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Abstract. In this paper, we prove the existence, uniqueness, and exponential stability for a damped nonlinear
wave equation of Kirchhoff type which is defined in whole hyperbolic space BN . Our strategy consists of
changing the problem into a singular problem defined in the unitary ball ofRN endowed with the Euclidean
metric. One difficulty is to prove the existence of solution and the Faedo–Galerkinmethodwas ourmain tool.
It is well known that when we deal with the Kirchhoff model defined in whole space RN , the exponential
stability is not expected. In this work, we prove that, in the hyperbolic space, the problem is exponentially
stable. The main tool to reach the result is to combine the classical Nakao’s techniques with the use of
Hardy inequality.

1. Introduction

In this paper we study the following problem

utt − M

(∫
BN

|∇BN u|2 dV
)

�BN u + δut = 0 in BN × (0,∞), (1)

u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ B
N , (2)

where∇BN and�BN are, respectively, the gradient and the Laplace–Beltrami operator
in the disc model of the hyperbolic space BN ; M : [0,∞) → R is a known function;
u0 and u1 are the initial data and δ is a positive constant.
The space B

N is the unit disc {x ∈ R
N : |x | < 1} of RN endowed with the

Riemannian metric g given by gi j = p2δi j , where p(x) = 2
1−|x |2 and δi j = 1, if i = j

and δi j = 0, if i �= j . The hyperbolic gradient∇BN and the hyperbolic Laplacian�BN

are given by

∇BN u = ∇u

p
and �BN u = p−Ndiv(pN−2∇u) = p−2� + (N − 2)

p
x · ∇, (3)

where · is the standard scalar product in R
N ; and ∇ and � are the usual gradient and

Laplacian of RN . Details can be found in the references [15,16,31,32].
There are large literature concerned with existence, uniqueness, and stability of

Kirchhoff model. We can cite the works of Bae and Nakao [1], Cavalcanti, Domingos

Keywords: Stability, Kirchhoff equation, Hyperbolic space, Unbounded coefficients.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00028-022-00821-7&domain=pdf
http://orcid.org/0000-0001-6404-326X


67 Page 2 of 25 P. C. Carrião And A. Vicente J. Evol. Equ.

Cavalcanti and Soriano [10], Cavalcanti et al. [11,12], Ghisi [17,18], Louredo and
Miranda [21], Miranda and Jutuca [22], Miranda, Louredo and Medeiros [23], Perla
Menzala [19], Ono [27–29], Nishihara [26], Yamada [33], and references therein.
We would like to emphasize the work of Miranda and Jutuca [22] where the authors

proved the existence, uniqueness and decay for the problem with boundary damping.
Precisely, they studied the problem

utt − M

(
t,

∫
�

|∇u|2 dx
)

�u = 0 in � × (0,∞), (4)

u = 0 on �0 × (0,∞), (5)
∂u

∂ν
+ δut = 0 on �1 × (0,∞), (6)

u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ �, (7)

where the domain� is an open and bounded subset ofRN and its boundary is given by
� = �0 ∪�1. To prove the existence of solution, the authors used fixed point theorem
combined with the use of Faedo–Galerkin method. They proved the exponential decay
for the strong energy associated to the problem.
In [10], Cavalcanti, Domingos Cavalcanti and Soriano extended the results of Mi-

randa and Jutuca [22] to the nonlinear case. Precisely, they studied the problem

utt − M

(
t,

∫
�

|∇u|2 dx
)

�u = 0 in � × (0,∞), (8)

u = 0 on �0 × (0,∞), (9)
∂u

∂ν
+ g(ut ) = 0 on �1 × (0,∞), (10)

u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ �, (11)

where the domain � is an open, bounded star-shaped subset of RN and its boundary
is given by � = �0 ∪ �1. The authors proved the existence and uniqueness of regular
solutions without the classical assumption involving the smallness on the initial data.
When the domain is whole space RN , there are some additional difficulties and the

exponential stabilization is not expected. In fact, it is well known that an ingredient
to prove the exponential stability (without restriction on the initial data) is to use the
Poincaré inequality, which does not hold in whole RN . In this direction, we can cite
the work of Ono [30], where the author proved that the energy decays with polynomial
rate.
Recently Dias Silva, Pitot, and Vicente [14] studied the Kirchhoff equation defined

on whole R
N space. Inspired on work of Bjorland and Schonbek [2], they defined

suitable Hilbert spaces V , H and an operator A = −� by the triple {V, H, a(u, v)},
where a(u, v) is a bilinear, continuous and coercive form defined in V . This strategy
allows the authors to prove that the energy decays exponentially.
On the other hand, studies involving the wave equation defined in whole hyperbolic

space can be found in [34], where Wang, Ning, and Yang considered the following
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problem

utt − �gu + a(x)ut = 0 inHN × (0,∞), (12)

u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ H
N , (13)

where �g is the Laplace–Beltrami operator in H
N . Using multiplier methods and

compactness-uniqueness arguments, they proved the exponential stabilization. An im-
portant tool to prove the stability of (12)–(13) is the following Poincaré inequality∫

HN
u2 dxg ≤ C

∫
HN

|∇gu|2g dxg, (14)

for u ∈ H1(HN ), where∇g is the gradient operator associated to the Riemannian met-
ric g. As described before, in wholeRN the inequality above does not hold. Therefore,
it is not possible to prove the exponential stability without restriction on the initial
data.
Another way to prove the exponential stability of wave equation defined in B

N

was proved by Carrião, Miyagaki, and Vicente [9]. Indeed, the authors considered the
semilinear problem with localized damping

utt − �BN u + f (u) + a(x)ut = 0 in BN × (0,∞), (15)

u(x, 0) = u0(x), ut (x, 0) = u1(x) for x ∈ B
N , (16)

where a, f , u0 and u1 are known functions and�BN is the Laplace–Beltrami operator

in the disc model of the Hyperbolic BN . Making the appropriate change v := p
N−2
2 u,

we have that u satisfies (15)–(16) if, and only if, v satisfies the following singular
problem

p2vt t − �v + β0 p
2v + p

N+2
2 f (p− N

2 +1v) + a(x)p2vt = 0 in B1 × (0, ∞), (17)

v(x, 0) = v0(x), vt (x, 0) = v1(x) for x ∈ B1, (18)

where β0 = N (N−2)
4 and B1 is the unit disc {x ∈ R

N : |x | < 1} of RN endowed
with the Euclidean metric. Therefore, the authors worked with (17)–(18) which is a
singular problem in B1. To overcome the difficulty of deal with the singularities, they
used the Hardy inequality, in a version due to the Brezis and Marcus [4] and Brezis,
Marcus, and Shafrir [5]. To best of our knowledge, the technique used by Carrião,
Miyagaki, and Vicente [9] is new in the context of hyperbolic equations. Before that,
only elliptic equations were studied with this tool. See Carrião et al. [6–8].

As described before, the main tool used in [9] is Hardy’s inequality. Precisely, using
this inequality, it is possible to prove that∫

B1
p2w2 dx ≤ C

∫
B1

|∇w|2 dx, (19)

for all w ∈ H1
0 (B1), which is a kind of Poincaré’s inequality with a weight p. This

inequality is shown in Lemma 1 and it will be used many times in the paper.
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We also would like to cite the work of Bortot et al. [3], where they studied the
Klein Gordon equation, subject to a nonlinear and localized damping, in a complete
and non-compact Riemannian manifold without boundary. Precisely, they studied the
problem

utt − �u + f (u) + a(x)g(ut ) = 0 inM × (0,∞), (20)

u(x, 0) = u0(x), ut (x, 0) = u1(x) for x ∈ M, (21)

where M (endowed with a Riemannian metric) is a complete and non-compact N
dimensional Riemannian manifold without boundary and � denotes the Laplace–
Beltrami operator. The function a, responsible by the damping localization, acts in
M \ �, where � is an arbitrary open and bounded set inM.
In the present paper, we use the strategy of [9] to change the original problem into

a singular problem. Therefore, defining v := p
N−2
2 u and observing (3), we have that

u satisfies (1)–(2) if, and only if, v satisfies the following singular problem

p2vt t − M (λ(t))
(
�v − β0 p

2v
)

+ δp2vt = 0 in B1 × (0,∞), (22)

v = 0 on ∂B1 × (0,∞), (23)

v(x, 0) = v0(x), vt (x, 0) = v1(x) for x ∈ B1, (24)

where β0 = N (N−2)
4 and B1 is the unit disc {x ∈ R

N : |x | < 1} of RN endowed with
the Euclidean metric and

λ(t) =
∫
B1

(
|∇v|2 − (N − 2)〈∇v, xpv〉 +

(
N − 2

2

)2

p2v2|x |2
)
dx . (25)

We work, equivalently, with (22)–(24) which is a singular problem in B1. Therefore,
since p(s) → ∞, as |s| → 1, the difficulty of deal with the wave equation in whole
space BN is replaced by the difficulty of deal with a singular problem in B1.
The main goal of the present paper is bring the technique used by Carrião, Miyaga-

ki, and Vicente [9] and Carrião et al. [6–8] to the context of Kirchhoff equation. This
strategy allows us to prove that the energy associated to the problem decay exponen-
tially.
The main technical difficulty of the present paper is to control the singularities. It is

well known thatwhenKirchhoff equation is in place, it is not possible to use semigroups
techniques to prove the existence of solution. In the RN case many authors have been
used fixed point methods and Faedo–Galerkin method. But, due to the presence of
singularities, someusual calculus does not hold here and it is necessary some additional
arguments. Indeed, when the Kirchhoff model is considered in a domain � ofRN it is
usual to use Faedo–Galerkin method with special bases (given by eigenvector of the
Laplace operator). This allows to estimate the norm of the sequence of approximate
solution in the space L∞(0, T ; H1

0 (�)∩H2(�)). But, the singularities does not allow
us to take the same way. This difficult can be seen in the proof of the existence of
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solution. To overcome this problem, it is necessary to make four estimates. It will be
clarified in Sect. 4.

Our paper is organized as follows. In Sect. 2 we present the notation, assumptions,
and preliminaries.We also enunciate the theoremwhich gives the exponential stability.
Moreover, we enunciate a result which gives the existence and uniqueness of solution.
The stability is proved in Sect. 3. In Sect. 4 we prove the existence and uniqueness of
solution.

2. Preliminaries and main result

As described in the introduction, in this section we establish some notations and
the main result. We also enunciate the tool which is the main novelty in the context of
class of Kirchhoff equations, a class of Hardy inequality. This inequality is used many
times into the paper. The reader can see that Lemma 1 is called many times through
the paper.
Thus, we start defining some usual spaces. Let L2(B1) be endowed with the norm

and inner product

‖u‖2 =
(∫

B1
u2 dx

) 1
2

and (u, v) =
∫
B1

uv dx .

In the space H1
0 (B1) we consider the norm and inner product defined by

‖u‖H1
0 (B1)

= ‖∇u‖2 and (u, v) =
∫
B1

∇u · ∇v dx .

Now, we enunciate the Lemma 1, which gives us a Hardy inequality class and, after
this, the classical Nakao’s Lemma.

Lemma 1. There exists a positive constant CH such that the following inequality
holds ∫

B1
p2w2 dx ≤ C2

H

∫
B1

|∇w|2 dx, (26)

for all w ∈ H1
0 (B1).

Proof. See Carrião, Miyagaki, and Vicente [9]. See also Carrião et al. [6–8].
It is well known that Nakao’s lemma is an important tool to prove the stability to

problems involving the Kirchhoff equation. Below, we enunciate the lemma whose
proof can be found in Nakao [24,25]. �

Lemma 2. (Nakao’s Lemma) Let φ : [0,∞) → [0,∞) be a bounded function satis-
fying

sup
t≤s≤t+1

φ(s) ≤ C0(φ(t) − φ(t + 1)), (27)
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for t ≥ 0, where C0 is a positive constant. Then, it holds

φ(t) ≤ θ1e
−θ2t (28)

for all t ≥ 0, where θ1 and θ2 are positive real number which depends on known
constants.

Now, it is important to observe that, from the inequality

(N − 2)〈∇v, xpv〉 ≤ |∇v|2 +
(
N − 2

2

)2

p2v2|x |2

we infer that

λ(t) ≥ 0, for all t ≥ 0.

Thus, we have the control in the sign of λ(t), but we do not control the sign of each
term of λ(t), and it is one difficulty that needs being overcome.

Throughout this paper, we denote the specific constants by C1,C2, . . . and the
generic ones only by C .
Below, we enunciate two assumptions. The first involves the function M and the

second one is called into the literature of assumption of small initial data, and it is well
used in the context of Kirchhoff models.

Assumption 1. M : [0,∞) → (0,∞) is an increasing and continuously differen-
tiable function. There exist positive constants m0, C1 and a real number q ≥ 1 such
that

0 < m0 ≤ M(s), for all s ∈ [0,∞) (29)

and

|M(s)| ≤ C1|s|q , for all s ∈ [1,∞). (30)

Thus, it holds

|M(s)| ≤ C1(1 + |s|q), for all s ∈ [0,∞). (31)

We define the energy associated to the problem (22)–(24) by

E(t) =
∫
B1

p2v2t dV + M (λ(t)) , (32)

where

M(s) =
∫ s

0
M(ξ) dξ. (33)

We also define the following auxiliary functional


(t) = E(t) + δ

2

∫
B1

p2vtv dx + δ2

4

∫
B1

p2v2 dx . (34)
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Assumption 2. We suppose that the initial data (v0, v1) ∈ H1
0 (B1) ∩ H2(B1) ×

H1
0 (B1) satisfy

max
{
C2,C3


q(0)
}

< δ, (35)

where

C2 = 4C1C6√
m0

, C3 =
√
2C2

2mq
0

, (36)

here

C6 = (N − 2)(N + 5)CH

2
+ 2(N − 2).

To prove the stability of the problem, we need working with 
(t) instead of E(t).
First, we observe that

∣∣∣∣ δ2
∫
B1

p2vtv dx

∣∣∣∣ ≤ 1

2

∫
B1

p2v2t dx + δ2

8

∫
B1

p2v2 dx . (37)

Thus,

δ

2

∫
B1

p2vtv dx ≥ −1

2

∫
B1

p2v2t dx − δ2

8

∫
B1

p2v2 dx . (38)

We also have

M (λ(t)) ≥ m0λ(t) ≥ 0, (39)

for all t ≥ 0.
Thus, we infer


(t) ≥ 1

2

∫
B1

p2v2t dx + M (λ(t)) + δ2

8

∫
B1

p2v2 dx . (40)

Therefore,


(t) ≥ 1

2

[∫
B1

p2v2t dx + M (λ(t))

]
= 1

2
E(t). (41)

From (41), we see that to show that the energy associated to (22)–(24) decay ex-
ponentially, it is enough to prove that there exist positive constants α1 and α2 such
that


(t) ≤ α1e
−α2t , (42)

for all t ≥ 0. Therefore, we can enunciate the following result which gives us the
exponential decay for the energy associated to (22)–(24).
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Theorem 1. Assume that Assumptions 1 and 2 hold. Let v be a solution of (22)–(24)
in the class

v ∈ L∞(0, T ; H1
0 (B1) ∩ H2(B1)), vt ∈ L∞(0, T ; H1

0 (B1)),

pvt t ∈ L∞(0, T ; L2(B1)).
(43)

Then there exist positive constants α1 and α2 such that


(t) ≤ α1e
−α2t , for all t ≥ 0. (44)

Next task is to establish a result which ensures the existence and uniqueness of
solution to (22)–(24). For this purpose, we need an additional assumption. First, we
define


̃(0) = 
(0) +
[
M0

2

(∫
B1

|�v0|2 dx
) 1

2 + β0M0

(∫
B1

p2|v0|2 dx
) 1

2

+δ

(∫
B1

p2|v1|2 dx
) 1

2
]2

+
∫
B1

|∇v1|2 dx + β0

∫
B1

p2|v1|2
M(λ(0))

dx,

where

M0 = max

0≤s≤
(

δ2m0
8C2

1C
2
6

) 1
2q

|M(s)|.

Thus, we consider the following assumption

Assumption 3. We suppose that the initial data (v0, v1) ∈ H1
0 (B1) ∩ H2(B1) ×

H1
0 (B1) satisfy

C4
̃
1
2 (0) + δC5
̃(0) < δ, (45)

where

C4 = M1
√
L2[8 + 8CH (N − 2) + C2

H (N − 2)2]
m0

and C5 = C2
4

m0
,

here

M1 = max

0≤s≤
(

δ2m0
8C2

1C
2
6

) 1
2q

|M ′(s)|

and

L2 = 2

(
1

m0
+ 3(N − 2)2

4

)

(0)

min
{
1
2 ,

δ2

8

} . (46)
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We observe that it is possible to find δ, M, v0, and v1 such that the Assumptions
2 and 3 hold. Indeed, given M , we can calculate C2 and C3. After this, we choose
δ > C2. Now, as 
(0) and 
̃(0) depend of v0 and v1, it is possible to take a couple

of initial data (v0, v1) sufficiently small such that C3

q(0) and C4
̃

1
2 (0) + δC5
̃(0)

become so small that (35) holds.

Theorem 2. (Existence and uniqueness of solution) If Assumptions 1, 2, and 3 are in
place, then there exists a unique solution of (22)–(24) in the class (43).

3. Exponential decay

In this section, we prove the exponential decay for the energy associated to the
problem (22)–(24). We start with a lemma.

Lemma 3. Let v the solution of (22)–(24) in the class (43). It holds

1

2

d

dt

(t) + δ

4

∫
B1

p2v2t dx + β0m0δ

4

∫
B1

p2v2 dx ≤ 0, (47)

for all t ≥ 0.

Proof. Multiplying (22) by vt and integrating over B1, we have

1

2

d

dt

∫
B1

p2v2t dx + 1

2
M(λ(t))

d

dt

[∫
B1

(
|∇v|2 + β0 p

2v2
)
dx

]

+ δ

∫
B1

p2v2t dx = 0. (48)

�

We observe that

1

2
M(λ(t))

d

dt

[∫
B1

(
|∇v|2 + β0 p

2v2
)
dx

]
= 1

2
M(λ(t))

d

dt
λ(t)

+1

2
M(λ(t))

d

dt

{∫
B1

[(
β0 − β1|x |2

)
p2v2 + (N − 2)〈∇v, xpv〉

]
dx

}

= 1

2

d

dt
M(λ(t))

+1

2
M(λ(t))

d

dt

{∫
B1

[(
β0 − β1|x |2

)
p2v2 + (N − 2)〈∇v, xpv〉

]
dx

}

= 1

2

d

dt
M(λ(t)) + M(λ(t))

{∫
B1

[(
β0 − β1|x |2

)
p2vvt

+ (N − 2)(〈∇v, xpvt 〉 + 〈∇vt , xpv〉)
]
dx

}
. (49)
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Combining (48) with (49), we obtain

1

2

d

dt

[∫
B1

p2|vt |2 dx + M(λ(t))

]
+ δ

∫
B1

p2|vt |2 dx

= −M(λ(t))
{ ∫

B1

[ (
β0 − β1|x |2

)
p2vvt

+(N − 2)(〈∇v, xpvt 〉 + 〈∇vt , xpv〉)
]
dx

}
. (50)

Now, we are going to estimate the right hand side of (50). Using (31), Hölder’s
inequality, and Lemma 1, we have

M(λ(t))
∫
B1

(
β0 − β1|x |2

)
p2vvt dx

≤ C1
(
1 + |λ(t)|q) (β0 + β1)

(∫
B1

p2v2 dx

) 1
2
(∫

B1
p2|vt |2 dx

) 1
2

. (51)

From (51) and using Lemma 1, we infer

M(λ(t))
∫
B1

(
β0 − β1|x |2

)
p2vvt dx

≤ C1
(
1 + |λ(t)|q) (β0 + β1)CH

(∫
B1

|∇v|2 dx
) 1

2
(∫

B1
p2|vt |2 dx

) 1
2

. (52)

Now, from (31) and Hölder’s inequality, we also obtain

M(λ(t))
∫
B1

〈∇v, xpvt 〉 dx

≤ C1
(
1 + |λ(t)|q)

(∫
B1

|∇v|2 dx
) 1

2
(∫

B1
p2|vt |2 dx

) 1
2

. (53)

Using (31), Lemma 1, Gauss’ theorem, and Hölder’s inequality, we have

M(λ(t))
∫
B1

〈∇vt , xpv〉 dx = −M(λ(t))
n∑

i=1

∫
B1

vt
∂(xi pv)

∂xi
dx

= −M(λ(t))
∫
B1

vt

(
p〈x,∇v〉 + p2v|x |2 + pv

)
dx

≤ C1
(
1 + |λ(t)|q)

∫
B1

(
p|vt ||∇v| + p2|vt ||v| + p2

p
|v||vt |

)
dx

≤ C1
(
1 + |λ(t)|q) (1 + 3CH )

(∫
B1

|∇v|2 dx
) 1

2
(∫

B1
p2|vt |2 dx

) 1
2

. (54)

From (50), (52)–(54), we obtain
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1

2

d

dt

[∫
B1

p2|vt |2 dx + M(λ(t))

]
+ δ

∫
B1

p2|vt |2 dx

≤ C1
(
1 + |λ(t)|q)C6

(∫
B1

|∇v|2 dx
) 1

2
(∫

B1
p2|vt |2 dx

) 1
2

, (55)

where

C6 = (N − 2)(N + 5)CH

2
+ 2(N − 2).

On the other hand, multiplying (22) by v, we have∫
B1

p2vt tv dx + M(λ(t))
∫
B1

|∇v|2 dx + β0M(λ(t))
∫
B1

p2v2 dx

+δ

∫
B1

p2vvt dx = 0. (56)

We observe that∫
B1

p2vt tv dx = d

dt

∫
B1

p2vtv dx −
∫
B1

p2|vt |2 dx . (57)

From (56) and (57), we infer

d

dt

[∫
B1

p2vtv dx + δ

2

∫
B1

p2v2 dx

]
−

∫
B1

p2|vt |2 dx + M(λ(t))
∫
B1

|∇v|2 dx

+β0M(λ(t))
∫
B1

p2v2 dx = 0. (58)

Multiplying (58) by δ
4 , adding the resultant equation with (55), and observing the

definition of 
 (see (34)), we have

1

2

d

dt

(t) + 3δ

4

∫
B1

p2|vt |2 dx + δ

4
M(λ(t))

∫
B1

|∇v|2 dx + δβ0

4
M(λ(t))

∫
B1

p2v2 dx

≤ C1C6
(
1 + |λ(t)|q) (∫

B1
|∇v|2 dx

) 1
2

(∫
B1

p2|vt |2 dx
) 1

2
. (59)

From the elementary inequality 2ab ≤ a2 + b2, we have

C1C6

(∫
B1

|∇v|2 dx
) 1

2
(∫

B1
p2|vt |2 dx

) 1
2

≤ C2
1C

2
6

δ

∫
B1

|∇v|2 dx + δ

4

∫
B1

p2|vt |2 dx (60)

and

C1C6|λ(t)|q
(∫

B1
|∇v|2 dx

) 1
2
(∫

B1
p2|vt |2 dx

) 1
2
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≤ m0δ

8

∫
B1

|∇v|2 dx + 2C2
1C

2
6 |λ(t)|2q
m0δ

∫
B1

p2|vt |2 dx . (61)

From (59)–(61), we conclude that

1

2

d

dt

(t) + 1

δ

(
δ2

2
− 2C2

1C
2
6 |λ(t)|2q
m0

)∫
B1

p2|vt |2 dx

+
(

δm0

8
− C2

1C
2
6

δ

)∫
B1

|∇v|2 dx + δm0β0

4

∫
B1

p2v2 dx ≤ 0.

Since δ > C2, we infer

δm0

8
− C2

1C
2
6

δ
>

m0δ

16
.

Therefore,

1

2

d

dt

(t) + 1

δ

(
δ2

2
− 2C2

1C
2
6 |λ(t)|2q
m0

) ∫
B1

p2|vt |2 dx

+δm0

16

∫
B1

|∇v|2 dx + δm0β0

4

∫
B1

p2v2 dx ≤ 0. (62)

As λ(t) ≥ 0, for all t ∈ [0, T ], and 0 < m0 ≤ M(s), for all s ≥ 0, we have

2C2
1C

2
6 |λ(t)|2q
m0

≤ 2C2
1C

2
6 [M(λ(t))]2q
m2q+1

0

, (63)

for all t ∈ [0, T ]. We observe that

− δ

2

∫
B1

p2vtv dx ≤ 1

2

∫
B1

p2|vt |2 dx + δ2

8

∫
B1

p2v2 dx . (64)

Thus,

M(λ(t)) ≤ M(λ(t)) + δ

2

∫
B1

p2vtv dx + 1

2

∫
B1

p2|vt |2 dx + δ2

8

∫
B1

p2v2 dx

≤ 
(t). (65)

Therefore, from (63)–(65), we have

2C2
1C

2
6 |λ(t)|2q
m0

≤ 2C2
1C

2
6


2q(t)

m2q+1
0

, (66)

for all t ∈ [0, T ]. Using (66) and the Assumption 2, we infer

2C2
1C

2
6 |λ(0)|2q
m0

≤ 2C2
1C

2
6


2q(0)

m2q+1
0

<
δ2

4
. (67)
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Next task is to prove that

2C2
1C

2
6 |λ(t)|2q
m0

<
δ2

4
, (68)

for all t ∈ [0, T ]. We suppose that (68) does not hold. From (67) and of the continuity

of the function t �→ 2C2
1C

2
6 |λ(t)|2q
m0

there exists t∗ ∈ (0, T ] such that

2C2
1C

2
6 |λ(t)|2q
m0

<
δ2

4
, (69)

for all t ∈ [0, t∗), and
2C2

1C
2
6 |λ(t∗)|2q
m0

= δ2

4
. (70)

Integrating (62) from 0 to t∗, we have

1

2

[

m(t∗) − 
(0)

] + 1

δ

∫ t∗

0

(
δ2

2
− 2C2

1C
2
6 |λ(t)|2q
m0

) ∫
B1

p2|vt |2 dx dt ≤ 0. (71)

Combining (69) with (71), we obtain


(t∗) ≤ 
(0). (72)

The estimate (63), (65), (72), and the Assumption 2 give us that

2C2
1C

2
6 |λ(t∗)|2q
m0

≤ 2C2
1C

2
6


2q(0)

m2q+1
0

<
δ2

4
, (73)

which is a contradiction with (70). Thus, (68) holds.
Therefore, (62) and (68) allow us to conclude that (47) holds. �

Proof of Theorem. 1. ObservingNakao’s Lemma, it is enough to prove that here exists
a positive constant C such that


(t) ≤ C (
(t) − 
(t + 1)) (74)

for all t ≥ 0.
Thus, let t ≥ 0 be a fixed real number. To simplify the notation, we define F2(t) =


(t) − 
(t + 1). Integrating (47) from t to t + 1, we have
∫ t+1

t

∫
B1

p2v2t dx dt ≤ 2

δ
F2(t), (75)

for all t ≥ 0. Using the mean value theorem for integrals, there exist t1 ∈
[
t, t + 1

4

]

and t2 ∈
[
t + 3

4 , t + 1
]
such that

∫ t+ 1
4

t

∫
B1

p2v2t dx dt = 1

4

∫
B1

p2(x)v2t (x, t1) dx (76)



67 Page 14 of 25 P. C. Carrião And A. Vicente J. Evol. Equ.

and ∫ t+1

t+ 3
4

∫
B1

p2v2t dx dt = 1

4

∫
B1

p2(x)v2t (x, t2) dx . (77)

Thus, (75)–(77) give us
∫
B1

p2(x)v2t (x, t1) dx +
∫
B1

p2(x)v2t (x, t2) dx ≤ 8

δ
F2(t). (78)

On the other hand, multiplying (22) by v and integrating over B1 × (t1, t2), we have

∫ t2

t1
M(λ(t))

∫
B1

[
|∇v|2 + β0 p

2v2
]
dx dt =

∫
B1

p2(x)vt (x, t1)v(x, t1) dx

−
∫
B1

p2(x)vt (x, t2)v(x, t2) dx +
∫ t2

t1

∫
B1

p2v2t dx dt − δ

∫ t2

t1

∫
B1

p2vtv dx dt.

(79)

Using the assumption that M is an increasing function, we obtain

M(λ(t)) =
∫ λ(t)

0
M(ξ) dξ ≤ M(λ(t))λ(t)

= M(λ(t))

[∫
B1

(
|∇v|2 − (N − 2)〈∇v, xpv〉 + β1 p

2v2|x |2
)
dx

]

≤ CM(λ(t))
∫
B1

(
|∇v|2 + p2v2|x |2

)
dx

≤ CM(λ(t))
∫
B1

(
|∇v|2 + N (N − 2)

4
p2v2

)
dx . (80)

From (79) and (80), we have

M(λ(t)) ≤ C

(∫
B1

p2(x)|vt (x, t1)||v(x, t1)| dx +
∫
B1

p2(x)|vt (x, t2)||v(x, t2)| dx

+
∫ t2

t1

∫
B1

p2v2t dx dt + δ

∫ t2

t1

∫
B1

p2|vt ||v| dx dt

)
. (81)

Now, we are going to estimate the right-hand side of (81). Observing (40) and that

 is decreasing (see Lemma 3), we obtain

∫
B1

p2(x)v2(x, ti ) dx ≤ 8

δ2

(ti ) ≤ 8

δ2

(t), (82)

for i = 1, 2.
Using (78), (82), and the elementary inequality 2ab ≤ εa2 + b2

ε
, for each ε > 0,

we have ∫
B1

p2(x)vt (x, ti )v(x, ti ) dx ≤ 4

εδ
F2(t) + 4ε

δ2

(t), (83)
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for i = 1, 2. Using one more time the inequality 2ab ≤ εa2 + b2
ε
and (75), we infer

δ

∫ t2

t1

∫
B1

p2vtv dx dt ≤ δ

2ε

∫ t2

t1

∫
B1

p2v2t dx dt + εδ

2
sup

t≤ξ≤t+1

∫
B1

p2v2 dx

≤ 1

ε
F2(t) + εδ

2

(t). (84)

Since 
 is decreasing, we can use Lemma 3 to conclude that

∫ t2

t1

∫
B1

p2v2 dx dt ≤ 2

δβ0m0
F2(t). (85)

Integrating (34) from t1 to t2, and observing (75), (80), (84), and (85), we have

∫ t2

t1

(t) dt ≤ C(ε)F2(t) + ε

(
8

δ2
+ 3δ

4

)

(t). (86)

Using the mean value theorem for integrals, there exists τ ∗ ∈ [t1, t2] such that

1

2

(τ ∗) ≤ (t2 − t1)
(τ ∗) =

∫ t2

t1

(t) dt. (87)

Combining (86) with (87), we infer


(τ ∗) ≤ C(ε)F2(t) + 2ε

(
8

δ2
+ 3δ

4

)

(t). (88)

Taking the same way of (50) and (58), we infer

1

2

d

dt

(t) + 3δ

4

∫
B1

p2v2t dx + δ

4
M(λ(t))

∫
B1

|∇v|2 dx

+δβ0

4
M(λ(t))

∫
B1

p2v2 dx + M(λ(t))

{∫
B1

[(
N (N − 2)

4
− β1|x |2

)
p2vvt

+(N − 2)(〈∇v, xpvt 〉 + 〈∇vt , xpv〉)
]
dx

}
= 0. (89)

Integrating (89) from t to τ ∗ and, after this, adding the term

3δ

4

∫ τ∗

t

∫
B1

p2v2t dx dτ + δ

8

∫ τ∗

t
M(λ(τ ))

∫
B1

|∇v|2 dx dτ

in both sides of the resultant equation, we have

1

2

(t) + 3δ

4

∫ τ∗

t

∫
B1

p2v2t dx dτ + δ

8

∫ τ∗

t
M(λ(τ ))

∫
B1

|∇v|2 dx dτ

= 1

2

(τ ∗) + 3δ

2

∫ τ∗

t

∫
B1

p2v2t dx dτ + 3δ

8

∫ τ∗

t
M(λ(t))

∫
B1

|∇v|2 dx dτ
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+δβ0

4

∫ τ∗

t
M(λ(τ ))

∫
B1

p2v2 dx dτ +
∫ τ∗

t
M(λ(τ ))

{ ∫
B1

[ (
β0 − β1|x |2

)
p2vvt

+(N − 2)(〈∇v, xpvt 〉 + 〈∇vt , xpv〉)
]
dx

}
dτ. (90)

Analogously to (62), we have

1

2

(t) + 1

δ

∫ τ∗

t

(
δ2

2
− 2C2

2 |λ(t)|2q
m0

) ∫
B1

p2v2t dx dτ + δm0β0

4

∫ τ∗

t

∫
B1

p2v2 dx dτ

≤ 1

2

(τ∗) + 3δ

2

∫ τ∗

t

∫
B1

p2v2t dx dτ + δβ0

4

∫ τ∗

t
M(λ(τ ))

∫
B1

p2v2 dx dτ

+3δ

8

∫ τ∗

t
M(λ(τ ))

∫
B1

|∇v|2 dx dτ. (91)

Combining (75), (79), (83), (84), (88), and (91), we conclude that

[
1

2
− εC

]

(t) ≤ CF2(t), (92)

for all t ≥ 0. Taking ε > 0 small enough, we conclude that (74) holds. Therefore,
from Nakao’s lemma we obtain that 
 decay exponentially, i.e., Theorem 1 is proved.
�

4. Proof of the existence and uniqueness theorem

We use the Faedo–Galerkin method. Let (w j ) j∈N be a bases in H1
0 (B1) ∩ H2(�).

For each m ∈ N, we denote Um the m-dimensional subspaces spanned by the first m
vectors of (w j ) j∈N. Let T > 0 be any fixed positive number. For each m ∈ N, we are
looking for a 0 < Tm ≤ T and vm : B1 × [0, Tm] → R such that

vm(x, t) =
m∑
i=1

αim(t)wi (x),

and it satisfies the approximate problem

(p2v′′
m(t), w j ) + M(λm(t))

[
(∇vm(t),∇w j ) + β0(p

2vm(t), w j )
]

+(δp2v′
m(t), w j ) = 0, (93)

vm(0) = v0m =
m∑
i=1

vi0wi → v0 in H1
0 (B1) ∩ H2(B1), (94)

v′
m(0) = v1m =

m∑
i=1

vi1wi → v1 in H1
0 (�), (95)
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where ′ = d
dt , 1 ≤ j ≤ m, vi0, v

i
1, i = 1, . . . ,m, are known scalars, and

λm(t) =
∫
B1

(
|∇vm |2 − (N − 2)〈∇vm, xpvm〉 + β1 p

2v2m |x |2
)
dx,

where β1 = ( N−2
2

)2
. From Ordinary Differential Equations Theory (for instance, see

[13]), it is possible to prove that (93)–(95) has a local solution.
From (93) we have the following approximate equation

(p2v′′
m(t), w) + M(λm(t))[(∇vm(t),∇w) + β0(p

2vm(t), w)]
+(δp2v′

m(t), w) = 0, (96)

for all w ∈ Um .

Estimate 1. Initially, it is necessary to observe that

1

2

d

dt

m(t) + δ

4

∫
B1

p2|v′
m |2 dx + β0m0δ

4

∫
B1

p2v2m dx ≤ 0, (97)

for all t ≤ Tm , where


m(t) =
∫
B1

p2|v′
m |2 dV + M (λm(t)) + δ

2

∫
B1

p2v′
mvm dx + δ2

4

∫
B1

p2v2m dx . (98)

Indeed, taking in (96) w = v′
m , we have

1

2

d

dt

∫
B1

p2|v′
m |2 dx + 1

2
M(λm(t))

d

dt

[∫
B1

(
|∇vm |2 + β0 p

2v2m

)
dx

]

+δ

∫
B1

p2|v′
m |2 dx = 0. (99)

We observe that (99) is similar to (48) with v replaced by vm . Moreover, (97) is
similar to (47). Therefore, to prove that (97) holds, it is enough to follow the steps of
the proof of Lemma 3.
On the other hand, observing (64), we have,


m(t) ≥ 1

2

∫
B1

p2|v′
m |2 dV + M (λm(t)) + δ2

8

∫
B1

p2v2m dx . (100)

Thus, integrating (97) from 0 to t and observing (100), we have

1

2

∫
B1

p2|v′
m |2 dV + M (λm(t)) + δ2

8

∫
B1

p2v2m dx ≤ 
m(0). (101)

Therefore,
∫
B1

p2|v′
m |2 dV + M (λm(t)) +

∫
B1

p2v2m dx ≤ L1, (102)
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for all t ∈ [0, Tm), where L1 = 
(0)

min
{
1
2 , δ2

8

} , which is the Estimate 1. This estimate is

enough to extend the approximate solution to whole t ≥ 0. This gives us that (102)
holds with Tm replaced by T < ∞. Thus, we have that

(pvm)m∈N is bounded in L∞(0, T ; L2(B1))

and

(pv′
m)m∈N is bounded in L∞(0, T ; L2(B1)).

Estimate 2. From (102) we can estimate ‖∇vm(t)‖2. Indeed, we observe that∫
B1

|∇vm |2 dx = λm(t) +
∫
B1

(
(N − 2)〈∇vm, xpvm〉 − β1 p

2v2m |x |2
)
dx

≤ M(λm(t))

m0
+ 1

2

∫
B1

|∇vm |2 dx + 3β1

∫
B1

p2v2m dx . (103)

From (102) and (103), we infer
∫
B1

|∇vm |2 dx ≤ 2

(
1

m0
+ 3β1

)
L1 := L2, (104)

for all t ∈ [0, T ]. Therefore,
(vm)m∈N is bounded in L∞(0, T ; H1

0 (B1)).

Estimate 3. Multiplying (96) by 1
M(λm (t)) , differentiating the resultant equation with

respect to t , and taking w = v′′
m , we have

1

2

d

dt

[∫
B1

p2|v′′
m |2

M(λm(t))
dx +

∫
B1

|∇v′
m |2 dx + β0

∫
B1

p2|v′
m |2

]

+δ

∫
B1

p2|v′′
m |2

M(λm(t))
dx

= 1

2

∫
B1

p2|v′′
m |2M ′(λm(t))λ′

m(t)

M2(λm(t))
dx

+δ

∫
B1

p2v′
mv′′

mM
′(λm(t))λ′

m(t)

M2(λm(t))
dx . (105)

Using Hölder’s inequality and Lemma 1, we have

|λ′
m(t)| =

∣∣∣
∫
B1

(
2〈∇vm,∇v′

m〉 − (N − 2)(〈xpvm,∇v′
m〉

+〈xpv′
m,∇vm〉) + β1|x |2 p2vmv′

m

)
dx

∣∣∣
≤ C7

(∫
B1

|∇vm |2 dx
) 1

2
(∫

B1
|∇v′

m |2 dx
) 1

2

, (106)
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where

C7 = 2 + 2CH (n − 2) + C2
Hβ1.

From this and using Estimate 2, we obtain

|λ′
m(t)| ≤ C7

√
L2

(∫
B1

|∇v′
m |2 dx

) 1
2

. (107)

Similarly to (68), it is possible to verify that

0 ≤ λm(t) ≤
(

δ2m0

8C2
1C

2
7

) 1
2q

, (108)

for all t ∈ [0, T ]. Thus, observing (108) and the definition of M1 in (36), we obtain

1

2

∫
B1

p2|v′′
m |2M ′(λm(t))λ′

m(t)

M2(λm(t))
dx

≤ M1C7
√
L2

2m0

(∫
B1

|∇v′
m |2 dx

) 1
2
∫
B1

p2|v′′
m |2

M(λm(t))
dx (109)

and

δ

∫
B1

p2v′
mv′′

mM
′(λm(t))λ′

m(t)

M2(λm(t))
dx

≤ δ

8

∫
B1

p2|v′
m |2 dx + 2δL2M2

1C
2
7

m3
0

∫
B1

|∇v′
m |2 dx

∫
B1

p2|v′′
m |2

M(λm(t))
dx . (110)

Substituting (109) and (110) into (105), we infer

1

2

d

dt

[∫
B1

p2|v′′
m |2

M(λm(t))
dx +

∫
B1

|∇v′
m |2 dx + β0

∫
B1

p2|v′
m |2

]

+δ

∫
B1

p2|v′′
m |2

M(λm(t))
dx

≤ + δ

8

∫
B1

p2|v′
m |2 dx + C8

(∫
B1

|∇v′
m |2 dx

) 1
2
∫
B1

p2|v′′
m |2

M(λm(t))
dx

+δC9

∫
B1

|∇v′
m |2 dx

∫
B1

p2|v′′
m |2

M(λm(t))
dx, (111)

where

C8 = M1
√
L2C6

2m0
and C9 = 2M2

1 L2C2
6

m3
0

. (112)

Adding (97) with (111), we have

1

2

d

dt

̃m(t) + δ

8

∫
B1

p2|v′
m |2 dx +

(
δ

2
− �m(t)

)∫
B1

p2|v′′
m |2

M(λm(t))
dx ≤ 0, (113)
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where


̃m(t) = 
m(t) +
∫
B1

p2|v′′
m |2

M(λm(t))
dx +

∫
B1

|∇v′
m |2 dx + β0

∫
B1

p2|v′
m |2 dx

and

�m(t) = C8

(∫
B1

|∇v′
m |2 dx

) 1
2 + δC9

∫
B1

|∇v′
m |2 dx .

We are going to prove that

�m(t) <
δ

8
, (114)

for all t ∈ [0, T ].
We have

�m(t) ≤ C8
̃
1
2
m (t) + δC9
̃m(t), (115)

for all t ∈ [0, T ]. Using (115) and the Assumption 3, we infer

�m(0) ≤ C8
̃
1
2
m (0) + δC9
̃m(0) <

δ

8
. (116)

We suppose that (114) does not hold. From (116) and the continuity of the function
t �→ �m(t), there exists t∗ > 0 such that

�m(t) <
δ

8
, (117)

for all t ∈ [0, t∗) and

�m(t∗) = δ

8
. (118)

Integrating (113) from 0 to t∗ and observing (117), we have


̃m(t∗) ≤ 
̃m(0). (119)

The estimate (115), (119), and the Assumption 3 give us that

�m(t∗) ≤ C8
̃
1
2
m (0) + δC9
̃m(0) <

δ

8
, (120)

which is a contradiction with (118). Thus, (114) holds.
Therefore, integrating (113) from 0 to t < T , and observing (114), we conclude

that


̃m(t) ≤ 
̃m(0) ≤ L3, (121)
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for all t ∈ [0, T ], which is the Estimate 3. Thus,

(v′
m)m∈N is bounded in L∞(0, T ; H1

0 (B1))

and

(pv′′
m)m∈N is bounded in L∞(0, T ; L2(B1)).

The presence of singularities does not allow to estimate the norm of (vm)m∈N in
L∞(0, T ; H1

0 (�) ∩ H2(�)) as in R
N case. Thus, the Estimates 1, 2, and 3 are not

enough to pass to the limit in approximate equation. To overcome this difficulty it is
necessary to make one more estimate.

Estimate 4. Multiplying (96) by 1
M(λm (t)) , we obtain

(p2v′′
m(t), w) + (δp2v′

m(t), w)

M(λm(t))
+ (∇vm(t),∇w) + β0(p

2vm(t), w) = 0. (122)

Let m and n be natural numbers such that m > n. Defining zm = vm − vn , we have

(p2z′′m(t), w) + (δp2z′m(t), w)

M(λm(t))
+ (∇zm(t),∇w) + β0(p

2zm(t), w)

= M(λm(t)) − M(λn(t))

M(λm(t))M(λn(t))

[
(p2v′′

m(t), w) + (δp2v′
m(t), w)

]
. (123)

Taking w = z′m , we infer

1

2

d

dt

[∫
B1

p2|z′m |2
M(λm(t))

dx +
∫
B1

|∇zm |2 dx + β0

∫
B1

p2|zm |2 dx
]

+δ

∫
B1

p2|z′m |2
M(λm(t))

dx

= −M ′(λm(t))λ′
m(t)

2M(λm(t))

∫
B1

p2|z′m |2
M(λm(t))

dx

+M(λm(t)) − M(λn(t))

M(λm(t))M(λn(t))

[
(p2v′′

m(t), z′m) + (δp2v′
m(t), z′m)

]
. (124)

Observing the calculus of λ′
m(t) in (107) and the Estimates 1, 2, and 3, we have

M ′(λm(t))λ′
m(t)

2M(λm(t))
≤ C, (125)

for all m ∈ N and for all t ∈ [0, T ].
We also observe that



67 Page 22 of 25 P. C. Carrião And A. Vicente J. Evol. Equ.

|M(λm(t)) − M(λn(t))| =
∣∣∣∣∣
∫ λn(t)

λm (t)
M ′(s) ds

∣∣∣∣∣
≤ max

0≤s≤2(L1+L2)
{|M ′(s)|}|λm(t) − λn(t)|. (126)

Observing the definition of λm(t), we have

|λm(t) − λn(t)| ≤ C
[ ∫

B1
(|∇vm | + |∇vn|)|∇zm | dx

+β1

∫
B1

(p|x ||vm | + p|x ||vn|)p|x ||zm | dx

+(N − 2)
∫
B1

|∇zm |p|x ||vm | dx + (N − 2)
∫
B1

|∇vn|p|x ||zm | dx
]
.

From this, using the Hölder inequality, Lemma 1, and the Estimates 1, 2, and 3, we
obtain

|λm(t) − λn(t)| ≤ C

(∫
B1

|∇zm |2 dx
) 1

2

. (127)

Combining (126) with (127), we infer

|M(λm(t)) − M(λn(t))| ≤ C

(∫
B1

|∇zm |2 dx
) 1

2

. (128)

From (124), (125), (128), and using Hölder inequality and Lemma 1, and the Esti-
mates 1, 2, and 3, we conclude

1

2

d

dt

[∫
B1

p2|z′m |2
M(λm(t))

dx +
∫
B1

|∇zm |2 dx + β0

∫
B1

p2|zm |2
]

+δ

∫
B1

p2|z′m |2
M(λm(t))

dx

≤ C
[ ∫

B1

p2|z′m |2
M(λm(t))

dx +
∫
B1

|∇zm |2 dx

+N (N − 2)

4

∫
B1

p2|zm |2
M(λm(t))

dx
]
. (129)

Using Lemma 1 and Gronwall’s inequality, we obtain

1

2

d

dt

[∫
B1

p2|z′m |2
M(λm(t))

dx +
∫
B1

|∇zm |2 dx + β0

∫
B1

p2|zm |2 dx
]

≤ C(T )

[∫
B1

|∇z′m(0)|2 dx +
∫
B1

|∇zm(0)|2 dx
]

. (130)
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which is the Estimate 4. Therefore, (94), (95), and (130) give us that

(vm)m∈N is a Cauchy sequence in C0([0, T ]; H1
0 (B1)),

(pvm)m∈N is a Cauchy sequence in C0([0, T ]; L2(B1)),

and

(pv′
m)m∈N is a Cauchy sequence in C0([0, T ]; L2(B1)).

Pass to the limit. Estimates 1–4 yield subsequences, that we still denote in the same
way, and a function v such that

vm → v in C0([0, T ]; H1
0 (B1)), v′

m
∗
⇀ v′ in L∞(0, T ; H1

0 (B1)), (131)

pvm
∗
⇀ pv in C0([0, T ]; L2(B1)), pv′

m → pv′ in C0([0, T ]; L2(B1)), (132)

pv′′
m

∗
⇀ pv′′ in L∞(0, T ; L2(B1)). (133)

From (131), (132), and observing the definition of λm(t), we infer

λm(·) → λ(·) in C0([0, T ]). (134)

This convergence and the continuity of M allow us to conclude that

M(λm(·)) → M(λ(·)) in C0([0, T ]). (135)

The convergences (131)–(133), and (135) are enough to pass to the limit in the
approximate equation (96) and to conclude that v is a unique solution of (22)–(24).

�
Summarizing the results of Theorems 1 and 2, we have the following result:

Corollary 1. Assume that Assumptions 1, 2, and 3 are in place, then there exist a
solution v of (22)–(24) in the class (43) which decay exponentially.
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