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Abstract. We contribute an answer to a quantitative variant of the question raised in Coron (in: Perspectives
in nonlinear partial differential equations. Contemporary mathematics, vol 446, American Mathematical
Society, Providence, pp 215–243, 2007) concerning the controllability of the viscous Burgers equation
ut + (u2/2)x = uxx for initial and terminal data prescribed for x ∈ (0, 1). We investigate the (non)-
controllability under the additional a priori bound imposed on the (nonlinear) operator that associates the
solution to the terminal state. In contrast to typical techniques on the controllability of the viscous Burgers
equation invoking the heat equation, we combine scaling and compensated compactness arguments along
with observations on the non-controllability of the inviscid Burgers equation to point out wide sets of
terminal states non-attainable from zero initial data by solutions of restricted size. We prove in particular
that, given L ≥ 1, for sufficiently large |C | and T < (1+�)/|C | (where� > 0 depends on L), the constant
terminal state u(·, T ) := C is not attainable at time T , starting from zero data, by weak solutions of the
viscous Burgers equation satisfying a bounded amplification restriction of the form ‖u‖∞ ≤ L|C |. Our
focus on L∞ solutions is due to the fact that we rely upon the classical theory of Kruzhkov entropy solutions
to the inviscid equation. In Part II of this paper, we will extend the non-controllability results to solutions
of the viscous Burgers equation in the L2 setting, upon extending the Kruzhkov theory appropriately.

1. Introduction

We are concerned with the controllability of the viscous Burgers equation

ut + (
u2/2

)
x = uxx in D, (BE)

where (x, t) ∈ D = R × (0, T ) (“the strip setting”) or (x, t) ∈ D = (0, 1) × (0, T )

(“the box setting”), with a given T > 0. Our primary motivation comes from [13],
where J.-M. Coron asked the following question (Open Problem 4). Let T > 0 and
C ∈ R\{0}.

Question : Does there exist u ∈ L2((0, 1) × (0, T )) satisfying (BE)
such that for all x ∈ (0, 1), u(·, 0) = 0 and u(·, T ) = C?

(Q)

Mathematics Subject Classification: 93B03, 35L65, 35D30, 47J35
Keywords: Burgers equation, Exact controllability, Scaling, Compensated compactness, Backward

characteristics.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00028-022-00831-5&domain=pdf


70 Page 2 of 24 B. Andreianov et al. J. Evol. Equ.

With the method explored in this paper and in its sequel [6], we focus on non-
controllability issues under additional “bounded amplification” assumptions, which
essentially mean that the size of the desired solutions is limited relative to the size of
the target datum; this can be witnessed through the “amplification factor” L present
in the main statements. The difference with the original question is highlighted in the
sequel (see Remark 1.1).

1.1. Overview of the results of the paper, and further investigations

In the present paper, we bring a partial negative answer to (Q) (which counter-
balances the partial positive answers given in [13,15,21], see Sect. 1.2) in the L∞
setting instead of the original L2 setting. We highlight the existence of many triples
(M,C, T ), with 0 < |C | ≤ M and 0 < T ≤ 1/|C |, such that the target state uT = C
is not reachable by solutions of (BE) satisfying ‖u‖∞ ≤ M .
We find it convenient to introduce L = M/|C | as an amplification factor; we show

that for any given L ≥ 1 there exist pairs (C, T ), with roughly speaking |C |T ≤ 1,
such that the system has no solution u ∈ L∞((0, 1) × (0, T )) satisfying the bound
‖u‖∞ ≤ L|C |. More generally, we point out several families of weakly-∗ compact
sets of states uT ∈ L∞ not attainable at time T , starting from zero data, by solutions
of (BE), under the a priori amplification assumption ‖u‖∞ ≤ L‖uT ‖∞. This happens
for small values of T and somewhat large (but smaller than T−1) values of C . The
details can be found in Sect. 3 (Corollary 3.16 and more generally, Theorem 3.12).
Refinements concerning the non-sharpness of the restriction CT ≤ 1 and the case of
the strip domain are given in Sect. 4.
Note that in the sequel [6], we will extend this negative answer—with the ideas

developed in this paper and under the adequate amplification assumption—to question
(Q) in its original L2 setting, both for the strip problem and for the box problem.
This will require the ad hoc amplification assumptions and an additional L2 − L3

loc
regularization assumption on the solutions. The uniqueness theory for unbounded
solutions of scalar conservation laws, necessary for the sake of such an extension, will
be developed on purpose.

Remark 1.1. Following the arguments developed in the paper, one can see that they
apply as well to the classical heat equation replacing the viscous Burgers equation.
Indeed, the key scaling observation, the different bounds on solutions, and the under-
lying non-attainability results of the inviscid case carry on to this linear setting. Here,
one can clearly see that the question we answer negatively is different from the mere
question of controllability. Indeed, it is classical that the heat equation on an interval
is null controllable at any time by boundary controls starting from any initial datum
(cf. [19]), which by the linearity means that all constant states are controllable start-
ing from zero initial datum. It is clear that the “cost” of the controls, which can be
quantified by amplification factor L as in our assumptions, increases as the desired
control time decreases. This is why we should interpret the results obtained in this
paper as a quantitative version (with limited “costs”) of the original Coron’s question
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(Q). The issue of (non)-controllability of constant states C at arbitrarily small times
T for an unbounded cost remains open; the example of the heat equation shows that
our method is not suitable for answering negatively this qualitative question.

1.2. The state of the art on controllability of the viscous Burgers equation

Several positive results on exact controllability of constant states for the viscous
Burgers equation exist in the literature. One such result is the following:

Theorem 1.2. (See [13,15]) Let T > 0. There exists N = N (T ) > 0 such that for
every |C | ≥ N, there exists u ∈ L2((0, 1) × (0, T )) satisfying (BE) and such that
u(·, 0) = 0, u(·, T ) = C for x ∈ (0, 1).

Another related result in the space L∞((0, 1) × (0, T )) can be found in Glass and
Guerrero [21] where the authors consider boundary controls for the viscous Burgers
equation with small dissipation. They prove that any nonzero constant state C can be
reached after sufficiently large time. As an immediate consequence of [21], one has
the following theorem:

Theorem 1.3. (See [21]) There exist N > 0 and β ≥ 1 such that for every |C | > N,
there exists u ∈ L∞((0, 1) × (0, T )) satisfying (BE) and such that u(·, 0) = 0,
u(·, T ) = C for x ∈ (0, 1) and all T > β/|C |.
In particular, Glass and Guerrero [21] showed that large constant states can be

reached in large time by two boundary controls for viscous Burgers equation with
small viscosity coefficient. Later Leautaud in [25] extended this result to scalar viscous
conservation laws with more general fluxes. Null controllability (Marbach [26]) and
small-time local controllability (Fursikov and Imanuvilov [20]) have been achieved
with source and one boundary control. It is worth mentioning the result of Guerrero
and Imanuvilov [22] where the authors deal with (BE) and two boundary controls
and show that exact null controllability indeed fails for small time. Also, they prove a
negative result to null exact controllability even for large time. In [18] Fernández-Cara
and Guerrero have given an estimate of the time of null controllability depending on
the L2-norm of the initial data.

On the other hand, the problem has also been investigated under one control, and
we refer the reader to [18,20] and references therein.
Regarding the exact controllability for the inviscidBurgers equation (more generally

convex conservation laws or even to some particular hyperbolic systems of conserva-
tion laws), one can use tools, such as backward characteristics, in order to construct
suitable initial and boundary controls. The theory is nevertheless very delicate due to
the occurrence of shocks. For more details, we refer the reader to [1,2,4,7,23,28].
In Theorems 1.2 and 1.3, there is clearly a gap in the range of pairs (C, T ) for which

the question has not been resolved. Specifically, the range T < 1/|C | is not covered
by these results and we stress the fact that at the level of the inviscid Burgers equation,
such states cannot be controlled; see [1] and Propositions 3.7 and 4.2. This has been
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the motivation for the present work in which we provide a partial negative result to
question (Q) precisely for such pairs (C, T ), along with some generalizations directly
coming from the techniques we employ.

1.3. Outline of the paper, key ideas and techniques

In this paper, we interpret question (Q) as an initial-value problem on D = R ×
(0, T ) or as an underdetermined initial-value problem on D = (0, 1) × (0, T ) for
solutions understood in the appropriate weak sense (see Sect. 2 for definitions) and
under adequate limitations on theL∞ size of the solution relative to the size of the target
state. We give a series of negative answers for couples (C, T ) satisfying T ≤ 1/|C |
(and sometimes T < (1 + �)/|C | with some � > 0), for C sufficiently large.
More generally, such results concern sufficiently large data and the accordingly small
times (uT (·), T ) ∈ BV ((0, 1)) × (0,+∞) satisfying properties of the type (NA) (see
Proposition 3.7); precise statements are given in Sect. 3 (see also [6] for the L2 versions
of the statements). Our method relies on a scaling argument which reduces (BE) to
the viscous Burgers equation

uε
t +

( (uε)2

2

)

x
= εuε

xx ,

while leaving invariant the product TuT (·) for states uT (·) attainable at time T .
Note that the scaling argument is restricted to the quadratic nonlinearity. It is appro-

priate to the Navier–Stokes equation and the corresponding inviscid (Euler) equations
(see, e.g., [14] for examples of control problems), which are far beyond the scope of
this paper. However, the extension to the L2 setting ([6]) of the method we develop
here for L∞ solutions (Sects. 3, 4) is motivated in particular by the fact that the L∞
setting, most natural for scalar problems, is not natural for systems.
The conclusion on non-controllability for the viscous Burgers equation follows,

upon a careful use of the scaling (Zoom) of solutions of (BE) with ε = T (see
Sect. 3), i.e., for small times T , from uniform in ε bounds ensuring compactness of
sequences of solutions (uε), and from rather elementary non-controllability results for
the inviscid Burgers equation

ut +
(u2

2

)

x
= 0.

The latter is understood in the standard framework of Kruzhkov entropy solutions
(Sects. 3, 4) or in the framework of unbounded entropy solutions described for this
purpose ([6]). An a priori bound on solutions is required in our argument which we
interpret as an amplification assumption limiting the size of the solutions in terms of
the size of the target data. The core arguments are given in Sect. 3, in the simplest
setting; Sect. 4 presents more technical extensions of the results, achieved with the
same strategy of proof (see [6] for further technical extensions).

We would like to emphasize that unlike a large number of works on the controllabil-
ity of the viscous Burgers equation which invoke the heat equation via the Hopf–Cole
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transformation, our work is not only motivated by, but also based on the inviscid equa-
tion through a vanishing viscosity argument. We remark that for the inviscid equation,
the most classical solution space is L∞ and therefore the focus of this paper is on L∞
solutions of the viscous Burgers equation. In Part II of this paper ([6]), we will extend
the arguments to L2 solutions by refining the underlying solution concept slightly
beyond the classical Kruzhkov setting.

2. Precise setting for question (Q)

In addition to the aforementioned interpretations of the original question (Q) raised
in [13] (the quantitative “bounded amplification” assumptions, the choice of L∞ or L2

functional framework, the choice (0, 1) or R for the space domain), we also need to
make explicit the underlying notion of solution to the viscous Burgers equation. Let
us detail the framework(s) we explore.
We discuss the two following situations:

{
ut + (

u2/2
)
x = uxx in (0, 1) × (0, T ),

u(·, 0) = 0 and u(·, T ) = uT for x ∈ (0, 1),
(Pbbox )

and
⎧
⎨

⎩

ut + (
u2/2

)
x = uxx in R × (0, T ),

u(·, 0) = u0 with u0 = 0 for x ∈ (0, 1),
and u(·, T ) = uT for x ∈ (0, 1).

(Pbstrip)

If one puts aside the assigned terminal conditions for a moment, we recognize in
(Pbstrip) a standard Cauchy problem. So the question is a particular instance of control
by the initial data (which we will instead refer to as attainability in the sequel of the
paper). Similarly, one possible interpretation of (Pbbox ) would be in terms of boundary
control in the Cauchy–Dirichlet (or even Cauchy–Neumann) setting; however, we
prefer to consider (Pbbox ) as an underdetermined problem with solutions defined
locally in (0, 1) × [0, T ] (attention is paid to the initial and terminal times t = 0, T
but not to the boundaries x = 0, 1). Indeed, prescribing boundary traces of the solution
u or of the convection–diffusion flux u2/2−ux at x = 0, 1would restrict the generality
of problem (Pbbox ).
It is obvious that a solution u to the problem (Pbstrip) in the strip can be seen as well

as a solution to (Pbbox ): it is enough to consider its restriction u|(0,1)×(0,T ) to the box.
Therefore, it is more difficult to attain a given state uT in the strip setting (Pbstrip)
than in the box setting (Pbbox ). Because our focus in this paper is on non-attainability
(i.e., on the impossibility to reach the desired states at desired times), we see (Q) in the
strip setting (Pbstrip) as a simpler question than the same question in its box setting
(Pbbox ).
Next, although question (Q) is originally about L2 solutions of (BE), our techniques

primarily drive us to replace L2 byL∞ (see Sect. 3). In order to get closer to the original
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L2 setting, we need to rely upon a theory of unbounded (more precisely, L2) entropy
solutions to the inviscid Burgers equation that we will develop in [6]. At this point,
insufficiency of the L2 uniqueness theory for the Cauchy–Dirichlet problem will push
us to consider also the L3((0, 1) × (0, T )) solutions of the viscous Burgers equation.

In our non-attainability results, we will not merely ask that the solutions belong to
some Lp spaces, but also that they obey some uniform bounds that we state in terms of
“amplification.” The amplification constants are denoted by L throughout the paper;
their role is to control the size of the solution in terms of the size of the target data uT .

Finally, the precise meaning of what a “solution” of (BE) is in our paper is different
from the one found in [13], where solutions are meant in the sense of distributions
(usually called “very weak” solutions). Our approach requires that the solution satisfy
a local L2 in time, H1 in space, energy estimate which means that it should be a
weak solution (sometimes called variational solution or finite energy solution) locally
in D; moreover, the entropy inequalities of parabolic conservation laws are required.
Because for non-degenerate parabolic conservation laws weak formulation implies
the entropy formulation (see e.g., [12]), in the sequel we use the term weak solution of
the viscous Burgers equation (supplemented with initial and terminal data) meaning
the following.

Definition 2.1. (Adopted notion of solution for the viscous Burgers equation) Let
D = I × (0, T ) with I = (0, 1) or I = R. Let u0 and uT belong to L2

loc(I ). A
function u ∈ L2(D) is called a weak solution of (BE) with initial data u0 and terminal
data uT if u ∈ L2(0, T ; H1

loc(I )) and for all ξ ∈ C∞
c (I × [0, T ]), there holds

∫ T

0

∫ 1

0

(
uξt + u2

2
ξx − uxξx

)
dx dt +

∫

R

u0(x)ξ(x, 0) dx −
∫

R

uT (x)ξ(x, T ) dx = 0

(1)
and, furthermore, for all ξ ∈ C∞

c (I × [0, T )), ξ ≥ 0, for all k ∈ R there holds

−
∫ T

0

∫ 1

0

(
|u−k|ξt +|u−k|u + k

2
ξx −|u−k|xξx

)
dx dt−

∫

R

|u0−k|ξ(x, 0) dx ≤ 0.

(2)
In particular, solutions to (Pbbox ) or (Pbstrip) are understood in the sense of Defini-
tion 2.1 in the sequel; they will be supplemented with additional bounds in Lp(D) for
different choices of p.

Let us stress that the more usual, in the context of such definitions, L∞ assumption
on u is not needed for the above definition to make sense, indeed, under the L2

loc
assumptions on u, ux all terms in (1), (2) are well-defined.

Remark 2.2. The L2
loc regularity of ux assumed in Definition 2.1 implies in particular

that the solution satisfies variants of classical chain rules in space (following from the
Sobolev regularity of u in space), like |u − k|x = sign(u − k)ux , and chain rules in
time (see e.g., [3, Lemma 2.3]); these chain rules are necessary technical ingredients
of the entropy formulation (2). In particular, local L1 estimates on the term |ux |2 (we
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refer to the proof of Lemma 3.10), obtained by formally multiplying the equation by
u, are justified using chain rules.

In this respect, let us recall that classical solutions to the Burgers equation are related
to classical solutions of the heat equation by the Hopf-Cole transformation (see, e.g.,
[17]) which is a nonlinear change of the unknown; the equivalence relies on chain
rules for derivatives. While considering very weak solutions to (BE) as suggested in
[13], we do not have any kind of chain rule at our disposal; thus not only the classical
regularity cannot be derived from the formal link with the heat equation, but also the
entropy formulation cannot be guaranteed. For this reason, we cannot rely upon the
notion of merely distributional (very weak) solutions to (BE).

As a matter of fact, we could go beyond the weak L2
loc setting and even the very

weak setting, by considering L1 data and the appropriate notions of solution developed
in the literature.

Remark 2.3. Recall that the L1 setting is sharp for inviscid conservation laws provided
the solutions are interpreted either in abstract semigroup terms (like in [5]) or in the
renormalized setting (like in [10,30]) or else, in the setting of the kinetic formulation
(see [29] and references therein). Because all these solutions can be seen as pointwise
limits of Kruzhkov entropy solutions for truncated data (like the unbounded entropy
solutions we construct in the sequel [6] of this paper, the results can be extended to
the L1 setting similarly to what is done in [6] for the L2 setting. Let us remark that, for
example, the notion of kinetic solution can be applied in parallel to the viscous and to
the inviscid Burgers equations. In general, these solutions are not even solutions in the
sense of distributions (veryweak solutions) becauseu2/2may fall out ofL1

loc, or at least
their L1

loc regularity is far from being straightforward ([32]). This line of investigation
would provide yet another functional and solution framework for interpretation of
question (Q).

Making precise the notion of solution strongly impacts the results we can prove
concerning question (Q); we refer in particular to the final discussion of the paper [6].

3. Sets of terminal data non-attainable by bounded weak solutions

This section is devoted to partial (negative) answers to question (Q) in the setting
where we assume that the solutions u are bounded and moreover, the ratio of the L∞
norm of u and the L∞ norm of the target data uT is controlled by a constant L given
beforehand. Clearly, only L ≥ 1 makes sense. For general uT , asking L = 1 means
roughly speaking that we look for solutions u with the same amplitude as uT , while
letting L > 1 allows for a controlled amplification. For this reason, in the sequel we
call L the amplification factor.

Our argument essentially relies upon the scaling

(t, v) �→ ( t
ε
,Sεv),

Sεv := εv(·, ε·), i.e., t = ετ,Sε(v)(x, τ ) = εv(x, ετ ),
(Zoom)
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where v is a function of (x, t) ∈ (0, 1) × (0, T ); this scaling permits to link (BE) to
the viscous Burgers equation with viscosity parameter ε > 0. The inviscid Burgers
equation, under the standard notion of admissibility of solutions, can be seen as the
singular limit of the latter as ε → 0. Also note that the inviscid Burgers equation is
invariant under the scaling (Zoom).

Remark 3.1. Let us point out that a study analogous to the one we conduct in this
section (see [6] for the L2 extension) can be conducted for the problem

ut + |u|p−1ux =
(
|ux |p−2ux

)

x

for p ∈ (1,∞); it possesses a scaling invariance which generalizes (Zoom).
Note that it is well-known that weak (energy) solutions of scalar conservation laws

regularized with p-laplacian viscosity ε(|ux |p−2ux )x converge to entropy solutions of
the corresponding inviscid problem. Also note that the theory of the Cauchy problem
developed in [6] applies to the flux F(u) = sign(u)|u|p/p and Lp initial data.

We start by constructing a wide family of non-attainable (from initial data u0 ver-
ifying u0 = 0 in (0, 1)) at time T = 1 states in the classical setting of Kruzhkov
entropy solutions to the inviscid Burgers equation. The scaling (Zoom), along with
the classical vanishing viscosity characterization of the admissible solutions to the
inviscid Burgers equation, will permit to transfer the non-attainability result to our
target problem (BE). In order to do so, in this paper, we restrict our attention to L∞
solutions of the latter (we relax this restriction in [6]).

3.1. Non-attainable states for the inviscid Burgers equation in the classical entropy
solutions setting

The initial value problem addressed in question (Q) is underdetermined (its formu-
lation does not implicitly include boundary data); therefore, we first make precise what
we mean by solution of the analogous underdetermined inviscid Burgers problem.

Definition 3.2. A function u ∈ L∞((0, 1) × (0, T )) is a local Kruzhkov entropy
solution of the underdetermined problem

⎧
⎨

⎩
ut +

(u2

2

)

x
= 0 in D = (0, 1) × (0, T ),

u(x, 0) = 0 on (0, 1),
(Pb0

box )

if for all k ∈ R, for all ξ ∈ C∞
c ((0, 1) × [0, T )), ξ ≥ 0 there holds

−
∫ T

0

∫ 1

0
|u − k|ξt + |u − k|u + k

2
ξx dx dt −

∫ 1

0
|k|ξ(x, 0) dx ≤ 0. (3)

Moreover, uT ∈ L∞((0, 1)) is the terminal state of a local Kruzhkov entropy solution
u if for all ξ ∈ C∞

c ((0, 1) × [0, T ])
∫ T

0

∫ 1

0
uξt + u2

2
ξx dx dt −

∫ 1

0
uT (x)ξ(x, T ) dx = 0.
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Having in mind a variant of question (Q), we are also interested in the Cauchy
problem set on the whole real line:

⎧
⎨

⎩
ut +

(u2

2

)

x
= 0 in R × (0, T ),

u(x, 0) = u0 with u0(x) = 0 for x ∈ (0, 1).
(Pb0

strip)

An analogous definition with u0 ∈ L∞(R) is classical [24]; we refer to the corre-
sponding solutions as (global) Kruzhkov entropy solutions.
Further,Kruzhkov entropy solutions can be restricted and they canbe glued together:

Remark 3.3. Similarly to Definition 3.2, one defines local Kruzhkov entropy solutions
on any open domain D ⊂ R × (0, T ) by localizing the support of the test functions

to D ∪
(
D ∩ (R × {0})

)
. Nonzero initial data are easily included.

It is obvious that a restriction of a local Kruzhkov entropy solution on an open
subdomain D̃ of D = (0, 1) × (0, T ) is a local Kruzhkov entropy solution in D̃.
Further, it is easily checked that gluing continuously local Kruzhkov entropy solutions
in domains D̃, D̂ separated by a Lipschitz curve� (by continuitywemean coincidence
of strong traces from the right and from the left of �), we obtain a Kruzhkov entropy
solution in D̃ ∪ � ∪ D̂.

Note that a terminal state exists for every local Kruzhkov entropy solution; further,
every such solution can be seen as the solution of the initial-boundary value problem
with appropriately chosen boundary data. In the following Remark, we give precise
sense to the initial datumand to theDirichlet boundary data denoted byb0 (theDirichlet
datum at x = 0−) and b1 (the Dirichlet datum at x = 1−.) More precisely, we have

Remark 3.4. Local entropy solutions of (Pb0
box ) possess the following properties:

(i) u ∈ C([0, T ];L1((0, 1)), and in particular, the initial data u0 = 0 and the terminal
data u(·, T ) = uT can be understood as traces of u, in the strong L1 sense, on (0, 1)×
{0} and on (0, 1) × {T }, respectively (see [11,27]).
(ii) There exist traces (in the strong L1 sense) b0(·) = u(0+, ·) and b1(·) = u(1−, ·),
b0, b1 ∈ L∞((0, T )) (see [27,33]), which can also be seen as the boundary data for
the Cauchy–Dirichlet problem understood in the BLN sense (see Bardos, LeRoux and
Nédélec [9], see also [8]). One can see u as the unique solution in the BLN sense
corresponding to the initial data u0 = 0 and boundary data u(·, 0+),u(·, 1−).

Remark 3.5. Recall that the L1 comparison and contraction property is valid (see e.g.,
[17,24,31]) for any two Kruzhkov entropy solutions u, û corresponding to the L∞(R)

initial data u0, û0, respectively:

‖(u − û)±‖L∞(0,T ;L1) ≤ ‖(u0 − û0)
±‖L1 , (4)

where z± := max{0,±z}. Property (4) makes sense whenever the right-hand side
is finite; it implies in particular that smaller initial data (u0 ≤ û0 on R) give rise to
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smaller solutions (u ≤ û in R × (0, T )). Note that the comparison principle under the
form

u0 ≤ û0 on (0, 1), b0 ≤ b̂0, b1 ≤ b̂1 on (0, T ) ⇒ u ≤ û in (0, 1) × (0, T )

is known also for Cauchy–Dirichlet problems (see, e.g., [8]), here in addition to the
initial data, boundary datab0, b1 (respectively, b̂0, b̂1) foru (resp., for û) are prescribed.

With the above preliminaries at hand, let us introduce some convenient notation.
For T > 0, denote by

NAL∞,box
T :=

{
uT ∈ L∞(0, 1)

∣∣∣ �u solution in the sense of Definition 3.2

to problem (Pb0
box ) with u(·, T ) = uT

}
(5)

the set of states non-attainable at time T by local Kruzhkov entropy solutions of the
inviscid Burgers equation in (0, 1)× (0, T )with zero initial data. Consider the scaling
(Zoom) of the solution of (Pb0

box ) where we take ε = T so that the scaled equation
is posed in the time interval τ ∈ (0, 1). It is readily checked that the notion of local
Kruzhkov entropy solution is invariant under this scaling. For this reason, we have

NAL∞,box
T =

{
uT ∈ L∞(0, 1)

∣∣∣ TuT ∈ NAL∞,box
1

}
= T−1NAL∞,box

1 , (6)

i.e., we can fix T = 1 in our study of states non-attainable for the inviscid Burgers
equation.

Remark 3.6. It is classical that for (Pb0
box ), states that do not belong to BVloc((0, 1))

are not attainable at any time. In the sequel, and having in mind the constant terminal
states of question (Q), we will not focus on the BV regularity restrictions but the
reader may always suppose that uT is at least BVloc regular.

Non-attainability for the inviscid equation is naturally studied using the insight from
the theory of maximal backward characteristics ([16,17]), see e.g., [4]. In particular,
we have the following key observation.

Proposition 3.7. Let u1 ∈ BVloc((0, 1)) verifying

∃ x∗ ∈ [0, 1] such that
either 0 < u1(x∗) ≤ x∗,
or − (1 − x∗) ≤ u1(x∗) < 0,

(NA)

where u1(·) (respectively, u1(·)) stands for the left-continuous in x (respectively, right-
continuous in x) representative of the BV function x �→ u1(x). Then, there exists no
local Kruzhkov entropy solution verifying (Pb0

box ) and the terminal datum u(·, 1) =
u1. In other words, u1 ∈ NAL∞,box

1 and for all T > 0, T−1u1 ∈ NAL∞,box
T . In

particular, for all couples (C, T ) ∈ (0,+∞) × R+ verifying |C |T ≤ 1, there holds
C ∈ NAL∞,box

T .
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Proof. We argue by contradiction; let u be a solution of (Pb0
box ) corresponding to the

terminal data u1.We can assumewithout loss of generality that there exists x∗ ∈ (0, 1]
such that u1(x∗) ≤ x∗, where u1 is normalized by the right-continuity in the variable
x ; the case where u1(x∗) ≥ −(1− x∗) and the normalization is by the left-continuity
is fully analogous.
Let u∗ = u1(x∗); we set x∗ = x∗ − u∗ ∈ [0, 1). We draw from the point (1, x∗)

the maximal backward generalized characteristic ([16,17]); it crosses the axis t = 0
at the point x∗, see Fig. 1. It follows from the theory of generalized characteristics that
u(x∗ + tu∗, t) = u(x∗, 1) = u∗ for all t ∈ [0, 1], where we recall that u is normalized
to be right-continuous.
Since u(x, 0) = 0 for x ∈ (0, 1), we reach a contradiction whenever x∗ > 0, which

corresponds to the strict inequality u∗ < x∗. In order to include the special case x∗ = 0,
and also in order to prepare the ground for different extensions of Proposition 3.7 (see
Proposition 4.4 and [6]), we construct an auxiliary local entropy solution ũ of the
Burgers equation as follows. We set for (x, t) ∈ [0, 1] × (0, 1]

ũ(x, t) :=
⎧
⎨

⎩

u(x, t), x ≥ x∗ + tu∗,
(x − x∗)/t, x∗ ≤ x ≤ x∗ + tu∗,
0, x ≤ x∗.

(7)

In particular, ũ is continuous across the lines x = x∗ and x = x∗ + tu∗. Because we
glued continuously three patches and each of them is a Kruzhkov entropy solution
in the corresponding subdomain (a constant, a rarefaction and our solution u, from
the left to the right), according to Remark 3.3, we find that ũ is a local Kruzhkov

Figure 1. Construction of ũ



70 Page 12 of 24 B. Andreianov et al. J. Evol. Equ.

entropy solution on D = (0, 1) × (0, 1). Moreover, ũ assumes zero initial data and
zero boundary data on the left boundary (cf. Remark 3.4).

The finite speed of propagation (recall that ũ ∈ L∞) ensures that ũ should be zero
in some vicinity of the point (x∗, 0), which is contradictory because for all t ∈ (0, 1)
we have u(x∗ + tu∗, t) = u∗ > 0. This contradiction proves the non-existence of u
and the non-attainability of u1 at time T = 1. The remaining claims follow from the
fact that u1 = CT satisfies (NA) when |C |T ≤ 1, and from the scaling observation
(6). �

To formulate in an optimal way our non-attainability results for the viscous Burgers
equations, we will be interested in compact subsets of NAL∞,box

1 with respect to the
weak-* topology of L∞((0, 1)). Below are the main examples we consider.

Remark 3.8. The following subsets of NAL∞,box
1 are weakly-* compact in L∞:

(i) Kα,β :=
{
u : x �→ C

∣∣∣ α ≤ |C | ≤ β
}
, for any given α, β with 0 < α ≤ β ≤ 1;

(ii) K+
E,m(·) :=

{
u ∈ L∞((0, 1))

∣∣∣ ∀x ∈ E m(x) ≤ u(x) ≤ x
}
,

for a given E ⊂ (0, 1) of nonzero Lebesgue measure and a given measurable
m : E → (0, 1];
(iii) K−

E,m(·) :=
{
u ∈ L∞((0, 1))

∣∣∣ ∀x ∈ E − (1 − x) ≤ u(x) ≤ −m(x)
}
, for

(E,m(·)) like in (ii).
In this remark, the fact thatKα,β,K±

E,m(·) ⊂ NAL∞,box
1 follows from Proposition 3.7.

Their weak-∗ precompactness follows from their boundedness; moreover, it is easily
seen that they areweakly-∗ closed. For example, conditionm(x) ≤ u(x) for a.e. x ∈ E
can be rewritten as

for all measurable subsets F of E,

∫

F
m(x) dx ≤

∫

F
u(x) dx

which is stable with respect to the weak-∗ convergence in L∞ because the indicator
function 11F of F belongs to L1((0, 1)). Therefore,Kα,β,K±

E,m(·) are indeed weakly-∗
compact in L∞((0, 1)).

Remark 3.9. It turns out that the sets K̊α,β, K̊±
E,m(·) of Kα,β,K±

E,m(·) defined with

strict inequalities “<” in place of “≤” belong not only to the set NAL∞,box
1 —the set

of states not attainable by classical (bounded) Kruzhkov entropy solutions—but also
to the topological interior of NAL∞,box

1 with respect to the L1 convergence.
This observation will allow us to extend the non-attainability results to unbounded

(L2) entropy solutions of the inviscid Burgers equation, see [6].

3.2. The viscous Burgers equation inherits non-attainability

The key idea of our work is that in the appropriate regime uncovered via the scaling
(Zoom) and under the natural amplification assumptions compatible with this scaling,
the viscous Burgers equation inherits the non-attainability of the inviscid one.
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We start with the following lemma which is a consequence of Proposition 3.7 and
the main technical ingredient of the proof of our main result, Theorem 3.12. The
lemma relies on a standard compensated compactness argument.

Lemma 3.10. Let K be a subset of NAL∞,box
1 compact in the weak-* topology of

L∞((0, 1)). Let L ≥ 1. Then, there exists ε0 = ε0(K, L) > 0 such that for all
ε ∈ (0, ε0) and all u1 ∈ K, the small viscosity Burgers equation

ut + (
u2/2

)
x = εuxx in D = (0, 1) × (0, 1), (Pbε

box )

has no weak solution (in the sense of Definition 2.1, with ε = 1 replaced by ε > 0 in
the diffusion term) with initial data u(·, 0) = 0 and terminal data u(·, 1) = u1 within
the class of functions verifying ‖u‖L∞((0,1)×(0,1)) ≤ L‖u1‖L∞((0,1)).

Remark 3.11. Let us stress that in this and the subsequent results on the viscous Burg-
ers equation, we work with the precise notion of weak solution from Definition 2.1,
meaning in particular that u ∈ L2(0, T ; H1

loc((0, 1))), and such solutions verify the
entropy formulation proper to parabolic conservation laws (cf. [12] for the L∞ theory
and [3] for extensions that cover, in particular, the L2

loc case). This entropy formulation
is an essential tool in ourmethod, due to its linkwith theKruzhkov entropy solutions of
the inviscid Burgers equations and to its central role in the compensated compactness
argument applied below.
While it is obvious that classical solutions of (Pbε

box ) are entropy solutions (and
classical solutions exist in many situations like the pure Cauchy problem, due to the
link between the Burgers equation and the heat equation provided by the Hopf-Cole
formula, see e.g., [17]), it is not clear that merely distributional local solutions of the
Burgers equation are entropy solutions.

Proof of Lemma 3.10. We argue by contradiction. Assuming that the statement is
false, there exists a sequence (which we do not relabel) of values ε converging to zero
and a sequence (uε

1) ⊂ K of terminal data such that problem (Pbε
box ) has a weak solu-

tion uε with zero initial data and the terminal data uε
1 satisfying the desired L

∞ bound.
Due to the assumptionofweak-∗ compactness ofK,we canfind a subsequence (still not
relabelled) such that the corresponding terminal datauε

1 convergeweak-∗ inL∞((0, 1))
to some u1 ∈ K. The associated solutions uε fulfill ‖uε‖L∞((0,1)×(0,1)) ≤ const
because K is bounded and due to the amplification assumption, therefore up to a fur-
ther extraction of a subsequence uε converge weak-∗ in L∞((0, 1) × (0, 1)) to some
function u.
Using the compensated compactness technique and passing to the limit

• in the local entropy inequalities satisfied by uε

• in the weak formulation of (Pbε
box ) including the terminal and the initial data,

we will show that u is a local Kruzhkov entropy solution of (Pb0
box ) with the terminal

data u1; this contradicts the non-attainability of u1 ∈ K ⊂ NAL∞,box
1 .

First, recall that according to Definition 2.1 weak solutions of the viscous Burgers
equation satisfy the associated local entropy inequalities. Moreover, the uniform L∞
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bound on uε implies the uniform L1
loc((0, 1) × (0, 1)) bound on ε|uε

x |2. Indeed, for
compact sets of the form Kδ = [δ, 1 − δ] × [δ, 1 − δ] ⊂ (0, 1) × (0, 1) choose a test
function ξ ∈ C∞

c ((0, 1) × (0, 1)) such that ξ ≡ 1 on Kδ and 0 ≤ ξ ≤ 1. Recall that
arbitrary convex functions can be approximated in the locally uniform sense by linear
combinations of I d and Kruzhkov entropies | · −k|. Applying this approximation to
the convex entropy η : u �→ u2/2, with the associated entropy flux q : u �→ u3/3, we
find that the entropy formulation of the type (2) (written for ε > 0 in place of ε = 1)
implies

ε

∫ ∫

K
|uε

x |2 dx dt ≤ ε

∫ 1

0

∫ 1

0
|uε

x |2ξ dx dt

=
∫ 1

0

∫ 1

0

1

2
(uε)2ξt + (uε)3

3
ξx + 1

2
ε(uε)2ξxx dx dt. (8)

But (uε) is bounded in L∞((0, 1) × (0, 1)) so that (ε|uε
x |2) is indeed bounded in

L1(Kδ); δ > 0 being arbitrary, the claim of L1
loc((0, 1) × (0, 1)) boundedness is

justified.
With these ingredients at hand, standard application of the compensated compact-

ness method (see e.g., [31, Sect. 9.2]) guarantees that (uε) converges to u a.e. on
(0, 1) × (0, 1) as ε → 0. Using again the above L1

loc((0, 1) × (0, 1)) bound on ε|uε
x |2

to make the diffusion term vanish in the limit ε → 0, we find that u fulfils the local
entropy formulation (3) of (Pb0

box ).
As for the terminal data, for ε > 0, we write the weak formulation analogous to

(1) (it is contained in Definition 2.1); we pass to the limit in the latter, using the a.e.
convergence in the integrals over (0, 1) × (0, 1) and using the weak-∗ convergence in
the linear in uε

1 term accounting for the terminal data. The proof is complete. �

We are now in a position to state and prove our central result in the setting of
uniformly bounded weak solutions to problem (Pbbox ).

Theorem 3.12. Let K be a subset of NAL∞,box
1 compact in the weak-* topology of

L∞((0, 1)). Let L ≥ 1. Then, there exists a constant ε0 > 0 (depending on K and L
only) such that for all couples (T, uT ) ∈ (0,∞) × L∞((0, 1)) satisfying T uT ∈ K,
T ≤ ε0 problem (Pbbox ) has no weak solution—in the sense of Definition 2.1—
satisfying the amplification assumption

‖u‖L∞((0,1)×(0,T )) ≤ L‖uT ‖L∞((0,1)). (9)

The simplest way to interpret this uniform (over states inK) non-attainability result
is to particularize it to singletonsK = {uT }. Then, Theorem 3.12 provides information
on no-attainability of profilesw with the shape prescribed by the shape of uT (namely,
w = T−1uT ), the amplitude of w being entangled with the non-attainability times T .
In particular, we will do so for constant profiles in Corollary 3.16.
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Remark 3.13. Note that given K, the non-attainability times T for uT ∈ T−1K are
small. Let us stress that due to this fact, the associated non-attainable data in Theo-
rem 3.12 are somewhat large; indeed, uT ∈ T−1K, being understood that the targets
in the weakly-∗ compact subset K ofNAL∞,box

1 satisfy dist(K, 0) > 0 due to the fact

that 0 /∈ NAL∞,box
1 .

Remark 3.14. We underline that in Theorem 3.12, we assume that the solutions are
not too large in the L∞ norm (compared to the L∞ norm of the desired terminal data),
and we assume that the solutions are weak (and not merely very weak) solutions. In
the sequel [6] of the paper, we will get closer to the pure L2 setting suggested in [13];
however, some a priori bound on the size of the desired solutions (measured via the
amplification constant L) will always be required.

Proof of Theorem 3.12. It is enough to scale a solution of (BE) with terminal data
u(·, T ) = uT , uT ∈ T−1K, by (Zoom) with ε = T ; we need T ≤ ε0 in order to apply
Lemma 3.10. It is easily checked that uε = Sε(u) solves (Pbε

box ) (also in the weak
sense) on the time interval (0, 1). Also note that the amplification assumption (9) is
invariant under this scaling. �

Now, we concentrate on the case of constant solutions addressed in (Q); to do so,
we apply Theorem 3.12 to the sets Kα,β defined in Remark 3.8(i) and we employ the
following elementary observation:

Lemma 3.15. If a constant state C is non-attainable at time T by weak solutions of
(Pbbox ) verifying the amplification restriction ‖u‖L∞((0,1)×(0,T )) ≤ L|C |, then for all
T ′ < T the stateC remains non-attainable, under the restriction ‖u‖L∞((0,1)×(0,T ′)) ≤
L|C |.
Proof. Arguing by contradiction, one assumes that u(·, T ′) = C for some T ′ < T .
Gluing continuously u on the time interval [0, T ′] and the constant function C on the
time interval [T ′, T ], we find that the resulting function is a weak solution to (Pbbox )
with terminal state C ; moreover, the amplification restriction at time T is inherited
from the one that was assumed at time T ′. �

Combining specific choices ofK (Remark3.8(i)) inTheorem3.12withLemma3.15,
we find the following partial negative answer to (the quantitative version of) the ques-
tion (Q) in the L∞ setting. We provide two closely related formulations, the first one
focusing on individual states and their guaranteed non-attainability times, the second
one highlighting the fact that the result naturally applies to non-attainability of families
of target states.

Corollary 3.16. Fix L ≥ 1 and consider problem (Pbbox ) under the amplification
assumption (9).

(i) (non-attainability of individual constant states)
There exists C0 = C0(L) such that whenever |C | ≥ C0, the state C is non-
attainable at all times T ∈ [0, 1/|C |].
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(ii) (non-attainability of families of constant states at a given time)
Given α ∈ (0, 1] there exists ε0 = ε0(α, L) such that for all T ≤ ε0 and all
C with αT−1 ≤ |C | ≤ T−1, C is not attainable at time T (as well as at any
smaller time).

Proof. (i) Theorem 3.12 yields, for K := K1,1 = {1}, the existence of ε0 = ε0(L)

such that for T ≤ ε0, the constant state C = T−1 is not attainable at time T ; in
addition, Lemma 3.15 ensures that this state is not attainable at any smaller time.
Setting C0 = C0(L) := 1/ε0(L), we infer claim (i).
(ii) Theorem 3.12 yields, for K := Kα,1, the existence of ε0 = ε0(α, L) such that for
T ≤ ε0, the constant states C with CT ∈ Kα,1—i.e., C such that α ≤ |C |T ≤ 1—are
not attainable at time T . Fixing a value T ≤ ε0 we find non-attainable states C at this
time; then by Lemma 3.15 these states are also not attainable at any time smaller than
T . This proves claim (ii). �

Remark 3.17. If instead of taking K := K1,1 = {1} we take K := Kβ,β = {β} for
some 0 < β < 1, it is not difficult to see that we find a smaller threshold C0 in
Corollary 3.16(i). However, in this case the intervals of non-attainability for the target
C take the form [0, β/|C |] which makes them shorter.

To conclude this paper, let us refine the above result of non-attainability by L∞
solutions.

4. Some extensions of the non-attainability results by bounded solutions

Within the L∞ interpretation of (Q), in Sect. 4.1 we address the strip setting
(Pbstrip); then in Sect. 4.2, we point out the non-optimality of the restriction T |C | ≤ 1
in our non-attainability results.

4.1. Non-attainability by bounded solutions in the strip

We start by extending the non-attainability results to the simpler variant of problem
(BE), namely for the case D = R×(0, 1).We introduce the setNAL∞,strip

1 by analogy

withNAL∞,box
1 , replacing in (5) “solutions to (Pb0

box )” by “solutions to (Pb0
strip)”. It

is obvious that states uT on (0, 1) non attainable at time T by L∞((0, 1)×(0, T ))weak
solutions of the viscous Burgers equation are also non-attainable by L∞(R × (0, T ))

weak solutions, i.e.,
∀T > 0 NAL∞,box

T ⊂ NAL∞,strip
T ; (10)

also note that the scaling property (6) extends to the strip case.
The strip setting (Pbstrip) is a pure initial-value problem, therefore it is simpler

than (Pbbox ) in many respects. However, note that Lemma 3.15 does not extend to the
strip setting. We state the results analogous to Theorem 3.12 and Corollary 3.16 as a
reference point for subsequent refinements (see Corollary 4.3 in the next paragraph
and further refinements in [6]). Its proof follows the lines of the proofs in Sect. 3.2.
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Theorem 4.1. Let K be a subset of NAL∞,strip
1 compact in the weak-* topology of

L∞((0, 1)). Let L ≥ 1. Then, there exists a constant ε0 > 0 (depending on K and L
only) such that for all couples (T, uT ) ∈ (0,+∞) ×L∞((0, 1)) satisfying T uT ∈ K,
T ≤ ε0 there exist no initial data satisfying

‖u0‖L∞(R) ≤ L‖uT ‖L∞((0,1)) (11)

such that the problem (Pbstrip) admits a weak solution in the sense of Definition 2.1.
In particular, for given α ∈ (0, 1] there exists ε0 = ε0(α, L) such that for all

T ≤ ε0 and all C with αT−1 ≤ |C | ≤ T−1, the constant state C is not attainable
at time T for problem (Pbstrip) with initial data fulfilling the amplification restriction
‖u0‖L∞(R) ≤ L|C |.

The latter conclusion gives a partial negative answer to (the quantitative version of)
(Q) in the strip setting. Note that it can also be reformulated as follows: given L ≥ 1
and α ∈ (0, 1], setting C0 = C0(α, L) := 1/ε0(α, L), there holds the following:

for all C with |C | ≥ C0, the constant target state uT (·) = C is not attainable

by weak solutions of (Pbstrip) under the restriction (11) at any T ∈ [
α|C |−1, |C |−1].

(12)

Note that we cannot extend the non-attainability to times smaller than α/|C | because
we don’t have the conclusion of Lemma 3.15 in the strip setting.

4.2. Non-attainability for some T > 1/|C |

It may seem from the proof of Proposition 3.7 that the non-attainability at T = 1
argument is limited to constantsC ≤ 1 (so that the scaling procedure yields the restric-
tion T ≤ 1/|C | in the context of Theorem 3.12, Corollary 3.16, Theorem 4.1) because
they are based upon Proposition 3.7. Let us point out that this restriction is not sharp.
This condition can be weakened due to our introduction of amplification conditions
(9), (11) in the context of problems (Pbbox ), (Pbstrip), respectively. Imposing the anal-
ogous restrictions in the inviscid setting, in the case L = 1 (no amplification), we can
extend the result of non-attainability at time T = 1 in Proposition 3.7 to constants C
with 0 < |C | < 2, in place of 0 < |C | ≤ 1. More generally, for the case of constant
targets, we have the following observation.

Proposition 4.2. Let L ≥ 1 be given. For all C �= 0 with |C | < 1 + �, � = L−2,
there exists no local Kruzhkov entropy solution verifying (Pb0

box ), the terminal data
u(·, 1) = C and the amplification restriction (9).

In the case of problem (Pb0
strip), the analogous result (under the amplification

restriction (11)) holds with the even larger value of �, namely � = (2L − 1)−1.

Proof. We give the proof in the box setting. The strip setting is similar and we only
sketch the argument. We divide the proof for (Pb0

box ) into two parts. First, we address
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the elementary case L = 1 and develop the argument based upon the comparison (see
Remark 3.5) with an obvious reference solution. Next, we consider L > 1 where the
construction of an adequate reference solution and an analogous comparison argument
yields the desired result. It is enough to consider positive constantsC , the case ofC < 0
being completely analogous (upon exchanging the role of the two boundaries x = 0,
x = 1).
In the case L = 1, the function uref(x, t) = C for 0 ≤ x < Ct/2, u = 0 otherwise,

is an obvious solution to (Pb0
box ) and it attains the terminal data uT (·, T ) = C in

(0, 1) if and only if CT ≥ 2. For any smaller time T , there holds uref(x, T ) = 0 < C
for x ∈ (CT/2, 1). Now, observe that uref solves the Cauchy–Dirichlet problem in
(0, 1) × (0, T ) with initial data u0 = 0 and boundary data b0 = C (the Dirichlet
datum at x = 0+), b1 = C (the Dirichlet datum at x = 1−), the boundary data being
assumed in the Bardos–LeRoux–Nédélec [9] sense, see Remark 3.4. In the sequel, we
rescale this solution to fit our reference setting T = 1; this ensures that for C < 2,
uref(·, 1) = 0 < C in (C/2, 1).

Now, fix 0 < C < 2 and take any local Kruzhkov entropy solution u of (2)
attaining the terminal data C at time T ; according to Remark 3.4, it corresponds to
some boundary data b0, b1 which are [−C,C]-valued due to the restriction (9) and
our assumption L = 1. The comparison principle (Remark 3.5) for Cauchy–Dirichlet
problems yields C = u(·, 1) ≤ uref(·, 1) which is a contradiction on the interval
(C/2, 1). This proves the claim for L = 1.

Now, we address the case L > 1. Let us indicate the reference solution which
achieves the final constant state C precisely at the critical time T = 1; it corresponds
to the critical value C = 1 + L−2 and takes the following form. Introduce δ =
1 − 1/C = 1/(1 + L2), and define the following curves in (0, 1) × (0, 1):

�1 := {(x, t) | δ ≤ t ≤ 1, x = C(t − δ)},
�2 := {(x, t) | δ ≤ t ≤ 2δ, x = LC(t − δ)},
�3 := {(x, t) | 0 ≤ t ≤ 2δ, x = LCt/2},
�4 := {(x, t) | 2δ ≤ t ≤ 1, x = LC(δ(t − δ))

1
2 }.

Note that the choices C = 1+L−2, δ = 1− 1/C ensure that �1 meets �4 at the point
(x, t) = (1, 1).

Then (see Fig. 2), we set uref = C above �1, uref(x, t) = x/(t − δ) between �1

and �2 ∪ �4, uref = LC between �2 and �3, and uref = 0 below �3 ∪ �4. It is easily
checked that uref is a local Kruzhkov entropy solution to (Pb0

box ), in particular, the
Rankine–Hugoniot and the entropy admissibility conditions on �3 ∪ �4 hold true.

It is also easy to verify that for anyC < 1+L−2 the solution constructed in the same
way (somewhat abusively, we will keep the notation uref for this solution) exhibits
a crossing of �1 and �4 before T = 1, and therefore it attains some state uref(·, 1)
which takes zero values in a vicinity of x = 1. It also assumes the boundary condition
b1 = LC at x = 1− in the BLN sense.
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Figure 2. Solution uref to (Pb0
strip) in the critical caseC = 1+L−2,

L > 1

Nowby applying themaximumprinciple,we conclude that any solution u to (Pb0
box )

with u(·, T ) = C actually lies below uref . Recalling Remark 3.4(ii), let b0, b1 be
boundary data that lead to a local Kruzhkov entropy solution to (Pb0

box ) with terminal
data C at T = 1, then b0(t) = C on (1 − 1/C, 1) (this follows by the backward
characteristics construction [16]) and b0 ≤ LC on (0, 1 − 1/C), b1 ≤ LC on (0, 1)
due to assumption (9). Thus, uref corresponds exactly to the largest possible boundary
data; yet in a vicinity of x = 1, its terminal state lies strictly below the target state, so
also u(·, 1) cannot achieve the target state C . This proves that states C < 1+L−2 are
not attainable for (Pb0

box ).
As for problem (Pb0

strip), the initial data leading to the reference solution uref are
given by u0,ref = 0 for x ∈ (0, 1), u0,ref = C for x ∈ (−∞, 1 − C), u0,ref = LC for
x ∈ (1 − C, 0) ∪ (1,+∞). With the choice C = 1 + (2L − 1)−1, the shock starting
from the point (0, 0) encounters the rarefaction starting from the point (1 − C, 0)
at (C − 1, 2(C − 1)/(LC)), crosses the rarefaction and gets out of the rarefaction
precisely at the point (1, 1), quite similarly to what happens in Fig. 2. For any smaller
value of C , the shock crosses the rarefaction before T = 1 and therefore leads to a
reference solution with uref(x, 1) = 0 in some vicinity of x = 1.
To conclude using the maximum principle as above, we have to remark first that, if

we know that a Kruzhkov entropy solution u assumes the target datumC for x ∈ (0, 1)
and T = 1, then the values of u0 for x < −C do not influence the values of u in the
domain {(x, t) | x > C(t − 1)}, because the boundary of this domain is a maximal
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backward generalized characteristic for the solution. For x > −C , the initial data
u0,ref taken to generate uref are the largest ones compatible with the reconstruction of
u0 in (−C, 1 − C) by backward characteristics, with the requirement u(·, 0) = 0 in
(0, 1) and with the amplification constraint (11). �

Using Proposition 4.2 in place of Proposition 3.7, following the same strategies of
proof as in Sect. 3.2, we can improve the result of Corollary 3.16(i) by extending the
interval of non-attainability times T by the factor (1 + �), � = L−2 ∈ (0, 1):

Corollary 4.3. Let L ≥ 1and restrict attention toweak solutions of (Pbbox ) that verify
the amplification restriction ‖u‖L∞((0,1)×(0,T )) ≤ L|C |. There existsC0 = C0(L) such
that whenever |C | ≥ C0, the state C is non-attainable at all times T ∈ [0, (1+�)/|C |]
with � = L−2.
Similarly, the last conclusion of Theorem 4.1 for problem (Pbstrip) holds for con-

stants C satisfying the weaker restriction αT−1 ≤ |C | < (1 + �)T−1, � =
(2L − 1)−1, while the non-attainability of large individual constants C in (12) can be
extended to T ∈ [

α|C |−1, (1 + �)T−1
)
.

For more general target data, we have the following variant of Proposition 3.7. For
simplicity, we formulate it for the inviscid Burgers problem in the strip and only for
half of the cases covered by assumption (NA).

Proposition 4.4. Let L , M ≥ 1 and m > 0 be given. Consider target states u1 ∈
BVloc((0, 1)), normalized by right-continuity, verifying

∃ x∗ ∈ (0, 1] such that m ≤ u1(x∗) ≤ (1 + �)x∗
and moreover, ‖u1‖∞ ≤ Mu1(x∗).

Assume that � < m(2LM(LM + 1))−1. Then, there exists no Kruzhkov entropy
solution verifying (Pb0

strip), the terminal data u(·, 1) = u1 in (0, 1) and the bound
‖u‖∞ ≤ L‖u1‖∞.

Proof. We write u∗ = u1(x∗) and conduct the construction of the proof of Proposi-
tion 3.7, being understood that this time, x∗ = 1 − u∗ can be negative. In the sequel,
we assume that x∗ is negative, since otherwise the contradiction is readily given by the
argument of Proposition 3.7. We define ũ by (7), but this time for all x ∈ R. Define t̄
by the relation x∗ + u∗ t̄ = 1 − LMu∗ t̄ ; this yields

t̄ = 1 − x∗
LMu∗ + u∗ = 1

LM + 1
,

keeping inmind that 1−x∗ = u∗. Set x̄ = x∗+u∗ t̄ ; we refer to Fig. 3 for the geometric
interpretation of the point (x̄, t̄).
In view of the bound ‖ũ‖∞ ≤ ‖u‖∞ ≤ LMu∗, the classical Kruzhkov propagation

estimates [24] imply in particular that

∫ x̃

−∞
|ũ(x, t̄)| dx ≤

∫ 1

−∞
|ũ(x, 0)| dx .
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Figure 3. Construction of the point (x̄, t̄) in the proof of Proposi-
tion 4.4

The expression (7) of ũ being explicit for t = t̄ , x ∈ (−∞, x̄), the calculation of the
left-hand side of the above inequality, bearing in mind the bound |ũ0(x)| = |u(x)| ≤
L‖u1‖∞ for x ∈ (x∗, 0), yields

(u∗)2

2(LM + 1)
= (u∗)2 t̄

2
=

∫ x∗+u∗ t̄

x∗

x − x∗
t̄

dx ≤
∫ 0

x∗
|ũ(x, 0)| ≤ LMu∗|x∗|

= LMu∗(u∗ − 1) ≤ LMu∗�.

Because u∗ ≥ 0, this leads to a contradiction as soon as 2LM(LM + 1)� < m. �

Note that a qualitatively analogous to Proposition 4.4 result can be formulated for
the problem (Pb0

box ); but the explicit bound for� in terms of L , M,m is more delicate
to compute because the control of the L1 normof the solution in terms of the L1 normof
the boundary data makes the Lipschitz constant of f : u �→ u2/2 on [−‖u‖∞, ‖u‖∞]
to appear (cf. the stability estimate in [30]). We will not pursue this further.
Using Proposition 4.4 in place of Proposition 3.7, following the same strategy of

proof as in Sect. 3.2, one can improve the results of Theorem 4.1 by requiring that

T (1 + �)uT ∈ K, � < m(2LM(LM + 1))−1,

provided K consists of states verifying (4.4).

Remark 4.5. While we do not pursue the goal of giving optimal statements in this
and related situations, let us stress that the case |C | = T−1 (that appeared as critical
in the non-attainability statements of Sect. 3.2) is actually situated in the interior of
the non-attainable (under amplification restrictions!) set, and not on its boundary (cf.
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Remark 3.9); the same is true at least for terminal states uT ∈ NAL∞,box
T having the

shape (4.4) and the amplitude T−1. This fact will also become important in the sequel
of this paper [6].
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