
J. Evol. Equ. (2023) 23:47
© 2023 The Author(s), under exclusive licence to Springer
Nature Switzerland AG
1424-3199/23/030001-18, published online June 17, 2023
https://doi.org/10.1007/s00028-023-00897-9

Journal of Evolution
Equations

On self-similar singularity formation for the binormal flow
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Abstract. The aim of this article is to establish a concise proof for a stability result of self-similar solutions
of the binormal flow, in some more restrictive cases than in Banica and Vega (Ann Sci Éc Norm Supér
48:1421–1453, 2015). This equation, also known as the Local InductionApproximation, is a standardmodel
for vortex filament dynamics, and its self-similar solution describes the formation of a corner singularity on
the filament. Our approach strongly uses the link that Hasimoto pointed out in 1972 between the solution
of the binormal flow and the one of the 1-D cubic Schrödinger equation, as well as the existence results
associated to the latter.

1. Introduction

In this paper, we propose a new proof of the stability of self-similar solutions of the
binormal flow

χt = χx ∧ χxx . (1)

In terms of physics, χ(t, x) belongs toR3, t represents the time, and x is the arc-length
variable. This equation was proposed in 1906 by DaRios [14] and re-discovered in
1965 by Arms and Harma [1], for modeling a vortex filament dynamic under Euler
equations.

In a few words, its formal derivation goes as follows. If we consider the velocity of
an incompressible fluid u and its vorticity ω, the Biot-Savart law tells us that:

u(t, x) =
∫
R3

(x − y) ∧ ω(t, y)

4π |x − y|3 dy.

Then, if we suppose that ω(t) belongs to a 1D curve (i.e., ω = Γ χxδχ ) with χx of
norm 1, we can write:

u(t, x) =
∫ ∞

−∞
(x − χ(t, s)) ∧ ω(t, χ(t, s))

4π |x − χ(t, s)|3 ds.
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Conducting a Taylor expansion around zero on the space variable and restricting the
domain of integration to [−L , L] approximates the previous integral by:

u(t, 0) ≈ Γ

4π

∫ L

−L

((x1, x2, 0) − sχs(t, 0) − s2
2 χss(t, 0)) ∧ (χs(t, 0) + sχss(t, 0))

|(x1, x2, −s)|3 ds

= Γ

4π

(−x2, x1, 0)

ε2

∫ L
ε

− L
ε

ds

(1 + s2)
3
2

+ Γ

4π
(x1, x2, 0) ∧ χss(t, 0)

∫ L

−L

s

|ε2 + s2| 32
ds

− Γ

8π
χs(t, 0) ∧ χss(t, 0)

∫ L
ε

− L
ε

s2

|1 + s2| 32
ds.

The first term corresponds to a fluid rotating around a still vertical axis, the second
term vanishes by a parity argument, and the third term gives us (1), after a time-
renormalization. This model is sometimes called the Local Induction Approximation
(LIA) or vortex filament equation (VFE), and is the subject of further discutions in
[6,13] and more recently by Jerrard and Seis [10] with stronger assumptions but
rigorous arguments.
In 1972, Hasimoto linked the solutions χ(t, x) of (1) to solutions of a 1-D cubic

Schrödinger equation by using the Frenet and parallel frames in [9]. This transforma-
tion is in the same spirit as the Madelung transform.
Conversly, for a given real potential a and a given solution ψ of

iψt + ψxx + 1

2
(|ψ |2 − a(t))ψ = 0, (2)

the Hasimoto transformation is reversible by using Frenet frames for non-vanishing
curvatures vortices. However, the calculations are much faster and work for any cur-
vatures by constructing first parallel frames (T, e1, e2)(t, x) that satisfy:

Tx = �(ψN ), Nx = −ψT, Tt = �(ψx N ), Nt = −iψx T − i

2
(|ψ |2 − a(t))N ,

(3)
with N = e1 + ie2, and any orthonormal basis as initial data. It follows that the vector
T satisfies the 1-D Schrödinger map with values in S2:

Tt = T ∧ Txx ,

and can be integrated into a solution χ of the binormal flow (1) starting at a point P
at (t0, x0) with the formula:

χ(t, x) = P +
∫ t

t0
(T ∧ Tx )(τ, x0)dτ +

∫ x

x0
T (t, s)ds, ∀(t, x).

In this paper, we study the stability of the self-similar solutions {χα}α>0 of (1)
determined for t > 0 by a curvature of α√

t
and a torsion of x

2t . The behavior of χα(t, s)

for t > 0 was exhibited by physicists in [11,12], and a numeric study on it was done
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in [7]. In [8], it has been proven that they are solutions of (2), smooth as long as t > 0
and have a trace at t = 0 forming a one corner polygonal line of angle θ such that

sin
θ

2
= e−π α2

2 . (4)

This class of solutions correspond to solutions of 1-D cubic NLS solutions

ψα(t, x) = α
ei

x2
4t√
t

,

taking a(t) = α2

t in (2).

Theorem 1. (The initial value problem for the binormal flow) Let χ0 a smooth arc-
length parametrized curve of R3, except at one point located at arc-length x = 0
where it forms a corner of angle θ . Let c be the curvature of χ0, τ its torsion and α

given by (4).
If α defined from θ by (4) is small enough, and if

c ∈ W 3,1(R) ∩ H2(R),
c

x
∈ W 2,1(R) ∩ H2(R),

x2c ∈ W 3,1(R) ∩ H2(R), (1 + x2)c ∈ L2(R),

x−2c ∈ L2(R), τ ∈ H2(R) and τ 2 ∈ H1(R),

then there exists t0 > 0 and

χ(t, x) ∈ C([−t0, t0], Lip) ∩ C([−t0, t0]\{0}, C4), (5)

a solution of the binormal flow (1) on (0, t0], having χ0 as a limit at time t = 0, and
there exists C > 0 such that:

sup
x

|χ(t, x) − χ0(x)| ≤ C
√
t . (6)

Moreover, the tangent vector T = ∂xχ has a limit at time zerowith the same time-decay
rate:

∀t > 0 ∀x ∈ R ∃C(x) |T (t, x) − ∂xχ0(t)| ≤ C(x)t
1
4 . (7)

This type of result has already been proven by Banica and Vega in Theorem 1.2 of [5],
under weaker assumptions on the curvature and torsion of χ0. As a counterpart, the
corresponding scattering results for (2) (existence of wave operator and asymptotic
completeness) obtained in [3] are with weaker decay. As a consequence, the proof
requires to obtain asymptotic space states for T (t, x) and N (t, x) when x → ±∞,
and a much more technical iterative argument to obtain the limit for T and N at time
t = 0.

Here, we will use a stronger convergence rate (obtained in the existence result of
the wave operator in [2]) to give a concise proof of Theorem 1.
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We note that even under more restrictive hypothesis than in [5], we do not have an
asymptotic completeness result with better decay, that would allow us to give also a
concise proof of Theorem 1.3 of the second stability result in [5].

Let us streamline here the constructive proof of Theorem 1. Denoting T0 the tangent
vector toχ0, we define the complex-valued functions g ∈ C and N0 ∈ S

2+iS2 defined
by the parallel frame system:

{
T0x (x) = �(g(x)N0(x))
N0x (x) = −g(x)T0(x)

, (8)

with initial data (A+
α , B+

α ) for x > 0 and (A−
α , B−

α ) for x < 0, where A±
α and B±

α

stand for the complex vectors appearing in the asymptotics of the normals vectors of
the same self-similar solution χα (see Theorem 1 of [8]).

Let us note that, using Frenet frame, there exists γ ∈ [0, 2π ] such that:

g(x) = c(x)ei(
∫ x
0 τ(s)ds+γ ), (9)

as explained in Remark 2.1 of [4].
Now set:

u+ = F−1
√
i
(
g(2·)eiα2 log |·|) . (10)

The hypothesis of Theorem 1 on c and τ allows u+ to belong to some particular
Sobolev spaces in order to use the existence of a wave operator for (2) proved in
Theorem 1.4 of [2]. More precisely, u+ is in Ḣ−2 ∩ H2 ∩ W 2,1 and α is small, so
there exists t0 > 0 and a unique solution of (2) on (0, t0] of the form:

ψ(t, x) = ei
x2
4t√
t

(
α + u

(
1

t
,
x

t

))
, (11)

with u being a perturbation that writes:

u(t, x) = ei t∂
2
x u+(x) + r(t, x). (12)

The proof of this result uses scattering methods after performing a pseudo-conformal
transformation, and allows us to have the following control on the time decay of the
remainder term r , for k = 1 and k = 2:

‖r(t)‖L2
x

= O(t−
1
2 ) , ‖∇kr(t)‖L2

x
= O(t−1). (13)

The next step in our proof is to use the parallel frame (3) with the function ψ given
by (11) to construct a solution χ of (1) on (0, t0].
Then, we consider the vectors T and N given by (3), as well as Ñ a modulated

version of N defined later. We prove in Sect. 2.2 that T and Ñ admit a trace at time
t = 0, thanks to bounds on the perturbation u given in Corollary 1, consequence of
bound (13).
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Then, in Sect. 2.3 we find the ODE system verified by T|t=0 and Ñ|t=0 for x �= 0
that turns out to be the same as the one of T0 and N0, due to (10). Sections2.2 and 2.3
are the part of the proof that simplify consistently the proof in [5].
Finally, in Sect. 2.4,we use self-similar paths to determine T|t=0 and Ñ|t=0 at x = 0+

and x = 0− for the ODE system, that coincides with the corner singularity directions
of χ0 and complete the Cauchy Problem. These last results allows us to conclude in
Sect. 3 that we recovered χ0 at time t = 0.
Data sharing not applicable to this article as no datasets were generated or analyzed

during the current study.

2. Construction of perturbed self-similar solution of the binormal flow

As announced in the introduction, we first define the complex-valued function g
with the system verified by χ0’s tangent and normal vectors T0 and N0:

{
T0x (x) = �(g(x)N0(x))
N0x (x) = −g(x)T0(x)

, (14)

with initial data (A+
α , B+

α ) for x > 0 and (A−
α , B−

α ) for x < 0, and consider

u+ = F−1
√
i
(
g(2·)eiα2 log |·|) . (15)

We now deduce regularity on u+ from the the hypothesis of Theorem 1 on c and τ ,
which is the purpose of the following lemma.

Lemma 1. Consider the curvature c and the torsion τ of a parametrized curve. Define
u+ by formula (15) and recall expression (9) of g.
If

c ∈ W 3,1(R) ∩ H2(R),
c

x
∈ W 2,1(R) ∩ H2(R),

x2c ∈ W 3,1(R) ∩ H2(R), (1 + x2)c ∈ L2(R),

and

x−2c ∈ L2(R), τ ∈ H2(R) and τ 2 ∈ H1(R),

then

u+ ∈ W 1,2(R) ∩ H2(R) ∩ Ḣ−2(R) and (1 + x2)u+ ∈ L∞(R),

(1 + x2)xu+ ∈ L∞(R).

This lemma will allow us to apply a wave operator existence theorem right after, but
also to use the weighted L∞ bound on u+ in the proof of Corollary 1.
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Proof. The idea of the proof is to write the inverse Fourier transform formula and
perform integration by parts on it, to gain decay. We have by definition:

u+(x) =
∫
R

e−i xy
√
ic(2y)ei(

∫ 2y
0 τ(s)ds+γ )eiα

2 log |y|dy,

so integrating by parts to times leads to:

u+(x) = −
∫
R

e−i xy

−i x

√
i(2c′(2y) + ic(2y)τ (2y) + iα2 c(2y)

y
)ei(

∫ 2y
0 τ(s)ds+γ )eiα

2 log |y|dy

=
∫
R

e−i xy

x2
√
i(4c′′(2y) + i2c′(2y)τ (2y) + i2c(2y)τ ′(2y))ei(

∫ 2y
0 τ(s)ds+γ )eiα

2 log |y|dy

+
∫
R

e−i xy

x2
√
i iα2 2yc

′(2y) + c(2y)

y2
ei(

∫ 2y
0 τ(s)ds+γ )eiα

2 log |y|dy

+
∫
R

e−i xy

x2
√
i iτ(2y)(2c′(2y) + ic(2y)τ (2y) + iα2 c(2y)

y
)ei(

∫ 2y
0 τ(s)ds+γ )eiα

2 log |y|dy

+
∫
R

e−i xy

x2
√
i
iα2

y
(2c′(2y) + ic(2y)τ (2y) + iα2 c(2y)

y
)ei(

∫ 2y
0 τ(s)ds+γ )eiα

2 log |y|dy.

Because all of the terms in those integrals are by hypothesis either L1, or a product of
two L2 functions, it all converges and we deduce that u+ ∈ L1 and (1+ x2)u+ ∈ L∞.

Then, it is straightforward to check that (1 + x2)xu+ ∈ L∞ with an additional
integration by parts. To obtain ∇u+ ∈ L1, we write:

∇u+(x) = −i
∫
R

e−i xy y
√
ic(2y)ei(

∫ 2y
0 τ(s)ds+γ )eiα

2 log |y|dy,

and perform as well two integration by parts. We similarly show that ∇2u+ ∈ L1.
Finally, for the L2 hypothesis, we use Parseval identity to claim that (1 + x2)c ∈ L2

and x−2c ∈ L2 imply that u+ ∈ H2 ∩ Ḣ−2. �

Thanks to this lemma, we have that u+ is inW 1,2∩H2∩ Ḣ−2 under the hypothesis of
Theorem 1. Therefore, we can apply Theorem 1.2 of [2], to obtain a unique solution
of (2) on (0, t0] that writes:

ψ(t, x) = ei
x2
4t√
t

(
α + u

(
1

t
,
x

t

))
, (16)

where:

u(t, x) = ei t∂
2
x u+(x) + r(t, x), (17)

with r satisfying (13).
Then, equations (3) of Hasimoto’s construction allow us to constructχ , a solution of

(1) on (0, t0] by its tangent and normal vectors T and N . However, in order to identify
the trace of χ(t) at time t = 0, we need a better understanding of the perturbation u.
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2.1. Preliminary bound

In order to obtain a bound on u that is sharp enough, we shall use the decay given
by (13).

Corollary 1. (L∞ bound on the perturbation u) Let u defined by (17). Under the
hypothesis of Theorem 1, we have the following bound on u and its derivative as t
goes to zero:

∣∣∣∣u
(
1

t
,
x

t

)∣∣∣∣ ≤ t
1
2 , with

∣∣∣∣r
(
1

t
,
x

t

)∣∣∣∣ ≤ t
3
4 ,

and
∣∣∣∣∂xu

(
1

t
,
x

t

)∣∣∣∣ ≤ x√
t

+ t
1
2 , with

∣∣∣∣∂xr
(
1

t
,
x

t

)∣∣∣∣ ≤ t
1
2 .

Moreover, we have:
∣∣∣∣ i x2t e

i 1t ∂
2
x u+

( x
t

)
−

[
ei

1
t ∂

2
x u+

( x
t

)]
x

∣∣∣∣ ≤ t
1
2 . (18)

The last estimate comes from a cancelation, and gives us more decay that expected.

Proof. First, we give a bound of the remainder term r and its derivative using the
decay (13) given in Theorem 1.2 of [2] (wave operator existence). For this, we apply
the Gagliardo Niremberg interpolation inequality:

∣∣∣∣r
(
1

t
,
x

t

)∣∣∣∣ ≤ t
1
4

∥∥∥∥r
(
1

t
, ·

)∥∥∥∥
1
2

L2
t−

1
4

∥∥∥∥∂xr

(
1

t
, ·

)∥∥∥∥
1
2

L2
≤ t

3
4 ,

and similarly:
∣∣∣∣∂xr

(
1

t
,
x

t

)∣∣∣∣ ≤ t
1
2 .

Next, we simply write:

∣∣∣ei 1t ∂2x u+
( x
t

)∣∣∣ =
∣∣∣∣
∫ √

tei
t
4 ( xt −y)2u+(y)dy

∣∣∣∣ ≤ √
t‖u+‖L1 ,

and for the other term we use the fact that xu+(x) ∈ L1, obtained in Lemma 1:

∣∣∣∂xei 1t ∂2x u+
( x
t

)∣∣∣ =
∣∣∣∣∂x

∫ √
tei

t
4 ( xt −y)2u+(y)dy

∣∣∣∣ =
∣∣∣∣ i x2t e

i 1t ∂
2
x u+

( x
t

)∣∣∣∣
+

∣∣∣∣
∫ √

tei
t
4 ( xt −y)2 iy

2
u+(y)dy

∣∣∣∣ ,
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that ensures:
∣∣∣∣∂xu

(
1

t
,
x

t

)∣∣∣∣ ≤ x√
t

+ √
t .

Finally, (18) comes directly from the previous expression, as we write:

∣∣∣∣ i x2t e
i 1t ∂

2
x u+

( x
t

)
−

[
ei

1
t ∂

2
x u+

( x
t

)]
x

∣∣∣∣ =
∣∣∣∣
∫ √

tei
t
4 ( xt −y)2 iy

2
u+(y)dy

∣∣∣∣ .

�

We are now ready to tackle our proof.

2.2. Limit at time t = 0

As announced, the next step is to prove the existence of a limit for vectors T and
N , up to a phase.

Lemma 2. (Limit of vector T) The tangent vector T of χ has a limit at time zero with
a convergence rate given by:

∀t0 ≥ t2 ≥ t1 > 0 ∀x ∈ R
∗ |T (t2, x) − T (t1, x)| ≤ xt

1
4
2 + t

3
4
2 +

√
t2
x

.

This lemma gives us the convergence rate (7) announced in Theorem 1.

Proof. Now let t2 ≥ t1 > 0,

|T (t2, x) − T (t1, x)| =
∣∣∣∣
∫ t2

t1
Tt (t, x)dt

∣∣∣∣ =
∣∣∣∣�

∫ t2

t1
ψx N (t, x)dt

∣∣∣∣

=
∣∣∣∣∣∣�

∫ t2

t1

e−i x
2
4t√
t

(−i x

2t
u

(
1

t
,
x

t

)
− i

xα

2t
+

[
u

(
1

t
,
x

t

)]
x

)
N (t, x)dt

∣∣∣∣∣∣
≤ xt

1
4
2 + t2 +

∣∣∣∣�
∫ t2

t1
e−i x

2
4t

i xα

2t
√
t
N (t, x)dt

∣∣∣∣

+
∣∣∣∣∣∣�

∫ t2

t1

e−i x
2
4t√
t

(−i x

2t
ei

1
t ∂2x u+

( x

t

)
+

[
ei

1
t ∂2x u+

( x

t

)]
x

)
N (t, x)dt

∣∣∣∣∣∣ ,

where the terms with the remainder r have provided enough decay. Then, if we use
(18), we have that:

∣∣∣∣∣∣�
∫ t2

t1

e−i x
2
4t√
t

(−i x

2t
ei

1
t ∂

2
x u+

( x
t

)
+

[
ei

1
t ∂

2
x u+

( x
t

)]
x

)
N (t, x)dt

∣∣∣∣∣∣ ≤ t2.
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For the other term, we integrate by parts:

∣∣∣∣�
∫ t2

t1
e−i x

2
4t

i xα

2t
√
t
N (t, x)dt

∣∣∣∣ ≤
∣∣∣∣∣�

[
e−i x

2
4t
2
√
tα

x
N (t, x)

]t2
t1

∣∣∣∣∣ +
∣∣∣∣�

∫ t2

t1
e−i x

2
4t

α

x
√
t
N (t, x)dt

∣∣∣∣

+
∣∣∣∣�

∫ t2

t1
e−i x

2
4t
2
√
tα

x
Nt (t, x)dt

∣∣∣∣
≤ 2α

√
t2

x
+

∣∣∣∣�
∫ t2

t1
e−i x

2
4t
2
√
tα

x
Nt (t, x)dt

∣∣∣∣ .

We must now expand the term in Nt :

∣∣∣∣�
∫ t2

t1
e−i x

2
4t
2
√
tα

x
Nt (t, x)dt

∣∣∣∣

≤
∣∣∣∣∣∣�

∫ t2

t1
e−i x

2
4t
2
√
tα

x
i
ei

x2
4t√
t

(
i x

2t
u

(
1

t
,
x

t

)
+ i

xα

2t
+

[
u

(
1

t
,
x

t

)]
x

)
T (t, x)dt

∣∣∣∣∣∣
+

∣∣∣∣∣�
∫ t2

t1
e−i x

2
4t
2
√
tα

x

i

2

( |u ( 1
t ,

x
t

) |2
t

+ 2�(u
( 1
t ,

x
t

)
α)

t

)
N (t, x)dt

∣∣∣∣∣
≤ t

3
4
2 + t2

x
,

using both (18) and the fact that T is real, so we have:

�
∫ t2

t1

α2

t
T (t, x)dt = 0.

To sum up, we showed that:

∀t0 ≥ t2 ≥ t1 > 0 ∀x ∈ R
∗ |T (t2, x) − T (t1, x)| ≤ xt

1
4
2 + t

3
4
2 +

√
t2
x

,

and the lemma is proven.
Note that, for self-similar paths, we also obtained that T (t, x

√
t) has a limit as t , 1

x
and x

√
t simultaneously go to zero. �

In order for N to converge, we must add a phase.

Lemma 3. (Limit of vector N) Let us write

Ñ (t, x) = e
iα2 ln |x |√

t N (t, x) = eiφN ,

where N is the normal vector of χ . Then Ñ has a limit at time zero with a convergence
rate given by:

∀t0 ≥ t2 ≥ t1 > 0 ∀x ∈ R
∗ |Ñ (t2, x) − Ñ (t1, x)| ≤ xt

1
4
2 + t

1
2
2 +

√
t2
x

+ t2
x2

.
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Note that the factor |x | in φ could be replaced by anything independent of t , but is
chosen for assuring properties at time t = 0 as we will see in Lemma 5.

Proof. To follow the proof, the reader must only keep in mind that |u ( 1
t ,

x
t

) | behaves
at worse like t

1
2 and |∂xu

( 1
t ,

x
t

) | at worse like √
t + t x

√
t .

Recalling that:

Ñt = eiφNt − i
α2

2t
N (t, x)eiφ,

given 0 < t1 ≤ t2 ≤ t0, we have:

Ñ (t2, x) − Ñ (t1, x)

=
∫ t2

t1
Ñt (t, x)dt =

∫ t2

t1
−iψx T e

iφ + i

2
(|ψ |2 − α2

t
)Neiφdt − i

α2

2t
N (t, x)eiφ

= −
∫ t2

t1
i
ei

x2
4t√
t

(
i x

2t
u

(
1

t
,
x

t

)
+ i

xα

2t
+

[
u

(
1

t
,
x

t

)]
x

)
T (t, x)eiφdt

+ i

2

∫ t2

t1

(
�
��α2

t
+ |u ( 1

t ,
x
t

) |2
t

+ 2�(u
( 1
t ,

x
t

)
α)

t
−

�
��α2

t

)
N (t, x)eiφdt.

−
∫ t2

t1
i
α2

2t
N (t, x)eiφdt.

As before, we use (18) so terms with u in the first integral partially cancel with each
other. Using bounds of Corollary 1, we are now left with only a difference to study:

|Ñ (t2, x) − Ñ (t1, x)| ≤ xt
1
4
2 + t

1
2
2 +

∣∣∣∣∣∣−
∫ t2

t1
i
ei

x2
4t√
t

i x

2t
αT (t, x)eiφdt −

∫ t2

t1
i
α2

2t
N (t, x)eiφdt

∣∣∣∣∣∣ .

For that, we integrate by parts the first term:

∫ t2

t1

ei
x2
4t x

2t
√
t
αT (t, x)eiφdt

=
[
ei

x2
4t
2
√
t

i x
αT (t, x)eiφ

]t2
t1

−
∫ t2

t1
ei

x2
4t

1

i x
√
t
αT (t, x)eiφdt −

∫ t2

t1
ei

x2
4t
2
√
t

i x
αTt (t, x)e

iφdt

+
∫ t2

t1
ei

x2
4t

α2

x
√
t
αT (t, x)eiφdt,

and get:

|Ñ (t2, x) − Ñ (t1, x)| ≤ xt
1
4
2 + t

1
2
2 +

√
t2
x

+
∣∣∣∣
∫ t2

t1
ei

x2
4t
2
√
t

i x
αTt (t, x)e

iφdt −
∫ t2

t1
i
α2

2t
N (t, x)eiφdt

∣∣∣∣ .
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We then use the fact that Tt = �(ψx N ) = 1
2i (ψx N − ψx N ) to write:

∫ t2

t1
ei

x2
4t
2
√
t

i x
αTt (t, x)e

iφdt

= 1

2i

∫ t2

t1

2

i x
α

(−i x

2t
u

(
1

t
,
x

t

)
− i

xα

2t
+

[
u

(
1

t
,
x

t

)]
x

)
N (t, x)eiφdt

− 1

2i

∫ t2

t1
ei

x2
4t

2

i x
αei

x2
4t

(
i x

2t
u

(
1

t
,
x

t

)
+ i

xα

2t
+

[
u

(
1

t
,
x

t

)]
x

)
N (t, x)eiφdt.

Again, thanks to Corollary 1, only the terms without u are worth studying. Moreover,
the first term cancels with the term coming from the phase φ. Therefore we have:

|Ñ (t2, x) − Ñ (t1, x)| ≤ xt
1
4
2 + t

1
2
2 +

√
t2
x

+
∣∣∣∣ 12i

∫ t2

t1
ei

2x2
4t

α2

t
N (t, x)eiφdt

∣∣∣∣ .

The other one has a phase, so we perform a second integration by parts on it:

1

2i

∫ t2

t1
ei

2x2
4t

α2

t
N (t, x)eiφdt

= 1

2i

[
ei

2x2
4t

2α2t

i x2
N (t, x)eiφ

]t2
t1

+ 1

2i

∫ t2

t1
ei

2x2
4t

2α2

i x2
N (t, x)eiφdt

− 1

2i

∫ t2

t1
ei

2x2
4t

2α2t

i x2
Nt (t, x)e

iφdt + 1

2i

∫ t2

t1
ei

2x2
4t

α2α2

x2
N (t, x)eiφdt.

We finally expand the Nt term and observe that it has the desired behavior:

− 1

2i

∫ t2

t1
ei

2x2
4t

2α2t

i x2
Nt (t, x)e

iφdt

= + 1

2i

∫ t2

t1
ei

x2
4t
2α2t

i x2
i√
t

(−i x

2t
u

(
1

t
,
x

t

)
− i

xα

2t
−

[
u

(
1

t
,
x

t

)]
x

)
T (t, x)eiφdt

− 1

2i

∫ t2

t1
ei

2x2
4t

2α2t

i x2

( |u ( 1
t ,

x
t

) |2
t

+ 2�(u
( 1
t ,

x
t

)
α)

t

)
N (t, x)eiφdt.

To sum up, we proved that:

∀t0 ≥ t2 ≥ t1 > 0 ∀x ∈ R
∗ |Ñ (t2, x) − Ñ (t1, x)| ≤ xt

1
4
2 + t

1
2
2 +

√
t2
x

+ t2
x2

.

As for T , we also obtained that, for self-similar paths, Ñ (t, x
√
t) has a limit as t , 1

x
and x

√
t simultaneously go to zero. �
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2.3. More information about the tangents vectors at time t = 0

The aim of this section is to quantify the evolution of T|t=0 and Ñ|t=0 with respect
to the space variable. More precisely, we will show that:

⎧⎨
⎩

Tx (0, x) = � 1√
i
û+

( x
2

)
e−iα2 log |x | Ñ (0, x),

Ñx (0, x) = − 1√
i
û+

( x
2

)
e−iα2 log |x |T (0, x),

∀x �= 0.

Those two claims can be proved separately and that is what we are going to do.

Lemma 4. (Properties of T|t=0) Let x ∈ R
∗, then we have:

Tx (0, x) = lim
t→0

Tx (t, x) = � 1√
i
û+

( x
2

)
e−iα2 log |x | Ñ (0, x).

Proof. Let (x1, x2) ∈ R
∗+2. We are going to write the variation of T at t > 0 between

x1 and x2, with the idea to make t go to zero:

T (t, x2) − T (t, x1) =
∫ x2

x1
Tx (t, s)ds =

∫ x2

x1
�(ψN )(t, s)ds

= �
∫ x2

x1

e−i s
2
4t√
t

(u

(
1

t
,
s

t

)
+ α)N (t, s)ds

= �
[
e−i s

2
4t
2
√
t

is
αN (t, s)

]x2

x1

+ �
∫ x2

x1
e−i s

2
4t
2
√
t

is2
αN (t, s)ds

+ �
∫ x2

x1
e−i s

2
4t

2

is2
ei

s2
4t α2T (t, s)ds

+ �
∫ x2

x1
e−i s

2
4t

2

is2
ei

s2
4t u

(
1

t
,
s

t

)
T (t, s)ds

+ �
∫ x2

x1

e−i s
2
4t√
t
u

(
1

t
,
s

t

)
N (t, s)ds.

The last term will provide us the differential equation that we are looking for. The
term in α2 vanishes since it is an imaginary term inside the � operator. All the other
terms go to zero with t thanks to Corollary 1.

Now, recall that u
( 1
t ,

x
t

) = ei
1
t ∂

2
x u+

( x
t

) + r
( 1
t ,

x
t

)
. If we write:

ei
1
t ∂

2
x u+

( x
t

)
= ei

x2
4t√
i
t

∫
e−i xy2 ei

y2

4 t u+(y)dy,

we have:

e−i x
2
4t√
t

u

(
1

t
,
x

t

)
= 1√

i

∫
e−i xy2 ei

y2

4 t u+(y)dy + e−i x
2
4t√
t

r

(
1

t
,
x

t

)
−→
t→0

1√
i
û+

( x
2

)
,
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since ‖r ( 1
t ,

x
t

) ‖L∞ ≤ t
3
4 . Note that in [5], r decays like t

1
4 so the present argument

is not enough.
Then, let us consider (tn)n∈Z such that ∀n ∈ N, eiα

2 log
√
tn = 1 and tn −→

n→∞ 0,

N (tn, x) = e−iφ(tn ,x) Ñ (tn, x) = e
−iα2 log |x |√

tn Ñ (tn, x) −→
n→∞ e−iα2 log |x | Ñ (0, x),

so by multiplying the limits:

�e−i x2
4tn√
tn

u

(
1

tn
,
x

tn

)
N (tn, x) −→

n→∞ � 1√
i
û+

( x
2

)
e−iα2 log |x | Ñ (0, x),

and by dominated convergence:

�
∫ x2

x1
e−i s2

4tn

u
(

1
tn

, x
tn

)
√
tn

N (tn, s)ds −→
n→∞ �

∫ x2

x1

1√
i
û+

( x
2

)
e−iα2 log |x | Ñ (0, x).

To sum up, we proved that:

T (tn, x2) − T (tn, x1) −→
n→∞ �

∫ x2

x1

1√
i
û+

( x
2

)
e−iα2 log |x | Ñ (0, x)dx,

and the conclusion of the lemma is obtained by taking x1 = x , x2 = x + h, dividing
by h, using Lemma 2 and choosing n large with respect to h. �

Lemma 5. (Properties of Ñ|t=0) For x �= 0, we have:

Ñx (0, x) = lim
t→0

Ñx (t, x) = 1√
i
û+

( s
2

)
e−iα2 log |x |T (0, s).

Proof. Let (x1, x2) ∈ R
∗+2, we write:

Ñ (t, x2) − Ñ (t, x1) =
∫ x2

x1
Ñx (t, s)ds =

∫ x2

x1
(−ψT + i

α2

s
N )eiφds.

The term produced by the phase will help removing an otherwise non-vanishing term,
so we start by looking at the integral of Nx :

∫ x2

x1
ψ(t, s)T (t, s)eiφds =

∫ x2

x1

ei
s2
4t√
t

αT (t, s)eiφds +
∫ x2

x1

ei
s2
4t√
t
u

(
1

t
,
s

t

)
eiφT (t, s)ds

=
[
ei

s2
4t
2
√
t

is
αT (t, s)eiφ

]x2

x1

+
∫ x2

x1
ei

s2
4t
2
√
t

is2
αT (t, s)eiφds

−
∫ x2

x1
ei

s2
4t
2
√
t

is
αT (t, s)i

α2

s
eiφds −

∫ x2

x1
ei

s2
4t
2
√
t

is
αTs(t, s)e

iφds

+
∫ x2

x1

ei
s2
4t√
t
u

(
1

t
,
x

t

)
T (t, s)eiφds.
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As with T , we will treat the term with u at the end, first we have to make sure that the
Ts term goes to zero with t , using that Ts = �(ψN ):

∫ x2

x1
ei

s2
4t
2
√
t

is
αTs(t, s)e

iφds =
∫ x2

x1
ei

s2
4t
2
√
t

is
α
ei

s2
4t√
t
u

(
1

t
,
s

t

)
N (t, s)eiφds

+
∫ x2

x1
e2i

s2
4t

1

is
α2N (t, s)eiφds +

∫ x2

x1

1

is
α2N (t, s)eiφds

+
∫ x2

x1
ei

s2
4t

1

is
αe−i s

2
4t u

(
1

t
,
s

t

)
N (t, s)eiφds.

The first term is treated with Cauchy Schwarz, as well as the fourth. The third one is
canceled by the phase. For the second term, an IBP shows that it goes to zero with t ,
using that Ns = −ψT :

∫ x2

x1
e2i

s2
4t

1

is
α2N (t, s)eiφds =

[
e2i

s2
4t

t

−s2
α2N (t, s)eiφ

]x2

x1

+
∫ x2

x1
e2i

s2
4t

2t

−s3
α2N (t, s)eiφds

+
∫ x2

x1
e2i

s2
4t

t

−s2
α2ψ(t, s)T (t, s)eiφds −

∫ x2

x1
e2i

s2
4t

t

−s2
α2N (t, s)

iα2

s
eiφds.

We shall now obtain the differential equation verified by Ñ . Again, using (tn)n∈Z such
that eiα

2 log
√
tn = 1 and tn −→

n→∞ 0,

eiφ(tn ,x)T (tn, x) −→
n→∞ eiα

2 log |x |T (0, x),

and by multiplying the limits under the integral we write:

∫ x2

x1

ei
s2
4tn√
tn
u

(
1

tn
,
s

tn

)
eiφT (t, s)ds −→

n→∞

∫ x2

x1

1√
i
û+

( s
2

)
eiα

2 log |x |T (0, s).

Hence:

Ñ (tn, x2) − Ñ (tn, x1) −→
n→∞ −

∫ x2

x1

1√
i
û+

( s
2

)
e−iα2 log |s|T (0, s)ds,

and the conclusion of the lemma is obtained by taking x1 = x , x2 = x + h, dividing
by h, using Lemma 3 and chosing n large with respect to h. �

2.4. Description of the angles via self-similar paths

For the description of the angles, we will follow the same proof as for Proposition
5.1 of [4]. For the sake of completeness, we recall here the proof. As recalled in the
introduction, we denote by A±

α ∈ S
2 the directions of the corner generated at time

t = 0 by the canonical self-similar solution χα(t, x) of the binormal flow of curvature
α√
t
:

A±
α := ∂xχα(0, 0±).
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The frame of the profile χ(1) satisfies the system:
⎧⎨
⎩

∂x Tα(1, x) = �(αe−i x
2
4 Nα(1, x)),

∂x Nα(1, x) = −αei
x2
4 Tα(1, x),

(19)

and for x → ±∞, there exists B±
α ⊥ A±

α , with �(B±
α ),�(A±

α ) ∈ S
2 such that:

Tα(1, x) = A±
α + O

(
1

x

)
and eiα

2 log |x |Nα(1, x) = B±
α + O

(
1

x

)
.

Lemma 6. (Self-similar paths) Let tn be a sequence of positive times converging to
zero. Up to a subsequence, there exists for all x ∈ R a limit given by:

(T∗(x), N∗(x)) = lim
t→0

(T (tn, x
√
tn), N (tn, x

√
tn)),

such that (T∗, N∗(x)) satisfies system (19) in the strong sense.
Then, there exists a unique rotation Θ , such that, for x → ±∞:

T∗(x) = Θ(A±
α ) + O

(
1

|x |
)

, N∗(x) = Θ(B±
α ) + O

(
1

|x |
)

.

Proof. Let (tn)n∈N ∈ R
N+ a sequence of positive times converging to 0. As explained

in [4], u ∈ L4((1,∞), L∞) so we can chose (tn)n∈N such that ‖u(1/tn)‖L∞ goes to
zero.
We now naturally define the following sequences:

∀n ∈ N (Tn, Nn) = (T (tn, x
√
tn), N (tn, x

√
tn)).

Since ‖T ‖L∞ ≤ 1 and ‖N‖L∞ ≤ 2 it is obvious that those sequences are bounded.
Let us prove their equicontinuity.
For all n ∈ N, Tn is derivable and using that Tx = �(ψN ) and Nx = −ψT ,

T ′
n(x) = √

tn�(ψN )(tn, x
√
tn) = �

[
αe−i x

2
4 N (tn, x

√
tn)

]
+ o(1)Nn(x).

Similarly, for all x ∈ R,

N ′
n(x) = √

tn(−ψN )(tn, x
√
tn) = −αei

x2
4 T (tn, x

√
tn) + o(1)Tn(x).

Sequences (T ′
n, N

′
n) are uniformly bounded, so (Tn, Nn) are equicontinuous.

By d’Arzela-Ascoli theorem on T = {Tn, n ∈ N} and N = {Nn, n ∈ N}, there exists
a subsequence of (Tn, Nn), converging toward (T∗(x), N∗(x)). For convenience, we
will not write the extractice.
As the coefficients involved in the ODE are analytic, we conclude that (T∗, N∗(x))

satisfies system (19) in the strong sense, as (Tα(x), Nα(x)).
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Therefore, there exists an unique rotation Θ such that
⎧⎨
⎩

T∗(x) = Θ(Tα(x)),
�(N∗(x)) = Θ(�(Nα(x))),
�(N∗(x)) = Θ(�(Nα(x))).

So we conclude that for x → ±∞:

T∗(x) = Θ(A±
α ) + O

(
1

|x |
)

, N∗(x) = Θ(B±
α ) + O

(
1

|x |
)

.

�
Lemma 7. (Description of the singularity) We have

T (0, 0±) = Θ(A±
α ) and eiα

2 log |x | Ñ (0, 0±) = Θ(B±
α ),

where Θ has been introduced in Lemma 6.

The proof of this lemma uses all we did in the previous section concerning the limit
of vectors Ñ and T .

Proof. Let ε > 0. The main idea of this proof is to write

|T (0, 0+) − Θ(A+
α )| ≤ |T (0, 0+) − T (0, x

√
tn)| + |T (0, x

√
tn) − T (tn, x

√
tn)|

+ |T (tn, x
√
tn) − T∗(x)| + |T∗(x) − Θ(A+

α )|.
First, we chose x big enough, such that |T∗(x) − Θ(A+

α )| ≤ ε
4 , thanks to Lemma 6.

Then we chose n big enough, such that |T (tn, x
√
tn) − T∗(x)| ≤ ε

4 thanks to conver-
gence, such that |T (0, x

√
tn)−T (tn, x

√
tn)| ≤ ε

4 thanks to Lemma 2 and finally such
that |T (0, 0+) − T (0, x

√
tn)| ≤ ε

4 , using Lemma 4:

|T (0, 0+) − T (0, x
√
tn)| ≤ ‖Tx‖∞x

√
tn ≤ C(u+)x

√
tn .

So we have |T (0, 0+) − Θ(A+
α )| ≤ ε, i.e.,

T (0, 0+) = Θ(A+
α ).

Similarly, for x < 0 we prove that T (0, 0−) = Θ(A−
α ).

For Ñ we follow the same path, taking care to handle the phases. For (tn)n∈N ∈ R
N+

converging to zero, such that

exp(iα2 log
√
tn) = 1,

we have:

|Θ(B+
α ) − Ñ (0, k+)|

≤ |Θ(B+
α ) − eiα

2 log |x |N∗(x)| + |eiα2 log |x |N∗(x) − eiα
2 log |x |N (tn, x

√
tn)|

+ |eiα2 log |x |N (tn, x
√
tn) − e

iα2 ln |x√tn |√
tn N (tn, x

√
tn)| + |Ñ (tn, x

√
tn) − Ñ (0, x

√
tn)|

+ |Ñ (0, x
√
tn) − Ñ (0, k+)|.
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The first term is small for x big enough thanks to Lemma 6. The second is small for n
big enough thanks to Lemma 6. The third term is zero, the fourth term is small when
tn is small enough using Lemma 3. Finally, the last term is controlled by C(u)x

√
tn

due to Lemma 5, and we have the desired result. �

3. Recovering the initial curve χ0

In this section, we prove that the curve χ is equal to χ0 at time zero, combining the
results of the two previous parts and the choice of u+ in the introduction.

The system that verify N and T at time zero is the following:

⎧⎨
⎩

Tx (0, x) = � 1√
i
û+

( x
2

)
e−iα2 log |x | Ñ (0, x),

Ñx (0, x) = − 1√
i
û+

( x
2

)
e−iα2 log |x |T (0, x),

∀x �= 0,

with initial value given by

T (0, 0±) = Θ(A±
α ) and eiα

2 log |x | Ñ (0, 0±) = Θ(B±
α ).

Recalling the definition of u+ given by (10), T (0) and Ñ (0) satisfy the same Cauchy
system (8) as T0 and N0, hence χ(0) = χ0.
Finally, we are left to prove the convergence rate (6) of χ(t, x) as t goes to zero.

Since χt (t, x) = c(t, x) and c(t, x) = |ψ(t, x)| ≤ C√
t
, we have:

|χ(t2, x) − χ(t1, x)| ≤
∫ t2

t1

C√
t
dt ≤ C

√
t2,

and Theorem 1 is proven.
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