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Abstract. In this paper, we study the well-posedness of the Kolmogorov two-equation model of turbulence
in a periodic domain Td , for space dimensions d = 2, 3. We admit the average turbulent kinetic energy k to
vanish in part of the domain, i.e. we consider the case k ≥ 0; in this situation, the parabolic structure of the
equations becomes degenerate. For this system, we prove a local well-posedness result in Sobolev spaces
Hs , for any s > 1+d/2. We expect this regularity to be optimal, due to the degeneracy of the system when
k ≈ 0. We also prove a continuation criterion and provide a lower bound for the lifespan of the solutions.
The proof of the results is based on Littlewood-Paley analysis and paradifferential calculus on the torus,
together with a precise commutator decomposition of the nonlinear terms involved in the computations.

1. Introduction and main results

In this paper, we study a system of PDEs which was proposed by Kolmogorov [9]
(see the Appendix of [19] for an English translation) to describe fluid flows in a fully
developed isotropic turbulent regime.

1.1. The system of equations

As in other (yet more recent) one-equation or two-equation models (see e.g. [13]
and [18] for details and more references about the latter, [3] about the former), the
Kolmogorov model postulates that one can identify related, but somehow independent
variables to describe the large-scale behaviour (i.e. the mean motion) of the fluid and
the small-scale fluctuations (i.e. the turbulent character). Here, the average has to
be intended always in a statistical sense, namely as an ensemble average, although
Kolmogorov seemed to refer to time average in his original paper.
Thus, let t ∈ R+ denote the time variable and x ∈ � ⊂ R

d be the space variable,
with d ≥ 2 and � being a smooth domain. Define u = u(t, x) ∈ R

d to be the
mean velocity field of the fluid, ω = ω(t, x) ≥ 0 the mean frequency of turbulent
fluctuations and k = k(t, x) ≥ 0 the mean turbulent kinetic energy, that is, the kinetic
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energy associated to the variations of the velocity field from its mean value u. Then,
the Kolmogorov model [9] reads

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t u + (u · ∇)u + ∇π − ν div

(
k

ω
Du

)

= 0

∂tω + u · ∇ω − α1 div

(
k

ω
∇ω

)

= −α2 ω2

∂t k + u · ∇k − α3 div

(
k

ω
∇k

)

= − k ω + α4
k

ω

∣
∣Du

∣
∣2

div u = 0.

(1)

Theflow is assumed to be homogeneous, thus incompressible,whence the last equation
appearing in the system. The function π = π(t, x) ∈ R represents the pressure field
of the fluid; its gradient∇π can be interpreted as a Lagrangian multiplier associated to
the divergence-free constraint (i.e. to the incompressibility condition). The symbol D
appearing in the first and third equations stands for the symmetric part of the gradient
of u:

Du := 1

2

(
Du + ∇u

)
,

where we have denoted by Du the Jacobian matrix of u and by ∇u its transpose ma-
trix. Finally, the quantities ν, α1, . . . α4 are strictly positive numbers, which represent
physical adimensional parameters; in [9], Kolmogorov even gave explicit values for
some of them. Notice that, in system (1), we have assumed that no external forces are
acting on the fluid.
We do not enter into the discussion of the physical explanation or motivation of

system (1). Let us simply point out that equations (1) seem to retain one of the main
aspects of turbulence theory, namely the transfer of energy from large scales to smaller
scales through viscous dissipation. This is exactly the meaning of the presence of the
α4-term in the third equation. We refer to books [5,8,14], about this matter and many
other theoretical aspects linked to turbulence in fluids.

1.2. Overview of the related literature

Interestingly, in Kolmogorov’s model the fluid is assumed to be, to the best of our
understanding, inviscid. As a matter of fact, the only viscosity which appears in the
equations is the so-called eddy viscosity of Boussinesq (see Chapter 4 of [5] for more
details about this), which takes the form

νeddy = k

ω
.

As already said, for a physical insight on turbulence theory we refer to the previously
mentioned books. Here, we rather comment on the mathematical properties of the
Kolmogorov system.
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Despite the absence of a “true” viscosity, the eddy viscosity νeddy endows system
(1) of a nice parabolic structure as soon as k > 0. On the other hand, an underlying
maximum principle for those equations allows to establish that, if the mean turbulent
kinetic energy is strictly positive initially, namely if

k0 ≥ k∗ > 0 on �, (2)

then for any later time t > 0, one has kmin(t) := minx∈� k(t, x) > 0 (see more
details in Subsection 3.1). Hence, condition (2) ensures the preservation of the above-
mentioned parabolic structure.
Thus, first mathematical studies on well-posedness of the Kolmogorov model (1)

focused on the situation inwhich condition (2) holds true. In particular, in [17] (see also
[16] for an announcement of the result), Mielke and Naumann proved the existence
of global in time finite energy weak solutions to (1) in the periodic three dimensional
box T

3, under condition (2). The same condition was used by Kosewski and Kubica
to set down a strong solutions theory, see [11,12] and for, respectively, a local well-
posedness result and a global well-posedness result for small initial data (see also [10]
by Kosewski for an extension to the case of fractional regularities).
At this point, we observe that, from the physical viewpoint, condition (2) looks

somehow a bit restrictive. For instance, we quote from the introduction of [17]:

“It would be desirable to develop an existence theory without this
condition, because this would allow us to study how the support
of k, which is may be called the turbulent region, invades the non-
turbulent region where k ≡ 0”.

In other words, taking into account the possible vanishing of themean turbulent kinetic
energy k may help in the description and understanding of the transition from turbulent
to non-turbulent regimes, and vice versa.

Nonetheless, very few results seem to deal with a situation in which assumption
(2) is not considered. For instance, in [2] Bulíček and Málek studied system (1) in a
smooth bounded domain � ⊂ R

3; under the conditions

k0 > 0 in �, log k0 ∈ L1(�),

they established the existenceof global in timefinite energyweak solutions, similarly in
spirit to the result of [17]. It is worth to point out that, however, many differences in the
analysis arise between the two works [2,17]: for instance, in [2], non-trivial boundary
conditions are taken into account, thus allowing for a description of boundary-induced
turbulent phenomena. We avoid to comment more about the specific contents of the
two papers here, as this discussion would go beyond the scopes of our presentation.
More recently, in work [6] the authors considered a one-dimensional reduction of

the Kolmogorov system (1) and investigated its well-posedness in the torus T1 in the
generic situation k0 ≥ 0. As a matter of fact, some mild degeneracy assumptions for
k0 close to the “vacuum region”

{
k0 = 0

}
have to be assumed, in the sense that

√
k0

must be regular enough. Under this condition, the authors established, on the one hand,



68 Page 4 of 41 O. Cuvillier et al. J. Evol. Equ.

the existence and uniqueness of local in time regular solutions to the 1-D model and,
on the other hand, the existence of smooth initial profiles which give rise to solutions
which blow up in finite time. These results were later extended in [7] for a class of
toy-models introduced in [15] (see also the introduction of [6] for the discussion of a
specific toy-model).

1.3. Statement of the main results

The results of [6] constitute the starting point of the present work. We observe that,
in that paper, the well-posedness result was stated only for integer regularity indices
Hm , with m ∈ N and m ≥ 2. In addition, the blow-up mechanisms highlighted in [6]
and [7] seem to be quite specific to the one-dimensional situation.

These remarks are themainmotivation for our study.While it is not clear, at present,
whether or not the blow-up results of [6,7] may be extended to higher dimensions, in
the present paper we generalise the local well-posedness result of [6] in two aspects:
first of all, we extend it to the physically relevant situation of two and three-dimensional
flows; in addition, we prove well-posedness in optimal Sobolev spaces Hs(Td), with
s > 1+ d/2 and d = 2, 3 (in fact, the result is stated for a generic dimension d ≥ 2).
Here, “optimal” refers to both minimal regularity and integrability.
Let us comment a bit on the previous sentence. First of all, we observe that, because

of the appearing of transport terms in equations (1), we need to solve the system in
a functional framework able to guarantee a L1

T (L∞) control for the gradient of the
velocity field. Unfortunately, the degeneracy of the parabolic character of the equations
when k ≈ 0 prevents us from using any kind of smoothing property in the dynamics.
From this point of view, then, it is natural to look for well-posedness results in spaces
Hs such that s > s0 := 1 + d/2 or, more in general, in Besov spaces Bs

p,r , with
s > 1 + d/p and r ∈ [1,+∞] up to the endpoint case s = 1 + d/p and r = 1.
On the other hand, even in the integer case s = m ∈ N, m > 1 + d/p, using the
degenerate parabolic smoothing seems to be necessary in order to close the estimates
for the higher-order norms of the solution. However, in order to do that, one needs
to use integration by parts and the symmetric structure of the viscosity term, a fact
which forces us to take p = 2 in the previous conditions. We refer to [6] for more
explanations about this.
With this considerations in mind, we can state the first main result of the paper,

which contains local existence and uniqueness of solutions in Hs , for any Hs initial
datum. Inspired by [6], conditions are formulated on

√
k instead of k itself. Throughout

this work, we set equations (1) in the d-dimensional torus

� = T
d , with d ≥ 2.

The precise statement is the following one.

Theorem 1.1. Let s > 1 + d/2. Take any triplet (u0, ω0, k0) of functions satisfying
the following assumptions:
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(i) u0, ω0 ∈ Hs(�), with the divergence-free constraint div u0 = 0;
(ii) there exist two constants 0 < ω∗ ≤ ω∗ such that ω∗ ≤ ω0 ≤ ω∗;
(iii) k0 ≥ 0 is such that β0 := √

k0 ∈ Hs(�).

Then, there exists a time T > 0 such that system (1), equipped with the initial
datum (u0, ω0, k0), admits a unique solution (u,∇π,ω, k) on [0, T ]×� enjoying the
following properties:

1) the functions u, ω and
√
k belong to the space L∞([0, T ]; Hs(�)

) ∩ ⋂
σ<s

C
([0, T ]; Hσ (�)

)
;

2) the non-negativity of ω and k is propagated in time: for any (t, x) ∈ [0, T ] ×
�, ω(t, x) > 0 and k(t, x) ≥ 0;

3) the gradient of the pressure ∇π belongs to L∞([0, T ]; Hs−1(�)
) ∩ ⋂

σ<s
C
([0, T ]; Hσ−1(�)

)
;

4) the functions

√
k

ω
Du,

√
k

ω
∇ω and

√
k

ω
∇√

k all belong to the space L2
([0, T ];

Hs(�)
)
.

In addition, this solution
(
u,∇π,ω, k

)
is unique within the class

XT (�) :=
{
(u,∇π,ω, k)

∣
∣
∣ u , ω ,

√
k ∈ C

([0, T ]; L2(�)
)
,

∇π ∈ L∞([0, T ]; H−1(�)
)
,

ω , ω−1 , k ∈ L∞([0, T ] × �
)
, ω > 0 , k ≥ 0 ,

div u = 0 , ∇u , ∇ω , ∇√
k ∈ L∞([0, T ] × �

)}
.

The previous statement generalises the corresponding well-posedness result of [6]
to the case of higher dimension d ≥ 2 and from the angle of minimal regularity
assumptions on the initial data. Notice that the passage from integer regularity indices
to fractional ones involves some technical difficulties, that we want now to discuss.
The first major difficulty we encounter in our analysis is related to the use of the

degenerate parabolic regularisation effect on the solutions. In the case of integer reg-
ularities s = m ∈ N, it is natural to see how to use this effect, as all the computations
are explicit and factors

√
k/ω can be easily moved from one term to another, in order

to make the right coefficient appear in front of the term with the highest number of
derivatives. In the case of fractional regularities, instead, differentiation of the equa-
tions is replaced by commutators with frequency-localisation operators (indeed, we
will broadly use Littlewood-Paley characterisation of Sobolev spaces Hs in the torus).
Finding the right commutator structure of the equations, which enables us to use the
degenerate parabolic smoothing, thus becomes rather involved and not straightforward
at all. We refer to Paragraph 3.3.2 for more details; see in particular the splitting of
the commutator terms C2[ f, f ], for f ∈ {u, ω,

√
k
}
, into the sum of four terms. In

addition, the use of frequency-localisation operators on the viscosity terms entails a
control on a rather strange quantity S (which is a sum of norms of dyadic blocks)
related to f , which cannot be reconducted to the Hs+1 norm of f because of the
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degeneracy of the viscosity/diffusion coefficient k/ω when k ≈ 0. At this point, a key
observation (contained in Proposition 2.3) establishes the equivalence of this quantity
S with the Hs norm of

√
k/ω ∇ f , up to lower-order terms. This combines well with

the above-mentioned commutator structure, which indeed allows us each time to put
in evidence a factor

√
k/ω in front of the term with the highest-order derivatives.

One last point which should be mentioned in this context is the control of the
Sobolev norm Hs of the negative power ω−1/2. The problem is that the lower bound
for ω degenerates with time, namely min� ω(t) −→ 0 when t → +∞. This further
degeneracy prevents us from using classical paralinearisation theorems, as a very
precise control of the

∥
∥ω−1/2

∥
∥
Hs in terms of min� ω is needed in the analysis. Of

course, such a problem does not appear when s = m is an integer, because in that
case one disposes of explicit computations. In the end, we will establish the required
precise bound in Lemma 2.5.

After the previous comments on the statement of Theorem 1.1 and its proof, let us
move forward. We now present the second main result of the paper, which comple-
ments Theorem 1.1 with some information about the lifespan of solutions and with a
continuation criterion.
The precise statement is the following one.

Theorem 1.2. Let s > 1 + d/2. Take an initial datum
(
u0, ω0, k0

)
which verifies the

assumptions of Theorem 1.1. Let
(
u,∇π,ω, k

)
be the corresponding unique solution

satisfying the conditions stated in that theorem. Denote by T > 0 its lifespan.
Then, if we define the energy E0 of the initial datum as

E0 := ‖u0‖2Hs + ‖ω0‖2Hs +
∥
∥
∥
√
k0
∥
∥
∥
2

Hs
.

there exists a constant C = C(d, s, ν, α1, . . . , α4, ω∗, ω∗) > 0, only depending on
the quantities inside the brackets, such that

T ≥ min

{

1,
C

E0
(
1 + E0

)2[s]+3

}

, (3)

where the symbol [s] stands for the integer part of s.
Furthermore, we have the following continuation/blow-up criterion. Let T ∗ < +∞

such that the solution is well-defined in the time interval [0, T ∗[ . Then, the Hs norm
of the solution becomes unbounded when t → T ∗ if and only if

∫ T ∗

0
A(t) dt = +∞,

where we have defined

A(t) := ∥
∥
(∇u,∇ω,∇β

)∥
∥[s]+4
L∞

+ (
1 + ‖∇β‖L∞

) (
1 + ‖∇ω‖[s]

L∞
)
⎛

⎝
∑

G∈{Du,∇ω,∇β}

∥
∥
∥
∥∇
(

β√
ω
G

)∥
∥
∥
∥
L∞

⎞

⎠ .
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A few comments are in order. First of all, we notice that the definition of the function
A(t) in the continuation criterion looks more complicated than the one appearing in
the corresponding result from [6]. More precisely, the big sum on the second line
is apparently missing in that reference. The reason for this has to be ascribed to the
involved commutator structure mentioned above and to the impossibility of moving
the coefficients

√
k/ω freely from one term to another, which is instead possible when

one simply differentiates the equations.
For somehow related reasons, also the lower bound (3) for the lifespan of the

solutions looks a bit different from the one established in [6]. This bound is a direct
consequence of inequality (45), which would however allow us to establish more
precise estimates for T , at least in the two regimes E0 � 1 (in which case we expect
T � 1) and E0 � 1 (in which case we expect, conversely, T � 1).

Organisation of the paper

To conclude this introduction, we give an overview of the contents of the paper.
Thenext section is a toolbox.There,we reviewclassical results fromFourier analysis

and Littlewood-Paley theory on the torus, which will be needed in our analysis. In
particular, we also establish therein the above-mentioned Proposition 2.3 and Lemma
2.5, which will play a fundamental role in our study.

The following sections are devoted to the proof of the main results. In Sect. 3 we
exhibit a priori estimates for smooth solutions to system (1). At the end of the argu-
ment, we show the proof of Theorem 1.2. Section4, instead, is devoted to the proof
of Theorem 1.1. In particular, in a first time we show how to deduce, from the a priori
estimates of the previous section, existence of a solution at the claimed level of regu-
larity. Then, we derive uniqueness of solutions from a stability estimate in the energy
space L2.

2. Tools from Littlewood-Paley theory

We present a summary of some fundamental elements of Littlewood-Paley theory
and use them to derive some useful inequalities. We refer e.g. to Chapter 2 of [1] for
details on the construction in the Rd setting, to reference [4] for the adaptation to the
case of a d-dimensional periodic box T

d
a , where a ∈ R

d (this means that the domain
is periodic in space with, for any 1 ≤ j ≤ d, period equal to 2πa j with respect to the
j-th component).
For simplicity of presentation, we focus here on the case in which all a j are equal

to 1. We denote by
∣
∣Td
∣
∣ = L

(
T
d
)
the Lebesgue measure of the box T

d .
First of all, let us recall that, for a tempered distribution u ∈ S ′(Td), we denote by

Fu = (
ûk
)

k∈Zd its Fourier series, so that we have

u(x) =
∑

k∈Zd

ûk e
ik·x , with ûk := 1

∣
∣Td
∣
∣

∫

Td
u(x) e−ik·x dx .
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Next,we introduce the so-calledLittlewood-Paley decomposition of tempered distri-
butions. The Littlewood-Paley decomposition is based on a non-homogeneous dyadic
partition of unity with respect to the Fourier variable. In order to define it, we fix a
smooth scalar function ϕ such that 0 ≤ ϕ ≤ 1, ϕ is even and supported in the ring
{
r ∈ R

∣
∣ 5/6 ≤ |r | ≤ 12/5

}
, and such that

∀ r ∈ R \ {0},
∑

j∈Z
ϕ
(
2− j r

) = 1.

Then, we define |D| := (−�)1/2 as the Fourier multiplier1 of symbol |k|, for k ∈ Z
d .

The dyadic blocks (� j ) j∈Z are then defined by

∀ j ∈ Z, � j u := ϕ(2− j |D|)u =
∑

k∈Zd

ϕ(2− j |k|) ûk eik·x .

Notice that, because we are working on a compactly supported set, one has that even-
tually, � j ≡ 0 for j < 0 negative enough (depending on the size of Td

a ). In addition,
one has the following Littlewood-Paley decomposition in S ′(Td):

∀ u ∈ S ′(Td), u = û0 +
∑

j∈Z
� j u in S ′(Td). (4)

In the decomposition above, û0 stands for the mean value of u on T
d , i.e.

û0 = u = 1
∣
∣Td
∣
∣

∫

Td
u(x) dx .

It is relevant to note that the Fourier multipliers � j are linear operators which are
bounded on L p for any p ∈ [1,+∞]. In addition, their norms are independent of both
j and p.
Littlewood-Paley decomposition can be used to characterise several classical func-

tional spaces. For instance, it is well known that Sobolev spaces Hs(Td), for s ∈ R,
are characterised in terms of Littlewood-Paley decomposition (see Section 2.7 of [1])
through the following equivalence of norms:

‖u‖2Hs ∼ |̂u0|2 +
∑

j∈Z
22s j ‖� j u‖2L2 . (5)

This characterisation involves the low-order term |̂u0|2. In fact, this term can be sub-
stituted by the square of the L2 norm, by noticing that |̂u0|2 ≤ ‖u‖2

L2 : one thus has

‖u‖2Hs ∼ ‖u‖2L2 +
∑

j∈Z
22s j ‖� j u‖2L2 . (6)

1Throughout we agree that f (D) stands for the pseudo-differential operator u �→ F−1( f Fu), whereF−1

is the inverse Fourier transform.
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For later use, let us observe that the high-order term is equivalent to the homogeneous
Sobolev norm of regularity s, namely

‖u‖2
Ḣ s ∼

∑

j∈Z
22s j ‖� j u‖2L2 .

Next, let us present a version of the classical Bernstein inequalities adapted to our
functional framework (see Chapter 2 of [1] for a general statement of this result).

Lemma 2.1. There exists a universal constant C > 0, only depending on the size of
the torus Td and on the support of the function ϕ defined above, such that for any
j ∈ Z, for any m ∈ N, for any couple (p, q) such that 1 ≤ p ≤ q ≤ +∞, and for
any smooth enough u ∈ S ′(Td), it holds

∥
∥� j u

∥
∥
Lq ≤ C 2

jd
(
1
p − 1

q

)

‖� j u‖L p

and C−m−1 2− jm ‖� j u‖L p ≤ ∥
∥Dm� j u

∥
∥
L p ≤ Cm+1 2 jm ‖� j u‖L p .

Now, we apply the Littlewood-Paley decomposition and the Bernstein inequalities
to deduce the following useful inequality, similar in spirit to the Poincaré-Wirtinger-
type inequality:

∀ f ∈ W 1,∞(Td) such that f = 0, ‖ f ‖L∞ � ‖ f ‖2/(d+2)
L2 ‖∇ f ‖d/(d+2)

L∞ .

(7)

The proof relies on an optimisation procedure for the dyadic partition of f and the
systematic use of Bernstein inequalities. In particular, for N ∈ N to be fixed later, we
can estimate

‖ f ‖L∞ ≤
∑

j<0

∥
∥� j f

∥
∥
L∞ +

N∑

j=0

∥
∥� j f

∥
∥
L∞ +

∑

j≥N+1

∥
∥� j f

∥
∥
L∞

�
∑

j<0

2 jd/2
∥
∥� j f

∥
∥
L2 +

N∑

j=0

2 jd/2
∥
∥� j f

∥
∥
L2 +

∑

j≥N+1

2− j 2 j
∥
∥� j f

∥
∥
L∞

�
(
1 + 2Nd/2

)
‖ f ‖L2 + 2−N ‖∇ f ‖L∞ .

Now, we can choose N such that

2Nd ‖ f ‖2L2 ≈ 2−2N ‖∇ f ‖2L∞ �⇒ 2N ≈
(‖∇ f ‖L∞

‖ f ‖L2

)2/(d+2)

.

Inequality (7) follows immediately from the previous choice of N .
In the next section, we will present a priori estimates for smooth solutions to our

system (1). Those estimates will be essentially based on energy methods. However,
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owing to the nonlinearities appearing in the equations, the estimates of the higher-
order Sobolev norms of the solutions will involve some commutators. In particular,
the structure described in the following lemmawill be present through all the estimates.

Lemma 2.2. Let s > 0 and d ≥ 1. Let f be a scalar function and u a d-dimensional
vector field, both defined over Td . There exists a constant C = C(s, d) > 0, only
depending on the quantities inside the brackets, such that

⎛

⎝
∑

j∈Z
22 js

∥
∥
[
� j , u

] · ∇ f
∥
∥2
L2

⎞

⎠

1/2

≤ C
(

‖∇u‖L∞ ‖ f ‖Hs + ‖∇ f ‖L∞ ‖∇u‖Hs−1

)
.

(8)

In addition, if d ≥ 2 and div u = 0, then one has

⎛

⎝
∑

j∈Z
22 js

∥
∥div

( [
� j , u

]
f
)∥
∥2
L2

⎞

⎠

1/2

≤ C
(

‖∇u‖L∞ ‖ f ‖Hs + ‖∇ f ‖L∞ ‖∇u‖Hs−1

)
.

(9)

Proof. Estimates (8) and (9) are particular cases of Lemma 2.100 in [1]. We adapt the
proof in the previous reference (performed in the whole space case) to the geometry
of the torus.
For that purpose, we show that the estimates do not depend on the mean values of

u and f . As a matter of fact, keeping (4) in mind, we can write

u = u + ũ and f = f + f̃ ,

where ũ and f̃ are functions with zero mean over Td . Then, as both f and u are real
numbers, we have ∇ f ≡ 0 and

[
� j , u

] ≡ 0, which in turn implies the equality

[
� j , u

] · ∇ f = [
� j , ũ

] · ∇ f̃ .

Therefore, without loss of generality, we can assume that the functions u and f have
zero mean. Now, the proof of (8) easily reduces to the one given in [1]. In addition,
we notice that, if div u = 0, then we have the identity

div
( [

� j , u
]
f
) = [

� j , u
] · ∇ f.

In particular, when div u = 0, estimate (9) immediately follows from (8). �

Remark that, in inequality (8), the structure of the scalar product u ·∇ f is not really
used. In particular, the same inequality applies to any scalar functions α and f : for
any k ∈ {1 . . . d}, one has
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∑

j∈Z
22 js

∥
∥
[
� j , α

]
∂k f

∥
∥2
L2 ≤ C

(
‖∇α‖L∞ ‖ f ‖Hs + ‖∇ f ‖L∞ ‖∇α‖Hs−1

)2
.

(10)

In the light of this observation, we can establish the next result, which will play a key
role in our analysis.

Proposition 2.3. Let d ≥ 1 and s > 1 + d/2. Take two scalar functions α and f
defined over Td , both belonging to Hs(Td). Let P(∂) be a differential operator of
order 1 with constant coefficients. Assume that

Ss
[
α, P(∂) f

] :=
∑

j∈Z
22 js

∫

T3
α2
∣
∣� j P(∂) f

∣
∣2 dx < +∞.

Then, the product α P(∂) f belongs to Hs(Td). In addition, one has the following
“equivalence of norms modulo lower-order terms”:

‖α P(∂) f ‖2Hs � Ss
[
α, P(∂) f

] +
(

‖∇ f ‖L∞ ‖α‖Hs + ‖∇α‖L∞ ‖ f ‖Hs

)2
,

Ss
[
α, P(∂) f

]
� ‖α P(∂) f ‖2

Ḣ s +
(

‖∇ f ‖L∞ ‖α‖Hs + ‖∇α‖L∞ ‖ f ‖Hs

)2
.

The previous statement extends to vector-valued functions f . In particular, it holds
true if we replace f by any d-dimensional vector field u ∈ Hs(Td) and if we take
P(∂) = D to be the symmetric part of the Jacobian matrix of u.

Proof. The proof of the previous proposition is based on the dyadic characterisation
of Sobolev spaces, the equivalence of norms (5) and an application of Lemma 2.2.

Indeed, by relation (5), one has

‖α P(∂) f ‖2Hs ∼
(

1
∣
∣Td
∣
∣

∫

Td
α P(∂) f dx

)2

+
∑

j∈Z
22 js

∥
∥� j

(
α P(∂) f

)∥
∥2
L2 .

At this point we observe that, for any j ∈ Z we can write

∥
∥� j

(
α P(∂) f

)∥
∥2
L2 =

∫

Td
α2
∣
∣� j P(∂) f

∣
∣2 dx + ∥

∥
[
� j , α

]
P(∂) f

∥
∥2
L2 .

Therefore, by use of the inequality

(
1
∣
∣Td
∣
∣

∫

Td
α P(∂) f dx

)2

�
∫

Td
α2 |P(∂) f |2 dx � ‖∇ f ‖2L∞ ‖α‖2L2 ,

and of Lemma 2.2, or better of estimate (10), we can conclude the proof. �

Before concluding this part, we still need some nonlinear estimates in Hs(Td). The
first one concerns the product of two functions and is a classical property.
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Lemma 2.4. Given s > 0, the space L∞(Td) ∩ Hs(Td) is a Banach algebra. In
addition, a constantC = C(s) > 0 exists such that, for any u, v ∈ L∞(Td)∩Hs(Td),
one has

‖u v‖Hs ≤ C
(

‖u‖L∞ ‖v‖Hs + ‖u‖Hs ‖v‖L∞
)
.

In addition, the same estimate holds true even when replacing the Hs norm with its
homogeneous counterpart Ḣ s .

The proof goes along the main lines of Corollary 2.86 of [1] (where the property is
established in the Rd setting). In particular, it is based on paraproduct decomposition.
It is easy to see that everything can be transposed to the geometry of the torus, up to
defining, for any N ∈ Z, the low frequency cut-off operators

SNu := u +
∑

j≤N−1

� j u.

We also refer to Section 2 of [4] for more details.
The second nonlinear estimate which we need is about left composition of Hs(Td)-

functions ω by smooth functions F . However, we are in a situation where we cannot
apply the classical paralinearisation results (for which we refer to e.g. Section 2.8 of
[1]).
As a matter of fact, in view of applications to the study of well-posedness of equa-

tions (1), we need to consider the case in which F(τ ) −→ +∞ for τ → 0+, whereas
ω ≥ ω∗ > 0 is uniformly bounded away from 0, but its infimum ω∗ is in fact time-
dependent and approaches 0 when the time increases. We refer to Subsection 3.1 for
more details.
As a consequence, we need to track the precise dependence of all the estimates on

the value of ω∗ = inf ω. As this of course heavily depends on the function F , we will
do so only for a special choice of such F , which is relevant for applications to the study
of the well-posedness of system (1). On the other hand, we will exploit the fact that,
for integer values of the regularity index s ∈ N, one has precise computations which
easily allow to track the dependence on ω∗. Therefore, for general s > 1 + d/2, we
need to pass to integer2 regularities [s], thus losing some derivatives in the estimates.

Lemma 2.5. Let d ≥ 1 and s > 1 + d/2. Take a positive function ω ∈ Hs(Td) and
define ωo := inf x∈Td ω(x). Assume that ωo > 0.
Then the function F(ω) := 1/

√
ω belongs to Hs(Td). In addition, there exists a

“universal” constant C = C(s) > 0, only depending on the value of the regularity
index s, such that the following estimate holds true:

∥
∥
∥
∥

1√
ω

∥
∥
∥
∥
Hs

≤ C
1 + (ωo)

1+[s]

(ωo)
3
2+[s]

(
1 + ‖∇ω‖[s]

L∞
)

‖ω‖Hs .

2Throughout this text, we note by [s] the integer part of a real number s ∈ R, namely the biggest integer
which is lower than, or equal to, s.



J. Evol. Equ. Well-posedness of the Kolmogorov Page 13 of 41 68

Proof. In order to give a precise dependence of the estimates onωo, we need to exploit
the explicit computations which are available in the case of integer regularity indices
n ∈ N. This prompts us to use (6) and write
∥
∥
∥
∥

1√
ω

∥
∥
∥
∥

2

Hs
�
∥
∥
∥
∥

1√
ω

∥
∥
∥
∥

2

L2
+
∥
∥
∥
∥∇
(

1√
ω

)∥
∥
∥
∥

2

Ḣ s−1
� 1

ωo
+
∥
∥
∥
∥

1

ω3/2 ∇ω

∥
∥
∥
∥

2

Ḣ s−1
. (11)

Now, thanks to Lemma 2.4, we can bound
∥
∥
∥
∥

1

ω3/2 ∇ω

∥
∥
∥
∥

2

Ḣ s−1
�
(∥
∥
∥
∥

1

ω3/2

∥
∥
∥
∥
L∞

‖∇ω‖Ḣ s−1 +
∥
∥
∥
∥

1

ω3/2

∥
∥
∥
∥
Ḣ s−1

‖∇ω‖L∞

)2

�
(

1

ω3
o

‖ω‖2Hs +
∥
∥
∥
∥

1

ω3/2

∥
∥
∥
∥

2

Ḣ s−1
‖∇ω‖2L∞

)

.

Assume that s − 1 ≥ 1 for a while. Then, in order to estimate ω−3/2 in Ḣ s−1, we
can proceed in the same way. More precisely, we write

∥
∥
∥
∥

1

ω3/2

∥
∥
∥
∥

2

Ḣ s−1
∼
∥
∥
∥
∥∇
(

1

ω3/2

)∥
∥
∥
∥

2

Ḣ s−2
=
∥
∥
∥
∥

1

ω5/2
∇ω

∥
∥
∥
∥

2

Ḣ s−2
,

which implies, together with Lemma 2.4 again, the estimate
∥
∥
∥
∥

1

ω3/2

∥
∥
∥
∥

2

Ḣ s−1
�
(∥
∥
∥
∥

1

ω5/2

∥
∥
∥
∥
L∞

‖∇ω‖Ḣ s−2 +
∥
∥
∥
∥

1

ω5/2

∥
∥
∥
∥
Ḣ s−2

‖∇ω‖L∞

)2

�
(

1

ω5
o

‖ω‖2Hs +
∥
∥
∥
∥

1

ω5/2

∥
∥
∥
∥

2

Ḣ s−2
‖∇ω‖2L∞

)

.

Iterating this argument [s] times, and inserting the resulting expressions into (11), we
find
∥
∥
∥
∥

1√
ω

∥
∥
∥
∥
Hs

� 1√
ωo

+ 1

ω
3/2
o

‖ω‖Hs + 1

ω
5/2
o

‖ω‖Hs ‖∇ω‖L∞

+ . . . + 1

ω
1
2+[s]
o

‖ω‖Hs ‖∇ω‖[s]−1
L∞ +

∥
∥
∥
∥

1

ω
1
2+[s]

∥
∥
∥
∥
Ḣ s−[s]

‖∇ω‖[s]
L∞ .

(12)

As a last step, we take advantage of the fact that 0 ≤ s − [s] < 1. If s − [s] = 0,
we can bound

∥
∥
∥
∥

1

ω
1
2+[s]

∥
∥
∥
∥
Ḣ s−[s]

� 1

ω
1
2+[s]+1
o

‖ω‖L2 ,

whereas in the case s − [s] > 0 we rather compute
∥
∥
∥
∥

1

ω
1
2+[s]

∥
∥
∥
∥
Ḣ s−[s]

�
∥
∥
∥
∥

1

ω
1
2+[s]

∥
∥
∥
∥
H1

� 1

ω
1
2+[s]
o

+ 1

ω
1
2+[s]+1
o

‖∇ω‖L2 .
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Then, inserting this last bound into (12) and observing that, for any real number a > 0,
one has

[s]+1∑

n=0

1

a
1
2+n

� 1

a
1
2

+ 1

an+ 3
2

= 1 + an+1

an+ 3
2

,

we finally deduce the sought estimate. �

3. A priori estimates

The goal of this section is to establish a priori estimates for smooth solutions to
system (1). Similarly to [6], their derivation is based on a two-step procedure: first of
all, we bound the low regularity norms using the parabolic maximum principle and
basic energy estimates; after that, we use the Littlewood-Paley machinery to derive
bounds for the higher regularity norms. All together, those estimates will imply the
sought control of the Sobolev norm Hs of the solution.
We point out that, in order to carry out the higher-order estimates, it will be fun-

damental to resort to the formulation of the system, pointed out in [6], in the new
unknowns

(
u, ω, β

)
, where we have set β := √

k.

3.1. Bounds for the low regularity norms

Here we derive a priori estimates for the low regularity norms of a (supposed to
exist) smooth solution

(
u, ω, k

)
of (1).

First of all, we notice that, using the parabolic structure of the equations, we can
derive pointwise lower and upper bounds for the functions ω and k. Let us define the
quantities

ω∗ := min
x∈�

ω0(x), ω∗ := max
x∈�

ω0(x), k∗ := min
x∈�

k0(x),

where we have ω∗ ≥ 0 and k∗ ≥ 0. Then, arguing as in [6] (see also [2,17]) allows us
to get the following bounds:

∀ (t, x) ∈ R+ × �, 0 < ωmin(t) ≤ ω(t, x) ≤ ωmax(t) ≤ ω∗, (13)

where we have defined

ωmin(t) := ω∗
ω∗α2t + 1

and ωmax(t) := ω∗

ω∗α2t + 1
,

and also

∀ (t, x) ∈ R+ × �, k(t, x) ≥ kmin(t) := k∗
(ω∗α2 + 1)1/α2

≥ 0. (14)

In particular we deduce that, if k∗ = 0, then k(t, x) ≥ 0 at any time t ≥ 0 and for any
x ∈ �.
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Next, we perform energy estimates. To begin with, we observe that a simple energy
method for the equations for u yields the identity

1

2

d

dt

∫

�

|u|2 dx + ν

∫

�

k

ω
|Du|2 dx = 0,

where we have used also the L2 orthogonality between u and ∇π , owing to the
divergence-free condition div u = 0. Integrating in time the previous relation, we find
that

∀ t ≥ 0, ‖u(t)‖2L2 + 2 ν

∫ t

0

∫

�

k

ω
|Du|2 dx dτ ≤ ‖u0‖2L2 . (15)

Performing similar computations on the (scalar) equation for ω, we get

1

2

d

dt

∫

�

|ω|2 dx + α1

∫

�

k

ω
|∇ω|2 dx + α2

∫

�

ω3 dx = 0.

After an integration in time, we deduce that

∀ t ≥ 0, ‖ω(t)‖2L2 + 2α1

∫ t

0

∫

�

k

ω
|∇ω|2 dx dτ

+ 2 α2

∫ t

0

∫

�

ω3 dx dτ ≤ ‖ω0‖2L2 . (16)

Unfortunately, the same computations have no chance to work for the last unknown
k, owing to the presence in its equation of the α4 term, which is merely L1

t,x (keep in
mind (15) above). Instead, we perform a simple integration of the equation over �,
getting in this way

d

dt

∫

�

k dx +
∫

�

k ω dx = α4

∫

�

k

ω
|Du|2 dx .

Integrating in time the previous relation and using (15), we find

∀ t ≥ 0, ‖k(t)‖L1 +
∫ t

0

∫

�

k ω dx dτ ≤ α4

2ν
‖u0‖2L2 + ‖k0‖L1 . (17)

The discussion in [6] suggests to introduce the “good unknown” β := √
k. Thus, the

previous estimate translates into a L2 control for variable β, namely

∀ t ≥ 0, ‖β(t)‖2L2 +
∫ t

0

∫

�

β2 ω dx dτ ≤ α4

2ν
‖u0‖2L2 + ‖β0‖2L2 . (18)

3.2. Reformulation of the system and localisation

After having established estimates for the low regularity norms (i.e. for low fre-
quencies), we need to control the high regularity norms, namely the high frequencies
of the solution. However, before doing that, some preparation is needed.
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To begin with, in order to deal with the degeneracy of the system when k ≈ 0,
inspired by [6] we resort to the new unknown

β := √
k

introduced above, keep in mind (18). In particular, propagation of high regularity
norms for k will be done through propagation of high regularity for β.
Observe that, by (formally) multiplying the third equation in (1) by 1/(2

√
k), we

easily derive the equation satisfied by β:

∂tβ + u · ∇β − α3 div

(
β2

ω
∇β

)

= − β ω

2
+ α4

2

β

ω

∣
∣Du

∣
∣2 + α3

β

ω
|∇β|2 .

Thus, we can recast system (1) as a system for the new triplet of unknowns (u, ω, β):
we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t u + (u · ∇)u + ∇π − ν div

(
β2

ω
Du

)

= 0

∂tω + u · ∇ω − α1 div

(
β2

ω
∇ω

)

= −α2 ω2

∂tβ + u · ∇β − α3 div

(
β2

ω
∇β

)

= − β ω

2
+ α4

2

β

ω

∣
∣Du

∣
∣2 + α3

β

ω
|∇β|2

div u = 0.

(19)

Our next goal is to perform Hs estimates on this new system. This can be done in
a classical way, by taking advantage of the characterisation (6) of Sobolev spaces in
terms of Littlewood-Paley decomposition. As a matter of fact, we notice that, owing
to the bounds established in Subsection 3.1, only Ḣ s estimates are needed.

In order to tackle Ḣ s estimates, the first step consists in localising the equations
in frequencies via the operators � j . Of course, this procedure will create some com-
mutators. Indeed, by applying the operator � j to each equation appearing in (19),
standard computations yield

(
∂t + u · ∇)� j u + � j∇π − ν div

(
β2

ω
D� j u

)

= C1
u, j + ν C2

u, j

(
∂t + u · ∇)� jω − α1 div

(
β2

ω
∇� jω

)

= C1
ω, j + α1C

2
ω, j − α2 � j

(
ω2
)

(
∂t + u · ∇)� jβ − α3 div

(
β2

ω
∇� jβ

)

= C1
β, j + α3C

2
β, j − � j (β ω)

2

+ α4

2
� j

(
β

ω

∣
∣Du

∣
∣2
)
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+ α3 � j

(
β

ω
|∇β|2

)

,

where, for f ∈ {u, ω, β}, we have defined the commutator terms

C1
f, j := [

u,� j
] · ∇ f and C2

f, j := div

([

� j ,
β2

ω

]

∇ f

)

,

with the convention that, when f = u, one has to change ∇u into Du in the definition
of C2

u, j .
The goal of the next subsection is to perform energy estimates on the previous

localised equations. As we will see, the main problems will come from the analysis
of the commutator terms. Observe that, while bounding the terms C1

f, j is somehow

classical, the estimate for theC2
f, j will be much more involved, due to the degeneracy

of the system for k ≈ 0 (that is, for β ≈ 0).

3.3. Estimates for the localised system

We are ready to tackle energy estimates for the localised equations written above.
Thanks to the Littlewood-Paley characterisation of Sobolev spaces and to the estimates
of Subsection 3.1, it is enough to bound the homogeneous part of the Sobolev norm,
namely

‖ f ‖Ḣ s ∼
∑

j∈Z
22 js

∥
∥� j f

∥
∥2
L2 .

Recall that this sum reduces in fact to a sum for j ≥ −N , for some large enough
N ∈ N.
However, before performing estimates„ let us introduce some convenient notation.

Inwhat follows,we generally use the notation f � g to denote that there exists amulti-
plicative constant c > 0, only depending on the parameters

(
d, s, ν, α1, α2, α3, α4, ω∗,

ω∗) of the system, such that f ≤ c g. In addition, for the sake of simplicity and when
it does not cause any ambiguity, we will drop the time dependence from the notation
through the estimates.

3.3.1. Energy estimates for the dyadic blocks

We start by considering the equation for � j u. Performing an energy estimate for
this quantity, owing to the divergence-free condition over u, we find

1

2

d

dt

∥
∥� j u

∥
∥2
L2 + ν

∫

�

β2

ω

∣
∣D� j u

∣
∣2 dx =

∫

�
C1
u, j · � j u dx + ν

∫

�
C2
u, j · � j u dx .

By multiplying the previous equation by 22 js and summing over the integers j ∈ Z,
we infer the following identity:

1

2

d

dt

∑

j∈Z
22 js

∥
∥� j u

∥
∥2
L2 + ν

∑

j∈Z
22 js

∥
∥
∥
∥

β√
ω
D(� j u)

∥
∥
∥
∥

2

L2
(20)
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=
∑

j∈Z
22 js

∫

�

C1
u, j · � j u dx + ν

∑

j∈Z
22 js

∫

�

C2
u, j · � j u dx .

It is apparent that we need to control the commutator terms appearing in the right-hand
side of the previous relation. This will be done in Paragraph 3.3.2. For the time being,
let us perform similar computations on the equations for � jω and � jβ.

So, let us consider the equation for � jω. Similar computations as above yield

1

2

d

dt

∑

j∈Z
22 js

∥
∥� jω

∥
∥2
L2 + α1

∑

j∈Z
22 js

∥
∥
∥
∥

β√
ω

∇� jω

∥
∥
∥
∥

2

L2

=
∑

j∈Z
22 js

∫

�

C1
ω, j� jω dx + α1

∑

j∈Z
22 js

∫

�

C2
ω, j� jω dx

− α2

∑

j∈Z
22 js

∫

�

� j

(
ω2
)

� jω dx .

where we have used once again the fact that div u = 0.

Let us leave the commutator terms on a side for a while and rather focus on the last
term appearing in the right-hand side of the previous relation. This term can be easily
controlled thanks to the Cauchy-Schwarz inequality in the following way:

∣
∣
∣
∣
∣
∣

∑

j∈Z
22 js

∫

�

� j

(
ω2
)

� jω dx

∣
∣
∣
∣
∣
∣

�
⎛

⎝
∑

j∈Z
22 js

∥
∥
∥� j

(
ω2
)∥
∥
∥
2

L2

⎞

⎠

1/2 ⎛

⎝
∑

j∈Z
22 js

∥
∥� jω

∥
∥2
L2

⎞

⎠

1/2

�
∥
∥
∥ω

2
∥
∥
∥
Ḣ s

‖ω‖Ḣ s � ‖ω‖L∞ ‖ω‖2
Ḣ s , (21)

where we have used also Lemma 2.4. Inserting this bound into the previous relation,
we get

1

2

d

dt

∑

j∈Z
22 js

∥
∥� jω

∥
∥2
L2 + α1

∑

j∈Z
22 js

∥
∥
∥
∥

β√
ω

∇� jω

∥
∥
∥
∥

2

L2

�
∑

j∈Z
22 js

∫

�

C1
ω, j � jω dx + α1

∑

j∈Z
22 js

∫

�

C2
ω, j � jω dx + ‖ω‖L∞ ‖ω‖2

Ḣ s .

(22)

As before, we postpone the control of the commutator terms to the next paragraph.

Finally, let us consider the equation for � jβ. Testing it against � jβ itself and
integrating over �, we obtain
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1

2

d

dt

∑

j∈Z
22 js

∥
∥� jβ

∥
∥2
L2 + α3

∑

j∈Z
22 js

∥
∥
∥
∥

β√
ω

∇� jβ

∥
∥
∥
∥

2

L2

=
∑

j∈Z
22 js

∫

�
C1

β, j � jβ dx + α3
∑

j∈Z
22 js

∫

�
C2

β, j � jβ dx

− 1

2

∑

j∈Z
22 js

∫

�
� j
(
β ω
)
� jβ dx

+ α4

2

∑

j∈Z
22 js

∫

�
� j

(
β

ω

∣
∣Du

∣
∣2
)

� jβ dx + α3
∑

j∈Z
22 js

∫

�
� j

(
β

ω
|∇β|2

)

� jβ dx .

(23)

Notice that, repeating mutatis mutandis the computations leading to (21), we can
estimate
∣
∣
∣
∣
∣
∣

∑

j∈Z
22 js

∫

�

� j
(
β ω
)
� jβ dx

∣
∣
∣
∣
∣
∣

� ‖β ω‖Ḣ s ‖β‖Ḣ s �
∥
∥
(
ω, β

)∥
∥
L∞

∥
∥
(
ω, β

)∥
∥2
Ḣ s .

However, the same argument has no chance to work when applied to the terms ap-
pearing in the last line of (23), because ∇β and Du do not belong to Hs , but only to
Hs−1.
In order to avoid the previously mentioned loss of derivative, the idea is to take

advantage of the coefficient β/
√

ω appearing in front of the bad terms and of the
(degenerate) parabolic smoothing of the equations. More precisely, we notice that we
can write

∑

j∈Z
22 js

∫

�
� j

(
β

ω

∣
∣Du

∣
∣2
)

� jβ dx =
∑

j∈Z
22 js

∫

�

β

ω
� jDu : Du � jβ dx + C3[u, β],

where we have defined the new commutator term

C3[u, β] :=
∑

j∈Z
22 js

∫

�

[

� j ,
β

ω
Du

]

: Du � jβ dx .

At this point, it is easy to bound the former sum in the right-hand side as

∣
∣
∣
∣
∣
∣

∑

j∈Z
22 js

∫

�

β

ω
� jDu : Du � jβ dx

∣
∣
∣
∣
∣
∣

� 1√
ωmin

‖∇u‖L∞

×
⎛

⎝
∑

j∈Z
22 js

∥
∥
∥
∥

β√
ω

� jDu

∥
∥
∥
∥

2

L2

⎞

⎠

1/2

⎛

⎝
∑

j∈Z
22 js

∥
∥� jβ

∥
∥2
L2

⎞

⎠

1/2
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� 1√
ωmin

‖∇u‖L∞

⎛

⎝
∑

j∈Z
22 js

∥
∥
∥
∥

β√
ω

� jDu

∥
∥
∥
∥

2

L2

⎞

⎠

1/2

‖β‖Ḣ s .

From analogous computations, we deduce also that

∑

j∈Z
22 js

∫

�
� j

(
β

ω
|∇β|2

)

� jβ dx =
∑

j∈Z
22 js

∫

�

β

ω
� j∇β : ∇β � jβ dx + C4[β, β],

where this time we have set

C4[β, β] :=
∑

j∈Z
22 js

∫

�

[

� j ,
β

ω
∇β

]

: ∇β � jβ dx

and where the next estimate holds true:

∣
∣
∣
∣
∣
∣

∑

j∈Z
22 js

∫

�

β

ω
� j∇β : ∇β � jβ dx

∣
∣
∣
∣
∣
∣

� 1√
ωmin

‖∇β‖L∞

⎛

⎝
∑

j∈Z
22 js

∥
∥
∥
∥

β√
ω

� j∇β

∥
∥
∥
∥

2

L2

⎞

⎠

1/2

‖β‖Ḣ s .

Inserting all those bounds into (23) and making use of the Young inequality, we
find, for any δ > 0 to be fixed later, the bound

1

2

d

dt

∑

j∈Z
22 js

∥
∥� jβ

∥
∥2
L2 + α3

∑

j∈Z
22 js

∥
∥
∥
∥

β√
ω

∇� jβ

∥
∥
∥
∥

2

L2

≤
∑

j∈Z
22 js

∫

�
C1

β, j � jβ dx + α3
∑

j∈Z
22 js

∫

�
C2

β, j � jβ dx + C3[u, β] + C4[β, β]

+ C

(
∥
∥
(
ω, β

)∥
∥
L∞ + 1

ωmin

∥
∥
(∇u, ∇β

)∥
∥2
L∞

)
∥
∥
(
ω, β

)∥
∥2
Ḣ s

+ δ
∑

j∈Z
22 js

∥
∥
∥
∥

β√
ω

� jDu

∥
∥
∥
∥

2

L2
+ δ

∑

j∈Z
22 js

∥
∥
∥
∥

β√
ω

� j∇β

∥
∥
∥
∥

2

L2
, (24)

where the multiplicative constant C > 0 depends also on δ > 0.

It is time to sum up inequalities (20), (22) and (24). For simplicity of notation, let
us introduce the (homogeneous) Sobolev energy of the solution,
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Es(t) := ∥
∥
(
u, ω, β

)
(t)
∥
∥
Ḣ s ∼

∑

j∈Z
22 js

∥
∥� j u(t)

∥
∥2
L2

+
∑

j∈Z
22 js

∥
∥� jω(t)

∥
∥2
L2 +

∑

j∈Z
22 js

∥
∥� jβ(t)

∥
∥2
L2 ,

and the higher-order energy

Fs(t) :=
∑

j∈Z
22 js

∥
∥
∥
∥

β√
ω

� jDu

∥
∥
∥
∥

2

L2
+
∑

j∈Z
22 js

∥
∥
∥
∥

β√
ω

∇� jω

∥
∥
∥
∥

2

L2

+
∑

j∈Z
22 js

∥
∥
∥
∥

β√
ω

∇� jβ

∥
∥
∥
∥

2

L2
,

coming from the (degenerate) parabolic effect.
Then, summing up (20), (22) and (24), choosing δ = min{ν, α3}/2 in (24) and

finally integrating in time, we infer, for any time t ≥ 0, the inequality

Es(t) +
∫ t

0
Fs(τ ) dτ � Es(0) +

∫ t

0

(
∥
∥
(
ω, β

)∥
∥
L∞ + 1

ωmin

∥
∥
(∇u,∇β

)∥
∥2
L∞

)

Es(τ ) dτ

+
∫ t

0

( ∑

f ∈{u,ω,β}

(
C1[ f, f ] + C2[ f, f ]

)
+ C3[u, β] + C4[β, β]

)
dτ ,

(25)

where Es(0) denotes the same quantity as Es , but computed on the initial datum
(
u0, ω0

√
k0
)
, and where, for � = 1, 2 and f ∈ {u, ω, β}, we have set

C�[ f, f ] :=
∑

j∈Z
22 js

∫

�

C�
f, j � j f dx .

At this point, adding estimates (15), (16) and (18) to (25), we deduce a similar
inequality for the full Hs energy of the solution, namely for

Es(t) := ∥
∥
(
u, ω, β

)
(t)
∥
∥
Hs ∼ ∥

∥
(
u, ω, β

)
(t)
∥
∥2
L2 + Es(t).

More precisely, we find, for any t ≥ 0, the bound

Es(t) +
∫ t

0
Fs(τ ) dτ � Es(0) +

∫ t

0

(
∥
∥
(
ω, β

)∥
∥
L∞ + 1

ωmin

∥
∥
(∇u,∇β

)∥
∥2
L∞

)

Es(τ ) dτ

+
∫ t

0

( ∑

f ∈{u,ω,β}

(
C1[ f, f ] + C2[ f, f ]

)
+ C3[u, β] + C4[β, β]

)
dτ ,

(26)
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3.3.2. Commutator estimates

In order to close the estimates, we need to control the commutator terms appearing
in inequality (26): this is the scope of the present paragraph.

We will start by bounding the terms of the formC1[ f, f ], as their control is a direct
application of Lemma 2.2. Then we will switch to the bounds for the terms C3[u, β]
and C4[β, β], which are also based on Lemma 2.2, but are slightly more involved.
As a matter of fact, the control of the Sobolev norm of the coefficient 1/

√
ω will

cause some problems, due to the lower bound for ω, which, as established in (13), is
not uniform in time. Finally, we will consider the terms of the type C2[ f, f ], whose
bounds are more difficult to obtain and require a further decomposition.

Bounding the terms C1[ f, f ]
Given f ∈ {u, ω, β}, our first goal is to control

C1[ f, f ] =
∑

j∈Z
22 js

∫

�

C1
f, j � j f dx , with C1

f, j = [
u,� j

] · ∇ f .

A direct application of the Cauchy-Schwarz inequality and of Lemma 2.2 allows
us to bound those terms as

∣
∣
∣C

1[ f, f ]
∣
∣
∣ �

⎛

⎝
∑

j∈Z
22 js

∥
∥
∥C

1
f, j

∥
∥
∥
2

L2

⎞

⎠

1/2 ⎛

⎝
∑

j∈Z
22 js

∥
∥� j f

∥
∥2
L2

⎞

⎠

1/2

�
(
‖∇u‖L∞ ‖ f ‖Hs + ‖∇ f ‖L∞ ‖∇u‖Hs−1

)
‖ f ‖Ḣ s

This yields the control

∑

f ∈{u,ω,β}

∣
∣
∣C

1[ f, f ]
∣
∣
∣ �

∥
∥
(∇u,∇ω,∇β

)∥
∥
L∞ Es(t). (27)

Bounding the terms C3[u, β] and C4[β, β]
We now consider the commutator termsC3[u, β] andC4[β, β]. We recall here their

definitions:

C3[u, β] :=
∑

j∈Z
22 js

∫

�

[

� j ,
β

ω
Du

]

: Du � jβ dx

and C4[β, β] :=
∑

j∈Z
22 js

∫

�

[

� j ,
β

ω
∇β

]

: ∇β � jβ dx .

Let us focus on C3[u, β] first. Proceeding as above, thanks to the Young inequality
and Lemma 2.2 we find
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∣
∣
∣C

3[u, β]
∣
∣
∣ �

⎛

⎝
∑

j∈Z
22 js

∥
∥
∥
∥

[

� j ,
β

ω
Du

]

: Du
∥
∥
∥
∥

2

L2

⎞

⎠

1/2 ⎛

⎝
∑

j∈Z
22 js

∥
∥� jβ

∥
∥2
L2

⎞

⎠

1/2

�
(∥
∥
∥
∥∇
(

β

ω
Du

)∥
∥
∥
∥
L∞

‖u‖Hs +
∥
∥
∥
∥

β

ω
Du

∥
∥
∥
∥
Hs

‖∇u‖L∞

)

‖β‖Ḣ s . (28)

At this point, on the one hand we observe that

∥
∥
∥
∥∇
(

β

ω
Du

)∥
∥
∥
∥
L∞

� 1√
ωmin

∥
∥
∥
∥∇
(

β√
ω
Du

)∥
∥
∥
∥
L∞

+ 1

(ωmin)3/2
‖∇ω‖L∞

∥
∥
∥
∥

β√
ω
Du

∥
∥
∥
∥
L∞

� 1√
ωmin

∥
∥
∥
∥∇
(

β√
ω
Du

)∥
∥
∥
∥
L∞

+ 1

(ωmin)2
‖β‖L∞

∥
∥
(∇u,∇ω

)∥
∥2
L∞

and, on the other hand, we use product rules of Lemma 2.4 and Proposition 2.3 to
bound

∥
∥
∥
∥

β

ω
Du

∥
∥
∥
∥
Hs

�
∥
∥
∥
∥

1√
ω

∥
∥
∥
∥
L∞

∥
∥
∥
∥

β√
ω
Du

∥
∥
∥
∥
Hs

+
∥
∥
∥
∥

1√
ω

∥
∥
∥
∥
Hs

∥
∥
∥
∥

β√
ω
Du

∥
∥
∥
∥
L∞

� 1√
ωmin

⎛

⎝
∑

j∈Z
22 js

∥
∥
∥
∥

β√
ω

� jDu

∥
∥
∥
∥

2

L2

⎞

⎠

1/2

+ 1√
ωmin

(

‖∇u‖L∞

∥
∥
∥
∥

β√
ω

∥
∥
∥
∥
Hs

+
∥
∥
∥
∥

β√
ω

∥
∥
∥
∥
L∞

‖u‖Hs

+ ‖β‖L∞ ‖∇u‖L∞

∥
∥
∥
∥

1√
ω

∥
∥
∥
∥
Hs

)

.

Owing to Lemma 2.5, we can further bound
∥
∥
∥
∥

1√
ω

∥
∥
∥
∥
Hs

� 1 + (ωmin)
[s]+1

(ωmin)[s]+3/2

(
1 + ‖∇ω‖[s]

L∞
)

‖ω‖Hs (29)

∥
∥
∥
∥

β√
ω

∥
∥
∥
∥
Hs

� 1√
ωmin

‖β‖Hs + ‖β‖L∞
1 + (ωmin)

[s]+1

(ωmin)[s]+3/2

(
1 + ‖∇ω‖[s]

L∞
)

‖ω‖Hs .

(30)

In the end, putting all those inequalities into (28) and using that, by virtue of (13), one
has ωmin ≈ (1 + t)−1, by careful computations we gather

∣
∣
∣C

3[u, β]
∣
∣
∣ � (1 + t)1/2

∥
∥
∥
∥∇
(

β√
ω
Du

)∥
∥
∥
∥
L∞

Es + (1 + t)1/2 ‖∇u‖L∞
√
Es

√
Fs

+ (1 + t)[s]+2 (1 + ‖β‖L∞
) (

1 + ∥∥(∇u,∇ω
)∥
∥[s]+2
L∞

)
Es . (31)

Remark that the term
∥
∥
∥
∥∇
(

β√
ω
Du

)∥
∥
∥
∥
L∞
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cannot be decomposed further, as we do not know, at our level of regularity, whether
∇2u is bounded or not in L∞.

In a completely analogous way, we also find

∣
∣
∣C

4[β, β]
∣
∣
∣ � (1 + t)1/2

∥
∥
∥
∥∇
(

β√
ω

∇β

)∥
∥
∥
∥
L∞

Es + (1 + t)1/2 ‖∇β‖L∞
√
Es

√
Fs

+ (1 + t)[s]+2 (1 + ‖β‖L∞
) (

1 + ∥∥(∇β,∇ω
)∥
∥[s]+2
L∞

)
Es . (32)

Bounding the terms C2[ f, f ]
As a last step, we bound the terms of the formC2[ f, f ], for any given f ∈ {u, ω, β}.

Recall that

C2[ f, f ] =
∑

j∈Z
22 js

∫

�

C2
f, j � j f dx , with C2

f, j = div

([

� j ,
β2

ω

]

∇ f

)

.

Recall the convention we adopted above: when f = u, the term∇ f has to be replaced
by Du in the definition of C2

u, j .

As it appears clear by e.g. performing an integration by parts inside the integral
term, it is not possible to control C2[ f, f ] in a simple way by a direct use of Lemma
2.2. This lack of control is essentially due to the degeneracy of the system when
β ≈ 0. In order to overcome this problem, the basic idea is to take advantage of
the degenerate parabolic smoothing, represented by the term Fs in the estimates. For
doing so, we must “distribute” enough powers of the viscosity coefficient β/

√
ω to

the terms presenting spatial derivatives: this requires to find a suitable commutator
structure.

So, let us start performing careful computations in order to find the sought commu-
tator structure. To begin with, we observe that we can write

∑

j∈Z
22 js

∫

�
C2

f, j � j f dx = T1 +
∑

j∈Z
22 js

∫

�
div

([

� j ,
β√
ω

] (
β√
ω

∇ f

))

� j f dx ,

(33)

where we have defined

T1 :=
∑

j∈Z
22 js

∫

�

div

(
β√
ω

[

� j ,
β√
ω

]

∇ f

)

� j f dx .

Observe that, after an integration by parts, the term T1 can be easily estimated by use
of Lemma 2.2. Indeed, thanks also to the Cauchy-Schwarz inequality, we have
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|T1| =
∣
∣
∣
∣
∣
∣

∑

j∈Z
22 js

∫

�

β√
ω

[

� j ,
β√
ω

]

∇ f · ∇� j f dx

∣
∣
∣
∣
∣
∣

�
∑

j∈Z
22 js

∥
∥
∥
∥

β√
ω

∇� j f

∥
∥
∥
∥
L2

∥
∥
∥
∥

[

� j ,
β√
ω

]

∇ f

∥
∥
∥
∥
L2

�
√
Fs

⎛

⎝
∑

j∈Z
22 js

∥
∥
∥
∥

[

� j ,
β√
ω

]

∇ f

∥
∥
∥
∥

2

L2

⎞

⎠

1/2

�
√
Fs

(∥
∥
∥
∥∇
(

β√
ω

)∥
∥
∥
∥
L∞

‖ f ‖Hs + ‖∇ f ‖L∞

∥
∥
∥
∥

β√
ω

∥
∥
∥
∥
Hs

)1/2

Keeping in mind inequality (30) and the definition of ωmin, in turn we get

|T1| �
√
Fs
√
Es (1 + t)

[s]
2 + 3

4
(
1 + ‖β‖L∞

)1/2
(
1 + ∥∥(∇u,∇ω,∇β

)∥
∥[s]+1
L∞

)1/2
.

(34)

On the contrary, it is clear that a similar approach cannot work with the second
term appearing on the right-hand side of equality (33), because, after an integration by
parts, we would have no coefficients β/

√
ω to put in front of ∇� j f . Thus, the only

solution is to explicitly compute the divergence: we find

∑

j∈Z
22 js

∫

�

div

([

� j ,
β√
ω

] (
β√
ω

∇ f

))

� j f dx

= T2 +
∑

j∈Z
22 js

∫

�

[

� j ,∇
(

β√
ω

)](
β√
ω

∇ f

)

� j f dx , (35)

where this time we have set

T2 :=
∑

j∈Z
22 js

∫

�

([

� j ,
β√
ω

]

div

(
β√
ω

∇ f

))

� j f dx .

The term T2 can be controlled in a quite direct way: by applying the Cauchy-Schwarz
inequality and Lemma 2.2, or rather of inequality (10), we infer that

|T2| �
⎛

⎝
∑

j∈Z
22 js

∥
∥
∥
∥

[

� j ,
β√
ω

]

div

(
β√
ω

∇ f

)∥
∥
∥
∥

2

L2

⎞

⎠

1/2 ⎛

⎝
∑

j∈Z
22 js

∥
∥� j f

∥
∥2
L2

⎞

⎠

1/2

�
(∥
∥
∥
∥∇
(

β√
ω

)∥
∥
∥
∥
L∞

∥
∥
∥
∥

β√
ω

∇ f

∥
∥
∥
∥
Hs

+
∥
∥
∥
∥∇
(

β√
ω

∇ f

)∥
∥
∥
∥
L∞

∥
∥
∥
∥

β√
ω

∥
∥
∥
∥
Hs

)
√
Es

�
∥
∥
∥
∥∇
(

β√
ω

)∥
∥
∥
∥
L∞

∥
∥
∥
∥

β√
ω

∇ f

∥
∥
∥
∥
Hs

√
Es

+ (1 + t)[s]+
3
2
(
1 + ‖β‖L∞

) (
1 + ‖∇ω‖[s]

L∞
) ∥∥
∥
∥∇
(

β√
ω

∇ f

)∥
∥
∥
∥
L∞

Es .
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At this point, Proposition 2.3 enters into play in a fundamental way. Indeed, a direct
application of this result allows us to bound

∥
∥
∥
∥

β√
ω

∇ f

∥
∥
∥
∥
Hs

�
⎛

⎝
∑

j∈Z
22 js

∥
∥
∥
∥� j

(
β√
ω

∇ f

)∥
∥
∥
∥

2

L2

⎞

⎠

1/2

+ ‖∇ f ‖L∞

∥
∥
∥
∥

β√
ω

∥
∥
∥
∥
Hs

+
∥
∥
∥
∥∇
(

β√
ω

)∥
∥
∥
∥
L∞

‖ f ‖Hs

�
√
Fs + √

Es (1 + t)[s]+
3
2
(
1 + ‖β‖L∞

) (
1 + ∥∥(∇u,∇ω,∇β

)∥
∥[s]
L∞
)

.

(36)

This estimate in turn implies that

|T2| � (1 + t)
3
2
(
1 + ‖β‖L∞

) ∥
∥
(∇ω,∇β

)∥
∥
L∞

√
Fs
√
Es

+ (1 + t)[s]+3
(
1 + ‖β‖2L∞

) (
1 + ∥∥(∇u,∇ω,∇β

)∥
∥[s]+1
L∞

)
Es

+ (1 + t)[s]+
3
2
(
1 + ‖β‖L∞

) (
1 + ‖∇ω‖[s]

L∞
) ∥∥
∥
∥∇
(

β√
ω

∇ f

)∥
∥
∥
∥
L∞

Es .

(37)

The other term appearing in (35), instead, needs a further decomposition. As a
matter of fact, we notice that we can write it

∑

j∈Z
22 js

∫

�

[

� j ,∇
(

β√
ω

)](
β√
ω

∇ f

)

� j f dx = T3 + T4,

where we have defined

T3 :=
∑

j∈Z
22 js

∫

�

[

� j ,
β√
ω

∇
(

β√
ω

)]

· ∇ f � j f dx ,

T4 :=
∑

j∈Z
22 js

∫

�

∇
(

β√
ω

)

·
([

β√
ω

,� j

]

∇ f

)

� j f dx .

The advantage is that we can now estimate T3 and T4 as above, by use of the Cauchy-
Schwarz inequality and of Lemma 2.2. Therefore we get

|T3| �
(∥
∥
∥
∥∇
(

β√
ω

∇
(

β√
ω

))∥
∥
∥
∥
L∞

‖ f ‖Hs +
∥
∥
∥
∥

β√
ω

∇
(

β√
ω

)∥
∥
∥
∥
Hs

‖∇ f ‖L∞

)

‖ f ‖Ḣ s

|T4| �
∥
∥
∥
∥∇
(

β√
ω

)∥
∥
∥
∥
L∞

‖ f ‖Ḣ s

(∥
∥
∥
∥∇
(

β√
ω

)∥
∥
∥
∥
L∞

‖ f ‖Hs +
∥
∥
∥
∥

β√
ω

∥
∥
∥
∥
Hs

‖∇ f ‖L∞

)

.

Now, it is a long but fairly straightforward computation to see that
∥
∥
∥
∥∇
(

β√
ω

∇
(

β√
ω

))∥
∥
∥
∥
L∞

� (1 + t)
3
2
(
1 + ‖β‖L∞

)
(∥
∥
∥
∥∇
(

β√
ω

∇β

)∥
∥
∥
∥
L∞
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+
∥
∥
∥
∥∇
(

β√
ω

∇ω

)∥
∥
∥
∥
L∞

)

+ (1 + t)3
(
1 + ‖β‖2L∞

) ∥
∥
(∇ω,∇β

)∥
∥2
L∞ .

Similarly, we can bound
∥
∥
∥
∥

β√
ω

∇
(

β√
ω

)∥
∥
∥
∥
Hs

� (1 + t)
3
2
(
1 + ‖β‖L∞

) ∑

g∈{ω,β}

∥
∥
∥
∥

β√
ω

∇g

∥
∥
∥
∥
Hs

+ (1 + t)2 ‖β‖L∞
∥
∥
(∇ω,∇β

)∥
∥
L∞

∥
∥
∥
∥

(

β,
1√
ω

)∥
∥
∥
∥
Hs

+ (1 + t)
1
2 ‖β‖2L∞ ‖∇ω‖L∞

∥
∥
∥
∥

1

ω3/2

∥
∥
∥
∥
Hs

,

which yields, by use of (29), of inequality (36) and of Lemma 2.4, the estimate
∥
∥
∥
∥

β√
ω

∇
(

β√
ω

)∥
∥
∥
∥
Hs

� (1 + t)
3
2
(
1 + ‖β‖L∞

) √
Fs

+ (1 + t)[s]+4 (1 + ‖β‖2L∞
) (

1 + ∥∥(∇ω,∇β
)∥
∥[s]+1
L∞

) √
Es .

Putting all these inequalities together, we infer that

|T3| � (1 + t)
3
2
(
1 + ‖β‖L∞

)

⎛

⎝
∑

g∈{ω,β}

∥
∥
∥
∥∇
(

β√
ω

∇g

)∥
∥
∥
∥
L∞

⎞

⎠ Es

+ (1 + t)[s]+4
(
1 + ‖β‖2L∞

) (
1 + ∥∥(∇ω,∇β

)∥
∥[s]+2
L∞

)
Es

+ (1 + t)
3
2
(
1 + ‖β‖L∞

) (
1 + ∥∥(∇u,∇ω,∇β

)∥
∥
L∞
) √

Fs
√
Es . (38)

As for T4, by direct computations and using inequality (30) again, we obtain

|T4| � Es (1 + t)3
(
1 + ‖β‖2L∞

) ∥
∥
(∇ω,∇β

)∥
∥2
L∞

+ Es (1 + t)[s]+3
(
1 + ‖β‖2L∞

) (
1 + ∥∥(∇u,∇ω,∇β

)∥
∥[s]+2
L∞

)

� Es (1 + t)[s]+3
(
1 + ‖β‖2L∞

) (
1 + ∥∥(∇u,∇ω,∇β

)∥
∥[s]+2
L∞

)
. (39)

All in all, we have written

C2[ f, f ] =
∑

j∈Z
22 js

∫

�

C2
f, j � j f dx =

4∑

j=1

T j ,

where the terms T1, . . . T4 satisfy the bounds (34), (37), (38) and (39). In particular,
this implies that, after an application of the Young inequality, for any δ > 0 to be fixed
later and for any f ∈ {u, ω, β}, we have

∑

f ∈{u,ω,β}

∣
∣
∣C

2[ f, f ]
∣
∣
∣ ≤ 3 δ Fs + C (1 + t)[s]+4

(
1 + ‖β‖2L∞

)
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(
1 + ∥∥(∇u,∇ω,∇β

)∥
∥[s]+2
L∞

)
Es

+ C (1 + t)[s]+
3
2
(
1 + ‖β‖L∞

) (
1 + ‖∇ω‖[s]

L∞
)

×
⎛

⎝
∑

G∈{Du,∇ω,∇β}

∥
∥
∥
∥∇
(

β√
ω
G

)∥
∥
∥
∥
L∞

⎞

⎠ Es , (40)

where the multiplicative constant C > 0 only depends on δ and on the various param-
eters of the problem, but not on the solution.

3.4. End of the argument

At this point, to conclude our argument and close the estimates in some (possibly
small) time interval [0, T ], we have to insert inequalities (27), (31), (32) and (40) into
estimate (26).
First of all, using again the Young inequality at the right place, we see that

∣
∣
∣
∣
∣
∣

∫ t

0

( ∑

f ∈{u,ω,β}

(
C1[ f, f ] + C2[ f, f ])+ C3[u, β] + C4[β, β]

)
dτ

∣
∣
∣
∣
∣
∣

≤ 5 δ

∫ t

0
Fs dτ + C

∫ t

0
(1 + τ)[s]+4 (1 + ‖β‖2L∞

) (
1 + ∥∥(∇u, ∇ω,∇β

)∥
∥[s]+2
L∞

)
Es dτ

+ C
∫ t

0
(1 + τ)[s]+

3
2
(
1 + ‖β‖L∞

) (
1 + ‖∇ω‖[s]

L∞
)
⎛

⎝
∑

G∈{Du,∇ω,∇β}

∥
∥
∥
∥∇
(

β√
ω

G

)∥
∥
∥
∥
L∞

⎞

⎠ Es dτ ,

for a new “universal” constant C > 0.
In view of this bound, using (13) for controlling ω in L∞ and taking δ > 0 small

enough, from inequality (26) we get

Es(t) +
∫ t

0
Fs(τ ) dτ ≤ C1 Es(0) + C2

∫ t

0

(
ξ(τ ) + �(τ)

)
Es(τ ) dτ , (41)

where, for t ≥ 0, we have defined the functions

ξ(t) := (1 + t)[s]+4
(
1 + ‖β‖2L∞

) (
1 + ∥∥(∇u, ∇ω,∇β

)∥
∥[s]+2
L∞

)
,

�(t) = (1 + t)[s]+ 3
2
(
1 + ‖β‖L∞

) (
1 + ‖∇ω‖[s]

L∞
)
⎛

⎝
∑

G∈{Du,∇ω,∇β}

∥
∥
∥
∥∇
(

β√
ω
G

)∥
∥
∥
∥
L∞

⎞

⎠ .

Recall that the constants C1 > 0 and C2 > 0 only depend on
(
d, s, ν, α1, . . . α4,

ω∗, ω∗), but not on the solution.
Thus, an application of the Grönwall inequality yields

∀ t ≥ 0, Es(t) ≤ C1 Es(0) exp

(

C2

∫ t

0

(
ξ(τ ) + �(τ)

)
dτ

)

.
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Coming back to (41) and using the previous bound, we discover that

∀ t ≥ 0, Es(t) +
∫ t

0
Fs(τ ) dτ ≤ C1 Es(0)

(

1 + exp

(

C2

∫ t

0

(
ξ(τ ) + �(τ)

)
dτ

))

.

(42)

Concluding the argument from this inequality is now a standardmatter. Let us define
the time T > 0 as

T := sup

{

t > 0
∣
∣
∣ C2

∫ t

0

(
ξ(τ ) + �(τ)

)
dτ ≤ log 2

}

.

Then, from (42) we deduce that

∀ t ∈ [0, T ], Es(t) +
∫ t

0
Fs(τ ) dτ ≤ 3C1 Es(0). (43)

Now, on the one hand, we want to deduce a suitable lower bound for T and, on the
other hand, we want to establish a continuation criterion for solutions to system (1).

Lower bound for the lifespan
By definition of the functions ξ(t) and �(t) and Sobolev embeddings, it is easy to

see that, for any time t ≥ 0, one has

ξ(t) � (1 + t)[s]+4 (1 + Es(t))
[s]+4

�(t) � (1 + t)[s]+
3
2
(
1 + ‖β‖L∞

) (
1 + ‖∇ω‖[s]

L∞
)
⎛

⎝
∑

G∈{Du,∇ω,∇β}

∥
∥
∥
∥

(
β√
ω
G

)∥
∥
∥
∥
Hs

⎞

⎠

� (1 + t)[s]+
3
2
(
1 + ‖β‖L∞

) (
1 + ‖∇ω‖[s]

L∞
) √

Fs(t)

+ (1 + t)2[s]+3 (1 + ‖β‖2L∞
) (

1 + ‖∇ω‖2[s]L∞
) √

Es

≤ δ Fs(t) + C

δ
(1 + t)2[s]+3 (1 + Es(t)

)2[s]+3
,

where we have also used inequality (36) for controlling �(t). Notice that the previous
inequality holds true for any fixed δ > 0 and that the constant C > 0 depends all
the parameters of the problem. Therefore, from estimate (43) we deduce that, for any
t ∈ [0, T ], one must have
∫ t

0

(
ξ(τ ) + �(τ)

)
dτ ≤ K1

δ
t (1 + t)2[s]+3 (1 + Es(0)

)2[s]+3 + δ K2 Es(0),

for suitable positive constants K1 and K2, only depending on the parameters of the
problem. In particular, by definition of T , at time t = T it must hold

K1

δ
T (1 + T )2[s]+3 (1 + Es(0)

)2[s]+3 + δ K2 Es(0) ≥ K3, (44)
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where K3 = log 2/C2 only depends on
(
d, s, ν, α1, . . . α4, ω∗, ω∗). At this point, we

choose

δ = K3

2 K2 Es(0)
.

Then, from (44) we obtain that

2

K3
K1 K2 Es(0) T (1 + T )2[s]+3 (1 + Es(0)

)2[s]+3 ≥ K3

2
. (45)

At this point, if T ≥ 1 we are done. So, let us assume that T ≤ 1. Then the previous
estimate in particular implies that

Es(0) T
(
1 + Es(0)

)2[s]+3 ≥ K0 �⇒ T ≥ K0

Es(0)
(
1 + Es(0)

)2[s]+3 ,

for a suitable “universal” constant K0. This proves the lower bound on the lifespan of
the solution claimed in Theorem 1.2.

Continuation criterion

Let us now turn our attention to the proof of the continuation criterion. This part
will conclude the proof of Theorem 1.2.

To begin with, we remark that, as a direct consequence of inequality (42), we have
the following claim: given a time 0 < T < +∞, if one has

∫ T

0

(
ξ(t) + �(t)

)
dt < +∞, (46)

then the solution remains bounded in Hs on the time interval [0, T ]. Hence, by classical
arguments, this solutionmay be continued beyond the time T into a solution possessing
the same regularity.

The previous argument already provides us with a first continuation criterion. Our
goal now is to refine it, in order to match the one claimed in Theorem 1.2. As a matter
of fact, as T < +∞ has finite value by assumption, it is easy to remove the factors
(1 + t) from that criterion and see that condition (46) holds true if and only if

∫ T

0

(
ξ̃ (t) + �̃(t)

)
dt < +∞,
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where this time we have defined

ξ̃ (t) :=
(
1 + ‖β‖2L∞

) (
1 + ∥∥(∇u,∇ω,∇β

)∥
∥[s]+2
L∞

)
,

�̃(t) = (
1 + ‖β‖L∞

) (
1 + ‖∇ω‖[s]

L∞
)
⎛

⎝
∑

G∈{Du,∇ω,∇β}

∥
∥
∥
∥∇
(

β√
ω
G

)∥
∥
∥
∥
L∞

⎞

⎠ .

In addition, using the Poincaré-Wirtinger-type inequality (7) and estimate (18), we
see that we can bound

∫ T

0
‖β‖2L∞ dt �

∫ T

0

(
β
2 + ‖β‖4/(d+2)

L2 ‖∇β‖2d/(d+2)
L∞

)
dτ

� ‖β0‖2L2 T + C
(∥
∥
(
u0, β0

)∥
∥
L2

)
∫ T

0
‖∇β‖2d/(d+2)

L∞ dτ .

Therefore, as 2d/(d + 2) < 2 on the one hand we can bound

∫ T

0
ξ̃ (t) dt �

∫ T

0

(
1 + ∥∥(∇u,∇ω,∇β

)∥
∥[s]+4
L∞

)
dt

and, on the other hand, we also have

∫ T

0
�̃(t) dt �

∫ T

0

(
1 + ‖∇β‖L∞

) (
1 + ‖∇ω‖[s]

L∞
)
⎛

⎝
∑

G∈{Du,∇ω,∇β}

∥
∥
∥
∥∇
(

β√
ω
G

)∥
∥
∥
∥
L∞

⎞

⎠ dt.

From this last bounds, the continuation criterion of Theorem 1.2 easily follows.

3.5. Analysis of the pressure

Notice that, in our derivation of a priori estimates, the pressure term does not play
any role. As amatter of fact, this term simply disappears in our energymethod, because
of the orthogonality with u, owing to the divergence-free constraint div u = 0.

Nonetheless, the pressure gradient ∇π appearing in equations (1) as an unknown
of the problem, for the sake of completeness we want to establish its regularity. This
is the goal of this subsection.
More precisely, we want to prove that

∇π ∈ L∞([0, T ]; Hs−1(�)
)
,

where T > 0 is the time defined above, so that inequality (43) holds true.
First of all, let us derive an equation for ∇π . By taking the divergence of the first

equation in (1), we see that the pressure satisfies the following elliptic problem:

− �π = − ν div

(

div

(
k

ω
Du

)

− u · ∇u

)

. (47)



68 Page 32 of 41 O. Cuvillier et al. J. Evol. Equ.

Because the average ∇π = 0 vanishes thanks to periodic boundary conditions, the
previous equation implies that

∇π = −ν ∇(−�)−1div div

(
k

ω
Du

)

+ ∇(−�)−1div
(
u · ∇u

)
. (48)

Observe that, because of the fact that div u = 0, we have div
(
u · ∇u

) = ∇u : ∇u.
Taking advantage of this cancellation, one can establish that

∥
∥
∥∇(−�)−1div

(
u · ∇u

)∥∥
∥
Hs

� ‖∇u : ∇u‖Hs−1 � ‖u‖2Hs ,

which is finite uniformly for t ∈ [0, T ].
As for the other term appearing in identity (48), we take advantage of another

fundamental cancellation, still deriving from the divergence-free constraint div u = 0.
For notational convenience, let us set

k

ω
= α2, with α ∈ L∞([0, T ]; Hs(�)

)
.

Hence, let us compute

div div
(
α2

Du
)

=
∑

j,k

∂ j ∂k

(
α2 (∂ku j + ∂ j uk

))

=
∑

k

∂k

(
∂ku · ∇α2

)
+
∑

j

∂ j

(
∂ j u · ∇α2

)
.

Observe that, as Hs−1(�) is a Banach algebra, we have that the product ∂ku · ∇α2

belongs to L∞([0, T ]; Hs−1
)
. This implies that

∇(−�)−1div div

(
k

ω
Du

)

∈ L∞([0, T ]; Hs−1),

thus completing the proof of our claim.

4. Local existence and uniqueness of solutions

In this section, we perform the proof to Theorem 1.1. More precisely, starting from
the a priori bounds of Sect. 3, we rigorously derive existence and uniqueness of local
in time solutions to system (1), related to given initial data

(
u0, ω0, k0

)
. The existence

issue is dealt with in Subsection 4.1, while uniqueness is proved in Subsection 4.2.
Our argument follows the strategy adopted in [6] for treating the 1-D model. Al-

though most arguments can be reproduced similarly in our context, we present the
proofs here for the sake of completeness. However, as in [6] the proofs are discussed
in detail, when appropriate, we will omit to give the full details and rather refer the
reader to that paper.
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4.1. Local existence of solutions

The proof of existence of a solution is carried out in three main steps. First of all,
we construct approximated solutions to system (1), by avoiding the appearing of the
“vacuum region”

{
k0(x) = 0

}
. Then, we show uniform bounds for the family of

solutions constructed by approximation, thus convergence (up to extraction) to some
target state

(
u, ω, k

)
. Finally, by a compactness argument we prove that the target

state
(
u, ω, k

)
is indeed a solution of the original system (1). Observe that, in the

convergence step, we can avoid the appearing of the pressure function ∇π , as the
weak formulation of the momentum equation uses divergence-free test functions. A
discussion about the regularity of ∇π will arise only at the end of the argument.

Before starting the proof, some notation is in order. We will deal with sequences of
solutions, denoted ( fε)ε. Given some normed space X , we simply write ( fε)ε ⊂ X to
mean that the sequence is also bounded in that space. If the sequence is not bounded,we
will adopt the different notation ∀ ε > 0, fε ∈ X . For simplicity, we will sometimes
use the notation L p

T (X) := L p
([0, T ]; X).

This having been said, let us start the proof of the existence of a solution, given
some initial state

(
u0, ω0, k0

)
verifying the assumptions stated in Theorem 1.1.

We begin by removing the degeneration created by the possible vanishing of turbu-
lent kinetic energy k0. For this, we lift the initial data: for 0 < ε < 1, we define

k0,ε :=
(√

k0 + ε
)2

.

From the initial regularity
√
k0 ∈ Hs(�), it is easy to see that

(
k0,ε

)

ε
⊂ Hs(�), k0,ε ≥ ε2 > 0.

Thus, for any fixed 0 < ε < 1, we can solve the original system (1) with respect to
the initial datum

(
u0, ω0, k0,ε

) ∈ Hs(�) × Hs(�) × Hs(�),

for instance by using Theorem 1 in [10] (see also [11]).
Observe that the solution

(
uε, ωε, kε

)
in [10]–[11] is constructed via a Galerkin

method, hence the approximation of those solutions are smooth at any step of the
Galerkin construction. In particular, for those approximations the computations per-
formed in Sect. 3 are fully justified; we deduce that the a priori estimates we have
established therein are satisfied by the Galerkin approximations, hence inherited also
by the “true” solution

(
uε, ωε, kε

)
.

The previous argument ensures us that some uniform-in-ε properties hold true: let
us review them. Firstly, thanks to the lower bound (3) for the lifespan of the solutions,
one has that

T := inf
ε∈ ]0,1] Tε > 0.
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In particular, all the solutions
(
uε, ωε, kε

)

ε
are defined on a common time interval

[0, T ].
Additionally, the pointwise bounds described in (13) imply that

(
ωε

)

ε
⊂ L∞([0, T ] × �

)
, with 0 < ωε(t, x) ≤ ω∗,

whereas inequality (14) yields

kε(t, x) > 0,

where the previous estimates hold for all (t, x) ∈ [0, T ] × �.
Furthermore, the uniform estimate (43) gives us

(
uε, ωε,

√
kε

)

ε
⊂ L∞

T (Hs) × L∞
T (Hs) × L∞

T (Hs).

Then, it is direct in our setting to deduce that
(
kε

)

ε
⊂ L∞

T (Hs) as well. From the
uniform estimate (43) and inequality (36), we also obtain that

(√
kε

ωε

Duε

)

ε

,

(√
kε

ωε

∇ωε

)

ε

,

(√
kε

ωε

∇√kε

)

ε

⊂ L2
T (Hs). (49)

Thus, by Banach-Alaoglu theorem we deduce the existence of a triplet
(
u, ω, k

) ∈
L∞
T (Hs)×L∞

T (Hs)×L∞
T (Hs) such that, up to a suitable extraction of a subsequence,

(
uε, ωε, kε

)
converges to

(
u, ω, k

)
in the weak-∗ topology of that space. Our next goal

is to prove prove that
(
u, ω, k

)
is indeed the sought solution to the original system (1).

In order to reach our goal, we are going to use a compactness argument. Let us start
by considering the velocity fields uε. Recall the equation for uε:

∂t uε + (uε · ∇)uε + ∇πε − ν div

(
kε

ωε

Duε

)

= 0 .

Repeating the analysis performed in Subsection 3.5, we infer that
(∇πε

) ⊂ L∞
T (Hs−1).

From this property, we easily find that
(
∂t uε

)

ε
⊂ L∞

T (Hs−1) �⇒ (
uε

)

ε
⊂ L∞

T (Hs) ∩ W 1,∞
T (Hs−1).

Hence, Ascoli-Arzelà theorem implies the compact inclusion
(
uε

)

ε
⊂⊂ CT (Hs−1).

By interpolation, we immediately deduce the strong convergence

uε → u in CT (Hσ ), for any 0 ≤ σ < s.

If follows from the previous regularities and Sobolev embeddings that, then, uε con-
verges pointwise together with its first-order derivatives:

uε → u and Duε → Du everywhere in [0, T ] × �. (50)
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It goes without saying that an analogous analysis can be made for the sequences
(
ωε

)

ε
and

(
kε

)

ε
, yielding pointwise convergence for them and their first-order deriva-

tives. At that point, it is an easy matter to pass to the limit in the weak formulation
of the equations and see that

(
u, ω, k

)
is indeed a solution to the original system

(1). With this at hand, we can conclude also that the gradient of the pressure ∇π ,
recovered from the target velocity and its equation, has the claimed regularity, namely
∇π ∈ L∞

T (Hs−1) ∩ CT (Hσ−1), for any σ < 1.
Observe that, thanks to the previous analysis and following the arguments in [6],

it is not difficult to conclude also that the triplet
(
u, ω,

√
k
)
solves the reformulated

system (19) and possesses the claimed regularity properties.

4.2. Uniqueness of solutions

Now, we focus on the proof of uniqueness of solutions in the claimed functional
framework, namely in the space

XT (�) :=
{
(u,∇π,ω, k)

∣
∣
∣ u , ω ,

√
k ∈ C

([0, T ]; L2(�)
)
, ∇π ∈ L∞([0, T ]; H−1(�)

)
,

ω , ω−1 , k ∈ L∞([0, T ] × �
)
, ω > 0 , k ≥ 0 ,

div u = 0 , ∇u , ∇ω , ∇√
k ∈ L∞([0, T ] × �

)}
.

First of all, we notice that the original system (1) and the modified system (19) are
equivalent in the space XT (�). This claim is justified thanks to Lemma 4.1 of [6],
whose proof can be adapted with no difficulties to the multi-dimensional case.
With this property at hand, we deduce that, for establishing uniqueness of solutions

for system (1), it is enough to prove it for solutions
(
u, ω, β

)
to system (19). Thus,

the uniqueness statement of Theorem 1.1 is a consequence of the following result.

Theorem 4.1. Consider two triplets
(
u1, ω1, β1

)
and

(
u2, ω2, β2

)
and assume that

they are both solutions to (19), related to some initial datum
(
u0, j , ω0, j , β0, j

)
, for

j = 1, 2. Assume also that, for some time T > 0 and j = 1, 2, it holds that

(
u j , ω j , β j

) ∈ X̃T :=
{
(u, ω, β)

∣
∣
∣ ω , ω−1 , β ∈ L∞([0, T ] × �

)
, ω > 0 , β ≥ 0 ,

u ∈ L∞([0, T ]; L2(�)
)
, div u = 0 ,

∇u , ∇ω , ∇β ∈ L∞([0, T ] × �
)}

.

Define the difference of the solutions as

U := u1 − u2, � := ω1 − ω2, B := β1 − β2

and assume that all these quantities belong to C
([0, T ]; L2(�)

)
. Define the energy

norm

E(t) := ‖U (t)‖2L2 + ‖�(t)‖2L2 + ‖B(t)‖2L2 .
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Then, there exists a constant C = C(ν, α1, . . . , α4) > 0, depending only on the
quantities inside the brackets, and a function � ∈ L1

([0, T ]) such that the following
stability estimate holds true:

∀ t ∈ [0, T ], E(t) ≤ E(0) exp

(

C
∫ t

0
�(τ) dτ

)

.

Proof. The proof follows the same strategy as Theorem 4.2 in [6]. First of all, we find
that U solves the following equation,

∂tU + u1 · ∇U + ∇(π1 − π2) − νdiv

(
k1
ω1

DU

)

= −U · ∇u2 + νdiv (P Du2) ,

(51)

whereπ j stands for the pressure associated to the velocityu j , aswell as its “symmetric”
version

∂tU + u2 · ∇U + ∇(π2 − π1) − νdiv

(
k2
ω2

DU

)

= −U · ∇u1 + νdiv (P Du1) ,

(52)

with the function P defined as

P := β2
1

ω1
− β2

2

ω2
= − β2

1

ω1ω2
� + 1

ω2
(β1 + β2)B.

From the properties of the functions belonging to the space X̃T , it is easy to see
that each pressure gradient ∇π j , for j = 1, 2, belongs to the space L∞

T (H−1). This
can be seen from the analogue of equation (47), by observing that the right-hand side
is L∞

T (H−1) and the dyadic characterisation (5) of Sobolev norms. Hence, also their
difference ∇(π1 − π2

)
belongs to L∞

T (H−1). On the other hand, it follows from the
assumptions on u1 and u2 thatU ∈ L∞

T (H1), so the pairing 〈∇(π1−π2
)
, U 〉 is well-

defined, and vanishes owing to the divergence-free constraint divU = 0. Therefore,
we can safely perform energy estimates for (51) and (52), integrate by parts when it
is useful and sum the two symmetric estimates: we get

d

dt
‖U‖2L2 + ν

∫

�

(
β2
1

ω1
+ β2

2

ω2

)

|DU |2 dx

≤ (‖∇u1‖L∞ + ‖∇u2‖L∞) ‖U‖2L2

+ ν

∣
∣
∣
∣
∣

∫

�

β2
1

ω1ω2
� (Du1 + Du2) : DU dx

∣
∣
∣
∣
∣

+ ν

∣
∣
∣
∣

∫

�

1

ω2
(β1 + β2)B (Du1 + Du2) : DU dx

∣
∣
∣
∣ .

By rather straightforward computations, we can estimate

ν

∣
∣
∣
∣
∣

∫

�

β2
1

ω1ω2
� (Du1 + Du2) : DU dx

∣
∣
∣
∣
∣
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≤ ν (‖∇u1‖L∞ + ‖∇u2‖L∞)

∥
∥
∥
∥

β1

ω2
√

ω1

∥
∥
∥
∥
L∞

‖�‖L2

∥
∥
∥
∥

β1√
ω1

DU

∥
∥
∥
∥
L2

≤ ν δ

∫

�

β2
1

ω1
|DU |2 dx + C(δ, ν)

(‖∇u1‖2L∞ + ‖∇u2‖2L∞
)
∥
∥
∥
∥

β1

ω2
√

ω1

∥
∥
∥
∥

2

L∞
‖�‖2L2 ,

where δ > 0 will be fixed later and the constant C(δ, ν) > 0 depends only on the
values of δ and ν. Moreover, for j = 1, 2, one has

ν

∣
∣
∣
∣

∫

�

β j

ω2
B (Du1 + Du2) : DU dx

∣
∣
∣
∣

≤ ν (‖∇u1‖L∞ + ‖∇u2‖L∞)

∥
∥
∥
∥

√
ω j

ω2

∥
∥
∥
∥
L∞

‖B‖L2

∥
∥
∥
∥
∥

√
β j√
ω j

DU

∥
∥
∥
∥
∥
L2

≤ ν δ

∫

�

β2
j

ω j
|DU |2 dx + C(δ, ν)

(‖∇u1‖2L∞ + ‖∇u2‖2L∞
)
∥
∥
∥
∥

√
ω j

ω2

∥
∥
∥
∥

2

L∞
‖B‖2L2 .

Consequently, we get the estimate

d

dt
‖U‖2L2 + ν (1 − 3δ)

∫

�

(
β2
1

ω1
+ β2

2

ω2

)

|DU |2 dx � �1(t)E(t), (53)

where the (implicit) multiplicative constant only depends on the parameter ν and the
function �1(t) is defined as

�1(t) : = ∥
∥
(∇u1,∇u2

)∥
∥
L∞ + ∥

∥
(∇u1,∇u2

)∥
∥2
L∞

(∥
∥
∥
∥

β1

ω2
√

ω1

∥
∥
∥
∥

2

L∞
+
∥
∥
∥
∥

√
ω1

ω2

∥
∥
∥
∥

2

L∞
+
∥
∥
∥
∥
1

ω2

∥
∥
∥
∥
L∞

)

.

Next, we move on to the equation for �, in order to get a similar L2 estimate for
this quantity. It is easy to check that � solves the symmetric equations

∂t� + u1 · ∇� − α1 div

(
k1
ω1

∇�

)

+ α2(ω1 + ω2)� = −U · ∇ω2 + α1 div (P ∇ω2) ,

∂t� + u2 · ∇� − α1 div

(
k2
ω2

∇�

)

+ α2(ω1 + ω2)� = −U · ∇ω1 + α1 div (P ∇ω1) .

Then, we can perform similar computations as above to find

d

dt
‖�‖2L2 + α1(1 − 3δ)

∫

�

(
β2
1

ω1
+ β2

2

ω2

)

|∇�|2 dx

+α2

∫

�

(ω1 + ω2)|�|2 dx � �2(t)E(t), (54)

where the multiplicative constant depends only on α1 and, this time, we have defined
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�2(t) : = ∥
∥
(∇ω1,∇ω2

)∥
∥
L∞ + ∥∥(∇ω1,∇ω2

)∥
∥2
L∞

(∥
∥
∥
∥

β1

ω2
√

ω1

∥
∥
∥
∥

2

L∞
+
∥
∥
∥
∥

√
ω1

ω2

∥
∥
∥
∥

2

L∞
+
∥
∥
∥
∥
1

ω2

∥
∥
∥
∥
L∞

)

.

Finally, we need to find a L2 estimate for B. For notational convenience, let us
introduce the quantity

P̃ := β1

ω1
− β2

ω2
= − β1

ω1ω2
� + 1

ω2
B,

which is needed to express the extra terms appearing in the equation for β1 and β2.
We find the following two symmetric equations for B:

∂t B + u1 · ∇B − α3 div

(
β2
1

ω1
∇B

)

+ 1

2
ω1B

= −U · ∇β2 + α3 div (P ∇β2) − 1

2
�β2

+ α4

2

β1

ω1
DU : (Du1 + Du2) + α4

2
P̃|Du2|2

+ α3
β1

ω1
∇B : (∇β1 + ∇β2) + α3 P̃|∇β2|2 ,

∂t B + u2 · ∇B − α3 div

(
β2
2

ω2
∇B

)

+ 1

2
ω2B

= −U · ∇β1 + α3 div (P ∇β1) − 1

2
�β1

+ α4

2

β2

ω2
DU : (Du1 + Du2) + α4

2
P̃|Du1|2

+ α3
β2

ω2
∇B : (∇β1 + ∇β2) + α3 P̃|∇β1|2 .

We notice that the first two terms in the right hand side are analogous to the terms
appearing in the previous equations, hence they can be estimated in the same way. The
third terms, instead, appears in the energy estimate as a contribution of the type

∣
∣
∣
∣

∫

�

(β1 + β2)�B dx

∣
∣
∣
∣ �

(‖β1‖L∞ + ‖β2‖L∞
)
E(t).

The fourth terms can be estimated as
∣
∣
∣
∣

∫

�

α4

2

β j

ω j
DU : (Du1 + Du2)B dx

∣
∣
∣
∣ ≤ ν δ

∫

�

β2
j

ω j
|DU |2 dx

+ C(δ, α4, ν)

∥
∥
∥
∥
1

ω j

∥
∥
∥
∥
L∞

∥
∥
(∇u1,∇u2

)∥
∥2
L∞ ‖B‖2L2 .

Similarly, the sixth terms can be bounded as follows:
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∣
∣
∣
∣

∫

�
α3

β j

ω j
∇B : (∇β1 + ∇β2)B dx

∣
∣
∣
∣ ≤ α3 δ

∫

�

β2
j

ω j
|∇B|2 dx

+ C(δ, α3)

∥
∥
∥
∥
1

ω j

∥
∥
∥
∥
L∞

∥
∥
(∇β1, ∇β2

)∥
∥2
L∞ ‖B‖2

L2 .

Finally, we can easily control the terms where P̃ appears. Indeed, we have
∣
∣
∣
∣

∫

�

(α4

2
P̃|Du j |2 + α3 P̃|∇β j |2

)
B dx

∣
∣
∣
∣

quad �
∥
∥
(∇u j ,∇β j

)∥
∥2
L∞

(∥
∥
∥
∥

β1

ω1ω2

∥
∥
∥
∥
L∞

+
∥
∥
∥
∥
1

ω2

∥
∥
∥
∥
L∞

)

E(t).

Gathering all the previous estimates, we deduce the following bound for B:

d

dt
‖B‖2L2 + α3(1 − 3δ)

∫

�

(
β2
1

ω1
+ β2

2

ω2

)

|∇B|2 dx + 1

2

∫

�

(ω1 + ω2)|B|2 dx

≤ C �3(t)E(t) + ν δ

∫

�

(
β2
1

ω1
+ β2

2

ω2

)

|DU |2 dx , (55)

where the constant C > 0 only depends on the various parameters
(
ν, α1, . . . α4

)
and

where we have set

�3(t) := ∥
∥
(∇u1,∇u2,∇β1, ∇β2

)∥
∥
L∞ + ∥∥(β1, β2

)∥
∥
L∞

+ ∥∥(∇u1, ∇u2, ∇β1, ∇β2
)∥
∥2
L∞

×
(∥
∥
∥
∥

β1√
ω1ω2

∥
∥
∥
∥

2

L∞
+
∥
∥
∥
∥

√
ω1

ω2

∥
∥
∥
∥

2

L∞
+
∥
∥
∥
∥

(
1

ω1
,
1

ω2

)∥
∥
∥
∥
L∞

+
∥
∥
∥
∥

β1

ω1ω2

∥
∥
∥
∥
L∞

)

.

To conclude the argument, we sum up estimates (53), (54) and (55). Fixing the
value of δ > 0 small enough to absorb the extra terms within the left hand side of the
obtained inequality, in the end we find the estimate

d

dt
E(t) �

(
�1(t) + �2(t) + �3(t)

)
E(t),

where the multiplicative constant C = C(ν, α1, . . . α4) > 0 only depends on the
quantities appearing inside the brackets. At this point, an application of the Grönwall
lemma concludes the proof of the theorem. �
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