e a+1

]a+1

— 0 asv — oo.

By Theorem 1.5 (i) there exists 7 > 0 such that (1.1) has a local in time nonnegative
solution u in the sense of Definition 1.3 on the interval (0, T). O
4. Nonexistence result

Proof of Theorem 1.7 (i) (b). Let & > 0 be chosen such that & < min {(a + 1), ¥
— b}. We define

1\ & @tD—l+e
ug(x) :==max { M, xpq1)(x) - [x]~ (logﬁ) ;
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where M > 0 is a constant such that f,(«) is convex for u > M, and XB(0.e~1) is a
characteristic function. Let p > 0. We deduce from ¢ < % (a + 1) that

1 —%(a-i-l)—l-i-s
f x|~V <log —> dx
B(0,p) |x]

p 1 1 —N@th—1+e N -1 1 —M@++e
:/ — | log — dr=—(@+1)—¢ - | log — ,
o r r 0 P

“.1)

~Y@at+n-1+¢
e LY(B(0, p)). Then ug € L}, (RV) holds.

Moreover, it follows that for large u > 0,

and hence |x|~N (log plc_\

u) = =29 !
“ w W oglr +e)le 20 e R [log(r + e)]et!

= N log(u + &)1
_2914 og(u +e ,

and hence F, (1)~ @ < (%)%u[log(u + e)]%“. This estimate implies that

Jap@) < u(logu)%““’ for large u > 0,

which yields

1 b—H—1+e
Jap (o) < x|™N <10g ﬁ) for small |x| > 0.
X

b—%—l-ﬁ—s
€

Since ¢ < % — b, we obtain in the same way as (4.1) that [x| ™V <log I)lc_\
L'(B(0, 1)). Then J, 5 (uo) € L, (RY) also holds.

The proof is by contradiction. Assume that there exists 7 > 0 such that (1.1) with
f(u) = fs(u) has alocal in time nonnegative solution u in the sense of Definition 1.3
on the interval (0, 7). Let 0 < t < t < T. It follows from the Fubini theorem that

T

t
u(t) = S(Huo +f S(t = 5) fa(u(s))ds +/ S(t —5) fa(u(s))ds
0 T
T t
=St —1)S(t)ug+ St — T)/ S(t — ) fa(u(s))ds +/ St — ) fa(u(s))ds
0 T
t
= S(t — Du(r) +/ St — ) fa(u(s))ds.

By convexity of f,(u) for u > M together with u(¢) > S(t)up > M we deduce in a
similar way to [7, Eq. (3.22)] that if p > 0 is sufficiently small, then

N Y R A LY
w(t) >cM379GO, D)t7 e +27 0t 0 / s fa(w(s))ds “4.2)
o
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for almost all 0 < 7 < pY and p? <t < % {T — (2,0)9}, where ¢, > 0 is a constant
depending only on N,

w(r) :=/ u(x,t+2p)) Gx,t)dx and M :=/ u(y, )dy.
RV B(0.p)

Note that we use (2.3) to obtain [7, Eq. (3.22)].

We prepare another estimate of w. Let 0 < p < 1 be small and let p? < s < p%.
It follows that

w(s) > / [S (s + ©20p)") uo] ()G (x, s)dx
RN
- / / G (x —y, s +©2p)?) ug(y)dy G(x, s)dx
RN JRN
— / / G (x —y,5+ (2,0)0) G(x, s)dx ug(y)dy
RN RN

_ fR G (5,25 + 2p)) ug()dy. 43)

Here we use G(y,1+5) = [pn G(y —x, )G (x, )dx = [pn G(x — y, )G (x, s)dx
for ¢+ > 0, which follows from (2.3) and (2.4). Hereafter, we set s, := 2s + (2p)’.
Since 5 < p% and p > 0 is small, s*é < ¢~ ! holds. When 6 = 2, we obtain from
putting y = ,/s,z that

/ G (v, s+) uo(y)dy
]RN

N P2 N 1 —glat)—1+e
= syt [ R ay
{5 =vi=vs) |yl
1 )—g(a-i-l)—l-‘rs

N Z
> (4ms )_7/ e o |z|7N <log—
’ {%s\zlsl} V/5x12]

4 >—g(a+l)—l+a

S

dz

N
28 T <1Og (4.4)

On the other hand, when 0 < 0 < 2, it follows that

1 —N—-0
(1+S*0|)’|) ’

<=

_N _1 _
G(y.sx) =54 "G (S* “y. 1) Zs*
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which yields

/ G (v, s¢) uo(y)dy
RN

N 1 —N—0 N 1 —N(a+1)—1+e
2 sy ! / 1 . <1+s*"|y|) Iy~ (10g—> dy
{S* SIyISSJ] [yl

. —H(a+1)-1+e
=5 [ (412D 127N [ log — dz
{§S|Z\Sl 549 7|
_N —
_ﬂ 6\~ (@th=l+e
= s, 0 (log— .
S

4.5)

2(‘)

By (4.3), (4.4) and (4.5) we have w(s) > 5.~ ¥ (log z

—X(a+D)-1+e ) )
) , which yields

v s ¥ 1 —F@+n—1+e
Tw(s) 2 ——— log ——— . 4.6
’ W(Y)N{2s+(2p)"} (°g219s+p9) 0

Since the right hand side of (4.6) is nondecreasing with respect to s, it follows from
s > p? that

’

)—Ig(a+l)—l+s

(14 21-9) p?
and hence there exists C; > 0 such that, for ,09 <s§5 < ,0%,

—Na+r)—1+e
) “@.7

_N
LU(S) > ClS 3 (10gm

Since s < ,o% and p > 01is small,

—H(a+1)—1+e
N 1
Cis™ 2 <log —(1+21_9) p9)

1 —%(a-i-l)—l-i-s
log———— > 1.
( g (1 _|_21—0) ,00>

This along with (4.7) and s < p% yields

&=

>Cip~

N K

N 1
1 1 —log— > —log —. 4.8
og(w(s) +e) > logw(s) > 77 log = > —7 log P (4.8)
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Therefore, another estimate of w is derived.

We are now ready to estimate M. Combining (4.2) with (4.8), we obtain
_N N\ ~ [ w s \¢ 148
w(t) =, M:377G(0, D)t~ 4 + 27 170 s {log— | w(s) "Nds
20 o p?
4.9)

for almost all 0 < v < p? and p? < ¢ <p%.Putp :=l+%,

3%G60.1) and % <N> O k=1,2
c1=c , and ¢ = — | af———————, k=12,....
1 * k+1 20 k ([Jk — l) @+

By (4.9) and induction we deduce in a similar way to [7, p.122] that

(PF1-1)@+1)
k-1 _N t p=1
w(t) > gr(t) =ML 17 (log —9> L k=1,2,...
P
and that

a+l pk _atl

p—1 N t p—1
00 > w(t) = gr+1(7) > ﬂer 10g ) } re (10% _0)

0

[
2

3 . k
for almost all p3¥ < r < p2, where B > 0 is a constant such that ¢y > B,

k=1,2,.... Then we derive

% 1\ -1
B M, (—log —) <. (4.10)
4 “p
It follows that

M, = / u(y, 0)dy > f [S(Duol(y)dy > f [S(T) (uoxB0.0))] (dy-
B(0,p) B(0,p) B(0,p)
(4.11)

By (4.1) we have uoxpo., € L'(RM), which yields HS(‘L’) (u0XB(0,0)) — U0

XB(0.p) H — 0as v — 0. Then there exists a subsequence {S(7) (40xB(0.0)) }

LIRY)
such that S(7) (uoxB©,p)) — toxB©,p) as T — 0 a.e.in RY. Thus it follows from
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Fatou’s lemma, (4.10) and (4.11) that

atl

" / [S(®) (woxB©.p))] ()dy
BO.p)

a+1

)”_] lim inf / [SE) (uoxa©.0))] ()dy
B(0,p)

T—0

a+l

p—1
/ U0 XB(©,p)dy
B(0,p)

1\ #@th
= | log —) / uo(y)dy.
( P 50.0) (4.12)

On the other hand, by (4.1) we have

1 ~N@+D-1+e 1 ~X@+D+e
/ uo(y)dy > / Iy~ <10g *) dx 2, (log *) :
B(0,p) B(0,p) [y P

(4.13)
Using (4.12) and (4.13), we obtain
1 &€
12 (log—) — 00 asp — 0.
P
This is a contradiction. We complete the proof. 0

Proposition 4.1. (cf. [8, Theorem 4.1 and Lemma 4.2]) Let Q2 be a smooth bounded
domain in RN . Suppose that f : [0, 00) — [0, 00) is nondecreasing. If

fw)

> f(r)dr .
———— =00, where f(r):= sup
1 -[H'W I<w<t

(4.14)

then there is a nonnegative function ¢ € L' () such that, for each small t > 0,

= 0. (4.15)
LY@

t
H /0 Sat — ) f (Sa(s)$)ds

Here Sq(t)¢ is the solution of the heat equation in Q2 with Dirichlet boundary condi-
tions

ou—Au =0, ulgo=0 and u(x,0) = ¢.

Proposition 4.2. Supposethat f : [0, c0) — [0, 00) is nondecreasing. Let) < 6 < 2
and let f(t) be defined by (4.14). If

© f(r)dt
1 T1+%

= o0, (4.16)
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then there exists a nonnegative function u satisfying ug € L L(RN) such that, foreach
smallt > 0,

= 00. 4.17)
L(B(0,1)

t
H/ S — ) f(S(s)up)ds
0

Proposition 4.2 is based on [8, Theorem 4.1 and Lemma 4.2] as well as Proposi-
tion 4.1. Since (4.17) is derived in a similar way to [8, Theorem 4.1], we omit the
details. In the proof of this theorem estimates using the semigroup S(¢) with 6 = 2 are
applied ( [8, Lemma 2.1 and Corollary 2.2]). Here we provide corresponding lemma
and corollary in the case where 0 < 6 < 2.

Lemma 4.3. Let 0 < 6 < 2. Then there exists a constant ¢1 > 0 such that forr > 0,

r

N
St xBw©,r) = €1 ( ) XB(O r+tF17) in RN x (0, 00). (4.18)

1
r+1to
Moreover, there exists a constant ¢ > 0 such that forr > 0,

1

—_— / N
0t r-%)% XB(O,r+t$) in R™ x (0, 00). (4.19)

S()xBo.r) =2
Corollary 4.4. There exists a constant ¢ > 0 such that forr > 0 and t > 0,
/ SO xBo,r) = cr?.
RN

Note that Corollary 4.4 follows from integrating (4.18) over RV .

Proof of Lemma 4.3. Tt follows from (2.1) and (2.2) that

Gx—y.0)=1"7G 7 (x—y). 1)
>C T (4T — y) N

—C T 4+ 1x —y) V" forx e RY, y e RN and 1 € (0, 00).
(4.20)

We consider the case where r > t%.Letx € B(0, r—i—t%) be fixed. Then there exists
1 1 1
a € B(0,r) satisfying B(a,t?) C B(0,r) such that [x — y| < 3¢9 fory € B(a,t?).
By (4.20) we have

_N
0

G(x—y,0) > 177 forye Ba,1?),

which implies that

[S®) xBo,nH]x) = /

G(x_y,t)d)’E/ 1 G(x_y3t)dy
B(,r)

B(a,t¥)
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We consider the case where r < té. Letx € B(O,r + té) and y € B(0, r). Since
x —y| <2r + té, it follows from (4.20) that

Glx—y, 1) = C (17 4 2r 419) N0 >t +19)~N=F,

This along with » < té yields

[S() X0 ](x) = / 1+ 1) N dy > N o)y N
B(0,r)

N
N N
r t r t r
= 1 = [ 1 1 2 [ :
(r+t)N r+18)0  (r+19)N (7 +17)0 r4te
Therefore, in both cases (4.18) holds.

N
It remains to prove (4.19). Since ( L ) = — L it suffices to show
r+10 (+r=118)" e

A4r ) S14070

Let p > 1. It follows that 1 + v” < (1 4+ v)? for v > 0. When 0 < 6 < 1, putting
v=r" and p = 6),wehave (1 —i—r’lte)e <1+4+r"%. Whenl <6 < 2, it follows
that (1-5w)9 < H% for w > 0. Putting w = r lto, we obtain (1 + r_1t9)9 <
29=1(1 4 r=%). Therefore, in both cases (4.19) holds. O

Lemmad4.5. Leta = —1 and b € [0, X]. Ifw > 0in RY and w € LY(RY), then
Jap(w) € LY(RY),

Proof. 1t suffices to prove J, ,(v) < v for v > 0. By (3.14) we have
10 = Ciy 1 [1og (Faw)* +¢)]
v) =Ci(v)———— |lo v el)| .

“ fawy LBV

Since a = —1, we obtain

o0 dr N o
F,(v) > log(v—f—e)/ = 51} N log(v + e),

which yields F,(0)™# = limy_ Fa(v)—% —0and

Jip®) 5 €1 [logw + )] [log (Fuw)~F + e)]b

log (Fa (v)_% + e)

r—N
log(v + ©) [lozto o]

=Ci(v)
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It follows from (3.15), Lemma 3.2 and b < % that Jc; » (V) < 1 for large v > 0.

Moreover, we observe from (3.15) and limy_.o F, (v)*% = Othatlimy,—o C{(v) = %.
Then Jé’b(v) < 1 holds for small v > 0. Thus we have J(;’b(v) < 1 forv > 0, which
leads to J, »(v) < v for v > 0. Note that we use J,; 5(0) = lim,_. ¢ J;5(v) = O,
which follows from F,(0)~ % = 0. 0

Proof of Theorem 1.7 (ii) (b). We prove the case where § = 2. Since there exists

o > 1 such that # = w¥ [log(w —l—e)]fl is nondecreasing for w > o, and

# — ocoas w —> 00, f(t) = @ = r% [log(r+e)]_l for t > o. Then we

obtain

® f(t)d < d % d
f(r)zr - / T - /‘ T — [loglog(r + &) = oo.
1 o » Tlog(t +e) s (t+e)log(t+e) o

Let 2 = B(0, 1). By Proposition 4.1 there is a nonnegative function ¢ & LY(Q)
such that (4.15) holds for each small ¢+ > 0. We define ug(x) := ¢ (x) if x € 2, and
uo(x) :=0if x € RN\ Q. Thenug € L'(RY) holds, and J,, ,(u¢) € L' (RV) holds by
Lemma 4.5. It follows that L1 (RN) c E}ll (RM), since (OFe (RV) ¢ L'(RV) is dense
and C°(RY) € BUC(RYM). Thus we have ug € L1,(RY) and J, ,(uo) € LL,RY).

The proof is by contradiction. Assume that there exists 7 > 0 such that (1.1) with
f(u) = f(u) has alocal in time nonnegative solution u in the sense of Definition 1.3
on (0, T'). Inparticular, u(t) € L*°((0, T), Lllll(]RN)) follows. By (1.4) we have u(t) >
S(t)ug and

1 t
u(t) > / St —s)f(u(s)ds > f St —5)f(S(s)uo)ds. (4.21)
0 0

We see that S(t)ug > Sq(t)uglo = Sq(t)¢ in 2 x (0, 00), and hence

t
u(t) > [ S —5)f(Sa(s)p)ds inQx (0,T).
0

This along with (4.15) yields ||u(t)||L1(Q) = oo for small + > 0. Then we obtain
u(t) ¢ L0, T), L1111 (RM)), which is a contradiction.

We prove the case where 0 < 6 < 2. In the same way as in the case where 0 = 2
we obtain (4.16). By Proposition 4.2 there exists a nonnegative function u satisfying
up € LY(RY) such that, for each small # > 0, (4.17) holds. For the same reason as in
the case where 0 = 2, ug € L, (R"Y) and J, 5 (uo) € L, (RY) hold.

The proof is also by contradiction. Assume that (1.1) with f(u) = f,(u) has a
local in time nonnegative solution # in the sense of Definition 1.3. Due to (4.17)
and (4.21), we have ||u(t)||L|(B(0)1)) = oo for small ¢t > 0. Then we obtain u(t) ¢
L>((0, T), L}, (RN)), which is a contradiction. O

5. Discussion

In this paper we consider a local in time nonnegative solution of the equation (1.1) in
critical and doubly critical cases. In our theorems we derive the solvability for a wider
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class of nonlinear terms. In the doubly critical case we obtain a complete classification
for the solvability, using the integrability condition on ug when f(u) is given by (1.9).

The existence result is based on Theorem 1.5. In this section we focus on (1.5). Let
J satisfy (J). When K () = u and % is nondecreasing for large w > 0, by taking
¢ > 0 sufficiently large it follows that

. © (o) (vdt * f(r)J ()dt
J(v) ——=J(v) —_—
v J()HR v J(@)HR

As mentioned in the proof of the existence part in Theorem 1.7, we obtain from
L’Hospital’s rule that

d f°° f@J @dr
i , ® f(o)J'(v)dt B G TES 2
im J'(v) — = lim
ST senE e (o)

W)’
= lim —————— =
TN I (v)
Let & = 2. Then the following hold:
f )

(1) When J(v) =v" (r > 1), @ < o0 is equivalent to lim,_ 2, < 0o Thus
NV

this case corresponds to [8, Theorem 3.4].

(ii) Let f satisfy Assumption A. When J(v) = F(v)™" and ¢ < r + 1, we have

a=0ifr > 5,0<a <ooifr =%, anda = c0if 0 < r < §. Thus this

case corresponds to [4, Theorems 1.1 and 1.2].
The finiteness of « leads to the existence of a local in time solution of (1.1).

Example 5.1. Let0 <0 <2 and

1
0 1
=+ DY I DN\NY " YT
f) =@w+1) exp( og(u + )) <N+2 10g(u+1))

Then it follows that F(u) = (u + l)_% exp (—Jlog(u + l)) and that f satisfies

Assumption A withg =1 + %. Let

N b
T) = Jy(u) == Fu)~ ¥ [1og (F(u)_? + e)] .
Then we have

N N N

a=0ifb> —, O<a<xifb=—, anda=o0if0 <b < —.
26 26 26

Thus Theorem 1.5 implies that a local in time nonnegative solution of (1.1) exists if

Jp(uo) € LY (RY) for some b > 5, or Jy(ug) € LL(RYN) with b = 3.



39 Page 28 of 29 Y. MIYAMOTO AND M. SUZUKI J. Evol. Equ.

Example 5.1 indicates that the borderline value of b is less than or equal to %, and
hence the borderline value of b is different from that in Theorem 1.7 (i) and (ii). Since
Theorem 1.5 can be applied to a wide class of f and J, further studies are needed in
the doubly critical case.
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