
J. Evol. Equ. (2023) 23:24
© 2023 The Author(s)
1424-3199/23/020001-83, published online March 8, 2023
https://doi.org/10.1007/s00028-022-00854-y

Journal of Evolution
Equations

Nonlocal doubly nonlinear diffusion problems with nonlinear
boundary conditions

Marcos Solera and Julián Toledo

Abstract. We study the existence and uniqueness of mild and strong solutions of nonlocal nonlinear diffu-
sion problems of p-Laplacian typewith nonlinear boundary conditions posed inmetric randomwalk spaces.
These spaces include, among others, weighted discrete graphs and R

N with a random walk induced by a
nonsingular kernel. We also study the case of nonlinear dynamical boundary conditions. The generality of
the nonlinearities considered allows us to cover the nonlocal counterparts of a large scope of local diffusion
problems like, for example, Stefan problems, Hele–Shaw problems, diffusion in porous media problems
and obstacle problems. Nonlinear semigroup theory is the basis for this study.

1. Introduction and preliminaries

In this article, we study the existence and uniqueness of mild and strong solutions of
nonlocal nonlinear diffusion problems of p-Laplacian type with nonlinear boundary
conditions. The problems are posed in a subset W of a metric random walk space
[X, d,m] with a reversible measure ν for the random walk m (see Subsect. 1.1 for
details). The nonlocal diffusion can hold either in W , in its nonlocal boundary ∂mW ,
or in both at the same time.Wewill assume thatW ∪∂mW ism-connected and ν-finite.
The formulations of the diffusion problems that we study are the following:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt (t, x) − divmapu(t, x) = f (t, x), x ∈ W, 0 < t < T,

v(t, x) ∈ γ
(
u(t, x)

)
, x ∈ W, 0 < t < T,

−N ap
1 u(t, x) ∈ β

(
u(t, x)

)
, x ∈ ∂mW, 0 < t < T,

v(0, x) = v0(x), x ∈ W,

(1.1)
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and, for nonlinear dynamical boundary conditions,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt (t, x) − divmapu(t, x) = f (t, x), x ∈ W, 0 < t < T,

v(t, x) ∈ γ
(
u(t, x)

)
, x ∈ W, 0 < t < T,

wt (t, x) + N ap
1 u(t, x) = g(t, x), x ∈ ∂mW, 0 < t < T,

w(t, x) ∈ β
(
u(t, x)

)
, x ∈ ∂mW, 0 < t < T,

v(0, x) = v0(x), x ∈ W,

w(0, x) = w0(x), x ∈ ∂mW,

(1.2)

whereγ andβ aremaximalmonotone (multivalued) graphs inR×R, divmap is a nonlo-
cal Leray–Lions-type operatorwhosemodel is the nonlocal p-Laplacian type diffusion
operator, and N ap

1 is a nonlocal Neumann boundary operator (see
Subsect. 2.1 for details). In fact, we solve these problems with greater generality,
as we will not only consider them for a set W and its nonlocal boundary ∂mW , but
rather for any two disjoint subsets�1 and�2 of X such that their union ism-connected.
These problems can be seen as the nonlocal counterpart of local diffusion problems

governed by the p-Laplacian diffusion operator (or a Leray–Lions operator) where
two further nonlinearities are induced by γ and β (see, for example, [4,15] for local
problems). In [8], and the references therein, one can find an interpretation of the
nonlocal diffusion process involved in this kind of problems. On the nonlinearities
(brought about by) γ and β, we do not impose any further assumptions aside from the
natural one (see Bénilan, Crandall and Sacks [15]):

0 ∈ γ (0) ∩ β(0),

and (in order for diffusion to take place)

ν(W )Γ − + ν(∂mW )B− < ν(W )Γ + + ν(∂mW )B+,

where

Γ − = inf Ran(γ ), Γ + = supRan(γ ), B− = inf Ran(β) and B+ = supRan(β).

Therefore, we work with a rather general class of nonlocal nonlinear diffusion prob-
lems with nonlinear boundary conditions. We are able to directly cover: obstacle
problems, with unilateral or bilateral obstacles (either in W , in ∂mW , or in both at the
same time); the nonlocal counterpart of Stefan-like problems that involve monotone
graphs like the graph inverse of

θS(r) =
⎧
⎨

⎩

r if r < 0,
[0, λ] if r = 0,
λ + r if r > 0,
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for λ > 0; diffusion problems in porous media, where monotone graphs like ps(r) =
|r |s−1r , s > 0, are involved; and Hele–Shaw type problems, which involve graphs
like

H(r) =
⎧
⎨

⎩

0 if r < 0,
[0, 1] if r = 0,
1 if r > 0.

Moreover, if γ = 0 in problem (1.1), then the dynamics only appear in the nonlocal
boundary and we obtain the evolution problem for a nonlocal Dirichlet-to-Neumann
operator as a particular case. In addition, the homogeneous Dirichlet boundary con-
dition (β = {0} × R) and the Neumann boundary condition (β = R × {0}) are also
covered.
Nonlocal diffusion problems of p-Laplacian type involving nonlocal Neumann

boundary operators have been recently studied in [43] inspired by the nonlocal Neu-
mann boundary operators for the linear case studied in [29,35]. Nevertheless, due to
the generality of the hypotheses considered in this study, the results that we obtain lead
to new existence and uniqueness results, which do not follow from previous works,
for a great range of problems. This is true even when the problems are considered on
weighted discrete graphs or RN with a random walk induced by a nonsingular kernel,
spaces for which only some particular cases of these problems have been studied.
Some references are given afterwards. For these ambient spaces and for the precise
choice of the nonlocal p-Laplacian operator, Problem (1.1) has the following formu-
lations (see Subsect. 1.1, in particular Examples 1.1 and 1.2, and Definition 1.4, for
the necessary definitions and notations):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt (t, x) = 1

dx

∑

y∈V (G)

wx,y |u(y) − u(x)|p−2(u(y) − u(x)), x ∈ W, 0 < t < T,

v(t, x) ∈ γ
(
u(t, x)

)
, x ∈ W, 0 < t < T,

1

dx

∑

y∈WmG

wx,y |u(y) − u(x)|p−2(u(y) − u(x)) ∈ β(u(t, x)), x ∈ ∂mGW, 0 < t < T,

u(x, 0) = u0(x), x ∈ W,

for weighted discrete graphs, and

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

vt (t, x) =
∫

RN
J (y − x)|u(y) − u(x)|p−2(u(y) − u(x))dy, x ∈ W, 0 < t < T,

v(t, x) ∈ γ
(
u(t, x)

)
, x ∈ W, 0 < t < T,∫

WmJ

J (y − x)|u(y) − u(x)|p−2(u(y) − u(x))dy ∈ β(u(t, x)), x ∈ ∂mJ W, 0 < t < T,

v(x, 0) = v0(x), x ∈ W.

for the case ofRN with the randomwalk induced by the nonsingular kernel J .We have
detailed these problems with well-known formulations in order to show the extent to
which Problems (1.1) and (1.2) cover specific nonlocal problems of great interest.
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Nonlinear semigroup theory will be the basis for the study of the existence and
uniqueness of solutions of the above problems. This study is developed in Sect. 3,
where we prove, as a particular case of Theorem 3.4, the existence of mild solutions
of Problem (1.2) for general data in L1, and of strong solutions assuming extra inte-
grability conditions on the data. Moreover, a contraction and comparison principle is
obtained. The same is done for Problem (1.1) in Theorem 3.10. See [9–11,21,30,31]
and [32], for details on such theory, which is completely covered in the well-known
unpublished manuscript Evolution equations governed by accretive operators written
by Ph. Bénilan, M. G. Crandall and A. Pazy. A summary of it can be found in [8,
Appendix].
To apply the nonlinear semigroup theory, our first aim is to prove the existence and

uniqueness of solutions of the problem
⎧
⎨

⎩

γ
(
u(x)) − divmapu(x) � ϕ(x), x ∈ W,

N ap
1 u(x) + β

(
u(x)

) � ϕ(x), x ∈ ∂mW,
(1.3)

for general maximal monotone graphs γ and β. This is the nonlocal counterpart of
(local) quasilinear elliptic problems with nonlinear boundary conditions (see [5] and
[15] for the general study of the local case) and is an interesting problem in itself due to
the generality with which we address it. To this aim, wemake use of a kind of nonlocal
Poincaré-type inequalities (see Appendix A) which help us obtain boundedness ar-
guments. These boundedness arguments together with some monotonicity arguments
allow us to prove our results by adapting some of the ideas used in [5] and [15] (see
also [7] for a very particular case). The same holds for the diffusion problems. The
study of Problem (1.3) is developed in Sect. 2, where we prove, for a more general
problem, the existence of solutions (Theorem 2.7) and a contraction and comparison
principle (Theorem 2.6). At the end of that section, we deal with another nonlocal
Neumann boundary operator.
For linear or quasilinear elliptic problemswith boundary conditions, obstacles com-

plicate the existence of solutions. The appearance of this difficulty is better understood
when one takes into account the continuity of the solution between the inside of the
domain and the boundary via the trace. In fact, for a bounded smooth domain � in
R

N , γ with bounded domain [0, 1] and β(r) = 0 for all r , it is not possible to find a
weak solution of

⎧
⎨

⎩

−�u + γ (u) � ϕ in �,

∇u · η = ϕ̃ in ∂�,

for data satisfying ϕ ≤ 0, ϕ̃ ≤ 0 and ϕ̃ �≡ 0 (see [5]). However, in our nonlocal
setting this sort of continuity is not present and the study of these nonlocal diffusion
problems with obstacles hence differs from the study of the local ones (see [6] for a
detailed study of these local problems). In particular, we do not need to impose any
assumptions on the nonlinearities γ and β aside from the natural ones.
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There is a very long list of references for the local elliptic and parabolic counterparts
of the problems that we study; see, for example, [4,5,11–13,15,24,44,45], and the
references therein. See also [38] for a Hele–Shaw problem with dynamical bound-
ary conditions and the references therein. For some particular nonlocal problems we
refer to [7,8,16,19,23,36,39,43]. For fractional diffusion problems, we refer, for ex-
ample, to [40], where Dirichlet and Neumann boundary conditions are considered;
to [17,18,25,26,34], where fractional porous medium equations are studied, see also
J. L. Vázquez’s survey [46] and the references therein; and to [27,28] for fractional
diffusion problems for the Stefan problem.
We now introduce the framework space considered and some other concepts that

will be used later on.

1.1. Metric random walk spaces

Let (X, d) be a Polish metric space equipped with its Borel σ -algebra. In the fol-
lowing, whenever we consider a measure on X we assume that it is defined on this
σ -algebra.
As introduced in [47], a random walk m on X is a family of Borel probability

measures mx on X , x ∈ X , satisfying the two technical conditions: (1) the measures
mx depend measurably on the point x ∈ X , i.e., for any Borel set A of X and any
Borel set B of R, the set {x ∈ X : mx (A) ∈ B} is Borel; (2) each measure mx has
finite first moment, i.e., for some (hence any) z ∈ X , and for any x ∈ X one has
∫

X d(z, y)dmx (y) < +∞.
Ametric random walk space [X, d,m] is a Polish metric space (X, d) together with

a random walk m.
A σ -finite measure ν on X is invariant with respect to the random walk m = (mx )

if

ν(A) :=
∫

X
mx (A)dν(x) for every Borel set A.

Moreover, the measure ν is said to be reversible with respect to m if the following
balance condition holds:

dmx (y)dν(x) = dmy(x)dν(y),

that is, for any Borel set C ⊂ X × X ,
∫

X

(∫

X

χC (x, y)dmx (y)

)

dν(x) =
∫

X

(∫

X

χC (x, y)dmy(x)

)

dν(y).

Under suitable assumptions on the metric random walk space [X, d,m], such a re-
versible measure ν exists and is unique. Note that the reversibility condition implies
the invariance condition.

Assumption 1. From this point onwards, [X, d,m] is a metric random walk space
equipped with a σ -finite measure ν which is reversible (thus invariant) with respect to
m.
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Let B be the Borel σ -algebra of (X, d). Since ν is a σ -finite measure on (X,B) and
m is a stochastic kernel on (X,B), we may define the tensor product ν ⊗mx of ν and
m (see, for example, [33, Section 1.2.2], see also [1, Section 2.5]), which is a measure
on (X × X,B ⊗ B), by

ν ⊗ mx (A × B) :=
∫

A
mx (B)dν(x) for every A, B ∈ B.

Then, a σ -finite measure ν invariant with respect to m is reversible if, and only if, the
measure ν ⊗ mx is symmetric. Note that, for every g ∈ L1(X × X, ν ⊗ mx ),

∫

X×X
gd(ν ⊗ mx ) =

∫

X

∫

X
g(x, y)dmx (y)dν(x).

Example 1.1. An important class of examples of metric random walk spaces is com-
posed by those which are obtained from weighted discrete graphs. Let G = (V (G),

E(G), (wxy)x,y∈V (G)) be a weighted discrete graph, where V (G) is the set of ver-
tices, E(G) is the set of and wxy = wyx is the nonnegative weight assigned to the
edge (x, y) ∈ E(G). We suppose that wxy = 0 if (x, y) �∈ E(G) for x, y ∈ V (G).
In this case, the following probability measures define a random walk on (V (G), dG)

(here, dG is the standard graph distance):

mG
x := 1

dx

∑

y∈V (G)

wxy,

where dx := ∑
y∼x wxy = ∑

y∈V (G) wxy . Note that, if wx,y = 1 for every (x, y) ∈
E(G), then dx coincideswith the degree of the vertex x in the graph, that is, the number
of edges containing the vertex x . Moreover, the measure νG defined by

νG(A) :=
∑

x∈A

dx , A ⊂ V (G),

is a reversible measure with respect to this random walk.

Example 1.2. Another important class of examples is given by those of the form
[RN , d,mJ ] where d is the Euclidean distance and mJ is defined as follows: let
J : RN → [0,+∞[ be a measurable, nonnegative and radially symmetric function
satisfying

∫

RN J (z)dLN (z) = 1 (LN is the Lebesgue measure) and set

mJ
x (A) :=

∫

A
J (x − y)dLN (y) for every Borel set A ⊂ R

N and x ∈ R
N .

In this case, LN is a reversible measure with respect to this random walk.
See [41] (in particular [41, Example 1.2]) for a more detailed exposition of these

and other examples.

Definition 1.3. Given twomeasurable subsets A, B ⊂ X , we define them-interaction
between A and B as:

Lm(A, B) :=
∫

A

∫

B
dmx (y)dν(x).
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Note that, whenever Lm(A, B) < +∞, if ν is reversible with respect to m,

Lm(A, B) = Lm(B, A).

Definition 1.4. Given a measurable set � ⊂ X , we define its m-boundary as:

∂m� := {x ∈ X \ � : mx (�) > 0}

and its m-closure as:

�m := � ∪ ∂m�.

Moreover, we define the following ergodicity property.

Definition 1.5. Let [X, d,m] be ametric randomwalk spacewith a reversiblemeasure
ν with respect to m, and let � ⊂ X be a measurable and non-ν-null subset. We say
that � is m-connected if Lm(A, B) > 0 for every pair of measurable non-ν-null sets
A, B ⊂ � such that A ∪ B = � (see [41]).

We recall the following nonlocal notions of gradient and divergence.

Definition 1.6. Given a function u : X → R we define its nonlocal gradient ∇u :
X × X → R as:

∇u(x, y) := u(y) − u(x), x, y ∈ X.

For a function z : X × X → R, its m-divergence divmz : X → R is defined as:

(divmz)(x) := 1

2

∫

X
(z(x, y) − z(y, x))dmx (y), x ∈ X.

1.2. Yosida approximation and a Bénilan–Crandall relation

Given a maximal monotone graph ϑ in R × R (see [21]) and λ > 0, let us denote
by

ϑλ := λ

(

I −
(

I + 1

λ
ϑ

)−1
)

the Yosida approximation of ϑ of parameter 1/λ.
The function ϑλ is maximal monotone and Lipschitz continuous with Lipschitz

constant λ (see [21, Proposition 2.6]. Moreover, limλ→+∞ ϑλ(s) = ϑ0(s) where

ϑ0(s) :=
⎧
⎨

⎩

the element of minimal absolute value of ϑ(s) if s ∈ D(ϑ),

+∞ if [s,+∞) ∩ D(ϑ) = ∅,

−∞ if (−∞, s] ∩ D(ϑ) = ∅,
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is an extension to R of the minimal section of ϑ . Furthermore, if s ∈ D(ϑ), |ϑλ(s)| ≤
|ϑ0(s)| for every λ > 0, and |ϑλ(s)| is nondecreasing in λ.
Given a maximal monotone graph ϑ in R × R with 0 ∈ ϑ(0), we define, for

s ∈ D(ϑ),

ϑ+(s) :=
⎧
⎨

⎩

ϑ(s) if s > 0,
ϑ(0) ∩ [0,+∞) if s = 0,
{0} if s < 0,

and

ϑ−(s) :=
⎧
⎨

⎩

{0} if s > 0,
ϑ(0) ∩ (−∞, 0] if s = 0,
ϑ(s) if s < 0.

Note that the Yosida approximation (ϑ+)λ of ϑ+ is nondecreasing in λ > 0 and (ϑ−)λ

is nonincreasing in λ > 0. Observe also that (ϑ+)λ(s) = 0 for s ≤ 0 and (ϑ−)λ(s) = 0
for s ≥ 0, for every λ > 0, and ϑ+ + ϑ− = ϑ .
Given a maximal monotone graph ϑ with 0 ∈ D(ϑ), jϑ(r) := ∫ r

0 ϑ0(s)ds, r ∈
R, defines a convex and lower semicontinuous function such that ϑ is equal to the
subdifferential of jϑ :

ϑ = ∂ jϑ .

Moreover, if jϑ∗ is the Legendre transform of jϑ , then

ϑ−1 = ∂ jϑ
∗.

We now recall a Bénilan–Crandall relation between functions u, v ∈ L1(�, ν).
Denote by J0 and P0 the following sets of functions:

J0 := { j : R → [0,+∞] : j is convex, lower semicontinuous and j (0) = 0},
P0 := {

ρ ∈ C∞(R) : 0 ≤ ρ′ ≤ 1, supp(ρ′) is compact and 0 /∈ supp(ρ)
}
.

Assume that ν(�) < +∞ and let u, v ∈ L1(�, ν). The following relation between u
and v is defined in [14]:

u � v if
∫

�

j (u) dν ≤
∫

�

j (v) dν for every j ∈ J0.

Moreover, the following equivalences are proved in [14, Proposition 2.2] (we only
give the particular cases that we use):
∫

�
vρ(u)dν ≥ 0 for every ρ ∈ P0 ⇐⇒ u � u + λv for every λ > 0,

∫

�
vρ(u)dν ≥ 0 for every ρ ∈ P0 ⇐⇒

∫

{u<−h}
vdν ≤ 0 ≤

∫

{u>h}
vdν for every h > 0.
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2. Nonlocal stationary problems

In this section, we give our main results concerning the existence and uniqueness
of solutions of the nonlocal stationary Problem (1.3). We start by recalling the class of
nonlocal Leray–Lions-type operators and the Neumann boundary operators that we
will be working with, which were introduced in [43].

2.1. Nonlocal diffusion operators of Leray–Lions-type and nonlocal Neumann
boundary operators

For 1 < p < +∞, let us consider a function ap : X × X × R → R such that

(x, y) �→ ap(x, y, r) is measurable for every r ∈ R;
ap(x, y, .) is continuous for ν ⊗ mx -a.e (x, y) ∈ X × X; (2.1)

ap(x, y, r) = −ap(y, x,−r) for ν ⊗ mx -a.e (x, y) ∈ X × X and for every r ∈ R;
(2.2)

(ap(x, y, r) − ap(x, y, s))(r − s) > 0 for ν ⊗ mx -a.e. (x, y) ∈ X × X

and for every r �= s; (2.3)

there exist constants cp,Cp > 0 such that

|ap(x, y, r)| ≤ Cp

(
1 + |r |p−1

)
for ν ⊗ mx -a.e.(x, y) ∈ X × X and for every r ∈ R,

(2.4)

and

ap(x, y, r)r ≥ cp|r |p for ν ⊗ mx -a.e. (x, y) ∈ X × X and for every r ∈ R.

(2.5)

Condition (2.2) and the last condition imply that

ap(x, y, 0) = 0 and sign0(ap(x, y, r)) = sign0(r)

for ν ⊗ mx -a.e. (x, y) ∈ X × X and for every r ∈ R.
For u : X → R, let us define zap,u : X × X → R by

zap,u(x, y) := ap(x, y,∇u(x, y)).

Then, by Definition 1.6 and on account of (2.2),

divmzap,u(x) = 1

2

∫

X

(
ap(x, y, u(y) − u(x)) − ap(y, x, u(x) − u(y))

)
dmx (y)

=
∫

X
ap(x, y, u(y) − u(x))dmx (y).
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For simplicity, we write

divmapu(x) = divmzap,u(x).

An example of a function ap satisfying the above assumptions is

ap(x, y, r) := ϕ(x) + ϕ(y)

2
|r |p−2r,

where ϕ : X → R is a measurable function satisfying 0 < c ≤ ϕ ≤ C , where c and
C are constants. In particular, if ϕ(x) = 2 for every x ∈ X ,

divmapu(x) =
∫

X
|u(y) − u(x)|p−2(u(y) − u(x))dmx (y)

=
∫

X
|∇u(x, y)|p−2∇u(x, y)dmx (y)

is the (nonlocal) p-Laplacian operator on the metric random walk space [X, d,m].
Observe that divmapu(x) defines a kind of Leray–Lions operator for the random

walk m.
We now recall the nonlocal Neumann boundary operators introduced in [43]. Let

us consider a measurable setW ⊂ X with ν(W ) > 0. The Gunzburger–Lehoucq-type
Neumann boundary operator on ∂mW is given by

N ap
1 u(x) := −

∫

Wm

ap(x, y, u(y) − u(x))dmx (y), x ∈ ∂mW,

where, taking into account the supports of the mx , we have that in fact, the integral
is being calculated over the nonlocal tubular boundary ∂mW ∪ ∂m(X \ W ) of W . On
the other hand, the Dipierro–Ros-Oton–Valdinoci-type Neumann boundary operator
on ∂mW is given by

N ap
2 u(x) := −

∫

W
ap(x, y, u(y) − u(x))dmx (y) x ∈ ∂mW,

for which, in this case, the integral is being calculated over the nonlocal boundary
∂m(X \ W ) of X \ W .
For each of these Neumann boundary operators and for ϕ defined on Wm = W ∪

∂mW , we can look for solutions of the following problem:
⎧
⎨

⎩

γ
(
u(x)) − divmapu(x) � ϕ(x), x ∈ W,

N ap
j u(x) + β

(
u(x)

) � ϕ(x), x ∈ ∂mW,

j ∈ {1, 2}. Observe that, by the reversibility of ν with respect to m and recalling the
definitions of ∂mW and Wm (Definition 1.4), mx (X\Wm) = 0 for ν-a.e. x ∈ W .
Indeed,

∫

W
mx (X \ Wm)dν(x) =

∫

X\Wm

mx (W )dν(x) = 0.
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Consequently,

divmapu(x) =
∫

Wm

ap(x, y, u(y) − u(x))dmx (y) for every x ∈ W. (2.6)

Lemma 2.1. Let � ⊂ X be a ν-finite set and let {uk}k∈N ⊂ L p(�, ν) such that

uk
k−→ u ∈ L p(�, ν) in L p(�, ν) and pointwise ν-a.e. in �. Suppose also that there

exists h ∈ L p(�, ν) such that |uk | ≤ h ν-a.e. in �. Then,

zap,uk
k−→ zap,u in L p′

(� × �, ν ⊗ mx )

and, in particular,
∫

�

ap(·, y,∇uk(·, y))dm(·)(y)
k−→
∫

�

ap(·, y,∇u(·, y))dm(·)(y) in L p′
(�, ν).

Taking a subsequence if necessary, the ν-a.e. pointwise convergence and the dom-
ination by the function h in the hypotheses are a consequence of the convergence in
L p(�, ν).

Proof. Let A ⊂ � be a ν-null set such that |uk(x)| ≤ h(x) < +∞ for every x ∈ �\A
and every k ∈ N, and such that uk(x)

k−→ u(x) for every x ∈ � \ A. By (2.1), there
exists a ν ⊗ mx -null set N1 ⊂ � × � such that ap(x, y, ·) is continuous for every
(x, y) ∈ (� × �)\N1. Therefore,

ap(x, y, uk(y) − uk(x))
k−→ ap(x, y, u(y) − u(x))

for every (x, y) ∈ (� × �)\(N1 ∪ (A × �) ∪ (� × A)), where, by the reversibility
of ν with respect to m, N1 ∪ (A × �) ∪ (� × A) is also ν ⊗ mx -null. Moreover, by
(2.4), there exists a ν ⊗ mx -null set N2 ⊂ � × � such that

|ap(x, y, uk(x) − uk(y))| ≤ Cp
(
1 + |uk(x) − uk(y)|p−1)

≤ C̃
(
1 + |uk(x)|p−1 + |uk(y)|p−1)

≤ C̃
(
1 + |h(x)|p−1 + |h(y)|p−1)

for every (x, y) ∈ (� × �)\(N2 ∪ (A× �) ∪ (� × A)) and some constant C̃ , where,
again, N2 ∪ (A×�)∪ (�× A) is ν ⊗mx -null. Then, taking (x, y) ∈ (�×�)\(N1 ∪
N2 ∪ (A × �) ∪ (� × A)),

ap(x, y, uk(y) − uk(x))
k−→ ap(x, y, u(y) − u(x))

and

|ap(x, y, uk(x) − uk(y))| ≤ C̃
(
1 + |h(x)|p−1 + |h(y)|p−1).

Now, by the invariance of ν with respect tom, since h ∈ L p(�,mx ) and ν(�) < +∞,
we have that for h̃(x, y) := 1+ |h(x)|p−1 + |h(y)|p−1, h̃ ∈ L p′

(� × �, ν ⊗mx ), so
we may apply the dominated convergence theorem to conclude. �
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2.2. Existence and uniqueness of solutions of doubly nonlinear stationary problems
under nonlinear boundary conditions

As mentioned in the introduction, the aim here is to study the existence and unique-
ness of solutions of the problem

⎧
⎨

⎩

γ
(
u(x)) − divmapu(x) � ϕ(x), x ∈ W,

N ap
1 u(x) + β

(
u(x)

) � ϕ(x), x ∈ ∂mW,
(2.7)

where W ⊂ X is m-connected and ν(Wm) < +∞. See [5,15] for the reference local
models. In Subsect. 2.3, we address this problem but with the nonlocal Neumann
boundary operator N ap

2 instead.
Problem (2.7) is a particular case (recall (2.6)) of the following general, and inter-

esting by itself, problem. Let �1,�2 ⊂ X be disjoint measurable non-ν-null sets and
let

� := �1 ∪ �2.

Given ϕ ∈ L1(�, ν), we consider the problem

(GP
ap,γ,β
ϕ )

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ
(
u(x)) −

∫

�

ap(x, y, u(y) − u(x))dmx (y) � ϕ(x), x ∈ �1,

β
(
u(x)

)−
∫

�

ap(x, y, u(y) − u(x))dmx (y) � ϕ(x), x ∈ �2.

(2.8)

For simplicity, we generally use the notation (GPϕ) in place of (GP
ap,γ,β
ϕ ). How-

ever, we use the more detailed notation further on. Moreover, we make the following
assumptions.

Assumption 2. We assume that � = �1 ∪ �2 is m-connected and ν(�) < +∞.

Remark 2.2. Observe that, given an m-connected set � ⊂ X (recall Definition 1.5),
mx (�) > 0 for ν-a.e. x ∈ �. Indeed, if

N := {x ∈ � : mx (�) = 0},
then

Lm(N ,�) = 0,

thus ν(N ) = 0.

Assumption 3. Let

N�⊥ := {x ∈ � : (mx �) ⊥ (ν �)} ,
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where the notation (mx �) ⊥ (ν �) means that mx � and ν � are mutually
singular. We assume that

ν
(N�⊥

) = 0.

Remark 2.3. Note that, for x ∈ � such that mx (�) > 0, if mx � ν (i.e., mx is
absolutely continuous with respect to ν, do not confuse the use of � in this context
with its use in the notation in Subsect. 1.2) then (mx �) �⊥ (ν �). Therefore, by
Remark 2.2, ifmx � ν for ν-a.e. x ∈ � then ν

(N�⊥
) = 0. Hence, the above condition

is weaker than assuming that mx � ν for ν-a.e. x ∈ �.

Assumption 4. We assume, together with 0 ∈ γ (0) ∩ β(0), that

R−
γ,β < R+

γ,β,

where

R−
γ,β := ν(�1) inf Ran(γ ) + ν(�2) inf Ran(β),

R+
γ,β := ν(�1) supRan(γ ) + ν(�2) supRan(β).

Assumption 5. We assume that the following generalised Poincaré type inequality
holds: For every 0 < l ≤ ν(�), there exists a constant � > 0 such that, for every
u ∈ L p(�, ν) and any measurable set Z ⊂ � with ν(Z) ≥ l,

‖u‖L p(�,ν) ≤ �

((∫

�×�

|u(y) − u(x)|pdmx (y)dν(x)

) 1
p +

∣
∣
∣
∣

∫

Z
u dν

∣
∣
∣
∣

)

.

This assumption holds true in many important examples (see Appendix A).

From now on in this subsection, we work under Assumptions 1 to 5.

Definition 2.4. A solution of (GPϕ) is a pair [u, v] with u ∈ L p(�, ν) and v ∈
L p′

(�, ν) such that

1. v(x) ∈ γ (u(x)) for ν-a.e. x ∈ �1,

2. v(x) ∈ β(u(x)) for ν-a.e. x ∈ �2,

3. [(x, y) �→ ap(x, y, u(y) − u(x))] ∈ L p′
(� × �, ν ⊗ mx ),

4. and

v(x) −
∫

�

ap(x, y, u(y) − u(x))dmx (y) = ϕ(x), x ∈ �.

A subsolution (supersolution) of (GPϕ) is a pair [u, v] with u ∈ L p(�, ν) and
v ∈ L1(�, ν) satisfying 1., 2., 3. and

v(x) −
∫

�

ap(x, y, u(y) − u(x))dmx (y) ≤ ϕ(x), x ∈ �,

(

v(x) −
∫

�

ap(x, y, u(y) − u(x))dmx (y) ≥ ϕ(x), x ∈ �

)

.



24 Page 14 of 83 M. Solera And J. Toledo J. Evol. Equ.

Remark 2.5. (Integration by parts formula) The following integration by parts formula
which results from the reversibility of ν with respect to m, can be easily proved. Let
u be a measurable function such that

[(x, y) �→ ap(x, y, u(y) − u(x))] ∈ Lq(� × �, ν ⊗ mx )

and let w ∈ Lq ′
(�, ν). Then,

−
∫

�

∫

�

ap(x, y, u(y) − u(x))dmx (y)w(x)dν(x)

= 1

2

∫

�×�

ap(x, y, u(y) − u(x))(w(y) − w(x))d(ν ⊗ mx )(x, y).

Let us see, formally, the way in which we use the above integration by parts formula
in what follows. Suppose that we are in the following situation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−
∫

�

ap(x, y, u(y) − u(x))dmx (y) = f (x), x ∈ �1,

−
∫

�

ap(x, y, u(y) − u(x))dmx (y) = g(x), x ∈ �2.

Then, multiplying both equations by a test function w, integrating them with respect
to ν over �1 and �2, respectively, adding them and using the integration by parts
formula we get

1

2

∫

�×�

ap(x, y, u(y) − u(x))(w(y) − w(x))d(ν ⊗ mx )(x, y)

=
∫

�1

f (x)w(x)dν(x) +
∫

�2

g(x)w(x)dν(x).

Moreover, as a consequence of (2.3), taking u = ui , f = fi and g = gi , i = 1, 2, in
the above system and for every nondecreasing function T : R → R, we obtain

∫

�1

( f1(x) − f2(x))T (u1(x) − u2(x))dν(x) +
∫

�2

(g1(x) − g2(x))T (u1(x) − u2(x))dν(x)

= 1

2

∫

�×�

(
ap(x, y, u1(y) − u1(x)) − ap(x, y, u2(y) − u2(x))

)

×(T (u1(y) − u2(y)) − T (u1(x) − u2(x))
)
d(ν ⊗ mx )(x, y) ≥ 0.

The next result gives a maximum principle for solutions of Problem (GPϕ) given
in (2.8) and, consequently, also for solutions of Problem (2.7).
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Theorem 2.6. (Contraction and comparison principle) Let ϕ1, ϕ2 ∈ L1(�, ν). Let
[u1, v1] be a subsolution of (GPϕ1) and [u2, v2] be a supersolution of (GPϕ2). Then,

∫

�

(v1 − v2)
+dν ≤

∫

�

(ϕ1 − ϕ2)
+dν. (2.9)

Moreover, if ϕ1 ≤ ϕ2 with ϕ1 �= ϕ2, then v1 ≤ v2, v1 �= v2, and u1 ≤ u2 ν-a.e. in �.
Furthermore, if ϕ1 = ϕ2 and [ui , vi ] is a solution of (GPϕi ), i = 1, 2, then v1 = v2

ν-a.e. in � and u1 − u2 is ν-a.e. equal to a constant.

Proof. By hypothesis,

v1(x) − v2(x) −
∫

�

(ap(x, y, u1(y) − u1(x)) − ap(x, y, u2(y) − u2(x)))dmx (y)

≤ ϕ1(x) − ϕ2(x)

for x ∈ �. Let k > 0 and Tk : R → [−k, k] be the truncation operator defined as:

Tk(r) :=

⎧
⎪⎪⎨

⎪⎪⎩

−k if r < −k,

r if |r | ≤ k,

k if r > k,

(2.10)

and denote T+
k (s) := (Tk(s))+. Multiplying the above inequality by 1

k T
+
k (u1 − u2 +

k sign+
0 (v1 − v2)) and integrating over �, we get
∫

�
(v1(x) − v2(x))

1

k
T+
k (u1(x) − u2(x) + k sign+

0 (v1(x) − v2(x)))dν(x)

−
∫

�

∫

�
(ap(x, y, u1(y) − u1(x)) − ap(x, y, u2(y) − u2(x)))dmx (y)

×1

k
T+
k (u1(x) − u2(x) + k sign+

0 (v1(x) − v2(x)))dν(x)

≤
∫

�
(ϕ1(x) − ϕ2(x))

1

k
T+
k (u1(x) − u2(x) + k sign+

0 (v1(x) − v2(x)))dν(x)

≤
∫

�
(ϕ1(x) − ϕ2(x))

+dν(x). (2.11)

Moreover, by the integration by parts formula (Remark 2.5),

−
∫

�

∫

�

(ap(x, y, u1(y) − u1(x)) − ap(x, y, u2(y) − u2(x)))dmx (y)

×1

k
T+
k (u1(x) − u2(x) + k sign+

0 (v1(x) − v2(x)))dν(x)

= 1

2

∫

�

∫

�

(ap(x, y, u1(y) − u1(x)) − ap(x, y, u2(y) − u2(x)))

×
(1

k
T+
k (u1(y) − u2(y) + k sign+

0 (v1(y) − v2(y)))

−1

k
T+
k (u1(x)−u2(x)+k sign+

0 (v1(x)−v2(x)))
)
dmx (y)dν(x).
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Now, since the integrand on the right-hand side is bounded frombelow by an integrable
function, we can apply Fatou’s lemma to get (recall the last observation in Remark 2.5)

lim inf
k→0+ −

∫

�

∫

�

(ap(x, y, u1(y) − u1(x)) − ap(x, y, u2(y) − u2(x)))dmx (y)

× 1

k
T+
k (u1(x) − u2(x) + k sign+

0 (v1(x) − v2(x)))dν(x) ≥ 0.

Hence, taking limits in (2.11), we get
∫

�

(v1(x) − v2(x))
+ dν(x)

= lim
k→0+

∫

�

(v1(x) − v2(x))
1

k
T+
k (u1(x) − u2(x) + k sign+

0 (v1(x) − v2(x)))dν(x)

≤
∫

�

(ϕ1(x) − ϕ2(x))
+dν(x),

and (2.9) is proved.
Take now ϕ1 ≤ ϕ2 with ϕ1 �= ϕ2, then, by (2.9), v1 ≤ v2 ν-a.e. in �. Now, since

[u1, v1] is a subsolution of (GPϕ1)

v1(x) −
∫

�

ap(x, y, u1(y) − u1(x))dmx (y) ≤ ϕ1(x)

thus
∫

�

v1(x)dν(x) −
∫

�

∫

�

ap(x, y, u1(y) − u1(x))dmx (y)dν(x)
︸ ︷︷ ︸

=0

≤
∫

�

ϕ1(x)dν(x).

Therefore, with the same calculation for [u2, v2],
∫

�

v1(x)dν(x) ≤
∫

�

ϕ1(x)dν(x) <

∫

�

ϕ2(x)dν(x) ≤
∫

�

v2(x)dν(x)

thus v1 �= v2. Now, since (ϕ1 − ϕ2)
+ = 0 and (v1 − v2)

+ = 0, from (2.11) we get
that

∫

�

(v1(x) − v2(x))
1

k
T+
k (u1(x) − u2(x)))dν(x)

−
∫

�

∫

�

(ap(x, y, u1(y) − u1(x)) − ap(x, y, u2(y) − u2(x)))

×1

k
T+
k (u1(x) − u2(x))dmx (y)dν(x) ≤ 0.

However, since vi (x) ∈ γ (ui (x)) for ν-a.e. x ∈ �1 and vi (x) ∈ β(ui (x)) for ν-a.e.
x ∈ �2, i = 1, 2, we get, by the monotonicity of the graphs, u1(x) ≤ u2(x) for ν-a.e.
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x ∈ � such that v1(x) < v2(x). Therefore, (v1(x) − v2(x))
1
k T

+
k (u1(x)−u2(x))) = 0

for ν-a.e. x ∈ � and thus

−
∫

�

∫

�

(ap(x, y, u1(y) − u1(x)) −ap(x, y, u2(y) − u2(x)))

×1

k
T+
k (u1(x) −u2(x))dmx (y)dν(x) ≤ 0.

Now, recalling Remark 2.5 (that is, integration by parts), we obtain
∫

�

∫

�

(ap(x, y, u1(y) − u1(x)) − ap(x, y, u2(y) − u2(x)))

×((u1(y) − u2(y))
+ − (u1(x) − u2(x))

+)dmx (y)dν(x) = 0,

and thus

(ap(x, y, u1(y) − u1(x)) −ap(x, y, u2(y) − u2(x)))

×(u1(y) − u1(x) − (u2(y) − u2(x))) = 0 (2.12)

for (x, y) ∈ (� × �) \ N where N ⊂ � × � is a ν ⊗ mx -null set. Let C ⊂ �

be a ν-null set such that the section Nx := {y ∈ � : (x, y) ∈ N } of N is mx -null
for every x ∈ �\C and let us see that u1(x) ≤ u2(x) for every x ∈ � \ (C ∪ N�⊥ )

(recall Assumption 3 for the definition of the ν-null setN�⊥ ). Suppose that there exists
x0 ∈ � \ (C ∪N�⊥ ) such that u1(x0) − u2(x0) > 0. Then, from (2.12) (and (2.3)), we
get that u1(y) − u2(y) = u1(x0) − u2(x0) > 0 for every y ∈ � \ Nx0 . Let

S := {y ∈ � : u1(y) − u2(y) = u1(x0) − u2(x0)} ⊃ � \ Nx0 .

Since x0 �∈ N�⊥ and mx0(Nx0) = 0, we must have ν(S) ≥ ν(�\Nx0) > 0. Now,
following the same argument as before, if x ∈ S, then � \ Nx ⊂ S thus mx (�\S) ≤
mx (Nx ) = 0 and, therefore,

Lm(S,� \ S) = 0.

However, since � is m-connected and ν(S) > 0, we must have ν(� \ S) = 0; thus,
u1(y)−u2(y) = u1(x0)−u2(x0) > 0 for ν-a.e. y ∈ �. This contradicts that v1 ≤ v2,
v1 �= v2, ν-a.e. in �.
Finally, suppose that [u1, v1] and [u2, v2] are solutions of (GPϕ) for some ϕ ∈

L1(�, ν). Then,

v1(x) − v2(x) −
∫

�
(ap(x, y, u1(y) − u1(x)) − ap(x, y, u2(y) − u2(x)))dmx (y) = 0

thus, since v1 = v2 ν-a.e. in �,

−
∫

�

(ap(x, y, u1(y) − u1(x)) − ap(x, y, u2(y) − u2(x)))dmx (y) = 0.
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Multiplying this equation by u1 − u2, integrating over � and using the integration by
parts formula as in Remark 2.5 we get

∫

�

∫

�

(ap(x, y, u1(y) − u1(x)) −ap(x, y, u2(y) − u2(x)))

×(u1(y) − u1(x) − (u2(y) − u2(x))) = 0

thus, by (2.3) and positivity,

(ap(x, y, u1(y) − u1(x)) −ap(x, y, u2(y) − u2(x)))

×(u1(y) − u1(x) − (u2(y) − u2(x))) = 0 (2.13)

for (x, y) ∈ (� × �) \ N ′ where N ′ ⊂ � × � is a ν ⊗ mx -null set. Let C ′ ⊂ � be a
ν-null set such that the section N ′

x := {y ∈ � : (x, y) ∈ N ′} of N ′ is ν-null for every
x ∈ � \ C ′, and let us see that there exists L ∈ R such that u1(x) − u2(x) = L for
ν-a.e. x ∈ �. Let x0 ∈ � \ C ′, L := u1(x0) − u2(x0) and

S′ := {y ∈ � : u1(y) − u2(y) = L} ⊃ � \ N ′
x0 .

By (2.13), � \C ′
x0 ⊂ S′. Proceeding as we did before to prove that ν(� \ S) = 0, we

obtain that ν(� \ S′) = 0. �

In order to prove the existence of solutions of Problem (2.8) (Theorem 2.7), we
first prove the existence of solutions of an approximate problem. Then, we obtain
some monotonicity and boundedness properties of the solutions of these approximate
problems that allow us to pass to the limit. This method lets us get around the loss
of compactness results in our setting with respect to the local setting. Indeed, we
follow ideas used in [5], but, as we have said, making the most of the monotonicity
arguments since the Poincaré-type inequalities here only produce boundedness in L p

spaces (versus the boundedness in W 1,p spaces obtained in their local setting). This
will be done in the following subsections.

2.2.1. Existence of solutions of an approximate problem

Take ϕ ∈ L∞(�, ν). Let n, k ∈ N, K > 0 and

A := An,k : L p(�, ν) → L p′
(�, ν) ≡ L p′

(�1, ν) × L p′
(�2, ν)

be defined by

A(u) = (
A1(u), A2(u)

)
,

where

A1(u)(x) := TK ((γ+)k(u(x))) + TK ((γ−)n(u(x))) −
∫

�
ap(x, y, u(y) − u(x))dmx (y)

+ 1

n
|u(x)|p−2u+(x) − 1

k
|u(x)|p−2u−(x),
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for x ∈ �1, and

A2(u)(x) := TK ((β+)k(u(x))) + TK ((β−)n(u(x))) −
∫

�
ap(x, y, u(y) − u(x))dmx (y)

+ 1

n
|u(x)|p−2u+(x) − 1

k
|u(x)|p−2u−(x),

for x ∈ �2. Here, TK is the truncation operator defined in (2.10) and (γ+)k , (γ−)n ,
(β+)k and (β−)n are Yosida approximations as defined in Subsect. 1.2.
It is easy to see that A is continuous and, moreover, it is monotone and coercive

in L p(�, ν). Indeed, the monotonicity results from the integration by parts formula
(Remark 2.5) and the coercivity results from the following computation (where the
term involving ap has been neglected because it is nonnegative, as shown in Remark
2.5):

∫

�

A(u)udν ≥ 1

n
||u+||L p(�,ν) + 1

k
||u−||L p(�,ν).

Therefore, since ϕ ∈ L∞(�, ν) ⊂ L p′
(�, ν), by [20, Corollary 30], there exist

un,k ∈ L p(�, ν), n, k ∈ N, such that

(
A1(un,k), A2(un,k)

) = ϕ.

That is,

TK ((γ+)k(un,k(x))) + TK ((γ−)n(un,k(x))) −
∫

�
ap(x, y, un,k(y) − un,k(x))dmx (y)

+ 1

n
|un,k(x)|p−2u+

n,k(x) − 1

k
|un,k(x)|p−2u−

n,k(x) = ϕ(x) for x ∈ �1, (2.14)

and

TK ((β+)k(un,k(x))) + TK ((β−)n(un,k(x))) −
∫

�
ap(x, y, un,k(y) − un,k(x))dmx (y)

+ 1

n
|un,k(x)|p−2u+

n,k(x) − 1

k
|un,k(x)|p−2u−

n,k(x) = ϕ(x) for x ∈ �2. (2.15)

Let n, k ∈ N. We start by proving that un,k ∈ L∞(�, ν). Set

M := (
(k + n)‖ϕ‖L∞(�,ν)

) 1
p−1 .

Then, multiplying (2.14) and (2.15) by (un,k − M)+, integrating over �1 and �2,
respectively, adding both equations and neglecting the terms which are zero, we get

∫

�1

TK ((γ+)k(un,k(x)))(un,k(x) − M)+dν(x)

+
∫

�2

TK ((β+)k(un,k(x)))(un,k(x) − M)+dν(x)
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−
∫

�

∫

�

ap(x, y, un,k(y) − un,k(x))(un,k(x) − M)+dmx (y)dν(x)

+1

n

∫

�

|un,k(x)|p−2u+
n,k(x)(un,k(x) − M)+dν(x)

=
∫

�

ϕ(x)(un,k(x) − M)+dν(x). (2.16)

Now, by the integration by parts formula (recall Remark 2.5),

−
∫

�

∫

�

ap(x, y, un,k(y) − un,k(x))(un,k(x) − M)+dmx (y)dν(x)

= 1

2

∫

�

∫

�

ap(x, y, un,k(y) − un,k(x))
(
(un,k(y) − M)+

−(un,k(x) − M)+
)
dmx (y)dν(x) ≥ 0.

Hence, neglecting nonnegative terms in (2.16), we get
∫

�

|un,k(x)|p−2u+
n,k(x)(un,k(x) − M)+dν(x) ≤ n

∫

�

ϕ(x)(un,k(x) − M)+dν(x),

thus

∫

�
TK (|un,k(x)|p−2u+

n,k(x))(un,k(x) − M)+dν(x) ≤ n
∫

�
ϕ(x)(un,k(x) − M)+dν(x).

Now, subtracting
∫

�

Mp−1(un,k(x) − M)+dν(x) from both sides of the above in-

equality yields
∫

�

(
TK (|un,k(x)|p−2u+

n,k(x)) − Mp−1
)

(un,k(x) − M)+dν(x)

≤ n
∫

�

(

ϕ(x) − 1

n
M p−1

)

(un,k(x) − M)+dν(x) ≤ 0

and, consequently, taking K > M , we get

un,k ≤ M ν-a.e. in �.

Similarly, taking w = (un,k + M)−, we get
∫

�

(
TK (|un,k(x)|p−2u−

n,k(x)) + Mp−1
)

(un,k(x) + M)−dν(x)

≥ k
∫

�

(

ϕ(x) + 1

k
M p−1

)

(un,k + M)−dν(x) ≥ 0
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which yields, taking also K > M ,

un,k ≥ −M ν-a.e. in �.

Therefore,

‖un,k‖L∞(�,ν) ≤ M

as desired.
Now, taking

K > max {M, (γ+)k(M),−(γ−)k(−M), (β+)n(M),−(β−)n(−M)} ,

equations (2.14) and (2.15) yield

(γ+)k(un,k(x)) + (γ−)n(un,k(x)) −
∫

�

ap(x, y, un,k(y) − un,k(x))dmx (y)

+1

n
|un,k(x)|p−2u+

n,k(x) − 1

k
|un,k(x)|p−2u−

n,k(x) = ϕ(x), x ∈ �1, (2.17)

and

(β+)k(un,k(x)) + (β−)n(un,k(x)) −
∫

�

ap(x, y, un,k(y) − un,k(x))dmx (y)

+1

n
|un,k(x)|p−2u+

n,k(x) − 1

k
|un,k(x)|p−2u−

n,k(x) = ϕ(x), x ∈ �2. (2.18)

Take now ϕ ∈ L p′
(�, ν) and, for n, k ∈ N, set

ϕn,k := sup{inf{n, ϕ},−k}. (2.19)

Then, since ϕn,k ∈ L∞(�, ν), by the previous computations leading to (2.17) and
(2.18), there exists a solution un,k ∈ L∞(�, ν) of the following approximate problem
(2.20)–(2.21):

(γ+)k(un,k(x)) + (γ−)n(un,k(x)) −
∫

�

ap(x, y, un,k(y) − un,k(x))dmx (y)

+1

n
|un,k(x)|p−2u+

n,k(x) − 1

k
|un,k(x)|p−2u−

n,k(x) = ϕn,k(x), x ∈ �1,

(2.20)

(β+)k(un,k(x)) + (β−)n(un,k(x)) −
∫

�

ap(x, y, un,k(y) − un,k(x))dmx (y)

+1

n
|un,k(x)|p−2u+

n,k(x) − 1

k
|un,k(x)|p−2u−

n,k(x) = ϕn,k(x), x ∈ �2.

(2.21)

Moreover, we obtain the following estimates which will be used later on. Multiplying
(2.20) and (2.21) by 1

s Ts(u
+
n,k), integrating with respect to ν over �1 and �2, respec-

tively, adding both equations, applying the integration by parts formula (Remark 2.5),
and letting s ↓ 0, we get, after neglecting some nonnegative terms, that
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1

n

∫

�

|un,k |p−2u+
n,kdν+

∫

�1

(γ+)k(un,k)dν+
∫

�2

(β+)k(un,k)dν ≤
∫

�

ϕ+
n,kdν ≤

∫

�

ϕ+dν.

(2.22)

Similarly, multiplying by 1
s Ts(u

−
n,k), we get

− 1

k

∫

�

|un,k |p−2u−
n,kdν +

∫

�1

(γ−)n(un,k)dν +
∫

�2

(β−)n(un,k)dν

≥ −
∫

�

ϕ−
n,kdν ≥ −

∫

�

ϕ−dν. (2.23)

2.2.2. Monotonicity of the solutions of the approximate problems

Using that ϕn,k is nondecreasing in n and nonincreasing in k, and thanks to the way
in which we have approximated the maximal monotone graphs γ and β, we obtain
monotonicity properties for the solutions of the approximate problems.
Fix k ∈ N. Let n1 < n2. Multiply equations (2.20) and (2.21) with n = n1 by

(un1,k − un2,k)
+, integrate with respect to ν over �1 and �2, respectively, and add

both equations. Then, doing the same with n = n2 and subtracting the resulting
equation from the one that we have obtained for n = n1, we get

∫

�1

(
(γ+)k(un1,k(x)) − (γ+)k(un2,k(x))

)
(un1,k(x) − un2,k(x))

+dν(x)

+
∫

�1

(
(γ−)n1(un1,k(x)) − (γ−)n2(un2,k(x))

)
(un1,k(x) − un2,k(x))

+dν(x)

+
∫

�2

(
(β+)k(un1,k(x)) − (β+)k(un2,k(x))

)
(un1,k(x) − un2,k(x))

+dν(x)

+
∫

�2

(
(β−)n1(un1,k(x)) − (β−)n2(un2,k(x))

)
(un1,k(x) − un2,k(x))

+dν(x)

−
∫

�

∫

�

(ap(x, y, un1,k(y) − un1,k(x)) − ap(x, y, un2,k(y) − un2,k(x)))

×(un1,k(x) − un2,k(x))
+dmx (y)dν(x)

+
∫

�

(
1

n1
|un1,k(x)|p−2u+

n1,k
(x) − 1

n2
|un2,k(x)|p−2u+

n2,k
(x)

)

×(un1,k(x) − un2,k(x))
+dν(x)
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−1

k

∫

�

(
|un1,k(x)|p−2u−

n1,k
(x) − |un2,k(x)|p−2u−

n2,k
(x)
)

×(un1,k(x) − un2,k(x))
+dν(x)

=
∫

�

(
ϕn1,k(x) − ϕn2,k(x)

)
(un1,k(x) − un2,k(x))

+dν(x) ≤ 0.

Since (γ+)k and (β+)k aremaximalmonotone, the first and third summands on the left-
hand side are nonnegative, and the same is true for the second and fourth summands
since (γ−)n1 ≥ (γ−)n2 , (β−)n1 ≥ (β−)n2 and these are all maximal monotone. The
fifth summand is also nonnegative as illustrated in Remark 2.5. Then, since the last
two summands are obviously nonnegative, we get that, in fact,
∫

�

(
1

n1
|un1,k (x)|p−2u+

n1,k
(x) − 1

n2
|un2,k (x)|p−2u+

n2,k
(x)

)

(un1,k (x) − un2,k (x))
+dν(x) = 0

and

1

k

∫

�

(
|un1,k (x)|p−2u−

n1,k
(x) − |un2,k (x)|p−2u−

n2,k
(x)
)

(un1,k (x) − un2,k (x))
+dν(x) = 0

which together imply that

un1,k(x) ≤ un2,k(x) for ν-a.e. x ∈ �.

Similarly, we obtain that, for a fixed n, un,k is ν-a.e. in � nonincreasing in k.

2.2.3. An L p-estimate for the solutions of the approximate problems

Multiplying (2.20) and (2.21) by

un,k − 1

ν(�1)

∫

�1

un,kdν,

integrating with respect to ν over �1 and �2, respectively, adding both equations and
using the integration by parts formula (Remark 2.5) we get

∫

�1

(
(γ+)k(un,k(x)) + (γ−)n(un,k(x))

)
(

un,k(x) − 1

ν(�1)

∫

�1

un,kdν

)

dν(x)

+
∫

�2

(
(β+)k(un,k(x)) + (β−)n(un,k(x))

)
(

un,k(x) − 1

ν(�1)

∫

�1

un,kdν

)

dν(x)

+1

2

∫

�

∫

�
ap(x, y, un,k(y) − un,k(x))(un,k(y) − un,k(x))dmx (y)dν(x)
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+
∫

�

(
1

n
|un,k(x)|p−2u+

n,k(x) − 1

k
|un,k(x)|p−2u−

n,k(x)

)

×
(

un,k(x) − 1

ν(�1)

∫

�1

un,kdν

)

dν(x)

=
∫

�
ϕn,k(x)

(

un,k(x) − 1

ν(�1)

∫

�1

un,kdν

)

dν(x). (2.24)

For the first summand on the left-hand side of (2.24), we have
∫

�1

(
(γ+)k(un,k) + (γ−)n(un,k)

)
(

un,k − 1

ν(�1)

∫

�1

un,kdν

)

dν

=
∫

�1

(

(γ+)k(un,k) − (γ+)k

(
1

ν(�1)

∫

�1

un,k

))(

un,k − 1

ν(�1)

∫

�1

un,kdν

)

dν

+
∫

�1

(

(γ−)n(un,k) − (γ−)n

(
1

ν(�1)

∫

�1

un,k

))(

un,k − 1

ν(�1)

∫

�1

un,kdν

)

dν ≥ 0,

and for the second

∫

�2

(
(β+)k(un,k) + (β−)n(un,k)

)
(

un,k − 1

ν(�1)

∫

�1

un,kdν

)

dν

=
∫

�2

(

(β+)k(un,k) − (β+)k

(
1

ν(�2)

∫

�2

un,k

))(

un,k − 1

ν(�2)

∫

�2

un,kdν

)

dν

+
∫

�2

(

(β−)n(un,k) − (β−)n

(
1

ν(�2)

∫

�2

un,k

))(

un,k − 1

ν(�2)

∫

�2

un,kdν

)

dν

−
∫

�2

(
(β+)k(un,k) + (β−)n(un,k)

)
(

1

ν(�1)

∫

�1

un,kdν − 1

ν(�2)

∫

�2

un,kdν

)

dν

≥ −
∫

�2

(
(β+)k(un,k) + (β−)n(un,k)

)
(

1

ν(�1)

∫

�1

un,kdν − 1

ν(�2)

∫

�2

un,kdν

)

dν.

Since Fn,k(s) := 1
n |s|p−2s+ − 1

k |s|p−2s− is nondecreasing, for the fourth summand
on the left-hand side of (2.24) we have that
∫

�

(
1

n
|un,k(x)|p−2u+

n,k(x) − 1

k
|un,k(x)|p−2u−

n,k(x)

)(

un,k(x) − 1

ν(�1)

∫

�1

un,kdν

)

dν(x)

=
∫

�1

(

Fn,k(un,k(x)) − Fn,k

(
1

ν(�1)

∫

�1

un,kdν

))(

un,k(x) − 1

ν(�1)

∫

�1

un,kdν

)

dν(x)

+
∫

�2

(

Fn,k(un,k(x)) − Fn,k

(
1

ν(�2)

∫

�1

un,kdν

))(

un,k(x) − 1

ν(�2)

∫

�2

un,kdν

)

dν(x)

−
∫

�2

Fn,k(un,k(x))

(
1

ν(�1)

∫

�1

un,kdν − 1

ν(�2)

∫

�2

un,kdν

)

dν(x)

≥ −
∫

�2

Fn,k(un,k(x))

(
1

ν(�1)

∫

�1

un,kdν − 1

ν(�2)

∫

�2

un,kdν

)

dν(x).
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Finally, recalling (2.5) for the third summand in (2.24), we get

cp
2

∫

�

∫

�

|un,k(y) − un,k(x)|pdmx (y)dν(x)

≤
∫

�

ϕn,k

(

un,k − 1

ν(�1)

∫

�1

un,kdν

)

dν

+
∫

�2

(
(β+)k(un,k) + (β−)n(un,k)

)
(

1

ν(�1)

∫

�1

un,kdν − 1

ν(�2)

∫

�2

ur,n,kdν

)

dν

+
∫

�2

(
1

n
|un,k(x)|p−2u+

n,k(x) − 1

k
|un,k(x)|p−2u−

n,k(x)

)

×
(

1

ν(�1)

∫

�1

un,kdν − 1

ν(�2)

∫

�2

un,kdν

)

dν.

Now, by Hölder’s inequality and the generalised Poincaré-type inequality with l =
ν(�1) (let�1 denote the constant appearing in thegeneralisedPoincaré-type inequality
in Assumption 5),

∫

�

ϕn,k

(

un,k − 1

ν(�1)

∫

�1

un,kdν

)

dν

≤ ‖ϕ‖L p′ (�,ν)

∥
∥
∥
∥un,k − 1

ν(�1)

∫

�1

un,kdν

∥
∥
∥
∥
L p(�,ν)

≤ �1‖ϕ‖L p′ (�,ν)

(∫

�

∫

�

|un,k(y) − un,k(x)|pdmx (y)dν(x)

) 1
p

,

and, by (2.22), (2.23) and the generalised Poincaré-type inequality with l = ν(�1) and
with l = ν(�2) (let �2 denote the constant appearing in the Poincaré-type inequality
for the latter case), we obtain

∫

�2

(
(
(β+)k(un,k) + (β−)n(un,k)

)+ 1

n
|un,k(x)|p−2u+

n,k(x) − 1

k
|un,k(x)|p−2u−

n,k(x)

)

×
(

1

ν(�1)

∫

�1

un,kdν − 1

ν(�2)

∫

�2

un,kdν

)

dν

≤ ‖ϕ‖L1(�,ν)

∣
∣
∣
∣

1

ν(�1)

∫

�1

un,kdν − 1

ν(�2)

∫

�2

un,kdν

∣
∣
∣
∣

≤ ‖ϕ‖L1(�,ν)

1

ν(�)
1
p

(∥
∥
∥
∥un,k − 1

ν(�1)

∫

�1

un,kdν

∥
∥
∥
∥
L p(�,ν)

+
∥
∥
∥
∥un,k − 1

ν(�2)

∫

�2

un,kdν

∥
∥
∥
∥
L p(�,ν)

)

≤ ‖ϕ‖L1(�,ν)

�1 + �2

ν(�)
1
p

(∫

�

∫

�

|un,k(y) − un,k(x)|pdmx (y)dν(x)

) 1
p

.



24 Page 26 of 83 M. Solera And J. Toledo J. Evol. Equ.

Therefore, by (2.24) and the subsequent equations,

cp
2

(∫

�

∫

�

|un,k(y) − un,k(x)|pdmx (y)dν(x)

) 1
p′

≤ �1‖ϕ‖L p′ (�,ν)
+ �1 + �2

ν(�)
1
p

‖ϕ‖L1(�,ν). (2.25)

2.2.4. Existence of solutions of (GPϕ)

Observe that a solution (u, v) of (GPϕ) satisfies

∫

�1

vdν +
∫

�2

vdν =
∫

�

ϕ,

therefore, since v ∈ γ (u) in �1 and v ∈ β(u) in �2, we need ϕ to satisfy

R−
γ,β ≤

∫

�

ϕdν ≤ R+
γ,β .

We prove the existence of solutions when the inequalities in the previous equation are
strict. This suffices for what we need in the next section. Recall that we are working
under the Assumptions 1 to 5.

Theorem 2.7. Given ϕ ∈ L p′
(�, ν) such that

R−
γ,β <

∫

�

ϕdν < R+
γ,β,

Problem (GPϕ) stated in (2.8) has a solution.

Observe then that any solution (u, v) of (GPϕ) under such assumptions also satisfies

R−
γ,β <

∫

�

vdν < R+
γ,β .

This will be used later on.
We divide the proof into three cases.

Proof. (Proof of Theorem 2.7 when R±
γ,β = ±∞) Suppose that

R−
γ,β = −∞ and R+

γ,β = +∞.

Let ϕ ∈ L p′
(�, ν), ϕn,k defined as in (2.19) and let un,k ∈ L∞(�, ν), n, k ∈ N, be

solutions of the Approximate Problem (2.20)–(2.21).
Step A (Boundedness). Let us first see that {‖un,k‖L p(�,ν)}n,k is bounded.
Step 1. We start by proving that {‖u+

n,k‖L p(�,ν)}n,k is bounded. We see this case by

case. Since R+
γ,β = +∞, then supRan(γ ) = +∞ or supRan(β) = +∞.
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Case 1.1. Suppose that supRan(γ ) = +∞. Then, by (2.22),
∫

�1

(γ+)k(un,k)dν ≤ M :=
∫

�

ϕdν for every n, k ∈ N.

Let z+n,k := (γ+)k(un,k) and �̃n,k :=
{
x ∈ �1 : z+n,k(x) < 2M

ν(�1)

}
. Then,

0 ≤
∫

�̃n,k

z+n,kdν =
∫

�1

z+n,kdν −
∫

�1\�̃n,k

z+n,kdν ≤ M − (ν(�1) − ν(�̃n,k))
2M

ν(�1)

= ν(�̃n,k)
2M

ν(�1)
− M,

from where

ν(�̃n,k) ≥ ν(�1)

2
.

Case 1.1.1. Assume that sup D(γ ) = +∞. Let r0 ∈ R be such that γ 0(r0) >

2M/ν(�1) and let k0 ∈ N such that

2M

ν(�1)
< (γ+)k(r0) ≤ γ 0(r0) for k ≥ k0. (2.26)

Then, since in �̃n,k , (γ+)k(un,k) = z+n,k < 2M
ν(�1)

, from (2.26) we get that

u+
n,k ≤ r0 in �̃n,k for every k ≥ k0 and every n ∈ N.

Therefore, this bound, the generalised Poincaré-type inequality with l = ν(�1)
2 and

(2.25) yield the boundedness of {‖u+
n,k‖L p(�,ν)}n,k .

Case 1.1.2. Suppose that rγ := sup D(γ ) < +∞ and let h > 0. Since rγ +h �∈ D(γ ),

(γ+)k(rγ + h) ↑ +∞ as k → +∞.

Take k0 ∈ N such that (γ+)k(rγ + h) ≥ 2M
ν(�1)

for every k ≥ k0. Then,

(γ+)k(u
+
n,k) <

2M

ν(�1)
≤ (γ+)k(rγ + h) in �̃n,k for every k ≥ k0 and every n ∈ N,

thus

u+
n,k ≤ rγ + h in �̃n,k for every k ≥ k0 and every n ∈ N.

Therefore, again, this bound together with the generalised Poincaré-type inequality
with l = ν(�1)

2 and (2.22) yield the boundedness of {‖u+
n,k‖L p(�,ν)}n,k .

Case 1.2. If supRan(β) = +∞, we proceed similarly.
Step 2. Using thatR−

γ,β = −∞ we obtain that {‖u−
n,k‖L p(�,ν)}n,k is bounded with an

analogous argument.
Consequently, we get that {‖un,k‖L p(�,ν)}n,k is bounded as desired.
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Step B (Taking limits in n). The monotonicity properties obtained in Subsect. 2.2.2
together with the boundedness of {‖un,k‖L p(�,ν)}n,k allow us to apply the monotone
convergence theorem to obtain uk ∈ L p(�, ν), k ∈ N, and u ∈ L p(�, ν) such that,
taking a subsequence if necessary, un,k

n→ uk in L p(�, ν) and pointwise ν-a.e. in �

for k ∈ N, and uk
k→ u in L p(�, ν) and pointwise ν-a.e. in �.

We nowwant to take limits, in n and then in k, in (2.20) and (2.21). Since un,k
n→ uk

in L p(�, ν) and pointwise ν-a.e. in �,
∫

�

ap(·, y, un,k(y)−un,k(·))dm(·)(y)
n−→
∫

�

ap(·, y, uk(y)−uk(·))dm(·)(y), (2.27)

1

n
|un,k |p−2u+

n,k
n−→ 0

and

1

k
|un,k |p−2u−

n,k
n−→ 1

k
|uk |p−2u−

k

in L p′
(�, ν) and, up to a subsequence, for ν-a.e. x ∈ �. Indeed, the second and third

limits follow because |un,k |p−2u+
n,k

n→ |uk |p−2u+
k in L p′

(�, ν). Now, since {un,k}n
is nonincreasing in n, |un,k | ≤ max{|u1,k |, |uk |} ν-a.e. in �, for every n, k ∈ N, so
Lemma 2.1 yields the convergence (2.27) in L p′

(�, ν).
Now, isolating (γ+)k(un,k) + (γ−)n(un,k) and (β+)k(un,k) + (β−)n(un,k) in equa-

tions (2.20) and (2.21), respectively, and taking the positive parts, we get that

(γ+)k(un,k(x)) =
(∫

�

ap(x, y, un,k(y) − un,k(x))dmx (y) + 1

n
|un,k(x)|p−2u+

n,k(x)

−1

k
|un,k(x)|p−2u−

n,k(x) + ϕn,k(x)

)+

for x ∈ �1, and

(β+)k(un,k(x)) =
(∫

�

ap(x, y, un,k(y) − un,k(x))dmx (y) + 1

n
|un,k(x)|p−2u+

n,k(x)

−1

k
|un,k(x)|p−2u−

n,k(x) + ϕn,k(x)

)+

for x ∈ �2. Therefore, since the right-hand sides of these equations converge in
L p′

(�1, ν) and L p′
(�2, ν) (and also ν-a.e. in �1 and �2), respectively, there exist

z+k ∈ L p′
(�1, ν) andω+

k ∈ L p′
(�2, ν) such that (γ+)k(un,k)

n→ z+k in L p′
(�1, ν) and

pointwise ν-a.e. in �1, and (β+)k(un,k)
n→ ω+

k in L p′
(�2, ν) and pointwise ν-a.e. in

�2. Moreover, since (γ+)k and (β+)k are maximal monotone graphs, z+k = (γ+)k(uk)
ν-a.e. in �1, and ω+

k = (β+)k(uk) ν-a.e. in �2.
Similarly, taking the negative parts, there exist

lim
n→+∞(γ−)n(un,k(x)) = z−k (x) in L p′

(�1, ν) and for ν-a.e. x ∈ �1,
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and

lim
n→+∞(β−)n(un,k(x)) = ω−

k (x) in L p′
(�2, ν) and for ν-a.e. x ∈ �2.

Moreover, by [15, Lemma G], z−k ∈ γ−(uk) and ω−
k ∈ β−(uk). Therefore, we have

obtained that

z+k (x) + z−k (x) −
∫

�

ap(x, y, uk(y) − uk(x))dmx (y)

−1

k
|uk(x)|p−2u−

k (x) = ϕk(x), (2.28)

for ν-a.e. x ∈ �1, and

ω+
k (x) + ω−

k (x) −
∫

�

ap(x, y, uk(y) − uk(x))dmx (y)

−1

k
|uk(x)|p−2u−

k (x) = ϕk(x) (2.29)

for ν-a.e. x ∈ �2.
Step C (Taking limits in k). Now again, isolating z+k + z−k and ω+

k + ω−
k in equations

(2.28) and (2.29), respectively, and taking the positive and negative parts as above,
we get that there exist z+ ∈ L p′

(�1, ν), z− ∈ L p′
(�1, ν), ω+ ∈ L p′

(�2, ν) and

ω− ∈ L p′
(�2, ν) such that z+k

k→ z+ and z−k
k→ z− in L p′

(�1, ν) and pointwise

ν-a.e. in �1, and ω+
k

k→ ω+ and ω−
k

k→ ω− in L p′
(�2, ν) and pointwise ν-a.e. in �2.

In addition, by the maximal monotonicity of γ− and β−, z− ∈ γ−(u) and ω− ∈ β−(u)

ν-a.e. in �1 and �2, respectively. Moreover, by [15, Lemma G], z+ ∈ γ+(u) and
ω+ ∈ β+(u) ν-a.e. in �1 and �2, respectively.
Consequently,

z(x) −
∫

�

ap(x, y, u(y) − u(x))dmx (y) = ϕ(x) for ν-a.e. x ∈ �1,

and

ω(x) −
∫

�

ap(x, y, u(y) − u(x))dmx (y) = ϕ(x) for ν-a.e. x ∈ �2,

where z = z+ + z− ∈ γ (u) ν-a.e. in �1 and ω = ω+ + ω− ∈ β(u) ν-a.e. in �2. The
proof of existence in this case is done. �

Proof. (Proof of Theorem 2.7 when R±
γ,β are finite) Suppose that

−∞ < R−
γ,β < R+

γ,β < +∞.

Let ϕ ∈ L p′
(�, ν), and assume that it satisfies

R−
γ,β <

∫

�

ϕdν < R+
γ,β .
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Then, for ϕn,k defined as in (2.19), there exist M1, M2 ∈ R and n0, k0 ∈ N such that

R−
γ,β < M2 <

∫

�

ϕn,kdν < M1 < R+
γ,β (2.30)

for every n ≥ n0 and k ≥ k0. For n, k ∈ N let un,k ∈ L∞(�, ν) be the solution of the
Approximate Problem (2.20)–(2.21), and let

M3 := sup
n,k∈N

∥
∥
∥
∥un,k − 1

ν(�1)

∫

�1

un,kdν

∥
∥
∥
∥
L p(�,ν)

< +∞. (2.31)

Observe that M3 is finite by the generalised Poincaré-type inequality together with

(2.25). Let k1 ∈ N such that k1 ≥ k0 and M1 + 1
k M3ν(�)

1
p(p−1) < R+

γ,β for every
k ≥ k1.
Step D (Boundedness of {‖un,k‖L p(�,ν)}n and passing to the limit in n) Let us see
that, for each k ∈ N, {‖un,k‖L p(�,ν)}n is bounded. Fix k ≥ k1 and suppose that
{‖un,k‖L p(�,ν)}n is not bounded. Then, by (2.31), since un,k is nondecreasing in n,

1

ν(�1)

∫

�1

un,kdν
n→+∞−→ +∞.

Thus, using again that un,k is nondecreasing in n, there exists n1 ≥ n0 such that

u−
n,k ≤

(

un,k − 1

ν(�1)

∫

�1

un,kdν

)−
+
(

1

ν(�1)

∫

�1

un,kdν

)−

=
(

un,k − 1

ν(�1)

∫

�1

un,kdν

)−

for every n ≥ n1, and thus

‖u−
n,k‖L p(�,ν) ≤ M3 for every n ≥ n1.

Consequently, ‖u−
n,k‖L p−1(�,ν) ≤ M3ν(�)

1
p(p−1) for n ≥ n1. Then, with this bound

and (2.30) at hand, integrating (2.20) and (2.21) with respect to ν over �1 and �2,
respectively, adding both equations and neglecting some nonnegative terms we get
∫

�1

(γ+)k(un,k(x)) + (γ−)n(un,k(x))
︸ ︷︷ ︸

zn,k (x)

dν(x) +
∫

�2

(β+)k(un,k(x)) + (β−)n(un,k(x))
︸ ︷︷ ︸

ωn,k (x)

dν(x)

≤ M1 + 1

k
M3ν(�)

1
p(p−1)

︸ ︷︷ ︸
M4

< R+
γ,β .

Therefore, for each n ∈ N, either
∫

�1

zn,kdν < ν(�1) supRan(γ ) − δ

2
(2.32)
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or
∫

�2

ωn,kdν < ν(�2) supRan(β) − δ

2
, (2.33)

where δ := R+
γ,β − M4 > 0.

For n ∈ N such that (2.32) holds let

Kn,k :=
{

x ∈ �1 : zn,k(x) < supRan(γ ) − δ

4ν(�1)

}

.

Then∫

Kn,k

zn,kdν =
∫

�1

zn,kdν −
∫

�1\Kn,k

zn,kdν < − δ

4
+ ν(Kn,k)

(

supRan(γ ) − δ

4ν(�1)

)

,

and
∫

Kn,k

zn,kdν ≥ ν(Kn,k) inf Ran(γ ).

Therefore,

ν(Kn,k)

(

supRan(γ ) − inf Ran(γ ) − δ

4ν(�1)

)

≥ δ

4
,

thus ν(Kn,k) > 0, supRan(γ ) − inf Ran(γ ) − δ

4ν(�1)
> 0 and

ν(Kn,k) ≥ δ/4

supRan(γ ) − inf Ran(γ ) − δ
4ν(�1)

.

Note that, if supRan(γ ) − δ
4ν(�1)

≤ 0, then zn,k ≤ 0 in Kn,k , thus u
+
n,k = 0 in Kn,k

and, consequently, ‖u+
n,k‖L p(Kn,k ,ν) = 0. Therefore, by the generalised Poincaré-type

inequality and (2.25)we get that {‖un,k‖L p(�,ν)}n is bounded,which is a contradiction.
We may therefore suppose that supRan(γ ) − δ

4ν(�1)
> 0. Then, for k2 ≥ k1 large

enough so that supRan((γ+)k) > supRan(γ ) − δ
4ν(�1)

for k ≥ k2,

‖u+
n,k‖L p(Kn,k ,ν) ≤ ν(Kn,k)

1
p (γ+)−1

k

(

supRan(γ ) − δ

4ν(�1)

)

andby the generalisedPoincaré-type inequality and (2.25)weget that {‖un,k‖L p(�,ν)}n
is bounded, which is a contradiction. Similarly, for n ∈ N such that (2.33) holds.
We have obtained that {‖un,k‖L p(�,ν)}n is bounded for each k ∈ N. Therefore,

since {un,k}n is nondecreasing in n, we may apply the monotone convergence theorem

to obtain uk ∈ L p(�, ν), k ∈ N, such that un,k
n→ uk in L p(�, ν) and pointwise

ν-a.e. in � for k ∈ N. Proceeding now like in Step B of the previous proof we get:
z+k ∈ L p′

(�1, ν) and ω+
k ∈ L p′

(�2, ν) such that z+k ∈ γ+(uk) and ω+
k ∈ β+(uk)
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ν-a.e. in �1 and �2, respectively; and z−k ∈ L p′
(�1, ν) and ω−

k ∈ L p′
(�2, ν) with

z−k ∈ γ−(uk) and ω−
k ∈ β−(uk), ν-a.e. �1 and �2, respectively, and such that

z+k (x) + z−k (x) −
∫

�

ap(x, y, uk(y) − uk(x))dmx (y)

−1

k
|uk(x)|p−2u−

k (x) = ϕk(x), (2.34)

for ν-a.e. every x ∈ �1, and

ω+
k (x) + ω−

k (x) −
∫

�

ap(x, y, uk(y) − uk(x))dmx (y)

−1

k
|uk(x)|p−2u−

k (x) = ϕk(x) (2.35)

for ν-a.e. every x ∈ �2.
Step E (Boundedness of {‖uk‖L p(�,ν)}k and passing to the limit in k) We now see that
{‖uk‖L p(�,ν)}k is bounded. Since u+

k ≤ u+
1 , it is enough to see that {‖u−

k ‖L p(�,ν)}k is
bounded.
Now, (2.34) and (2.35) yield

∫

�1

z+k (x) + z−k (x)
︸ ︷︷ ︸

zk (x)

dν(x) +
∫

�2

ω+
k (x) + ω−

k (x)
︸ ︷︷ ︸

ωk (x)

dν(x) ≥ M2 > R−
γ,β .

Therefore, for each k ∈ N, either

∫

�1

zkdν > ν(�1) inf Ran(γ ) + δ′

2
(2.36)

or
∫

�2

ωkdν > ν(�2) inf Ran(β) + δ′

2
, (2.37)

where δ′ := M2 − R−
γ,β > 0.

For k ∈ N such that (2.36) holds let Kk := {x ∈ �1 : zk(x) > inf Ran(γ )+ δ′
4ν(�1)

}.
Then,
∫

Kk

zkdν =
∫

�1

zkdν −
∫

�1\Kk

zkdν

>

(

ν(�1) inf Ran(γ ) + δ′

2

)

− (ν(�1) − ν(Kk))

(

inf Ran(γ ) + δ′

4ν(�1)

)

= δ′

4
+ ν(Kk)

(

inf Ran(γ ) + δ′

4ν(�1)

)

,
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and
∫

Kk

zkdν ≤ ν(Kk) supRan(γ ).

Therefore,

ν(Kk)

(

supRan(γ ) − inf Ran(γ ) − δ′

4ν(�1)

)

≥ δ′

4
,

thus ν(Kk) > 0, supRan(γ ) − inf Ran(γ ) − δ′

4ν(�1)
> 0 and

ν(Kk) ≥ δ′/4
supRan(γ ) − inf Ran(γ ) − δ′

4ν(�1)

.

Now, if inf Ran(γ ) + δ′
4ν(�1)

≥ 0 then zk ≥ 0 in Kk , thus u−
n,k = 0 in Kk and

‖u−
k ‖L p(Kk ,ν) = 0; so by the generalised Poincaré-type inequality and (2.25) we get

that {‖uk‖L p(�,ν)}n is bounded. If inf Ran(γ ) + δ′
4ν(�1)

< 0, then

‖u−
k ‖L p(Kn,k ,ν) ≤ −ν(Kk)

1
p γ −1−

(

inf Ran(γ ) + δ′

4ν(�1)

)

and by the generalised Poincaré inequality and (2.25) we get that {‖uk‖L p(�,ν)}k is
bounded. Similarly, for k ∈ N such that (2.37) holds.
Now, proceeding as in Step C of the previous proof, we finish this proof. �

Finally, we give the proof of the remaining case.

Proof. (Proof of Theorem 2.7 in the mixed case) Let us see the existence for

− ∞ < R−
γ,β < R+

γ,β = +∞, (2.38)

or

− ∞ = R−
γ,β < R+

γ,β < +∞. (2.39)

Suppose that (2.38) holds and let ϕ ∈ L p′
(�, ν) satisfying

R−
γ,β <

∫

�

ϕdν.

If (2.39) holds and we have ϕ ∈ L p′
(�, ν) satisfying

∫

�

ϕdν < R+
γ,β , the argument

is analogous.
Let ϕn,k be defined as in (2.19) and let un,k ∈ L∞(�, ν), n, k ∈ N, be the solution

of the Approximate Problem (2.20)–(2.21). Then, by Lemma A.7 together with (2.22),
{‖u+

n,k‖L p(�,ν)}n,k is bounded. However, for a fixed k ∈ N, since un,k is nondecreasing
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in n, {‖u−
n,k‖L p(�,ν)}n is also bounded. Therefore, proceeding as in Step B of the first

case, we obtain uk ∈ L p(�, ν), z+k , z
−
k ∈ L p′

(�1, ν) and ω+
k , ω−

k ∈ L p′
(�2, ν),

k ∈ N, such that

z+k (x) + z−k (x) −
∫

�

ap(x, y, uk(y) − uk(x))dmx (y)

−1

k
|uk(x)|p−2u−

k (x) = ϕk(x), (2.40)

for ν-a.e. x ∈ �1, and

ω+
k (x) + ω−

k (x) −
∫

�

ap(x, y, uk(y) − uk(x))dmx (y) − 1

k
|uk(x)|p−2u−

k (x) = ϕk(x)

for ν-a.e. x ∈ �2; where, for k ∈ N,

z+k = (γ+)k(uk), z−k ∈ γ−(uk) ν-a.e. in �1,

and

ω+
k = (β+)k(uk), ω−

k ∈ β−(uk) ν-a.e. in �2.

We now prove that {‖uk‖L p(�,ν)}k is bounded. Proceeding as in Step E of the
previous proof and using the same notation, we get that for each k ∈ N, either

∫

�1

zkdν > ν(�1) inf Ran(γ ) + δ′

2
(2.41)

or

∫

�2

ωkdν > ν(�2) inf Ran(β) + δ′

2
. (2.42)

Case 1. For k ∈ N such that (2.41) holds, let

Kk :=
{

x ∈ �1 : zk(x) > inf Ran(γ ) + δ′

4ν(�1)

}

.

Then,

∫

Kk

zkdν =
∫

�1

zkdν −
∫

�1\Kk

zkdν >
δ′

4
+ ν(Kk)

(

inf Ran(γ ) + δ′

4ν(�1)

)

.

(2.43)

Now, by (2.40),
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∫

{x∈�1 : zk (x)>h}
zkdν ≤

∫

{x∈�1 : zk (x)>h}
|zk |p′

h p′−1
dν

= 1

h p′−1

∫

{x∈�1 : zk (x)>h}

∣
∣
∣
∣

∫

�

ap(x, y, uk(y) − uk(x)dmx (y) + ϕk(x)

∣
∣
∣
∣

p′

dν(x).

Thus, for a constant D1 independent of k and h,
∫

{x∈�1 : zk (x)>h}
zkdν

≤ D1

h p′−1

(∫

�1

∫

�

|ap(x, y, uk(y) − uk(x)|p′
dmx (y)dν(x) +

∫

�1

|ϕk |p′
dν

)

.

Hence, by (2.4) and (2.25), there exist constants D2 and D3, independent of k and h,
such that
∫

{x∈�1 : zk (x)>h}
zkdν

≤ D2

h p′−1

(∫

�1

∫

�

|uk(y) − uk(x)|pdmx (y)dν(x) +
∫

�1

|ϕk |p′
dν + 1

)

≤ D3

h p′−1
.

Consequently, we may find h > 0 such that

sup
k∈N

∫

{x∈�1 : zk (x)>h}
zkdν <

δ′

8
.

Therefore,
∫

Kk

zkdν =
∫

Kk∩{zk>h}
zkdν +

∫

Kk∩{zk≤h}
zkdν ≤ δ′

8
+ ν(Kk)h.

Recalling (2.43), we get

δ′

4
+ ν(Kk)

(

inf Ran(γ ) + δ′

4ν(�1)

)

<
δ′

8
+ ν(Kk)h,

thus

δ′

8
< ν(Kk)

(

h − inf Ran(γ ) − δ′

4ν(�1)

)

.

Consequently, h − inf Ran(γ ) − δ′

4ν(�1)
> 0 and

ν(Kk) ≥ δ′/4
h − inf Ran(γ ) − δ′

4ν(�1)

> 0.

From here we conclude as in the previous proof.
Case 2. For k ∈ N such that (2.42) holds, let

K̃k := {x ∈ �2 : wk(x) > inf Ran(β) + δ′

4ν(�2)
}

and proceed similarly. �



24 Page 36 of 83 M. Solera And J. Toledo J. Evol. Equ.

Remark 2.8. (i) Taking limits in (2.25) we obtain that, if [u, v] is a solution of

(GP
ap,γ,β
ϕ ), then

cp
2

(∫

�

∫

�

|u(y) − u(x)|pdmx (y)dν(x)

) 1
p′

≤ �1‖ϕ‖L p′ (�,ν)
+ �1 + �2

ν(�)
1
p

‖ϕ‖L1(�,ν),

where cp is the constant in (2.5), and �1 and �2 come from the generalised
Poincaré-type inequality and depend only on p, �1 and �2.

(ii) Observe that, on account of (2.4) and the above estimate, we have

(∫

�

∣
∣
∣
∣

∫

�

ap(x, y, u(y) − u(x))dmx (y)

∣
∣
∣
∣

p′

dν(x)

) 1
p′

≤ Cpν(�) + 2Cp

cp
(2�1 + �2)‖ϕ‖L p′ (�,ν)

.

Therefore, since [u, v] is a solution of (GP
ap,γ,β
ϕ ),

‖v‖L p′ (�,ν)
≤ Cpν(�) +

(
2Cp

cp
(2�1 + �2) + 1

)

‖ϕ‖L p′ (�,ν)
.

(iii) When ϕ = 0 in �2, we can easily get that v � ϕ in �1.

2.3. Other boundary conditions

We can now ask for existence and uniqueness of solutions of the following problem
(which is introduced in Sect. 2.1)

⎧
⎨

⎩

γ
(
u(x)) − divmapu(x) � ϕ(x), x ∈ W,

N ap
2 u(x) + β

(
u(x)

) � ϕ(x), x ∈ ∂mW,

(2.44)

or, of the more general problem,
⎧
⎪⎪⎨

⎪⎪⎩

γ
(
u(x)) −

∫

W∪�2

ap(x, y, u(y) − u(x))dmx (y) � ϕ(x), x ∈ �1 = W,

N ap
2 u(x) + β

(
u(x)

) � ϕ(x), x ∈ �2 ⊆ ∂mW.

Recall that N ap
2 is defined as follows:

N ap
2 u(x) := −

∫

W
ap(x, y, u(y) − u(x))dmx (y), x ∈ ∂mW,

which involves integration with respect to ν only over W , or more specifically over
∂m(X \ W ).
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For Problem (2.44), we know that, in general, we do not have an appropriate
Poincaré-type inequality to work with (see Remark A.5). Therefore, other techniques
must be used to obtain the existence of solutions. In the particular case of γ (r) =
β(r) = r , this was done in [43] by exploiting further monotonicity techniques.
However, if a generalised Poincaré-type inequality (as defined in Definition A.1) is

satisfied on (A, B) = (�1,�2), we could solve the above problem by using the same
techniques that we have used to solve Problem (2.7). Indeed, we can work analogously
but with the integration by parts formula given in Remark 2.9. Note that this kind of
Poincaré-type inequality holds, for example, for finite graphs; even if �2 = ∂mW .

Remark 2.9. Let � := �1 ∪ �2. The following integration by parts formula holds:
Let u be a measurable function such that

[(x, y) �→ ap(x, y, u(y) − u(x))] ∈ Lq((� × �) \ (�2 × �2) , ν ⊗ mx )

and let w ∈ Lq ′
(�, ν). Then,

−
∫

�1

∫

�

ap(x, y, u(y) − u(x))dmx (y)w(x)dν(x)

−
∫

�2

∫

�1

ap(x, y, u(y) − u(x))dmx (y)w(x)dν(x)

= 1

2

∫

(�×�)\(�2×�2)

ap(x, y, u(y) − u(x))(w(y) − w(x))d(ν ⊗ mx )(x, y).

Remark 2.10. It is possible to consider this type of problems but with the randomwalk
and the nonlocal Leray–Lions operator having a different behaviour on each subset
�i , i = 1, 2. For example, one could consider a problem, posed in �1 ∪ �2 ⊂ R

N ,
such as the following:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ
(
u(x)) −

∫

�1

a1p(x, y, u(y) − u(x))J1(x − y)dy

−
∫

�2

a3p(x, y, u(y) − u(x))J3(x − y)dx � ϕ(x), x ∈ �1,

β
(
u(x)

)−
∫

�1

a3p(x, y, u(y) − u(x))J3(x − y)dy

−
∫

�2

a2p(x, y, u(y) − u(x))J2(x − y)dx � ϕ(x), x ∈ �2,

where Ji are kernels like the one in Example 1.2, and aip are functions like the one in
Subsect. 2.1, i = 1, 2, 3. This could be done by obtaining a Poincaré-type inequality
involving 1

α0
J0, where J0 is the minimum of the previous three kernels and α0 =

∫

RN J0(z)dz. This idea has been used in [22] to study a homogenization problem.

3. Doubly nonlinear diffusion problems

We study two kinds of nonlocal p-Laplacian-type diffusions problems. In one
of them, we cover nonlocal nonlinear diffusion problems with nonlinear dynamical
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boundary condition; and on the other, we tackle nonlinear boundary conditions. We
work under Assumptions 1–5 used in Subsect. 2.2.

3.1. Nonlinear dynamical boundary conditions

Our aim in this subsection is to study the following diffusion problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt (t, x) −
∫

�

ap(x, y, u(t, y) − u(t, x))dmx (y) = f (t, x), x ∈ �1, 0 < t < T,

v(t, x) ∈ γ
(
u(t, x)

)
, x ∈ �1, 0 < t < T,

wt (t, x) −
∫

�

ap(x, y, u(t, y) − u(t, x))dmx (y) = g(t, x), x ∈ �2, 0 < t < T,

w(t, x) ∈ β
(
u(t, x)

)
, x ∈ �2, 0 < t < T,

v(0, x) = v0(x), x ∈ �1,

w(0, x) = w0(x), x ∈ �2,

(3.1)

of which Problem (1.2) is a particular case and which covers the case of dynamic
evolution on the boundary ∂mW when β �= R × {0}. This includes, in particular, for
γ = R×{0}, the problem where the dynamic evolution occurs only on the boundary:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−divmapu(t, x) = f (t, x), x ∈ W, 0 < t < T,

wt (t, x) + N ap
1 u(t, x) = g(t, x), x ∈ ∂mW, 0 < t < T,

w(t, x) ∈ β
(
u(t, x)

)
, x ∈ ∂mW, 0 < t < T,

w(0, x) = w0(x), x ∈ ∂mW.

See [4] for the reference local model.
Note that we may abbreviate Problem (3.1) by using v instead of (v,w) and f

instead of ( f, g) as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt (t, x) −
∫

�

ap(x, y, u(t, y) − u(t, x))dmx (y) = f (t, x), x ∈ �, 0 < t < T,

v(t, x) ∈ γ
(
u(t, x)

)
, x ∈ �1, 0 < t < T,

v(t, x) ∈ β
(
u(t, x)

)
, x ∈ �2, 0 < t < T,

v(0, x) = v0(x), x ∈ �.

(3.2)

To solve this problem, we use nonlinear semigroup theory. To this end, we introduce
a multivalued operator associated with Problem (3.2) that allows us to rewrite it as
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an abstract Cauchy problem. Observe that this operator is defined on L1(�, ν) ≡
(
L1(�1, ν) × L1(�2, ν)

)
.

Definition 3.1. We say that (v, v̂) ∈ Bm,γ,β
ap if v, v̂ ∈ L1(�, ν), and there exists

u ∈ L p(�, ν) with

u ∈ Dom(γ ) and v ∈ γ (u) ν-a.e. in �1,

and

u ∈ Dom(β) and v ∈ β(u) ν-a.e. in �2,

such that

(x, y) �→ ap(x, y, u(y) − u(x)) ∈ L p′
(� × �, ν ⊗ mx )

and

−
∫

�

ap(x, y, u(y) − u(x))dmx (y) = v̂ in �;

that is, [u, v] is a solution of (GPv+v̂) (see (2.8) and Definition 2.4).

On account of the results given in Subsect. 2.2 (Theorems 2.6 and 2.7), we have the
following result. Recall that an operator A in L1(�, ν) is T -accretive if

‖(u − û)+‖L1(�,ν) ≤ ‖(u − û + λ(v − v̂))+‖L1(�,ν) for every (u, v), (û, v̂) ∈ A and λ > 0.

In fact, A is T -accretive if, and only if, its resolvents are contractions and order-
preserving (see, for example, [8, Appendix] for further details).

Theorem 3.2. The operatorBm,γ,β
ap is T -accretive in L1(�, ν) and satisfies the range

condition
{

ϕ ∈ L p′
(�, ν) : R−

γ,β <

∫

�

ϕdν < R+
γ,β

}

⊂ R(I + λBm,γ,β
ap ) for every λ > 0.

With respect to the domain of such operator, we can prove the following result.

Theorem 3.3. It holds that

D(Bm,γ,β
ap )

L p′ (�,ν)

=
{
v ∈ L p′

(�, ν) : Γ − ≤ v ≤ Γ + ν-a.e. in �1, B
− ≤ v ≤ B+ ν-a.e. in �2

}
.

Therefore, we also have that

D(Bm,γ,β
ap )

L1(�,ν)

=
{
v ∈ L1(�, ν) : Γ − ≤ v ≤ Γ + ν-a.e. in �1, B

− ≤ v ≤ B+ ν-a.e. in �2

}
.
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Proof. It is obvious that

D(Bm,γ,β
ap )

L p′ (�,ν)

⊂
{
v ∈ L p′

(�, ν) : Γ − ≤ v ≤ Γ + ν-a.e. in �1, B
− ≤ v ≤ B+ ν-a.e. in �2

}
.

For the other inclusion, it is enough to see that

{
v ∈ L∞(�, ν) : Γ − ≤ v ≤ Γ + ν-a.e. in �1, B

− ≤ v ≤ B+ ν-a.e. in �2
}

⊂ D(Bm,γ,β
ap )

L p′ (�,ν)

.

Suppose first that γ and β satisfy

Γ − < 0, Γ + > 0,

B− = 0, B+ > 0.

It is enough to see that for any v ∈ L∞(�, ν) such that there exist m1 < 0, m̃i ∈ R,
M̃i ∈ R, Mi > 0, i = 1, 2, satisfying

Γ − < m1 < m̃1 ≤ v ≤ M̃1 < M1 < Γ + ν-a.e. in �1,

0 < m̃2 ≤ v ≤ M̃2 < M2 < B+ ν-a.e. in �2,

it holds that v ∈ D(Bm,γ,β
ap )

L p′ (�,ν)

.
By the results in Subsect. 2.2.4, we know that for n ∈ N, there exists un ∈ L p(�, ν)

and vn ∈ L p′
(�, ν) such that [un, vn] is a solution of

(

GP
1
n ap,γ,β

v

)

, i.e., vn ∈ γ (un)

ν-a.e. in �1, vn ∈ β(un) ν-a.e. in �2 and

vn(x) − 1

n

∫

�

ap(x, y, un(y) − un(x))dmx (y) = v(x) for ν-a.e. x ∈ �.

In other words, (vn, n(v − vn)) ∈ Bm,γ,β
ap or, equivalently,

vn :=
(

I + 1

n
Bm,γ,β
ap

)−1

(v) ∈ D(Bm,γ,β
ap ).

Let us see that vn
n−→ v in L p′

(�, ν).
Let am1 ≤ 0 and aM1 ≥ 0 such that

m1 ∈ γ (am1) and M1 ∈ γ (aM1),

and let bM2 ≥ 0 such that

M2 ∈ β(bM2).
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Set

v̂(x) :=
{
M1, x ∈ �1,

M2, x ∈ �2,

û(x) :=
{
aM1 , x ∈ �1,

bM2 , x ∈ �2,

and

ϕ̂n(x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M1 − 1

n

∫

�

ap(x, y, û(y) − û(x))dmx (y), x ∈ �1,

M2 − 1

n

∫

�

ap(x, y, û(y) − û(x))dmx (y), x ∈ �2.

Then, [̂u, v̂] is a solution of
(

GP
1
n ap,γ,β

ϕ̂n

)

.

Similarly, for

ṽ(x) :=
{
m1, x ∈ �1,

0, x ∈ �2,

ũ(x) :=
{
am1 , x ∈ �1,

0, x ∈ �2,

and

ϕ̃n(x) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m1 − 1

n

∫

�2

ap(x, y,−am1)dmx (y), x ∈ �1,

1

n

∫

�1

ap(x, y,−am1)dmx (y), x ∈ �2,

we have that [̃u, ṽ] is a solution of

(

GP
1
n ap,γ,β

ϕ̃n

)

.

Now, recalling (2.4), we have that there exists n0 ∈ N such that

v ≤ M̃1χ�1 + M̃2χ�2 < ϕ̂n ν-a.e. in �

and

v ≥ m̃1χ�1 + m̃2χ�2 > ϕ̃n ν-a.e. in �

for n ≥ n0. Consequently, by the maximum principle (Theorem 2.6), we obtain that

ũ ≤ un ≤ û,

thus

{‖un‖L∞(�,ν)

}

n is bounded.
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Finally, since

vn(x) − v(x) = 1

n

∫

�

ap(x, y, un(y) − un(x))dmx (y) ν-a.e. in �,

we conclude that, on account of (2.4),

vn
n−→ v in L p′

(�, ν).

The other cases follow similarly, we see two of them. Note that, sinceR−
γ,β < R+

γ,β ,
it is not possible to have γ = R× {0} and β = R× {0} simultaneously. For example,
suppose that we have

Γ − = 0, Γ + > 0,

B− = 0, B+ > 0.

We use the same notation. Let v ∈ L∞(�, ν) such that there exist m̃i ∈ R, M̃i ∈ R,
Mi > 0, i = 1, 2, satisfying

0 < m̃1 ≤ v ≤ M̃1 < M1 < Γ + ν-a.e. in �1,

0 < m̃2 ≤ v ≤ M̃2 < M2 < B+ ν-a.e. in �2.

As before, the results in Subsect. 2.2.4 ensure that there exist un ∈ L p(�, ν) and

vn ∈ L p′
(�, ν), n ∈ N, such that [un, vn] is a solution of

(

GP
1
n ap,γ,β

v

)

. Let aM1 ≥ 0

and bM2 ≥ 0 such that

M1 ∈ γ (aM1) andM2 ∈ β(bM2).

Now again, let

v̂(x) :=
{
M1, x ∈ �1,

M2, x ∈ �2,

û(x) :=
{
aM1 , x ∈ �1,

bM2 , x ∈ �2,

and

ϕ̂n(x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M1 − 1

n

∫

�

ap(x, y, û(y) − û(x))dmx (y), x ∈ �1,

M2 − 1

n

∫

�

ap(x, y, û(y) − û(x))dmx (y), x ∈ �2.

Then, as before, [̂u, v̂] is a solution of
(

GP
1
n ap,γ,β

ϕ̂n

)

.

Now, taking ṽ, ũ and ϕ̃ all equal to the null function in � and recalling that
ap(x, y, 0) = 0 for every x, y ∈ X , we obviously have that [̃u, ṽ] is a solution of
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(

GP
1
n ap,γ,β

0

)

. Consequently, again by the second part of the maximum principle, we

obtain, as desired, that 0 ≤ un ≤ v̂ for n large enough.
Finally, as a further example of a case which does not follow exactly with the same

argument, suppose that γ := R × {0} and, for example,

B− = 0, B+ > 0.

In this case, we take 0 �≡ v ∈ L∞(�, ν) such that v = 0 in �1 and

0 ≤ v < M2 ν-a.e. in �2 for some constantM2 > 0.

As in the previous cases, there exist un ∈ L p(�, ν) and vn ∈ L p′
(�, ν), n ∈ N, such

that [un, vn] is a solution of

(

GP
1
n ap,γ,β

v

)

. Let bM2 ≥ 0 such that M2 ∈ β(bM2),

v̂(x) :=
{

0, x ∈ �1,

M2, x ∈ �2,

û(x) := bM2 , x ∈ �,

and

ϕn(x) :=
{
0, x ∈ �1,

M2, x ∈ �2.

Then, [̂u, v̂] is a solution of

(

GP
1
n ap,γ,β

ϕn

)

. Finally, take ṽ and ũ again equal to the

null function in � so that [̃u, ṽ] is a solution of

(

GP
1
n ap,γ,β

0

)

. Consequently, for n

large enough, we get that 0 ≤ un ≤ v̂. �

In the next result,we state the existence anduniqueness of solutions ofProblem (3.2).

Theorem 3.4. Let T > 0. For any v0 ∈ L1(�, ν) and f ∈ L1(0, T ; L1(�, ν)) such
that

Γ − ≤ v0 ≤ Γ + ν-a.e. in�1,

B− ≤ v0 ≤ B+ ν-a.e. in�2,

and

R−
γ,β <

∫

�

v0dν +
∫ t

0

∫

�

f dνds < R+
γ,β for every 0 ≤ t ≤ T, (3.3)

there exists a unique mild-solution v ∈ C([0, T ]; L1(�, ν)) of Problem (3.2).
Let v and ṽ be the mild solutions of Problem (3.2) with respective data v0, ṽ0 ∈

L1(�, ν) and f, f̃ ∈ L1(0, T ; L1(�, ν)). Then,
∫

�

(v(t, x) − ṽ(t, x))+ dν(x) ≤
∫

�

(v0(x) − ṽ0(x))
+ dν(x)
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+
∫ t

0

∫

�

(
f (s, x) − f̃ (s, x)

)+
dν(x)ds for every 0 ≤ t ≤ T .

If, in addition to the previous assumptions on the data, we impose that

v0 ∈ L p′
(�, ν), f ∈ L p′

(0, T ; L p′
(�, ν)) and

∫

�1

j∗γ (v0)dν +
∫

�2

j∗β (v0)dν < +∞, (3.4)

then the mild solution v belongs to W 1,1(0, T ; L1(�, ν)) and satisfies

{
∂tv(t) + Bm,γ,β

ap v(t) � f (t) for a.e. t ∈ (0, T ),

v(0) = v0,

that is, v is a strong solution.

Proof. We start by proving the existence of mild solutions. For n ∈ N, consider the
partition

tn0 = 0 < tn1 < · · · < tnn−1 < tnn = T

where tni := iT/n, i = 1, . . . , n. Given ε > 0, there exists n ∈ N, f ni ∈ L p′
(�, ν),

i = 1, . . . n, and vn0 ∈ D(Bm,γ,β
ap )

L p′ (�,ν)

(i.e., vn0 ∈ L p′
(�, ν) satisfying Γ − ≤ vn0 ≤

Γ + ν-a.e. in �1, and B− ≤ vn0 ≤ B+ ν-a.e. in �2) such that T/n ≤ ε,

n∑

i=1

∫ tni

tni−1

‖ f (t) − f ni ‖L1(�,ν)dt ≤ ε (3.5)

and

‖v0 − vn0‖L1(�,ν) ≤ ε. (3.6)

Then, setting

fn(t) := f ni for t ∈]tni−1, t
n
i ], i = 1, . . . , n,

we have that
∫ T

0
‖ f (t) − fn(t)‖L1(�,ν)dt ≤ ε.

By the results in Subsect. 2.2.4 we see that, for n large enough, we may recursively

find a solution [uni , vni ] of
(

GP
T
n ap,γ,β

T
n f ni +vni−1

)

, i = 1, . . . , n, in other words,

vni (x) − T

n

∫

�

ap(x, y, uni (y) − uni (x))dmx (y) = T

n
f ni (x) + vni−1(x), x ∈ �,
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or, equivalently,

vni (x) − vni−1(x)

T/n
−
∫

�

ap(x, y, uni (y) − uni (x))dmx (y) = f ni (x), x ∈ �, (3.7)

with vni (x) ∈ γ (uni (x)) for ν-a.e. x ∈ �1 and vni (x) ∈ β(uni (x)) for ν-a.e. x ∈ �2,
i = 1, . . . , n. That is, we may find the unique solution vni of the time discretization
scheme associated with (3.2):

vni + T

n
Bm,γ,β
ap (vni ) � T

n
f ni + vni−1 for i = 1, . . . , n.

However, to apply the results in Subsect. 2.2.4, we must ensure that

R−
γ,β <

∫

�

(
T

n
f ni + vni−1

)

dν < R+
γ,β (3.8)

holds for each step. For the first step we need that

R−
γ,β <

∫

�

vn0dν + T

n

∫

�

f n1 dν < R+
γ,β

holds so that condition (3.8) is satisfied. Integrating (3.7) with respect to ν over �, we
get

∫

�

vn1dν =
∫

�

vn0dν + T

n

∫

�

f n1 dν

thus

T

n

∫

�

f n2 dν +
∫

�

vn1dν = T

n

2∑

j=1

∫

�

f nj dν +
∫

�

vn0dν,

so that, for the second step, we need

R−
γ,β <

T

n

2∑

j=1

∫

�

f nj dν +
∫

�

vn0dν < R+
γ,β .

Therefore, we recursively obtain that for each n and each step i = 1, . . . , n, the
following must be satisfied:

R−
γ,β <

T

n

i∑

j=1

∫

�

f nj dν +
∫

�

vn0dν < R+
γ,β .

However, taking n large enough, this holds thanks to (3.3), (3.5) and (3.6).
Therefore,

vn(t) :=
{

vn0 , if t = 0,

vni , if t ∈]tni−1, t
n
i ], i = 1, . . . , n,
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is an ε-approximate solution of Problem (3.2) as defined in nonlinear semigroup
theory. Consequently, by nonlinear semigroup theory (see [11], [10, Theorem 4.1], or
[8, Theorem A.27]) and on account of Theorem 3.2 and Theorem 3.3 we have that
Problem (3.2) has a unique mild solution v ∈ C([0, T ]; L1(�, ν)) with

vn(t)
n−→ v(t) in L1(�, ν) uniformly for t ∈ [0, T ]. (3.9)

Uniqueness and the maximum principle for mild solutions are guaranteed by the T -
accretivity of the operator.
Let us now see that v is a strong solution of Problem (3.2) when (3.4) holds. Note

that, since v0 ∈ L p′
(�, ν), we may take vn0 = v0 for every n ∈ N in the previous

computations and f ni ∈ L p′
(�, ν), i = 1, . . . n, additionally satisfying

n∑

i=1

∫ tni

tni−1

‖ f (t) − f ni ‖p′
L p′ (�,ν)

dt ≤ ε.

Let us define

un(t) = uni for t ∈]tni−1, t
n
i ], i = 1, . . . , n.

Multiplying equation (3.7) by uni and integrating over�with respect to ν, we obtain

∫

�

vni (x) − vni−1(x)

T/n
uni (x)dν(x)

−
∫

�

∫

�

ap(x, y, uni (y) − uni (x))dmx (y)u
n
i (x)dν(x)

=
∫

�

f ni (x)uni (x)dν(x). (3.10)

Now, since vni (x) ∈ γ (uni (x)) for ν-a.e. x ∈ �1 and vni (x) ∈ β(uni (x)) for ν-a.e.
x ∈ �2,

⎧
⎨

⎩

uni (x) ∈ γ −1(vni (x)) = ∂ j∗γ (vni (x)) for ν-a.e. x ∈ �1,

uni (x) ∈ β−1(vni (x)) = ∂ j∗β (vni (x)) for ν-a.e. x ∈ �2.

Consequently,
⎧
⎨

⎩

j∗γ (vni−1(x)) − j∗γ (vni (x)) ≥ (vni−1(x) − vni (x))u
n
i (x) for ν-a.e. x ∈ �1,

j∗β (vni−1(x)) − j∗β (vni (x)) ≥ (vni−1(x) − vni (x))u
n
i (x) for ν-a.e. x ∈ �2.

Therefore, from (3.10), it follows that

1

T/n

∫

�1

( j∗γ (vni (x)) − j∗γ (vni−1(x)))dν(x) + 1

T/n

∫

�2

( j∗β (vni (x)) − j∗β (vni−1(x)))dν(x)
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−
∫

�

∫

�
ap(x, y, uni (y) − uni (x))uni (x)dmx (y)dν(x)

≤
∫

�
f ni (x)uni (x)dν(x),

i = 1, . . . , n. Then, integrating this equation over ]tni−1, t
n
i ] and adding for 1 ≤ i ≤ n,

we get

∫

�1

( j∗γ (vnn (x)) − j∗γ (v0(x)))dν(x) +
∫

�2

( j∗β (vnn (x)) − j∗β (v0(x)))dν(x)

−
n∑

i=1

∫ tni

tni−1

∫

�

∫

�

ap(x, y, uni (y) − uni (x))dmx (y)u
n
i (x)dν(x)dt

≤
n∑

i=1

∫ tni

tni−1

∫

�

f ni (x)uni (x)dν(x)dt,

which, recalling the definitions of fn , un and vn , and integrating by parts, can be
rewritten as:

∫

�1

( j∗γ (vnn (x)) − j∗γ (v0(x)))dν(x) +
∫

�2

( j∗β (vnn (x)) − j∗β (v0(x)))dν(x)

+1

2

∫ T

0

∫

�

∫

�
ap(x, y, un(t)(y) − un(t)(x))(un(t)(y) − un(t)(x))dmx (y)dν(x)dt

≤
∫ T

0

∫

�
fn(t)(x)un(t)(x)dν(x)dt. (3.11)

This, together with (2.5) and the fact that j∗γ and j∗β are nonnegative, yields

cp
2

∫ T

0

∫

�

∫

�
|un(t)(y) − un(t)(x)|pdmx (y)dν(x)dt

≤ 1

2

∫ T

0

∫

�

∫

�
ap(x, y, un(t)(y) − un(t)(x))(un(t)(y) − un(t)(x))dmx (y)dν(x)dt

≤
∫

�1

( j∗γ (v0(x)))dν(x) +
∫

�2

( j∗β (v0(x)))dν(x) +
∫ T

0

∫

�
fn(t)(x)un(t)(x)dν(x)dt

≤
∫

�1

( j∗γ (v0(x)))dν(x) +
∫

�2

( j∗β (v0(x)))dν(x) +
∫ T

0
‖ fn(t)‖L p′ (�,ν)

‖un(t)‖L p(�,ν)dt.

Therefore, for any δ > 0, by (3.4) and Young’s inequality, there exists C(δ) > 0 such
that

∫ T

0

∫

�

∫

�

|un(t)(y) − un(t)(x)|pdmx (y)dν(x)dt
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≤ C(δ) + δ

∫ T

0
‖un(t)‖p

L p(�,ν)dt. (3.12)

Now, by (3.9), ifR+
γ,β = +∞, there exists M > 0 and n0 ∈ N such that

sup
t∈[0,T ]

∫

�

v+
n (t)(x)dν(x) < M for every n ≥ n0,

and, ifR+
γ,β < +∞, there exist M ∈ R, h > 0 and n0 ∈ N such that

sup
t∈[0,T ]

∫

�

vn(t)(x)dν(x) < M < R+
γ,β,

and

sup
t∈[0,T ]

∫

{x∈� : vn(t)(x)<−h}
|vn(t)(x)|dν(x) <

R+
γ,β − M

8
for every n ≥ n0.

Consequently, Lemma A.7 and Lemma A.8 yield

‖u+
n (t)‖L p(�,ν) ≤ C2

((∫

�

∫

�

|u+
n (t)(y) − u+

n (t)(x)|pdmx (y)dν(x)

) 1
p + 1

)

and for some constant C2 > 0. Similarly, we may find C3 > 0 such that

‖u−
n (t)‖L p(�,ν) ≤ C3

((∫

�

∫

�

|u−
n (t)(y) − u−

n (t)(x)|pdmx (y)dν(x)

) 1
p + 1

)

.

Consequently, by (3.12), choosing δ small enough, we deduce that {un}n is bounded
in L p(0, T ; L p(�, ν)). Therefore, there exists a subsequence, which we continue to
denote by {un}n , and u ∈ L p(0, T ; L p(�, ν)) such that

un
n
⇀ u weakly in L p(0, T ; L p(�, ν)).

Then, since γ and β are maximal monotone graphs, we conclude that v(t)(x) ∈
γ (u(t)(x)) for L1 ⊗ ν-a.e. (t, x) ∈ (0, T )×�1 and v(t)(x) ∈ β(u(t)(x)) for L1 ⊗ ν-
a.e. (t, x) ∈ (0, T ) × �2.
Note that, since, by (3.12),

{∫ T

0

∫

�

∫

�

|un(t)(y) − un(t)(x)|pdmx (y)dν(x)dt

}

n
is bounded,

then, by (2.4), {[(t, x, y) �→ ap(x, y, un(t)(y)−un(t)(x))]}n is bounded in L p′
(0, T ;

L p′
(� × �, ν ⊗mx )) so we may take a further subsequence, which we still denote in

the same way, such that

[(t, x, y) �→ ap(x, y, un(t)(y) − un(t)(x))] n
⇀ �,
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weakly in L p′
(0, T ; L p′

(� × �, ν ⊗ mx )).

Note that, for any ξ ∈ L p(�, ν), by the integrations by parts formula we know that

−
∫

�

∫

�

ap(x, y, un(t)(y) − un(t)(x))ξ(x)dmx (y)dν(x)

= 1

2

∫

�

∫

�

ap(x, y, un(t)(y) − un(t)(x))(ξ(y) − ξ(x))dmx (y)dν(x)

for t ∈ [0, T ], thus taking limits as n → ∞ we have

−
∫

�

∫

�

�(t, x, y)ξ(x)dmx (y)dν(x)

= 1

2

∫

�

∫

�

�(t, x, y)(ξ(y) − ξ(x))dmx (y)dν(x). (3.13)

Now, from (3.7), we have that

vn(t)(x) − vn(t − T/n)(x)

T/n
−
∫

�

ap(x, y, un(t)(y) − un(t)(x))dmx (y)

= fn(t)(x) (3.14)

for t ∈ [0, T ] and x ∈ �. Let � ∈ W 1,1
0 (0, T ; L p(�, ν)), supp(�) ⊂⊂ [0, T ], then

∫ T

0

vn(t)(x) − vn(t − T/n)(x)

T/n
�(t)(x)dt

= −
∫ T−T/n

0
vn(t)(x)

�(t + T/n)(x) − �(t)(x)

T/n
dt +

∫ T

T−T/n

vn�(t)(x)

T/n
dt

−
∫ T/n

0

v0�(t)(x)

T/n
dt

for x ∈ �. Therefore, multiplying (3.14) (for the previously chosen subsequence) by
�, integrating over (0, T ) × � with respect to L1 ⊗ ν and taking limits, we get

−
∫ T

0

∫

�

v(t)(x)
d

dt
�(t)(x)dν(x)dt −

∫ T

0

∫

�

∫

�

�(t, x, y)dmx (y)�(t)(x)dν(x)dt

=
∫ T

0

∫

�

f (t)(x)�(t)(x)dν(x)dt. (3.15)

Therefore, taking �(t)(x) = ψ(t)ξ(x), where ψ ∈ C∞
c (0, T ) and ξ ∈ L p(�, ν), we

obtain that
∫ T

0
v(t)(x)ψ ′(t)dt = −

∫ T

0

∫

�

�(t, x, y)ψ(t)dmx (y)dt

−
∫ T

0
f (t)(x)ψ(t)dt, for ν-a.e. x ∈ �.
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It follows that

v′(t)(x) =
∫

�

�(t, x, y)dmx (y) + f (t)(x) for a.e. t ∈ (0, T ) and ν-a.e. x ∈ �.

Therefore, since v ∈ C([0, T ]; L1(�, ν)), � ∈ L p′
(0, T ; L p′

(� × �, ν ⊗ mx )) and
f ∈ L p′

(0, T ; L p′
(�, ν)), we have v′ ∈ L p′

(0, T ; L p′
(�, ν)) and v ∈ W 1,1(0, T ;

L1(�, ν)).
Hence, to conclude it remains to prove that

∫

�

�(t, x, y)dmx (y) =
∫

�

ap(x, y, u(t)(y) − u(t)(x))dmx (y)

for L1 ⊗ ν-a.e. (t, x) ∈ [0, T ] × �. To this aim, we make use of the following claim
that will be proved later on:

lim sup
n

∫ T

0

∫

�

∫

�
ap(x, y, un(t)(y) − un(t)(x))(un(t)(y) − un(t)(x)))dmx (y)dν(x)dt

≤
∫ T

0

∫

�

∫

�
�(t, x, y)(u(t)(y) − u(t)(x)))dmx (y)ddν(x)dt. (3.16)

Now, let ρ ∈ L p(0, T ; L p(�, ν)). By (2.3), we have
∫ T

0

∫

�

∫

�

ap(x, y, ρ(t)(y) − ρ(t)(x))

×(un(t)(y) − ρ(t)(y) − (un(t)(x) − ρ(t)(x)))dmx (y)dν(x)dt

≤
∫ T

0

∫

�

∫

�

ap(x, y, un(t)(y) − un(t)(x))

×(un(t)(y) − ρ(t)(y) − (un(t)(x) − ρ(t)(x)))dmx (y)dν(x)dt.

Thus, taking limits as n → ∞ and using (3.16), we obtain
∫ T

0

∫

�

∫

�

ap(x, y, ρ(t)(y) − ρ(t)(x))

×(u(t)(y) − ρ(t)(y) − (u(t)(x) − ρ(t)(x)))dmx (y)dν(x)dt

≤
∫ T

0

∫

�

∫

�

�(t, x, y)(u(t)(y) − ρ(t)(y) − (u(t)(x) − ρ(t)(x)))dmx (y)dν(x)dt,

which, integrating by parts and recalling (3.13), becomes
∫ T

0

∫

�

∫

�

ap(x, y, ρ(t)(y) − ρ(t)(x))dmx (y)(u(t)(x) − ρ(t)(x))dν(x)dt

≥
∫ T

0

∫

�

∫

�

�(t, x, y)dmx (y)(u(t)(x) − ρ(t)(x))dν(x)dt.

To conclude, take ρ = u ± λξ for λ > 0 and ξ ∈ L p(0, T ; L p(�, ν)) to get
∫ T

0

∫

�

∫

�

ap(x, y, (u ± λξ)(t)(y) − (u ± λξ)(t)(x))dmx (y)ξ(t)(x)dν(x)dt

≥
∫ T

0

∫

�

∫

�

�(t, x, y)dmx (y)ξ(t)(x)dν(x)dt
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which, letting λ → 0 yields

∫ T

0

∫

�

∫

�

ap(x, y, u(t)(y) − u(t)(x))dmx (y)ξ(t)(x)dν(x)dt

=
∫ T

0

∫

�

∫

�

�(t, x, y)dmx (y)ξ(t)(x)dν(x)dt

for any ξ ∈ L p(0, T ; L p(�, ν)). Therefore,
∫

�

ap(x, y, u(t)(y) − u(t)(x))dmx (y) =
∫

�

�(t, x, y)dmx (y)

for L1 ⊗ ν-a.e. (t, x) ∈ [0, T ] × �.
Let us prove claim (3.16). By (3.11) and Fatou’s lemma, we have

lim sup
n

1

2

∫ T

0

∫

�

∫

�
ap(x, y, un(t)(y) − un(t)(x))(un(t)(y) − un(t)(x))dmx (y)dν(x)dt

≤ −
∫

�1

( j∗γ (v(T )(x)) − j∗γ (v(0)(x)))dν(x) −
∫

�2

( j∗β (v(T )(x)) − j∗β (v(0)(x)))dν(x)

+
∫ T

0

∫

�
f (t)(x)u(t)(x)dν(x)dt. (3.17)

Moreover, by (3.15),

∫ T

0
v(t)(x)

d

dt
�(t)(x)dt =

∫ T

0
F(t)(x)�(t)(x)dt, for ν-a.e. x ∈ �, (3.18)

where F is given by

F(t)(x) = −
∫

�

�(t, x, y)dmx (y) − f (t)(x), x ∈ �. (3.19)

Let ψ ∈ C∞
c (0, T ), ψ ≥ 0, τ > 0 and

ητ (t)(x) = 1

τ

∫ t+τ

t
u(s)(x)ψ(s)ds, t ∈ [0, T ], x ∈ �.

Then, for τ small enough, ητ ∈ W 1,1
0 (0, T ; L p(�, ν)) and we may use it as a test

function in (3.18) to obtain
∫ T

0
F(t)(x)ητ (t)(x)dt =

∫ T

0
v(t)(x)

d

dt
ητ (t)(x)

=
∫ T

0
v(t)(x)

u(t + τ)(x)ψ(t + τ) − u(t)(x)ψ(t)

τ
dt

=
∫ T

0

v(t − τ)(x) − v(t)(x)

τ
u(t)(x)ψ(t)dt.
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Now,

γ −1(r) = ∂ jγ −1(r) = ∂

(∫ r

0
(γ −1)0(s)ds

)

,

thus, for v, v̂ ∈ γ (u),

(v̂ − v)u ≤
∫ v̂

v

(γ −1)0(s)ds.

Asimilar fact holds forβ. Then, for τ > 0fixed, since v(t)(x) ∈ γ (u(t)(x)) forL1⊗ν-
a.e. (t, x) ∈ (0, T )×�1 and v(t)(x) ∈ β(u(t)(x)) forL1⊗ν-a.e. (t, x) ∈ (0, T )×�2,

∫ T

0

∫

�

F(t)(x)ητ (t)(x)dν(x)dt

≤ 1

τ

∫ T

0

∫

�1

∫ v(t−τ)(x)

v(t)(x)
(γ −1)0(s)dsdν(x)ψ(t)dt

+1

τ

∫ T

0

∫

�2

∫ v(t−τ)(x)

v(t)(x)
(β−1)0(s)dsdν(x)ψ(t)dt

=
∫ T

0

∫

�1

∫ v(t)(x)

0
(γ −1)0(s)dsdν(x)

ψ(t + τ) − ψ(t)

τ
dt

+
∫ T

0

∫

�2

∫ v(t)(x)

0
(β−1)0(s)dsdν(x)

ψ(t + τ) − ψ(t)

τ
dt.

Letting τ → 0+ in the above expression, by the dominated convergence theorem,

∫ T

0

∫

�

F(t)(x)u(t)(x)ψ(t)dν(x)dt ≤
∫ T

0

∫

�1

∫ v(t)(x)

0
(γ −1)0(s)dsdν(x)ψ ′(t)dt

+
∫ T

0

∫

�2

∫ v(t)(x)

0
(β−1)0(s)dsdν(x)ψ ′(t)dt

=
∫ T

0

∫

�1

jγ −1(v(t)(x))dν(x)ψ ′(t)dt +
∫ T

0

∫

�2

jβ−1(v(t)(x))dν(x)ψ ′(t)dt

=
∫ T

0

∫

�1

j∗γ (v(t)(x))dν(x)ψ ′(t)dt +
∫ T

0

∫

�2

j∗β (v(t)(x))dν(x)ψ ′(t)dt.

Taking

η̃τ (t)(x) = 1

τ

∫ t+τ

t
u(s − τ)(x)ψ(s)ds
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yields the opposite inequality so that, in fact,

∫ T

0

∫

�

F(t)(x)u(t)(x)dν(x)ψ(t)dt

=
∫ T

0

∫

�1

j∗γ (v(t)(x))dν(x)ψ ′(t)dt +
∫ T

0

∫

�2

j∗β (v(t)(x))dν(x)ψ ′(t)dt.

Then,

− d

dt

(∫

�1

j∗γ (v(t)(x))dν(x) +
∫

�2

j∗β (v(t)(x))dν(x)

)

=
∫

�

F(t)(x)u(t)(x)dν(x)

(3.20)

in D′(]0, T [), thus, in particular,
∫

�1

j∗γ (v(t)(x))dν(x) +
∫

�2

j∗β (v(t)(x))dν(x) ∈ W 1,1(0, T ).

Therefore, integrating from 0 to T in (3.20) and recalling (3.19), we get

∫ T

0

∫

�

∫

�

�(t, x, y)u(t)(x)dmx (y)dν(x)dt

= −
∫

�1

( j∗γ (v(T )(x)) − j∗γ (v(0)(x)))dν(x)

−
∫

�2

( j∗β (v(T )(x)) − j∗β (v(0)(x)))dν(x)

+
∫ T

0

∫

�

f (t)(x)u(t)(x)dν(x)dt

which, together with (3.17), yields the claim (3.16). �

Observe thatwe have imposed the compatibility condition (3.3) because, for a strong
solution,

∫

�

v0dν +
∫ t

0

∫

�

f dνds =
∫

�

v(t)dν, for t ∈ [0, T ].

Example 3.5. Let W ⊂ X be a measurable set such that Wm is m-connected. Given
f ∈ L1(∂mW, ν), we say that a function u ∈ L1(Wm, ν) is an ap-lifting of f to
Wm = W ∪ ∂mW if

⎧
⎨

⎩

−divmapu(x) = 0, x ∈ W,

u(x) = f (x), x ∈ ∂mW.
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We define the Dirichlet-to-Neumann operator Dap ⊂ L1(∂mW, ν) × L1(∂mW, ν) as
follows: ( f, ψ) ∈ Dap if

N ap
1 u(x) = ψ(x), x ∈ ∂mW,

where u is an ap-lifting of f to Wm .

Then, rewriting the operator Dap as Bm,γ,β
ap for γ (r) = 0 and β(r) = r , r ∈ R,

(�1 = W and �2 = ∂mW ), by the results in this subsection we have that Dap is T -
accretive in L1(∂mW, ν) (it is easy to see that, in fact, in this situation, it is completely
accretive), it satisfies the range condition

L p′
(∂mW, ν) ⊂ R(I + Dap ),

and it has dense domain. The non-homogeneous Cauchy evolution problem for this
nonlocal Dirichlet-to-Neumann operator is a particular case of Problem (3.2):

⎧
⎨

⎩

−divmap(u)(x) = 0, x ∈ W, 0 < t < T,

ut (t, x) + N ap
1 u(t, x) = g(t, x), x ∈ ∂mW, 0 < t < T,

w(0, x) = w0(x), x ∈ ∂mW.

See, for example, [2,3,24,37,44] and the references therein, for other evolution prob-
lems with p-Dirichlet-to-Neumann operators, see [16] for the problem with convolu-
tion kernels.

3.2. Nonlinear boundary conditions

In this subsection, our aim is to study the following diffusion problem:

(
DP

ap ,γ,β

f,v0

)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

vt (t, x) −
∫

�

ap(x, y, u(t, y) − u(t, x))dmx (y) = f (t, x), x ∈ �1, 0 < t < T,

v(t, x) ∈ γ
(
u(t, x)

)
, x ∈ �1, 0 < t < T,

∫

�

ap(x, y, u(t, y) − u(t, x))dmx (y) ∈ β
(
u(t, x)

)
, x ∈ �2, 0 < t < T,

v(0, x) = v0(x), x ∈ �1,

that in particular covers Problem (1.1). See [15] for the reference local model.
We assume that

Γ − < Γ +

since, otherwise, we do not have an evolution problem. Hence, R−
γ,β < R+

γ,β . More-
over, we also assume that

B− < B+,

since the caseB− = B+ (β = R×{0}) is treatedwithmore generality in Subsect. 3.1.
We will again make use of nonlinear semigroup theory. To this end, we introduce

the corresponding operator associated with
(
DP

ap,γ,β

f,v0

)
, which is now defined in

L1(�1, ν).
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Definition 3.6. We say that (v, v̂) ∈ Bm,γ,β
ap if v, v̂ ∈ L1(�1, ν) and there exist

u ∈ L p(�, ν) and w ∈ L1(�2, ν) with

u ∈ Dom(γ ) and v ∈ γ (u) ν-a.e. in �1,

and

u ∈ Dom(β) and w ∈ β(u) ν-a.e. in �2,

such that

(x, y) �→ ap(x, y, u(y) − u(x)) ∈ L p′
(� × �, ν ⊗ mx )

and
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−
∫

�

ap(x, y, u(y) − u(x))dmx (y) = v̂ in �1,

w −
∫

�

ap(x, y, u(y) − u(x))dmx (y) = 0 in �2;

that is, [u, (v,w)] is a solution of (GP(v+v̂,0)), where 0 is the null function in �2

(see (2.8) and Definition 2.4).

Set

R−
γ,λβ := ν(�1)Γ

− + λν(�2)B
−,

R+
γ,λβ := ν(�1)Γ

+ + λν(�2)B
+.

On account of the results given in Subsect. 2.2 (Theorems 2.6 and 2.7), we have:

Theorem 3.7. The operator Bm,γ,β
ap is T -accretive in L1(�, ν) and satisfies the range

condition
{

ϕ ∈ L p′
(�1, ν) : R−

γ,λβ <

∫

�1

ϕdν < R+
γ,λβ

}

⊂ R(I + λBm,γ,β
ap ) for every λ > 0.

Remark 3.8. Observe that if R−
γ,β = −∞ and R+

γ,β = +∞, then the closure of

Bm,γ,β
ap is m-T -accretive in L1(�1, ν).

With respect to the domain of this operator, we prove the following result.

Theorem 3.9.

D(Bm,γ,β
ap )

L p′ (�1,ν)

= {
v ∈ L p′

(�1, ν) : Γ − ≤ v ≤ Γ +}.

Therefore, we also have

D(Bm,γ,β
ap )

L1(�1,ν)

= {
v ∈ L1(�1, ν) : Γ − ≤ v ≤ Γ +}.



24 Page 56 of 83 M. Solera And J. Toledo J. Evol. Equ.

Proof. It is obvious that

D(Bm,γ,β
ap )

L p′ (�1,ν)

⊂
{
v ∈ L p′

(�1, ν) : Γ − ≤ v ≤ Γ + ν-a.e. in �1

}
.

For the other inclusion, it is enough to see that

{
v ∈ L∞(�1, ν) : Γ − ≤ v ≤ Γ + ν-a.e. in �1

} ⊂ D(Bm,γ,β
ap )

L p′ (�1,ν)

.

We work on a case-by-case basis.
(A) Suppose that Γ − < 0 < Γ +. It is enough to see that for any v ∈ L∞(�1, ν) such
that there exist m ∈ R, m̃ < 0, M̃ > 0, M ∈ R satisfying

Γ − < m < m̃ < v < M̃ < M < Γ + ν-a.e. in �1

it holds that v ∈ D(Bm,γ,β
ap )

L p′ (�1,ν)

.
By the results in Subsect. 2.2.4 we know that, for n ∈ N, there exist un ∈ L p(�, ν),

vn ∈ L p′
(�1, ν) and wn ∈ L p′

(�2, ν), such that [un, (vn, 1
nwn)] is a solution of

(

GP
1
n ap,γ,β

(v,0)

)

, i.e., vn ∈ γ (un) ν-a.e. in �1, wn ∈ β(un) ν-a.e. in �2 and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vn(x) − 1

n

∫

�

ap(x, y, un(y) − un(x))dmx (y) = v(x), for x ∈ �1,

wn(x) −
∫

�

ap(x, y, un(y) − un(x))dmx (y) = 0, for x ∈ �2.

In other words, (vn, n(v − vn)) ∈ Bm,γ,β
ap or, equivalently,

vn :=
(

I + 1

n
Bm,γ,β
ap

)−1

(v) ∈ D(Bm,γ,β
ap ).

Let us see that vn
n−→ v in L p′

(�1, ν).
(A1) Suppose first that supD(β) = +∞. Take aM > 0 such that M ∈ γ (aM ) and let
N ∈ β(aM ). Let

v̂(x) :=
{
M, x ∈ �1,

N , x ∈ �2,

û(x) := aM , x ∈ �,

and

ϕ(x) :=
{
M, x ∈ �1,

0, x ∈ �2.
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Then, [̂u, v̂] is a supersolution of (GP
1
n ap,γ,β

ϕ

)
and (v, 0) ≤ ϕ. Thus, by the maximum

principle (Theorem 2.6),

un ≤ û = aM ν-a.e. in � for every n ∈ N.

(A2) Suppose now that supD(β) = rβ < +∞. Again, by the results in Subsect.
2.2.4 we know that, for n ∈ N, there exist ũn ∈ L p(�, ν), ṽn ∈ L p′

(�1, ν) and

w̃n ∈ L p′
(�2, ν), such that [̃un, (̃vn, 1

n w̃n)] is a solution of
(
GP

1
n ap,γ,β

(M,0)

)
. Therefore,

by the maximum principle (Theorem 2.6),

vn ≤ ṽn ν-a.e. in �1.

Now, since ṽn � M in �1 (recall Remark 2.8(iii)), we have that ṽn ≤ M and,
consequently, also vn ≤ M . Hence, since M ≤ M̃ < Γ +,

un ≤ inf
(
γ −1(M̃)

)
ν-a.e. in �1,

but we also have

un ≤ rβ ν-a.e. in �2 for every n ∈ N.

(B) For Γ − < 0 = Γ +: let Γ − < m < m̃ < 0, and v ∈ L∞(�1, ν) be such that

m̃ ≤ v < 0.

As in the previous case, by the results in Subsect. 2.2.4, we know that, for n ∈ N, there
exist un ∈ L p(�, ν), vn ∈ L p′

(�1, ν) andwn ∈ L p′
(�2, ν), such that [un, (vn, 1

nwn)]
is a solution of

(

GP
1
n ap,γ,β

(v,0)

)

. Then, since for the null function 0 in �, [0, 0] is a

solution of

(

GP
1
n ap,γ,β

0

)

and v < 0, the maximum principle yields

un ≤ 0 ν-a.e. in � for every n ∈ N.

Therefore, in all the cases, {un}n is L∞(�, ν)-bounded from above. With a similar
reasoning we obtain that, in any of these cases, {un}n is also L∞(�, ν)-bounded from
below. Then, since

vn(x) − v(x) = 1

n

∫

�

ap(x, y, un(y) − un(x))dmx (y) in �1,

we obtain that

vn
n−→ v in L p′

(�1, ν)

as desired. �

The following theorem gives the existence and uniqueness of solutions of Problem(
DP

ap,γ,β

f,v0

)
. Recall that Γ − < Γ + and B− < B+.



24 Page 58 of 83 M. Solera And J. Toledo J. Evol. Equ.

Theorem 3.10. Let T > 0. Let v0 ∈ L1(�1, ν) and f ∈ L1(0, T ; L1(�1, ν)). As-
sume

Γ − ≤ v0 ≤ Γ +ν-a.e. in �1,

and

R+
γ,β = +∞ or

∫

�1

f (x, t)dν(x) ≤ ν(�2)B
+ for every 0 < t < T,

and

R−
γ,β = −∞ or

∫

�1

f (x, t)dν(x) ≥ ν(�2)B
− for every 0 < t < T .

Then, there exists a unique mild-solution v ∈ C([0, T ]; L1(�1, ν)) of
(
DP

ap,γ,β

f,v0

)
.

Let v and ṽ be the mild solutions of the problem with respective data v0, ṽ0 ∈
L1(�1, ν) and f, f̃ ∈ L1(0, T ; L1(�1, ν)). Then,

∫

�1

(v(t, x) − ṽ(t, x))+ dν(x)

≤
∫

�1

(v0(x) − ṽ0(x))
+ dν(x)

+
∫ t

0

∫

�1

(
f (s, x) − f̃ (s, x)

)+
dν(x)ds for every 0 ≤ t ≤ T .

Under the additional assumptions

v0 ∈ L p′
(�1, ν) and f ∈ L p′

(0, T ; L p′
(�1, ν)) with

∫

�1

j∗γ (v0)dν < +∞ and

∫

�1

v+
0 dν +

∫ T

0

∫

�1

f (s)+dνdt < ν(�1)�
+,

∫

�1

v−
0 dν +

∫ T

0

∫

�1

f (s)−dνdt < −ν(�1)�
−, (3.21)

the mild solution v belongs to W 1,1(0, T ; L1(�1, ν)) and satisfies the equation

{
∂tv(t) + Bm,γ,β

ap v(t) � f (t) for a.e. t ∈ (0, T ),

v(0) = v0,

that is, v is a strong solution.

The proof of this result differs, strongly at some points, from the proof of
Theorem 3.4.
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Proof. We start by proving the existence of mild solutions. For n ∈ N, consider the
partition

tn0 = 0 < tn1 < · · · < tnn−1 < tnn = T

where tni := iT/n, i = 1, . . . , n. Given ε > 0, since B− < B+, there exist n ∈ N,

vn0 ∈ D(Bm,γ,β
ap )

L p′ (�1,ν)

(i.e., vn0 ∈ L p′
(�1, ν) satisfying Γ − ≤ vn0 ≤ Γ +) and

f ni ∈ L p′
(�1, ν), i = 1, . . . n, such that T/n ≤ ε,

‖v0 − vn0‖L1(�1,ν) ≤ ε,

n∑

i=1

∫ tni

tni−1

‖ f (t) − f ni ‖L1(�1,ν)dt ≤ ε (3.22)

and

ν(�2)B
− <

∫

�1

f ni dν < ν(�2)B
+.

Then, setting

fn(t) := f ni , for t ∈]tni−1, t
n
i ], i = 1, . . . , n,

we have that
∫ T

0
‖ f (t) − fn(t)‖L1(�1,ν)dt ≤ ε.

Using the results in Subsect. 2.2.4, we see that, for n large enough, we may re-

cursively find a solution [uni , (vni , T
n wn

i )] of
(

GP
T
n ap,γ, Tn β
(
T
n f ni +vni−1,0

)

)

, i = 1, . . . , n, so

that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vni (x) − T

n

∫

�

ap(x, y, uni (y) − uni (x))dmx (y) = T

n
f ni (x) + vni−1(x), x ∈ �1

wn
i (x) −

∫

�

ap(x, y, uni (y) − uni (x))dmx (y) = 0, x ∈ �2,

(3.23)

or, equivalently,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vni (x) − vni−1(x)

T/n
−
∫

�

ap(x, y, uni (y) − uni (x))dmx (y) = f ni (x), x ∈ �1

wn
i (x) −

∫

�

ap(x, y, uni (y) − uni (x))dmx (y) = 0, x ∈ �2,
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(3.24)

with vni (x) ∈ γ (uni (x)) for ν-a.e. x ∈ �1 and wn
i (x) ∈ β(uni (x)) for ν-a.e. x ∈ �2,

i = 1, . . . , n. That is, we may find the unique solution vni of the time discretization

scheme associated with
(
DP

ap,γ,β

f,v0

)
.

To apply these results, we must ensure that

R−
γ, Tn β

<

∫

�1

(
T

n
f ni + vni−1

)

dν < R+
γ, Tn β

holds for each step, but this holds true thanks to the choice of the f ni , i = 1, . . . , n.
Therefore,

vn(t) :=
{

vn0 , if t = 0,

vni , if t ∈]tni−1, t
n
i ], i = 1, . . . , n,

is an ε-approximate solution of Problem
(
DP

ap,γ,β

f,v0

)
. Consequently, by nonlinear

semigroup theory ((see [11], [10, Theorem4.1], or [8, TheoremA.27])) and on account

of Theorem 3.7 and Theorem 3.9, we have that
(
DP

ap,γ,β

f,v0

)
has a uniquemild solution

v ∈ C([0, T ]; L1(�1, ν)) with

vn(t)
n−→ v(t) in L1(�1, ν) uniformly for t ∈ [0, T ]. (3.25)

Uniqueness and the maximum principle for mild solutions is guaranteed by the T -
accretivity of the operator.
We nowprove, step by step, that thesemild solutions are strong solutions of Problem(
DP

ap,γ,β

f,v0

)
under the set of assumptions given in (3.21).

Let us define

un(t) := uni for t ∈]tni−1, t
n
i ], i = 1, . . . , n,

and

wn(t) := wn
i for t ∈]tni−1, t

n
i ], i = 1, . . . , n.

Step 1. Suppose first that R−
γ,β = −∞ and R+

γ,β = +∞.

In the constructionof themild solution,wenow takevn0 = v0 (sincev0 ∈ L p′
(�1, ν))

and the functions f ni ∈ L p′
(�1, ν), i = 1, . . . n, additionally satisfying

n∑

i=1

∫ tni

tni−1

‖ f (t) − f ni ‖p′
L p′ (�1,ν)

dt ≤ ε

and

ν(�2)B
− <

∫

�1

f ni dν < ν(�2)B
+.
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Multiplying both equations in (3.24) by uni , integrating with respect to ν over �1

and �2, respectively, and adding them, we obtain

∫

�1

vni (x) − vni−1(x)

T/n
uni (x)dν(x) +

∫

�2

wn
i (x)u

n
i (x)dν(x)

−
∫

�

∫

�

ap(x, y, uni (y) − uni (x))u
n
i (x)dmx (y)dν(x)

=
∫

�1

f ni (x)uni (x)dν(x).

Then, sincewn
i (x) ∈ β(uni (x)) for ν-a.e. x ∈ �2 the second term on the left-hand side

is nonnegative and integrating by parts the third term, we get

∫

�1

vni (x) − vni−1(x)

T/n
uni (x)dν(x)

+1

2

∫

�

∫

�

ap(x, y, uni (y) − uni (x))(u
n
i (y) − uni (x))dmx (y)dν(x)

≤
∫

�1

f ni (x)uni (x)dν(x). (3.26)

Now, since vni (x) ∈ γ (uni (x)) for ν-a.e. x ∈ �1,

uni (x) ∈ γ −1(vni (x)) = ∂ j∗γ (vni (x)) for ν-a.e. x ∈ �1.

Consequently,

j∗γ (vni−1(x)) − j∗γ (vni (x)) ≥ (vni−1(x) − vni (x))u
n
i (x) for ν-a.e. x ∈ �1.

Therefore, from (3.26), it follows that

n

T

∫

�1

( j∗γ (vni (x)) − j∗γ (vni−1(x)))dν(x)

+1

2

∫

�

∫

�

ap(x, y, uni (y) − uni (x))(u
n
i (y) − uni (x))dmx (y)dν(x)

≤
∫

�1

f ni (x)uni (x)dν(x),
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i = 1, . . . , n. Then, integrating this equation over ]ti−1, ti ] and adding for 1 ≤ i ≤ n,
we get

∫

�1

( j∗γ (vnn (x)) − j∗γ (v0(x)))dν(x)

+1

2

n∑

i=1

∫ ti

ti−1

∫

�

∫

�

ap(x, y, uni (y) − uni (x))(u
n
i (y) − uni (x))dmx (y)dν(x)dt

≤
n∑

i=1

∫ ti

ti−1

∫

�1

f ni (x)uni (x)dν(x)dt,

which, recalling the definitions of fn , un , vn and wn , can be rewritten as:

∫

�1

( j∗γ (vnn (x)) − j∗γ (v0(x)))dν(x)

+1

2

∫ T

0

∫

�

∫

�

ap(x, y, un(t)(y) − un(t)(x))(un(t)(y) − un(t)(x))dmx (y)dν(x)dt

≤
∫ T

0

∫

�1

fn(t)(x)un(t)(x)dν(x)dt. (3.27)

This, together with (2.5) and the fact that j∗γ is nonnegative, yields

cp
2

∫ T

0

∫

�

∫

�

|un(t)(y) − un(t)(x)|pdmx (y)dν(x)dt

≤ 1

2

∫ T

0

∫

�

∫

�

ap(x, y, un(t)(y) − un(t)(x))(un(t)(y) − un(t)(x))dmx (y)dν(x)dt

≤
∫

�1

j∗γ (v0(x))dν(x) +
∫ T

0

∫

�1

fn(t)(x)un(t)(x)dν(x)dt

≤
∫

�1

j∗γ (v0(x))dν(x) +
∫ T

0
‖ fn(t)‖L p′ (�1,ν)

‖un(t)‖L p(�1,ν)dt.

Therefore, for any δ > 0, by (3.21) and Young’s inequality, there exists C(δ) > 0
such that, in particular,

∫ T

0

∫

�

∫

�

|un(t)(y) − un(t)(x)|pdmx (y)dν(x)dt ≤ C(δ) + δ

∫ T

0
‖un(t)‖p

L p(�1,ν)dt.

(3.28)

Observe also that, for any n ∈ N and i ∈ {1, . . . , n}, and for t ∈]tni−1, t
n
i ],
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∫

�1

v+
n (t)dν +

∫ tni

0

∫

�2

w+
n (s)dνds ≤

∫

�1

v+
0 dν +

∫ tni

0

∫

�1

f +
n (s)dνds.

(3.29)

Indeed, multiplying the first equation in (3.23) by 1
r T

+
r (uni ) and integrating with

respect to ν over �1, then multiplying the second by T
n
1
r T

+
r (uni ) and integrating with

respect to ν over�2, adding both equations, neglecting the nonnegative term involving
ap (recall Remark 2.5) and letting r ↓ 0, we get that

∫

�1

(vni )
+dν + T

n

∫

�2

(wn
i )

+dν ≤
∫

�1

(vni−1)
+dν + T

n

∫

�1

( f ni )+dν,

i.e.,
∫

�1

(vni )
+dν ≤

∫

�1

(vni−1)
+dν + T

n

∫

�1

( f ni )+dν − T

n

∫

�2

(wn
i )

+dν.

Therefore,

∫

�1

(vni )
+dν ≤

∫

�1

(vn0 )
+dν +

i∑

j=1

T

n

∫

�1

( f nj )
+dν −

i∑

j=1

T

n

∫

�2

(wn
j )

+dν

which is equivalent to (3.29).
Now, by (3.25), if Γ + = +∞, there exists M > 0 such that

sup
t∈[0,T ]

∫

�1

v+
n (t)(x)dν(x) < M for every n ∈ N.

Consequently, Lemma A.7 applied for A = �1, B = ∅ and α = γ , yields

‖u+
n (t)‖L p(�1,ν) ≤ K2

((∫

�1

∫

�1

|u+
n (t)(y) − u+

n (t)(x)|pdmx (y)dν(x)

) 1
p + 1

)

for every n ∈ N, every 0 ≤ t ≤ T and some constant K2 > 0.
Suppose now that Γ + < +∞. Then, by (3.29) we have that, for any n ∈ N and

i ∈ {1, . . . , n}, and for t ∈]tni−1, t
n
i ] if i ≥ 2, or t ∈ [tn0 , tn1 ] if i = 1,

∫

�1

v+
n (t)dν ≤

∫

�1

v+
0 dν +

∫ tni

0

∫

�1

f +
n (s)dνds

thus, by the assumptions in (3.21) and by (3.22), there exists M ∈ R such that

sup
t∈[0,T ]

∫

�1

vn(t)dν ≤ M < ν(�1)�
+

for n sufficiently large and, by (3.25), such that

sup
t∈[0,T ]

∫

{x∈�1 : vn(t)<−h}
|vn(t)|dν <

ν(�1)�
+ − M

8
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for n sufficiently large. Therefore, we may apply Lemma A.8 for A = �1, B = ∅ and
α = γ to conclude that there exists a constant K ′

2 > 0 such that

‖u+
n (t)‖L p(�1,ν) ≤ K ′

2

((∫

�1

∫

�1

|u+
n (t)(y) − u+

n (t)(x)|pdmx (y)dν(x)

) 1
p + 1

)

for every 0 ≤ t ≤ T,

for n sufficiently large.
Similarly, we may find K3 > 0 such that

‖u−
n (t)‖L p(�1,ν) ≤ K3

((∫

�1

∫

�1

|u−
n (t)(y) − u−

n (t)(x)|pdmx (y)dν(x)

) 1
p + 1

)

for every 0 ≤ t ≤ T,

for n sufficiently large.
Consequently, by the generalised Poincaré-type inequality together with (3.28) for

δ small enough, we get

∫ T

0
‖un(t)‖p

L p(�,ν) dt ≤ K4 for every n ∈ N,

for some constant K4 > 0, that is, {un}n is bounded in L p(0, T ; L p(�, ν)). There-
fore, there exists a subsequence, which we continue to denote by {un}n , and u ∈
L p(0, T ; L p(�, ν)) such that

un
n
⇀ u weakly in L p(0, T ; L p(�, ν)).

Note that, since
{ ∫ T

0

∫

�

∫

�

|un(t)(y) − un(t)(x)|pdmx (y)dν(x)dt
}

n
is bounded,

then, by (2.4), we have that {[(t, x, y) �→ ap(x, y, un(t)(y)−un(t)(x))]}n is bounded
in L p′

(0, T ; L p′
(� × �, ν ⊗ mx )) so we may take a further subsequence, which we

continue to denote in the same way, such that

[(t, x, y) �→ ap(x, y, un(t)(y) − un(t)(x))] n
⇀ �, weakly in L p′

(0, T ; L p′
(� × �, ν ⊗ mx )).

Now, let � ∈ W 1,1
0 (0, T ; L p(�, ν)), supp(�) ⊂⊂ [0, T ], then

∫ T

0

vn(t)(x) − vn(t − T/n)(x)

T/n
�(t)(x)dt

= −
∫ T−T/n

0
vn(t)(x)

�(t + T/n)(x) − �(t)(x)

T/n
dt +

∫ T

T−T/n

vn�(t)(x)

T/n
dt

−
∫ T/n

0

z0�(t)(x)

T/n

for x ∈ �1. Therefore, multiplying both equations in (3.24) by �, integrating the first
one over �1 and the second one over �2 with respect to ν, adding them, and taking
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limits as n → +∞ we get that

−
∫ T

0

∫

�1

v(t)(x)
d

dt
�(t)(x)dν(x)dt +

∫ T

0

∫

�2

w(t)(x)�(t)(x)dν(x)dt

−
∫ T

0

∫

�

∫

�

�(t, x, y)dmx (y)�(t)(x)dν(x)dt

=
∫ T

0

∫

�1

f (t)(x)�(t)(x)dν(x)dt.

Therefore, taking �(t)(x) = ψ(t)ξ(x), where ψ ∈ C∞
c (0, T ) and ξ ∈ L p(�, ν), we

obtain that
∫ T

0
v(t)(x)ψ ′(t)dt = −

∫ T

0

∫

�

�(t, x, y)ψ(t)dmx (y)dt −
∫ T

0
f (t)(x)ψ(t)dt

for ν-a.e. x ∈ �1.
It follows that

v′(t)(x) =
∫

�

�(t, x, y)dmx (y) + f (t)(x) for a.e. t ∈ (0, T ) and ν-a.e. x ∈ �1.

Therefore, since v ∈ C([0, T ]; L1(�1, ν)), � ∈ L p′
(0, T ; L p′

(� × �, ν ⊗ mx ))

and f ∈ L p′
(0, T ; L p′

(�1, ν)), we get that v′ ∈ L p′
(0, T ; L p′

(�1, ν)) and v ∈
W 1,1(0, T ; L1(�1, ν)).
Then, by Remark 3.8, we conclude that the mild solution v is, in fact, a strong

solution (see [11] or [8, Corollary A.34]). Hence,

v′(t)(x) −
∫

�

ap(x, y, u(t)(y) − u(t)(x))dmx (y) = f (t)(x)

for a.e. t ∈ (0, T ) and ν-a.e. x ∈ �1. (3.30)

Let us see, for further use, that
∫

�1

j∗γ (v(t))dν ∈ W 1,1(0, T ). By (3.27) and Fatou’s

lemma, we have

lim sup
n

1

2

∫ T

0

∫

�

∫

�
ap(x, y, un(t)(y) − un(t)(x))(un(t)(y) − un(t)(x))dmx (y)dν(x)dt

≤ −
∫

�1

( j∗γ (v(T )(x)) − j∗γ (v(0)(x)))dν(x) +
∫ T

0

∫

�1

f (t)(x)u(t)(x)dν(x)dt.

Moreover, by (3.30),
∫ T

0
v(t)(x)

d

dt
�(t)(x)dt =

∫ T

0
F(t)(x)�(t)(x)dt, (3.31)

where F is given by

F(t)(x) = −
∫

�

ap(x, y, u(t)(y) − u(t)(x))dmx (y) − f (t)(x), x ∈ �1.
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Let ψ ∈ C∞
c (0, T ), ψ ≥ 0, τ > 0 and

ητ (t)(x) := 1

τ

∫ t+τ

t
u(s)(x)ψ(s)ds, t ∈ [0, T ], x ∈ �1.

Then, for τ small enough, ητ ∈ W 1,1
0 (0, T ; L p(�1, ν)) and we may use it as a test

function in (3.31) to obtain

∫ T

0

∫

�1

F(t)(x)ητ (t)(x)dν(x)dt

=
∫ T

0

∫

�1

v(t)(x)
d

dt
ητ (t)(x)dν(x)dt

=
∫ T

0

∫

�1

v(t)(x)
u(t + τ)(x)ψ(t + τ) − u(t)(x)ψ(t)

τ
dν(x)dt

=
∫ T

0

∫

�1

v(t − τ)(x) − v(t)(x)

τ
u(t)(x)ψ(t)dν(x)dt.

Now, since

γ −1(r) = ∂ jγ −1(r) = ∂

(∫ r

0
(γ −1)0(s)ds

)

,

∫ T

0

∫

�1

F(t)(x)ητ (t)(x)dν(x)dt ≤ 1

τ

∫ T

0

∫

�1

∫ v(t−τ)(x)

v(t)(x)
(γ −1)0(s)dsψ(t)dν(x)dt

=
∫ T

0

∫

�1

∫ v(t)(x)

0
(γ −1)0(s)ds

ψ(t + τ) − ψ(t)

τ
dν(x)dt,

which, letting τ → 0+ yields

∫ T

0

∫

�1

F(t)u(t)(x)ψ(t)dν(x)dt ≤
∫ T

0

∫

�1

∫ v(t)(x)

0
(γ −1)0(s)ds� ′(t)dν(x)dt

=
∫ T

0

∫

�1

jγ −1(v(t)(x))ψ ′(t)dν(x)dt

=
∫ T

0

∫

�1

j∗γ (v(t)(x))ψ ′(t)dν(x)dt.

Taking

η̃τ (t)(x) = 1

τ

∫ t+τ

t
u(s − τ)�(s)ds, t ∈ [0, T ], x ∈ �1,



J. Evol. Equ. Nonlocal doubly nonlinear diffusion problems Page 67 of 83 24

yields the opposite inequalities so that, in fact,

∫ T

0

∫

�1

F(t)(x)u(t)(x)dν(x)ψ(t)dt =
∫ T

0

∫

�1

j∗γ (v(t)(x))dν(x)ψ ′(t)dt,

i.e.,

− d

dt

∫

�1

j∗γ (v(t)(x))dν(x) =
∫

�1

F(t)(x)u(t)(x)dν(x) inD′(]0, T [),

thus, in particular,
∫

�1

j∗γ (v)dν ∈ W 1,1(0, T ). (3.32)

Step 2. Suppose now that, eitherR−
γ,β = −∞ andR+

γ,β < +∞, orR−
γ,β > −∞ and

R+
γ,β = +∞. Recall that we are assuming the hypotheses in (3.21) and that vn0 = v0

for every n ∈ N. Suppose first that R−
γ,β = −∞ and R+

γ,β < +∞. Then, for k ∈ N,

let βk : R → R be the following maximal monotone graph:

βk(r) :=

⎧
⎪⎪⎨

⎪⎪⎩

β(r) if r < k,

[β0(k),B+] if r = k,

B+ + r − k if r > k.

We have that βk → β in the sense of maximal monotone graphs. Indeed, given
λ > 0 and s ∈ R, there exists r ∈ R such that s ∈ r + λβ(r) thus, for k > r ,
s ∈ r + λβ(r) = r + λβk(r), i.e., r = (I + λβ)−1(s) = (I + λβk)−1(s).
By Step 1, we know that, since R−

γ,βk = −∞ and R+
γ,βk = +∞, there exists

a strong solution vk ∈ W 1,1(0, T ; L1(�1, ν)) of Problem

(

DP
ap,γ,βk

f − 1
k ,v0

)

, therefore,

there exist uk ∈ L p(0, T ; L p(�, ν)) and wk ∈ L p′
(0, T ; L p′

(�2, ν)) such that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(vk)t (t)(x) −
∫

�

ap(x, y, uk(t)(y) − uk(t)(x))dmx (y) = f (t)(x) − 1

k
, x ∈ �1, 0 < t < T,

wk(t)(x) −
∫

�

ap(x, y, uk(t)(y) − uk(t)(x))dmx (y) = 0, x ∈ �2, 0 < t < T,

(3.33)

with vk ∈ γ (uk) ν-a.e. in �1 and wk ∈ βk(uk) ν-a.e. in �2. Let us see that

uk ≤ uk+1, ν-a.e. in �, k ∈ N, (3.34)

and

vk ≤ vk+1, ν-a.e. in �1, k ∈ N. (3.35)
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Going back to the construction of the mild solution, in this case of

(

DP
ap,γ,βk

f− 1
k ,v0

)

, for

each step n ∈ N and for each i ∈ {1, . . . , n}, we have that there exists unk,i ∈ L p(�, ν),

vnk,i ∈ L p′
(�1, ν) and wn

k,i ∈ L p′
(�2, ν) such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vnk,i (x) − T

n

∫

�

ap(x, y, unk,i (y) − unk,i (x))dmx (y) = T

n

(

f ni (x) − 1

k

)

+ vnk,i−1(x), x ∈ �1

wn
k,i (x) −

∫

�

ap(x, y, unk,i (y) − unk,i (x))dmx (y) = 0, x ∈ �2,

with vnk,i ∈ γ (unk,i ) ν-a.e. in �1 and wn
k,i ∈ βk(unk,i ) ν-a.e. in �2. Let

znk,i :=

⎧
⎪⎪⎨

⎪⎪⎩

wn
k+1,i if unk+1,i < k,

B+ if unk+1,i = k,

βk(unk+1,i ) if unk+1,i > k,

for n ∈ N and i ∈ {1, . . . , n} (observe that βk(r) is single-valued for r > k and
coincides with βk+1(r) = β(r) for r < k). It is clear that znk,i ∈ βk(unk+1,i ) and, since

βk ≥ βk+1, znk,i ≥ wn
k+1,i . Then,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vnk+1,1(x) − T

n

∫

�

ap(x, y, unk+1,1(y) − unk+1,1(x))dmx (y) = T

n

(

f n1 (x) − 1

k + 1

)

+ v0(x)

>
T

n

(

f n1 (x) − 1

k

)

+ v0(x) = vnk,1(x) − T

n

∫

�

ap(x, y, unk,1(y) − unk,1(x))dmx (y), x ∈ �1

znk,1(x) −
∫

�

ap(x, y, unk+1,1(y) − unk+1,i (x))dmx (y)

≥ wn
k+1,1(x) −

∫

�

ap(x, y, unk+1,1(y) − unk+1,1(x))dmx (y)

= 0 = wn
k,1(x) −

∫

�

ap(x, y, unk,1(y) − unk,1(x))dmx (y), x ∈ �2,

for n ∈ N. Hence, by the maximum principle (Theorem 2.6),

vnk,1 ≤ vnk+1,1 and unk,1 ≤ unk+1,1 ν-a.e.

Proceeding in the same way, we get that

vnk,i ≤ vnk+1,i and unk,i ≤ unk+1,i ν-a.e.

for each n ∈ N and i ∈ {1, . . . , n}. From here we get (3.34) and (3.35).
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Since γ −1(r) = ∂ j∗γ (r) and uk(t) ∈ γ −1(vk(t)) ν-a.e. in �1, we have
∫

�1

(vk(t − τ)(x) − vk(t)(x))uk(t)(x)dν(x)

≤
∫

�1

j∗γ (vk(t − τ)(x)) − j∗γ (vk(t)(x))dν(x).

Integrating this equation over [0, T ], dividing by τ , letting τ → 0+ and recalling that,

by (3.32),
∫

�1

j∗γ (vk)dν ∈ W 1,1(0, T ), we get

−
∫ T

0

∫

�1

(vk)t (t)(x)uk(t)(x)dν(x)dt ≤
∫

�1

j∗γ (v(0)(x)) − j∗γ (vk(T )(x))dν(x)

≤
∫

�1

j∗γ (v(0)(x))dν(x).

Therefore, multiplying (3.33) by uk and integrating with respect to ν, we get

1

2

∫ T

0

∫

�

∫

�

ap(x, y, uk(t, y) − uk(t)(x))(uk(t)(y) − uk(t)(x))dmx (y)dν(x)dt

≤
∫ T

0

∫

�1

(

f (t)(x) − 1

k

)

uk(t)(x)dν(x)dt +
∫

�1

j∗γ (v(0)(x))dν(x).

Now,working as in theprevious step, since�+ < ∞,weget that
{
‖uk‖p

L p(0,T ;L p(�,ν))

}

k
is bounded. Then, by the monotone convergence theorem, we get that there exists

u ∈ L p(0, T ; L p(�, ν)) such that uk
k−→ u in L p(0, T ; L p(�, ν)). From this we

get, by [15, LemmaG], that v(t)(x) ∈ γ (u(t)(x)) for a.e. t ∈ [0, T ] and ν-a.e. x ∈ �1.
Therefore, from (3.33) and Lemma 2.1 (note that, by the monotonicity of {uk},

|uk | ≤ max{|u1|, |u|} ∈ L p(�, ν)), we get that (vk)t converges strongly in
L p′

(0, T ; L p′
(�1, ν)) andwk converges strongly inW 1,1(0, T ; L1(�1, ν)). In partic-

ular, v ∈ W 1,1(0, T ; L1(�1, ν)), w(t)(x) ∈ β(u(t)(x)) for a.e. t ∈ [0, T ] and ν-a.e.
x ∈ �2, and
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vt (t)(x) −
∫

�

ap(x, y, u(t)(y) − u(t)(x))dmx (y) = f (t)(x), x ∈ �1, 0 < t < T,

w(t)(x) −
∫

�

ap(x, y, u(t)(y) − u(t)(x))dmx (y) = 0, x ∈ �2, 0 < t < T .

The case R−
γ,β > −∞ and R+

γ,β = +∞ follows similarly by taking

β̃k :=

⎧
⎪⎪⎨

⎪⎪⎩

B− + r + k if r < −k,

[B−, β0(−k)] if r = −k,

β(r) if r > −k.
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instead of βk , k ∈ N.

Step 3. Finally, assume that both R−
γ,β and R+

γ,β are finite. We define, for k ∈ N,

β̃k :=

⎧
⎪⎪⎨

⎪⎪⎩

B− + r + k if r < −k,

[B−, β0(−k)] if r = −k,

β(r) if r > −k.

By the previous step, we have that for k large enough such that f + 1
k satisfies

∫

�1

v+
0 dν +

∫ T

0

∫

�1

(

f (s)+ + 1

k

)

dνds < ν(�1)�
+,

there exists a strong solution vk ∈ W 1,1(0, T ; L1(�1, ν)) of Problem

(

DP
ap,γ,β̃k

f + 1
k ,v0

)

,

i.e., there exist uk ∈ L p(0, T ; L p(�, ν)) and wk ∈ L p′
(0, T ; L p′

(�2, ν)) such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(vk)t (t)(x) −
∫

�

ap(x, y, uk(t)(y) − uk(t)(x))dmx (y) = f (t)(x) + 1

k
, x ∈ �1, 0 < t < T,

wk(t)(x) −
∫

�

ap(x, y, uk(t)(y) − uk(t)(x))dmx (y) = 0, x ∈ �2, 0 < t < T,

with vk ∈ γ (uk) ν-a.e. in �1 and wk ∈ β̃k(uk) ν-a.e. in �2.

Going back to the construction of themild solution, in this case of

(

DP
ap,γ,β̃k

f+ 1
k ,v0

)

, for

each step n ∈ N and for each i ∈ {1, . . . , n}, we have that there exists unk,i ∈ L p(�, ν),

vnk,i ∈ L p′
(�1, ν) and wn

k,i ∈ L p′
(�2, ν) such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vnk,i (x) − T

n

∫

�

ap(x, y, unk,i (y) − unk,i (x))dmx (y) = T

n

(

f ni (x) + 1

k

)

+ vnk,i−1(x), x ∈ �1

wn
k,i (x) −

∫

�

ap(x, y, unk,i (y) − unk,i (x))dmx (y) = 0, x ∈ �2,

where vnk,i ∈ γ (unk,i ) ν-a.e. in �1 and wn
k,i ∈ β̃k(unk,i ) ν-a.e. in �2. Let

znk,i :=

⎧
⎪⎪⎨

⎪⎪⎩

wn
k+1,i if unk+1,i > −k,

B− if unk+1,i = −k,

β̃k(unk+1,i ) if unk+1,i < −k,
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for n ∈ N and i ∈ {1, . . . , n} (observe that β̃k(r) is single-valued for r < −k and
coincides with β̃k+1(r) = β(r) for r > −k). It is clear that znk,i ∈ β̃k(unk+1,i ) and,

since β̃k ≤ β̃k+1, we have that znk,i ≤ wn
k+1,i , i ∈ {1, . . . , n}. Then,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vnk+1,1(x) − T

n

∫

�

ap(x, y, unk+1,1(y) − unk+1,1(x))dmx (y) = T

n

(

f n1 (x) + 1

k + 1

)

+ vn0 (x)

<
T

n

(

f n1 (x) + 1

k

)

+ vn0 (x) = vnk,1(x) − T

n

∫

�

ap(x, y, unk,1(y) − unk,1(x))dmx (y), x ∈ �1

znk,1(x) −
∫

�

ap(x, y, unk+1,1(y) − unk+1,i (x))dmx (y)

≤ wn
k+1,1(x) −

∫

�

ap(x, y, unk+1,1(y) − unk+1,1(x))dmx (y)

= 0 = wn
k,1(x) −

∫

�

ap(x, y, unk,1(y) − unk,1(x))dmx (y), x ∈ �2,

for n ∈ N. Hence, by the maximum principle (Theorem 2.6),

vnk,1 ≥ vnk+1,1 and unk,1 ≥ unk+1,1 ν-a.e.

Proceeding in the same way we get that, for n ∈ N and i ∈ {1, . . . , n},
vnk,i ≥ vnk+1,i and unk,i ≥ unk+1,i ν-a.e.

Therefore,

uk ≥ uk+1, ν-a.e. in �, k ∈ N,

and

vk ≥ vk+1, ν-a.e. in �1, k ∈ N.

We can now conclude, as in the previous step, that

∫ T

0
‖u−

k (t)‖L p(�1,ν)dt ≤ K5

(∫ T

0

(∫

�1

∫

�1

|u−
k (t)(y) − u−

k (t)(x)|pdmx (y)dν(x)

) 1
p

dt + 1

)

for some constant K5 > 0. Moreover, by the monotonicity of {uk}, we get that
{ ∫ T

0
‖u+

k (t)‖L p(�1,ν)dt
}

k
is bounded. From this point, we can finish the proof as

in the previous step. �
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A Poincaré-type inequalities

In order to prove the results on existence of solutions of our problems, we have
assumed that appropriate Poincaré-type inequalities hold. In [47, Corollary 31], it
is proved that a Poincaré-type inequality holds on metric random walk spaces (with
an invariant measure) with positive coarse Ricci curvature. Under some conditions

http://creativecommons.org/licenses/by/4.0/
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relating the random walk and the invariant measure some Poincaré-type inequalities
are given in [42, Theorem 4.5] (see also [8,43]). Here, we generalise some of these
results.

Definition A.1. Let [X, d,m] be a metric randomwalk space with reversible measure
ν and let A, B ⊂ X be disjoint measurable sets such that ν(A) > 0. Let Q :=
((A ∪ B) × (A ∪ B))\(B × B). We say that [X, d,m] satisfies a generalised (q, p)-
Poincaré -type inequality (p, q ∈ [1,+∞[) on (A, B) (with respect to ν), if, given
0 < l ≤ ν(A ∪ B), there exists a constant � > 0 such that, for any u ∈ Lq(A ∪ B, ν)

and any measurable set Z ⊂ A ∪ B with ν(Z) ≥ l,

‖u‖Lq (A∪B,ν) ≤ �

((∫

Q
|u(y) − u(x)|pdmx (y)dν(x)

) 1
p +

∣
∣
∣
∣

∫

Z
u dν

∣
∣
∣
∣

)

.

In Subsect. 2.2 (Assumption 5), we have used that themetric randomwalk space sat-
isfies a generalised (p, p)-Poincaré-type inequality on (�1 ∪�2,∅). This assumption
holds true in many important examples, as the next results show.

Lemma A.2. Let [X, d,m] be a metric random walk space with reversible measure
ν with respect to m. Let A, B ⊂ X be disjoint measurable sets such that B ⊂ ∂m A,
ν(A) > 0 and A is m-connected. Suppose that ν(A ∪ B) < +∞ and that

ν ({x ∈ A ∪ B : (mx A) ⊥ (ν A)}) = 0.

Let q ≥ 1. Let {un}n ⊂ Lq(A ∪ B, ν) be a bounded sequence in L1(A ∪ B, ν)

satisfying

lim
n

∫

Q
|un(y) − un(x)|qdmx (y)dν(x) = 0 (A.1)

where, as before, Q = ((A ∪ B) × (A ∪ B))\(B × B). Then, there exists λ ∈ R such
that

un(x) → λ for ν-a.e. x ∈ A ∪ B,

‖un − λ‖Lq (A,mx ) → 0 for ν-a.e. x ∈ A ∪ B,

and

‖un − λ‖Lq (A∪B,mx ) → 0 for ν-a.e. x ∈ A.

Proof. If B = ∅ (or ν-null), one can skip some steps in the proof. Let

Fn(x, y) = |un(y) − un(x)|, (x, y) ∈ Q,

fn(x) =
∫

A
|un(y) − un(x)|q dmx (y), x ∈ A ∪ B,

and

gn(x) =
∫

A∪B
|un(y) − un(x)|q dmx (y), x ∈ A.
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Let

N⊥ := {x ∈ A ∪ B : (mx A) ⊥ (ν A)} .

From (A.1), it follows that

fn → 0 in L1(A ∪ B, ν)

and

gn → 0 in L1(A, ν).

Passing to a subsequence if necessary, we can assume that

fn(x) → 0 for every x ∈ (A ∪ B) \ N f , where N f ⊂ A ∪ B is ν-null (A.2)

and

gn(x) → 0 for every x ∈ A \ Ng, where Ng ⊂ A is ν-null. (A.3)

On the other hand, by (A.1), we also have that

Fn → 0 in Lq(Q, ν ⊗ mx ).

Therefore, we can suppose that, up to a subsequence,

Fn(x, y) → 0 for every (x, y) ∈ Q \ C, where C ⊂ Q is ν ⊗ mx -null. (A.4)

Let N1 ⊂ A be a ν-null set satisfying that,

for all x ∈ A \ N1, the section Cx := {y ∈ A ∪ B : (x, y) ∈ C} of C is mx -null,

and N2 ⊂ A ∪ B be a ν-null set satisfying that,

for all x ∈ (A ∪ B) \ N2, the section C ′
x := {y ∈ A : (x, y) ∈ C} of C is mx -null.

Now, since A is m-connected and B ⊂ ∂m A,

D := {x ∈ A ∪ B : mx (A) = 0}

is ν-null. Indeed, by the definition of D, Lm(A ∩ D, A) = 0 thus, in particular,
Lm(A ∩ D, A\D) = 0 which, since A is m-connected, implies that ν(A ∩ D) = 0 or
ν(A ∩ D) = ν(A). However, if ν(A ∩ D) = ν(A), then for any E , F ⊂ A, we have
Lm(E, F) ≤ Lm(D ∩ A, A) = 0 which is a contradiction, thus ν(D ∩ A) = 0. Now,
since B ⊂ ∂m A, mx (A) > 0 for every x ∈ B, thus ν(B ∩ D) = 0.
Set N := N⊥ ∪ N f ∪ Ng ∪ N1 ∪ N2 ∪ D (note that ν(N ) = 0). Fix x0 ∈ A \ N .

Up to a subsequence, un(x0) → λ for some λ ∈ [−∞,+∞], but then, by (A.4), we
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also have that un(y) → λ for every y ∈ (A ∪ B)\Cx0 . However, since x0 �∈ N⊥ and
mx0(Cx0) = 0, we must have that ν(A \ Cx0) > 0; thus, if

S := {x ∈ A ∪ B : un(x) → λ}
then ν(S ∩ A) ≥ ν(A \ Cx0) > 0. Note that, if x ∈ (A ∩ S)\N then, by (A.4) again,
(A ∪ B)\Cx ⊂ S thus mx ((A ∪ B)\S) ≤ mx (Cx ) = 0; therefore,

Lm(A ∩ S, (A ∪ B) \ S) = 0.

In particular, Lm(A ∩ S, A \ S) = 0, but, since A is m-connected and ν(A ∩ S) > 0,
we must have ν(A\S) = 0, i.e. ν(A) = ν(A ∩ S).

Finally, suppose that ν(B\S) > 0. Let x ∈ B\(S∪N ). By (A.4), A\C ′
x ⊂ A\S, i.e.,

S∩A ⊂ C ′
x , thusmx (S∩A) = 0. Therefore, since x �∈ N⊥, wemust have ν(A\S) > 0

which is a contradiction with what we have already obtained. Consequently, we have
obtained that un converges ν-a.e. in A ∪ B to λ:

un(x) → λ for every x ∈ S, ν((A ∪ B) \ S) = 0.

Since {‖un‖L1(A∪B,ν)}n is bounded, by Fatou’s lemma, we must have that λ ∈ R.
On the other hand, by (A.2),

Fn(x, ·) → 0 in Lq(A,mx )

for every x ∈ � \ N f . In other words, ‖un(·) − un(x)‖Lq (A,mx ) → 0, thus

‖un − λ‖Lq (A,mx ) → 0 for ν-a.e. x ∈ A ∪ B.

Similarly, by (A.3),

‖un − λ‖Lq (A∪B,mx ) → 0 for ν-a.e. x ∈ A.

�

Theorem A.3. Let p ≥ 1. Let [X, d,m]beametric randomwalk spacewith reversible
measure ν. Let A, B ⊂ X be disjoint measurable sets such that B ⊂ ∂m A, ν(A) > 0
and A is m-connected. Suppose that ν(A ∪ B) < +∞ and that

ν ({x ∈ A ∪ B : (mx A) ⊥ (ν A)}) = 0.

Assume further that, given a ν-null set N ⊂ A, there exist x1, x2, . . . , xL ∈ A \ N
and a constant C > 0 such that ν (A ∪ B) ≤ C(mx1 + · · · + mxL ) (A ∪ B). Then,
[X, d,m] satisfies a generalised (p, p)-Poincaré-type inequality on (A, B).

Proof. Let p ≥ 1 and 0 < h ≤ ν(A∪B). We want to prove that there exists a constant
� > 0 such that

‖u‖L p(A∪B,ν) ≤ �

((∫

Q
|u(y) − u(x)|pdmx (y)dν(x)

) 1
p +

∣
∣
∣
∣

∫

Z
u dν

∣
∣
∣
∣

)
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for every u ∈ L p(A ∪ B, ν) and every measurable set Z ⊂ A ∪ B with ν(Z) ≥ l.
Suppose that this inequality is not satisfied for any �. Then, there exists a sequence
{un}n∈N ⊂ L p(A ∪ B, ν), with ‖un‖L p(A∪B,ν) = 1, and a sequence of measurable
sets Zn ⊂ A ∪ B with ν(Zn) ≥ l, n ∈ N, satisfying

lim
n

∫

Q
|un(y) − un(x)|pdmx (y)dν(x) = 0

and

lim
n

∫

Zn

un dν = 0.

Therefore, by Lemma A.2, there exist λ ∈ R and a ν-null set N ⊂ A such that

‖un − λ‖L p(A∪B,mx )
n−→ 0 for every x ∈ A \ N .

Now, by hypothesis, there exist x1, x2, . . . , xL ∈ A\N andC > 0 such that ν (A∪
B) ≤ C(mx1 + · · · + mxL ) (A ∪ B). Therefore,

‖un − λ‖p
L p(A∪B,ν) ≤ C

L∑

i=1

‖un − λ‖p
L p(A∪B,mxi )

n−→ 0.

Moreover, since {χ Zn }n is bounded in L p′
(A ∪ B, ν), there exists φ ∈ L p′

(A ∪ B, ν)

such that, up to a subsequence, χ Zn ⇀ φ weakly in L p′
(A ∪ B, ν) (weakly-∗ in

L∞(A ∪ B, ν) in the case p = 1). In addition, φ ≥ 0 ν-a.e. in A ∪ B and

0 < l ≤ lim
n→+∞ ν(Zn) = lim

n→+∞

∫

A∪B

χ Zndν =
∫

A∪B
φdν.

Then, since un
n−→ λ in L p(A ∪ B, ν) and χ Zn

n
⇀ φ weakly in L p′

(A ∪ B, ν)

(weakly-∗ in L∞(A ∪ B, ν) in the case p = 1),

0 = lim
n→+∞

∫

Zn

un = lim
n→+∞

∫

A∪B

χ Znun = λ

∫

A∪B
φdν,

thus λ = 0. This is a contradiction with ||un||L p(A∪B,ν) = 1, n ∈ N, since un
n−→ λ

in L p(A ∪ B, ν), so the theorem is proved. �

Remark A.4. If� := �1∪�2 ism-connected we can apply the theorem with A := �

and B = ∅ to obtain the generalised Poincaré-type inequality used in Subsect. 2.2
(Assumption 5).
We can take A = X , B = ∅ and Z = X in the theorem to obtain [42, Theorem 4.5].

Remark A.5. Theassumption that given aν-null set N ⊂ A, there exist x1, x2, . . . , xL ∈
A\N andC > 0 such that ν (A∪B) ≤ C(mx1 +· · ·+mxL ) (A∪B) is not as strong
as it seems. Indeed, this is trivially satisfied by connected locally finite weighted dis-
crete graphs and is also satisfied by [RN , d,mJ ] (recall Examples 1.1 and 1.2) if, for
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a domain A ⊂ R
N , we take B ⊂ ∂mJ A such that dist (B,RN\AmJ ) > 0. Moreover,

in the following example we see that if we remove this hypothesis then the statement
is not true in general.
Consider themetric randomwalk space [R, d,mJ ]whered is theEuclidean distance

and J := 1
2
χ [−1,1] (recall Example 1.2). Let A := [−1, 1] and B := ∂mJ A =

[−2, 2]\A. Then, if N = {−1, 1}wemay not find points satisfying the aforementioned
assumption. In fact, the statement of the theorem does not hold for any p > 1 as can

be seen by taking un := 1
2n

1
p

(
χ [−2,−2+ 1

n ] − χ [2− 1
n ,2]
)
and Z := A ∪ B. Indeed,

first note that ‖un‖L p([−2,2],ν) = 1 and
∫

[−2,2] undν = 0 for every n ∈ N. Now,

supp(mJ
x ) = [x − 1, x + 1] for x ∈ [−1, 1] and, therefore,
∫

[−2,2]
|un(y) − un(x)|pdmJ

x (y) =
∫

[−2,−2+ 1
n ]∩[x−1,x+1]

n dmJ
x (y)

+
∫

[2− 1
n ,2]∩[x−1,x+1]

n dmJ
x (y)

= 2nχ [1− 1
n ,1](x)

∫

[2− 1
n ,x+1]

dmJ
x (y)

= 2n

(

x − 1 + 1

n

)

χ [1− 1
n ,1](x)

for x ∈ [−1, 1]. Consequently,
∫

[−1,1]

∫

[−2,2]
|un(y) − un(x)|pdmJ

x (y)dL1(x) = 2n
∫

[1− 1
n ,1]

(

x − 1 + 1

n

)

dL1(x)

= 2n

(
1

2
− (1 − 1

n )2

2
− 1

n
+ 1

n2

)

= 1

n
.

Finally, by the reversibility of L1 with respect to mJ ,

∫

[−2,2]

∫

[−1,1]
|un(y) − un(x)|pdmJ

x (y)dL1(x) = 1

n
,

thus
∫

([−2,2]×[−2,2])\(([−2,−1]∪[1,2])×([−2,−1]∪[1,2]))
|un(y) − un(x)|pdmJ

x (y)dL1(x) ≤ 2

n
n−→ 0.

However, in this example, as we mentioned before, we can take B ⊂ ∂m A such
that dist(B,R\[−2, 2]) > 0 to avoid this problem and to ensure that the hypotheses
of the theorem are satisfied so that (A, B) satisfies a generalised (p, p)-Poincaré-type
inequality.
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In the following example, the metric random walk space [X, d,m] that is defined,
together with the invariant measure ν, satisfies that mx ⊥ ν for every x ∈ X , and a
Poincaré-type inequality does not hold.

Example A.6. Let p > 1. Let S1 = {e2π iα : α ∈ [0, 1)} and let Tθ : S1 −→ S1

denote the irrational rotation map Tθ (x) = xe2π iθ where θ is an irrational number.
On S1 consider the Borel σ -algebra B and the 1-dimensional Hausdorff measure
ν := H1 S1. It is well known that Tθ is a uniquely ergodic measure-preserving
transformation on (S1,B, ν).

Now, denote X := S1 and letmx := 1
2δT−θ (x)+ 1

2δTθ (x), x ∈ X . Then, ν is reversible
with respect to the metric random walk space [X, d,m], where d is the metric given
by the arclength. Indeed, let f ∈ L1(X × X, ν ⊗ ν), then
∫

S1

∫

S1
f (x, y)dmx (y)dν(x) = 1

2

∫

S1
f (x, T−θ (x))dν(x) + 1

2

∫

S1
f (x, Tθ (x))dν(x)

= 1

2

∫

S1
f (Tθ (x), x)dν(x) + 1

2

∫

S1
f (T−θ (x), x)dν(x)

=
∫

S1

∫

S1
f (y, x)dmx (y)dν(x).

Let us see that this space is m-connected. First note that, for x ∈ X ,

m∗2
x := 1

2
δx + 1

4
δT 2−θ (x) + 1

4
δT 2

θ (x) ≥ 1

4
δT 2

θ (x)

and, by induction, it is easy to see that

m∗n
x ≥ 1

2n
δT n

θ (x).

Here, m∗n
x , n ∈ N, is defined inductively as follows (see [41]):

dm∗n
x (y) :=

∫

z∈X
dmz(y)dm

∗(n−1)
x (z).

Now, let A ⊂ X such that ν(A) > 0. By the pointwise ergodic theorem,

lim
n→+∞

1

n

n−1∑

k=0

χ A

(
T k

θ (x)
)

= ν(A)

ν(X)
> 0

for ν-a.e. x ∈ X . Consequently, for ν-a.e. x ∈ X , there exists n ∈ N such that

χA
(
T n

θ (x)
) = δT n

θ (x)(A) > 0

thus ν
({
x ∈ X : m∗n

x (A) = 0 for every n ∈ N
}) = 0. Then, according to [41, Def-

inition 2.8] (see also [41, Proposition 2.11]), [X, d,m] with the invariant measure ν

for m is m-connected.
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Let us see that [X, d,m, ν] does not satisfy a (p, p)-Poincaré-type inequality. For
n ∈ N let

I nk :=
{
e2π iα : kθ − δ(n) < α < kθ + δ(n)

}
, −1 ≤ k ≤ 2n,

where δ(n) > 0 is chosen so that

I nk1 ∩ I nk2 = ∅ for every − 1 ≤ k1, k2 ≤ 2n, k1 �= k2

(note that e2π i(k1θ−δ(n)) �= e2π i(k2θ−δ(n)) for every k1 �= k2 since Tθ is ergodic).
Consider the following sequence of functions:

un :=
n−1∑

k=0

χ I nk
−

2n−1∑

k=n

χ I nk
, n ∈ N.

Then,
∫

X
undν = 0 for every n ∈ N,

and
∫

X
|un|pdν = 4nδ(n) for every n ∈ N.

Fix n ∈ N, let us see what happens with
∫

X

∫

X
|un(y) − un(x)|pdmx (y)dν(x).

If 1 ≤ k ≤ n − 2 or n + 1 ≤ k ≤ 2n − 2 and x ∈ I nk , then

∫

X
|un(y) − un(x)|pdmx (y) = 1

2
|un(T−θ (x)) − un(x)|p + 1

2
|un(Tθ (x)) − un(x)|p = 0

since T−θ (x) ∈ I nk−1 and Tθ (x) ∈ I nk+1. Now, if x ∈ I n0 then T−θ (x) ∈ I n−1 thus

1

2
|un(T−θ (x)) − un(x)|p + 1

2
|un(Tθ (x)) − un(x)|p = 1

2
| − 1|p = 1

2

and the same holds if x ∈ I n2n−1 (then Tθ (x) ∈ I n2n). For x ∈ In−1 we have Tθ (x) ∈ I nn
thus

1

2
|un(T−θ (x)) − un(x)|p + 1

2
|un(Tθ (x)) − un(x)|p = 1

2
| − 1 − 1|p = 2p−1

and the same result is obtained for x ∈ I nn+1. Similarly, if x ∈ I n−1 or x ∈ I n2n ,

1

2
|un(T−θ (x)) − un(x)|p + 1

2
|un(Tθ (x)) − un(x)|p = 1

2
.
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Finally, if x /∈ ∪2n
k=−1 I

n
k , then T−θ (x), Tθ (x) �∈ ∪2n−1

k=0 I nk thus

1

2
|un(T−θ (x)) − un(x)|p + 1

2
|un(Tθ (x)) − un(x)|p = 0.

Consequently,
∫

X

∫

X
|un(y) − un(x)|pdmx (y)dν(x) = 1

2
(4 · 2δ(n))

+2p−1(2 · 2δ(n)) = (4 + 2p+1)δ(n).

Therefore, there is no � > 0 such that
∥
∥
∥
∥un − 1

2π

∫

X
undν

∥
∥
∥
∥
L p(X,ν)

≤ �

(∫

X

∫

X
|un(y) − un(x)|pdmx (y)dν(x)

) 1
p

for every n ∈ N,

since this would imply

4nδ(n) ≤ �(4 + 2p+1)δ(n) �⇒ n ≤ � + 2p−1 for every n ∈ N.

The proofs of the following lemmas are similar to the proof of [4, Lemma 4.2].

Lemma A.7. Let p ≥ 1. Let [X, d,m] be a metric random walk space with reversible
measure ν with respect tom. Let A, B ⊂ X bedisjointmeasurable sets and assume that
A ∪ B is non-ν-null and m-connected. Suppose that [X, d,m] satisfies a generalised
(p, p)-Poincaré-type inequality on (A ∪ B,∅). Let α and τ be maximal monotone
graphs in R

2 such that 0 ∈ α(0) and 0 ∈ τ(0). Let {un}n∈N ⊂ L p(A ∪ B, ν),
{zn}n∈N ⊂ L1(A, ν) and {ωn}n∈N ⊂ L1(B, ν) be such that, for every n ∈ N, zn ∈
α(un) ν-a.e. in A and ωn ∈ τ(un) ν-a.e. in B.

(i) Suppose that R+
α,τ = +∞ and that there exists M > 0 such that

∫

A
z+n dν +

∫

B
ω+
n dν < M for every n ∈ N.

Then, there exists a constant K = K (A, B, M, α, τ ) such that

∥
∥u+

n

∥
∥
L p(A∪B,ν)

≤ K

((∫

(A∪B)×(A∪B)

|u+
n (y) − u+

n (x)|pdmx (y)dν(x)

) 1
p + 1

)

for every n ∈ N.

(ii) Suppose thatR−
γ,β = −∞ and that there exists M > 0 such that

∫

A
z−n dν +

∫

B
ω−
n dν < M for every n ∈ N.

Then, there exists a constant K̃ = K̃ (A, B, M, α, τ ), such that

∥
∥u−

n

∥
∥
L p(A∪B,ν)

≤ K̃

((∫

(A∪B)×(A∪B)

|u−
n (y) − u−

n (x)|pdmx (y)dν(x)

) 1
p + 1

)

for every n ∈ N.
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Lemma A.8. Let p ≥ 1. Let [X, d,m] be a metric random walk space with reversible
measure ν with respect tom. Let A, B ⊂ X bedisjointmeasurable sets and assume that
A ∪ B is non-ν-null and m-connected. Suppose that [X, d,m] satisfies a generalised
(p, p)-Poincaré-type inequality on (A ∪ B,∅). Let α and τ be maximal monotone
graphs in R

2 such that 0 ∈ α(0) and 0 ∈ τ(0). Let {un}n∈N ⊂ L p(A ∪ B, ν),
{zn}n∈N ⊂ L1(A, ν) and {ωn}n∈N ⊂ L1(B, ν) such that, for every n ∈ N, zn ∈ α(un)
ν-a.e. in A and ωn ∈ τ(un) ν-a.e. in B.

(i) Suppose that R+
α,τ < +∞ and that there exists M ∈ R and h > 0 such that

∫

A
zndν +

∫

B
ωndν < M < R+

α,τ for every n ∈ N,

and

max

{∫

{x∈A : zn<−h}
|zn|dν,

∫

x∈B :ωn(x)<−h}
|ωn|dν

}

<
R+

α,τ − M

8

for every n ∈ N.

Then, there exists a constant K = K (A, B, M, h, α, τ ) such that

∥
∥u+

n

∥
∥
L p(A∪B,ν)

≤ K

((∫

(A∪B)×(A∪B)

|u+
n (y) − u+

n (x)|pdmx (y)dν(x)

) 1
p + 1

)

for every n ∈ N

(ii) Suppose thatR−
α,τ > −∞ and that there exists M ∈ R and h > 0 such that

∫

A
zndν +

∫

B
ωndν > M > R−

α,τ for every n ∈ N,

and

max

{∫

{x∈A : zn>h}
zndν,

∫

x∈B :ωn(x)>h}
ωndν

}

<
M − R−

α,τ

8
for every n ∈ N.

Then, there exists a constant K̃ = K̃ (A, B, M, h, α, τ ) such that

∥
∥u−

n

∥
∥
L p(A∪B,ν)

≤ K̃

((∫

(A∪B)×(A∪B)

|u−
n (y) − u−

n (x)|pdmx (y)dν(x)

) 1
p + 1

)

for every n ∈ N.
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