
J. Evol. Equ. (2024) 24:16
© 2024 The Author(s), under exclusive licence to Springer
Nature Switzerland AG
1424-3199/24/010001-58, published online February 26, 2024
https://doi.org/10.1007/s00028-023-00928-5

Journal of Evolution
Equations

Nonlinear partial differential equations on noncommutative
Euclidean spaces

Edward McDonald

Abstract. Noncommutative Euclidean spaces—otherwise known as Moyal spaces or quantum Euclidean
spaces—are a standard example of a non-compact noncommutative geometry. Recent progress in the har-
monic analysis of these spaces gives us the opportunity to highlight some of their peculiar features. For
example, the theory of nonlinear partial differential equations has unexpected properties in this noncommu-
tative setting. We develop elementary aspects of paradifferential calculus for noncommutative Euclidean
spaces and give some applications to nonlinear evolution equations. We demonstrate how the analysis of
some equations radically simplifies in the strictly noncommutative setting.

1. Introduction

Noncommutative Euclidean d-spaces R
d
θ are deformation quantisations of Eu-

clidean space R
d in the sense of Rieffel [52]. This family of spaces is one of the

oldest and best studied in noncommutative geometry and has received particular at-
tention due to its relevance to the phase space picture of quantum mechanics. Many
authors, including Moyal [45] and Groenwald [32], have studied these spaces from
diverse perspectives. The main idea is to deform the algebra of smooth functions on
Euclidean space Rd by replacing the pointwise product of functions with the twisted
Moyal product.
In noncommutative geometry, noncommutative Euclidean spaces are a noteworthy

example of “noncompact” (or nonunital) spaces [11,26]. In the mathematical physics
literature, the Moyal product is studied for its relevance to quantum phase space [33,
Chapter 13], [56, Chapter 2, Section 3.4], [10, Section 5.2.2.2], [30]. Besides this,
noncommutative Euclidean spaces are studied in physics as a prototypical setting
with noncommuting spatial coordinates, we note in particular [21,46].
Several equivalent constructions relating to noncommutative Euclidean space exist

in the literature. One method to describe R
d
θ begins by defining the von Neumann

algebra L∞(Rd
θ ) as a twisted left-regular representation of Rd on L2(R

d); we will
review this definition of L∞(Rd

θ ) in Sect. 2.1 below. As a von Neumann algebra,
L∞(Rd

θ ) is generated by a d-parameter strongly continuous unitary family {λθ (t)}t∈Rd

satisfying the relation
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λθ (t)λθ (s) = exp

(
1

2
i(t, θs)

)
λθ (t + s), t, s ∈ R

d .

With θ = 0, this reduces to the description of L∞(Rd) as being a von Neumann
algebra generated by the family of trigonometric functions λ0(t)(ξ) = exp(i(t, ξ)),
t, ξ ∈ R

d . This is the Weyl form of the canonical commutation relations and the
structure of L∞(Rd

θ ) is determined by the Stone–von Neumann theorem. A related
object is the heavily studied noncommutative torus Td

θ , as L∞(Td
θ ) is isomorphic to

the subalgebra of L∞(Rd
θ ) generated by {λθ (n)}n∈Zd .

Associated to the algebra L∞(Rd
θ ) is a semifinite normal trace functional τ , which

reduces to theLebesgue integralwhen θ = 0 andgives us a notion of integration forRd
θ .

As a special case of the theory of L p-spaces associated with semifinite traces on von
Neumann algebras, we can form the spaces L p(L∞(Rd

θ ), τ ), which we abbreviate as
L p(R

d
θ ). These spaces reduce to classical L p-spaces on Euclidean space when θ = 0,

and when θ �= 0 are spaces of operators affiliated to L∞(Rd
θ ).

A feature of L∞(Rd
θ ) is that the nature of the trace τ changes dramatically depending

on the dimension of the kernel of θ. Due to the Stone–von Neumann theorem, when
the matrix θ is non-degenerate (i.e. det(θ) �= 0), the algebra L∞(Rd

θ ) is isomorphic
to the algebra of all bounded linear operators on L2(R

d/2). Under this isomorphism,
τ is precisely a scalar multiple of the classical operator trace Tr and the L p-spaces
L p(R

d
θ ) coincide with the Schatten–von Neumann Lp-spaces of compact operators.

It follows that when det(θ) �= 0 there is a continuous inclusion

L p(R
d
θ ) ⊆ Lq(Rd

θ ), 1 ≤ p ≤ q ≤ ∞.

In particular, and in marked contrast to the familiar situation on R
d , we have a norm

inequality

det(2πθ)−1/4‖u‖L∞(Rd
θ ) ≤ ‖u‖L2(R

d
θ ), u ∈ L2(R

d
θ ). (1.1)

The factor det(2πθ)−1/4 depends on the choice of normalisation for the trace τ , but
it necessarily diverges as θ becomes singular. In many ways, the measure theory of
L∞(Rd

θ ) in the non-degenerate case bears more resemblance to a discrete set thanRd .
This point of view is further emphasised by the observation that the range of the trace
τ on projections is discrete, and in our normalisation consists of nonnegative integer
multiples of det(2πθ)1/2.
There is a canonical notion of differential calculus forRd

θ , as well as Sobolev spaces
and differential operators. In this language, one can formulate partial differential equa-
tions associatedwithRd

θ and study theirwell-posedness. For example,Gonzales-Perez,
Junge and Parcet [28] studied the L p-regularity of linear elliptic pseudodifferential
equations on Rd

θ , and Chakraborty and Sinha have analysed diffusion equations [14].
The related noncommutative torus Td

θ also received attention by those authors. The
doctoral dissertation of Mingyu Zhao discussed Schauder and Strichartz estimates for
R

d
θ [65], a topic which is relevant to the present paper. Concerning nonlinear equa-

tions on noncommutative spaces, progress has been made by Rosenberg [53], who
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studied nonlinear partial differential equations on the noncommutative torus. The re-
lated topic of quantum field theory on noncommutative Euclidean spaces has received
some interest, see, e.g. [21].
Besides (1.1), there are many counterintuitive features of noncommutative Eu-

clidean spaces.Not all of these features play a role in the present article, but nonetheless
they serve as an indication for why the exploration of partial differential equations on
R

d
θ may be interesting:

(i) If f and g are two real-valued functions on R
d , we can be certain that their

pointwise product f g is real-valued. By contrast, the product of two self-adjoint
operators is self-adjoint if and only if they commute. This has implications for
nonlinear operator-valued differential equations, where nonlinear terms might
cause a self-adjoint initial condition to become non-self-adjoint.

(ii) If det(θ) �= 0, then the subspaces S(Rd
θ ) and C0(R

d
θ ) (defined below in Sect. 2)

are ideals of L∞(Rd
θ ). That is, multiplication of a smooth “function” by an

arbitrary bounded “function” yields a smooth function [50].
(iii) If det(θ) �= 0, then L∞(Rd

θ ) contains nontrivial infinitely differentiable idem-
potents. Specifically, the Schwartz space S(Rd

θ ) is generated in a topological
sense by idempotent self-adjoint elements [26, Section 2.2]. This is in contrast
to S(Rd), which contains only the zero idempotent.

(iv) If 1 < p < ∞, then the commutative L p-space L p(R
d) admits unconditional

Schauder bases, for example orthonormal wavelet bases are unconditional in
L p(R

d) for 1 < p < ∞. By contrast, when det(θ) �= 0 and p �= 2, the space
L p(R

d
θ ) admits no unconditional Schauder basis [29, Theorem 5.1].

(v) Classical Euclidean spaceRd admits a dilation symmetry. That is, themultiplica-
tive group (0,∞) acts by automorphisms on L∞(Rd) by dilation. There does
not appear to be a natural notion of automorphisms by dilations on L∞(Rd

θ ).
Instead, a dilation of the coordinate variables changes the value of θ [44, Section
3.1].

1.1. Motivation: noncommutative fluid mechanics

The original motivation for this paper arose from the specific example of the in-
compressible Navier–Stokes equations. The incompressible Navier–Stokes equations
forRd with viscosity ν > 0 are conventionally stated in terms of an unknown velocity
field u : Rd × [0, T ) → R

d and pressure field p : Rd × [0, T ) → R depending on
space-time variables (x1, . . . , xd , t) as follows:

∂t u + u · ∇u = ν	u + ∇ p, ∇ · u = 0.

Here, we write ∂t for differentiation in the time variable t , ∇ denotes the gradient
operator in the spatial variables, ∇ = (∂x1, . . . , ∂xd ), 	u is the vector (	u j )

d
j=1
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formed by applying the Laplace operator 	 = ∂21 + · · · + ∂2d to each component of u,
and u · ∇u denotes the nonlinear advective term

u · ∇u =
(

d∑
k=1

uk∂xk u j

)d

j=1

. (1.2)

The local well-posedness theory of the incompressible viscous Navier–Stokes equa-
tions onRd is a classical topic which is discussed in many references [24], [4, Chapter
5], [59, Section 17.4], [38, Chapter 7]. Conventionally, one eliminates the pressure
term ∇ p by applying the Leray projection P, defined as the L2-orthogonal projection
onto the closed subspace of divergence-free vector fields. The Leray projection anni-
hilates ∇ p, and after some rearrangement and setting ν = 1 we are left with a single
equation,

∂t u = −P(∇ · (u ⊗ u)) + 	u. (1.3)

where∇ ·(u ⊗u) denotes the vector (
∑d

j=1 ∂ j (u j uk))
d
k=1. Formally, solutions to (1.3)

can be written in mild form

u(t) = et	u(0) −
∫ t

0
e(t−s)	

P(∇ · (u(s) ⊗ u(s))) ds, 0 ≤ t < T (1.4)

where s �→ es	 denotes the heat semigroup, and u(s) is the value of the velocity field
u at time s. The classical local well-posedness theory for the Navier–Stokes equations
is based on finding solutions to (1.4) as a fixed-point problem.

Well-established arguments (already known to Leray as early as 1934 [39]) give
the local well-posedness for (1.3) when the initial data u(0) is sufficiently regular
(see also [24] or [4, Theorem 5.2], [59, Chapter 17] and [38, Chapter 7] for a modern
exposition).
The solution u(t) can then be extended to a maximal time interval t ∈ [0, Tu(0))

and can be proved to satisfy the inequality

‖u(t)‖L2(Rd )⊗Rd ≤ ‖u(0)‖L2(Rd )⊗Rd , 0 ≤ t < Tu0 (1.5)

whenever the initial data u(0) is such that the right-hand side is finite. The global
well-posedness problem for given sufficiently regular initial data u(0) ∈ L2(R

d) asks
if Tu(0) < ∞ or Tu(0) = ∞. Leray established a blow-up criterion, which states that
if the maximal time Tu(0) is finite, then

sup
0≤t<Tu(0)

‖u(t)‖L∞(Rd )⊗Rd = ∞.

Contrapositively, if ‖u(t)‖L∞(Rd )⊗Rd remains bounded for t ∈ [0, Tu(0)) then Tu(0) =
∞. Since the L2 norm does not bound the L∞ norm, the L2 norm inequality (1.5) is
not strong enough to prove global existence of solutions to (1.4).

The series of questions which motivated this paper are the following:
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(1) Can one formulate a suitable analogy of the incompressible Navier–Stokes equa-
tions in noncommutative Euclidean spaces?

(2) If so, can the local solution theory of these incompressible Navier–Stokes equa-
tions onRd

θ be developed in parallel to the classical case, and dowe have the same
result that solutions exist globally in time if their L∞ norm remains bounded?

(3) Finally, does (1.1) imply that when det(θ) �= 0 an analogy of the incompressible
Navier–Stokes equations for Rd

θ is globally well-posed in time?

The answer to all three questions is affirmative, leading us to the potentially surpris-
ing result that one can prove global well-posedness for something analogous to the
incompressible Navier–Stokes equations in the setting ofRd

θ when det(θ) �= 0. Given
the infamous difficulty of the corresponding problem onRd , this is a particularly strik-
ing example of the difference between commutative and noncommutative Euclidean
spaces.
Similar reasoning applies to some other evolution equations which conserve the

L2-norm, for example we can also consider analogies of the nonlinear Schrödinger
equation, given in the commutative case as

i∂t u = 	u + μu|u|p−1, μ ∈ R.

1.2. Motivation: the Meyer and Löwner decompositions

A secondary motivation for this paper comes from a superficial similarity between
the Meyer decomposition in paradifferential calculus and the Löwner decomposition
in the theory of operator-Lipschitz functions. Let X and Y be Banach spaces, with
norms ‖ · ‖X and ‖ · ‖Y , respectively. A function F : X → Y is said to be locally
Lipschitz continuous if for every R > 0 there exists a constant CR > 0 such that

‖F(x1) − F(x2)‖Y ≤ CR‖x1 − x2‖X , ‖x1‖X ≤ R, ‖x2‖X ≤ R.

That is, F is Lipschitz continuous on bounded subsets of X.

Let F ∈ C∞(R). In the classical setting of function spaces on R
d , the nonlinear

operation of applying a function composition

u �→ F(u)

where u belongs to some function space is sometimes called a Nemytskij operator
[54]. It is an important problem to determine whether a Nemytskij operator is locally
Lipschitz between a given pair of function spaces on Rd . This is useful, for example,
if one wishes to prove the existence of solutions to a nonlinear partial differential
equation by fixed point iteration on some Banach function space.
A well-known technique for studying Nemytskij operators is the so-called Meyer

decomposition [59, Chapter 13, Section 10], [54, Section 5.5.4]. In a wide degree of
generality, it is possible to find a pseudodifferential operator m(F, u) and a smooth
function r(u) such that

F(u) = m(F, u)u + r(u). (1.6)
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Therefore, the function space mapping properties of the nonlinear operator u �→
F(u) are reduced to the mapping properties of the linear pseudodifferential operator
m(F, u), up to a smooth error term. The Meyer decomposition can also be applied
to functions of several variables, (u, v) �→ G(u, v). This is important in the study
of differences of Nemytskij operators, as if F is smooth then there exists a smooth
function G on R

2 such that

F(u) − F(v) = G(u, v)(u − v).

Applying the Meyer decomposition to G and applying product estimates gives a
method to prove local Lipschitz estimates for Nemytskij operators [58, Chapter 2,
Section 7].

In a completely different setting, Lipschitz estimates are important in operator the-
ory. If A and B are two bounded self-adjoint linear operators on a Hilbert space H ,
then a function F onR is said to be operator Lipschitz if there exists a constantCF > 0
such that

‖F(A) − F(B)‖∞ ≤ CF‖A − B‖∞.

Here, ‖ · ‖∞ is the operator norm and F(A) and F(B) are defined via functional
calculus. Not all Lipschitz functions are operator Lipschitz, even the absolute value
function F(t) = |t | is not operator Lipschitz [35]. Similarly, one can also consider
other Banach spaces of operators such as Schatten Lp-spaces.

One method to prove operator Lipschitz estimates comes from the theory of double
operator integrals. This theory was originally invented by Daletskii and Krein [15] and
later extended by Birman and Solomyak [6–8]. Some recent surveys on this topic are
[1,9,48,49]. The idea is to find a linear operator T A,B

F [1] on a space of operators such
that

F(A) − F(B) = T A,B
F [1] (A − B). (1.7)

This is sometimes called a Löwner identity, especially in the finite-dimensional case.
The intent is to study the properties of the nonlinear relationship between A − B and
F(A) − F(B) by reducing them to the properties of the linear operator T A,B

F [1] .

Conceptually, theMeyer decomposition (1.6) and the Löwner identity (1.7) are sim-
ilar since they both involve studying the mapping properties of a nonlinear operation
on a Banach space by finding an equivalent linear operator. Despite these methods dif-
fering substantially in their technical details and domains of application, it is natural
to ask if there is a mutual generalisation.

Our goal is to combine the Meyer decomposition with double operator integration
to develop a hybrid technique suitable for studying functional composition operators
on noncommutative function spaces. This hybrid technique gives one possible shared
generalisation of (1.6) and (1.7).
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1.3. The difficulties with noncommutativity

We have already indicated that when det(θ) �= 0, the “measure theory” of Rd
θ

(specifically, the relationships between L p spaces) is simpler than the commutative
case. We wish to briefly explain why, despite this, there remain substantial mathemat-
ical difficulties in the analysis of Rd

θ .
The principal obstacle we have is that for x, y ∈ L∞(Rd

θ ) there is no bound

|xy|2 ≤ ‖y‖2∞|x |2.
Instead, one only has

|yx |2 ≤ ‖y‖2∞|x |2.
Here, ≤ is meant in the sense of operators, i.e. A ≤ B means that 〈ξ, Aξ 〉 ≤ 〈ξ, Bξ 〉
for all ξ in the Hilbert space. This asymmetry between |xy| and |yx | is an obstacle to
the study of the mapping properties of pseudodifferential operators on L p-spaces for
R

d
θ . The operators we study are generically of the form

T (u) =
∞∑

k=0

ak	k(u)bk, u ∈ L∞(Rd
θ )

where {ak}∞k=0 and {bk}∞k=0 are sequences of elements of L∞(Rd
θ ), and {	k}∞k=0 is a

Littlewood–Paley decomposition (to be defined below in Sect. 3). Because there are
no pointwise bounds |xy|2 ≤ ‖y‖2∞|x |2, even under restrictive conditions on {ak} and
{bk} we have been unable to determine whether operators of this form are bounded on
L p-Sobolev spaces. Besov spaces are easier to treat in this regard, and this is why we
work primarily with Besov spaces rather than Sobolev spaces.

1.4. Main results

We summarise here the main results of this paper. Notation for Littlewood–Paley
theory and Besov spaces will be introduced below in Sect. 2.

The first result concerns boundedness on Besov spaces of a kind of pseudodiffer-
ential operator specified in terms of a Littlewood–Paley decomposition {	 j }∞j=0, to
be defined below in Sect. 3. This theorem will be proved in Sect. 4.

Theorem. Define a linear operator of the form

T (u) =
∞∑
j=0

a j	 j (u)b j (1.8)

where {a j } and {b j } are sequences of smooth elements of L∞(Rd
θ ) such that for all

multi-indices α ∈ N
d we have

sup
j≥0

2− j |α|‖∂αa j‖∞ < ∞, sup
j≥0

2− j |α|‖∂αb j‖∞.
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The linear operator T admits a bounded extension

T : Bs
p,q(Rd

θ ) → Bs
p,q(Rd

θ )

for all s > 0 and p, q ∈ [1,∞].
This theorem is essentially a noncommutative version of the boundedness of pseu-

dodifferential operators in the “forbidden” symbol class S0
1,1 on Besov spaces with a

positive degree of smoothness. Compare [55, Theorem 5.15].
The main purpose of the preceding theorem is to study nonlinear composition op-

erators:

u �→ F(u),

where F ∈ C∞(R) and u ∈ L∞(Rd
θ ) is self-adjoint. The main idea is to develop a

kind of “Meyer decomposition” based on the theory of double operator integration.
In brief, there exists a probability space (�,μ) and functions a j : � → L∞(Rd

θ ) and
b j : � → L∞(Rd

θ ) (depending on u) and a smooth remainder term r(u) such that

F(u) = r(u) +
∫

�

∞∑
j=0

a j (ω)	 j (u)b j (ω) dμ(ω).

We can treat the integrand as an operator of the form (1.8) in order to apply the
preceding theorem.
In Sect. 6, we obtain the following result that smooth functions on R are locally

Lipschitz on Bs
p,q(Rd

θ ) ∩ L∞(Rd
θ ) for all s > 0.

Theorem. Let s > 0 and p, q ∈ [1,∞] and let u ∈ Bs
p,q(Rd

θ ) ∩ L∞(Rd
θ ) be self-

adjoint. If F ∈ C∞(R) and F(0) = 0, then

F(u) ∈ Bs
p,q(Rd

θ ).

The assumption that F be smooth can certainly be weakened; however, for the
moment the main goal is to demonstrate the technique.
A related and somewhat simpler result is the following product estimate, established

in Sect. 5.

Theorem. Let s > 0 and p, q ∈ [1,∞]. Let u, v ∈ Bs
p,q(Rd

θ ) ∩ L∞(Rd
θ ). Then

uv ∈ Bs
p,q(Rd

θ ), and

‖uv‖Bs
p,q

�s,p,q ‖u‖L∞‖v‖Bs
p,q

+ ‖u‖Bs
p,q

‖v‖L∞ .

This result is proved by splitting the pointwise product uv into three terms, in a
manner similar to the well-known Bony decomposition. Similar results have appeared
in unpublished work by G. Hong. The corresponding commutative results are well
known, see, e.g. [55, Theorem 4.36], [54, Chapter 4].
Combining the above nonlinear composition operator and product mapping esti-

mates, we also obtain the following local Lipschitz estimate:
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Theorem. Let s > 0, p, q ∈ [1,∞] and F ∈ C∞(R). If u, v ∈ L∞(Rd
θ ) ∩ Bs

p,q(Rd
θ )

are self-adjoint then there exists a constant CF,‖u‖∞,‖u‖Bs
p,q

,‖v‖∞,‖v‖Bs
p,q

such that

‖F(u) − F(v)‖Bs
p,q

≤ CF,‖u‖∞,‖u‖Bs
p,q

,‖v‖∞,‖v‖Bs
p,q

‖u − v‖Bs
p,q

.

In other words, the Nemytskij operator u �→ F(u) is locally Lipschitz on the self-
adjoint subspace of Bs

p,q(Rd
θ ) ∩ L∞(Rd

θ ).

Given local Lipschitz estimates for Nemytskij operators and some easily proved
details about the heat semigroup et	 on L p-spaces, standard fixed-point arguments
deliver the following local well-posedness result:

Theorem. Let F ∈ C∞(R) be real-valued, and let u0 ∈ Bs∞,∞(Rd
θ ) for some s > 0

be self-adjoint. Then there exists Tu0 > 0 and a unique maximal solution

u ∈ C([0, Tu0), Bs∞,∞(Rd
θ )) ∩ C∞((0, Tu0),∩r>0Br∞,∞(Rd

θ ))

to the equation

∂u

∂t
= 	u + F(u), 0 < t < Tu0

with the initial condition u0.

These theorems so far represent noncommutative analogies of known theorems in
the commutative case, covered in, e.g. [4,54,59]. The most interesting applications
result from restricting attention to the strictly noncommutative det(θ) �= 0 case. Recall
that one form of nonlinear Schrödinger equation is stated as:

i
∂u

∂t
= 	u + μu|u|p−1

whereμ ∈ R and p ≥ 1 [27]. This equation is called focusing or defocusing depending
on μ < 0 or μ > 0, respectively. It is known that the focusing nonlinear Schrödinger
equation is ill-posed [12, Theorem 6.5.10].
For the strictly noncommutative case of Rd

θ , we have the following:

Theorem. Assume that det(θ) �= 0. Let μ ∈ R and let p > 1 be an odd integer. For
any u0 ∈ L2(R

d
θ ), there exists a unique

u ∈ C([0,∞), L2(R
d
θ ))

solving the nonlinear Schrödinger equation

i
∂u

∂t
= 	u + μu|u|p−1 (1.9)

with initial condition u0, in the mild sense.
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The proof is very straightforward. For similar reasons to the classical case, the
L2-norm is conserved by (1.9) and due to (1.1), the L2-norm is submultiplicative for
det(θ) �= 0. It follows almost immediately that local-in-time solutions can be extended
indefinitely. The same proof applies for a slightly wider class of nonlinearities.

Finally, we can give a further example of the simplifications that occur when
det(θ) �= 0 through the study of the incompressible Navier–Stokes equations. The
situation is similar to the nonlinear Schrödinger equation above, where the submul-
tiplicativity of the L2-norm implies that local-in-time solutions can be extended to
global solutions. We provide more details below in Sect. 7.3.

1.5. Outline of this paper

This paper is organised as follows:

• In Sect. 2, we recall facts about noncommutative Euclidean space.
• Section3 discusses Littlewood–Paley theory for Rd

θ . To the best of our knowl-
edge, this material is novel in the noncommutative setting although it is parallel
to the classical case. In Sect. 3.2, we define Sobolev and Besov spaces for Rd

θ .
The definition of Sobolev spaces is standard, but the definition of Besov spaces
is new.

• Section4 is concernedwith “elementary” pseudodifferential operators onRd
θ .We

prove operators of this form are bounded on Besov spaces of positive regularity.
• In Sect. 5, we discuss the problem of multiplication on Besov spaces, based on

a noncommutative version of the Bony decomposition. This material is novel,
although similar in methods and results to the classical theory. We indicate the
simplifications that arise when det(θ) �= 0.

• It is inSect. 6 thatwedevelop themainnovelty of this paper.Wediscuss the theory
of Nemytskij operators. That is, we study the operation of function composition
u �→ F(u) for self-adjoint u ∈ L∞(Rd

θ ), where F ∈ C∞(R). This is achieved
with a noncommutative analogy of the Meyer decomposition, which is based
on the theory of double operator integrals. The most important result of this
section implies that smooth functions F ∈ C∞(R) are locally Lipschitz on the
self-adjoint subspace of L∞(Rd

θ ) ∩ Bs
p,q(Rd

θ ).
• Finally, in Sect. 7 we discuss nonlinear partial differential equations using the
machinery developed in the preceding subsections.

Sections2 to 6 remain agnostic about the value of θ and apply equally well in the
commutative θ = 0 case, although the results are only novel when θ �= 0. In Sect. 7,
we explain how even though the preceding theory seemed to not depend on θ , the
theory of partial differential equations drastically simplifies when det(θ) �= 0.
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2. Preliminaries

For a Hilbert space H , we denote by B(H) the algebra of all bounded linear
endomorphisms of H . We denote by L p(R

d) the L p-spaces of pointwise almost-
everywhere equivalence classes of p-integrable functions on Euclidean space Rd .

We use the notion of a weak∗ or Gel’fand integral [18, pg. 53], in the setting
described in [20]. Given a σ -finite measure space (X, �,μ) and a semifinite von
Neumann algebra (M, τ ), a function f : X → M is said to be weak∗-measurable
if for all x ∈ L1(M, τ ) the map ω �→ τ(x f (ω)) is measurable. A weak∗-integral∫

X f dμ is an element of M such that

τ

(
x

∫
X

f dμ

)
=

∫
X

τ(x f ) dμ, x ∈ L1(M).

If f is weak∗-measurable, then the function ω �→ ‖ f (ω)‖M is measurable1, and if∫
X

‖ f ‖M dμ < ∞

then a unique weak∗-integral of f exists.
In the following subsections, we introduce notation, terminology and basic results

concerning Rd
θ . Most of the terminology is standard and follows [26,28], [40, Section

6], [42, Chapter 4] and [25]. Some related work is [36,61].

2.1. Definition of Rd
θ

Asmentioned in the introduction, wewill define L∞(Rd
θ ) as a vonNeumann algebra

generated by a unitary family {λθ (t)}t∈Rd satisfying the relation

λθ (t + s) = e
1
2 i(t,θs)λθ (t)λθ (s), t, s ∈ R

d .

While it is possible to define L∞(Rd
θ ) in an abstract operator-theoretic manner (this

was the approach taken in [28] and [42]), for simplicity we define the algebra as being
generated by a concrete family of operators defined on the Hilbert space L2(R

d).

Definition 2.1. For t ∈ R
d , denote by λθ (t) the operator on L2(R

d) given by

(λθ (t)ξ)(s) = exp(i(t, s))ξ

(
s − 1

2
θ t

)
, ξ ∈ L2(R

d), t, s ∈ R
d .

We define L∞(Rd
θ ) to be the weak operator topology closed subalgebra of B(L2(R

d))

generated by the family {λθ (t)}t∈Rd .

Observe that when θ = 0, the above definition reduces to the description of L∞(Rd)

as the algebra of bounded pointwise multipliers on L2(R
d).

The structure of L∞(Rd
θ ) is determined by the Stone–von Neumann theorem [33,

Theorem 14.8], [10, Theorem 5.2.2.2].

1It is essential here that M admits a faithful representation on a separable Hilbert space.
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Theorem 2.2. The von Neumann algebra L∞(Rd
θ ) has type I, and there is a canonical

isomorphism

ι : L∞(Rd
θ ) → L∞(Rdim(ker(θ))) ⊗ B(L2(R

rank(θ)
2 ))

where ⊗ is the von Neumann algebra tensor product. When d = 2 and θ =
(
0 −1
1 0

)
,

this isomorphism is given explicitly by

ι(λθ (t1, t2))ξ(r) = exp

(
it2

(
r − 1

2
t1

))
ξ(r − t1),

r ∈ R, ξ ∈ L2(R), (t1, t2) ∈ R
2. (2.1)

Remark 2.3. One way that this definition can be motivated is to introduce R
d
θ as a

“space” with coordinates {x1, . . . , xd} obeying the commutation relation

x j xk − xk x j = iθ j,k, 1 ≤ j, k ≤ d.

For non-singular θ , these relations define aWeyl algebra.Wemay then formally define
λθ (t) as

λθ (t) = exp(i(t1x1 + t2x2 + · · · + td xd)), t ∈ R
d .

A formal application of the Baker–Campbell–Hausdorff formula then leads to the
relation

λθ (t + s) = e
1
2 i(t,θs)λθ (t)λθ (s), t, s ∈ R

d

which is generally called the Weyl form of the canonical commutation relations.

2.2. Measure theory and function spaces on Rd
θ

Definition 2.4. Let f ∈ L1(R
d). Define λθ ( f ) ∈ L∞(Rd

θ ) as the weak∗-integral

λθ ( f ) =
∫
Rd

f (t)λθ (t) dt.

The Weyl transform is defined as the composition of λθ with the Fourier transform.
We normalise the Fourier transform as

f̂ (ξ) = (2π)−
d
2

∫
Rd

f (t)e−i(t,ξ) dt, ξ ∈ R
d .

If f has integrable Fourier transform, we define the Weyl transform Wθ ( f ) as

Wθ ( f ) := (2π)−
d
2 λθ ( f̂ ).

For f ∈ L1(R
d), the integral defining λθ ( f ) also converges in the L∞(Rd

θ )-valued
Bochner sense.
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Remark 2.5. In terms of our heuristic description of Rd
θ as a Euclidean space with

noncommuting coordinates {x1, . . . , xd}, we have

Wθ ( f ) = (2π)−
d
2

∫
Rd

f̂ (ξ1, . . . , ξd)ei(ξ1x1+ξ2x2+···+ξd xd ) dξ.

The Schwartz space S(Rd
θ ) is defined as the image of the classical Schwartz space

under λθ . That is

S(Rd
θ ) := λθ (S(Rd)).

Equivalently, S(Rd
θ ) = Wθ (S(Rd)). We define a topology on S(Rd

θ ) as the image of
the canonical Fréchet topology on S(Rd) under λθ . The topological dual of S(Rd

θ ) is
denoted S ′(Rd

θ ).
Both the Weyl transform and λθ are injective [44, Subsection 2.2.3]. Given f ∈

S(Rd), we define

τ(λθ ( f )) := (2π)d f (0).

Equivalently, we have

τ(Wθ ( f )) =
∫
Rd

f (t) dt, f ∈ S(Rd)

An important identity is that

τ(λθ ( f )λθ (g)) = (2π)d
∫
Rd

f (−t)g(t) dt, f, g ∈ S(Rd).

and

τ(Wθ ( f )Wθ (g)) =
∫
Rd

f (s)g(s) ds, f, g ∈ S(Rd). (2.2)

See [42, Corollary 4.2.15]. Observe that Wθ ( f )∗ = Wθ ( f ), so that for all f ∈ S(Rd)

we have

τ(λθ ( f )∗λθ ( f )) = τ(Wθ ( f )∗Wθ ( f )) =
∫
Rd

| f (s)|2 ds

We can extend the Weyl transform to distributions. If T ∈ S ′(Rd), denote by
Wθ (T ) ∈ S ′(Rd

θ ) the functional defined by

(Wθ (T ), Wθ ( f )) = (T, f ), f ∈ S(Rd).

Theorem 2.6. The functional τ : S(Rd
θ ) → C uniquely extends to a normal semifinite

trace on the von Neumann algebra L∞(Rd
θ ).

If θ = 0, then under the isomorphism (2.2), τ is exactly the Lebesgue integral. If
det(θ) �= 0, then τ is (up to a normalisation) the operator trace on B(L2(R

d/2)).
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This theorem is proved in [28] by constructing L∞(Rd
θ ) as an iterated cross product.

It may also be proved by explicitly identifying τ as the tensor product of the operator
trace and the Lebesgue integral in terms of the isomorphism (2.2), see [25, Proposition
2.4] for details. If det(θ) �= 0, then τ is related to the operator trace Tr by

τ(u) = det(2πθ)
1
2 Tr(ι(u)), u ∈ S(Rd

θ ). (2.3)

where ι is the isomorphism (2.2). In particular, the range of the trace τ on projections

consists of nonnegative integer multiples of det(2πθ)
1
2 .

With this data, the pair (L∞(Rd
θ ), τ ) is a semifinite von Neumann algebra. As a

special case of the theory of L p-spaces corresponding to a semifinite von Neumann
algebra, we have the following definition.

Definition 2.7. Let 1 ≤ p < ∞. Define L p(R
d
θ ) as the L p-space associated with the

semifinite trace τ on L∞(Rd
θ ). That is, let Np denote the subspace of x ∈ L∞(Rd

θ )

such that

‖x‖p := τ(|x |p)1/p < ∞.

Then L p(R
d
θ ) is defined as the completion of Np with respect to the norm ‖ · ‖p.

In particular, L2(R
d
θ ) is the GNS Hilbert space of L∞(Rd

θ ) corresponding to the
inner product

〈x, y〉 := τ(x∗y), x, y ∈ N2.

The fact that ‖ · ‖p is a norm is a standard result in the theory of semifinite von
Neumann algebras [23, Theorem4.4]. There is aHölder inequality for these L p spaces.
That is, if u ∈ L p(R

d
θ ) and v ∈ Lq(Rd

θ ), then uv ∈ Lr (R
d
θ ) where 1

r = 1
p + 1

q and

‖uv‖r ≤ ‖u‖p‖v‖q .

For 1 ≤ p < ∞, the Schwartz space S(Rd
θ ) is dense in L p(R

d
θ ) [44, Proposition 3.14].

Knowing this, it follows from (2.2) that Wθ extends to a unitary isomorphism

Wθ : L2(R
d) → L2(R

d
θ ).

The closure of S(Rd
θ ) in the L∞ norm is denoted C0(R

d
θ ).

At this point, we again emphasise that when det(θ) �= 0, Theorem 2.2 states that

L∞(Rd
θ ) is isomorphic to the type I∞ von Neumann algebra B(L2(R

d
2 )), and τ is

proportional to the operator trace [40, Section 6]. In this case, L p(R
d
θ ) coincides with

the Schatten–von Neumann operator Lp-space. It follows that if det(θ) �= 0, then
L p(R

d
θ ) ⊆ Lq(Rd

θ ) for all p ≤ q.
Still in the non-degenerate case, given an arbitrary T ∈ S ′(Rd), the distribution

Wθ (T ) can be realised as a quadratic form on a dense subspace of L2(R
d
2 ), for details

see [17, Section II.B].

Remark 2.8. Daubechies have given a sufficient condition on a distribution T such that
(in our notation)Wθ (T ) ∈ L∞(Rd

θ ) [16]. It is also known that there exists f ∈ L∞(Rd)

such thatWθ ( f ) /∈ L∞(Rd
θ ), and f /∈ L1(R

d) such thatWθ ( f ) ∈ L1(R
d
θ ) [17, Section

III].
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2.3. Differential calculus on R
d
θ

The presentation here is based primarily on [42, Section 4.2.3]. Differential calculus
onRd

θ is based on the group of translations {Ts}s∈Rd , where Ts is defined as the unique
∗-automorphism of L∞(Rd

θ ) which acts on λθ (t) as

Ts(λθ (t)) = exp(i(t, s))λθ (t), t, s ∈ R
d .

Equivalently, for x ∈ L∞(Rd
θ ) ⊆ B(L2(R

d))we may define Ts(x) as the conjugation
of x by the unitary operator of translation by s on L2(R

d). To be precise, if

V (s)ξ(r) = ξ(r − s), ξ ∈ L2(R
d)

then a simple computation on the generators shows that

V (−s)xV (s) = Ts(x), x ∈ L∞(Rd
θ ).

This shows that the translation semigroup preserves positivity.

Definition 2.9. An element x ∈ L∞(Rd
θ ) + L1(R

d
θ ) is said to be smooth if for all

y ∈ L1(R
d
θ ) ∩ L∞(Rd

θ ) the function s �→ τ(yTs(x)) is smooth.

The partial derivations ∂ j , j = 1, . . . , d are defined on smooth elements x by

∂ j x = d

ds j
Ts(x)|s=0.

In terms of the map λθ and the Weyl transform Wθ , it is easily verified that

∂ jλθ ( f ) = λθ (it j f (t)), ∂ j Wθ ( f ) = Wθ (∂ j f ), f ∈ S(Rd), j = 1, . . . , d.

For a multi-index α ∈ N
d , we define

∂α = ∂
α1
1 · · · ∂αd

d .

The Laplace operator 	 is defined as

	 =
d∑

j=1

∂2j .

Equivalently,	 is the imageof the classicalLaplace operator under theWeyl transform.
That is,

	Wθ (x) = Wθ (	x), x ∈ S(Rd).

We can extend ∂α and 	 to distributions in the natural way. Namely if T ∈ S ′(Rd
θ ),

then we define

(∂αT, u) = (−1)|α|(T, ∂αu), u ∈ S(Rd
θ ).
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An important distinction between the det(θ) = 0 and det(θ) �= 0 cases is that in the
latter situation the translation semigroup is inner. Indeed, if θ is invertible it is easy to
verify that

λθ (θ
−1s)∗λθ (t)λθ (θ

−1s) = exp(i(t, s))λθ (t), t, s ∈ R
d

and hence that

λθ (θ
−1s)∗xλθ (θ

−1s) = Ts(x), x ∈ L∞(Rd
θ ), s ∈ R

d . (2.4)

See [42, Lemma 4.2.21].

2.4. Convolution and Young’s inequality

The following notion was used in [44, Section 3.2].

Definition 2.10. Let 1 ≤ p ≤ ∞ and u ∈ L p(R
d
θ ).

For K ∈ L1(R
d), we define

K ∗ u :=
∫
Rd

K (t)T−t (u) dt

as an L p(R
d
θ )-valued Bochner integral when p < ∞, and as a weak∗ integral when

p = ∞.

Since L p(R
d
θ ) is separable when p < ∞, the Bochner integrability of the integrand

K (t)T−t u follows from the integrability of K and the L p-norm continuity the function
t �→ T−t u. Since the translation semigroup preserves positivity, it follows that if
K ≥ 0 and u ≥ 0, then K ∗ u ≥ 0.
From the triangle inequality, we immediately obtain

‖K ∗ u‖L p(Rd
θ ) ≤ ‖K‖L1(Rd )‖u‖L p(Rd

θ ), K ∈ L1(R
d), u ∈ L p(R

d
θ ). (2.5)

We can extend the definition of convolution (K , u) �→ K ∗ u beyond K ∈ L1(R
d).

For example, a computation using the definition Tsλθ (t) = ei(s,t)λθ (t) shows that

K ∗ λθ ( f ) = (2π)
d
2 λθ (K̂ f ), f, K ∈ L1(R

d).

hence if K ∈ L2(R
d) and u ∈ L2(R

d
θ ), then K ∗ u is meaningful as K̂ (D)u.

To go beyond this, we need to use the following inequality, which is a noncommu-
tative substitute for Young’s convolution inequality.
The idea for the proof with p = ∞ is due to Lafleche, see [37, Section 3.1].

Theorem 2.11. Let 1 ≤ p, q, r ≤ ∞ obey the relation

1

r
+ 1 = 1

p
+ 1

q
.

Then, the bilinear map (K , u) �→ K ∗ u admits a continuous extension to a mapping
from L p(R

d) × Lq(Rd
θ ) into Lr (R

d
θ ), and we have the inequality

‖K ∗ u‖Lr (R
d
θ ) ≤ ‖K‖L p(Rd )‖u‖Lq (Rd

θ ), K ∈ L p(R
d), u ∈ Lq(Rd

θ ).
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Proof. Let � denote the set of ( 1r , 1
p , 1

q ) ∈ [0, 1]3 such that

‖K ∗ u‖Lr (R
d
θ ) ≤ ‖K‖L p(Rd )‖u‖Lq (Rd

θ ) (2.6)

Since the noncommutative L p-spaces are closed under complex interpolation, multi-
linear interpolation (c.f. [5, Theorem 4.4.2]) implies that 	 is convex.

The inequality (2.5) with p = 1 and p = ∞ verifies that

(1, 1, 1), (0, 1, 0) ∈ 	.

We complete the proof by showing that (0, 0, 1) ∈ 	, that is

‖K ∗ u‖L∞(Rd
θ ) ≤ ‖K‖L∞(Rd )‖u‖L1(R

d
θ ).

Using the isomorphism in Theorem 2.2, we identify u with an element of

L1(R
d1 ,L1(L2(R

d2
2 )))

for some d1 + d2 = d, where L1 is the trace-class. We will assume for the moment
that d2 = 2 and d1 = 0.

u ∈ L1(L2(R))

and θ =
(
0 −1
1 0

)
, up to a scalar. In this case, (2.4) implies that

K ∗ u =
∫
R2

K (t1, t2)λθ (−t2, t1)uλθ (t2,−t1) dt1dt2.

Since u ∈ L1(L2(R)), the Schmidt decomposition implies that u can be written as

u =
∞∑
j=0

ξ j ⊗ η j

where ξ j , η j ∈ L2(R), ξ j ⊗ η j denotes a rank 1 operator, and

‖u‖L1(R
d
θ ) = 2π

∞∑
j=0

‖ξ j‖L2(R)‖η j‖L2(R) < ∞.

The factor of 2π is present due to our normalisation of the trace inRd
θ .Hence, in order

to define the integral for K ∗ u, we only need to show that if ξ, η ∈ L2(R), we have

‖K ∗ (ξ ⊗ η)‖B(L2(R)) ≤ ‖K‖L∞(R2)‖η‖L2(R)‖ξ‖L2(R).
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By the triangle and Cauchy–Schwarz inequalities, for α, β ∈ L2(R) we have

|〈α, K ∗ (ξ ⊗ η)β〉L2(R)|
=

∣∣∣∣
∫
R2

K (t1, t2)〈α, λθ (t2,−t1)ξ 〉L2(R)〈λθ (t2,−t1)η, β〉L2(R) dt1dt2

∣∣∣∣
≤ ‖K‖L∞(R2)

∫
R2

|〈α, λθ (t2,−t1)ξ 〉L2(R)〈λθ (t2,−t1)η, β〉L2(R)| dt1dt2

≤ ‖K‖L∞(Rd )

(∫
R2

|〈α, λθ (t2,−t1)ξ 〉L2(R)|2 dt1dt2

) 1
2

(∫
R2

|〈λθ (t2,−t1)ξ, β〉L2(R)|2 dt1dt2

) 1
2

Examining the first integral and using the explicit isomorphism (2.1), we have

〈α, λθ (t2,−t1)β〉L2(R) = e
i
2 t1t2

∫
R

α(r)e−i t1rξ(r − t2) dr.

Writing ξt2 for the shifted function r �→ ξ(r − t2), we see that

〈α, λθ (t2,−t1)ξ 〉 = e
i
2 t1t2(2π)

1
2F(αξt2)

where F is the Fourier transform in one dimension. By the Plancherel theorem, it
follows that ∫

R

|〈α, λθ (t2,−t1)ξ 〉|2 dt2 = 2π
∫
R

|α(r)ξ(r − t2)|2 dr

and thus by Fubini’s theorem∫
R

∫
R

|〈α, λθ (t2,−t1)ξ 〉|2 dt2dt1 = 2π‖α‖2L2(R)‖ξ‖2L2(R).

Reasoning in the same way for β and η, we conclude that

|〈α, K ∗ (ξ ⊗ η)β〉| ≤ 2π‖K‖L∞(Rd )‖α‖L2(R)‖β‖L2(R)‖ξ‖L2(R)‖η‖L2(R).

Therefore,

‖K ∗ (ξ ⊗ η)‖∞ ≤ 2π‖K‖∞‖α ⊗ β‖L1(L2(R)).

It follows

‖K ∗ u‖L∞(R2
θ ) ≤ ‖K‖L∞(R2)‖u‖L1(R

2
θ ).

This completes the proof in the case that d = 2 and θ =
(
0 −1
1 0

)
. The general

case can be deduced from this by decomposing L1(R
d
θ ) into the tensor product of a

commutative part and several copies of L1(L2(R)), using Theorem 2.2. �
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3. Multipliers and Littlewood–Paley theory for Rd
θ

The Weyl transform defines a linear topological isomorphism

Wθ : S ′(Rd) → S ′(Rd
θ )

which intertwines the partial derivative operators {∂α}α∈Nd on Rd with those on R
d
θ ,

Wθ (∂
αT ) = ∂αWθ (T ), T ∈ S ′(Rd).

For the sake of brevity, let D j denote the rescaled partial derivation

D j = 1

i
∂ j , j = 1, . . . , d.

For a multi-index α = (α1, . . . , αd) ∈ N
d , we denote Dα for Dα1

1 · · · Dαd
d .

Definition 3.1. If m ∈ C∞(Rd) has at most polynomial increase at infinity, with all
derivatives having at most polynomial growth, let m(D) denote the corresponding
Fourier multiplier. That is, for f ∈ S(Rd), define

(m(D) f )(t) = (2π)−
d
2

∫
Rd

m(ξ) f̂ (ξ)ei(t,ξ) dξ, t ∈ R
d .

We define m(D) on S(Rd
θ ) using the Weyl transform. That is,

m(D)Wθ ( f ) := Wθ (m(D) f ), f ∈ S(Rd).

Equivalently, if Wθ ( f ) ∈ S(Rd
θ ), then

m(D)Wθ ( f ) = (2π)−
d
2

∫
Rd

m(ξ) f̂ (ξ)λθ (ξ) dξ = Wθ (m(D) f ).

The definition of m(D) is extended to S ′(Rd
θ ) by the relation

(m(D)T, u) = (T, m(D)u), u ∈ S(Rd
θ ), T ∈ S ′(Rd

θ ).

Denote by m̌ the inverse Fourier transform of m,

m̌(t) = (2π)−
d
2

∫
Rd

m(ξ)ei(ξ,t) dξ, t ∈ R
d .

Observe that if m̌ ∈ L1(R
d), then

m(D)u = (2π)−
d
2

∫
Rd

m̌(ξ)T−ξ (u) dξ, u ∈ S(Rd
θ ).

That is,

m(D)u = (2π)−
d
2 m̌ ∗ u, u ∈ L p(R

d
θ ), m̌ ∈ L1(R

d).

It follows immediately from Theorem 2.11 that we have the following:
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Theorem 3.2. Assume m is such that m̌ ∈ L1(R
d). For all 1 ≤ p < ∞, m(D) extends

to a bounded linear map from L p(R
d
θ ) to L p(R

d
θ ), with norm

‖m(D)‖L p(Rd
θ )→L p(Rd

θ ) ≤ (2π)−
d
2 ‖m̌‖L1(Rd ).

Moreover, m(D) is bounded in the L∞ norm and extends by duality to a linear map

‖m(D)‖L∞(Rd
θ )→L∞(Rd

θ ) ≤ (2π)−
d
2 ‖m̌‖L1(Rd ).

More generally, for any 1 ≤ p ≤ q ≤ ∞, we have

‖m(D)‖L p(Rd
θ )→Lq (Rd

θ ) ≤ (2π)−
d
2 ‖m̌‖Lr (Rd )

where 1
r = 1 + 1

q − 1
p .

A simple application of Theorem 3.2 is the following Bernstein-type estimate.

Corollary 3.3. Let f ∈ L1(R
d) be supported in a ball of radius σ > 0. There exists

a constant Cd such that for all 1 ≤ p ≤ q ≤ ∞ we have

‖λθ ( f )‖Lq (Rd
θ ) ≤ Cdσ

d
(
1
p − 1

q

)
‖λθ ( f )‖L p(Rd

θ ).

Proof. By translation invariance, it suffices to assume that f is supported in a ball of
radius σ centred at the origin. Let ϕ be a smooth function on R

d which is identically
equal to 1 on the unit ball of radius 1 and vanishes outside a ball of radius 2.Denoting

ϕσ (t) = ϕ(σ−1t)

then

λθ ( f ) = λθ (ϕσ f ) = ϕ̌σ ∗ λθ ( f ).

For 1 ≤ r ≤ ∞, we have

‖ϕ̌σ ‖Lr (Rd ) = σ
d
(
1− 1

r

)
‖ϕ̌‖Lr (Rd ).

Since p ≤ q, then there exists r ≥ 1 such that 1r = 1+ 1
q − 1

p and applyingTheorem3.2
yields

‖λθ ( f )‖L p(Rd
θ ) ≤ σ

d
(
1
p − 1

q

)
‖ϕ̌‖Lr (Rd )‖λθ ( f )‖Lq (Rd

θ ).

Taking Cd = ‖ϕ̌‖Lr (Rd ) completes the proof. �

Remark 3.4. It should be noted that in the commutative case, it suffices to prove Corol-

lary 3.3 with σ = 1, since the constant σ d( 1
p − 1

q ) can be recovered by a rescaling. In the
noncommutative case, this is not possible because as mentioned in the introduction,
there is no appropriate “dilation” action on L∞(Rd

θ ).
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We also point out that while Corollary 3.3 is valid for all θ, the statement is trivial
when det(θ) �= 0. In that case, for 1 ≤ p ≤ q ≤ ∞ it follows from (2.3) that

det(2πθ)
1
2p − 1

2q ‖u‖Lq (Rd
θ ) ≤ ‖u‖L p(Rd

θ ), u ∈ L p(R
d
θ ).

This is far stronger than Corollary 3.3.

Wenowconstruct the homogeneous {	̇ j } j∈Z and inhomogeneous {	 j }∞j=0 Littlewood–
Paley decompositions. This development is directly in line with the commutative case,
as in e.g. [31, Chapter 5]. The essential difference is that we use the Weyl transform
Wθ in place of the Fourier transform. Denote by B(0, r) the ball in R

d of radius r
centred at zero. Let � be a smooth radial function on R

d such that

supp(�) ⊆ B(0, 2)\B(0, 1/2)

and chosen such that

�(ξ) + �

(
ξ

2

)
= 1, ξ ∈ B(0, 2)\B(0, 1).

Let � be a smooth radial function supported in B(0, 1) such that

�(ξ) + �(ξ) = 1, ξ ∈ B(0, 1).

(that is, � = 1 − � on B(0, 1) and zero elsewhere).
For j ∈ Z, let � j (ξ) := �(2− jξ). Then,

� +
∞∑

k=0

�k = 1

while for ξ �= 0 we have
∑

j∈Z � j (ξ) = 1. Define the operator 	̇ j on S ′(Rd
θ ) by

	̇ j = � j (D), j ∈ Z.

Specifically, for f ∈ S(Rd
θ ) we have,

	̇ jλθ ( f ) = λθ (� j f ), j ∈ Z.

Define

R = �(D).

For j ≥ 0, define

Sn = R +
n∑

j=0

	̇ j .
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The inhomogeneous Littlewood–Paley decomposition {	 j }∞j=0 is defined as:

	 j =
{

	̇ j , j ≥ 1,

R + 	̇0, j = 0.

With this notation, we have Sk = ∑k
j=0 	 j and 	 j = S j − S j−1 for j ≥ 1.

An immediate consequence of Corollary 3.3 is that for all 1 ≤ p ≤ q ≤ ∞ we
have

‖	 j u‖Lq (Rd
θ ) ≤ Cd2

jd
(
1
p − 1

q

)
‖	 j u‖L p(Rd

θ ) (3.1)

The following fact is purely commutative and well known. For a proof, see, e.g. [3,
Lemma 8.2.4].

Lemma 3.5. Suppose that m ∈ C∞(Rd\{0}) is a function such that for all α we have

|∂α
ξ m(ξ)| ≤ Cα,m |ξ |s−|α|, ξ ∈ R

d\{0}
where s ∈ R is fixed. Denote by m j the function

m j (ξ) = m(ξ)�(2− jξ).

Then m̌ j is integrable, with norm bounded by

‖m̌ j‖L1(Rd ) �m 2s j , j ∈ Z.

(That is, the implicit constant depends on m but is uniform in j .)

Observe that if m is merely a smooth function on R
d , then the inverse Fourier

transform of m� is Schwartz class and in particular is integrable.
A combination of Theorem 3.2 and Lemma 3.5 yields the following:

Corollary 3.6. Let m satisfy the conditions of Lemma 3.5. Then, for all 1 ≤ p ≤ ∞
we have

‖m(D)	̇ j‖L p(Rd
θ )→L p(Rd

θ ) �d,m 2s j , j ∈ Z.

If m is in addition smooth at the origin, then

‖m(D)	 j‖L p(Rd
θ )→L p(Rd

θ ) �d,m 2s j , j ≥ 0.

Remark 3.7. There is also a Mikhlin multiplier theorem for Rd
θ . It was proved in [43]

that if m ∈ L∞(Rd) is a Mikhlin multiplier, i.e. if sup|ξ |�=0 |ξ |α|∂α
ξ m(ξ)| < ∞ for

|α| ≤ � d
2 � + 1, then m(D) is bounded on L p(R

d
θ ) for 1 < p < ∞. This subsumes

Corollary 3.6 when 1 < p < ∞.

We record some simple consequences of Corollary 3.6.
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Proposition 3.8. Let 1 ≤ p ≤ ∞ and j ∈ Z. If u ∈ S ′(Rd
θ ), then

(i) Let m be a function satisfying the conditions of Corollary 3.6, and which is
smooth at 0. Then for j ≥ 0 we have

‖m(D)	 j u‖p �m 2 js‖	 j u‖p.

(ii) For all multi-indices α ∈ N
d , we have

‖Dα	 j u‖p �α 2 j |α|‖	 j u‖p.

(iii) For all α ∈ N
d , we have the bound

‖Dα S j u‖p � 2 j |α|‖u‖p, j ≥ 0.

The following proposition is also a simple consequence of Corollary 3.6. These
results, besides (iii), can be extracted from [44, Section 3.2].

Proposition 3.9. Let u ∈ S ′(Rd
θ ). Then

(i) For all j ≥ 0 and all p ∈ [1,∞] we have

‖	 j u‖p ≤ ‖u‖p, ‖S j u‖p ≤ ‖u‖p.

(ii) For all p ∈ [1,∞) if u ∈ L p(R
d
θ ), we have

lim
j→∞ ‖S j u − u‖p = 0.

If p = ∞, then the same holds provided that u ∈ C0(R
d
θ ).

(iii) There is an equivalence of norms

‖u‖2 ∼=
⎛
⎝ ∞∑

j=0

‖	 j u‖22
⎞
⎠

1/2

.

3.1. Heat and Schrödinger semigroups on R
d
θ

We will concern ourselves with two semigroups of operators on L2(R
d
θ ), the heat

and Schrödinger semigroups

t �→ et	, t �→ eit	.

These operators can be defined by functional calculus on L2(R
d
θ ), or equivalently as

Fourier multipliers. Given T ∈ S ′(Rd), we may define

et	λθ (T ) = λθ (e
−|ξ |2t · T ), eit	λθ (T ) = λθ (e

−i|ξ |2t · T ).

Equivalently, the semigroups et	 and eit	 are the images of the classical heat and
Schrödinger semigroups on Rd under the Weyl transform Wθ .
Recently, a theory of elliptic pseudodifferential operators on R

d
θ has been devel-

oped [28]. It is plausible that many of the following results generalise to semigroups
generated by accretive elliptic differential operators, although at present such results
are not known.
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Theorem 3.10. For all 1 ≤ p ≤ ∞ and t > 0, the operator et	 is bounded on
L p(R

d
θ ), with norm

‖et	‖L p(Rd
θ )→L p(Rd

θ ) ≤ 1.

If p < ∞, then t �→ et	 is strongly continuous on L p(R
d
θ ), in the sense that the

mapping

[0,∞) × L p(R
d
θ ) → L p(R

d
θ ), (t, u) �→ et	u

is continuous.

Proof. Observe that by definition, et	 is an operator of the form m(D), where

m(ξ) = e−t |ξ |2 , ξ ∈ R
d .

and the inverse Fourier transform is given by the classical formula

m̌(s) = (2t)−
d
2 e− |s|2

4t , s ∈ R
d .

Since ‖m̌‖1 = (2π)
d
2 , the L p(R

d
θ ) → L p(R

d
θ ) normbound follows fromTheorem3.2.

The strong continuity amounts to proving that

lim
t→0

‖u − et	u‖p = 0, u ∈ L p(R
d
θ ) for p < ∞

or u ∈ C0(R
d
θ ) for p = ∞. This is established as a special case of [44, Theorem 3.10].

�

Immediately from the unitarity of the Weyl transform, we have the following:

Theorem 3.11. On L2(R
d
θ ), t �→ eit	 is a strongly continuous unitary group.

Observe that a combination of Proposition 3.9, Theorems 3.10 and 3.11 yields

‖et		 j‖L p(Rd
θ )→L p(Rd

θ ) � 1,

‖eit		 j‖L2(R
d
θ )→L2(R

d
θ ) � 1

for all p ∈ [1,∞], where the constants are uniform in j ≥ 0.

Lemma 3.12. Let 1 ≤ p ≤ q ≤ ∞ There is a constant cp,q,d such that

‖et	‖L p(Rd
θ )→Lq (Rd

θ ) ≤ cp,q,d t
d
2 ( 1q − 1

p )
, t > 0.

Proof. As in Theorem 3.10, this is an application of Theorem 3.2withm(ξ) = e−t |ξ |2 ,
and m̌(s) = (2t)− d

2 e− |s|2
4t . For r ≥ 1 we have

‖m̌‖Lr (R
d
θ ) = cr,d t

d
2 ( 1r −1).

Taking 1
r = 1

q − 1
p + 1 completes the proof. �
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Remark 3.13. The r = p = ∞, q = 1 case of Young’s inequality (Theorem 2.11)
delivers

‖eit	u‖∞ ≤ |4π t |− d
2 ‖u‖1, u ∈ L1(R

d
θ )

due to the classical integral kernel formula for eit	. It follows by interpolation that for
1 ≤ p ≤ 2 we have

‖eit	u‖ p
p−1

≤ |4π t |−d
(
1
p − 1

2

)
‖u‖p, u ∈ L p(R

d
θ ).

This is a Strichartz estimate for Rd
θ .

3.2. Function spaces on R
d
θ

Let J := (1 − 	)1/2 = (1 + D2)1/2. This is the Bessel potential operator.
The definition of L p-Sobolev spaces forRd

θ is now standard. We will have little use
for L p-Sobolev spaces for p �= 2, but we record the definition here for the sake of
completeness. The following is identical to [44, Section 3.2] and [28].

Definition 3.14. For 1 ≤ p < ∞ and s ∈ R, define the Bessel potential Sobolev
space W s

p(R
d
θ ) as the subset of u ∈ S ′(Rd

θ ) such that J su ∈ L p(R
d
θ ), with the norm

‖u‖W s
p

= ‖J su‖p.

Besov spaces for Rd
θ can be defined by the Littlewood–Paley decomposition.

Definition 3.15. Let s ∈ R and p, q ∈ [1,∞]. The inhomogeneous Besov class
Bs

p,q(Rd
θ ) is defined as the subspace of distributions u ∈ S ′(Rd

θ ) such that

‖u‖Bs
p,q

:=
⎛
⎝ ∞∑

j=0

2 jsq‖	 j u‖q
p

⎞
⎠

1/q

< ∞

for q < ∞, and

‖u‖Bs
p,∞ = sup

j≥0
2s j‖	 j u‖p.

It is not hard to show that the space Bs
p,q(Rd

θ ) does not depend on the choice of
function� defining the Littlewood–Paley decomposition, up to equivalence of norms.
This can be proved by an identical method to [63, Remark 3.2].

Remark 3.16. Very recently, Lafleche [37] has introduced a family of quantum Besov
spaces related to Weyl quantisation. I conjecture that these are essentially the same as
Definition 3.15.

The following lemma lists some straightforward consequences of the definition of
Bs

p,q(Rd
θ ).
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Lemma 3.17. The Besov spaces have the following elementary properties:

(i) If r > s, then ‖u‖Bs
p,q (Rd

θ ) �s,r ‖u‖Wr
p(Rd

θ ).

(ii) If s ∈ R, p ∈ [1,∞) and q < ∞, the space S(Rd
θ ) is dense in Bs

p,q(Rd
θ ).

(iii) For every s > 0 and p, q ∈ [1,∞], we have Bs
p,q(Rd

θ ) ⊆ L p(R
d
θ ).

(iv) For every p ∈ [1,∞], we have L p(R
d
θ ) ⊆ B0

p,∞(Rd
θ ).

(v) We have

Bs0
p0,q0(R

d
θ ) ⊆ Bs1

p1,q1(R
d
θ )

with a corresponding norm inequality independent of θ whenever p0 ≤ p1 and

s0 ≥ s1 + d

(
1

p0
− 1

p1

)
, q0 ≤ q1.

Proof. From Theorem 3.6,

‖	 j u‖L p(Rd
θ ) � 2− jr‖u‖Wr

p(Rd
θ ).

It follows that

2 js‖	 j u‖L p(Rd
θ ) � 2− j (r−s)‖u‖Wr

p(Rd
θ ).

Therefore,

‖u‖Bs
p,q (Rd

θ ) �

⎛
⎝ ∞∑

j=0

2− jq(r−s)

⎞
⎠

1
q

‖u‖Wr
p(Rd

θ ).

This proves (i).
Next we prove (ii). Note first of all that S(Rd

θ ) is contained in Bs
p,q(Rd

θ ). Indeed,

S(Rd
θ ) is contained in every Sobolev space, and hence in every Besov space by (i).

For u ∈ Bs
p,q(Rd

θ ), define

uN =
N∑

k=0

	ku.

Since q < ∞, we have

‖u − uN ‖Bs
p,q

�
( ∞∑

k=N−1

2ksq‖	ku‖q
p

) 1
q

which vanishes as N → ∞. Thus, it suffices to show that there exists a sequence
{ψ j }∞j=0 ⊂ S(Rd

θ ) such that ‖uN − ψ j‖Bs
p,q (Rd

θ ) → 0. Since the Fourier transform of

uN is finitely supported, we have

uN ∈ W r
p(R

d
θ )
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for all r > 0. Taking r > s, there exists a sequence {ψ j }∞j=0 such that

‖ψ j − uN ‖Wr
p(Rd

θ ) → 0.

(see [44, Proposition 3.14]). Applying (i), it follows that

‖ψ j − uN ‖Bs
p,q (Rd

θ ) → 0.

This proves (ii).
The second and third inclusions are immediate fromDefinition 3.15. The embedding

and norm inequality in (v) is an immediate consequence of the definition and (3.1).
�

Lemma 3.18. For all s ∈ R and p, q ∈ [1,∞], Bs
p,q(Rd

θ ) is a Banach space.

Proof. Assume for notational simplicity that q < ∞, the q = ∞ case is similar. Let
{un}∞n=0 be a sequence in Bs

p,q(Rd
θ ) such that

∞∑
n=0

‖un‖Bs
p,q

< ∞.

Note that if v ∈ S(Rd
θ ), then

|(un, v)| � ‖un‖Bs
p,q

‖v‖B−s
p′,q′

where p′ and q ′ are Hölder conjugate to p and q, respectively. It follows that

u :=
∞∑

n=0

un .

converges in the sense of distributions. Thus,

	 j u =
∞∑

n=0

	 j un

in the distributional sense. Moreover,

‖	 j u‖p ≤
∞∑

n=0

‖	 j un‖p.

By Minkowski’s inequality, for all N ≥ 0 we have

⎛
⎝ N∑

j=0

2 jsq‖	 j u‖q
p

⎞
⎠

1
q

≤
∞∑

n=0

⎛
⎝ N∑

j=0

2 jsq‖	 j un‖q
p

⎞
⎠

1
q

≤
∞∑

n=0

‖un‖Bs
p,q

.
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Since the right-hand side is finite and N is arbitrary, it follows that

⎛
⎝ ∞∑

j=0

2 jsq‖	 j u‖q
p

⎞
⎠

1
q

< ∞

and hence u ∈ Bs
p,q(Rd

θ ). �

The behaviour ofBesov spaces onRd under interpolation iswell known [5, Theorem
6.4.5]. These Besov spaces on R

d
θ behave under real interpolation identically to the

classical Besov spaces onRd . The relevant interpolation result is as follows. The result,
and its proof, is basically identical to [63, Proposition 5.1].

Theorem 3.19. The Besov spaces satisfy the following real interpolation relation

(Bα0
p,q0(R

d
θ ), Bα1

p,q1(R
d
θ ))η,q = B(1−η)α0+ηα1

p,q (Rd
θ )

Here, 1 ≤ q0, q1, q ≤ ∞, 1 ≤ p ≤ ∞, η ∈ (0, 1) and α1 �= α2 ∈ R.

Proof. For a Banach space X , we denote by �s
q(X) the space of sequences {xn}n≥0 in

X such that
( ∞∑

n=0

2nsq‖xn‖q
X

)1/q

< ∞

with suitable modifications for q = ∞. Under real interpolation, the spaces �s
q(X)

behave as

(�s0
q0(X), �s1

q1(X))η,q = �s
q(X)

where s = (1 − η)s0 + ηs1 and 0 < q1, q2, q ≤ ∞. See [5, Theorem 5.6.1].
The mapping

T (x) = {	 j x}∞j=0

is an isometry from Bs
p,q(Rd

θ ) to �s
q(L p(R

d
θ )). In fact, T is a retract of �s

q(L p(R
d
θ )).

We can see this by noting that on the image T (Bs
p,q(Rd

θ )) we can define a mapping

P({xn}n≥0) = S0(x0) +
∞∑
j=0

(	 j−1 + 	 j + 	 j+1)(x j )

which satisfies PT (x) = x for all x ∈ Bs
p,q(Rd

θ ).
This allows us to deduce the interpolation theory from interpolation properties of

�s
q(L p), identically to [5, Theorem 6.4.5]. �

Generalising Proposition 3.9.(iii), we have the following Littlewood–Paley charac-
terisation of the L2-Sobolev spaces, easily deduced by the Plancherel identity.
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Theorem 3.20. For s ∈ R, we have Bs
2,2(R

d
θ ) = W s

2 (Rd
θ ), with an equivalence of

norms,

‖u‖Bs
2,2(R

d
θ ) �s,d ‖u‖W s

2 (Rd
θ ) �s,d ‖u‖Bs

2,2(R
d
θ ).

A Littlewood–Paley characterisation of L p-Sobolev spaces for 1 < p < ∞ was
obtained in [43], but it is not relevant here.
The mapping properties of the heat and Schrödinger semigroups on Sobolev and

Besov spaces are deduced easily fromTheorem3.10. Analogous results in the classical
case are, e.g. [55, Theorem 5.29]

Proposition 3.21. For r, s ∈ R, t > 0 and 1 ≤ p ≤ ∞, we have

‖et	‖W s
p(Rd

θ )→Wr
p(Rd

θ ) � 1 + t
s−r
2

with ‖et	‖W s
p→W s

p
≤ 1. We also have

‖eit	‖W s
2 (Rd

θ )→W s
2 (Rd

θ ) � 1.

For p, q ∈ [1,∞], we have

‖et	‖Bs
p,q (Rd

θ )→Br
p,q (Rd

θ ) � 1 + t
s−r
2 .

Corollary 3.22. If p ∈ [1,∞] and q ∈ [1,∞), then 	 generates a contractive C0-
semigroup on Bs

p,q(Rd
θ ) for every s ∈ R. The same is true with q = ∞ under the

condition that s > 0.

Proof. We only need to check that limt→0 et	u = u for all u ∈ Bs
p,q(Rd

θ ). This is
equivalent to

lim
t→0

‖et		 j u − 	 j u‖L p(Rd
θ ) = 0, j ≥ 0.

which follows from Theorem 3.10. �

4. Elementary pseudodifferential operators

There is a well-developed theory of pseudodifferential operators for Rd
θ [25,28].

However, the existing calculus does not contain the operators we need for the study of
nonlinear equations. The main issue is that the pseudodifferential operators studied
previously are not suitable for the study of differential operators of the form

Du =
∑

|α|≤m

aα∂αu
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where aα ∈ C∞(Rd
θ ). That is, D is a linear combination of derivatives and left multi-

pliers by smooth functions. In general what we need is a calculus containing operators
of the form

Du =
∑

|α|≤m

aα · ∂αu · bα

for some coefficients aα, bα ∈ C∞(Rd
θ ). The presence of simultaneous left and right

multiplication is essential for the development of paradifferential calculus for the
nonlinear theory.
For this reason, we introduce a new class of pseudodifferential operators for Rd

θ .
Recall that a function σ ∈ C∞(Rd × R

d) is said to belong to the symbol class
S0
1,1(R

d × R
d) if for all α, β ∈ N

d we have

|∂α
x ∂

β
ξ σ (x, ξ)| �α,β (1 + |ξ |)|α|−|β|.

Borrowing the terminology of [59, Chapter 13, Section 9], a symbolσ ∈ C∞(Rd ×R
d)

is called elementary if there exists an expansion

σ(x, ξ) =
∞∑
j=0

a j (x)� j (ξ)

for some family of bounded functions a j . The condition that σ belongs to the symbol
class S0

1,1(R
d × R

d) is equivalent to

‖∂αa j‖∞ �α 2 j |α|

for all α ∈ N
d . We will not attempt to develop a complete theory of pseudodiffer-

ential operators on R
d
θ . Instead, we will only consider a noncommutative analogy of

elementary operators.

Definition 4.1. Let a = {a j }∞j=0 and b = {b j }∞j=0 be sequences of elements of

L∞(Rd
θ ) such that for all α ∈ N

d we have

‖∂αa j‖∞ �α 2 j |α|, ‖∂αb j‖∞ �α 2 j |α|.

An elementary pseudodifferential operator is a linear operator Ta,b : λθ (C∞
c (Rd)) →

S ′(Rd
θ ) given by the formula

Ta,b(u) =
∞∑
j=0

a j	 j (u)b j .

The difference between these operators Ta,b and the operators in [25,28] is that
we consider symbols that act on both the left and on the right, in the sense described
above. If we have b j = 1 for all j ≥ 0, then the operator Ta,b is a pseudodifferential
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operator with symbol in the class S0
1,1 in the setting of [28]. Note that we have only

defined Ta,b(u) for u = λθ ( f ) for some compactly supported smooth f. Once the
continuity of Ta,b on Besov spaces is established, the operator may be extended by
continuity.
To estimate the norms of the operators Ta,b on Besov spaces, it is convenient to

have the following notation:

Definition 4.2. Let a = {a j }∞j=0 and b = {b j }∞j=0 be sequences of elements of

L∞(Rd
θ ) as in Definition 4.1 For k ≥ 0, denote by Mk(a) and Mk(b) the following

quantities:

Mk(a) := sup
j≥0,|α|≤k

2−|α| j‖Dαa j‖∞ < ∞, Mk(b) := sup
j≥0,|α|≤k

2−|α| j‖Dαa j‖∞ < ∞

The main result of this section is that elementary pseudodifferential operators are
bounded on Besov spaces of positive regularity.

Theorem 4.3. For all p, q ∈ [1,∞] and s > 0, we have that Ta,b : λθ (C∞
c (Rd

θ )) →
S ′(Rd

θ ) extends to a continuous linear map

Ta,b : Bs
p,q(Rd

θ ) → Bs
p,q(Rd

θ )

with norm

‖Ta,b‖Bs
p,q→Bs

p,q
�s,p,q,d Ms+2(a)Ms+2(b).

The proof of Theorem 4.3 follows the same lines as similar results in other settings.
In particular, the proof of [62, Lemma 5.1] is quite similar.

Lemma 4.4. Let Ta,b be an elementary pseudodifferential operator. For all multi-
indices α ∈ N

d and p ∈ [1,∞], we have

‖DαTa,b	 j u‖p � 2 j |α|M|α|(a)M|α|(b), j ≥ 0.

Proof. We have that 	 j	k = 0 if | j − k| ≥ 2. Therefore,

DαTa,b	 j u =
j+1∑

k= j−1

Dα(a j (	k	 j u)b j ).

Using the Leibniz rule and Proposition 3.8, the result follows. �

Lemma 4.5. Let s ≥ 0. Then for all j, k ≥ 0 and p ∈ [1,∞], we have

2s j‖	 j Ta,b	ku‖p � 2sk‖	ku‖p Ms+1(a)Ms+1(b), j ≥ 0.

Proof. Let ψ be a smooth function supported in a ball of radius 1/2 centred at zero,
and equal to 1 near zero. Define

a0,0(ξ) = ψ(ξ), a0, j (ξ) = (1 − ψ(ξ))
ξ j

|ξ |2 , j = 1, . . . , d, ξ ∈ R
d .
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Then, we have

1 =
d∑

j=0

a0, j (ξ)ξ j .

If we raise this identity to the power l ≥ 1, we construct smooth bounded functions
aγ,l for γ ∈ N

d such that

1 =
∑
|γ |≤l

aγ,l(ξ)ξγ , ξ ∈ R
d .

By design, the functions aγ,l are homogeneous of order−|γ | outside the ball of radius
1/2. Specifically, we have

aγ,l(ξ) = ψ(ξ)l−|γ |(1 − ψ(ξ))|γ | ξγ

|ξ |2|γ | .

Let Pγ,l be the operator

Pγ,l = aγ,l(D).

Therefore,

1 =
∑
|γ |≤l

Pγ,l Dγ . (4.1)

Now we write

2s j‖	 j Ta,b	ku‖p ≤ 2s j
∑
|γ |≤l

‖	 j Pγ,l Dγ Ta,b	ku‖p

≤ 2s j
∑
|γ |≤l

‖	 j Pγ,l‖L p(Rd
θ )→L p(Rd

θ )‖Dγ Ta,b	ku‖p.

Using Lemma 4.4 and Proposition 3.8, we have

2s j‖	 j Ta,b	ku‖p � 2s j · 2− jl · 2kl sup
|γ |,|δ|≤l

Mγ (a)Mδ(b)‖	ku‖p

= 2ks2(s−l)( j−k) sup
|γ |,|δ|≤l

Mγ (a)Mδ(b)‖	ku‖p.

If j ≤ k, then we can take l = 0 and we are done. Otherwise, choose l > s. Then we
have (s − l)( j − k) < 0, and

2s j‖	 j Ta,b	ku‖p � 2sk sup
|γ |,|δ|≤s+1

Mγ (a)Mδ(b)‖	ku‖p.

�

Proposition 4.6. Let Ta,b be as in the statement of Theorem 4.3, and let 1 ≤ p ≤ ∞.
The operator Ta,b has the following mapping properties:
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(i) T : B0
p,1(R

d
θ ) → L p(R

d
θ ) continuously, with norm at most a constant multiple

of M0(a)M0(b).
(ii) If s > 0 then T : Bs

p,1(R
d
θ ) → Bs

p,∞(Rd
θ ) continuously, with norm at most a

constant multiple of Ms+1(a)Ms+1(b).

Proof. To prove (i), let u ∈ B0
p,1(R

d
θ ). Using the L p-triangle inequality and the

Littlewood–Paley decomposition, we have

‖Ta,bu‖p ≤
∞∑
j=0

‖Ta,b(	 j u)‖p

Since 	 j	k = 0 unless | j − k| ≤ 2, this sum further decomposes as

‖Ta,bu‖p ≤
∞∑
j=0

∑
| j−k|≤2

‖ak(	 j (	ku))bk‖p

≤
∞∑
j=0

∑
| j−k|≤2

‖ak‖∞‖bk‖∞‖	 j (u)u‖p

� M0(a)M0(b)‖u‖B0
p,1

.

Now we prove (ii). Initially suppose that u ∈ S(Rd
θ ). Let j ≥ 0. Using Lemma 4.5,

we have

2s j‖	 j Ta,bu‖p ≤ 2s j
∞∑

k=0

2s j‖	 j Ta,b	ku‖p

�
∞∑

k=0

2sk‖	ku‖p sup
|α|,|β|≤s+1

Mα(b)M|β|(b)

� ‖u‖Bs
p,1

sup
|α|,|β|≤s+1

M|α|(a)M|β|(b).

Taking the supremum over j ≥ 0 yields

‖Ta,b(u)‖Bs
p,∞ � Ms+1(a)Ms+1(b)‖u‖Bs

p,1
.

Since S(Rd
θ ) is dense in Bs

p,1(R
d
θ ), the result follows by continuity. �

Using interpolation, we can complete the proof of the Besov mapping properties of
elementary pseudodifferential operators.

Proof of Theorem 4.3. Using Proposition 4.6, we have

Ta,b : B0
p,1(R

d
θ ) → L p(R

d
θ ) ⊂ B0

p,∞(Rd
θ ),

Ta,b : Bs+1
p,1 (Rd

θ ) → Bs+1
p,∞(Rd

θ )
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with norms at most a constant multiple of Ms+2(a)Ms+2(b). Applying Theorem 3.19,
it follows that for every 1 ≤ q ≤ ∞ we have

Ta,b : Bs
p,q(Rd

θ ) → Bs
p,q(Rd

θ )

with norm at most a constant multiple of Ms+2(a)Ms+2(b). �

Remark 4.7. The bound Ms+2(a)Ms+2(b) in the proof of Theorem 4.3 above is not
optimal. The same proof yields an upper bound of Ms+1+ε Ms+1+ε(b) for every ε > 0.

5. Multiplication on Besov spaces

We now study the product (u, v) �→ uv on Besov spaces Bs
p,q(Rd

θ ). In the classical
theory, one approach to this problem is the so-called Bony decomposition.
Given f, g ∈ S(Rd), there exists f ∗θ g ∈ S(Rd) such that

λθ ( f )λθ (g) = λθ ( f ∗θ g).

An important feature of the θ -convolution ∗θ is that we have

supp( f ∗θ g) ⊆ supp( f ) + supp(g).

It follows that if j, k ∈ Z, then (	 j x)(	k y) has is the image under λθ of a function
supported in the ball of radius 2 j+1 + 2k+1 ≤ 2max{ j,k}+2. If | j − k| > 2, then
(	 j x)(	k y) has is the image under λθ of a function with support contained in the
annulus

{t ∈ R
d : 2| j−k|−2 ≤ |t | ≤ 2max{ j,k}+2}.

We can summarise these observations in the following lemma.

Lemma 5.1. Let x, y ∈ S(Rd
θ ) and let j, k ∈≥ 0. If l ≥ max{ j, k} + 3, then

	l(	 j (x)	k(y)) = 0.

Moreover, if | j − k| > 2, then the same holds for all l ≤ | j − k| − 3.

Let u, v ∈ S(Rd
θ ). At least formally, we have the Bony decomposition [4, Section

2.8.1].

uv =
∑
j,k≥0

	 j (u)	k(v) =
∑

j≤k−3

	 j (u)	k(v) +
∑

| j−k|≤2

	 j (u)	k(v) +
∑

j≥k+3

	 j (u)	k(v).

We denote this as

uv = ��(u, v) + R(u, v) + �h(u, v)
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where the low- and high-frequency “paraproducts” ��(u, v),�h(u, v) and the “res-
onating term” R(u, v) are defined as

��(u, v) :=
∑
j≥3

S j−3(u)	 j (v),

�h(u, v) :=
∑
j≥3

	 j (u)S j−3(v),

R(u, v) :=
∑

j,k≥0,| j−k|≤2

	 j (u)	k(v).

By design, the paraproducts ��(u, ·) and �h(·, v) are elementary pseudodifferential
operators. Using Theorem 4.3, we deduce the following.

Theorem 5.2. Let u, v ∈ S(Rd
θ ). If s > 0 and p, q ∈ [1,∞], we have the following:

(i) ‖��(u, v)‖Bs
p,q

� ‖u‖∞‖v‖Bs
p,q

,

(ii) ‖�h(u, v)‖Bs
p,q

� ‖u‖Bs
p,q

‖v‖∞.

Proof. By Proposition 3.9, we have

sup
j≥0, α∈Nd

2− j |α|‖Dα S j−3(u)‖∞ � ‖u‖∞

and

sup
k≥0, α∈Nd

2−k|α|‖Dα Sk−3(v)‖∞ � ‖v‖∞.

Theorem4.3 immediately yields the boundedness ofv �→ ��(u, v) andu �→ �h(u, v)

on every Besov class Bs
p,q(Rd

θ ) with s > 0, with norm bounds ‖u‖∞ and ‖v‖∞
respectively. �

The resonating term R(u, v) can also be considered as an elementary pseudodiffer-
ential operator if we fix one argument. That is, themapping v �→ R(u, v) is elementary
pseudodifferential. With some more effort, it is possible to show that the resonating
term R(u, v) has better regularity than u and v individually

Theorem 5.3. If s0, s1 ∈ R satisfy s0 + s1 > 0, then

‖R(u, v)‖
B

s0+s1
p,q

≤ ‖u‖B
s0
p0,q0

‖v‖B
s0
p0,q0

where p−1 = p−1
0 + p−1

1 and q−1 = q−1
0 + q−1

1 .

Proof. If |n − m| ≤ 2, then we have max{n, m} ≤ n + 2 and thus

	k(	n(u)	m(v)) = 0 if k ≥ n + 3.

Hence,

	n(R(u, v)) =
∑

| j−k|≤2, j,k≥n−3

	n(	 j (u)	k(v)).
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It follows that if s := s0 + s1 > 0 then

‖R(u, v)‖Bs
p,q

� max|ν|≤2

( ∞∑
n=0

2nsq‖	n(R(u, v))‖q
p

)1/q

≤ max|ν|≤2

⎛
⎝ ∞∑

n=0

2nsq

∥∥∥∥∥∥
∑

k≥n−3

	n(	ku · 	k+ν(v))

∥∥∥∥∥∥
q

p

⎞
⎠

1/q

� max|ν|≤2

⎛
⎝ ∞∑

n=0

⎛
⎝ ∑

k≥n−3

2(n−k)s2ks‖	k(u)	k+ν(v)‖p

⎞
⎠

q⎞
⎠

1/q

� max|ν|≤2

⎛
⎝ ∑

k≥max{ν,0}
2ksq‖	k(u)	k−ν(v)‖q

p

⎞
⎠

1/q

where the second-to-final line is an application of Young’s convolution inequality,
using the assumption that s > 0. Hence,

‖R(u, v)‖Bs
p,q

� max|ν|≤2

⎛
⎝ ∑

k≥max{ν,0}
2ksq‖	k(u)	k−ν(v)‖q

p

⎞
⎠

1/q

.

Applying the Hölder inequality immediately yields the result. �
Writing uv = ��(u, v)+R(u, v)+�h(u, v) yields the following product estimate:

Corollary 5.4. If s > 0 and p, q ∈ [1,∞], then for all u, v ∈ Bs
p,q(Rd

θ ) ∩ L∞(Rd
θ ),

we have uv ∈ Bs
p,q(Rd

θ ) ∩ L∞(Rd
θ ) with the norm bound

‖uv‖Bs
p,q

�s,p,q ‖u‖Bs
p,q

‖v‖∞ + ‖v‖∞‖y‖Bs
p,q

.

Classical analogies of this result are well-known. See [54, Chapter 4], [55, Theorem
4.36], [4, Corollary 2.54].

While irrelevant for the applications in this paper, for the sake of completeness we
also include results for the product uv when one of u or v has negative regularity.

The following is an immediate consequence of the definition.

Lemma 5.5. Let p, q ∈ [1,∞]. If s < 0, then

‖S j x‖p � 2−s j‖x‖Bs
p,q

, j ≥ 0.

Corollary 5.6. Let s0 < 0 < s1 ∈ R be such that s0 + s1 > 0, and suppose that
p0, q0, p1, q1 ∈ [0,∞] are chosen such that

1

p
= 1

p0
+ 1

p1
,

1

q
= 1

q0
+ 1

q1
.

Then
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(i) ‖��(u, v)‖B
s1
p,q

� ‖u‖B
s0
p0,q0

‖v‖B
s1
p1,q1

, and

(ii) ‖�h(u, v)‖B
s0
p,q

� ‖u‖B
s0
p0,q0

‖v‖B
s1
p1,q1

.

It follows that if one of s0, s1 is negative and s0 + s1 > 0, then

‖uv‖
B
min{s0,s1}
p,q

� ‖u‖B
s0
p0,q0

‖v‖B
s1
p1,q1

for all u, v ∈ S(Rd
θ ).

6. Nemytskij operators on R
d
θ

Recall that in the classical setting, if F is a smooth function on R and u belongs to
some function space on R

d , the nonlinear operation

u �→ F(u)

is sometimes called a Nemytskij operator [54]. We now proceed to study Nemytskij
operators on R

d
θ in terms of the strategy outlined in the introduction, combining the

Meyer decomposition (1.6) and the Löwner decomposition (1.7).

6.1. Birman–Solomyak classes

We say that a function φ of two variables belongs to the Birman–Solomyak class if
φ has a suitable factorisation as an integral of products of functions of one variable.

Definition 6.1. Let φ : R2 → C be a Borel function on R2. Say that φ belongs to the
Birman–Solomyak class BS if there exists a measure space (�,μ) with finite total
variation and measurable functions α, β : R × � → C such that

φ(t, s) =
∫

�

α(t, ω)β(s, ω) dμ(ω), t, s ∈ R (6.1)

and such that ∫
�

sup
t∈R

|α(t, ω)| sup
s∈R

|β(s, ω)| d|μ(ω)| < ∞.

Say that φ belongs to BS∞ if the functions α and β can be chosen to be smooth in
the sense that all of the derivatives

∂k

∂tk
α(t, ω),

∂k

∂sk
β(s, ω)

exist, and for every k, l ≥ 0 we have

∫
�

sup
t∈R

∣∣∣∣ ∂k

∂tk
α(t, ω)

∣∣∣∣ sup
s∈R

∣∣∣∣ ∂ l

∂sl
β(s, ω)

∣∣∣∣ d|μ|(s) < ∞.
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The reason to consider this class is the following result:

Theorem 6.2. [47] Let (M, τ ) be a von Neumann algebra, and X, Y ∈ M. Assume
that the difference X − Y extends to an element of L p(M, τ ) where 1 ≤ p ≤ ∞. Let
F be a Lipschitz function on R. If the divided difference function

F [1](t, s) := F(t) − F(s)

t − s
, t �= s ∈ R.

belongs to BS, then we have an estimate

‖F(X) − F(Y )‖L p(M,τ ) ≤ CF‖X − Y‖L p(M,τ ).

Here, the constant CF depends on F but not on X and Y .

This theorem has a partial converse: if F obeys a Lipschitz estimate ‖F(A) −
F(B)‖∞ � ‖A−B‖∞ for a pair of operators A and B whose spectral measures admit
vectors of maximal spectral type, then the divided difference F [1] has a representation
of the form (6.1) outside a null set. This converse result is due to Peller [47].

The preceding theorem is based on the following computation, which will also be
useful here:

Lemma 6.3. Let M be a von Neumann algebra represented on a separable Hilbert
space. Let X, Y ∈ M be self-adjoint, and let F : R → R be a function such that the
divided difference F [1] belongs to BS, with the decomposition

F(t) − F(s)

t − s
=

∫
�

α(t, ω)β(s, ω) dμ(ω), t �= s ∈ R.

Then

F(X) − F(Y ) =
∫

�

α(X, ω)(X − Y )β(Y, ω) dμ(ω).

where the integral converges in the weak∗-sense. For all 1 ≤ p ≤ ∞, we have the
estimate

‖F(X) − F(Y )‖L p(M,τ ) ≤ ‖F [1]‖BS‖F(X) − F(Y )‖L p(M,τ ).

(Sketch of proof). A full proof of this identity requires some care due to certain tech-
nicalities regarding the convergence of the integral. The required technical details may
be found in [19, Section 4]. In place of a complete argument, we provide a sketch proof
which illustrates the basic idea. Let X and Y have spectral decompositions

X =
∫
R

t dEX (t), Y =
∫
R

s dEY (s).
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where EX and EY are the spectral measures for X and Y , respectively. Then at least
formally we have

F(X) − F(Y ) =
∫
R

F(t) dEX (t) −
∫
R

F(s) dEY (s)

=
∫
R

∫
R

F(t) − F(s)dEX (t)dEY (s)

=
∫
R

∫
R

F [1](t, s)(t − s)dEX (t)dEY (s)

=
∫
R

∫
R

∫
�

α(t, ω)β(s, ω) dμ(ω)(t − s)dEX (t)dEY (s)

=
∫
R

∫
R

∫
�

α(t, ω)β(s, ω) dμ(ω)dEX (t)(X − Y )dEY (s)

=
∫

�

∫
R

α(t, ω)dEX (t)(X − Y )

∫
R

β(s, ω) dEX (s) dμ(ω)

=
∫

�

α(X, ω)(X − Y )β(Y, ω) dμ(ω).

The norm bound on F(X)−F(Y ) can be seen heuristically from the triangle inequality
applied to the above integral representation. �

There is no known analytic condition on a Lipschitz function F which is both
necessary and sufficient for F [1] ∈ BS. However, a result due to Peller states that
F ∈ Ḃ1∞,1(R) (the homogeneous Besov space on R) is sufficient [47].
The following sufficient condition is far from being necessary; however, since we

restrict attention to smooth functions it will suffice.

Proposition 6.4. Let F be a smooth compactly supported function on R. Then F [1] ∈
BS∞.

Proof. For t �= s ∈ R, we have the formula

F(t) − F(s)

t − s
=

∫ 1

0
F ′((1 − η)t + ηs) dη.

Let g ∈ S(R) be the Fourier transform of F ′. Then, by the Fourier inversion formula
we have

F [1](t, s) = (2π)−
d
2

∫ 1

0

∫ ∞

−∞
eiξ(1−η)t eiξηs g(ξ) dξdη, t �= s ∈ R.

This is a Birman–Solomyak decomposition, with � = [0, 1] × R and

dμ(η, ξ) = g(ξ)dη dξ, α(t, (η, ξ)) = eiξ(1−η)t and β(s, (η, ξ)) = eiξηs .

Since g is Schwartz class, it is easily verified that F [1] ∈ BS∞. �
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Corollary 6.5. Let F ∈ C∞(R), and let u = u∗ ∈ L p(R
d
θ ) ∩ L∞(Rd

θ ) for some
p < ∞. Then,

lim
j→∞ ‖F(S j u) − F(u)‖p = 0.

The same holds for p = ∞, provided that u ∈ C0(R
d
θ ) or Bs∞,∞(Rd

θ ) for some s > 0.

Proof. Using Propositions 3.8 and 3.9, we have

sup
j≥0

‖S j u‖∞ ≤ ‖u‖∞.

Thus by modifying F outside the interval [−‖u‖∞, ‖u‖∞] if necessary, we may
assume without loss of generality that F is compactly supported. Lemma 6.4 implies
that

‖F(S j u) − F(u)‖p ≤ CF‖S j u − u‖p, j ≥ 0.

This vanishes as j → ∞, due to Proposition 3.9. �
6.2. Noncommutative Meyer decomposition

Let F ∈ C∞(R), and let u ∈ S(Rd
θ ) be self-adjoint. We aim to study the Nemytskij

operator u �→ F(u). Initially assume that u = SN u for some N ≥ 0, so that there can
be no doubt that we have

F(u) = lim
j→∞ F(S j u).

It follows that we have the series representation

F(u) = F(S0u) +
∞∑
j=1

F(S j u) − F(S j−1u).

Indeed, since we assume that u is the image under λθ of a compactly supported func-
tion, this series actually terminates. Assume that F [1] ∈ BS∞ has the decomposition

F [1](t, s) =
∫

�

α(t, ω)β(s, ω) dμ(ω), t, s ∈ R.

Then using Lemma 6.3 to represent each F(S j u) − F(S j−1u), we have

F(u) = F(S0u) +
∞∑
j=1

∫
�

α(S j u, ω)(S j u − S j−1u)β(S j−1u, ω) dμ(ω)

= F(S0u) +
∞∑
j=1

∫
�

α(S j u, ω)(	 j u)β(S j−1u, ω) dμ(ω)

= F(S0u) +
∫

�

∞∑
j=1

α(S j u, ω)(	 j u)β(S j−1u, ω) dμ(ω).
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Since F is smooth, there exists a smooth function G such that

F(t) = F(0) + tG(t), t ∈ R.

Replacing F(S0u) with F(0) + G(S0u)S0u, it follows that

F(u) = F(0) + G(S0u)S0u +
∫

�

∞∑
j=1

α(S j u, ω)(	 j u)β(S j−1u, ω) dμ(ω)

= F(0) + G(S0u)	0u +
∫

�

Tω(u) dμ(ω). (6.2)

Here, Tω is the linear operator on λθ (C∞
c (Rd)) given by

Tωx =
∞∑
j=1

α(S j u, ω)(	 j x)β(S j−1u, ω), ω ∈ �, x ∈ λθ (C
∞
c (Rd)).

Therefore, the mapping properties of u �→ F(u) are essentially reduced to studying
the (linear) operator Tω and the remainder term x �→ G(S0u)	0(x). In order to apply
Theorem 4.3, we will prove that Tω is an elementary pseudodifferential operator.
In order to prove that the operator Tω is elementary pseudodifferential, we will need

the following general assertion:

Theorem 6.6. Let G : R → C be a smooth function, and let u∗ = u ∈ L∞(Rd
θ ).

Then for all α ∈ N
d ,

‖DαG(S j u)‖∞ �α,G,‖u‖∞ 2|α| j , j ≥ 0

where the implied constant is independent of j . In particular, G(S j u) is smooth for
all j ≥ 0.

In the commutative case, this is a consequence of the inequality (from Proposi-
tion 3.8.(iii))

‖Dα S j u‖∞ � 2 j |α|, j ≥ 0

and the chain rule. In the noncommutative case, this approach does not work since
the partial derivatives of S j u do not necessarily commute with each other. Instead, we
first consider the case that G(t) = eiξ t and then use the Fourier transform.

Lemma 6.7. Let u = u∗ ∈ L∞(Rd
θ ). Then for all ξ ∈ R and all j ≥ 0 the element

eiξ S j u is smooth, and for all α ∈ N
d we have

‖Dαeiξ S j u‖∞ �α,‖u‖∞ 2|α| j (1 + |ξ |)|α|

where the implied constant does not depend on j or ξ .
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Proof. Since S j u is self-adjoint, eiξ S j u is unitary and hence the case |α| = 0 is trivial.
We will therefore concentrate on |α| > 0. Consider the case where |α| = 1. Then
Dα = Dk for some k = 1, . . . , d. By Duhamel’s formula,

Dkeiξ S j u = iξ
∫ 1

0
eiξ(1−θ)S j u(Dk S j u)eiξθ S j u dθ. (6.3)

The integral should be understood as a weak integral in L∞(Rd
θ ). Using the triangle

inequality, it follows that

‖Dkeiξ S j u‖∞ ≤ |ξ |‖Dk S j u‖∞.

Proposition 3.8.(iii) implies that ‖Dk S j u‖∞ � 2 j‖u‖∞
The cases |α| > 1 follow from repeated application of Leibniz’s rule andDuhamel’s

formula. To see |α| = 2, let l = 1, . . . , d, and apply the Leibniz rule to (6.3) and then
Duhamel’s formula in the following way

Dl Dkeiξ S j u = −ξ2
∫∫

[0,1]2
eiξ(1−θ)(1−η)S j u(Dl S j u)eiξ(1−θ)ηS j u(Dk S j u)eiξθ S j u dηdθ

+ iξ
∫ 1

0
eiξ(1−θ)S j u(Dl Dk S j u)eiξθ S j u dθ

− ξ2
∫∫

[0,1]2
eiξ(1−θ)S j u(Dk S j u)eiξθ(1−η)S j u(Dl S j u)eiξθηS j u dθdη.

In the general case, Dαeiξ S j u is a linear combination of integrals of expressions of the
form

ξ keiξθ0S j u(Dα0 S j u)eiξθ1S j u(Dα1 S j u) · · · (Dαn−1 S j u)eiξθn S j u

where |α0| + · · · + |αn−1| = |α| and 0 ≤ k ≤ |α|. Applying Proposition 3.8.(iii) to
each integrand yields the desired bound for (1 + |ξ |)|α|‖Dαeiξ S j u‖∞. �

Proof of Theorem 6.6. Note that sup j≥0 ‖S j u‖∞ < ∞, and hence without loss of
generality we may assume that G is compactly supported. Since G is a compactly
supported smooth function, there exists the Fourier representation

G(S j u) = (2π)−
1
2

∫ ∞

−∞
Ĝ(ξ) exp(iξ S j u) dξ. (6.4)

The Fourier transform Ĝ is in the Schwartz class S(R). Since Dαe2π iξ S j u ∈ L∞(Rd
θ )

and has norm with at most polynomial growth in ξ , it follows that the integral (6.4)
converges. Thus,

‖DαG(S j u)‖∞ �‖u‖∞ 2 j |α|
∫
R

|Ĝ(ξ)|(1 + |ξ |)|α| dξ < ∞.

�
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We now arrive at the main result concerning the stability of Bs
p,q(Rd

θ ) under Ne-
mytskij operators. This theorem is a noncommutative analogy of [4, Theorem 2.87].

Theorem 6.8. Let F ∈ C∞(R), let s > 0 and p, q ∈ [1,∞]. Then

u = u∗ ∈ Bs
p,q(Rd

θ ) ∩ L∞(Rd
θ ) �⇒ F(u) − F(0) ∈ Bs

p,q(Rd
θ ) ∩ L∞(Rd

θ ).

Proof. Let u = u∗ ∈ Bs
p,q(Rd

θ ) ∩ L∞(Rd
θ ) for some s > 0 and p, q ∈ [1,∞]. Using

the “Meyer” representation (6.2), for all j ≥ 0 we have

F(S j u) = F(0) + G(S0u)	0(u) +
∫

�

Tω(S j u) dμ(ω).

As j → ∞, the left-hand side converges to F(u) in the L p norm due to Corollary 6.5.
As for the right-hand side, we use Theorem 4.3,

∥∥∥∥
∫

�

Tω(u − S j u) dμ(ω)

∥∥∥∥
Bs

p,q

≤
∫

�

‖Tω‖Bs
p,q→Bs

p,q
d|μ(ω)|‖u − S j u‖Bs

p,q

≤
∫

�

Ms+2(α(·, ω))Ms+2(β(·, ω)) d|μ(ω)|.

By Theorem 6.6 and the definition of BS∞, we have

∫
�

Ms+2(α(·, ω))Ms+2(β(·, ω)) d|μ(ω)| < ∞.

Therefore,

lim
j→∞

∫
�

Tω(S j u) dμ(ω) =
∫

�

Tω(u) dμ(ω)

in the Bs
p,q -topology. In particular, in the L p-topology.

Similarly, the operator

v �→ G(S0u)	0(v)

is an elementary pseudodifferential operator, and hence G(S0u)	0u ∈ Bs
p,q(Rd

θ ).

We arrive at the following:

F(u) = F(0) + G(S0u)	0u +
∫

�

Tω(u) dμ(ω) ∈ F(0) + Bs
p,q(Rd

θ ).

Hence, F(u) − F(0) ∈ Bs
p,q(Rd

θ ), and since u ∈ L∞(Rd
θ ), Corollary 6.5 implies that

F(u) − F(0) ∈ Bs
p,q(Rd

θ ) ∩ L∞(Rd
θ ). �
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6.3. Differences of Nemytskij operators

Let u, v ∈ L∞(Rd
θ ) be self-adjoint. Let F ∈ C∞(R). Modifying F outside a

compact set if necessary, we assume that F [1] ∈ BS∞ and that

F(t) − F(s)

t − s
=

∫
�

α(t, ω)β(s, ω) dμ(ω).

By the Löwner formula (Lemma 6.3), we have

F(u) − F(v) =
∫

�

α(u, ω)(u − v)β(v, ω) dμ(ω).

We will prove that F is locally Lipschitz on Bs
p,q(Rd

θ ) ∩ L∞(Rd
θ ) by an application

of Corollary 5.4 to the integrand. We have

‖α(u, ω)(u − v)β(v, ω)‖Bs
p,q∩L∞

≤ ‖α(u, ω)‖Bs
p,q∩L∞‖u − v‖Bs

p,q∩L∞‖β(v, ω)‖Bs
p,q∩L∞ .

Formally, it follows that

‖F(u) − F(v)‖Bs
p,q∩L∞

≤ ‖u − v‖Bs
p,q∩L∞

∫
�

‖α(u, ω)‖Bs
p,q∩L∞‖β(v, ω)‖Bs

p,q∩L∞ d|μ(ω)|.

We will take some care to justify this inequality.
The results of this section are summarised in the following theorem. (Compare [58,

Chapter 2, Section 7].)

Theorem 6.9. Let s > 0 and p, q ∈ [1,∞], and let F ∈ C∞(R). If u, v ∈ L∞(Rd)∩
Bs

p,q(Rd
θ ) are self-adjoint, then F(u) − F(v) ∈ Bs

p,q(Rd
θ ) with

‖F(u) − F(v)‖Bs
p,q∩L∞ �F,‖u‖Bs

p,q ∩L∞ ,‖v‖Bs
p,q ∩L∞ ‖u − v‖Bs

p,q∩L∞ .

In particular, if s > d
p then F is locally Lipschitz on the self-adjoint subspace of

Bs
p,q(Rd

θ ). When det(θ) �= 0, then no restrictions on s, p and q are necessary.

6.4. Functions of several variables

The classical theory ofNemytskij operators includes the studyof functions of several
variables,

(u1, . . . , un) �→ f (u1, . . . , un), f ∈ C∞(Rn).

See, for example, [54, Section 5.5.1]. It is not obvious how this can be generalised to
the noncommutative setting. Therefore, we will only deal with polynomial functions.
A noncommutative polynomial in n variables (X1, . . . , Xn) is a formal expression

f (X1, X2, . . . , Xn) =
∑

1≤ j1, j2,..., jl≤n

a j1, j2,..., jl X j1 X j2 · · · X jl
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where each coefficient a j1,..., jl is scalar, and the number of terms is finite. Given such
a polynomial and u1, . . . , un ∈ L∞(Rd

θ ), we will denote

f (u1, u2, . . . , un) :=
∑

1≤ j1, j2,..., jl≤n

a j1, j2,..., j j u j1u j2 · · · u jl .

To be precise, f is an element of the free associative algebra in n variables X1, . . . , Xn ,
and the evaluation f �→ f (u1, . . . , un) is the homomorphism to L∞(Rd

θ ) determined
by mapping X j to u j . The notation f (u1, . . . , un) is meant to suggest functional
calculus, but here f is a polynomial in n noncommuting variables and not a function
on R

n .

Local Lipschitz estimates for polynomial functions on Bs
p,q(Rd

θ )∩ L∞(Rd
θ ) follow

from Corollary 5.4 by induction, we give the details below.

Lemma 6.10. Let f (X1, X2, . . . , Xn) be a noncommutative polynomial in n vari-
ables, let p, q ∈ [1,∞] and s > 0. The assignment

(u1, . . . , un) �→ f (u1, . . . , un)

is locally Lipschitz on Bs
p,q(Rd

θ ) ∩ L∞(Rd
θ ) in the sense that there is a norm bound

‖ f (u1, . . . , un) − f (v1, . . . , vn)‖Bs
p,q (Rd

θ )∩L∞(Rd
θ )

≤ C max
1≤ j≤n

‖u j − v j‖Bs
p,q (Rd

θ )∩L∞(Rd
θ ).

where the constant C depends on f , and all of the norms

‖u j‖L∞(Rd
θ )∩Bs

p,q (Rd
θ ), ‖v j‖L∞(Rd

θ )∩Bs
p,q (Rd

θ ), 1 ≤ j ≤ n.

Proof. It suffices to prove the assertion for monomials of the form

f (X1, . . . , Xn) = Xi1 Xi2 · · · Xik

where k ≥ 1 and the indices 1 ≤ i1, . . . , ik ≤ n are not necessarily distinct. We
can refer to f in this form as monomial of degree k. We prove the assertion for all
monomials of degree k by induction on k, with the k = 1 case being trivial. Let k ≥ 1,
then we have,

f (u1, . . . , un) − f (v1, . . . , vn) = (ui1ui2 · · · uik ) − (vi1vi2 · · · vik )

= (ui1 − vi1)(ui2 · · · uik )

+ vi1((ui2 · · · uik ) − (vi2 · · · vik )).

That is,

f (u1, . . . , un) − f (v1, . . . , vn) = (ui1 − vi1)g(u1, . . . , un)

+vi1(g(u1, . . . , un) − g(v1, . . . , vn))
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where g(X1, . . . , Xn) = Xi2 Xi3 · · · Xik is a monomial of degree k − 1. From Theo-
rem 5.4, we have

‖ f (u1, . . . , un) − f (v1, . . . , vn)‖Bs
p,q (Rd

θ )

≤ ‖ui1 − vi1‖Bs
p,q (Rd

θ )‖g(u1, . . . , un)‖∞
+ ‖ui1 − vi1‖∞‖g(u1, . . . , un)‖Bs

p,q (Rd
θ )

+ ‖vi1‖∞‖g(u1, . . . , un) − g(v1, . . . , vn)‖Bs
p,q (Rd

θ )

+ ‖vi1‖Bs
p,q (Rd

θ )‖g(u1, . . . , un) − g(v1, . . . , vn)‖∞.

By the inductive hypothesis, the result follows. �

7. Nonlinear partial differential equations on R
d
θ

We will focus on the following three model classes nonlinear evolution equations:

(i) The nonlinear heat equation, also called a reaction–diffusion or Allen–Cahn
equation

∂t u = 	u + F(u) (7.1)

where F ∈ C∞(R) is real-valued. We also consider the case where F(u) is a
noncommutative polynomial in {u, ∂1u, . . . , ∂du}

(ii) The nonlinear Schrödinger equation

∂t u = i	u + g(u, ∂1u, ∂2u, . . . , ∂du, u∗, ∂1u∗, . . . , ∂du∗) (7.2)

where g is a polynomial 2d + 1 noncommuting variables. This is essentially a
noncommutative version of the class of nonlinear Schrödinger equations studied
in, for example [12,27] or [57, Chapter 3].

(iii) Finally, we will discuss problems similar to Navier–Stokes. Specifically, the
system of equations for (u1, u2, . . . , ud) and p given by

∂t u j + 1

2

d∑
k=1

uk(∂ku j ) + (∂ku j )uk = 	u j + ∂ j p,

d∑
j=1

∂ j u j = 0, j = 1, . . . , d.

We will adopt the following notation for referring to time-dependent objects: given
u ∈ C([0, T ], X), we write u(t) for the value of u at time t , and ∂t u denotes the
derivative of u with respect to t in the sense that

lim
h→0

∥∥∥∥u(t + h) − u(t)

h
− ∂t u(t)

∥∥∥∥
X

= 0.
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Our results are based on the following existence theorem, which is well known. Let
X be a Banach space, and let Y be a subspace of X equipped with a Banach norm
‖ · ‖Y such that

‖x‖X ≤ ‖x‖Y , x ∈ Y.

A function F : Y → X is said to be locally Lipschitz if for all R > 0 and x1, x2 ∈ Y
with ‖x1‖Y , ‖x2‖Y ≤ R there is a constant CF,R such that

‖F(x1) − F(x2)‖X ≤ CF,R‖x1 − x2‖Y .

For a Banach space X , we denote by C([0, T ], X) the Banach space of continuous X -
valued functions on the interval [0, T ]with norm ‖ f ‖C([0,T ],X) = sup0≤s≤T ‖ f (s)‖X .

The following theorem is [59,Chapter 15, Proposition 1.1], see also themore general
[60, Theorem 2].

Theorem 7.1. Let X and Y be as above. Assume that L is a closed densely defined
operator on X, let F : Y → X be a function. Assume that the following three
conditions hold

(i) L generates a contractive C0-semigroup et L on Y ,
(ii) For all t > 0, we have

et L : X → Y

continuously,
(iii) F is locally Lipschitz from Y to X,
(iv) The norm function t �→ ‖et L‖X→Y obeys

‖et L‖X→Y ≤ Ct−γ

where γ < 1, for sufficiently small t, and for some constant C independent of t.

Then for all x0 ∈ Y with there exists a maximal Tx0 > 0 depending on ‖x0‖Y and a
unique

x ∈ C([0, Tx0), Y )

such that

x(t) = et L x0 +
∫ t

0
e(t−s)L F(x(s)) ds, 0 ≤ t < Tx0

where the integral converges in the Y -valued Bochner sense.

The following simple estimate is also useful.

Lemma 7.2. Let L be as in Theorem 7.1. Let T > 0, and assume that

f ∈ C([0, T ], X).
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Then for all t > 0 the integral

�(t) =
∫ t

0
e(t−s)L f (s) ds

converges in the Y -valued Bochner sense, and with �(0) = 0 defines an element

� ∈ C([0, T ], Y ).

with

‖�‖C([0,T ],Y ) ≤
∫ T

0
‖e(t−s)L‖X→Y ds‖ f ‖C([0,T ],X).

We provide the following global existence criterion, which is not difficult to prove
directly but for which we have not been able to find a precise reference. A proof is
given in the appendix.

Theorem 7.3. Adopt the notation of Theorem 7.1. If {x(t)}0≤t<Tx0
is the fixed point,

and

sup
0≤t<Tx0

‖F(x(s))‖X

‖x(s)‖Y
< ∞

then Tx0 = ∞.

In order to upgrade mild solutions to classical solutions, we use [13, Proposition
4.1.6], which implies that it suffices that F(u(t)) ∈ L1((0, T ), dom(L)).

7.1. Nonlinear parabolic equations

We study now the nonlinear heat equation (7.1).
For generic smooth nonlinearities F , we can prove local well-posedness for initial

data in theBesov class Bs∞,∞(Rd
θ ). This is the noncommutative analogy of [41, Section

7.3.1].

Theorem 7.4. Let F ∈ C∞(R) be real-valued, and let r > 0. For all u0 = u∗
0 ∈

Br∞,∞(Rd
θ ), there exists Tu0 > 0 and a unique

u = (t �→ u(t)) ∈ C([0, Tu0), Br∞,∞(Rd
θ )) ∩

⋂
α>0

C1((0, Tu0), Bα∞,∞(Rd
θ ))

such that u(0) = u0, and

∂t u(t) = 	u(t) + F(u(t))

for all 0 < t < Tu0 .
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Proof. We appeal to the conditions of Theorem 7.1 to prove the existence of Tu0 > 0
and a unique u ∈ C([0, Tu0), Br∞,∞(Rd

θ )) such that

u(t) = et	u0 +
∫ t

0
e(t−s)	F(u(s)) ds, 0 ≤ t < Tu0 . (7.3)

Indeed, we take X = Y = Br∞,∞(Rd
θ ) and apply Theorem 6.9 with p = q = ∞ to

ensure the local Lipschitz condition on F .
Now we prove that u(t) ∈ ⋂

u>0 Bu∞,∞(Rd
θ ) for all t > 0. We can do this by

induction, proving that if α > 0 is such that u(s) ∈ Bα∞,∞(Rd
θ ) for all s ≤ t then

u(s) ∈ B
α+ 1

2∞,∞(Rd
θ ) for all 0 ≤ s ≤ t.Suppose that t > 0 is such that u(s) ∈ Bα∞,∞(Rd

θ )

for all 0 ≤ s ≤ t . Theorem 6.9 implies that the function t �→ F(u(t)) belongs to
C([0, t], Bα∞,∞(Rd

θ )).
From Proposition 3.21, we have

‖et	‖
Bα∞,∞(Rd

θ )→Bα+ 1
2 (Rd

θ )
�r 1 + t−

1
2 .

Hence t �→ ‖et	‖
Bα∞,∞→B

α+ 1
2∞,∞
is integrable near zero. This completes the verification

of the conditions of Lemma 7.2 with X = Bα∞,∞(Rd
θ ), Y = B

α+ 1
2∞,∞(Rd

θ ), L = 	 and

f (s) = F(u(s)), and it follows from (7.3) that u(t) ∈ B
α+ 1

2∞,∞(Rd
θ ).

Hence, (t �→ u(t)) ∈ ⋂
α>0 C([0, Tu0), Bα∞,∞(Rd

θ )). The same is true for t �→
F(u(t)), by Theorem 6.8. It follows that u′(t) = 	u(t) + F(u(t)), by the abstract
result [13, Proposition 4.1.6]. �
We can give a similar theorem where the nonlinearity is a polynomial in u and its

derivatives.

Theorem 7.5. Let p(u, ∂1u, . . . , ∂du) be a noncommutative polynomial in the vari-
ables {u, ∂1u, . . . , ∂du}, and let r > 1. For all u0 ∈ Br∞,∞(Rd

θ ) there exists a maximal
Tu0 > 0 and a unique

u = (t �→ u(t)) ∈ C([0, Tu0), Br∞,∞(Rd
θ )) ∩

⋂
α>0

C1((0, Tu0), Bα∞,∞(Rd
θ ))

such that u(t) = u0 and

∂t u(t) = 	u(t) + p(u(t), ∂1u(t), . . . , ∂du(t)), 0 < t < Tu0 .

Proof. This proof is essentially identical to that of Theorem 7.4. The only difference
is that we use Lemma 6.10 in place of Theorem 6.9. �
7.2. Nonlinear Schrödinger equations

We now study the nonlinear Schrödinger equation (7.2),

i
∂u

∂t
= 	u + g(u, u∗)
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where g(u, u∗) is a noncommutative polynomial in u and u∗. Formally, solutions can
be written in terms of the Schrödinger semigroup as

u(t) = e−it	u(0) − i
∫ t

0
e−i(t−s)	g(u(s), u(s)∗) ds. (7.4)

Unlike the heat semigroup, the Schrödinger semigroup does not introduce any
smoothing in the scale of Sobolev spaces. Local smoothing for the Schrödinger
semigroup on R

d are known, but we postpone the task of proving analogies for the
Schrödinger semigroup on R

d
θ for future work.

Theorem 7.6. Assume that det(θ) �= 0. Let g(u, u∗) be a noncommutative polynomial
in the variables u and u∗. Let r ≥ 0. For all u0 ∈ W r

2 (Rd
θ ) there exists a maximal

Tu0 > 0 and a unique

u ∈ C([0, Tu0), W r
2 (Rd

θ ))

such that u obeys (7.4) limt→0 u(t) = u0 in the W r
2 (Rd

θ )-sense.

Proof. By Theorem 3.11, the semigroup t �→ exp(−it	) is strongly continuous on
W s

2 (Rd
θ ).

Since det(θ) �= 0, we have

L∞(Rd
θ ) ⊃ L2(R

d
θ ) ⊃ Br

2,2(R
d
θ ) = W r

2 (Rd
θ ).

Hence, by Lemma 6.10, u �→ g(u, u∗) is locally Lipschitz on W r
2 (Rd

θ ). The result
now follows from Theorem 7.1. �
We can begin to see the counterintuitive consequences of Theorem 7.6 if we assume

that g has some special structure so that (7.4) preserves the L2-norm.

Lemma 7.7. Let det(θ) �= 0, and let g(u, u∗) be a noncommutative polynomial in
the variables u and u∗. Let r ≥ 0 and u0 ∈ W r

2 (Rd
θ ), and let

u ∈ C([0, Tu0), W r
2 (Rd

θ ))

be the solution to (7.4) extended to a maximal interval [0, Tu0). If

‖u(t)‖L2(R
d
θ ) ≤ ‖u0‖L2(R

d
θ ), 0 ≤ t < Tu0

then Tu0 = ∞.

Nowwe can begin to see the counterintuitive results of concentrating on det(θ) �= 0.

Lemma 7.8. Let det(θ) �= 0, and let p > 1 be an odd positive integer, and let μ ∈ R.
Then the nonlinear Schrödinger equation

i∂t u + 	u = μu|u|p−1 (7.5)

has unique global mild solutions for any initial u(0) ∈ W 2
2 (Rd

θ ), which depend con-
tinuously on the initial conditions in the sense that if t is sufficiently small then the
function u(0) �→ u(t) is locally Lipschitz on L2(R

d
θ ).
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Proof. This is essentially an application of [12, Theorem 3.3.1]. Since p is an odd in-
teger,μu|u|p−1 is a noncommutative polynomial in u and u∗.Hence, Theorem 7.6 im-
plies that there is a time interval [0, Tu0) such that (7.5) has a solution in the mild sense
in L2(R

d
θ ) for 0 ≤ t < Tu0 . This mild solution obeys (7.5) since t �→ μu(t)|u(t)|p−1

is a continuous W 2
2 (Rd

θ )-valued function, so that the conditions of [13, Proposition
4.1.6] are satisfied. The derivative of the L2 norm of u(t) with respect to t is

d

dt
‖u(t)‖22 = d

dt
〈u(t), u(t)〉

= 2Re〈∂t u(t), u(t)〉
= 2Re〈i	u(t) − iμu(t)|u(t)|p−1, u(t)〉
= 2Re〈i	u(t), u(t)〉 − 2μRe(iτ(|u(t)|p+1))

= 0.

Note that in the final step we have used the fact that τ(|u(t)|p+1) < ∞, which follows
from ‖u(t)‖2 < ∞ since det(θ) �= 0. Hence, the L2 norm of u is conserved. Since
det(θ) �= 0, the L2 norm is submultiplicative and hence

sup
0≤s≤T

‖μu|u|p−1‖2 �θ sup
0≤s≤T

|μ|‖u(s)‖p
2 ≤ |μ|‖u(0)‖p−1

2 sup
0≤s≤T

‖u(s)‖2.

Hence Theorem 7.3 implies that the maximal time of existence Tu0 is infinite. �

Via an identical argument, if g(u, u∗) is a noncommutative polynomial in {u, u∗}
such that 〈g(u, u∗), u〉 ∈ R for all u ∈ L2(R

d
θ ), it follows that (7.5) has global-in-time

solutions. For example, we may take g(u) = |u|p−1u.

7.3. Navier–Stokes equations

As illustration of the differences between the commutative and noncommutative
cases, we now discuss well-posedness for Navier–Stokes-type equations. In particular,
we study the equation for self-adjoint u(t) ∈ L2(R

d
θ ) ⊗ R

d and p(t) ∈ L2(R
d
θ ),

∂t u(t) + X (u(t)) = 	u(t) + ∇ p(t), ∇ · u(t) = 0,

where ∇ · u = ∑d
j=1 ∂ j u and X (u) = (X (u)1, . . . , X (u)d) is the nonlinear term

X (u)k =
d∑

j=1

1

2
(u j∂ j (uk) + ∂ j (uk)u j ), k = 1, . . . , d.

In other words, we have replaced the pointwise product u j∂ j uk in (1.2) with the Jordan
product

u j ◦ ∂ j uk := 1

2
(u j∂ j uk + ∂ j uku j ).
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Of course this is not the only polynomial which reduces to u j∂ j uk in the commutative
case.We have selected X (u) since it is arguably the simplest noncommutative analogy
of u ·∇u with the property that X (u) is self-adjointwhenever u is self-adjoint.Wemake
no attempt to motivate this choice of analogy for the Navier–Stokes equations from
a physical perspective. Instead, the main interest is simply the formal resemblance to
the classical viscous incompressible Navier–Stokes equations.
For the sake of brevity, denote

Hs := W s
2 (Rd

θ ) ⊗ C
d , s ∈ R.

As in the classical case, we dispense with the ∇ p term by applying the orthogonal
projection onto the divergence-free vector fields.

Definition 7.9. The Leray projection P is the linear operator on H0 defined in terms
of map λθ as

(Pλθ ( f )) j =
d∑

k=1

λθ ((δ j,k − t j tk
|t |2 ) f (t)), f ∈ L2(R

d).

That is, P is the multiplier m(D) = {m j,k(D)} where

m j,k(ξ) = δ j,k − ξ jξk

|ξ |2 , ξ ∈ R
d\{0}.

Equivalently, we could define P to be the image under the Weyl transform Wθ of
the classical Leray projection.
The Leray projection is bounded from L2(R

d
θ ) ⊗ C

d to itself and has the property
that if u ∈ Hs for s ≥ 1, then ∇ · Pu = 0. Alternatively, P could be defined as the
L2-orthogonal projection onto the closed subspace of divergence-free vector fields.
In addition, P is bounded from L p(R

d
θ ) ⊗ C

d to itself for all 1 < p < ∞ due to the
noncommutative Mikhlin theorem [43], but we will not use this fact.

Lemma 7.10. Let det(θ) �= 0 and s ≥ 0. Then the function

u �→ PX (u), u ∈ Hs+1

is locally Lipschitz from Hs+1 to Hs. We also have the norm bound

‖PX (u)‖Hs �θ ‖u‖2Hs+1 .

Proof. This follows from the boundedness of P on Hs(Rd
θ ), Lemma 6.10 and the fact

that L2(R
d
θ ) is contained in L∞(Rd

θ ) for non-degenerate θ. �

Theorem 7.11. Assume that det(θ) �= 0. Let u0 ∈ H2 have divergence zero and be
self-adjoint. There exists a unique u ∈ C∞((0,∞), H2) such that

∂t u(t) + PX (u(t)) = 	u(t), lim
t→0

u(t) = u0. (7.6)

Moreover, u(t) = u(t)∗ and u(t) ∈ ⋂
s>0 Hs for all t > 0.
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Proof. Lemma 7.10 implies that PX is locally Lipschitz from H1 to H0. Hence,
Theorem 7.1 implies that there exists a maximal time Tu(0) ≤ ∞ such that a unique
solution u(t) in H1 exists in the mild sense for all 0 ≤ t < Tu(0) and u(0) = u0 ∈ H1.

A similar argument to Theorem 7.4 shows that u(t) ∈ ⋂
r>0 Hr for all t > 0. It

follows that the mild solution is a classical solution to (7.6) due to [13, Proposition
4.1.6]. Let v(t) = ∑d

k=1 ∂kuk(t) be the divergence of u at time 0 ≤ t < Tu(0). By
assumption, we have v(0) = 0. Since ∇ ·PX (u(t)) = 0 by the definition of the Leray
projection, we have

∂tv(t) = 	v(t), v(0) = 0.

Uniqueness for the heat equation implies that v(t) = 0 for all t ≥ 0, and hence, u(t)
has divergence zero for all 0 ≤ t < Tu(0).
Observe that X (u∗) = X (u)∗ for all u ∈ H1, and hence, if u(0) = u(0)∗ it follows

that t �→ u(t)∗ is a solution to (7.6) for all 0 ≤ t < Tu(0), which by uniqueness must
be identical to u(t). Hence, u(t) = u(t)∗ for all 0 < t < Tu0 .

The derivative of the H0 norm of u is

∂t‖u(t)‖2H0 = 2Re〈	u(t) + PX (u(t)), u(t)〉 ≤ 2Re〈PX (u(t)), u(t)〉.
Since u(t) has divergence zero for all 0 ≤ t < Tu0 , we have

〈PX (u(t)), u(t)〉 = 1

2

d∑
k=1

d∑
j=1

〈∂ j (u j uk + uku j ), uk〉

= 1

2

d∑
j,k=1

〈u j (∂ j uk) + (∂ j uk)u j , uk〉

= 1

2

d∑
j,k=1

τ((∂ j uk)
∗u∗

j uk) + τ(u∗
j (∂ j uk)

∗uk)

= 1

2

d∑
j,k=1

τ(uk(∂ j uk)
∗u∗

j ) + τ(u∗
j (∂ j uk)

∗uk)

= 1

2

d∑
j,k=1

τ(u∗
j (uk(∂ j uk)

∗ + (∂ j uk)
∗uk))

= 1

2

d∑
j,k=1

〈u j , uk∂ j (u
∗
k) + ∂ j (u

∗
k)uk〉.

Since uk(t)∗ = uk(t) for all 0 ≤ t < Tu(0), it follows that

〈PX (u(t)), u(t)〉 = 1

2

d∑
j,k=1

〈u j , ∂ j (u
2
k)〉 = −1

2
〈∇ · u,

d∑
k=1

u2
k〉 = 0.
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Hence,

∂t‖u(t)‖22 ≤ 0

so that the H0 norm of u(t) remains bounded over 0 ≤ t < Tu(0). Theorem 7.1 now
suffices to conclude that Tu0 = ∞. Indeed, we have

‖X (u(t))‖H0 �θ ‖u(t)‖H0‖u(t)‖H1 ≤ ‖u(0)‖H0‖u(t)‖H1, 0 < t < Tu0 ,

so that the condition of Theorem 7.3 is satisfied, and hence Tu0 = ∞. �

Remark 7.12. As the preceding argument shows, the well-posedness of (7.6) for u0 ∈
H1 is rather trivial. A more difficult problem would be to replace the nonlinear term
with an expression that is not self-adjoint. For example, instead of

X (u)k =
d∑

j=1

1

2
(u j∂ j (uk) + ∂ j (uk)u j ), k = 1, . . . , d.

we could examine

X (u)k =
d∑

j=1

u j∂ j (uk), k = 1, . . . , d.

This problem would be more difficult because X (u)∗k �= X (u∗)k in general, and
therefore we should not expect that if the components of u0 are self-adjoint then the
same is true for u(t) for t > 0.
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Appendix A. Existence theorems for parabolic differential equations

In this paper, we have used the theory of abstract Cauchy problems to deal with
existence and uniqueness of partial differential equations on R

d
θ . The general theory
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of abstract Cauchy problems is covered in, e.g. [41, Chapter 4], [2, Section 1.2], [3,
Chapter 3], [51, Chapter 5], [34, Appendix G], [64], [22, Chapter 7].
We have made use of a “blow-up” criterion (Theorem 7.3) which is certainly not

novel but for which we have been unable to find a reference.

Proof of Theorem 7.3. Suppose that Tx0 < ∞. If this is the case, then we must have
‖x(s)‖Y → ∞ as s → Tx0 . Indeed, otherwise there would exist R > 0 and a sequence
{ε j }∞j=0 with ε j → 0 such that ‖x(Tx0 −ε j )‖Y ≤ R. According to Theorem 7.1, there
exists TR such that the solution can then be extended to an interval [0, Tx0 − ε j + TR).
This contradicts the maximality of Tx0 when j is large enough, and hence, if Tx0 < ∞
then

sup
0<t<Tx0

‖x(t)‖Y = ∞.

The assumption of the theorem is that there exists 0 < Cx0 < ∞ such that

‖F(x(s))‖X ≤ Cx0‖x(s)‖Y , 0 ≤ s < Tx0 .

Let 0 < r < t < Tx0 . Then by definition, we have

x(t) = et L x0 +
∫ t

0
e(t−s)L F(x(s)) ds.

Using the contractivity of the semigroup et L and Lemma 7.2, it follows that

‖x(t)‖Y ≤ ‖x0‖Y +
∫ t

0
‖e(t−s)L‖X→Y ‖x(s)‖Y ds.

By Gronwall’s inequality

‖x(t)‖Y ≤ exp(
∫ t

0
‖esL‖X→Y ds)‖x0‖Y ≤ exp(Ct1−γ )‖x0‖Y .

Therefore, if Tx0 < ∞, we have

sup
0<t<Tx0

‖x(t)‖Y ≤ exp(CT 1−γ
x0 )‖x0‖Y < ∞.

which is a contradiction. �
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