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Abstract. We investigate the existence of a time-periodic solution to a nonlinear evolution equation in-
volving p(x)-growth conditions with irregular data. We tackle our problem in a suitable functional setting
by considering the so-called variable exponent Lebesgue and Sobolev spaces. By assuming that the data
belongs only to L1, we prove the existence of a renormalized time-periodic solution to the studied model.

1. Introduction

The study of nonlinear partial differential equations has undergone a great revolution
in several fields of applied sciences. Relevant examples can be found in the modeling
of many biological, physical, ecological, and chemical phenomena. Among these are
temperature distribution, heat diffusion, population growth, heat control, and cellular
neural networks. As well known, modeling such phenomena requires the use of some
mathematical tools. In particular, standard Lebesgue and Sobolev spaces L p andW 1,p

with constant exponent p can be used tomodelmanymaterialswith sufficient certainty.
But when we talk about nonhomogeneous materials (we refer for example to “smart
fluids”), this approach failed and proved its limitations in applications. The class
of Lebesgue and Sobolev spaces L p(x) and W 1,p(x) with variable exponent p(x)
are the most adequate spaces to describe these kinds of materials. The application
fields of these spaces are various and so rich. Worth mentioning are the study of
electrorheological fluids [29,42,44], robotics and thermorheological fluids [30,36,43],
epidemiology modeling [10,11,45] and image processing [5,20].
Motivated by the application fields of PDEs with variable exponent, we aim in this

work to investigate the existence of a time-periodic solution to a nonlinear parabolic
equation with p(x)-growth structure whose model is

⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
− div

(|∇u|p(x)−2∇u
) + g(t, x, u,∇u) = f (t, x) in QT

u(0, ·) = u(T, ·) in �

u = 0 on �T .

(1)
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where � is a bounded open subset of RN with smooth boundary ∂�, T > 0 is the
period, QT := (0, T )×�,�T := (0, T )×∂�, f is a measurable function periodic in
timewith period T and belonging to L1(QT ), g : QT ×R×R

N → R is aCarathéodory
function, periodic in time with period T and enjoying some growth assumptions to be
specified later and p(·) is a continuous function on � such that infx∈� p(x) > 1.

The interest in taking into account the study of periodic parabolic problems comes
from several facts. Indeed, periodic behavior may exhibit space dispersion of many
physical, ecological, chemical, or biological processes. It is often used to describe
real phenomena which behave periodically over time, see for example [6,7,27]. To
proceed with our presentation, we propose to recollect some previous works in the
literature which rely strongly on our problems. We begin with some former papers
involving specific cases of (1) with initial conditions u0. In Bendahmane et al. [9]
studied problem (1) with an initial data u0 belonging to L1 but without nonlinearity
(g ≡ 0). The authors proved the existence of a unique renormalized solution by
combining semi-group theory with the approximation method. They established also
the equivalence between the renormalized and entropy notions of solutions to this kind
of boundary value problem. Further, in the same equation was treated by Zhang and
Zhou Bendahmane et al. The authors proposed another theoretical approach to show
the existence and uniqueness of a renormalized and entropy solution. Theirmethodwas
based on the combination of a time semi-discretizationmethodwith the approximation
approach. In Li and Go [34] generalized the both mentioned works [9,50] by adding a
lower-order termwhich depends on the solutions and their gradients. By assuming that
the nonlinearitymeets some growth structurewith a sign condition, the authors showed
the existence of a renormalized solution. Likewise to the above-mentioned papers,
the existence was done via the approximations method. In [28], a study on semilinear
parabolic equations with p(x)-growth conditions has been considered by Rădulescu et
al. They tackled an initial-boundary value problem involving p(x)-Laplacian operator
with a nonlinear source term f (u). The authors examined the existence of a weak
solution by assuming that the variable exponent p(x) satisfies some conditions. They
also investigated uniqueness when f (u) is a locally Lipschitz continuous function
with respect to u. Quasilinear parabolic problems with variable exponent were also
examined in recent years. We mainly refer the readers to see [1,16,26,47,49] and the
references therein.

In parallel, manifold works have been dedicated to investigating the existence,
uniqueness and asymptotic behaviors of periodic solutions to parabolic problems. We
start by recalling some papers dealing on periodic PDEs but with constant exponent.
The book by Hess [31] introduced a qualitative analysis of periodic solutions to partial
differential equations with regular data. The authors used the sub-and super-solutions
method to prove the existence of classical periodic solutions when the data belongs
to suitable Hölder space. The book by Lions [35] offers the reader a comprehensive
introduction to periodic parabolic problems with constant exponent p(x) ≡ p. The
author displayed the existence, uniqueness and regularities properties of weak periodic
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solutions to p-Laplacian parabolic equations via monotone operator theory. In Deuel
and Hess [22] studied Eq. (1) when the nonlinearity g satisfy a particular growth

assumption and f belongs to L
p

p−1 (QT ) for a constant p > 1. Under the fact that a
pair of bounded sub- and super-solutions are known, the authors showed existence of
a periodic bounded solution in the weak sense. Besides the aforementioned papers,
there is an abundance of literature regarding the case p(x) = 2 see [17–19]. Various
theoretical approaches have been considered to investigate the existence of periodic
solutions to different kinds of nonlinear parabolic equations. However, there are rare
finding results concerning periodic parabolic equations with p(x)-growth conditions.
Only a few papers have been recently dedicated to investigating this topic. In the
paper, Fragnelli [27] studied a system of (p(x), q(x))-Laplacian parabolic equations
involving having time-periodic conditionswith nonlocal terms. Under the assumptions
that inf x∈� p(x) > 2 and inf x∈� q(x) > 2, the author disused the existence of a
positive weak periodic solution in L2 framework. Their method was based on the
implementation of Leray-Schauder’s topological degree. The paper [2] by Akagi and
Matsuura dealtwith the existence anduniqueness of a periodic solution to (1)when g =
0. The authors assumed that f belongs to L2(QT ) and inf x∈� p(x) > max{1, 2N/N+
2} to tackle the problem in L2-setting. They employed the subdifferential approach to
derive the existence and uniqueness of periodic L2-solution. Recently, Charkaoui et al.
[4] investigated a periodic M × M system involving Leray-Lions-type operators with
a variable exponent. By combining the sub- and super-solution method with Leray-
Schauder topological degree, they proved the existence of weak periodic solutions
when the data are regular enough. We point out that until now the investigation of
periodic problems with p(x)-growth structure and irregular data are more limited in
the literature. Let us mention that, we have recently intended this gap in our work [15]
by considering (1) with g ≡ 0 and f belongs only to L1(QT ). We have discussed
two existence and uniqueness results of periodic solutions to the considered problem.
In the first one, we tackled the problem when f belongs to a suitable Bochner space.
Based on monotone operator theory, we showed the existence and uniqueness of the
weak periodic solution. For the second result, we studied the existence and uniqueness
of periodic solution when f belongs only to L1(QT ). This fact forced us to adapt
a novel notion of solution which we have called a renormalized periodic solution.
Our approach was based on the approximation method and involves some technical
estimates.

Motivated by the above discussion, we are going to study the solvability of problem
(1) in a more general framework by taking weak regularity on the data f associated
with natural assumptions on the nonlinearity g. We will assume that the variable ex-
ponent satisfies infx∈� p(x) > 1 and the source term f belongs only to L1(QT ).
As well known, we require to suppose that g meets a sign condition hypothesis. Fur-
ther, we shall assume that g has nonstandard growth conditions which involve the
variable exponent p(x). All these assumptions guarantee that problem (1) contributes
to enriching literature on periodic parabolic equations not only about problems hav-
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ing p(x)-growth conditions but also those involving constant growth. Note that the
consideration of this hypothesis kinds complicates the existence proof which leads
to managing several major difficulties. More precisely, the presence of the L1 term
causes difficulty to deal with problem (1) via the standard weak notion of periodic
solution. To manage this difficulty, we shall follow our recent work [15] to adapt the
notion of renormalized periodic solutions to problem (1). We would like to mention
that this notion was first suggested by DiPerna and Lions [25] to investigate the Boltz-
mann’s equation. And it was extended to different types of PDEs such as linear and
nonlinear, more precisely those involving irregular terms see [3,12,13,32,38,39,48].
Another difficulty appears from the p(x)-growth structure of the nonlinearity g which
leads problem (1) to behave completely differently from the considered problems in
[9,15,50]. To manage the last one, we will inspire by the classical Porretta’s work [40]
to develop a new adequate approach. We also point out that one of the major difficult
parts arises from the time-periodic condition appearing in (1). In fact, we need to build
a sequence (un) of approximate solutions to (1) which is periodic in time. To overcome
this we shall ensure the existence of such sequence via the result of Charkaoui et al.
[4]. Thus, we should carefully estimate (un) to derive good compactness results and
therefore prove that the limit of this sequence is time-periodic in a suitable sense.
We have structured the rest of our paper as follows.We start Sect. 2with a brief recall

of the variable exponent Lebesgue-Sobolev spaces as well as some basic properties
and useful relationships. Section3 is devoted to enunciating our main results. We will
state the needed assumptions to deal with (1), we will put forward the notion of a
renormalized periodic solution to (1) and we state our existence theorem. In Sect. 4,
we detail the proof of our main results. We will divide this part into four subsections.
In the first one, we introduce a well-posed approximate problem to (1). The second
subsection will be reserved to establish prior estimates on the approximate solution.
In the third subsection, we demonstrate the strong convergence of the truncation in a
suitable Banach space. And finally, the fourth subsection deal with the passing to the
limit on the approximate problem.

2. Mathematical backgrounds

For the reader’s convenience, we will briefly recall some definitions, properties and
valuable relationships of Lebesgue and Sobolev spaces with variable exponent. For
a more detailed presentation, we refer the readers to see the books by Antontsev and
Shmarev [8], Diening et al. [24], Rădulescu and Repovs̆ [41].
2.1. Lebesgue and Sobolev spaces with variable exponent

For a given p ∈ C (
�

)
, we define the following real values

p− = inf
x∈�

p(x) and p+ = sup
x∈�

p(x).

Further, we introduce the sets
E1 := {

p ∈ C (
�

) : p− > 1
}
, M(�) := {u : � → R measurable} .
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The Lebesgue space with variable exponent L p(x)(�) is defined as

L p(x)(�) = {
u ∈ M(�) : ρp(x)(u) < ∞}

,

where ρp(·) designates the following convex modular

ρp(x)(u) =
∫

�

|u(x)|p(x)dx .

We consider on L p(x)(�) the so-called Luxemburg norm

‖u‖p(x) = inf

{

μ > 0, ρp(x)

(
u

μ

)

≤ 1

}

.

Among the interesting properties, we find that when p(·) belongs to E1, the space
(L p(x)(�), ‖ ·‖p(x)) is a separable, reflexive Banach space. In addition, for any p(·) ∈
E1, we set p′(x) = p(x)

p(x)−1 as the conjugate exponent of p(·). Further, we designate by
L p′(x)(�) the dual space of L p(x)(�). The succeeding proposition summarizes some
useful inequalities known by p(x)-Hölder inequalities.

Proposition 1. Let p(·) ∈ E1. For any couple (u, v) ∈ L p(x)(�) × L p′(x)(�), we
have

∣
∣
∣
∣

∫

�

uv dx

∣
∣
∣
∣ ≤

(
1

p− + 1

(p−)′

)

‖u‖p(x)‖v‖p′(x) ≤ 2‖u‖p(x)‖v‖p′(x).

Moreover, if we have 1
p(x) + 1

p′(x) + 1
p′′(x) = 1, then

∣
∣
∣
∣

∫

�

uvw dx

∣
∣
∣
∣ ≤

(
1

p− + 1

(p−)′
+ 1

(p−)′′

)

‖u‖p(x)‖v‖p′(x)‖w‖p′′(x)

≤ 3‖u‖p(x)‖v‖p′(x)‖w‖p′′(x),

for all (u, v, w) ∈ L p(x)(�) × L p′(x)(�) × L p′′(x)(�).

We extend the variable exponent p : � → (1,+∞) to QT = [0, T ]×� by setting
p(t, x) := p(x) for all (t, x) ∈ QT . Extending the variable exponent comes with a
great advantage. It allows the obtainment of an interpolation result that will serve to
acquire important a-priori-estimates (see [9] for more details). On that account, the
variable exponent Lebesgue space L p(x)(QT ) is presented as

L p(x)(QT ) =
{

u ∈ M(QT ) :
∫

QT

|u(t, x)|p(x)dx dt < ∞
}

.

Equipped with the following norm

‖u‖p(x) = inf

{

μ > 0,
∫

QT

∣
∣
∣
∣
u(t, x)

μ

∣
∣
∣
∣

p(x)

dx dt ≤ 1

}

,
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the space
(
L p(x)(QT ), ‖ · ‖p(x)

)
is a separable, reflexive Banach. The Sobolev space

with variable exponent is defined follows as

W 1, p(x)(�) =
{

u ∈ L p(x)(�), |∇u| ∈
(
L p(x)(�)

)N
}

.

The associated standard norm is given by

‖u‖1, p(x) = ‖u‖p(x) + ‖∇u‖p(x).

A popular equivalent norm is given as

‖u‖1,p(x) = inf

{

μ > 0,
∫

�

(∣
∣
∣
∣
∇u(x)

μ

∣
∣
∣
∣

p(x)

+
∣
∣
∣
∣
u(x)

μ

∣
∣
∣
∣

p(x)
)

dx ≤ 1

}

.

Hereinafter referred, p(·) satisfies the log-Hölder continuity condition, i.e., there exists
a constant C such that

|p(x1) − p(x2)| ≤ C

−log|x1 − x2| , ∀x1, x2 ∈ �, with |x1 − x2| <
1

2
. (2)

The last assumption was considered by Zhikov in [51] to deal with the Lavrentiev
phenomenon. Furthermore, hypothesis (2) ensures that the space of smooth functions
C∞
c (�) is dense in W 1,p(x)(�). For added convenience, we define W 1,p(x)

0 (�) :=
C∞
c (�)

W 1,p(x)(�)
and we denote

(
W 1,p(x)

0 (�)
)∗

its dual space. We will designate

by 〈·, ·〉 the duality pairing between
(
W 1,p(x)

0 (�)
)∗

and W 1,p(x)
0 (�). The spaces

W 1,p(x)(�) and W 1,p(x)
0 (�) are separable and reflexive Banach’s. Further, for any

u ∈ W 1,p(x)
0 (�), we have the following p(x)-Poincaré inequality

‖u‖p(x) ≤ C‖∇u‖p(x), (3)

where C is a constant depending only on p(·) and �. Subsequently, the following is
a validated norm on W 1,p(x)

0 (�)

‖u‖
W 1,p(x)

0 (�)
= ‖∇u‖p(x).

The following assertions describe several useful properties and relationships ofLebesgue
and Sobolev spaces with variable exponents.

Proposition 2. 1. For any u ∈ L p(x)(�), we have the following relationships

min
{
‖u‖p−

p(x), ‖u‖p+
p(x)

}
≤ ρp(x)(u) ≤ max

{
‖u‖p−

p(x), ‖u‖p+
p(x)

}
. (4)

min

{

ρ

1
p−
p(x)(u), ρ

1
p+
p(x)(u)

}

≤ ‖u‖p(x) ≤ max

{

ρ

1
p−
p(x)(u), ρ

1
p+
p(x)(u)

}

. (5)

2. Let (un) be a sequence in L p(x)(�), then the following statements are equivalent:
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(i) lim
n→+∞ ‖un − u‖p(x) = 0.

(ii) lim
n→+∞ ρp(x) (un − u) = 0.

(iii) un → u in measure in � and lim
n→+∞ ρp(x) (un) = ρp(x)(u).

Proposition 3. 1. Let p1(·), p2(·) ∈ E1 such that p1(x) ≤ p2(x) almost every-
where in �. Then, we have the continuous embedding L p2(x)(�) ↪→ L p1(x)(�).

2. Let p(·), q(·) ∈ E1 such that 1 ≤ q(x) < p∗(x), for all x ∈ �, then the
embedding W 1,p(x)

0 (�) ↪→ Lq(x)(�) is continuous and compact, where

p∗(x) :=
{

Np(x)
N−p(x) , p(x) < N

+∞, p(x) ≥ N .

2.2. Functional framework

In this segment, we present the functional framework which will be considered in
the solvability of problem (1). For any 0 < T < +∞, we define the time space

L p−
(0, T ;W 1,p(x)

0 (�)) =
{

u ∈ L p(x)(QT ) :
∫ T

0
‖∇u‖p−

p(x)dt < ∞
}

,

endowed with the norm

‖u‖
L p−

(
0,T ;W 1,p(x)

0 (�)
) =

(∫ T

0
‖∇u‖p−

p(x)dt

) 1
p−

.

We recall the customary space U(QT ) often considered in the studies of parabolic
problems with variable exponent

U(QT ) =
{

u ∈ L p− (
0, T ;W 1,p(x)

0 (�)
)

: |∇u| ∈ L p(x) (QT )N
}

,

and of which, the associated norm reads

‖u‖U(QT ) = ‖∇u‖L p(x)(QT ).

Due to p(x)-Poincaré inequality (3) and the continuity of the embedding L p(x)(QT ) ↪→
L p−

(0, T ; L p(x)(�)) the norm ‖·‖U(QT ) is equivalent to the following standard norm

‖u‖U(QT ) = ‖u‖
L p−

(
0,T ;W 1,p(x)

0 (�)
) + ‖∇u‖L p(x)(QT ).

The space U(QT ) is a separable reflexive Banach and we designates by U(QT )∗ its
dual space. The following Lemma relatively resumes the interesting properties of the
space to our work.

Lemma 1. [9] Let U(QT ) be the space defined as above. Then,
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(i) The following is a continuous dense embedding

L p+
(0, T ;W 1,p(x)

0 (�)) ↪→ U(QT ) ↪→ L p−
(0, T ;W 1,p(x)

0 (�)). (6)

In particular, and since C∞
c (QT ) is dense in L p+

(0, T ;W 1,p(x)
0 (�)), then it is

also dense in U(QT ). Similarly, the corresponding dual spaces satisfy

L(p−)′(0, T ; (W 1,p(x)
0 (�))∗) ↪→ U(QT )∗ ↪→ L(p+)′(0, T ; (W 1,p(x)

0 (�))∗). (7)

(ii) The elements of U(QT )∗ are represented in this fashion: For all ζ ∈ U(QT )∗,
there exists ξ = (ξ1, . . . , ξN ) ∈ (L p′(x)(QT ))N such that: ζ = div(ξ) and

< ζ, ϕ >U(QT )∗,U(QT )=
∫

QT

ξ∇ϕdxdt,

for any ϕ ∈ U(QT ). Furthermore, we have

‖ζ‖U(QT )∗ = max{‖ξi‖L p(x)(QT ), i = 1, . . . , N }.

(iii) For any u ∈ U(QT ), we have

min

{

‖u‖p−
U(QT ), ‖u‖p+

U(QT )

}

≤
∫

QT

|∇u|p(x) dxdt ≤ max

{

‖u‖p−
U(QT ), ‖u‖p+

U(QT )

}

.

(8)

Now, we are ready to introduce the following functional space.

W(QT ) :=
{

u ∈ U(QT ); ∂u

∂t
∈ U(QT )∗ + L1 (QT )

}

.

The interest into taking account the introduction of space W(QT ) can be viewed in
the following lemma which gives some interesting embedding results.

Lemma 2. Let W(QT ) be the space defined above. Then, we have

W(QT ) ↪→ C
(
[0, T ]; L1(�)

)
. (9)

W(QT ) ∩ L∞ (QT ) ↪→ C
(
[0, T ]; L2(�)

)
. (10)

We can show the result of Lemma 2 by following the same lines as the proof of the
case p(·) = p constant, see Theorem 1.1 from [40].

2.3. Some truncation functions

In this paragraph, we state the used truncation functions in our paper. Furthermore,
we exhibit some fundamental results of functional analysis.



J. Evol. Equ. An L1-theory for a nonlinear temporal periodic problem Page 9 of 33 73

(i) For any integer k > 0, we define Tk : R → R the truncation function at height
k as

Tk(r) =
{
r if |r | ≤ k
k sign(r) if |r | > k,

(11)

where,

sign(r) =
⎧
⎨

⎩

1 if r > 0
0 if r = 0
−1 if r < 0.

(i i) For given integers a, k > 0, we introduce the truncation function Tk,a(s) =
Ta (s − Tk(s)) which reads as

Tk,a(s) =
⎧
⎨

⎩

s − k sign(s) if k ≤ |s| < k + a
a sign(s) if |s| ≥ k + a
0 if |s| ≤ k.

(12)

We will designate by θk (·) and θk,a (·), respectively, the primitive functions of
Tk (·) and Tk,a (·), which given by

θk(r) =
∫ r

0
Tk(s)ds, θk,a(r) =

∫ r

0
Tk,a(s)ds.

(i i i) Let us consider s(·) a positive C∞(R) function such that

s(z) =
{
1 if |z| ≤ 1
0 if |z| ≥ 2

and 0 ≤ s(z) ≤ 1 for all z ∈ R.

For any integer i ≥ 2, we define the truncation function Si (r) = ∫ r
0 si (z)dz

where

si (z) =
{
1 if |z| ≤ i − 1
s(z − (i − 1)sign(z)) if |z| ≥ i − 1.

We can easy to verify that for i ≥ 2, the truncation function Si (·) fulfills the
following properties

⎧
⎨

⎩

Si (r) = Si (Ti+1(r)), ‖S′
i‖L∞(R) ≤ ‖s‖L∞(R), ‖S′′

i ‖L∞(R) ≤ 1

supp S′
i ⊂ [−(i + 1), (i + 1)], supp S′′

i ⊂ [−(i + 1),−i] ∪ [i, (i + 1)].
(13)

In the ensuing lemma, we recall the famous Lebesgue generalized convergence theo-
rem which will be frequently used in several limit processes.

Lemma 3. ([23]) Let ( fn) be a sequence of measurable functions and f a measurable
function such that fn → f a.e. in QT . Let (gn) ⊂ L1(QT ) such that for all n ∈ N,
we have | fn| ≤ gn a.e. in QT and gn → g in L1(QT ). Then

∫

QT

fndxdt →
∫

QT

f dxdt.
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Due to the presence of nonlinear terms in (1), we will need the following technical
lemma to get prior estimates on the gradient of the solution.

Lemma 4. ([14,37]) Let φλ(s) = seλs2 , s ∈ R, λ ≥ 0; and letλ(s) = ∫ s
0 φλ(ξ) dξ.

Then

φλ(0) = 0, λ(s) ≥ 0, φ′
λ(s) > 0.

When λ ≥ b2

4a2
is fixed, the following relationships hold true

aφ′
λ(s) − b|φλ(s)| ≥ a

2
, ∀s ∈ R. (14)

For any (a, b) ∈ R
N × R

N , we recall the following well-known inequality

(
|a|p(x)−2a − |b|p(x)−2b

)
· (a − b) ≥

{
22−p+|a − b|p(x), if p(x) ≥ 2
(
p− − 1

) |a−b|2
(|a|+|b|)2−p(x) , if 1 < p(x) < 2,

(15)

In the whole of this paper, we denote by χω the characteristic function of a measurable
set ω and we use for simplicity the notation {|ψ | > k} to designate the measurable
subset {(t, x) ∈ QT , |ψ(t, x)| > k}. Furthermore, we denote by C every generic and
positive constant. The value of this constant can change in different situations. It may
depend on the given data but always remains independent of the estimated sequence
index.

3. Main results

Throughout this paper, we assume that p(·) belongs to E1 and satisfies the log-
Hölder continuity condition (2). In addition, we present in the following items our
hypothesis on the source data f and on the nonlinearity term. We assume that

(A1): f is a measurable function belonging to L1(QT ).
(A2): g : QT × R × R

N → R is a Carath éodory function, namely

(s, r) �→ g(t, x, s, r) is continuous for a.e (t, x) ∈ QT , (16)

(t, x) �→ g(t, x, s, r) is measurable for all (s, r) ∈ R × R
N . (17)

(A3): there exists a nonnegative measurable function H belonging to L1(QT ) such
that

|g(t, x, s, r)| ≤ c(|s|)
(
H(t, x) + |r |p(x)

)
, (18)

for all (s, r) in R × R
N and for a.e (t, x) in QT , with c : R

+ → R
+ is a

nondecreasing continuous function.
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(A4): g enjoys the following sign condition

g(t, x, s, r)s ≥ 0 for all (s, r) ∈ R × R
N and for a.e (t, x) ∈ QT . (19)

To solve our problem, we need to define an adapted notion of solution to (1) which
involves the above assumptions. For this reason, we begin initially by giving the notion
of a very weak gradient.

Proposition 4. Let u : QT → R be a measurable function such that for every k > 0,
we have Tk(u) ∈ U(QT ). Then, there exists a unique measurable function v : QT →
R

N called the very weak gradient of u and denote v = ∇u, which satisfies for all
k > 0

v = ∇Tk(u) a.e on the set {|u| < k}.

Moreover, when u belongs to L1
(
0, T ;W 1,1

0 (�)
)
the very weak gradient v coincides

with the gradient of u.

To prove Proposition 4, we use the embedding W 1,p(x)
0 (�) ↪→ W 1,p−

0 (�) and we
follow immediately the same reasoning from Lemma 2.1 in [12]. In the following
definition, we present the notion of renormalized periodic solution which we will
consider to solve problem (1).

Definition 1. We call renormalized periodic solution to problem (1) all measurable
function u : QT → R which satisfies for every k > 0

Tk(u) ∈ U (QT ) , (20)

g(t, x, u,∇u) ∈ L1 (QT ) , (21)

lim
k→+∞

∫

{k≤|u|≤k+1}
|∇u|p(x)dxdt = 0, (22)

and, for any function S ∈ W 2,∞(R) which is C1-piecewise such that S′ has a compact
support, we have

∂S(u)

∂t
− div

(
S′(u)|∇u|p(x)−2∇u

)

+S′′(u)|∇u|p(x) + g(t, x, u,∇u)S′(u) = f S′(u) in D′(QT ). (23)

Moreover, the periodicity condition is fulfilled in the following sense

S(u)(0) = S(u)(T ) a.e in �. (24)

Remark 1.

1. Observe that if u is a renormalized periodic solution to (1). Then, S(u) ∈
U(QT ) ∩ L∞(QT ) and ∂S(u)

∂t ∈ U(QT )∗ + L1(QT ). Employing this fact with
(10), we derive that S(u) ∈ C([0, T ]; L2(�)). This proves that renormalized
periodic condition (24) makes sense.
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2. Using the density property of C∞
c (QT ) inU (QT ), we can approach any function

ϕ ∈ U (QT ) ∩ L∞ (QT ) by a sequence (ϕn) of regular functions belonging
in C∞

c (QT ) such that (ϕn) converges to ϕ strongly in U (QT ) and weak-* in
L∞(QT ). This fact allows us to take test functions of (23) not only in C∞

c (QT )

but also in U (QT ) ∩ L∞ (QT ). And therefore we can reformulate Eq. (23) as
follows

〈
∂S(u)

∂t
, ϕ

〉

+
∫

QT

S′ (u) |∇u|p(x)−2∇u∇ϕ dxdt +
∫

QT

S′′ (u) |∇u|p(x)ϕ dxdt

+
∫

QT

g(t, x, u,∇u)S′ (u) ϕ dxdt =
∫

QT

f S′ (u) ϕ dxdt,

for all test function ϕ ∈ U (QT ) ∩ L∞ (QT ). Where 〈·, ·〉 is the duality pairing
between U (QT )∗ + L1 (QT ) and U (QT ) ∩ L∞ (QT ).

The succeeding theorem summarized the main results of our work.

Theorem 1. Under assumptions (A1)–(A4), problem (1) has a renormalized periodic
solution u which satisfies the conditions of Definition 1.

4. Proof of the main results

We are concerned by the proof of Theorem 1. To do this, we will follow the approx-
imation method. This approach sits on the construction of an approximate problem of
(1) by truncating the nonlinearity g and the source term f to become regular enough.
Afterward, we shall establish some prior estimates on the approximate periodic solu-
tion. After that, we will pass the limit in all the terms of the approximate scheme by
employing the strong convergences of truncations.

4.1. Approximation scheme

Let n ∈ N
∗, we start by approximating the nonlinearity g and the source term f as

follows

gn(t, x, s, r) := g(t, x, s, r)

1 + 1
n |g(t, x, s, r)| , fn(t, x) = Tn ( f (t, x)) ,

for all (s, r) inR×R
N and for almost (t, x) in QT . One has no difficulty verifying that

(gn) and ( fn) are bounded for every fixed n ∈ N
∗. Moreover, the truncated function

(gn) meets the same hypothesis of g such as (A2)-(A4). Furthermore, we can easy to
check that

( fn) → f in L1(QT ) and ‖ fn‖L1(QT ) ≤ ‖ f ‖L1(QT ). (25)
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Now, we are ready to approximate problem (1) as follows
⎧
⎪⎪⎨

⎪⎪⎩

∂un
∂t

− div
(|∇un|p(x)−2∇un

) + gn(t, x, un,∇un) = fn(t, x) in QT

un(0, ·) = un(T, ·) in �

un = 0 on �T .

(26)

Since p(·) belongs to E1, we have L p−
(QT ) ↪→ L1(QT ) which allows us to de-

duce that L∞(QT ) ↪→ L(p−)′(QT ). Then, by using the fact that ( fn) and (gn) are
bounded, we can employ the results of Theorem 1 from [4] to ensure the existence of
un ∈ U(QT ) ∩ C([0, T ]; L2(�)) a weak periodic solution to (26) which satisfies the
following conditions

∂un
∂t

∈ U(QT )∗, un(0, ·) = un(T, ·) in L2(�)

∫ T

0

〈
∂un
∂t

, ϕ

〉

dt +
∫

QT

|∇un|p(x)−2∇un∇ϕ dxdt

+
∫

QT

gn(t, x, un,∇un)ϕ dxdt =
∫

QT

fnϕ dxdt, (27)

for all test function ϕ ∈ U(QT ).

4.2. A priori estimates

In this paragraph, we establish some a priori estimates on the approximate solution
(un).

Lemma 5. Let (un) be the sequence defined as above. Then, we have

(i)

min

{

‖Tk(un)‖p−
U(QT ), ‖Tk(un)‖p+

U(QT )

}

≤ k‖ f ‖L1(QT ). (28)

(ii)

(gn(t, x, un,∇un)) is bounded in L1(QT ). (29)

(iii)

lim
k→+∞meas{|un| > k} = 0. (30)

Proof. (i) We take ϕ = Tk(un) ∈ U(QT ) as an admissible choice of test function
in (27), we obtain

∫ T

0

〈
∂un
∂t

, Tk(un)

〉

dt +
∫

QT

|∇un|p(x)−2∇un∇Tk(un)dxdt

+
∫

QT

gn(t, x, un,∇un)Tk(un)dxdt =
∫

QT

fnTk(un)dxdt.
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From the sign condition (A4) and (25), one gets

∫ T

0

〈
∂un
∂t

, Tk(un)

〉

dt +
∫

QT

|∇Tk(un)|p(x)dxdt

+k
∫

QT ∩{|un |>k}
|gn(t, x, un,∇un)| dxdt ≤ k‖ f ‖L1(QT ). (31)

By using the periodicity property of un , one gets

∫ T

0

〈
∂un
∂t

, Tk(un)

〉

dt =
∫

�

θk(un)(T, x)dx −
∫

�

θk(un)(0, x)dx = 0.

Therefore, inequality (31) becomes
∫

QT

|∇Tk(un)|p(x)dxdt + k
∫

QT ∩{|un |>k}
|gn(t, x, un,∇un)| dxdt ≤ k‖ f ‖L1(QT ).

(32)

With the help of relationship (8), we derive that (28) holds true.
(i i) Firstly, let us split the desired integral on the sets where |un| > 1 and where

|un| ≤ 1, we have
∫

QT

|gn(t, x, un,∇un)| dxdt =
∫

QT ∩{|un |≤1}
|gn(t, x, un,∇un)| dxdt

+
∫

QT ∩{|un |>1}
|gn(t, x, un,∇un)| dxdt. (33)

We deal with the first integral by using growth assumption (A3) and (32), one
has

∫

QT ∩{|un |≤1}
|gn(t, x, un,∇un)| dxdt

≤ c(1)

(∫

QT

H(t, x)dxdt +
∫

QT

|∇T1(un)|p(x)dxdt
)

≤ c(1)
(‖H‖L1(QT ) + ‖ f ‖L1(QT )

)
. (34)

On the other hand, inequality (32) implies that
∫

QT ∩{|un |>1}
|gn(t, x, un,∇un)| dxdt ≤ ‖ f ‖L1(QT ). (35)

According to (33), (34) and (35), we derive that (gn(t, x, un,∇un)) is bounded
in L1(QT ).

(i i i) Let us remark that for 0 < ε ≤ k, one has

{|un| ≥ ε} = {|Tk(un)| ≥ ε} .
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Then, we can write

‖Tk(un)‖p−
L p− (QT )

=
∫

[{un |≥ε}
|Tk(un)|p−

dxdt +
∫

{|un |<ε}
|Tk(un)|p−

dxdt.

Consequently, we get

meas{|un| > ε} ≤
(‖Tk(un)‖L p− (QT )

ε

)p−

.

Using the continuous embedding U(QT ) ↪→ L p−
(QT ), one obtains

meas{|un| > ε} ≤ C

(‖Tk(un)‖U(QT )

ε

)p−

. (36)

Therefore, we have two cases to discuss: If ‖Tk(un)‖U(QT ) ≥ 1, we deal with
(36) via estimate (28), one gets

meas{|un| > ε} ≤ C

⎛

⎝
‖Tk(un)‖p−

U(QT )

ε p−

⎞

⎠ ≤ C

(
k‖ f ‖L1(QT )

ε p−

)

. (37)

If ‖Tk(un)‖U(QT ) ≤ 1, relation (36) reduced to

meas{|un| > ε} ≤ C

(
1

ε

)p−

. (38)

Therefore, setting ε = k and taking the limit as k goes to +∞ in (37) and (38),
we get for each case that

lim
k→+∞meas{|un| > k} = 0.

�
Lemma 6. Let (un) be the weak periodic solution to (26). Then, we have

(i)

lim
k→+∞ sup

n>0

(∫

QT ∩{|un |>k}
|gn(t, x, un,∇un)| dxdt

)

= 0. (39)

(ii) there exists u : QT → R a measurable function, such that (up to subsequence)

un → u, a.e. in QT . (40)

Proof. (i) Let 0 < h < k, by choosing ϕ = Tk(un) ∈ U(QT ) as a test function in
(27) and following the same reasoning of (i) from Lemma 5, we arrive at

k
∫

QT ∩{|un |>k}
|gn(t, x, un,∇un)| dxdt ≤

∫

QT

| fnTk(un)| dxdt

≤
∫

{|un |>h}
| fnTk(un)| dxdt +

∫

{|un |≤h}
| fnTk(un)| dxdt

≤ k
∫

QT

| f | χ{|un |>h}dxdt + h
∫

QT

| f | dxdt.
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Which implies that
∫

QT ∩{|un |>k}
|gn(t, x, un,∇un)| dxdt ≤

∫

QT

| f | χ{|un |>h}dxdt + h

k
‖ f ‖L1(QT ).

(41)

Using the equi-integrability of f in L1(QT ), we deduce that for all ε > 0 there
exists δ > 0 such that for any subset E ⊂ QT , one has

if meas (E) < δ, then
∫

E
| f | dxdt.

According to the limit result (30), we derive that for each ε > 0 there exists
hε > 0 such that for all h ≥ hε, we have

sup
n>0

(∫

QT

| f | χ{|un |>h}dxdt
)

≤ ε. (42)

Therefore, by taking h = hε and letting first k to +∞ in (41), after using (42)
and letting h to +∞, we conclude that

lim
k→+∞ sup

n>0

(∫

QT ∩{|un |>k}
|gn(t, x, un,∇un)| dxdt

)

= 0.

(i i) As a first step, we introduce the truncation function σk ∈ C2(R) defined as
follows

σk(r) =
{
r if |r | ≤ k

2
k sign(r) if |r | > k.

An interesting feature of σk(·) is that σ ′
k(·) and σ ′′

k (·) has a compact support in
[−k, k]. Our interest goes to proving firstly that the sequence (σk(un)) is relatively
compact in a certain Lebesgue space. To do this, let ϕ = σ ′

k(un)ζ as a test function in
the weak formulation (27) with ζ ∈ C∞

c (QT ). By a direct computation, we get in the
distributional sense

∂σk(un)

∂t
− div

(
σ ′
k(un)|∇un|p(x)−2∇un

)
+ σ ′′

k (un)|∇un|p(x)

+g(t, x, un,∇un)σ
′
k(un) = fnσ

′
k(un) in D′(QT ).

(43)

By taking into account the above stated properties of σk(·), it comes that

∇σk(un) = σ ′
k(un)∇Tk(un) a.e in QT , (44)

σ ′
k(un)|∇un|p(x)−2∇un = σ ′

k(un)|∇Tk(un)|p(x)−2∇Tk(un) a.e in QT , (45)

σ ′′
k (un)|∇un|p(x) = σ ′′

k (un)|∇Tk(un)|p(x) a.e in QT . (46)

According to estimate (28), we derive that (Tk(un)) is bounded in U(QT ) and by
combining the embedding (6) with (44), one gets

(σk(un)) is bounded in L p− (
0, T ;W 1,p(x)

0 (�)
)

. (47)
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With the help of estimate (28), one has no difficulty showing that
(
σ ′
k(un)|∇Tk(un)|p(x)−2∇Tk(un)

)
is bounded in

(
L p′(x)(QT )

)N
. (48)

By comparing (45) and (48), it follows that

div
(
σ ′
k(un)|∇un|p(x)−2∇un

)
is bounded in U(QT )∗. (49)

We use again the result of (28) with (46), we arrive at
(
σ ′′
k (un)|∇un|p(x)

)
is bounded in L1(QT ). (50)

In view of Eq. (43) and by employing (29), (49) and (50), we deduce that
(

∂σk(un)

∂t

)

is bounded in U(QT )∗ + L1(QT ). (51)

Now, we need the use of some known embedding relationships. Let s be fixed such
that s > N

2 + 1, we recall that

• s > N
2 , we have Hs

0 (�) ↪→ L∞(�), and then L1(�) ↪→ H−s(�)

• s − 1 > N
2 , one has Hs

0 (�) ↪→ W 1,p(x)(�), consequently, W−1,p′(x)(�) ↪→
H−s(�).

It is clear that

W 1,p(x)
0 (�)

compact
↪→ L p(x)(�) ↪→ H−s(�). (52)

And by virtue of (7) and (51), we easily check that
(

∂σk(un)

∂t

)

is bounded in L1 (
0, T ; H−s(�)

)
. (53)

Thanks to (53), one may apply the compactness argument of Corollary 4, page 85
from [46] to deduce that (σk(un)) is relatively compact in L p−

(QT ). This fact allows
us to conclude that for every k > 0 and up to a subsequence, (σk(un)) is a Cauchy
sequence in measure. Hence, to establish that (un) converges almost everywhere in
QT , we shall show that (un) is a Cauchy sequence in measure, namely:

∀δ > 0,∀ε > 0, ∃n0 such that ∀n,m ≥ n0, meas{|un − um | > δ} ≤ ε.

Let δ > 0, for each n,m ∈ N, we observe that

{|un − um | > δ} ⊂
{

|un| >
k

2

}

∪
{

|um | >
k

2

}

∪ {|σk(un) − σk(um)| > δ}.

We then have

meas {|un − um | > δ} ≤meas

{

|un| >
k

2

}

+ meas

{

|um | >
k

2

}

+ meas{|σk(un) − σk(um)| > δ}.
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With the help of (30), one may choose k� sufficiently large enough such that for ε > 0,
one has

meas{|un − um | > δ} ≤ ε + meas{|σk� (un) − σk� (um)| > δ}.
On the other hand, by using the fact that (σk� (un)) is a Cauchy sequence in measure,
we deduce the existence of a measurable function u : QT → R and a subsequence of
(un) which denote again by (un) for simplicity such that

un → u a.e in QT .

�

Remark 2. 1. It is worth mentioning that Tk(·) is continuous and bounded by k.
Then, by combining (40) with Lebesgue’s dominated convergence Theorem,
one gets (Tk(un)) → Tk(u) strongly in L p−

(QT ) for each k > 0. Therefore, by
following the same lines used in the proof of (30), we establish that

lim
k→+∞meas{|u| > k} = 0. (54)

2. According to estimate (28) one has (Tk(un)) is bounded in U(QT ), which is

equivalent to say that (∇Tk(un)) is bounded in
(
L p(x)(QT )

)N
. On top of that,

the almost everywhere convergence (40) suggests that for every k > 0, we have

(∇Tk (un)) ⇀ ∇Tk(u) weakly in
(
L p(x)(QT )

)N
. (55)

Lemma 7. Let (un) be the sequence defined as above. Then

lim
k→∞

∫

{k≤|u|≤k+1}
|∇u|p(x) dxdt = 0. (56)

Proof. Testing the weak formulation (27) with ϕ = Tk,a(un) ∈ U(QT ) ∩ L∞(QT )

yields, for all a, k > 0, the equation

∫ T

0

〈
∂un
∂t

, Tk,a(un)

〉

dt +
∫

QT

|∇un|p(x)−2∇un∇Tk,a(un)dxdt

+
∫

QT

gn(t, x, un,∇un)Tk,a(un)dxdt =
∫

QT

fnTk,a(un)dxdt. (57)

The periodicity property of un allows us to obtain

∫ T

0

〈
∂un
∂t

, Tk,a(un)

〉

dt =
∫

�

θk,a(un)(T, x)dx −
∫

�

θk,a(un)(0, x)dx = 0. (58)

On the other hand, by (12) and through the sign condition (A4), we have
∫

QT

gn(t, x, un,∇un)Tk,a(un)dxdt ≥ 0. (59)
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According to (12), (58) and (59), Eq. (57) becomes
∫

QT

∣
∣∇Tk,a(un)

∣
∣p(x) dxdt ≤

∫

QT

fnTk,a(un)dxdt ≤ a‖ f ‖L1(QT ). (60)

Following the same reasoning of (55), one gets

(∇Tk,a (un)
)

⇀ ∇Tk,a(u) weakly in
(
L p(x)(QT )

)N
as n → ∞. (61)

In view of expression (12), we check easily that |Tk,a(un)| ≤ a. This fact implies that
(
Tk,a (un)

)
converges to Tk,a(u) weak-* in L∞ (QT ) as n → ∞. Furthermore, by the

strong convergence (25), one may pass to the limit in (60) as n → ∞. We have

lim sup
n→∞

∫

QT

∣
∣∇Tk,a(un)

∣
∣p(x) dxdt ≤

∫

QT

f Tk,a(u)dxdt. (62)

In accordance with (12), we recall that (Tk,a (u)) converges to 0 pointwise as k →
∞ and |Tk,a (u) | ≤ a. Further, by employing Lebesgue’s dominated convergence
theorem, it results that

∫

QT

f Tk,a(u)dxdt → 0 as k → ∞. (63)

We use (63) when passing to the limit as k → ∞ in (62). The result is

lim sup
k→∞

lim sup
n→∞

∫

QT

∣
∣∇Tk,a (un)

∣
∣p(x) dxdt ≤ 0. (64)

As well known, ‖ · ‖p(x) is weakly lower semi-continuous, combining this fact with
the results of (5), (61) yields

0 ≤ min

{(∫

QT

∣
∣∇Tk,a(u)

∣
∣p(x) dxdt

) 1
p±

}

≤ ‖∇Tk,a(u)‖L p(x)(QT )

≤ lim inf
n→∞ ‖∇Tk,a (un) ‖L p(x)(QT )

≤ lim sup
n→∞

max

{(∫

QT

∣
∣∇Tk,a (un)

∣
∣p(x) dxdt

) 1
p±

}

. (65)

Taking advantage of (62) and (65) leads to

0 ≤ min

{(∫

QT

∣
∣∇Tk,a(u)

∣
∣p(x) dxdt

) 1
p±

}

≤ max

{(∫

QT

f Tk,a(u)dxdt

) 1
p±

}

. (66)

With the help of (64), we can arrive to the following convergence by letting k → ∞
in (66)

lim
k→∞

∫

{k≤|u|≤k+a}
|∇u|p(x) dxdt = 0.

By taking a = 1 in the last equality, we finish the proof. �
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4.3. Strong convergence of truncations

This subsection provides the strong convergence of truncations (Tk(un)) in U(QT ).
We have the following result.

Lemma 8. Let (un) be the weak periodic solution to (26). Then, for any k > 0, we
have

(Tk (un)) → Tk(u) strongly in U(QT ) as n → ∞. (67)

Proof. Let us observe that showing (67) is equivalent to establish that

(∇Tk (un)) → ∇Tk(u) strongly in
(
L p(x)(QT )

)N
. (68)

To this aim, we propose to use Landes’s time-regularization method developed in
[33] for initial parabolic problems with constant exponent and which was recently
generalized in [15] for a periodic problem with variable exponent. Let us start by
considering

(
uμ
0

)
a sequence of functions such that

uμ
0 ∈ W 1,p(x)

0 (�) ∩ L∞(�),
∥
∥uμ

0

∥
∥
L∞(�)

≤ k

uμ
0 → Tk (u) (T ) a.e. in � as μ → ∞
lim

μ→∞
1

μ

∥
∥uμ

0

∥
∥
W 1,p(x)

0 (�)
= 0.

For any μ > 0, we define (Tk(u))μ the time regularized function of Tk(u) ∈ U(QT )

as the unique solution to the following problem

⎧
⎪⎪⎨

⎪⎪⎩

(Tk(u))μ ∈ U(QT ) ∩ L∞(QT )
∂Tk(u)μ

∂t
= μ

(
Tk(u) − Tk(u)μ

)
in D′(QT )

Tk(u)μ(0) = uμ
0 in �.

(69)

By taking advantage on the solvability of (69), we infer that (Tk(u))μ has the following
form

(Tk(u))μ (t, x) := μ

∫ t

−∞
eμ(s−t)Tk(u(s, x))ds + uμ

0 e
−μt ,

with Tk(u) is belonging in U(QT ) and extending by 0 when s < 0. According to [33],
one has no difficulty verifying that (Tk(u))μ meets the following properties

∂Tk(u)μ

∂t
∈ U(QT ) ∩ L∞ (QT ) ,

∥
∥(Tk(u))μ

∥
∥
L∞(QT )

≤ k,

(Tk(u))μ → Tk(u) a.e. in QT and weak-* in L∞ (QT ) as μ → ∞,

(Tk(u))μ → Tk(u) strongly in U(QT ) as μ → ∞.

(70)
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Let us set ψn,μ = Tk (un)− (Tk(u))μ and take ϕ = S′
i (un)φλ

(
ψn,μ

)
as an admissible

choice of test function in (27),whereφλ(·) is the functiondefined in (14)with parameter
λ to be fixed later. We therefore have

I1
n,μ,i + I2

n,μ,i + I3
n,μ,i + I4

n,μ,i = I5
n,μ,i . (71)

where

I1
n,μ,i =

∫ T

0

〈
∂un
∂t

, S′
i (un)φλ

(
ψn,μ

)
〉

dt, (72)

I2
n,μ,i =

∫

QT

|∇un|p(x)−2 ∇un · ∇ψn,μS
′
i (un)φ

′
λ

(
ψn,μ

)
dx dt, (73)

I3
n,μ,i =

∫

QT

|∇un|p(x) S′′
i (un) φλ

(
ψn,μ

)
dx dt, (74)

I4
n,μ,i =

∫

QT

g(t, x, un,∇un)S
′
i (un) φλ

(
ψn,μ

)
dx dt, (75)

I5
n,μ,i =

∫

QT

fn S
′
i (un) φλ

(
ψn,μ

)
dx dt. (76)

Now, we are concerned with the passage to the limit into infinity in (71). To do so,
we propose to deal with the five integrals (72)-(76) separately, where the limit order
is first n, then μ and finally i . For the reader’s convenience, we will use the notation
ω(n, μ, i) to designate all quantities (which can be possibly different from line to line)
such that

lim
i→∞ lim

μ→∞ lim
n→∞ ω(n, μ, i) = 0.

Following the same arguments of [13,21] for the constant exponent case, see also [34]
for the variable exponent case, we can extend that for any i ≥ k, we have

I1
n,μ,i ≥ ω(n, μ). (77)

In view to the expression of ψn,μ and by taking into account (40), (55), it results that
⎧
⎪⎨

⎪⎩

∥
∥ψn,μ

∥
∥
L∞(QT )

≤ 2k for any n > 0

ψn,μ ⇀ ψμ weakly in U(QT ) as n → ∞
ψn,μ ⇀ ψμ a.e. in QT and weak-* in L∞ (QT ) as n → ∞.

(78)

where ψμ = Tk(u) − (Tk(u))μ. Furthermore, by combining (70) and (78) with the
boundness properties of the functions Si (·) and φλ(·), one may deduce that when
μ, n → ∞, we have

⎧
⎨

⎩

S′
i (un) φλ

(
ψn,μ

) → 0, a.e. in QT , weak-* in L∞ (QT )

S′
i (un) φ′

λ

(
ψn,μ

) → S′
i (u), a.e. in QT and weak-* in L∞ (QT )

S′′
i (un) φλ

(
ψn,μ

) → 0, a.e. in QT , weak-* in L∞ (QT ) .

(79)
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We focus our interest on the integral I3
n,μ,i . According to (13), we have S

′′
i ⊂ [−(i +

1),−i] ∪ [i, i + 1]. Therefore, for any i ∈ N and μ > 0, one has

|I3
n,μ,i | ≤ ∥

∥S′′
i (un)

∥
∥
L∞(R)

∥
∥φλ(ψn,μ)

∥
∥
L∞(QT )

∫

{i≤|un |≤i+1}
|∇un|p(x) dx dt.

According to (13) and (78) the last inequality becomes

|I3
n,μ,i | ≤ C

∫

{i≤|un |≤i+1}
|∇un|p(x) dx dt,

where C is a nonnegative constant independent of the index n, μ and i . Further, the
result of (64) yield

|I3
n,μ,i | ≤ ω(n, μ, i). (80)

Next, we combine convergences results of (25) with (79), we arrive at

I5
n,μ,i = ω(n, μ, i). (81)

Let us back to deal with I2
n,μ,i , by splitting this integral on the sets where |un| < k

and where |un| ≥ k, it follows that

I2
n,μ,i =

∫

QT

|∇un|p(x)−2 ∇un · ∇ψn,μS
′
i (un)φ

′
λ

(
ψn,μ

)
dx dt

=
∫

{|un |<k}
|∇Tk(un)|p(x)−2 ∇Tk(un) · ∇(Tk (un)

− (Tk(u))μ)S′
i (un)φ

′
λ

(
ψn,μ

)
dx dt

−
∫

{|un |≥k}
|∇un|p(x)−2 ∇un · ∇ (Tk(u))μ S′

i (un)φ
′
λ

(
ψn,μ

)
dx dt

:= Jn,μ,i − Ln,μ,i . (82)

We begin initially by studying the integral Ln,μ,i . Using the fact that supp S′
i ⊂

[−(i + 1), (i + 1)] and splitting Ln,μ,i on the sets where |u| ≥ k and where |u| < k,
one obtains

Ln,μ,i =
∫

QT

|∇Ti+1 (un)|p(x)−2 ∇Ti+1 (un)

· ∇ (Tk(u))μ S′
i (un) φ′

λ

(
ψn,μ

)
χ{|un |≥k}χ{|u|≥k}dx dt

+
∫

QT

|∇Ti+1 (un)|p(x)−2 ∇Ti+1 (un)

· ∇ (Tk(u))μ S′
i (un) φ′

λ

(
ψn,μ

)
χ{|un |≥k}χ{|u|<k}dxdt.

In accordance with (13) and (78), it comes that S′
i (un) φ′

λ

(
ψn,μ

)
is uniformly bounded

with respect to the index n and μ. This fact implies the existence of C a nonnegative
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constant independent of n and μ such that

Ln,μ,i ≤ C
∫

QT

∣
∣
∣
∣∇Ti+1 (un)

∣
∣
∣
∣

p(x)−1∣∣
∣
∣∇ (Tk(u))μ χ{|u|≥k}

∣
∣
∣
∣dxdt

+ C
∫

QT

∣
∣
∣
∣∇Ti+1 (un)

∣
∣
∣
∣

p(x)−1∣∣
∣
∣∇ (Tk(u))μ χ{|un |≥k}χ{|u|<k}

∣
∣
∣
∣dxdt

:= L1
n,μ,i + L2

n,μ,i .

It follows from p(x)-Hölder’s inequality that

|L1
n,μ,i | ≤ C

∥
∥
∥
∥|∇Ti+1 (un) |p(x)−1

∥
∥
∥
∥
L p′(x)(QT )

∥
∥
∥
∥∇ (Tk(u))μ χ{|u|≥k}

∥
∥
∥
∥
L p(x)(QT )

≤ C max

{(∫

QT

|∇Ti+1 (un)|p(x) dxdt
) 1

(p′)±
}

× max

{(∫

QT

∣
∣∇ (Tk(u))μ χ{|u|≥k}

∣
∣p(x) dxdt

) 1
p±

}

≤C max

{(∫

QT

∣
∣∇ (Tk(u))μ χ{|u|≥k}

∣
∣p(x) dxdt

) 1
p±

}

. (83)

We recall that ∇Tk(u)χ{|u|≥k} = 0. Then, it result from (70) that |∇ (Tk(u))μ

χ{|u|≥k}|p(x) → 0 almost everywhere in QT as μ → ∞. Therefore, by a direct
application of Lemma 3, one gets L1

n,μ,i = ω(n, μ). By following similar arguments,

we can show thatL2
n,μ,i = ω(n, μ). In accordance with the above results, one obtains

Ln,μ,i = ω(n, μ). (84)

Back to the integral Jn,μ,i , we remark that for any i > k, it follows that S′
i (un) = 1

on the set {|un| < k}. Which yields

Jn,μ,i =
∫

QT

|∇Tk (un)|p(x)−2 ∇Tk (un)

· ∇ (
Tk (un) − (Tk(u))μ

)
φ′

λ

(
ψn,μ

)
dxdt

=
∫

QT

(
|∇Tk (un)|p(x)−2 ∇Tk (un) − |∇Tk(u)|p(x)−2 ∇Tk(u)

)

· ∇ (Tk (un) − Tk(u)) φ′
λ

(
ψn,μ

)
dxdt

+
∫

QT

(
|∇Tk (un)|p(x)−2 ∇Tk (un) − |∇Tk(u)|p(x)−2 ∇Tk(u)

)

· ∇ (
Tk(u) − (Tk(u))μ

)
φ′

λ

(
ψn,μ

)
dxdt

+
∫

QT

|∇Tk(u)|p(x)−2 ∇Tk(u)

· ∇ (
Tk (un) − (Tk(u))μ

)
φ′

λ

(
ψn,μ

)
dxdt

:=J 1
n + J 2

n,μ + J 3
n,μ. (85)
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By the mean of estimate (28), we can achieve that
(|∇Tk(un)|p(x)−2 ∇Tk(un)

)

n is

bounded in L p′(x)(QT ). Accordingly, we deduce the existence of ζk : QT → R
N a

measurable function such that (up to a subsequence)
(
|∇Tk(un)|p(x)−2 ∇Tk(un)

)
⇀ ζk weakly in

(
L p′(x)(QT )

)N
.

Therefore,

lim
n→∞J 2

n,μ =
∫

QT

(
ζk − |∇Tk(u)|p(x)−2 ∇Tk(u)

)
·

∇ (
Tk(u) − (Tk(u))μ

)
φ′

λ

(
ψμ

)
dxdt. (86)

In view of (70), passing to the limit in (86) as μ → ∞ yields

J 2
n,μ = ω(n, μ). (87)

Following the same procedures, we can prove that

J 3
n,μ = ω(n, μ). (88)

Thus, the results of (85), (87) and (88) leading to obtain

Jn,μ,i = J 1
n + ω(n, μ). (89)

In accordance with (82), (84) and (89), we arrive at

I2
n,μ,i = J 1

n + ω(n, μ). (90)

Now, we study the fourth integral I4
n,μ,i . We use again the splitting into two integrals.

One obtains

I4
n,μ,i =

∫

{|un |<k}
g(t, x, un,∇un)S

′
i (un) φλ

(
ψn,μ

)
dx dt

+
∫

{|un |≥k}
g(t, x, un,∇un)S

′
i (un) φλ

(
ψn,μ

)
dx dt

:= K1
n,μ,i + K2

n,μ,i . (91)

By a simple computation, we have

φλ

(
ψn,μ

) =

⎧
⎪⎪⎨

⎪⎪⎩

(−k − (Tk(u))μ
)
eλ(−k−(Tk (u))μ)

2
if un ≤ −k

(
k − (Tk(u))μ

)
eλ(k−(Tk (u))μ)

2
if un ≥ k.

(92)

Which proves that φλ

(
ψn,μ

)
and un have the same sign one the set where |un| ≥ k.

Further, by combining the positivity property of S′
i (·) with sign condition (19), we

derive that

K2
n,μ,i ≥ 0. (93)
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We observe that for any i > k, we have S′
i (un) = 1 on the set {|un| < k}. On the other

hand, combining this fact with growth assumption (18) yields to

∣
∣
∣K1

n,μ,i

∣
∣
∣ ≤

∫

QT

|g(t, x, Tk(un),∇Tk(un))|
∣
∣φλ

(
ψn,μ

)∣
∣ dx dt

≤ c(k)
∫

QT

H(t, x)
∣
∣φλ

(
ψn,μ

)∣
∣ dx dt + c(k)

∫

QT

|∇Tk(un)|p(x)
∣
∣φλ

(
ψn,μ

)∣
∣ dx dt

≤ N 1
n,μ + N 2

n,μ + N 3
n,μ, + N 4

n,μ, (94)

where,

N 1
n,μ = c(k)

∫

QT

H(t, x)
∣
∣φλ

(
ψn,μ

)∣
∣ dx dt,

N 2
n,μ = c(k)

∫

QT

(
|∇Tk (un)|p(x)−2 ∇Tk (un) − |∇Tk(u)|p(x)−2 ∇Tk(u)

)

× ∇ (Tk (un) − Tk(u))
∣
∣φλ

(
ψn,μ

)∣
∣ dxdt,

N 3
n,μ = c(k)

∫

QT

|∇Tk(u)|p(x)−2 ∇Tk(u) · ∇ (Tk (un) − Tk(u))
∣
∣φλ

(
ψn,μ

)∣
∣ dxdt,

N 4
n,μ = c(k)

∫

QT

|∇Tk (un)|p(x)−2 ∇Tk (un) · ∇Tk(u)
∣
∣φλ

(
ψn,μ

)∣
∣ dxdt.

Thanks to (70) and (78), one may apply Lebesgue’s dominated convergence Theorem
to get

N 1
n,μ = ω(n, μ). (95)

From (78), one can have as n → ∞

|∇Tk(u)|p(x)−2 ∇Tk(u)
∣
∣φλ

(
ψn,μ

)∣
∣ → |∇Tk(u)|p(x)−2 ∇Tk(u)

∣
∣φλ

(
ψμ

)∣
∣ a.e in QT .

Further, by a simple application of Vitali’s Lemma, one obtains as n → ∞

|∇Tk(u)|p(x)−2 ∇Tk(u)
∣
∣φλ

(
ψn,μ

)∣
∣

→ |∇Tk(u)|p(x)−2 ∇Tk(u)
∣
∣φλ

(
ψμ

)∣
∣ strongly in

(
L p′(x)(QT )

)N
. (96)

We combine (55) and (96), it results that

N 3
n,μ = ω(n, μ). (97)
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To investigate N 4
n,μ, we use p(x)-Hölder’s inequality with the help of (5) and (28).

We then have
∣
∣
∣N 4

n,μ

∣
∣
∣ ≤ c(k)

∫

QT

|∇Tk (un)|p(x)−1 |∇Tk(u)| ∣∣φλ

(
ψn,μ

)∣
∣ dxdt

≤ 2c(k)

∥
∥
∥
∥|∇Tk (un) |p(x)−1

∥
∥
∥
∥
L p′(x)(QT )

∥
∥
∥
∥ |∇Tk(u)| ∣∣φλ

(
ψn,μ

)∣
∣

∥
∥
∥
∥
L p(x)(QT )

≤ 2c(k)max

{(∫

QT

|∇Tk (un)|p(x) dxdt
) 1

(p′)±
}

× max

{(∫

QT

∣
∣∇Tk(u)φλ

(
ψn,μ

)∣
∣p(x) dxdt

) 1
p±

}

≤ C max

{(∫

QT

∣
∣∇Tk(u)φλ

(
ψn,μ

)∣
∣p(x) dxdt

) 1
p±

}

. (98)

Apply Lebesgue’s dominated convergence Theorem in (98) yields

N 4
n,μ = ω(n, μ). (99)

By taking into account (94), (95), (97) and (99), we achieve that for i > k, we have

K1
n,μ,i ≥ −N 2

n,μ + ω(n, μ). (100)

According to (91) and (93) inequality (100) implies that for any i > k, one has

I4
n,μ,i ≥ −N 2

n,μ + ω(n, μ). (101)

Therefore, based on the obtained results in (77), (80), (81), (90) and (101), we notice
that

J 1
n − N 2

n,μ ≤ ω(n, μ, i), for i > k.

Which is equivalent to say that for i > k, we have
∫

QT

(
φ′

λ

(
ψn,μ

) − c(k)
∣
∣φλ

(
ψn,μ

)∣
∣
)

(
|∇Tk (un)|p(x)−2 ∇Tk (un) − |∇Tk(u)|p(x)−2 ∇Tk(u)

)

× ∇ (Tk (un) − Tk(u)) dxdt ≤ ω(n, μ, i). (102)

Choosing λ ≥ (c(k))2

4 in Lemma 14, we get
(
φ′

λ

(
ψn,μ

) − c(k)
∣
∣φλ

(
ψn,μ

)∣
∣
) ≥ 1

2 .
Furthermore, by using (15) and successively passing to the limit in (102) as n → ∞,
μ → ∞ and then i → ∞, one obtains

lim
n→∞

∫

QT

(
|∇Tk (un)|p(x)−2 ∇Tk (un) − |∇Tk(u)|p(x)−2 ∇Tk(u)

)
· ∇ (Tk (un)

−Tk(u)) dxdt ≤ 0. (103)
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Following the same used approach in [15], we arrive at

lim
n→∞

∫

QT

|∇Tk(un) − ∇Tk(u)|p(x) dxdt = 0.

Hence, we have

(Tk (un)) → Tk(u) strongly in U(QT ),

which completes our proof. �

4.4. Passing to the limit

In the subsequent section, we aim to establish that u the limit of the sequence (un)
is a renormalized periodic solution to (1) satisfying all the conditions of Definition 1.
To this aim, we start by proving the following convergence results.

Lemma 9. Let (un) be the sequence defined as above. We then have

(i)

(∇un) → ∇u a.e in QT . (104)

(ii)

(gn(t, x, un,∇un)) → g(t, x, u,∇u) strongly in L1(QT ). (105)

Proof. (i) To establish the almost everywhere convergence (104), we shall show
that (∇un) converges to ∇u in measure, namely

∀δ > 0,∀ε > 0, ∃n0 such that ∀n ≥ n0, meas{|∇un − ∇u| > δ} ≤ ε.

Let then δ > 0, we remark that for any n ∈ N, we have the following inclusion

{|∇un − ∇u| > δ} ⊂ {|un| > k} ∪ {|u| > k} ∪ {|∇Tk(un) − ∇Tk(u)| > δ}.
Which leads to obtain

meas {|∇un − ∇u| > δ} ≤ meas {|un| > k} + meas{|u| > k}
+ meas{|∇Tk(un) − ∇Tk(u)| > δ}.

By taking into account (30), (54) and (67), we conclude that (∇un) converges
to ∇u in measure. Which implies that holds (104).

(i i) According to almost everywhere convergence (40), (104) and (16), one gets

(gn(t, x, un,∇un)) → g(t, x, u,∇u) a.e in QT .

Then proving (105) is equivalent to showing that (gn(t, x, un,∇un)) is equi-
integrable in L1(QT ), namely

∀ε > 0, ∃δ > 0,∀E ⊂ QT , if |E | < δ then
∫

E
|gn(t, x, un,∇un)|dxdt ≤ ε.
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Let then E be a measurable subset of QT , ε > 0 and k > 0. We write
∫

E
|gn(t, x, un,∇un)|dxdt =

∫

E∩{un>k}
|gn(t, x, un,∇un)|dxdt

+
∫

E∩{un≤k}
|gn(t, x, un,∇un)|dxdt

:=I1n(k) + I2n(k). (106)

For the first integral, we have

I1n(k) ≤
∫

QT ∩{un>k}
|gn(t, x, un,∇un)|dxdt.

By way of Limit (39), there exists a k� > 0 such that for all k ≥ k�,

I1n(k) ≤ ε

3
. (107)

The second integral I2n(k) is dealt through the growth assumption (A3).We have
for all k ≥ k�

I2n(k) ≤ c (k)
∫

E
H(t, x)dxdt + c (k)

∫

E
|∇Tk (un) |p(x)dxdt. (108)

The fact that H ∈ L1(QT ) implies that it is equi-integrable in L1(QT ). Hence,
there exists δ1 > 0 such that if |E | ≤ δ1, we have

c (k)
∫

E
H(t, x)dxdt ≤ ε

3
. (109)

At the same time, convergence results from 67 and 68 imply that
(|∇Tk(un)|p(x)

)

is equi-integrable in L1(QT ). Thus, there exists a δ2 > 0 such that if |E | ≤ δ2,
we have

c (k)
∫

E
|∇Tk (un) |p(x)dxdt ≤ ε

3
. (110)

By choosing δ� = min{δ1, δ2}, we deduce from (108), (109) and (110) that if
|E | ≤ δ�, then

I2n(k) ≤ 2ε

3
. (111)

Both integrals are bounded hence (gn(t, x, un,∇un)) is indeed equi-integrable
in L1(QT ). Which finishes our proof.

�

To proceedwith our aim, we begin initially by considering S ∈ W 2,∞(�) a function
C1-piecewise such that supp S′ ⊂ [−M, M] for some M > 0. We take ϕ = S′ (un) ζ
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in the weak formulation (27) with ζ ∈ C∞
c (QT ), one gets

∫ T

0

〈
∂un
∂t

, S′ (un) ζ

〉

dt +
∫

QT

|∇un|p(x)−2∇un∇(S′ (un) ζ )dxdt

+
∫

QT

gn(t, x, un,∇un)S
′ (un) ζdxdt

=
∫

QT

fn S
′ (un) ζdxdt.

By simple computations, we arrive at

∫ T

0

〈
∂S (un)

∂t
, ζ

〉

dt

+
∫

QT

S′ (un) |∇un|p(x)−2∇un∇ζdxdt +
∫

QT

S′′ (un) |∇un|p(x)ζdxdt

+
∫

QT

gn(t, x, un,∇un)S
′ (un) ζdxdt =

∫

QT

fn S
′ (un) ζdxdt.

Which implies that

∂S (un)

∂t
− div

(
S′ (un) |∇un|p(x)−2 ∇un

)
+ S′′ (un) |∇un|p(x)

+ gn(t, x, un,∇un)S
′ (un) = fn S

′ (un) in D′ (QT ) . (112)

We now focus on passing to the limit in each term of (112) as n → ∞ (in the
distributional sense). In view of the almost everywhere convergence (40) and by taking
into account the properties of S(·), it results that

S (un) → S(u), a.e. in QT and weak-* in L∞ (QT ) , (113)

S′ (un) → S′(u), a.e. in QT and weak-* in L∞ (QT ) , (114)

S′′ (un) → S′′(u), a.e. in QT and weak-* in L∞ (QT ) . (115)

By employing (113), we deduce that

∂S (un)

∂t
→ ∂S (u)

∂t
in D′(QT ).

Using the fact that supp S′ ⊂ [−M, M], one obtains
S′ (un) |∇un|p(x)−2 ∇un = S′ (un) |∇TM (un)|p(x)−2 ∇TM (un) , a.e. in QT .

Thus, strong convergence of truncation (67) allows us to get

|∇TM (un)|p(x)−2 ∇TM (un) → |∇TM (u)|p(x)−2 ∇TM (u),

strongly in
(
L p′(x) (QT )

)N
.
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This result leads to obtain

− div
(
S′ (un) |∇TM (un)|p(x)−2 ∇TM (un)

)
→ − div

(
S′(u) |∇TM (u)|p(x)−2 ∇TM (u)

)
.

strongly in U(QT )∗, as n → ∞. As a result, we have

− div
(
S′ (un) |∇un|p(x)−2 ∇un

)
→ − div

(
S′(u) |∇u|p(x)−2 ∇u

)
strongly in U(QT )∗.

Again, since supp S′′ ⊂ [−M, M], we have

S′′ (un) |∇un|p(x) = S′′ (un) |∇TM (un)|p(x) a.e. in QT .

We will use Lemma (3) to achieve the three followings results. With the help (67) and
(115), one gets

S′′ (un) |∇TM (un)|p(x) → S′′(u) |∇TM (u)|p(x) strongly in L1 (QT ) .

The strong convergence (105) and (114) yields that

gn(t, x, un,∇un)S
′ (un) → g(t, x, u,∇u)S′(u) strongly in L1 (QT ) .

The results of (25) and (114) give us

fn S
′ (un) → f S′(u) strongly in L1 (QT ) .

By recapping the above obtained convergences, we pass to the limit in all the terms of
(112). We therefore have

∂S (u)

∂t
− div

(
S′ (u) |∇u|p(x)−2 ∇u

)
+ S′′ (u) |∇u|p(x)

+ g(t, x, u,∇u)S′(u) = f S′ (u) in D′ (QT ) . (116)

To finish our proof, we need to check periodicity condition (24). It is clear that

∇S(un) = S′(un)∇TM (un) and S′(u)∇TM (u) = ∇S(u). (117)

We employ once again Lemma (3) alongside (68) to deduce that

S′ (un) ∇TM (un) → S′(u)∇TM (u) strongly in
(
L p(x) (QT )

)N
. (118)

It results from (117) and (118) that

S (un) → S(u) strongly in U(QT ). (119)

Furthermore, the aforementioned limit processes for (112) lead to conclude that

∂S (un)

∂t
→ ∂S (u)

∂t
strongly in U(QT )∗ + L1(QT ). (120)
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According to (119), (120) and (9), we derive that

S (un) → S(u) strongly in C
(
[0, T ]; L1(�)

)
. (121)

Using the fact that un is periodic with respect to time, we arrive at

S(u)(T ) = S(u)(0) a.e in �.

This completes the proof of Theorem 1.
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